Science.gov

Sample records for additional therapeutic targets

  1. Epigenomes as therapeutic targets.

    PubMed

    Hamm, Christopher A; Costa, Fabricio F

    2015-07-01

    Epigenetics is a molecular phenomenon that pertains to heritable changes in gene expression that do not involve changes in the DNA sequence. Epigenetic modifications in a whole genome, known as the epigenome, play an essential role in the regulation of gene expression in both normal development and disease. Traditional epigenetic changes include DNA methylation and histone modifications. Recent evidence reveals that other players, such as non-coding RNAs, may have an epigenetic regulatory role. Aberrant epigenetic signaling is becoming to be known as a central component of human disease, and the reversible nature of the epigenetic modifications provides an exciting opportunity for the development of clinically relevant therapeutics. Current epigenetic therapies provide a clinical benefit through disrupting DNA methyltransferases or histone deacetylases. However, the emergence of next-generation epigenetic therapies provides an opportunity to more effectively disrupt epigenetic disease states. Novel epigenetic therapies may improve drug targeting and drug delivery, optimize dosing schedules, and improve the efficacy of preexisting treatment modalities (chemotherapy, radiation, and immunotherapy). This review discusses the epigenetic mechanisms that contribute to the disease, available epigenetic therapies, epigenetic therapies currently in development, and the potential future use of epigenetic therapeutics in a clinical setting.

  2. Fibromyalgia syndrome: novel therapeutic targets.

    PubMed

    Ablin, Jacob N; Häuser, Winfried

    2016-05-01

    Fibromyalgia syndrome (FMS) is a chronic disorder characterized by widespread pain and tenderness, accompanied by disturbed sleep, chronic fatigue and multiple additional functional symptoms. FMS continues to pose an unmet need regarding pharmacological treatment and many patients fail to achieve sufficient relief from existing treatments. As FMS is considered to be a condition in which pain amplification occurs within the CNS, therapeutic interventions, both pharmacological and otherwise, have revolved around attempts to influence pain processing in the CNS. In the current review, we present an update on novel targets in the search for effective treatment of FMS. PMID:27296699

  3. Integrin Targeted Therapeutics

    PubMed Central

    Millard, Melissa; Odde, Srinivas; Neamati, Nouri

    2011-01-01

    Integrins are heterodimeric, transmembrane receptors that function as mechanosensors, adhesion molecules and signal transduction platforms in a multitude of biological processes. As such, integrins are central to the etiology and pathology of many disease states. Therefore, pharmacological inhibition of integrins is of great interest for the treatment and prevention of disease. In the last two decades several integrin-targeted drugs have made their way into clinical use, many others are in clinical trials and still more are showing promise as they advance through preclinical development. Herein, this review examines and evaluates the various drugs and compounds targeting integrins and the disease states in which they are implicated. PMID:21547158

  4. Therapeutic Targeting of Telomerase

    PubMed Central

    Jäger, Kathrin; Walter, Michael

    2016-01-01

    Telomere length and cell function can be preserved by the human reverse transcriptase telomerase (hTERT), which synthesizes the new telomeric DNA from a RNA template, but is normally restricted to cells needing a high proliferative capacity, such as stem cells. Consequently, telomerase-based therapies to elongate short telomeres are developed, some of which have successfully reached the stage I in clinical trials. Telomerase is also permissive for tumorigenesis and 90% of all malignant tumors use telomerase to obtain immortality. Thus, reversal of telomerase upregulation in tumor cells is a potential strategy to treat cancer. Natural and small-molecule telomerase inhibitors, immunotherapeutic approaches, oligonucleotide inhibitors, and telomerase-directed gene therapy are useful treatment strategies. Telomerase is more widely expressed than any other tumor marker. The low expression in normal tissues, together with the longer telomeres in normal stem cells versus cancer cells, provides some degree of specificity with low risk of toxicity. However, long term telomerase inhibition may elicit negative effects in highly-proliferative cells which need telomerase for survival, and it may interfere with telomere-independent physiological functions. Moreover, only a few hTERT molecules are required to overcome senescence in cancer cells, and telomerase inhibition requires proliferating cells over a sufficient number of population doublings to induce tumor suppressive senescence. These limitations may explain the moderate success rates in many clinical studies. Despite extensive studies, only one vaccine and one telomerase antagonist are routinely used in clinical work. For complete eradication of all subpopulations of cancer cells a simultaneous targeting of several mechanisms will likely be needed. Possible technical improvements have been proposed including the development of more specific inhibitors, methods to increase the efficacy of vaccination methods, and

  5. Therapeutic Targeting of Telomerase.

    PubMed

    Jäger, Kathrin; Walter, Michael

    2016-01-01

    Telomere length and cell function can be preserved by the human reverse transcriptase telomerase (hTERT), which synthesizes the new telomeric DNA from a RNA template, but is normally restricted to cells needing a high proliferative capacity, such as stem cells. Consequently, telomerase-based therapies to elongate short telomeres are developed, some of which have successfully reached the stage I in clinical trials. Telomerase is also permissive for tumorigenesis and 90% of all malignant tumors use telomerase to obtain immortality. Thus, reversal of telomerase upregulation in tumor cells is a potential strategy to treat cancer. Natural and small-molecule telomerase inhibitors, immunotherapeutic approaches, oligonucleotide inhibitors, and telomerase-directed gene therapy are useful treatment strategies. Telomerase is more widely expressed than any other tumor marker. The low expression in normal tissues, together with the longer telomeres in normal stem cells versus cancer cells, provides some degree of specificity with low risk of toxicity. However, long term telomerase inhibition may elicit negative effects in highly-proliferative cells which need telomerase for survival, and it may interfere with telomere-independent physiological functions. Moreover, only a few hTERT molecules are required to overcome senescence in cancer cells, and telomerase inhibition requires proliferating cells over a sufficient number of population doublings to induce tumor suppressive senescence. These limitations may explain the moderate success rates in many clinical studies. Despite extensive studies, only one vaccine and one telomerase antagonist are routinely used in clinical work. For complete eradication of all subpopulations of cancer cells a simultaneous targeting of several mechanisms will likely be needed. Possible technical improvements have been proposed including the development of more specific inhibitors, methods to increase the efficacy of vaccination methods, and

  6. Targeted Strategies for Henipavirus Therapeutics

    PubMed Central

    Bossart, Katharine N; Bingham, John; Middleton, Deborah

    2007-01-01

    Hendra and Nipah viruses are related emergent paramyxoviruses that infect and cause disease in animals and humans. Disease manifests as a generalized vasculitis affecting multiple organs, but is the most severe in the respiratory and central nervous systems. The high case fatality and person-to-person transmission associated with the most recent NiV outbreaks, and the recent re-emergence of HeV, emphasize the importance and necessity of effective therapeutics for these novel agents. In recent years henipavirus research has revealed a more complete understanding of pathogenesis and, as a consequence, viable approaches towards vaccines and therapeutics have emerged. All strategies target early steps in viral replication including receptor binding and membrane fusion. Animal models have been developed, some of which may prove more valuable than others for evaluating the efficacy of therapeutic agents and regimes. Assessments of protective host immunity and drug pharmacokinetics will be crucial to the further advancement of therapeutic compounds. PMID:19440455

  7. Targeting polymer therapeutics to bone.

    PubMed

    Low, Stewart A; Kopeček, Jindřich

    2012-09-01

    An aging population in the developing world has led to an increase in musculoskeletal diseases such as osteoporosis and bone metastases. Left untreated many bone diseases cause debilitating pain and in the case of cancer, death. Many potential drugs are effective in treating diseases but result in side effects preventing their efficacy in the clinic. Bone, however, provides a unique environment of inorganic solids, which can be exploited in order to effectively target drugs to diseased tissue. By integration of bone targeting moieties to drug-carrying water-soluble polymers, the payload to diseased area can be increased while side effects decreased. The realization of clinically relevant bone targeted polymer therapeutics depends on (1) understanding bone targeting moiety interactions, (2) development of controlled drug delivery systems, as well as (3) understanding drug interactions. The latter makes it possible to develop bone targeted synergistic drug delivery systems.

  8. TARGETING POLYMER THERAPEUTICS TO BONE

    PubMed Central

    Low, Stewart; Kopeček, Jindřich

    2012-01-01

    An aging population in the developing world has led to an increase in musculoskeletal diseases such as osteoporosis and bone metastases. Left untreated many bone diseases cause debilitating pain and in the case of cancer, death. Many potential drugs are effective in treating diseases but result in side effects preventing their efficacy in the clinic. Bone, however, provides an unique environment of inorganic solids, which can be exploited in order to effectively target drugs to diseased tissue. By integration of bone targeting moieties to drug-carrying water-soluble polymers, the payload to diseased area can be increased while side effects decreased. The realization of clinically relevant bone targeted polymer therapeutics depends on (1) understanding bone targeting moiety interactions, (2) development of controlled drug delivery systems, as well as (3) understanding drug interactions. The latter makes it possible to develop bone targeted synergistic drug delivery systems. PMID:22316530

  9. Therapeutic targeting of replicative immortality

    PubMed Central

    Yaswen, Paul; MacKenzie, Karen L.; Keith, W. Nicol; Hentosh, Patricia; Rodier, Francis; Zhu, Jiyue; Firestone, Gary L.; Matheu, Ander; Carnero, Amancio; Bilsland, Alan; Sundin, Tabetha; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S.; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I.; Azmi, Asfar S.; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Aquilano, Katia; Ashraf, S. Salman; Nowsheen, Somaira; Yang, Xujuan

    2015-01-01

    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy. PMID:25869441

  10. KRAS as a Therapeutic Target

    PubMed Central

    McCormick, Frank

    2015-01-01

    KRAS proteins play a major role in human cancer, but have not yielded to therapeutic attack. New technologies in drug discovery and insights into signaling pathways that KRAS controls have promoted renewed efforts to develop therapies, either through direct targeting of KRAS itself, new ways of blocking KRAS processing, or by identifying targets that KRAS cancers depend on for survival. While drugs that block the well-established downstream pathways, RAF-MAPK and PI 3 kinase, are being tested in the clinic, new efforts are underway to exploit previously unrecognized vulnerabilities, such as altered metabolic networks, or novel pathways identified through synthetic lethal screens. Furthermore, new ways of suppressing KRAS gene expression and of harnessing the immune system offer further hope that new ways of treating KRAS are finally coming into view. These issues are discussed in this edition of CCR Focus. PMID:25878360

  11. Therapeutic target for protozoal diseases

    DOEpatents

    Rathore, Dharmendar; Jani, Dewal; Nagarkatti, Rana

    2008-10-21

    A novel Fasciclin Related Adhesive Protein (FRAP) from Plasmodium and related parasites is provided as a target for therapeutic intervention in diseases caused by the parasites. FRAP has been shown to play a critical role in adhesion to, or invasion into, host cells by the parasite. Furthermore, FRAP catalyzes the neutralization of heme by the parasite, by promoting its polymerization into hemozoin. This invention provides methods and compositions for therapies based on the administration of protein, DNA or cell-based vaccines and/or antibodies based on FRAP, or antigenic epitopes of FRAP, either alone or in combination with other parasite antigens. Methods for the development of compounds that inhibit the catalytic activity of FRAP, and diagnostic and laboratory methods utilizing FRAP are also provided.

  12. Therapeutic targeting of bile acids

    PubMed Central

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  13. Targeting cellular metabolism to improve cancer therapeutics.

    PubMed

    Zhao, Y; Butler, E B; Tan, M

    2013-03-07

    The metabolic properties of cancer cells diverge significantly from those of normal cells. Energy production in cancer cells is abnormally dependent on aerobic glycolysis. In addition to the dependency on glycolysis, cancer cells have other atypical metabolic characteristics such as increased fatty acid synthesis and increased rates of glutamine metabolism. Emerging evidence shows that many features characteristic to cancer cells, such as dysregulated Warburg-like glucose metabolism, fatty acid synthesis and glutaminolysis are linked to therapeutic resistance in cancer treatment. Therefore, targeting cellular metabolism may improve the response to cancer therapeutics and the combination of chemotherapeutic drugs with cellular metabolism inhibitors may represent a promising strategy to overcome drug resistance in cancer therapy. Recently, several review articles have summarized the anticancer targets in the metabolic pathways and metabolic inhibitor-induced cell death pathways, however, the dysregulated metabolism in therapeutic resistance, which is a highly clinical relevant area in cancer metabolism research, has not been specifically addressed. From this unique angle, this review article will discuss the relationship between dysregulated cellular metabolism and cancer drug resistance and how targeting of metabolic enzymes, such as glucose transporters, hexokinase, pyruvate kinase M2, lactate dehydrogenase A, pyruvate dehydrogenase kinase, fatty acid synthase and glutaminase can enhance the efficacy of common therapeutic agents or overcome resistance to chemotherapy or radiotherapy.

  14. [Therapeutic targets in Gaucher's disease].

    PubMed

    Giraldo, Pilar; Roca, Mercedes

    2011-09-01

    Gaucher's disease (GD) occurs because of deficiency of the enzyme beta-glucocerebrosidase that results in accumulation of this glycolipid compound in the cells of the macrophage-monocyte system. There are 3 types: type 1 is non-neuronopathic with primarily visceral signs and symptoms which range tremendously in severity; infantile-onset type 2 and later-onset type 3 involve the central nervous system. More than 300 mutations have been described in the gene, partially explaining phenotypic heterogeneity. Commercialization in 1991 of the first enzyme replacement therapy, alglucerase, resulted in a revolution in the management of patients with symptomatic GD (i.e., by improving the hematological and visceral signs and symptoms). Within the first 5 years of alglucerase, its safety and efficacy in improving hemoglobin levels and platelet counts, and in reducing splenic and hepatic enlargement were confirmed albeit recognizing its inability to impact neurological symptoms and signs because of its large molecular size. Recombinant imiglucerase soon replaced alglucerase as the standard of care for GD. The therapeutic targets recently defined as treatment goals were: normalization of cell counts; reduction of liver and spleen volume; elimination of the infiltration in the bone marrow to prevent the complications, and improvement in surrogate biomarkers. PMID:22230126

  15. Twist: a molecular target in cancer therapeutics.

    PubMed

    Khan, Md Asaduzzaman; Chen, Han-chun; Zhang, Dianzheng; Fu, Junjiang

    2013-10-01

    Twist, the basic helix-loop-helix transcription factor, is involved in the process of epithelial to mesenchymal transitions (EMTs), which play an essential role in cancer metastasis. Overexpression of Twist or its promoter methylation is a common scenario in metastatic carcinomas. Twist is activated by a variety of signal transduction pathways, including Akt, signal transducer and activator of transcription 3, mitogen-activated protein kinase, Ras, and Wnt signaling. Activated Twist upregulates N-cadherin and downregulates E-cadherin, which are the hallmarks of EMT. Moreover, Twist plays an important role in some physiological processes involved in metastasis, like angiogenesis, invadopodia, extravasation, and chromosomal instability. Twist also protects cancer cells from apoptotic cell death. In addition, Twist is responsible for the stemness of cancer cells and the generation of drug resistance. Recently, targeting Twist has gained significant interests in cancer therapeutics. The inactivation of Twist by small RNA technology or chemotherapeutic approach has been proved successful. Moreover, several inhibitors which are antagonistic to the upstream or downstream molecules of Twist signaling pathways have also been identified. Development of potential treatment strategies by targeting Twist has a great promise in cancer therapeutics.

  16. Promising therapeutic targets in neuroblastoma.

    PubMed

    Matthay, Katherine K; George, Rani E; Yu, Alice L

    2012-05-15

    Neuroblastoma, the most common extracranial solid tumor in children, is derived from neural crest cells. Nearly half of patients present with metastatic disease and have a 5-year event-free survival of <50%. New approaches with targeted therapy may improve efficacy without increased toxicity. In this review we evaluate 3 promising targeted therapies: (i) (131)I-metaiodobenzylguanidine (MIBG), a radiopharmaceutical that is taken up by human norepinephrine transporter (hNET), which is expressed in 90% of neuroblastomas; (ii) immunotherapy with monoclonal antibodies targeting the GD2 ganglioside, which is expressed on 98% of neuroblastoma cells; and (iii) inhibitors of anaplastic lymphoma kinase (ALK), a tyrosine kinase that is mutated or amplified in ~10% of neuroblastomas and expressed on the surface of most neuroblastoma cells. Early-phase trials have confirmed the activity of (131)I-MIBG in relapsed neuroblastoma, with response rates of ~30%, but the technical aspects of administering large amounts of radioactivity in young children and limited access to this agent have hindered its incorporation into treatment of newly diagnosed patients. Anti-GD2 antibodies have also shown activity in relapsed disease, and a recent phase III randomized trial showed a significant improvement in event-free survival for patients receiving chimeric anti-GD2 (ch14.18) combined with cytokines and isotretinoin after myeloablative consolidation therapy. A recently approved small-molecule inhibitor of ALK has shown promising preclinical activity for neuroblastoma and is currently in phase I and II trials. This is the first agent directed to a specific mutation in neuroblastoma, and marks a new step toward personalized therapy for neuroblastoma. Further clinical development of targeted treatments offers new hope for children with neuroblastoma.

  17. Promising therapeutic targets in neuroblastoma

    PubMed Central

    Matthay, Katherine K.; George, Rani E.; Yu, Alice L.

    2012-01-01

    Neuroblastoma, the most common extra- cranial solid tumor in children, is derived from neural crest cells. Nearly half of patients present with metastatic disease, and have 5-year EFS of less than 50%. New approaches with targeted therapy may improve efficacy without increased toxicity. The current review will evaluate three promising targeted therapies, including 131I-metaiodobenzylguanidine (MIBG), a radiopharmaceutical taken up by the human norepinephrine transporter expressed in 90% of neuroblastomas, immunotherapy with monoclonal antibodies targeting the GD2 ganglioside, expressed on 98% of neuroblastoma cells, and inhibitors of ALK, a tyrosine kinase which is mutated or amplified in approximately 10% of neuroblastoma and expressed on the surface of most neuroblastoma cells. Early phase trials have confirmed the activity of 131I-MIBG in relapsed neuroblastoma, with response rates of about 30%, but the technical aspects of administration of large amounts of radioactivity in young children and the limited access have hindered incorporation into treatment of newly diagnosed patients. Anti-GD2 antibodies have also demonstrated activity in relapsed disease, and a recent phase III randomized trial showed a significant improvement in event-free survival for patients receiving chimeric anti-GD2 (ch14.18) combined with cytokines and isotretinoin after myeloablative consolidation therapy. A recently approved small molecule inhibitor of ALK has promising pre-clinical activity for neuroblastoma, and is currently in phase I and II trials. This is the first agent directed to a specific mutation in neuroblastoma, and marks a new step toward personalized therapy for neuroblastoma. Further clinical development of targeted treatments offers new hope for children with neuroblastoma. PMID:22589483

  18. Conotoxins: Molecular and Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Lewis, Richard J.

    Marine molluscs known as cone snails produce beautiful shells and a complex array of over 50,000 venom peptides evolved for prey capture and defence. Many of these peptides selectively modulate ion channels and transporters, making them a valuable source of new ligands for studying the role these targets play in normal and disease physiology. A number of conopeptides reduce pain in animal models, and several are now in pre-clinical and clinical development for the treatment of severe pain often associated with diseases such as cancer. Less than 1% of cone snail venom peptides are pharmacologically characterised.

  19. Ascaris lumbricoides: an overview of therapeutic targets.

    PubMed

    Hagel, Isabel; Giusti, Tatiana

    2010-10-01

    A. lumbricoides is the largest of the common nematode parasites of man and has been associated with intestinal pathology, respiratory symptoms and malnutrition in children from endemic areas. Current anthelmintic treatments have proven to be safe. However, a reduced efficacy of single dose drugs has been reported. In veterinary practice, anthelmintic drug resistance is an irreversible problem. Thus, research and development of sensitive tools for early detection of drug resistance as well as new anthelmintic approaches are urgently needed. In this review, we summarized data providing information about current drug therapy against A. lumbricoides and other intestinal helminths, new drugs in experimental trials, future drugs perspectives and the identification of immunogenic parasite molecules that may be suitable vaccine targets. In addition to the WHO recommended drugs (albendazole, mebendazole, levamisole, and pyrantel pamoate), new anthelmintic alternatives such as tribendimidine and Nitazoxanide have proved to be safe and effective against A. lumbricoides and other soil-transmitted helminthiases in human trials. Also, some new drugs for veterinary use, monepantel and cyclooctadepsipeptides (e.g., PF1022A), will probably expand future drug spectrum for human treatments. The development of genomic technology has provided a great amount of available nematode DNA sequences, coupled with new gene function data that may lead to the identification of new drug targets through efficient mining of nematode genomic databases. On the other hand, the identification of nematode antigens involved in different parasite vital functions as well as immunomodulatory molecules in animals and humans may contribute to future studies of new therapeutic approaches.

  20. Targeting tumor suppressor networks for cancer therapeutics.

    PubMed

    Guo, Xuning Emily; Ngo, Bryan; Modrek, Aram Sandaldjian; Lee, Wen-Hwa

    2014-01-01

    Cancer is a consequence of mutations in genes that control cell proliferation, differentiation and cellular homeostasis. These genes are classified into two categories: oncogenes and tumor suppressor genes. Together, overexpression of oncogenes and loss of tumor suppressors are the dominant driving forces for tumorigenesis. Hence, targeting oncogenes and tumor suppressors hold tremendous therapeutic potential for cancer treatment. In the last decade, the predominant cancer drug discovery strategy has relied on a traditional reductionist approach of dissecting molecular signaling pathways and designing inhibitors for the selected oncogenic targets. Remarkable therapies have been developed using this approach; however, targeting oncogenes is only part of the picture. Our understanding of the importance of tumor suppressors in preventing tumorigenesis has also advanced significantly and provides a new therapeutic window of opportunity. Given that tumor suppressors are frequently mutated, deleted, or silenced with loss-of-function, restoring their normal functions to treat cancer holds tremendous therapeutic potential. With the rapid expansion in our knowledge of cancer over the last several decades, developing effective anticancer regimens against tumor suppressor pathways has never been more promising. In this article, we will review the concept of tumor suppression, and outline the major therapeutic strategies and challenges of targeting tumor suppressor networks for cancer therapeutics.

  1. Therapeutic targets for treating fibrotic kidney diseases

    PubMed Central

    Lee, So-Young; Kim, Sung Il; Choi, Mary E.

    2014-01-01

    Renal fibrosis is the hallmark of virtually all progressive kidney diseases and strongly correlates with the deterioration of kidney function. The renin-angiotensin-aldosterone system blockade is central to the current treatment of patients with chronic kidney disease (CKD) for the renoprotective effects aimed to prevent or slow progression to end-stage renal disease (ESRD). However, the incidence of CKD is still increasing, and there is a critical need for new therapeutics. Here, we review novel strategies targeting various components implicated in the fibrogenic pathway to inhibit or retard the loss of kidney function. We focus, in particular, on anti-fibrotic approaches that target transforming growth factor (TGF)-β1, a key mediator of kidney fibrosis, and exciting new data on the role of autophagy. Bone morphogenetic protein (BMP)-7 and connective tissue growth factor (CTGF) are highlighted as modulators of pro-fibrotic TGF-β activity. BMP-7 has a protective role against TGF-β1 in kidney fibrosis, whereas CTGF enhances TGF-β-mediated fibrosis. We also discuss recent advances in the development of additional strategies for anti-fibrotic therapy. These include strategies targeting chemokine pathways via CC chemokine receptor 1 and 2 to modulate the inflammatory response, inhibition of phosphodiesterase to restore nitric oxide (NO)-cyclic 3′,5′ guanosine monophosphate (cGMP) function, inhibition of NADPH oxidase 1 (Nox1) and 4 (Nox4) to suppress reactive oxygen species production, as well as inhibition of endothelin-1 or tumor necrosis factor-α to ameliorate progressive renal fibrosis. Furthermore, a brief overview of some of the biomarkers of kidney fibrosis currently being explored that may improve the ability to monitor anti-fibrotic therapies. It is hoped that evidence based on the preclinical and clinical data discussed in this review leads to novel anti-fibrotic therapies effective in patients with CKD to prevent or delay progression to ESRD. PMID

  2. Tumour vasculature--a potential therapeutic target.

    PubMed Central

    Baillie, C. T.; Winslet, M. C.; Bradley, N. J.

    1995-01-01

    The tumour vasculature is vital for the establishment, growth and metastasis of solid tumours. Its physiological properties limit the effectiveness of conventional anti-cancer strategies. Therapeutic approaches directed at the tumour vasculature are reviewed, suggesting the potential of anti-angiogenesis and the targeting of vascular proliferation antigens as cancer treatments. PMID:7543770

  3. Liver as a target for oligonucleotide therapeutics.

    PubMed

    Sehgal, Alfica; Vaishnaw, Akshay; Fitzgerald, Kevin

    2013-12-01

    Oligonucleotide-based therapeutics are an emerging class of drugs that hold the promise for silencing "un-druggable" targets,thus creating unique opportunities for innovative medicines. As opposed to gene therapy, oligonucleotides are considered to be more akin to small molecule therapeutics because they are small,completely synthetic in origin, do not integrate into the host genome,and have a defined duration of therapeutic activity after which effects recover to baseline. They offer a high degree of specificity at the genetic level, thereby reducing off-target effects.At the same time, they provide a strategy for targeting any gene in the genome, including transcripts that produce mutated proteins.Oligonucleotide-based therapeutics include short interfering RNA (siRNA), that degrade target mRNA through RISC mediated RNAi; anti-miRs, that target miRNAs; miRNA mimics, that regulate target mRNA; antisense oligonucleotides, that may be working through RNAseH mediated mRNA decay; mRNA upregulation,by targeting long non-coding RNAs; and oligonucleotides induced alternative splicing [1]. All these approaches require some minimal degree of homology at the nucleic acid sequence level for them to be functional. The different mechanisms of action and their relevant activity are outlined in Fig. 1. Besides homology,RNA secondary structure has also been exploited in the case of ribozymes and aptamers, which act by binding to nucleic acids or proteins, respectively. While there have been many reports of gene knockdown and gene modulation in cell lines and mice with all these methods, very few have advanced to clinical stages.The main obstacle to date has been the safe and effective intracellular delivery of these compounds in higher species, including humans. Indeed, their action requires direct interaction with DNA/RNA within the target cell so even when one solves the issues of tissue and cellular access, intracellular/intranuclear location represents yet another barrier to

  4. Cardiovascular therapeutic uses of targeted ultrasound contrast agents

    PubMed Central

    Laing, Susan T.; McPherson, David D.

    2009-01-01

    The therapeutic use of ultrasound contrast agents (UCAs) is an emerging methodology with high potential for enhanced directed therapeutic gene, bioactive gas, drug, and stem cell delivery. Ultrasound-targeted microbubble destruction has already demonstrated feasibility for plasmid DNA delivery. Similarly, therapeutic ultrasound for thrombolysis treatment has been taken into the clinical setting, and the addition of UCAs for therapeutic delivery or enhanced effect through cavitation is a natural progression to this investigation. However, as with any new technique, safety needs to be first demonstrated before translation into clinical practice. This review article will focus on the development of UCAs for cardiac and vascular therapeutics as well as the limitations/concerns for the use of therapeutic ultrasound in clinical medicine in order to lay a foundation for investigators planning to enter this exciting field or for those who want to broaden their understanding. PMID:19581314

  5. Targeting DNA Polymerase β for Therapeutic Intervention

    PubMed Central

    Goellner, Eva M.; Svilar, David; Almeida, Karen H.; Sobol, Robert W.

    2014-01-01

    DNA damage plays a causal role in numerous disease processes. Hence, it is suggested that DNA repair proteins, which maintain the integrity of the nuclear and mitochondrial genomes, play a critical role in reducing the onset of multiple diseases, including cancer, diabetes and neurodegeneration. As the primary DNA polymerase involved in base excision repair, DNA polymerase β (Polβ) has been implicated in multiple cellular processes, including genome maintenance and telomere processing and is suggested to play a role in oncogenic transformation, cell viability following stress and the cellular response to radiation, chemotherapy and environmental genotoxicants. Therefore, Polβ inhibitors may prove to be effective in cancer treatment. However, Polβ has a complex and highly regulated role in DNA metabolism. This complicates the development of effective Polβ-specific inhibitors useful for improving chemotherapy and radiation response without impacting normal cellular function. With multiple enzymatic activities, numerous binding partners and complex modes of regulation from post-translational modifications, there are many opportunities for Polβ inhibition that have yet to be resolved. To shed light on the varying possibilities and approaches of targeting Polβ for potential therapeutic intervention, we summarize the reported small molecule inhibitors of Polβ and discuss the genetic, biochemical and chemical studies that implicate additional options for Polβ inhibition. Further, we offer suggestions on possible inhibitor combinatorial approaches and the potential for tumor specificity for Polβ-inhibitors. PMID:22122465

  6. Targeted Secretion Inhibitors—Innovative Protein Therapeutics

    PubMed Central

    Foster, Keith; Chaddock, John

    2010-01-01

    Botulinum neurotoxins are highly effective therapeutic products. Their therapeutic success results from highly specific and potent inhibition of neurotransmitter release with a duration of action measured in months. These same properties, however, make the botulinum neurotoxins the most potent acute lethal toxins known. Their toxicity and restricted target cell activity severely limits their clinical utility. Understanding the structure-function relationship of the neurotoxins has enabled the development of recombinant proteins selectively incorporating specific aspects of their pharmacology. The resulting proteins are not neurotoxins, but a new class of biopharmaceuticals, Targeted Secretion Inhibitors (TSI), suitable for the treatment of a wide range of diseases where secretion plays a major role. TSI proteins inhibit secretion for a prolonged period following a single application, making them particularly suited to the treatment of chronic diseases. A TSI for the treatment of chronic pain is in clinical development. PMID:22069575

  7. Angiotensins as therapeutic targets beyond heart disease.

    PubMed

    Passos-Silva, Danielle Gomes; Brandan, Enrique; Santos, Robson Augusto Souza

    2015-05-01

    The renin-angiotensin system (RAS) plays a pivotal role in cardiovascular and hydro-electrolyte homeostasis. Blockade of the RAS as a therapeutic strategy for treating hypertension and related cardiovascular diseases is well established. However, actions of the RAS go far beyond the targets initially described. In this regard, the recent identification of novel components of the RAS, including angiotensin-(1-7) [Ang-(1-7)], Ang-(1-9), and alamandine, have opened new possibilities for interfering with the development and manifestations of cardiovascular and non-cardiovascular diseases. In this article, we briefly review novel targets for angiotensins and its therapeutic implications in diverse areas, including cancer, inflammation, and glaucoma. PMID:25847571

  8. Integrins as therapeutic targets: lessons and opportunities.

    PubMed

    Cox, Dermot; Brennan, Marian; Moran, Niamh

    2010-10-01

    The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets. PMID:20885411

  9. TSPO as a target for glioblastoma therapeutics.

    PubMed

    Werry, Eryn L; Barron, Melissa L; Kassiou, Michael

    2015-08-01

    The translocator protein (TSPO) is an 18-kDa five-transmembrane protein, which is primarily found in the outer mitochondrial membrane. Levels of this protein are up-regulated in the most aggressive and common glioma, glioblastoma multiforme (GM). Levels of TSPO also correlate with GM clinical outcome, suggesting that TSPO may be a novel GM diagnostic imaging agent. Therapeutically, targeting the TSPO may provide a mechanism to abrogate the apoptotic-resistant, invasive and aggressive nature of GM and may also provide a way of targeting other anti-cancer treatments to GM sites. This review highlights recent progress in research on TSPO-based diagnostic imaging and therapeutics for GM.

  10. Memory as a new therapeutic target.

    PubMed

    Nader, Karim; Hardt, Oliver; Lanius, Ruth

    2013-12-01

    This review aims to demonstrate how an understanding of the brain mechanisms involved in memory provides a basis for; (i) reconceptualizing some mental disorders; (ii) refining existing therapeutic tools; and (iii) designing new ones for targeting processes that maintain these disorders. First, some of the stages which a memory undergoes are defined, and the clinical relevance of an understanding of memory processing by the brain is discussed. This is followed by a brief review of some of the clinical studies that have targeted memory processes. Finally, some new insights provided by the field of neuroscience with implications for conceptualizing mental disorders are presented.

  11. Therapeutic Targeting of Tumor Suppressor Genes

    PubMed Central

    Morris, Luc G. T.; Chan, Timothy A.

    2015-01-01

    Carcinogenesis is a multistep process attributable to both gain-of-function mutations in oncogenes and loss-of-function mutations in tumor suppressor genes. Currently, most molecular targeted therapies are inhibitors of oncogenes, because inactivated tumor suppressor genes have proven harder to “drug.” Nevertheless, in cancers, tumor suppressor genes undergo alteration more frequently than do oncogenes. In recent years, several promising strategies directed at tumor suppressor genes, or the pathways controlled by these genes, have emerged. Here, we describe advances in a number of different methodologies aimed at therapeutically targeting tumors driven by inactivated tumor suppressor genes. PMID:25557041

  12. Emerging therapeutics for targeting Akt in cancer.

    PubMed

    Gdowski, Andrew; Panchoo, Marlyn; Treuren, Timothy Van; Basu, Alakananda

    2016-01-01

    The ultimate goal of cancer therapeutic research is to develop effective, targeted therapeutics that exploit the vulnerabilities of cancer cells. The three isoforms of Akt, also known as protein kinase B (PKB), are important mediators of various pathways that transmit mitogenic signals from the cell's exterior to the effector proteins of the cell's interior. Due to Akt\\\\\\\\\\\\\\'s importance in cell functions such as growth, proliferation and cell survival, many cancer cells rely on this pathway to aid in their survival. This dependence can lead to chemoresistance and selection of more adapted populations of cancer cells. Thus, it is important to understand the functional significance of isoform specificity and its relation to chemoresistance. In this review, we have summarized recent studies on Akt isoform specific regulation as well as each isoform's role in chemoresistance, emphasizing their potential as targets for cancer therapy. We have also condensed ongoing clinical studies involving various types of Akt inhibitors while highlighting the type of study, rationale and co-therapies involved in identifying Akt isoforms as promising therapeutic targets.

  13. Novel therapeutic targets for pancreatic cancer

    PubMed Central

    Tang, Shing-Chun; Chen, Yang-Chao

    2014-01-01

    Pancreatic cancer has become the fourth leading cause of cancer death in the last two decades. Only 3%-15% of patients diagnosed with pancreatic cancer had 5 year survival rate. Drug resistance, high metastasis, poor prognosis and tumour relapse contributed to the malignancies and difficulties in treating pancreatic cancer. The current standard chemotherapy for pancreatic cancer is gemcitabine, however its efficacy is far from satisfactory, one of the reasons is due to the complex tumour microenvironment which decreases effective drug delivery to target cancer cell. Studies of the molecular pathology of pancreatic cancer have revealed that activation of KRAS, overexpression of cyclooxygenase-2, inactivation of p16INK4A and loss of p53 activities occurred in pancreatic cancer. Co-administration of gemcitabine and targeting the molecular pathological events happened in pancreatic cancer has brought an enhanced therapeutic effectiveness of gemcitabine. Therefore, studies looking for novel targets in hindering pancreatic tumour growth are emerging rapidly. In order to give a better understanding of the current findings and to seek the direction in future pancreatic cancer research; in this review we will focus on targets suppressing tumour metastatsis and progression, KRAS activated downstream effectors, the relationship of Notch signaling and Nodal/Activin signaling with pancreatic cancer cells, the current findings of non-coding RNAs in inhibiting pancreatic cancer cell proliferation, brief discussion in transcription remodeling by epigenetic modifiers (e.g., HDAC, BMI1, EZH2) and the plausible therapeutic applications of cancer stem cell and hyaluronan in tumour environment. PMID:25152585

  14. MicroRNAs as Therapeutic Targets and Colorectal Cancer Therapeutics.

    PubMed

    Yamamoto, Hirofumi; Mori, Masaki

    2016-01-01

    The diagnosis and treatment of colorectal cancer (CRC) have improved greatly over recent years; however, CRC is still one of the most common cancers and a major cause of cancer death worldwide. Several recently developed drugs and treatment strategies are currently in clinical trials; however, there is still a compelling need for novel, highly efficacious therapies. MicroRNAs (miRNAs) are short non-coding RNAs consisting of 20-25 nucleotides that regulate post-transcriptional gene expression by binding to the 3'-untranslated region of mRNAs. miRNAs are known to regulate cancer pathways and to be expressed aberrantly in cancer. Since their initial discovery, a large number of miRNAs have been identified as oncogenes, whereas others function as tumor suppressors. Furthermore, signaling pathways that are important in CRC (e.g. the WNT, MAPK, TGF-β, TP53 and PI3K pathways) are regulated by miRNAs. A single miRNA can simultaneously regulate several target genes and pathways, indicating the therapeutic potential of miRNAs in CRC. However, significant obstacles remain to be overcome, such as an efficient miRNA delivery system, and the assessment of safety and side effects. Thus, miRNA therapy is still developing and possesses great potential for the treatment of CRC. In this chapter, we focus on miRNAs related to CRC and summarize previous studies that emphasize the therapeutic aspects of miRNAs in CRC. PMID:27573904

  15. MicroRNAs as Therapeutic Targets and Colorectal Cancer Therapeutics.

    PubMed

    Yamamoto, Hirofumi; Mori, Masaki

    2016-01-01

    The diagnosis and treatment of colorectal cancer (CRC) have improved greatly over recent years; however, CRC is still one of the most common cancers and a major cause of cancer death worldwide. Several recently developed drugs and treatment strategies are currently in clinical trials; however, there is still a compelling need for novel, highly efficacious therapies. MicroRNAs (miRNAs) are short non-coding RNAs consisting of 20-25 nucleotides that regulate post-transcriptional gene expression by binding to the 3'-untranslated region of mRNAs. miRNAs are known to regulate cancer pathways and to be expressed aberrantly in cancer. Since their initial discovery, a large number of miRNAs have been identified as oncogenes, whereas others function as tumor suppressors. Furthermore, signaling pathways that are important in CRC (e.g. the WNT, MAPK, TGF-β, TP53 and PI3K pathways) are regulated by miRNAs. A single miRNA can simultaneously regulate several target genes and pathways, indicating the therapeutic potential of miRNAs in CRC. However, significant obstacles remain to be overcome, such as an efficient miRNA delivery system, and the assessment of safety and side effects. Thus, miRNA therapy is still developing and possesses great potential for the treatment of CRC. In this chapter, we focus on miRNAs related to CRC and summarize previous studies that emphasize the therapeutic aspects of miRNAs in CRC.

  16. SLC Transporters as Therapeutic Targets: Emerging Opportunities

    PubMed Central

    Lin, Lawrence; Yee, Sook Wah; Kim, Richard B.; Giacomini, Kathleen M.

    2015-01-01

    Solute carrier (SLC) transporters — a family of more than 300 membrane-bound proteins that facilitate the transport of a wide array of substrates across biological membranes — have important roles in physiological processes ranging from the cellular uptake of nutrients to the absorption of drugs and other xenobiotics. Several classes of marketed drugs target well-known SLC transporters, such as neurotransmitter transporters, and human genetic studies have provided powerful insight into the roles of more-recently characterized SLC transporters in both rare and common diseases, indicating a wealth of new therapeutic opportunities. This Review summarizes knowledge on the roles of SLC transporters in human disease, describes strategies to target such transporters, and highlights current and investigational drugs that modulate SLC transporters, as well as promising drug targets. PMID:26111766

  17. SLC transporters as therapeutic targets: emerging opportunities.

    PubMed

    Lin, Lawrence; Yee, Sook Wah; Kim, Richard B; Giacomini, Kathleen M

    2015-08-01

    Solute carrier (SLC) transporters - a family of more than 300 membrane-bound proteins that facilitate the transport of a wide array of substrates across biological membranes - have important roles in physiological processes ranging from the cellular uptake of nutrients to the absorption of drugs and other xenobiotics. Several classes of marketed drugs target well-known SLC transporters, such as neurotransmitter transporters, and human genetic studies have provided powerful insight into the roles of more-recently characterized SLC transporters in both rare and common diseases, indicating a wealth of new therapeutic opportunities. This Review summarizes knowledge on the roles of SLC transporters in human disease, describes strategies to target such transporters, and highlights current and investigational drugs that modulate SLC transporters, as well as promising drug targets.

  18. Cancer therapeutics: Targeting the apoptotic pathway.

    PubMed

    Khan, Khurum H; Blanco-Codesido, Montserrat; Molife, L Rhoda

    2014-06-01

    Apoptosis, a physiological process of programmed cell death, is disrupted in various malignancies. It has been exploited as an anti-cancer strategy traditionally by inducing DNA damage with chemotherapy and radiotherapy. With an increased understanding of the intrinsic and extrinsic pathways of apoptosis in recent years, novel approaches of targeting the apoptotic pathways have been tested in pre-clinical and clinical models. There are several early phase clinical trials investigating the therapeutic role of pro-apoptotic agents, both as single agents and in combination. In this review, we examine such treatment strategies, detailing the various compounds currently under clinical investigation, their potential roles in cancer therapeutics, and discussing approaches to their optimal use in the clinic.

  19. Advancements in therapeutically targeting orphan GPCRs

    PubMed Central

    Stockert, Jennifer A.; Devi, Lakshmi A.

    2015-01-01

    G-protein coupled receptors (GPCRs) are popular biological targets for drug discovery and development. To date there are more than 140 orphan GPCRs, i.e., receptors whose endogenous ligands are unknown. Traditionally orphan GPCRs have been difficult to study and the development of therapeutic compounds targeting these receptors has been extremely slow although these GPCRs are considered important targets based on their distribution and behavioral phenotype as revealed by animals lacking the receptor. Recent advances in several methods used to study orphan receptors, including protein crystallography and homology modeling are likely to be useful in the identification of therapeutics targeting these receptors. In the past 13 years, over a dozen different Class A GPCRs have been crystallized; this trend is exciting, since homology modeling of GPCRs has previously been limited by the availability of solved structures. As the number of solved GPCR structures continues to grow so does the number of templates that can be used to generate increasingly accurate models of phylogenetically related orphan GPCRs. The availability of solved structures along with the advances in using multiple templates to build models (in combination with molecular dynamics simulations that reveal structural information not provided by crystallographic data and methods for modeling hard-to-predict flexible loop regions) have improved the quality of GPCR homology models. This, in turn, has improved the success rates of virtual ligand screens that use homology models to identify potential receptor binding compounds. Experimental testing of the predicted hits and validation using traditional GPCR pharmacological approaches can be used to drive ligand-based efforts to probe orphan receptor biology as well as to define the chemotypes and chemical scaffolds important for binding. As a result of these advances, orphan GPCRs are emerging from relative obscurity as a new class of drug targets. PMID

  20. Diabetic Kidney Disease: Pathophysiology and Therapeutic Targets

    PubMed Central

    Toth-Manikowski, Stephanie; Atta, Mohamed G.

    2015-01-01

    Diabetes is a worldwide epidemic that has led to a rise in diabetic kidney disease (DKD). Over the past two decades, there has been significant clarification of the various pathways implicated in the pathogenesis of DKD. Nonetheless, very little has changed in the way clinicians manage patients with this disorder. Indeed, treatment is primarily centered on controlling hyperglycemia and hypertension and inhibiting the renin-angiotensin system. The purpose of this review is to describe the current understanding of how the hemodynamic, metabolic, inflammatory, and alternative pathways are all entangled in pathogenesis of DKD and detail the various therapeutic targets that may one day play a role in quelling this epidemic. PMID:26064987

  1. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies.

    PubMed

    Lopez Sanchez, M I G; Crowston, J G; Mackey, D A; Trounce, I A

    2016-09-01

    Optic neuropathies are an important cause of blindness worldwide. The study of the most common inherited mitochondrial optic neuropathies, Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) has highlighted a fundamental role for mitochondrial function in the survival of the affected neuron-the retinal ganglion cell. A picture is now emerging that links mitochondrial dysfunction to optic nerve disease and other neurodegenerative processes. Insights gained from the peculiar susceptibility of retinal ganglion cells to mitochondrial dysfunction are likely to inform therapeutic development for glaucoma and other common neurodegenerative diseases of aging. Despite it being a fast-evolving field of research, a lack of access to human ocular tissues and limited animal models of mitochondrial disease have prevented direct retinal ganglion cell experimentation and delayed the development of efficient therapeutic strategies to prevent vision loss. Currently, there are no approved treatments for mitochondrial disease, including optic neuropathies caused by primary or secondary mitochondrial dysfunction. Recent advances in eye research have provided important insights into the molecular mechanisms that mediate pathogenesis, and new therapeutic strategies including gene correction approaches are currently being investigated. Here, we review the general principles of mitochondrial biology relevant to retinal ganglion cell function and provide an overview of the major optic neuropathies with mitochondrial involvement, LHON and ADOA, whilst highlighting the emerging link between mitochondrial dysfunction and glaucoma. The pharmacological strategies currently being trialed to improve mitochondrial dysfunction in these optic neuropathies are discussed in addition to emerging therapeutic approaches to preserve retinal ganglion cell function. PMID:27288727

  2. Current and future therapeutic targets of rheumatoid arthritis.

    PubMed

    Di, Yuan Ming; Zhou, Zhi-Wei; Guang Li, Chun; Zhou, Shu-Feng

    2011-01-01

    Rheumatoid arthritis (RA) is a chronic systematic autoimmune disease which affects about 1% of the population world wide. This article aimed to identify current therapeutic targets for RA based on data from the literature and drug target related databases. Identified targets were further analysed using a powerful bioinformatics tool, PANTHER (Protein ANalysis THrough Evolutionary Relationships). Additionally, we explored future possible therapeutic targets for RA and discussed the possibility of discovering novel drugs with improved efficacy and reduced toxicity for RA treatment. Data on current clinical drugs for RA treatment were extracted from the US Food and Drugs Administration (FDA) website. Candidate targets of RA were extracted from three online databases: Drugbank, Therapeutic Target Database (TTD) and Potential Drug Target Database (PDTD). A total of 95 clinical protein targets for RA have been identified and were analysed using the PANTHER Classification System. According to the PANTHER analysis, most commonly involved pathways in current RA targeting includes inflammation mediated by chemokine and cytokine signalling pathways, angiogenesis, p53 pathway, de novo purine biosynthesis, T-cell activation, apoptosis signalling pathway and vascular endothelial growth factor (VEGF) receptor signalling pathway. Accordingly, current clinical agents for the treatment of RA mainly include corticosteroids, non-steriodal anti-inflammatory drugs (NSAIDs) and disease-modifying antirheumatic drugs (DMARDs). In addition, a number of investigational targets for RA have been identified and many novel drugs for RA therapy are under investigation. Current approaches to handle RA aim to ameliorate inflammation, to relieve pain, and most importantly to protect the cartilage, joints and bones from further damage by blocking proinflammatory molecules and inhibit the production of matrix-degrading factors. New drugs for RA with improved efficacy and safety should be developed

  3. Neuropeptides as therapeutic targets in anxiety disorders.

    PubMed

    Lin, En-Ju D

    2012-01-01

    In addition to the classical neurotransmitters, neuropeptides represent an important class of modulators for affective behaviors and associated disorders, such as anxiety disorders. Many neuropeptides are abundantly expressed in brain regions involved in emotional processing and anxiety behaviors. Moreover, risk factors for anxiety disorders such as stress modulate the expression of various neuropeptides in the brain. Due to the high prevalence of anxiety disorders and yet limited treatment options, there is a clear need for more effective therapeutics. In this regard, the various neuropeptides represent exciting candidates for new therapeutic designs. In this review, I will provide an up-to-date summary on the evidences for the involvement of seven neuropeptides in anxiety: corticotropin-releasing factor, urocortins, vasopressin, oxytocin, substance P, neuropeptide Y and galanin. This review will cover the behavioral effects of these neuropeptides in animal models of anxiety by both genetic and pharmacological manipulations. Human studies indicating a role for these neuropeptides in anxiety disorders will also be discussed.

  4. Bone metastatic disease: taking aim at new therapeutic targets.

    PubMed

    Coluzzi, F; Di Bussolo, E; Mandatori, I; Mattia, C

    2011-01-01

    Conventional treatment for metastatic bone pain requires a multidisciplinary approach (medical therapy, surgery, and radiation), but is primarily palliative. Biphosphonates introduced the concept of disease-modifying therapy, by effectively reducing bone pain and skeletal related events in patients suffering from bone metastatic cancer. In the past decade, the growing knowledge of bone biology and our understanding of the molecular mechanisms at the basis of the interaction between cancer cells and bone matrix led to the identification of new therapeutic targets for innovative "smart drugs". The most investigated is the RANK/RANKL/OPG pathway, and denosumab, among novel targeted therapies, is the molecule that is in the most advanced development phase. Additional targets have been identified and potential novel therapeutic interventions, classified as inhibitors of bone resorption or stimulators of bone formation, are under preclinical and clinical evaluation. These promising targets include cathepsin K, the Src tyrosine kinases, integrins, chloride channels, the parathyroid hormone-related peptide, endotelin-1, sclerostin, and TGF-beta. Other pathways or molecules expressed by bone cells and cancer cells, such as CXCR4, GPNMB, EGF-family ligands, Wnt/DKK1, and MIP-1 alpha have recently emerged as potential targets. The aim of this review is to discuss the molecular mechanisms behind these emerging therapeutic targets in bone metastases and to give an overview of results from those in advanced clinical phases.

  5. Introduction to Adenosine Receptors as Therapeutic Targets

    PubMed Central

    Jacobson, Kenneth A.

    2012-01-01

    Adenosine acts as a cytoprotective modulator in response to stress to an organ or tissue. Although short-lived in the circulation, it can activate four sub-types of G protein-coupled adenosine receptors (ARs): A1, A2A, A2B, and A3. The alkylxanthines caffeine and theophylline are the prototypical antagonists of ARs, and their stimulant actions occur primarily through this mechanism. For each of the four AR subtypes, selective agonists and antagonists have been introduced and used to develop new therapeutic drug concepts. ARs are notable among the GPCR family in the number and variety of agonist therapeutic candidates that have been proposed. The selective and potent synthetic AR agonists, which are typically much longer lasting in the body than adenosine, have potential therapeutic applications based on their anti-inflammatory (A2A and A3), cardioprotective (preconditioning by A1 and A3 and postconditioning by A2B), cerebroprotective (A1 and A3), and antinociceptive (A1) properties. Potent and selective AR antagonists display therapeutic potential as kidney protective (A1), antifibrotic (A2A), neuroprotective (A2A), and antiglaucoma (A3) agents. AR agonists for cardiac imaging and positron-emitting AR antagonists are in development for diagnostic applications. Allosteric modulators of A1 and A3 ARs have been described. In addition to the use of selective agonists/antagonists as pharmacological tools, mouse strains in which an AR has been genetically deleted have aided in developing novel drug concepts based on the modulation of ARs. PMID:19639277

  6. ADAM17, shedding, TACE as therapeutic targets.

    PubMed

    Rose-John, Stefan

    2013-05-01

    ADAM17 has been molecularly cloned as the enzyme responsible for cleavage of the transmembrane protein TNFα (TNFα converting enzyme, TACE). Later it was realized that ADAM17 was also responsible for the processing of cell adhesion proteins, cytokine and growth factor receptors and many ligands of the EGF receptor. Since TNFα is a target of anti-inflammatory therapies, it was speculated that inhibition of ADAM17 might be a therapeutic strategy in the treatment of inflammation or inflammation associated cancer. Meanwhile it has been recognized that ADAM17 governs many vital functions in the body and loss of ADAM17 leads to severe defects in the skin and to high susceptibility of the intestine to inflammation. Here I summarize data on the physiologic role of ADAM17 and the feasibility of specific blockade of this enzyme.

  7. Epigenetics and therapeutic targets mediating neuroprotection.

    PubMed

    Qureshi, Irfan A; Mehler, Mark F

    2015-12-01

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection.

  8. [MUC1, a therapeutic target in oncology].

    PubMed

    Limacher, Jean-Marc; Acres, Bruce

    2007-03-01

    MUC1 is a large, highly glycosylated protein expressed on the apical membrane of many epithelial cells. With other members of the mucin family it contributes to the protection and function of mucosal cells. The intracellular part of the protein may also participate in signal transduction pathway, through multiple interactions with intracellular proteins. Overexpression of MUC1 is frequently observed in the majority of epithelial cancers and even in some haematological malignancies. In tumor cells, MUC1 loses apical distribution and is hypoglycosylated. These cancer-associated changes render it antigenic and make it an attractive target for a specific cancer immunotherapy. Several MUC1-based therapeutic cancer vaccines are currently under clinical investigation. PMID:17371767

  9. New therapeutic targets for cancer bone metastases

    PubMed Central

    Krzeszinski, Jing Y.; Wan, Yihong

    2015-01-01

    Bone metastases are dejected consequences of many types of tumors including breast, prostate, lung, kidney and thyroid cancers. This complicated process begins with the successful tumor cell epithelial–mesenchymal transition, escape from the original site, and penetration into circulation. The homing of tumor cells to the bone depends on both tumor-intrinsic traits and various molecules supplied by the bone metastatic niche. The colonization and growth of cancer cells in the osseous environment, which awaken their dormancy to form micro- and macro-metastasis, involve an intricate interaction between the circulating tumor cells and local bone cells including osteoclasts, osteoblasts, adipocytes and macrophages. In this review, we discuss the most recent advances in the identification of new molecules and novel mechanisms during each step of bone metastasis that may serve as promising therapeutic targets. PMID:25962679

  10. Bone defects: molecular and cellular therapeutic targets.

    PubMed

    Desiderio, Vincenzo; Tirino, Virginia; Papaccio, Gianpaolo; Paino, Francesca

    2014-06-01

    Bone defects are one of the most serious pathologies that need tissue regeneration therapies. Studies on mesenchymal stem cells are changing the way we treat bone diseases. MSCs have been used for the treatment of osteogenesis imperfecta, hypophosphatasia, osteonecrosis of the femoral head, osteoporosis, rheumatoid arthritis and osteoarthritis. In this context, it is becoming ever more clear that the future of therapies will be based on the use of stem cells. In this concise review, we highlight the importance of the use of MSCs in bone diseases, focusing on the role of histone deacetylases and Wnt pathways involved in osteogenesis. A better understanding of MSC biology and osteogenesis is needed in order to develop new and targeted therapeutic strategies for the treatment of bone diseases/disorders.

  11. Development of Novel Activin-Targeted Therapeutics

    PubMed Central

    Chen, Justin L; Walton, Kelly L; Al-Musawi, Sara L; Kelly, Emily K; Qian, Hongwei; La, Mylinh; Lu, Louis; Lovrecz, George; Ziemann, Mark; Lazarus, Ross; El-Osta, Assam; Gregorevic, Paul; Harrison, Craig A

    2015-01-01

    Soluble activin type II receptors (ActRIIA/ActRIIB), via binding to diverse TGF-β proteins, can increase muscle and bone mass, correct anemia or protect against diet-induced obesity. While exciting, these multiple actions of soluble ActRIIA/IIB limit their therapeutic potential and highlight the need for new reagents that target specific ActRIIA/IIB ligands. Here, we modified the activin A and activin B prodomains, regions required for mature growth factor synthesis, to generate specific activin antagonists. Initially, the prodomains were fused to the Fc region of mouse IgG2A antibody and, subsequently, “fastener” residues (Lys45, Tyr96, His97, and Ala98; activin A numbering) that confer latency to other TGF-β proteins were incorporated. For the activin A prodomain, these modifications generated a reagent that potently (IC50 5 nmol/l) and specifically inhibited activin A signaling in vitro, and activin A-induced muscle wasting in vivo. Interestingly, the modified activin B prodomain inhibited both activin A and B signaling in vitro (IC50 ~2 nmol/l) and in vivo, suggesting it could serve as a general activin antagonist. Importantly, unlike soluble ActRIIA/IIB, the modified prodomains did not inhibit myostatin or GDF-11 activity. To underscore the therapeutic utility of specifically antagonising activin signaling, we demonstrate that the modified activin prodomains promote significant increases in muscle mass. PMID:25399825

  12. Potential Therapeutic Targets in Uterine Sarcomas

    PubMed Central

    Cuppens, Tine; Tuyaerts, Sandra; Amant, Frédéric

    2015-01-01

    Uterine sarcomas are rare tumors accounting for 3,4% of all uterine cancers. Even after radical hysterectomy, most patients relapse or present with distant metastases. The very limited clinical benefit of adjuvant cytotoxic treatments is reflected by high mortality rates, emphasizing the need for new treatment strategies. This review summarizes rising potential targets in four distinct subtypes of uterine sarcomas: leiomyosarcoma, low-grade and high-grade endometrial stromal sarcoma, and undifferentiated uterine sarcoma. Based on clinical reports, promising approaches for uterine leiomyosarcoma patients include inhibition of VEGF and mTOR signaling, preferably in combination with other targeted or cytotoxic compounds. Currently, the only targeted therapy approved in leiomyosarcoma patients is pazopanib, a multitargeted inhibitor blocking VEGFR, PDGFR, FGFR, and c-KIT. Additionally, preclinical evidence suggests effect of the inhibition of histone deacetylases, tyrosine kinase receptors, and the mitotic checkpoint protein aurora kinase A. In low-grade endometrial stromal sarcomas, antihormonal therapies including aromatase inhibitors and progestins have proven activity. Other potential targets are PDGFR, VEGFR, and histone deacetylases. In high-grade ESS that carry the YWHAE/FAM22A/B fusion gene, the generated 14-3-3 oncoprotein is a putative target, next to c-KIT and the Wnt pathway. The observation of heterogeneity within uterine sarcoma subtypes warrants a personalized treatment approach. PMID:26576131

  13. Breast cancer stem cells, EMT and therapeutic targets

    SciTech Connect

    Kotiyal, Srishti; Bhattacharya, Susinjan

    2014-10-10

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.

  14. Toward Intracellular Targeted Delivery of Cancer Therapeutics

    PubMed Central

    Pandya, Hetal; Debinski, Waldemar

    2013-01-01

    A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells. PMID:22671766

  15. Therapeutic Strategies for Targeting Ras Proteins

    PubMed Central

    Gysin, Stephan; Salt, Megan; Young, Amy; McCormick, Frank

    2011-01-01

    Ras genes are frequently activated in cancer. Attempts to develop drugs that target mutant Ras proteins have, so far, been unsuccessful. Tumors bearing these mutations, therefore, remain among the most difficult to treat. Most efforts to block activated Ras have focused on pathways downstream. Drugs that inhibit Raf kinase have shown clinical benefit in the treatment of malignant melanoma. However, these drugs have failed to show clinical benefit in Ras mutant tumors. It remains unclear to what extent Ras depends on Raf kinase for transforming activity, even though Raf proteins bind directly to Ras and are certainly major effectors of Ras action in normal cells and in development. Furthermore, Raf kinase inhibitors can lead to paradoxical activation of the MAPK pathway. MEK inhibitors block the Ras-MAPK pathway, but often activate the PI3’-kinase, and have shown little clinical benefit as single agents. This activation is mediated by EGF-R and other receptor tyrosine kinases through relief of a negative feedback loop from ERK. Drug combinations that target multiple points within the Ras signaling network are likely to be necessary to achieve substantial clinical benefit. Other effectors may also contribute to Ras signaling and provide a source of targets. In addition, unbiased screens for genes necessary for Ras transformation have revealed new potential targets and have added to our understanding of Ras cancer biology. PMID:21779505

  16. Deubiquitinases: Novel Therapeutic Targets in Immune Surveillance?

    PubMed Central

    2016-01-01

    Inflammation is a protective response of the organism to tissue injury or infection. It occurs when the immune system recognizes Pathogen-Associated Molecular Patterns (PAMPs) or Damage-Associated Molecular Pattern (DAMPs) through the activation of Pattern Recognition Receptors. This initiates a variety of signalling events that conclude in the upregulation of proinflammatory molecules, which initiate an appropriate immune response. This response is tightly regulated since any aberrant activation of immune responses would have severe pathological consequences such as sepsis or chronic inflammatory and autoimmune diseases. Accumulative evidence shows that the ubiquitin system, and in particular ubiquitin-specific isopeptidases also known as deubiquitinases (DUBs), plays crucial roles in the control of these immune pathways. In this review we will give an up-to-date overview on the role of DUBs in the NF-κB pathway and inflammasome activation, two intrinsically related events triggered by activation of the membrane TLRs as well as the cytosolic NOD and NLR receptors. Modulation of DUB activity by small molecules has been proposed as a way to control dysregulation or overactivation of these key players of the inflammatory response. We will also discuss the advances and challenges of a potential use of DUBs as therapeutic targets in inflammatory pathologies. PMID:27597804

  17. Deubiquitinases: Novel Therapeutic Targets in Immune Surveillance?

    PubMed Central

    2016-01-01

    Inflammation is a protective response of the organism to tissue injury or infection. It occurs when the immune system recognizes Pathogen-Associated Molecular Patterns (PAMPs) or Damage-Associated Molecular Pattern (DAMPs) through the activation of Pattern Recognition Receptors. This initiates a variety of signalling events that conclude in the upregulation of proinflammatory molecules, which initiate an appropriate immune response. This response is tightly regulated since any aberrant activation of immune responses would have severe pathological consequences such as sepsis or chronic inflammatory and autoimmune diseases. Accumulative evidence shows that the ubiquitin system, and in particular ubiquitin-specific isopeptidases also known as deubiquitinases (DUBs), plays crucial roles in the control of these immune pathways. In this review we will give an up-to-date overview on the role of DUBs in the NF-κB pathway and inflammasome activation, two intrinsically related events triggered by activation of the membrane TLRs as well as the cytosolic NOD and NLR receptors. Modulation of DUB activity by small molecules has been proposed as a way to control dysregulation or overactivation of these key players of the inflammatory response. We will also discuss the advances and challenges of a potential use of DUBs as therapeutic targets in inflammatory pathologies.

  18. Cytokines as therapeutic targets in SLE.

    PubMed

    Rönnblom, Lars; Elkon, Keith B

    2010-06-01

    Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease involving most immune cells. Studies in both experimental animal models of lupus and patients with SLE have revealed a number of cytokine pathways that are important in the disease process. Among these are B-cell activating factor, which promotes B-cell survival and autoantibody production, interferon-alpha, which acts as an immune adjuvant, and tumor necrosis factor, which contributes to organ inflammation. This knowledge, in combination with the successful use of anti-TNF treatment in rheumatoid arthritis, has spurred the development of several biologic agents targeting different cytokines or their receptors in SLE. Consequently, many trials of anticytokine therapies for SLE are underway. Although most of these trials are small or in early phases, the results of some large studies have also been reported. In this Review, we discuss the rationale for anticytokine therapies in SLE and review agents currently in use, and those being developed and tested experimentally. We present the results from published trials and discuss the tentative conclusions that can be drawn regarding the efficacy of the new agents. Finally, we provide suggestions for the future of treatment for SLE, including new therapeutic strategies.

  19. ASICs as therapeutic targets for migraine

    PubMed Central

    2015-01-01

    Migraine is the most common neurological disorder and one of the most common chronic pain conditions. Despite its prevalence, the pathophysiology leading to migraine is poorly understood and the identification of new therapeutic targets has been slow. Several processes are currently thought to contribute to migraine including altered activity in the hypothalamus, cortical-spreading depression (CSD), and afferent sensory input from the cranial meninges. Decreased extracellular pH and subsequent activation of acid-sensing ion channels (ASICs) may contribute to each of these processes and may thus play a role in migraine pathophysiology. Although few studies have directly examined a role of ASICs in migraine, studies directly examining a connection have generated promising results including efficacy of ASIC blockers in both preclinical migraine models and in human migraine patients. The purpose of this review is to discuss the pathophysiology thought to contribute to migraine and findings that implicate decreased pH and/or ASICs in these events, as well as propose issues to be resolved in future studies of ASICs and migraine. PMID:25582295

  20. Mitochondria: A Therapeutic Target for Parkinson's Disease?

    PubMed

    Luo, Yu; Hoffer, Alan; Hoffer, Barry; Qi, Xin

    2015-09-01

    Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The exact causes of neuronal damage are unknown, but mounting evidence indicates that mitochondrial-mediated pathways contribute to the underlying mechanisms of dopaminergic neuronal cell death both in PD patients and in PD animal models. Mitochondria are organized in a highly dynamic tubular network that is continuously reshaped by opposing processes of fusion and fission. Defects in either fusion or fission, leading to mitochondrial fragmentation, limit mitochondrial motility, decrease energy production and increase oxidative stress, thereby promoting cell dysfunction and death. Thus, the regulation of mitochondrial dynamics processes, such as fusion, fission and mitophagy, represents important mechanisms controlling neuronal cell fate. In this review, we summarize some of the recent evidence supporting that impairment of mitochondrial dynamics, mitophagy and mitochondrial import occurs in cellular and animal PD models and disruption of these processes is a contributing mechanism to cell death in dopaminergic neurons. We also summarize mitochondria-targeting therapeutics in models of PD, proposing that modulation of mitochondrial impairment might be beneficial for drug development toward treatment of PD.

  1. GPR35 as a Novel Therapeutic Target

    PubMed Central

    MacKenzie, A. E.; Lappin, J. E.; Taylor, D. L.; Nicklin, S. A.; Milligan, G.

    2011-01-01

    G protein-coupled receptors (GPCRs) remain the best studied class of cell surface receptors and the most tractable family of proteins for novel small molecule drug discovery. Despite this, a considerable number of GPCRs remain poorly characterized and in a significant number of cases, endogenous ligand(s) that activate them remain undefined or are of questionable physiological relevance. GPR35 was initially discovered over a decade ago but has remained an “orphan” receptor. Recent publications have highlighted novel ligands, both endogenously produced and synthetic, which demonstrate significant potency at this receptor. Furthermore, evidence is accumulating which highlights potential roles for GPR35 in disease and therefore, efforts to characterize GPR35 more fully and develop it as a novel therapeutic target in conditions that range from diabetes and hypertension to asthma are increasing. Recently identified ligands have shown marked species selective properties, indicating major challenges for future drug development. As we begin to understand these issues, the continuing efforts to identify novel agonist and antagonist ligands for GPR35 will help to decipher its true physiological relevance; translating multiple assay systems in vitro, to animal disease systems in vivo and finally to man. PMID:22654822

  2. Targeting α-synuclein: Therapeutic options.

    PubMed

    Dehay, Benjamin; Decressac, Mickael; Bourdenx, Mathieu; Guadagnino, Irene; Fernagut, Pierre-Olivier; Tamburrino, Anna; Bassil, Fares; Meissner, Wassilios G; Bezard, Erwan

    2016-06-01

    The discovery of the central role of α-synuclein (αSyn) in the pathogenesis of Parkinson's disease (PD) has powered, in the last decade, the emergence of novel relevant models of this condition based on viral vector-mediated expression of the disease-causing protein or inoculation of toxic species of αSyn. Although the development of these powerful tools and models has provided considerable insights into the mechanisms underlying neurodegeneration in PD, it has also been translated into the expansion of the landscape of preclinical therapeutic strategies. Much attention is now brought to the proteotoxic mechanisms induced by αSyn and how to block them using strategies inspired by intrinsic cellular pathways such as the enhancement of cellular clearance by the lysosomal-autophagic system, through proteasome-mediated degradation or through immunization. The important effort undertaken by several laboratories and consortia to tackle these issues and identify novel targets warrants great promise for the discovery not only of neuroprotective approaches but also of restorative strategies for PD and other synucleinopathies. In this viewpoint, we summarize the latest advances in this new area of PD research and will discuss promising approaches and ongoing challenges. © 2016 International Parkinson and Movement Disorder Society. PMID:26926119

  3. Targeting TRP channels for novel migraine therapeutics.

    PubMed

    Dussor, Gregory; Yan, J; Xie, Jennifer Y; Ossipov, Michael H; Dodick, David W; Porreca, Frank

    2014-11-19

    Migraine is increasingly understood to be a disorder of the brain. In susceptible individuals, a variety of "triggers" may influence altered central excitability, resulting in the activation and sensitization of trigeminal nociceptive afferents surrounding blood vessels (i.e., the trigeminovascular system), leading to migraine pain. Transient receptor potential (TRP) channels are expressed in a subset of dural afferents, including those containing calcitonin gene related peptide (CGRP). Activation of TRP channels promotes excitation of nociceptive afferent fibers and potentially lead to pain. In addition to pain, allodynia to mechanical and cold stimuli can result from sensitization of both peripheral afferents and of central pain pathways. TRP channels respond to a variety of endogenous conditions including chemical mediators and low pH. These channels can be activated by exogenous stimuli including a wide range of chemical and environmental irritants, some of which have been demonstrated to trigger migraine in humans. Activation of TRP channels can elicit CGRP release, and blocking the effects of CGRP through receptor antagonism or antibody strategies has been demonstrated to be effective in the treatment of migraine. Identification of approaches that can prevent activation of TRP channels provides an additional novel strategy for discovery of migraine therapeutics.

  4. Efficient delivery of therapeutic agents by using targeted albumin nanoparticles.

    PubMed

    Kouchakzadeh, Hasan; Safavi, Maryam Sadat; Shojaosadati, Seyed Abbas

    2015-01-01

    Albumin nanoparticles are one of the most important drug carriers for the delivery of therapeutic drugs, especially for the treatment of malignancies. This potential is due to their high binding capacity for both hydrophobic and hydrophilic drugs and the possibility of surface modification. Accumulation of albumin-bound drugs in the tumor interstitium occurs by the enhanced permeability and retention effect, which is also facilitated by the 60-kDa glycoprotein transcytosis pathway and binding to secreted protein, acidic and rich in cysteine located in the tumor extracellular matrix. In addition, specific ligands such as monoclonal antibodies, folic acid, transferrin, and peptides can be conjugated to the surface of albumin nanoparticles to actively target the drug to its site of action. The albumin-bound paclitaxel, Abraxane, is one of the several therapeutic nanocarriers that have been approved for clinical use. By the development of Abraxane that demonstrates a higher response rate and improved tolerability and therapeutic efficiency in comparison with solvent-based formulation, and with consideration of its commercial success, albumin is attracting the interest of many biotechnological and pharmaceutical companies. This chapter explores the current targeted and nontargeted albumin-based nanoparticles that are in various stages of development for the delivery of therapeutic agents in order to enhance the efficacy of cancer treatment.

  5. Therapeutic Targets for the Treatment of Hepatitis E Virus Infection

    PubMed Central

    Kenney, Scott P.; Meng, Xiang-Jin

    2016-01-01

    Introduction Hepatitis E virus (HEV) is one of the most common causes of acute viral hepatitis in the world with an estimated 20 million infections per year. Although the mortality rate is less than 1% among the general population, pregnant women can have a fatality rate of up to 30%. Additionally, chronic hepatitis E has increasingly become a significant clinical problem in immunocompromised individuals. Effective antivirals against HEV are needed. Areas covered This review article addresses the current state of knowledge of HEV infections with regard to animal and cell culture model systems that are important for antiviral discovery and testing, our current understanding of the molecular mechanisms of virus replication, our understanding of how each viral protein functions, and areas that can potentially be exploited as therapeutic targets. Expert opinion Lack of an efficient cell culture system for HEV propagation, the limited knowledge of HEV lifecycle, and the inherent self-limiting infection within the normal populace make the development of new therapeutic agents against HEV challenging. There are many promising therapeutic targets, and the tools for identifying and testing potential antivirals are rapidly evolving. The development of effective therapeutics against HEV in immunocompromised and pregnant patient populations is warranted. PMID:26073772

  6. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics.

    PubMed

    Webster, David M; Sundaram, Padma; Byrne, Mark E

    2013-05-01

    Therapeutics such as nucleic acids, proteins/peptides, vaccines, anti-cancer, and other drugs have disadvantages of low bio-availability, rapid clearance, and high toxicity. Thus, there is a significant need for the development of efficient delivery methods and carriers. Injectable nanocarriers have received much attention due to their vast range of structures and ability to contain multiple functional groups, both within the bulk material and on the surface of the particles. Nanocarriers may be tailored to control drug release and/or increase selective cell targeting, cellular uptake, drug solubility, and circulation time, all of which lead to a more efficacious delivery and action of therapeutics. The focus of this review is injectable, targeted nanoparticle drug delivery carriers highlighting the diversity of nanoparticle materials and structures as well as highlighting current therapeutics and targeting moieties. Structures and materials discussed include liposomes, polymersomes, dendrimers, cyclodextrin-containing polymers (CDPs), carbon nanotubes (CNTs), and gold nanoparticles. Additionally, current clinical trial information and details such as trial phase, treatment, active drug, carrier sponsor, and clinical trial identifier for different materials and structures are presented and discussed.

  7. Diabetic Retinopathy and Inflammation: Novel Therapeutic Targets

    PubMed Central

    Rangasamy, Sampathkumar; McGuire, Paul G.; Das, Arup

    2012-01-01

    Most anti-vascular endothelial growth factor (VEGF) therapies in diabetic macular edema are not as robust as in proliferative diabetic retinopathy. Although the VEGF appears to be a good target in diabetic macular edema, the anti-VEGF therapies appear to be of transient benefit as the edema recurs within a few weeks, and repeated injections are necessary. There is new evidence that indicates ‘retinal inflammation’ as an important player in the pathogenesis of diabetic retinopathy. There are common sets of inflammatory cytokines that are upregulated in both the serum and vitreous and aqueous samples, in subjects with diabetic retinopathy, and these cytokines can have multiple interactions to impact the pathogenesis of the disease. The key inflammatory events involved in the blood retinal barrier (BRB) alteration appear to be: (1) Increased expression of endothelial adhesion molecules such as ICAM1, VCAM1, PECAM-1, and P-selectin, (2) adhesion of leukocytes to the endothelium, (3) release of inflammatory chemokines, cytokines, and vascular permeability factors, (4) alteration of adherens and tight junctional proteins between the endothelial cells, and (5) infiltration of leukocytes into the neuro-retina, resulting in the alteration of the blood retinal barrier (diapedesis). VEGF inhibition itself may not achieve neutralization of other inflammatory molecules involved in the inflammatory cascade of the breakdown of the BRB. It is possible that the novel selective inhibitors of the inflammatory cascade (like angiopoietin-2, TNFα, and chemokines) may be useful therapeutic agents in the treatment of diabetic macular edema (DME), either alone or in combination with the anti-VEGF drugs. PMID:22346115

  8. Therapeutic targeting of NOD1 receptors

    PubMed Central

    Moreno, L; Gatheral, T

    2013-01-01

    The nucleotide-binding oligomerization domain 1 (NOD1) protein is an intracellular receptor for breakdown products of peptidoglycan (PGN), an essential bacterial cell wall component. NOD1 responds to γ-D-glutamyl-meso-diaminopimelic acid, which is an epitope unique to PGN structures from all Gram-negative bacteria and certain Gram-positive bacteria. Upon ligand recognition, NOD1 undergoes conformational changes and self-oligomerization mediated by the nucleotide-binding NACHT domains, followed by the recruitment and activation of the serine threonine kinase receptor-interacting protein 2 leading to the activation of NF-κB and MAPK pathways and induction of inflammatory genes. Much of our knowledge is derived from seminal studies using mice deficient in NOD1 and confirming an essential role for NOD1 in the host immune response against gastrointestinal and respiratory pathogens. In addition, recent studies have revealed a role for intracellular NOD1 receptors in the regulation of vascular inflammation and metabolism. This review will discuss our current understanding of intracellular NOD1 receptors in host immunity and chronic inflammatory disorders with a focus on cardiovascular diseases. Although therapeutic advances may have to wait until the complex interplay with pathogens, danger signals, other pattern recognition receptors and overlapping metabolic pathways is further unravelled, the steadily growing body of knowledge suggest that NOD1 antagonism might represent attractive candidate to reduce excessive inflammation associated to intestinal, cardiovascular and metabolic diseases. PMID:23848281

  9. Molecular genetics and targeted therapeutics in biliary tract carcinoma

    PubMed Central

    Marks, Eric I; Yee, Nelson S

    2016-01-01

    The primary malignancies of the biliary tract, cholangiocarcinoma and gallbladder cancer, often present at an advanced stage and are marginally sensitive to radiation and chemotherapy. Accumulating evidence indicates that molecularly targeted agents may provide new hope for improving treatment response in biliary tract carcinoma (BTC). In this article, we provide a critical review of the pathogenesis and genetic abnormalities of biliary tract neoplasms, in addition to discussing the current and emerging targeted therapeutics in BTC. Genetic studies of biliary tumors have identified the growth factors and receptors as well as their downstream signaling pathways that control the growth and survival of biliary epithelia. Target-specific monoclonal antibodies and small molecules inhibitors directed against the signaling pathways that drive BTC growth and invasion have been developed. Numerous clinical trials designed to test these agents as either monotherapy or in combination with conventional chemotherapy have been completed or are currently underway. Research focusing on understanding the molecular basis of biliary tumorigenesis will continue to identify for targeted therapy the key mutations that drive growth and invasion of biliary neoplasms. Additional strategies that have emerged for treating this malignant disease include targeting the epigenetic alterations of BTC and immunotherapy. By integrating targeted therapy with molecular profiles of biliary tumor, we hope to provide precision treatment for patients with malignant diseases of the biliary tract. PMID:26819503

  10. Candidate genes and potential targets for therapeutics in Wilms' tumour.

    PubMed

    Blackmore, Christopher; Coppes, Max J; Narendran, Aru

    2010-09-01

    Wilms' tumour (WT) is the most common malignant renal tumour of childhood. During the past two decades or so, molecular studies carried out on biopsy specimens and tumour-derived cell lines have identified a multitude of chromosomal and epigenetic alterations in WT. In addition, a significant amount of evidence has been gathered to identify the genes and signalling pathways that play a defining role in its genesis, growth, survival and treatment responsiveness. As such, these molecules and mechanisms constitute potential targets for novel therapeutic strategies for refractory WT. In this report we aim to review some of the many candidate genes and intersecting pathways that underlie the complexities of WT biology.

  11. Therapeutics targeting the inflammasome after central nervous system injury.

    PubMed

    de Rivero Vaccari, Juan Pablo; Dietrich, W Dalton; Keane, Robert W

    2016-01-01

    Innate immunity is part of the early response of the body to deal with tissue damage and infections. Because of the early nature of the innate immune inflammatory response, this inflammatory reaction represents an attractive option as a therapeutic target. The inflammasome is a component of the innate immune response involved in the activation of caspase 1 and the processing of pro-interleukin 1β. In this article, we discuss the therapeutic potential of the inflammasome after central nervous system (CNS) injury and stroke, as well as the basic knowledge we have gained so far regarding inflammasome activation in the CNS. In addition, we discuss some of the therapies available or under investigation for the treatment of brain injury, spinal cord injury, and stroke. PMID:26024799

  12. Critical questions in development of targeted nanoparticle therapeutics

    PubMed Central

    Korsmeyer, Richard

    2016-01-01

    One of the fourteen Grand Challenges for Engineering articulated by the US National Academy of Engineering is ‘Engineer Better Medicines’. Although there are many ways that better medicines could be engineered, one of the most promising ideas is to improve our ability to deliver the therapeutic molecule more precisely to the desired target. Most conventional drug delivery methods (oral absorption, intravenous infusion etc.) result in systemic exposure to the therapeutic molecule, which places severe constraints on the types of molecules that can be used. A molecule administered by systemic delivery must be effective at low concentrations in the target tissue, yet safe everywhere else in the body. If drug carriers could be developed to deliver therapeutic molecules selectively to the desired target, it should be possible to greatly improve safety and efficacy of therapy. Nanoparticles (and related nanostructures, such as liposomes, nanoemulsions, micelles and dendrimers) are an attractive drug carrier concept because they can be made from a variety of materials engineered to have properties that allow loading and precise delivery of bound therapeutic molecules. The field of targeted nanoparticles has been extraordinarily active in the academic realm, with thousands of articles published over the last few years. Many of these publications seem to demonstrate very promising results in in vitro studies and even in animal models. In addition, a handful of human clinical trials are in progress. Yet, the biopharmaceutical industry has been relatively slow to make major investments in targeted nanoparticle development programs, despite a clear desire to introduce innovative new therapies to the market. What is the reason for such caution? Some degree of caution is no doubt due to the use of novel materials and the unproven nature of targeted nanoparticle technology, but many other unproven technologies have generated intense interest at various times. We believe that

  13. Therapeutic Targeting of Syk in Autoimmune Diabetes

    PubMed Central

    Colonna, Lucrezia; Catalano, Geoffrey; Chew, Claude; D’Agati, Vivette; Thomas, James W.; Wong, F. Susan; Schmitz, Jochen; Masuda, Esteban S.; Reizis, Boris; Tarakhovsky, Alexander; Clynes, Raphael

    2010-01-01

    In APCs, the protein tyrosine kinase Syk is required for signaling of several immunoreceptors, including the BCR and FcR. We show that conditional ablation of the syk gene in dendritic cells (DCs) abrogates FcγR-mediated cross priming of diabetogenic T cells in RIP-mOVA mice, a situation phenocopied in wild-type RIP-mOVA mice treated with the selective Syk inhibitor R788. In addition to blocking FcγR-mediated events, R788 also blocked BCR-mediated Ag presentation, thus broadly interrupting the humoral contributions to T cell-driven autoimmunity. Indeed, oral administration of R788 significantly delayed spontaneous diabetes onset in NOD mice and successfully delayed progression of early-established diabetes even when treatment was initiated after the development of glucose intolerance. At the DC level, R788 treatment was associated with reduced insulin-specific CD8 priming and decreased DC numbers. At the B cell level, R788 reduced total B cell numbers and total Ig concentrations. Interestingly, R788 increased the number of IL-10–producing B cells, thus inducing a tolerogenic B cell population with immunomodulatory activity. Taken together, we show by genetic and pharmacologic approaches that Syk in APCs is an attractive target in T cell-mediated autoimmune diseases such as type 1 diabetes. PMID:20601600

  14. Endothelial FAK as a therapeutic target in disease.

    PubMed

    Infusino, Giovanni A; Jacobson, Jeffrey R

    2012-01-01

    Focal adhesions (FA) are important mediators of endothelial cytoskeletal interactions with the extracellular matrix (ECM) via transmembrane receptors, integrins and integrin-associated intracellular proteins. This communication is essential for a variety of cell processes including EC barrier regulation and is mediated by the non-receptor protein tyrosine kinase, focal adhesion kinase (FAK). As FA mediate the basic response of EC to a variety of stimuli and FAK is essential to these responses, the idea of targeting EC FAK as a therapeutic strategy for an assortment of diseases is highly promising. In particular, inhibition of FAK could prove beneficial in a variety of cancers via effects on EC proliferation and angiogenesis, in acute lung injury (ALI) via the attenuation of lung vascular permeability, and in rheumatoid arthritis via reductions in synovial angiogenesis. In addition, there are potential therapeutic benefits of FAK inhibition in cardiovascular disease and diabetic nephropathy as well. Several drugs that target EC FAK are now in existence and include agents currently under investigation in preclinical models as well as drugs that are readily available such as the sphingolipid analog FTY720 and statins. As the role of EC FAK in the pathogenesis of a variety of diseases continues to be explored and new insights are revealed, drug targeting of FAK will continue to be an important area of investigation and may ultimately lead to highly novel and effective strategies to treat these diseases.

  15. Novel therapeutic targets on the horizon for lung cancer.

    PubMed

    Tan, Wan-Ling; Jain, Amit; Takano, Angela; Newell, Evan W; Iyer, N Gopalakrishna; Lim, Wan-Teck; Tan, Eng-Huat; Zhai, Weiwei; Hillmer, Axel M; Tam, Wai-Leong; Tan, Daniel S W

    2016-08-01

    Lung cancer is a leading cause of cancer-related mortality worldwide, and is classically divided into two major histological subtypes: non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). Although NSCLC and SCLC are considered distinct entities with different genomic landscapes, emerging evidence highlights a convergence in therapeutically relevant targets for both histologies. In adenocarcinomas with defined alterations such as EGFR mutations and ALK translocations, targeted therapies are now first-line standard of care. By contrast, many experimental and targeted agents remain largely unsuccessful for SCLC. Intense preclinical research and clinical trials are underway to exploit unique traits of lung cancer, such as oncogene dependency, DNA damage response, angiogenesis, and cellular plasticity arising from presence of cancer stem cell lineages. In addition, the promising clinical activity observed in NSCLC in response to immune checkpoint blockade has spurred great interest in the field of immunooncology, with the scope to develop a diverse repertoire of synergistic and personalised immunotherapeutics. In this Review, we discuss novel therapeutic agents for lung cancer that are in early-stage development, and how prospective clinical trials and drug development may be shaped by a deeper understanding of this heterogeneous disease. PMID:27511159

  16. Targeting protozoan parasite metabolism: glycolytic enzymes in the therapeutic crosshairs.

    PubMed

    Harris, M T; Mitchell, W G; Morris, J C

    2014-01-01

    Glycolysis is an important metabolic pathway for most organisms, including protozoan parasites. Many of these primitive eukaryotes have streamlined their metabolism, favoring glycolysis for generating ATP in the glucose-rich environments in which they reside. Therefore, the enzymes involved in hexose metabolism could prove to be attractive targets for therapeutic development. This hypothesis is supported by a number of chemical and genetic validation studies. Additionally, the peculiar biochemistry of many of the components, along with limited protein sequence identity emphasizes the likelihood of developing compounds that selectively inhibit the parasite enzymes. In this review, we examine the status of target validation at the genetic and/or chemical levels from the protozoan parasites. While the proteins from some species have been interrogated to the point that well-defined lead compounds have been identified with activities against both enzyme and parasite growth, progress in other systems has to date been limited.

  17. Inflammatory bowel disease: exploring gut pathophysiology for novel therapeutic targets.

    PubMed

    Yadav, Vipul; Varum, Felipe; Bravo, Roberto; Furrer, Esther; Bojic, Daniela; Basit, Abdul W

    2016-10-01

    Ulcerative colitis and Crohn's disease are the 2 major phenotypes of inflammatory bowel disease (IBD), which are influenced by a complex interplay of immunological and genetic elements, though the precise etiology still remains unknown. With IBD developing into a globally prevailing disease, there is a need to explore new targets and a thorough understanding of the pathophysiological differences between the healthy and diseased gut could unearth new therapeutic opportunities. In this review, we provide an overview of the major aspects of IBD pathogenesis and thereafter present a comprehensive analysis of the gut pathophysiology leading to a discussion on some of the most promising targets and biologic therapies currently being explored. These include various gut proteins (CXCL-10, GATA-3, NKG2D, CD98, microRNAs), immune cells recruited to the gut (mast cells, eosinophils, toll-like receptors 2, 4), dysregulated proinflammatory cytokines (interleukin-6, -13, -18, -21), and commensal microbiota (probiotics and fecal microbiota transplantation). We also evaluate some of the emerging nonconventional therapies being explored in IBD treatment focusing on the latest developments in stem cell research, oral targeting of the gut-associated lymphoid tissue, novel anti-inflammatory signaling pathway targeting, adenosine deaminase inhibition, and the beneficial effects of antioxidant and nutraceutical therapies. In addition, we highlight the growth of biologics and their targets in IBD by providing information on the preclinical and clinical development of over 60 biopharmaceuticals representing the state of the art in ulcerative colitis and Crohn's disease drug development. PMID:27220087

  18. EGFR/HER-targeted therapeutics in ovarian cancer.

    PubMed

    Wilken, Jason A; Badri, Tayf; Cross, Sarah; Raji, Rhoda; Santin, Alessandro D; Schwartz, Peter; Branscum, Adam J; Baron, Andre T; Sakhitab, Adam I; Maihle, Nita J

    2012-03-01

    Despite decades of research and evolving treatment modalities, survival among patients with epithelial ovarian cancer has improved only incrementally. During this same period, the development of biologically targeted therapeutics has improved survival for patients with diverse malignancies. Many of these new drugs target the human epidermal growth factor receptor (EGFR/HER/ErbB) family of tyrosine kinases, which play a major role in the etiology and progression of many carcinomas, including epithelial ovarian cancer. While several HER-targeted therapeutics are US FDA approved for the treatment of various malignancies, none have gained approval for the treatment of ovarian cancer. Here, we review the published literature on HER-targeted therapeutics for the treatment of ovarian cancer, including novel HER-targeted therapeutics in various stages of clinical development, as well as the challenges that have limited the use of these inhibitors in clinical settings.

  19. EGFR/HER-targeted therapeutics in ovarian cancer

    PubMed Central

    Wilken, Jason A; Badri, Tayf; Cross, Sarah; Raji, Rhoda; Santin, Alessandro D; Schwartz, Peter; Branscum, Adam J; Baron, Andre T; Sakhitab, Adam I; Maihle, Nita J

    2013-01-01

    Despite decades of research and evolving treatment modalities, survival among patients with epithelial ovarian cancer has improved only incrementally. During this same period, the development of biologically targeted therapeutics has improved survival for patients with diverse malignancies. Many of these new drugs target the human epidermal growth factor receptor (EGFR/HER/ErbB) family of tyrosine kinases, which play a major role in the etiology and progression of many carcinomas, including epithelial ovarian cancer. While several HER-targeted therapeutics are US FDA approved for the treatment of various malignancies, none have gained approval for the treatment of ovarian cancer. Here, we review the published literature on HER-targeted therapeutics for the treatment of ovarian cancer, including novel HER-targeted therapeutics in various stages of clinical development, as well as the challenges that have limited the use of these inhibitors in clinical settings. PMID:22416774

  20. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation†

    PubMed Central

    Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M.; Radovic-Moreno, Aleksandar F.; Farokhzad, Omid C.

    2013-01-01

    of targeted polymeric NPs and to highlight the challenges associated with the engineering of this novel class of therapeutics, including considerations of NP design optimization, development and biophysicochemical properties. Additionally, we highlight some recent examples from the literature, which demonstrate current trends and novel concepts in both the design and utility of targeted polymeric NPs (444 references). PMID:22388185

  1. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma

    PubMed Central

    Reznik, Robert; Hendifar, Andrew E.; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided. PMID:24624093

  2. Therapeutic targeting of splicing in cancer.

    PubMed

    Lee, Stanley Chun-Wei; Abdel-Wahab, Omar

    2016-09-01

    Recent studies have highlighted that splicing patterns are frequently altered in cancer and that mutations in genes encoding spliceosomal proteins, as well as mutations affecting the splicing of key cancer-associated genes, are enriched in cancer. In parallel, there is also accumulating evidence that several molecular subtypes of cancer are highly dependent on splicing function for cell survival. These findings have resulted in a growing interest in targeting splicing catalysis, splicing regulatory proteins, and/or specific key altered splicing events in the treatment of cancer. Here we present strategies that exist and that are in development to target altered dependency on the spliceosome, as well as aberrant splicing, in cancer. These include drugs to target global splicing in cancer subtypes that are preferentially dependent on wild-type splicing for survival, methods to alter post-translational modifications of splicing-regulating proteins, and strategies to modulate pathologic splicing events and protein-RNA interactions in cancer. PMID:27603132

  3. Prioritizing therapeutic targets using patient-derived xenograft models.

    PubMed

    Lodhia, K A; Hadley, A M; Haluska, P; Scott, C L

    2015-04-01

    Effective systemic treatment of cancer relies on the delivery of agents with optimal therapeutic potential. The molecular age of medicine has provided genomic tools that can identify a large number of potential therapeutic targets in individual patients, heralding the promise of personalized treatment. However, determining which potential targets actually drive tumor growth and should be prioritized for therapy is challenging. Indeed, reliable molecular matches of target and therapeutic agent have been stringently validated in the clinic for only a small number of targets. Patient-derived xenografts (PDXs) are tumor models developed in immunocompromised mice using tumor procured directly from the patient. As patient surrogates, PDX models represent a powerful tool for addressing individualized therapy. Challenges include humanizing the immune system of PDX models and ensuring high quality molecular annotation, in order to maximize insights for the clinic. Importantly, PDX can be sampled repeatedly and in parallel, to reveal clonal evolution, which may predict mechanisms of drug resistance and inform therapeutic strategy design.

  4. Active targeting schemes for nanoparticle systems in cancer therapeutics.

    PubMed

    Byrne, James D; Betancourt, Tania; Brannon-Peppas, Lisa

    2008-12-14

    The objective of this review is to outline current major cancer targets for nanoparticle systems and give insight into the direction of the field. The major targeting strategies that have been used for the delivery of therapeutic or imaging agents to cancer have been broken into three sections. These sections are angiogenesis-associated targeting, targeting to uncontrolled cell proliferation markers, and tumor cell targeting. The targeting schemes explored for many of the reported nanoparticle systems suggest the great potential of targeted delivery to revolutionize cancer treatment.

  5. Therapeutic approaches to drug targets in atherosclerosis

    PubMed Central

    Jamkhande, Prasad G.; Chandak, Prakash G.; Dhawale, Shashikant C.; Barde, Sonal R.; Tidke, Priti S.; Sakhare, Ram S.

    2013-01-01

    Non-communicable diseases such as cancer, atherosclerosis and diabetes are responsible for major social and health burden as millions of people are dying every year. Out of which, atherosclerosis is the leading cause of deaths worldwide. The lipid abnormality is one of the major modifiable risk factors for atherosclerosis. Both genetic and environmental components are associated with the development of atherosclerotic plaques. Immune and inflammatory mediators have a complex role in the initiation and progression of atherosclerosis. Understanding of all these processes will help to invent a range of new biomarkers and novel treatment modalities targeting various cellular events in acute and chronic inflammation that are accountable for atherosclerosis. Several biochemical pathways, receptors and enzymes are involved in the development of atherosclerosis that would be possible targets for improving strategies for disease diagnosis and management. Earlier anti-inflammatory or lipid-lowering treatments could be useful for alleviating morbidity and mortality of atherosclerotic cardiovascular diseases. However, novel drug targets like endoglin receptor, PPARα, squalene synthase, thyroid hormone analogues, scavenger receptor and thyroid hormone analogues are more powerful to control the process of atherosclerosis. Therefore, the review briefly focuses on different novel targets that act at the starting stage of the plaque form to the thrombus formation in the atherosclerosis. PMID:25061401

  6. Emerging Therapeutics Targeting mRNA Translation

    PubMed Central

    Malina, Abba; Mills, John R.; Pelletier, Jerry

    2012-01-01

    A defining feature of many cancers is deregulated translational control. Typically, this occurs at the level of recruitment of the 40S ribosomes to the 5′-cap of cellular messenger RNAs (mRNAs), the rate-limiting step of protein synthesis, which is controlled by the heterotrimeric eukaryotic initiation complex eIF4F. Thus, eIF4F in particular, and translation initiation in general, represent an exploitable vulnerability and unique opportunity for therapeutic intervention in many transformed cells. In this article, we discuss the development, mode of action and biological activity of a number of small-molecule inhibitors that interrupt PI3K/mTOR signaling control of eIF4F assembly, as well as compounds that more directly block eIF4F activity. PMID:22474009

  7. Targeting PCSK9 for therapeutic gains.

    PubMed

    Shapiro, Michael D; Fazio, Sergio; Tavori, Hagai

    2015-04-01

    Even though it is only a little over a decade from the discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) as a plasma protein that associates with both hypercholesterolemia and low cholesterol syndromes, a rich literature has developed describing its unique physiology and the impact of antagonism of this molecule on cholesterol metabolism for therapeutic purposes. Indeed, the PCSK9 story is unfolding rapidly, with many answers and more questions. This review summarizes the most recent data from phase II/III clinical trials of PCSK9 inhibition with the three leading antibodies, highlights the clinical significance of the ongoing studies, and suggests future areas of investigation based on recent basic science discoveries on the physiology of PCSK9. PMID:25712137

  8. Alzheimer's disease: molecular concepts and therapeutic targets

    NASA Astrophysics Data System (ADS)

    Fassbender, K.; Masters, C.; Beyreuther, K.

    2001-06-01

    The beta amyloid peptide is the major component of the neuritic plaques, the characteristic lesions in Alzheimer's disease. Mutations in three genes (APP, PS-1, and PS-2) cause familial Alzheimer's disease by alteration of the rate of generation of amyloid peptide or the length of this peptide. However, in the 90% non-familial cases, other factors play a major pathogenetic role. These include the apolipoprotein E genotype, the "plaque-associated" proteins promoting the formation of toxic fibrillar aggregates or the chronic inflammatory responses. The aim of this review is to explain the steps in the complex cascade leading to Alzheimer's disease and, based on this, to report the current efforts to intervene in these different pathophysiological events in order to prevent progression of Alzheimer's disease. Whereas acetylcholine substitution is currently used in clinical practice, future therapeutical strategies to combat Alzheimer's disease may include anti-inflammatory treatments, vaccination against beta amyloid peptide, or treatment with cholesterol-lowering drugs.

  9. The influenza virus NS1 protein as a therapeutic target.

    PubMed

    Engel, Daniel A

    2013-09-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists.

  10. The influenza virus NS1 protein as a therapeutic target

    PubMed Central

    Engel, Daniel A.

    2015-01-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2’-5’ oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN- mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. PMID:23796981

  11. Pathways and therapeutic targets in melanoma

    PubMed Central

    Shtivelman, Emma; Davies, Michael A.; Hwu, Patrick; Yang, James; Lotem, Michal; Oren, Moshe; Flaherty, Keith T.; Fisher, David E.

    2014-01-01

    This review aims to summarize the current knowledge of molecular pathways and their clinical relevance in melanoma. Metastatic melanoma was a grim diagnosis, but in recent years tremendous advances have been made in treatments. Chemotherapy provided little benefit in these patients, but development of targeted and new immune approaches made radical changes in prognosis. This would not have happened without remarkable advances in understanding the biology of disease and tremendous progress in the genomic (and other “omics”) scale analyses of tumors. The big problems facing the field are no longer focused exclusively on the development of new treatment modalities, though this is a very busy area of clinical research. The focus shifted now to understanding and overcoming resistance to targeted therapies, and understanding the underlying causes of the heterogeneous responses to immune therapy. PMID:24743024

  12. Glycans as targets for therapeutic antitumor antibodies.

    PubMed

    Rabu, Catherine; McIntosh, Richard; Jurasova, Zuzana; Durrant, Lindy

    2012-08-01

    Glycans represent a vast class of molecules that modify either proteins or lipids. They exert and regulate important and complex functions in both normal and cancer cell metabolism. As such, the most immunogenic glycans have been targeted in passive and active immunotherapy in human cancer for the past 25 years but it is only recently that techniques have become available to uncover novel glycan targets. The main focus of this review article is to highlight why and how monoclonal antibodies (mAbs) recognizing glycans, and in particular the glycans expressed on glycolipids, are being used in various strategies to target and kill cancer cells. The article reports on the historical use of mAbs and on very recent progress made in antitumor therapy using the anti-GD2 mAb and the antiganglioside mAbs, anti-N-glycolylneuraminic acid mAb and anti-Lewis mAb. Anti-GD2 is showing great promise in Phase III clinical trials in adjuvant treatment of neuroblastoma. Racotumomab, an anti-idiotypic mAb mimicking N-glycolylneuraminic acid-containing gangliosides, is currently being tested in a randomized, controlled Phase II/III clinical trial. This article also presents various strategies used by different groups to develop mAbs against these naturally poorly immunogenic glycans.

  13. Targeting the Notch signaling pathway in cancer therapeutics

    PubMed Central

    Guo, Huajiao; Lu, Yi; Wang, Jianhua; Liu, Xia; Keller, Evan T; Liu, Qian; Zhou, Qinghua; Zhang, Jian

    2014-01-01

    Despite advances in surgery, imaging, chemotherapy, and radiotherapy, the poor overall cancer-related death rate remains unacceptable. Novel therapeutic strategies are desperately needed. Nowadays, targeted therapy has become the most promising therapy and a welcome asset to the cancer therapeutic arena. There is a large body of evidence demonstrating that the Notch signaling pathway is critically involved in the pathobiology of a variety of malignancies. In this review, we provide an overview of emerging data, highlight the mechanism of the Notch signaling pathway in the development of a wide range of cancers, and summarize recent progress in therapeutic targeting of the Notch signaling pathway. PMID:26767041

  14. Human Isoprenoid Synthase Enzymes as Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Park, Jaeok; Matralis, Alexios; Berghuis, Albert; Tsantrizos, Youla

    2014-07-01

    The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

  15. Human isoprenoid synthase enzymes as therapeutic targets

    PubMed Central

    Park, Jaeok; Matralis, Alexios N.; Berghuis, Albert M.; Tsantrizos, Youla S.

    2014-01-01

    In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies. PMID:25101260

  16. Therapeutic targets of triple-negative breast cancer: a review

    PubMed Central

    Jamdade, Vinayak S; Sethi, Nikunj; Mundhe, Nitin A; Kumar, Parveen; Lahkar, Mangala; Sinha, Neeraj

    2015-01-01

    Breast cancer (BC) is the second most common cause of cancer deaths. Triple-negative breast cancer (TNBC) does not show immunohistochemical expression of oestrogen receptors, progesterone receptors or HER2. At present, no suitable treatment option is available for patients with TNBC. This dearth of effective conventional therapies for the treatment of advanced stage breast cancer has provoked the development of novel strategies for the management of patients with TNBC. This review presents recent information associated with different therapeutic options for the treatment of TNBC focusing on promising targets such as the Notch signalling, Wnt/β-catenin and Hedgehog pathways, in addition to EGFR, PARP1, mTOR, TGF-β and angiogenesis inhibitors. PMID:26040571

  17. Targeting melanocortin receptors as potential novel therapeutics.

    PubMed

    Getting, Stephen J

    2006-07-01

    Adrenocorticotrophic hormone (ACTH(1-39)) and the melanocortins (alpha, beta and gamma-melanocyte-stimulating hormone [MSH]) are derived from a larger precursor molecule known as the pro-opiomelanocortin (POMC) protein. They exert their numerous biological effects by activating 7 transmembrane G-protein coupled receptors (GPCR), leading to adenylyl cyclase activation and subsequent cAMP accumulation within the target cell. To date, 5 melanocortin receptors (MCR) have been identified and termed MC1R to MC5R, they have been shown to have a wide and varied distribution throughout the body, being found in the central nervous system (CNS), periphery and immune cells. Melanocortins have a multitude of actions including: (i) modulating disease pathologies including arthritis, asthma, obesity; (ii) affecting functions, for example erectile dysfunction, skin tanning; and (iii) organ systems, for example cardiovascular system. Recently a mechanistic approach has been identified with alpha-MSH preventing NF-kappaB activation via the preservation and expression of IkappaBalphaprotein. This leads to a reduction of pro-inflammatory mediators including cytokines and inhibition of adhesion molecule expression, with subsequent reduction in leukocyte emigration. Development of selective ligands with an appropriate pharmacokinetic profile will enable a pharmacological evaluation of the potential beneficial effects of the melanocortins. In this review I have discussed the potential mechanistic action for the melanocortins and some of the disease pathologies shown to be modulated. This review proposes targeting the MCR with the ultimate aim of controlling many of the diseases that we face today.

  18. Complement involvement in kidney diseases: From physiopathology to therapeutical targeting

    PubMed Central

    Salvadori, Maurizio; Rosso, Giuseppina; Bertoni, Elisabetta

    2015-01-01

    Complement cascade is involved in several renal diseases and in renal transplantation. The different components of the complement cascade might represent an optimal target for innovative therapies. In the first section of the paper the authors review the physiopathology of complement involvement in renal diseases and transplantation. In some cases this led to a reclassification of renal diseases moving from a histopathological to a physiopathological classification. The principal issues afforded are: renal diseases with complement over activation, renal diseases with complement dysregulation, progression of renal diseases and renal transplantation. In the second section the authors discuss the several complement components that could represent a therapeutic target. Even if only the anti C5 monoclonal antibody is on the market, many targets as C1, C3, C5a and C5aR are the object of national or international trials. In addition, many molecules proved to be effective in vitro or in preclinical trials and are waiting to move to human trials in the future. PMID:25949931

  19. DISC1 as a therapeutic target for mental illnesses

    PubMed Central

    Hikida, Takatoshi; Gamo, Nao J.; Sawa, Akira

    2014-01-01

    Introduction Many genetic studies have indicated that DISC1 is not merely “disrupted-in-schizophrenia,” but is more generally implicated in various brain dysfunctions associated with aberrant neurodevelopment and intracellular signaling pathways. Thus, the DISC1 gene is mildly associated with a variety of brain disorders, including schizophrenia, mood disorders, and autism. This novel concept fits with the results from biological studies of DISC1, which include cell and animal models. Areas covered We review the molecular structure and functions of DISC1, particularly those in conjunction with its important interactors. Functions of these interacting proteins are also introduced under the concept of the “DISC1 interactome.” Finally, we discuss how the DISC1 interactome can provide potential therapeutic targets for mental illnesses. Expert opinion Modulation of DISC1 stability and post-transcriptional modifications may be key targets to address DISC1-related pathology. In addition, modulation of DISC1 interactors and the mechanisms of their interactions with DISC1 may also provide drug targets. Disc1 rodent models can subsequently be used as templates for in vivo validations of compounds designed for DISC1 and its interacting proteins. Furthermore, these rodents will serve as genetic models for schizophrenia and related conditions, especially in conjunction with their pathologies during the neurodevelopmental trajectory. PMID:23130881

  20. Novel therapeutic targets in myeloma bone disease

    PubMed Central

    Webb, S L; Edwards, C M

    2014-01-01

    Multiple myeloma is a neoplastic disorder of plasma cells characterized by clonal proliferation within the bone marrow. One of the major clinical features of multiple myeloma is the destructive osteolytic bone disease that occurs in the majority of patients. Myeloma bone disease is associated with increased osteoclast activity and suppression of osteoblastogenesis. Bisphosphonates have been the mainstay of treatment for many years; however, their use is limited by their inability to repair existing bone loss. Therefore, research into novel approaches for the treatment of myeloma bone disease is of the utmost importance. This review will discuss the current advances in our understanding of osteoclast stimulation and osteoblast suppression mechanisms in myeloma bone disease and the treatments that are under development to target this destructive and debilitating feature of myeloma. PMID:24750110

  1. Targeting and therapeutic peptides in nanomedicine for atherosclerosis

    PubMed Central

    2016-01-01

    Peptides in atherosclerosis nanomedicine provide structural, targeting, and therapeutic functionality and can assist in overcoming delivery barriers of traditional pharmaceuticals. Moreover, their inherent biocompatibility and biodegradability make them especially attractive as materials intended for use in vivo. In this review, an overview of nanoparticle-associated targeting and therapeutic peptides for atherosclerosis is provided, including peptides designed for cellular targets such as endothelial cells, monocytes, and macrophages as well as for plaque components such as collagen and fibrin. An emphasis is placed on recent advances in multimodal strategies and a discussion on current challenges and barriers for clinical applicability is presented. PMID:27022138

  2. Targeting and therapeutic peptides in nanomedicine for atherosclerosis.

    PubMed

    Chung, Eun Ji

    2016-05-01

    Peptides in atherosclerosis nanomedicine provide structural, targeting, and therapeutic functionality and can assist in overcoming delivery barriers of traditional pharmaceuticals. Moreover, their inherent biocompatibility and biodegradability make them especially attractive as materials intended for use in vivo In this review, an overview of nanoparticle-associated targeting and therapeutic peptides for atherosclerosis is provided, including peptides designed for cellular targets such as endothelial cells, monocytes, and macrophages as well as for plaque components such as collagen and fibrin. An emphasis is placed on recent advances in multimodal strategies and a discussion on current challenges and barriers for clinical applicability is presented.

  3. Native functionality and therapeutic targeting of arenaviral glycoproteins.

    PubMed

    Crispin, Max; Zeltina, Antra; Zitzmann, Nicole; Bowden, Thomas A

    2016-06-01

    Surface glycoproteins direct cellular targeting, attachment, and membrane fusion of arenaviruses and are the primary target for neutralizing antibodies. Despite significant conservation of the glycoprotein architecture across the arenavirus family, there is considerable variation in the molecular recognition mechanisms used during host cell entry. We review recent progress in dissecting these infection events and describe how arenaviral glycoproteins can be targeted by small-molecule antivirals, the natural immune response, and immunoglobulin-based therapeutics. Arenaviral glycoprotein-mediated assembly and infection pathways present numerous opportunities and challenges for therapeutic intervention. PMID:27104809

  4. Is Estrogen a Therapeutic Target for Glaucoma?

    PubMed

    Dewundara, Samantha S; Wiggs, Janey L; Sullivan, David A; Pasquale, Louis R

    2016-01-01

    endothelial nitric oxide synthase, a gene receptive to estrogen regulation, are associated with glaucoma. The study concluded that increasing evidence suggests that lifetime exposure to estrogen may alter the pathogenesis of glaucoma. Estrogen exposure may have a neuroprotective effect on the progression of POAG but further studies need to confirm this finding. The role of sex-specific preventive and therapeutic treatment may be on the horizon. PMID:26959139

  5. MicroRNAs: novel therapeutic targets in neurodegenerative diseases.

    PubMed

    Roshan, Reema; Ghosh, Tanay; Scaria, Vinod; Pillai, Beena

    2009-12-01

    The prevalence of neurodegenerative disorders is rising steadily as human life expectancy increases. However, limited knowledge of the molecular basis of disease pathogenesis is a major hurdle in the identification of drug targets and development of therapeutic strategies for these largely incurable disorders. Recently, differential expression of endogenous regulatory small RNAs, known as 'microRNAs' (miRNAs), in patients of Alzheimer's disease, Parkinson's disease and models of ataxia suggest that they might have key regulatory roles in neurodegeneration. miRNAs that can target known mediators of neurodegeneration offer potential therapeutic targets. Our bioinformatic analysis suggests novel miRNA-target interactions that could potentially influence neurodegeneration. The recent development of molecules that alter miRNA expression promises valuable tools that will enhance the therapeutic potential of miRNAs.

  6. Phosphodiesterases as Therapeutic Targets for Alzheimer's Disease

    PubMed Central

    2012-01-01

    Alzheimer’s disease (AD) is the most common form of dementia among the elderly. In AD patients, memory loss is accompanied by the formation of beta-amyloid plaques and the appearance of tau in a pathological form. Given the lack of effective treatments for AD, the development of new management strategies for these patients is critical. The continued failure to find effective therapies using molecules aimed at addressing the anti-beta amyloid pathology has led researchers to focus on other non-amyloid-based approaches to restore memory function. Promising non-amyloid related candidate targets include phosphosdiesterases (PDEs), and indeed, Rolipram, a specific PDE4 inhibitor, was the first compound found to effectively restore cognitive deficits in animal models of AD. More recently, PDE5 inhibitors have also been shown to effectively restore memory function. Accordingly, inhibitors of other members of the PDE family may also improve memory performance in AD and non-AD animal models. Hence, in this review, we will summarize the data supporting the use of PDE inhibitors as cognitive enhancers and we will discuss the possible mechanisms of action underlying these effects. We shall also adopt a medicinal chemistry perspective that leads us to propose the most promising PDE candidates on the basis of inhibitor selectivity, brain distribution, and mechanism of action. PMID:23173065

  7. Factor XI as a Therapeutic Target.

    PubMed

    Gailani, David; Gruber, Andras

    2016-07-01

    Factor XIa is a plasma serine protease that contributes to thrombin generation primarily through proteolytic activation of factor IX. Traditionally considered part of the intrinsic pathway of coagulation, several lines of evidence now suggest that factor XIa serves as an interface between the vitamin-K-dependent thrombin generation mechanism and the proinflammatory kallikrein-kinin system, allowing the 2 systems to influence each other. Work with animal models and results from epidemiological surveys of human populations support a role for factor XIa in thromboembolic disease. These data and the clinical observation that deficiency of factor XI, the zymogen of factor XIa, produces a relatively mild bleeding disorder suggest that drugs targeting factor XI or XIa could produce an antithrombotic effect while leaving hemostasis largely intact. Results of a recent trial comparing antisense-induced factor XI reduction to standard-dose low molecular-weight heparin as prophylaxis for venous thrombosis during knee replacement are encouraging in this regard. Here, we discuss recent findings on the biochemistry, physiology, and pathology of factor XI as they relate to thromboembolic disease. PMID:27174099

  8. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer.

    PubMed

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-08-21

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRas(G12D) mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC. PMID:27610015

  9. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer

    PubMed Central

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRasG12D mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC.

  10. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer

    PubMed Central

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRasG12D mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC. PMID:27610015

  11. Cholera: pathophysiology and emerging therapeutic targets.

    PubMed

    Muanprasat, Chatchai; Chatsudthipong, Varanuj

    2013-05-01

    Cholera is a diarrheal disease that remains an important global health problem with several hundreds of thousands of reported cases each year. This disease is caused by intestinal infection with Vibrio cholerae, which is a highly motile gram-negative bacterium with a single-sheathed flagellum. In the course of cholera pathogenesis, V. cholerae expresses a transcriptional activator ToxT, which subsequently transactivates expressions of two crucial virulence factors: toxin-coregulated pilus and cholera toxin (CT). These factors are responsible for intestinal colonization of V. cholerae and induction of fluid secretion, respectively. In intestinal epithelial cells, CT binds to GM1 ganglioside receptors on the apical membrane and undergoes retrograde vesicular trafficking to endoplasmic reticulum, where it exploits endoplasmic reticulum-associated protein degradation systems to release a catalytic A1 subunit of CT (CT A1) into cytoplasm. CT A1, in turn, catalyzes ADP ribosylation of α subunits of stimulatory G proteins, leading to a persistent activation of adenylate cyclase and an elevation of intracellular cAMP. Increased intracellular cAMP in human intestinal epithelial cells accounts for pathogenesis of profuse diarrhea and severe fluid loss in cholera. This review provides an overview of the pathophysiology of cholera diarrhea and discusses emerging drug targets for cholera, which include V. cholerae virulence factors, V. cholerae motility, CT binding to GM1 receptor, CT internalization and intoxication, as well as cAMP metabolism and transport proteins involved in cAMP-activated Cl(-) secretion. Future directions and perspectives of research on drug discovery and development for cholera are discussed. PMID:23651092

  12. [Causes, mechanisms and possible therapeutic targets of gout].

    PubMed

    Manigold, Tobias

    2016-01-01

    Gout is the most frequent arthritis worldwide with increasing prevalence in industrialized countries and massive socioeconomic consequences. The knowledge regarding the pathomechanisms which lead to arthritis has substantially increased during the last decade. Consistently, new therapeutic approaches and substances appear at the horizon. This review covers aspects of clinical presentation, diagnosis and current treatment. The pathomechanisms leading to NLRP3 inflammasome activation and IL-1beta secretion are reviewed in detail. Finally, selected new therapeutic targets and substances are discussed.

  13. Zebrafish: predictive model for targeted cancer therapeutics from nature.

    PubMed

    Zulkhernain, Nursafwana Syazwani; Teo, Soo Hwang; Patel, Vyomesh; Tan, Pei Jean

    2014-01-01

    Targeted therapy, the treatment of cancer based on an underlying genetic alteration, is rapidly gaining favor as the preferred therapeutic approach. To date, although natural products represent a rich resource of bio-diverse drug candidates, only a few have been identified to be effective as targeted cancer therapies largely due to the incompatibilities to current high-throughput screening methods. In this article, we review the utility of a zebrafish developmental screen for bioactive natural product-based compounds that target signaling pathways that are intimately shared with those in humans. Any bioactive compound perturbing signaling pathways identified from phenotypic developmental defects in zebrafish embryos provide an opportunity for developing targeted therapies for human cancers. This model provides a promising tool in the search for targeted cancer therapeutics from natural products. PMID:25348017

  14. Principles of separation: indications and therapeutic targets for plasma exchange.

    PubMed

    Williams, Mark E; Balogun, Rasheed A

    2014-01-01

    Extracorporeal "blood purification," mainly in the form of hemodialysis has been a major portion of the clinical activity of many nephrologists for the past 5 decades. A possibly older procedure, therapeutic plasma exchange, separates and then removes plasma as a method of removing pathogenic material from the patient. In contrast to hemodialysis, therapeutic plasma exchange preferentially removes biologic substances of high molecular weight such as autoantibodies or alloantibodies, antigen-antibody complexes, and Ig paraproteins. These molecular targets may be cleared through two alternative procedures: centrifugal separation and membrane separation. This review presents operational features of each procedure, with relevance to the nephrologist. Kinetics of removal of these plasma constituents are based on the principles of separation by the apheresis technique and by features specific to each molecular target, including their production and compartmentalization in the body. Molecular targets for common renal conditions requiring therapeutic plasma exchange are also discussed in detail.

  15. Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo

    PubMed Central

    Bardhan, Rizia; Chen, Wenxue; Bartels, Marc; Perez-Torres, Carlos; Botero, Maria F.; McAninch, Robin Ward; Contreras, Alejandro; Schiff, Rachel; Pautler, Robia G.; Halas, Naomi J.; Joshi, Amit

    2014-01-01

    Nanoparticle-based therapeutics with local delivery and external electromagnetic field modulation holds extraordinary promise for soft-tissue cancers such as breast cancer; however, knowledge of the distribution and fate of nanoparticles in vivo is crucial for clinical translation. Here we demonstrate that multiple diagnostic capabilities can be introduced in photothermal therapeutic nanocomplexes by simultaneously enhancing both near-infrared fluorescence and magnetic resonance imaging (MRI). We track nanocomplexes in vivo, examining the influence of HER2 antibody targeting on nanocomplex distribution over 72 h. This approach provides valuable, detailed information regarding the distribution and fate of complex nanoparticles designed for specific diagnostic and therapeutic functions. PMID:21090693

  16. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    PubMed Central

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  17. Targeting Mitochondria as Therapeutic Strategy for Metabolic Disorders

    PubMed Central

    Pascale, Antonietta Valeria; Finelli, Rosa; Carillo, Anna Lisa; Annunziata, Roberto; Iaccarino, Guido

    2014-01-01

    Mitochondria are critical regulator of cell metabolism; thus, mitochondrial dysfunction is associated with many metabolic disorders. Defects in oxidative phosphorylation, ROS production, or mtDNA mutations are the main causes of mitochondrial dysfunction in many pathological conditions such as IR/diabetes, metabolic syndrome, cardiovascular diseases, and cancer. Thus, targeting mitochondria has been proposed as therapeutic approach for these conditions, leading to the development of small molecules to be tested in the clinical scenario. Here we discuss therapeutic interventions to treat mitochondrial dysfunction associated with two major metabolic disorders, metabolic syndrome, and cancer. Finally, novel mechanisms of regulation of mitochondrial function are discussed, which open new scenarios for mitochondria targeting. PMID:24757426

  18. Lipid A as a Drug Target and Therapeutic Molecule

    PubMed Central

    Joo, Sang Hoon

    2015-01-01

    In this review, lipid A, from its discovery to recent findings, is presented as a drug target and therapeutic molecule. First, the biosynthetic pathway for lipid A, the Raetz pathway, serves as a good drug target for antibiotic development. Several assay methods used to screen for inhibitors of lipid A synthesis will be presented, and some of the promising lead compounds will be described. Second, utilization of lipid A biosynthetic pathways by various bacterial species can generate modified lipid A molecules with therapeutic value. PMID:26535075

  19. New strategies in neuroblastoma: Therapeutic targeting of MYCN and ALK.

    PubMed

    Barone, Giuseppe; Anderson, John; Pearson, Andrew D J; Petrie, Kevin; Chesler, Louis

    2013-11-01

    Clinical outcome remains poor in patients with high-risk neuroblastoma, in which chemoresistant relapse is common following high-intensity conventional multimodal therapy. Novel treatment approaches are required. Although recent genomic profiling initiatives have not revealed a high frequency of mutations in any significant number of therapeutically targeted genes, two exceptions, amplification of the MYCN oncogene and somatically acquired tyrosine kinase domain point mutations in anaplastic lymphoma kinase (ALK), present exciting possibilities for targeted therapy. In contrast with the situation with ALK, in which a robust pipeline of pharmacologic agents is available from early clinical use in adult malignancy, therapeutic targeting of MYCN (and MYC oncoproteins in general) represents a significant medicinal chemistry challenge that has remained unsolved for two decades. We review the latest approaches envisioned for blockade of ALK activity in neuroblastoma, present a classification of potential approaches for therapeutic targeting of MYCN, and discuss how recent developments in targeting of MYC proteins seem to make therapeutic inhibition of MYCN a reality in the clinic.

  20. The molecular basis of targeting protein kinases in cancer therapeutics.

    PubMed

    Tsai, Chung-Jung; Nussinov, Ruth

    2013-08-01

    In this paper, we provide an overview of targeted anticancer therapies with small molecule kinase inhibitors. First, we discuss why a single constitutively active kinase emanating from a variety of aberrant genetic alterations is capable of transforming a normal cell, leading it to acquire the hallmarks of a cancer cell. To draw attention to the fact that kinase inhibition in targeted cancer therapeutics differs from conventional cytotoxic chemotherapy, we exploit a conceptual framework explaining why suppressed kinase activity will selectively kill only the so-called oncogene 'addicted' cancer cell, while sparing the healthy cell. Second, we introduce the protein kinase superfamily in light of its common active conformation with precisely positioned structural elements, and the diversified auto-inhibitory conformations among the kinase families. Understanding the detailed activation mechanism of individual kinases is essential to relate the observed oncogenic alterations to the elevated constitutively active state, to identify the mechanism of consequent drug resistance, and to guide the development of the next-generation inhibitors. To clarify the vital importance of structural guidelines in studies of oncogenesis, we explain how somatic mutations in EGFR result in kinase constitutive activation. Third, in addition to the common theme of secondary (acquired) mutations that prevent drug binding from blocking a signaling pathway which is hijacked by the aberrant activated kinase, we discuss scenarios of drug resistance and relapse by compensating lesions that bypass the inactivated pathway in a vertical or horizontal fashion. Collectively, these suggest that the future challenge of cancer therapy with small molecule kinase inhibitors will rely on the discovery of distinct combinations of optimized drugs to target individual subtypes of different cancers.

  1. New therapeutic targets in rare genetic skeletal diseases

    PubMed Central

    Briggs, Michael D; Bell, Peter A; Wright, Michael J; Pirog, Katarzyna A

    2015-01-01

    Introduction: Genetic skeletal diseases (GSDs) are a diverse and complex group of rare genetic conditions that affect the development and homeostasis of the skeleton. Although individually rare, as a group of related diseases, GSDs have an overall prevalence of at least 1 per 4,000 children. There are currently very few specific therapeutic interventions to prevent, halt or modify skeletal disease progression and therefore the generation of new and effective treatments requires novel and innovative research that can identify tractable therapeutic targets and biomarkers of these diseases. Areas covered: Remarkable progress has been made in identifying the genetic basis of the majority of GSDs and in developing relevant model systems that have delivered new knowledge on disease mechanisms and are now starting to identify novel therapeutic targets. This review will provide an overview of disease mechanisms that are shared amongst groups of different GSDs and describe potential therapeutic approaches that are under investigation. Expert opinion: The extensive clinical variability and genetic heterogeneity of GSDs renders this broad group of rare diseases a bench to bedside challenge. However, the evolving hypothesis that clinically different diseases might share common disease mechanisms is a powerful concept that will generate critical mass for the identification and validation of novel therapeutic targets and biomarkers. PMID:26635999

  2. Molecular Targets in Alzheimer's Disease: From Pathogenesis to Therapeutics.

    PubMed

    Cheng, Xuan; Zhang, Lu; Lian, Ya-Jun

    2015-01-01

    Alzheimer's disease (AD) is characterized by progressive cognitive decline usually beginning with impairment in the ability to form recent memories. Nonavailability of definitive therapeutic strategy urges developing pharmacological targets based on cell signaling pathways. A great revival of interest in nutraceuticals and adjuvant therapy has been put forward. Tea polyphenols for their multiple health benefits have also attracted the attention of researchers. Tea catechins showed enough potentiality to be used in future as therapeutic targets to provide neuroprotection against AD. This review attempts to present a concise map of different receptor signaling pathways associated with AD with an insight into drug designing based on the proposed signaling pathways, molecular mechanistic details of AD pathogenesis, and a scientific rationale for using tea polyphenols as proposed therapeutic agents in AD. PMID:26665008

  3. Molecular Targets in Alzheimer's Disease: From Pathogenesis to Therapeutics.

    PubMed

    Cheng, Xuan; Zhang, Lu; Lian, Ya-Jun

    2015-01-01

    Alzheimer's disease (AD) is characterized by progressive cognitive decline usually beginning with impairment in the ability to form recent memories. Nonavailability of definitive therapeutic strategy urges developing pharmacological targets based on cell signaling pathways. A great revival of interest in nutraceuticals and adjuvant therapy has been put forward. Tea polyphenols for their multiple health benefits have also attracted the attention of researchers. Tea catechins showed enough potentiality to be used in future as therapeutic targets to provide neuroprotection against AD. This review attempts to present a concise map of different receptor signaling pathways associated with AD with an insight into drug designing based on the proposed signaling pathways, molecular mechanistic details of AD pathogenesis, and a scientific rationale for using tea polyphenols as proposed therapeutic agents in AD.

  4. Molecular Targets in Alzheimer's Disease: From Pathogenesis to Therapeutics

    PubMed Central

    Cheng, Xuan; Zhang, Lu; Lian, Ya-Jun

    2015-01-01

    Alzheimer's disease (AD) is characterized by progressive cognitive decline usually beginning with impairment in the ability to form recent memories. Nonavailability of definitive therapeutic strategy urges developing pharmacological targets based on cell signaling pathways. A great revival of interest in nutraceuticals and adjuvant therapy has been put forward. Tea polyphenols for their multiple health benefits have also attracted the attention of researchers. Tea catechins showed enough potentiality to be used in future as therapeutic targets to provide neuroprotection against AD. This review attempts to present a concise map of different receptor signaling pathways associated with AD with an insight into drug designing based on the proposed signaling pathways, molecular mechanistic details of AD pathogenesis, and a scientific rationale for using tea polyphenols as proposed therapeutic agents in AD. PMID:26665008

  5. AMPA Receptors as Therapeutic Targets for Neurological Disorders.

    PubMed

    Lee, Kevin; Goodman, Lucy; Fourie, Chantelle; Schenk, Susan; Leitch, Beulah; Montgomery, Johanna M

    2016-01-01

    Almost every neurological disease directly or indirectly affects synapse function in the brain. However, these diseases alter synapses through different mechanisms, ultimately resulting in altered synaptic transmission and/or plasticity. Glutamate is the major neurotransmitter that mediates excitatory synaptic transmission in the brain through activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors. These receptors have therefore been identified as a target for the development of therapeutic treatments for neurological disorders including epilepsy, neurodegenerative diseases, autism, and drug addiction. The fact that AMPA receptors play a dominant role throughout the brain raises the significant challenge of selectively targeting only those regions affected by disease, and clinical trials have raised doubt regarding the feasibility of specifically targeting AMPA receptors for new therapeutic options. Benzamide compounds that act as positive allosteric AMPA receptor modulators, known as AMPAkines, can act on specific brain regions and were initially proposed to revolutionize the treatment of cognitive deficits associated with neurological disorders. Their therapeutic potential has since declined due to inconsistent results in clinical trials. However, recent advances in basic biomedical research are significantly increasing our knowledge of AMPA receptor structure, binding sites, and interactions with auxiliary proteins. In particular, the large complex of postsynaptic proteins that interact with AMPA receptor subunits have been shown to control AMPA receptor insertion, location, pharmacology, synaptic transmission, and plasticity. These proteins are now being considered as alternative therapeutic target sites for modulating AMPA receptors in neurological disorders. PMID:26920691

  6. B-cell targeted therapeutics in clinical development

    PubMed Central

    2013-01-01

    B lymphocytes are the source of humoral immunity and are thus a critical component of the adaptive immune system. However, B cells can also be pathogenic and the origin of disease. Deregulated B-cell function has been implicated in several autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. B cells contribute to pathological immune responses through the secretion of cytokines, costimulation of T cells, antigen presentation, and the production of autoantibodies. DNA-and RNA-containing immune complexes can also induce the production of type I interferons, which further promotes the inflammatory response. B-cell depletion with the CD20 antibody rituximab has provided clinical proof of concept that targeting B cells and the humoral response can result in significant benefit to patients. Consequently, the interest in B-cell targeted therapies has greatly increased in recent years and a number of new biologics exploiting various mechanisms are now in clinical development. This review provides an overview on current developments in the area of B-cell targeted therapies by describing molecules and subpopulations that currently offer themselves as therapeutic targets, the different strategies to target B cells currently under investigation as well as an update on the status of novel therapeutics in clinical development. Emerging data from clinical trials are providing critical insight regarding the role of B cells and autoantibodies in various autoimmune conditions and will guide the development of more efficacious therapeutics and better patient selection. PMID:23566679

  7. Kisspeptin offers a novel therapeutic target in reproduction.

    PubMed

    Jayasena, Channa N; Dhillo, Waljit S

    2009-04-01

    The occurrence of reproductive infertility has become an increasing concern in the developed world, particularly following the recent trend of attempts at pregnancy later in maternal life. Most existing therapies for infertility, such as clomiphene and gonadotropins, aim to manipulate the traditional components of the hypothalamic-pituitary-gonadal axis. Several secretagogues of gonadotropin-releasing hormone (GnRH) have been identified, including glutamate, neuropeptide tyrosine (NPY) and substance P; however, the broad array of action of these secretagogues in the CNS make them unsuitable as therapeutic targets. In the last 5 years, the Kisspeptin system has emerged as a critical regulator of reproduction and as a putative novel target of therapy for reproductive disorders. This review summarizes the relevant contemporary literature related to Kisspeptin, and assesses the potential applications of this group of peptides as a novel therapeutic target.

  8. Interferon-alpha: a therapeutic target in systemic lupus erythematosus.

    PubMed

    Crow, Mary K

    2010-02-01

    The long history of elevated interferon (IFN)-alpha in association with disease activity in patients who have systemic lupus erythematosus (SLE) has assumed high significance in the past decade, with accumulating data strongly supporting broad activation of the type I IFN pathway in cells of patients who have lupus, and association of IFN pathway activation with significant clinical manifestations of SLE and increased disease activity based on validated measures. In addition, a convincing association of IFN pathway activation with the presence of autoantibodies specific for RNA-binding proteins has contributed to delineation of an important role for Toll-like receptor activation by RNA-containing immune complexes in amplifying innate immune system activation and IFN pathway activation. Although the primary triggers of SLE and the IFN pathway remain undefined, rapid progress in lupus genetics is helping define lupus-associated genetic variants with a functional relationship to IFN production or response in patients. Together, the explosion of data and understanding related to the IFN pathway in SLE have readied the lupus community for translation of those insights to improved patient care. Patience will be needed to allow collection of clinical data and biologic specimens across multiple clinical centers required to support testing of IFN activity, IFN-inducible gene expression and chemokine gene products as candidate biomarkers. Meanwhile, promising clinical trials are moving forward to test the safety and efficacy of monoclonal antibody inhibitors of IFN-alpha. Other therapeutic approaches to target the IFN pathway may follow close behind.

  9. [50 years of hepatology - from therapeutic nihilism to targeted therapies].

    PubMed

    Manns, Michael P

    2013-04-01

    Over the past 50 years significant progress has been made in the whole field of hepatology. Part of this is translation of basic research (biochemistry, immunology, virology, molecular biology and others) into clinical hepatology. This enabled us to understand more about the pathogenesis of liver diseases and led to the discovery of the five major hepatotropic viruses, the identification of hepatocellular autoantigens, and to the development of specific therapies for chronic hepatitis B, C and D. In addition, the molecular basis of most genetic liver diseases has been identified. Significant progress was made in the development of medical therapies for various liver diseases with different underlying etiologies. Surgery significantly contributed to the progress in the management of liver diseases; examples are laparoscopic cholecystectomy and the development of liver transplantation. A multimodal therapeutic algorithm has been established for the therapy of hepatocelluar carcinoma (HCC); with Sorafenib "targeted therapy" has entered the area of HCC. The progress made over the last 50 years not only led to an aetiological differentiation of acute and chronic liver diseases but also to specific therapies based on the identification and understanding of the underlying etiology. PMID:23585265

  10. Risk Factors and Therapeutic Targets in Pancreatic Cancer

    PubMed Central

    Wörmann, Sonja Maria; Algül, Hana

    2013-01-01

    Pancreatic cancer (PC) is one of the most challenging tumor entities worldwide, characterized as a highly aggressive disease with dismal overall prognosis and an incidence rate equalling mortality rate. Over the last decade, substantial progress has been made to define the morphological changes and key genetic events in pancreatic carcinogenesis. And yet, it is still unclear what factors trigger PC. Some risk factors appear to be associated with sex, age, race/ethnicity, or other rare genetic conditions. Additionally, modifying factors such as smoking, obesity, diabetes, occupational risk factors, etc., increase the potential for acquiring genetic mutations that may result in PC. Another hallmark of PC is its poor response to radio- and chemo-therapy. Current chemotherapeutic regimens could not provide substantial survival benefit with a clear increase in overall survival. Recently, several new approaches to significantly improve the clinical outcome of PC have been described involving downstream signaling cascades desmoplasia and stromal response as well as tumor microenvironment, immune response, vasculature, and angiogenesis. This review summarizes major risk factors for PC and tries to illuminate relevant targets considerable for new therapeutic approaches. PMID:24303367

  11. Raf: a strategic target for therapeutic development against cancer.

    PubMed

    Beeram, Muralidhar; Patnaik, Amita; Rowinsky, Eric K

    2005-09-20

    The mitogen-activated protein kinase (MAPK) signaling pathway plays a critical role in transmitting proliferative signals generated by cell surface receptors and cytoplasmic signaling elements to the nucleus. Several important signaling elements of the MAPK pathway, particularly Ras and Raf, are encoded by oncogenes, and as such, their structures and functions can be modified, rendering them constitutively active. Because the MAPK pathway is dysregulated in a notable proportion of human malignancies, many of its aberrant and critical components represent strategic targets for therapeutic development against cancer. Raf, which is an essential serine/threonine kinase constituent of the MAPK pathway and a downstream effector of the central signal transduction mediator Ras, is activated in a wide range of human malignancies by aberrant signaling upstream of the protein (eg, growth factor receptors and mutant Ras) and activating mutations of the protein itself, both of which confer a proliferative advantage. Three isoforms of Raf have been identified, and therapeutics targeting Raf, including small-molecule inhibitors and antisense oligodeoxyribonucleotides (ASON), are undergoing clinical evaluation. The outcomes of these investigations may have far-reaching implications in the management of many types of human cancer. This review outlines the structure and diverse functions of Raf, the rationale for targeting Raf as a therapeutic strategy against cancer, and the present status of various therapeutic approaches including ASONs and small molecules, particularly sorafenib (BAY 43-9006).

  12. MicroRNA Targeted Therapeutic Approach for Pancreatic Cancer

    PubMed Central

    Li, Yiwei; Sarkar, Fazlul H.

    2016-01-01

    Pancreatic cancer remains the fourth leading cause of cancer-related death in the US and is expected to be the second leading cause of cancer-related death by 2030. Therefore, it is important to better understand the molecular pathogenesis, phenotypes and features of pancreatic cancer in order to design novel molecularly targeted therapies for achieving better therapeutic outcome of patients with pancreatic cancer. Recently, the roles of microRNAs (miRNAs) in the development and progression of pancreatic cancer became a hot topic in the scientific community of pancreatic cancer research. By conducting miRNA expression profiling, the aberrant expression of miRNAs was revealed in the serum and in cancer tissues from patients with pancreatic cancer. These aberrantly expressed miRNAs are critically correlated with the disease stage, drug resistance, and survival of pancreatic cancer patients. Hence, targeting these tiny molecules, the specific miRNAs, could provide an efficient and optimal approach in the therapy of pancreatic cancer. Indeed, the pre-clinical and in vivo experiments showed that nanoparticle delivery of synthetic oligonucleotides or treatment with natural agents could be useful to modulate the expression of miRNAs and thereby inhibit pancreatic cancer growth and progression, suggesting that targeting miRNAs combined with conventional anti-cancer therapeutics could be a novel therapeutic strategy for increasing drug sensitivity and achieving better therapeutic outcome of patients diagnosed with pancreatic cancer. PMID:26929739

  13. Diverse Molecular Targets for Therapeutic Strategies in Alzheimer's Disease

    PubMed Central

    Han, Sun-Ho

    2014-01-01

    Alzheimer's disease (AD) is the most common form of dementia caused by neurodegenerative process and is tightly related to amyloid β (Aβ) and neurofibrillary tangles. The lack of early diagnostic biomarker and therapeutic remedy hinders the prevention of increasing population of AD patients every year. In spite of accumulated scientific information, numerous clinical trials for candidate drug targets have failed to be preceded into therapeutic development, therefore, AD-related sufferers including patients and caregivers, are desperate to seek the solution. Also, effective AD intervention is desperately needed to reduce AD-related societal threats to public health. In this review, we summarize various drug targets and strategies in recent preclinical studies and clinical trials for AD therapy: Allopathic treatment, immunotherapy, Aβ production/aggregation modulator, tau-targeting therapy and metabolic targeting. Some has already failed in their clinical trials and the others are still in various stages of investigations, both of which give us valuable information for future research in AD therapeutic development. PMID:25045220

  14. Molecular Mechanisms of Diabetic Retinopathy: Potential Therapeutic Targets

    PubMed Central

    Coucha, Maha; Elshaer, Sally L.; Eldahshan, Wael S.; Mysona, Barbara A.; El-Remessy, Azza B.

    2015-01-01

    Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults in United States. Research indicates an association between oxidative stress and the development of diabetes complications. However, clinical trials with general antioxidants have failed to prove effective in diabetic patients. Mounting evidence from experimental studies that continue to elucidate the damaging effects of oxidative stress and inflammation in both vascular and neural retina suggest its critical role in the pathogenesis of DR. This review will outline the current management of DR as well as present potential experimental therapeutic interventions, focusing on molecules that link oxidative stress to inflammation to provide potential therapeutic targets for treatment or prevention of DR. Understanding the biochemical changes and the molecular events under diabetic conditions could provide new effective therapeutic tools to combat the disease. PMID:25949069

  15. COGNITION AS A THERAPEUTIC TARGET IN LATE-LIFE DEPRESSION: POTENTIAL FOR NICOTINIC THERAPEUTICS

    PubMed Central

    Zurkovsky, Lilia; Taylor, Warren D.; Newhouse, Paul A.

    2013-01-01

    Depression is associated with impairments to cognition and brain function at any age, but such impairments in the elderly are particularly problematic because of the additional burden of normal cognitive aging and in some cases, structural brain pathology. Individuals with late-life depression exhibit impairments in cognition and brain structural integrity, alongside mood dysfunction. Antidepressant treatment improves symptoms in some but not all patients, and those who benefit may not return to the cognitive and functional level of nondepressed elderly. Thus, for comprehensive treatment of late-life depression, it may be necessary to address both the affective and cognitive deficits. In this review, we propose a model for the treatment of late-life depression in which nicotinic stimulation is used to improve cognitive performance and improve the efficacy of an antidepressant treatment of the syndrome of late-life depression. The cholinergic system is well-established as important to cognition. Although muscarinic stimulation may exacerbate depressive symptoms, nicotinic stimulation may improve cognition and neural functioning without a detriment to mood. While some studies of nicotinic subtype specific receptor agonists have shown promise in improving cognitive performance, less is known regarding how nicotinic receptor stimulation affects cognition in depressed elderly patients. Late-life depression thus represents a new therapeutic target for the development of nicotinic agonist drugs and parallel treatment of cognitive dysfunction along with medical and psychological approaches to treating mood dysfunction may be necessary to ensure full resolution of depressive illness in aging. PMID:23933385

  16. From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    PubMed Central

    Nasiripourdori, Adak; Taly, Valérie; Grutter, Thomas; Taly, Antoine

    2011-01-01

    Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted. PMID:22069709

  17. PPAR delta as a therapeutic target in metabolic disease

    PubMed Central

    Reilly, Shannon M.; Lee, Chih-Hao

    2008-01-01

    PPARδ is the only member in the PPAR subfamily of nuclear receptors that is not a target of current drugs. Animal studies demonstrate PPARδ activation exerts many favorable effects, including reducing weight gain, increasing skeletal muscle metabolic rate and endurance, improving insulin sensitivity and cardiovascular function and suppressing atherogenic inflammation. These activities stem largely from the ability of PPARδ to control energy balance, reduce fat burden and protect against lipotoxicity caused by ectopic lipid deposition. Therefore, PPARδ represents a novel therapeutic target and the development of PPARδ agonists/modulators may be useful for treating the whole spectrum of metabolic syndrome. PMID:18036566

  18. Progress in Small Molecule and Biologic Therapeutics Targeting Ghrelin Signaling.

    PubMed

    McGovern, Kayleigh R; Darling, Joseph E; Hougland, James L

    2016-01-01

    Ghrelin is a circulating peptide hormone involved in regulation of a wide array of physiological processes. As an endogenous ligand for growth hormone secretagogue receptor (GHSR1a), ghrelin is responsible for signaling involved in energy homeostasis, including appetite stimulation, glucose metabolism, insulin signaling, and adiposity. Ghrelin has also been implicated in modulation of several neurological processes. Dysregulation of ghrelin signaling is implicated in diseases related to these pathways, including obesity, type II diabetes, and regulation of appetite and body weight in patients with Prader-Willi syndrome. Multiple steps in the ghrelin signaling pathway are available for targeting in the development of therapeutics for these diseases. Agonists and antagonists of GHS-R1a have been widely studied and have shown varying levels of effectiveness within ghrelin-related physiological pathways. Agents targeting ghrelin directly, either through depletion of ghrelin levels in circulation or inhibitors of ghrelin O-acyltransferase whose action is required for ghrelin to become biologically active, are receiving increasing attention as potential therapeutic options. We discuss the approaches utilized to target ghrelin signaling and highlight the current challenges toward developing small-molecule agents as potential therapeutics for ghrelin-related diseases. PMID:26202202

  19. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting.

    PubMed

    Cheng, Ke; Shen, Deliang; Hensley, M Taylor; Middleton, Ryan; Sun, Baiming; Liu, Weixin; De Couto, Geoffrey; Marbán, Eduardo

    2014-01-01

    Stem cell transplantation is a promising strategy for therapeutic cardiac regeneration, but current therapies are limited by inefficient interaction between potentially beneficial cells (either exogenously transplanted or endogenously recruited) and the injured tissue. Here we apply targeted nanomedicine to achieve in vivo cell-mediated tissue repair, imaging and localized enrichment without cellular transplantation. Iron nanoparticles are conjugated with two types of antibodies (one against antigens on therapeutic cells and the other directed at injured cells) to produce magnetic bifunctional cell engager (MagBICE). The antibodies link the therapeutic cells to the injured cells, whereas the iron core of MagBICE enables physical enrichment and imaging. We treat acute myocardial infarction by targeting exogenous bone marrow-derived stem cells (expressing CD45) or endogenous CD34-positive cells to injured cardiomyocytes (expressing myosin light chain. Targeting can be further enhanced by magnetic attraction, leading to augmented functional benefits. MagBICE represents a generalizable platform technology for regenerative medicine. PMID:25205020

  20. [Gap junctions: A new therapeutic target in major depressive disorder?].

    PubMed

    Sarrouilhe, D; Dejean, C

    2015-11-01

    Major depressive disorder is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and is associated with excess mortality, especially from cardiovascular diseases and through suicide. The treatments of this disease with tricyclic antidepressants and monoamine oxidase inhibitors are poorly tolerated and those that selectively target serotonin and norepinephrine re-uptake are not effective in all patients, showing the need to find new therapeutic targets. Post-mortem studies of brains from patients with major depressive disorders described a reduced expression of the gap junction-forming membrane proteins connexin 30 and connexin 43 in the prefrontal cortex and the locus coeruleus. The use of chronic unpredictable stress, a rodent model of depression, suggests that astrocytic gap junction dysfunction contributes to the pathophysiology of major depressive disorder. Chronic treatments of rats with fluoxetine and of rat cultured cortical astrocytes with amitriptyline support the hypothesis that the upregulation of gap junctional intercellular communication between brain astrocytes could be a novel mechanism for the therapeutic effect of antidepressants. In conclusion, astrocytic gap junctions are emerging as a new potential therapeutic target for the treatment of patients with major depressive disorder.

  1. Pleiotropic effects of statins: new therapeutic targets in drug design.

    PubMed

    Bedi, Onkar; Dhawan, Veena; Sharma, P L; Kumar, Puneet

    2016-07-01

    The HMG Co-enzyme inhibitors and new lipid-modifying agents expand their new therapeutic target options in the field of medical profession. Statins have been described as the most effective class of drugs to reduce serum cholesterol levels. Since the discovery of the first statin nearly 30 years ago, these drugs have become the main therapeutic approach to lower cholesterol levels. The present scientific research demonstrates numerous non-lipid modifiable effects of statins termed as pleiotropic effects of statins, which could be beneficial for the treatment of various devastating disorders. The most important positive effects of statins are anti-inflammatory, anti-proliferative, antioxidant, immunomodulatory, neuroprotective, anti-diabetes, and antithrombotic, improving endothelial dysfunction and attenuating vascular remodeling besides many others which are discussed under the scope of this review. In particular, inhibition of Rho and its downstream target, Rho-associated coiled-coil-containing protein kinase (ROCK), and their agonistic action on peroxisome proliferator-activated receptors (PPARs) can be viewed as the principle mechanisms underlying the pleiotropic effects of statins. With gradually increasing knowledge of new therapeutic targets of statins, their use has also been advocated in chronic inflammatory disorders for example rheumatoid arthritis (RA) and in systemic lupus erythematosus (SLE). In the scope of review, we highlight statins and their pleiotropic effects with reference to their harmful and beneficial effects as a novel approach for their use in the treatment of devastating disorders. Graphical abstract Pleiotropic effect of statins. PMID:27146293

  2. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma

    PubMed Central

    Thomas, Alexandra L.; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J.; Rajapakshe, Kimal; Krett, Nancy L.; Gunaratne, Preethi H.; Rosen, Steven T.

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3’-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death. PMID:26715915

  3. Hepcidin: A Promising Therapeutic Target for Iron Disorders

    PubMed Central

    Liu, Jing; Sun, Bingbing; Yin, Huijun; Liu, Sijin

    2016-01-01

    Abstract Iron is required for most forms of organisms, and it is the most essential element for the functions of many iron-containing proteins involved in oxygen transport, cellular respiration, DNA replication, and so on. Disorders of iron metabolism are associated with diverse diseases, including anemias (e.g., iron-deficiency anemia and anemia of chronic diseases) and iron overload diseases, such as hereditary hemochromatosis and β-thalassemia. Hepcidin (encoded by Hamp gene) is a peptide hormone synthesized by hepatocytes, and it plays an important role in regulating the systematic iron homeostasis. As the systemic iron regulator, hepcidin, not only controls dietary iron absorption and iron egress out of iron storage cells, but also induces iron redistribution in various organs. Deregulated hepcidin is often seen in a variety of iron-related diseases including anemias and iron overload disorders. In the case of iron overload disorders (e.g., hereditary hemochromatosis and β-thalassemia), hepatic hepcidin concentration is significantly reduced. Since hepcidin deregulation is responsible for iron disorder-associated diseases, the purpose of this review is to summarize the recent findings on therapeutics targeting hepcidin. Continuous efforts have been made to search for hepcidin mimics and chemical compounds that could be used to increase hepcidin level. Here, a literature search was conducted in PubMed, and research papers relevant to hepcidin regulation or hepcidin-centered therapeutic work were reviewed. On the basis of literature search, we recapitulated recent findings on therapeutic studies targeting hepcidin, including agonists and antagonists to modulate hepcidin expression or its downstream signaling. We also discussed the molecular mechanisms by which hepcidin level and iron metabolism are modulated. Elevating hepcidin concentration is an optimal strategy to ameliorate iron overload diseases, and also to relieve β-thalassemia phenotypes by improving

  4. Virus Maturation as a Novel HIV-1 Therapeutic Target

    PubMed Central

    Adamson, Catherine S.; Salzwedel, Karl; Freed, Eric O.

    2009-01-01

    Development of novel therapeutic targets against HIV-1 is a high research priority due to the serious clinical consequences associated with acquisition of resistance to current antiretroviral drugs. The HIV-1 structural protein Gag represents a potential novel therapeutic target as it plays a central role in virus particle production, yet is not targeted by any of the currently approved antiretroviral drugs. The Gag polyprotein precursor multimerizes to form immature particles that bud from the infected cell. Concomitant with virus release, the Gag precursor undergoes proteolytic processing by the viral protease to generate the mature Gag proteins, which include capsid (CA). Once liberated from the Gag polyprotein precursor, CA molecules interact to reassemble into a condensed conical core, which organizes the viral RNA genome and several viral proteins to facilitate virus replication in the next round of infection. Correct Gag proteolytic processing and core assembly are therefore essential for virus infectivity. In this review, we discuss novel strategies to inhibit maturation by targeting proteolytic cleavage sites in Gag or CA-CA interactions required for core formation. The identification and development of lead maturation inhibitors are highlighted. PMID:19534569

  5. Long-acting antituberculous therapeutic nanoparticles target macrophage endosomes

    PubMed Central

    Edagwa, Benson J.; Guo, Dongwei; Puligujja, Pavan; Chen, Han; McMillan, JoEllyn; Liu, Xinming; Gendelman, Howard E.; Narayanasamy, Prabagaran

    2014-01-01

    Eradication of Mycobacterium tuberculosis (MTB) infection requires daily administration of combinations of rifampin (RIF), isoniazid [isonicotinylhydrazine (INH)], pyrazinamide, and ethambutol, among other drug therapies. To facilitate and optimize MTB therapeutic selections, a mononuclear phagocyte (MP; monocyte, macrophage, and dendritic cell)-targeted drug delivery strategy was developed. Long-acting nanoformulations of RIF and an INH derivative, pentenyl-INH (INHP), were prepared, and their physicochemical properties were evaluated. This included the evaluation of MP particle uptake and retention, cell viability, and antimicrobial efficacy. Drug levels reached 6 μg/106 cells in human monocyte-derived macrophages (MDMs) for nanoparticle treatments compared with 0.1 μg/106 cells for native drugs. High RIF and INHP levels were retained in MDM for >15 d following nanoparticle loading. Rapid loss of native drugs was observed in cells and culture fluids within 24 h. Antimicrobial activities were determined against Mycobacterium smegmatis (M. smegmatis). Coadministration of nanoformulated RIF and INHP provided a 6-fold increase in therapeutic efficacy compared with equivalent concentrations of native drugs. Notably, nanoformulated RIF and INHP were found to be localized in recycling and late MDM endosomal compartments. These were the same compartments that contained the pathogen. Our results demonstrate the potential of antimicrobial nanomedicines to simplify MTB drug regimens.—Edagwa, B. J., Guo, D., Puligujja, P., Chen, H., McMillan, J., Liu, X., Gendelman, H. E., Narayanasamy, P. Long-acting antituberculous therapeutic nanoparticles target macrophage endosomes. PMID:25122556

  6. Mitochondria targeted therapeutic approaches in Parkinson's and Huntington's diseases.

    PubMed

    Chaturvedi, Rajnish K; Beal, M Flint

    2013-07-01

    Substantial evidence from both genetic and toxin induced animal and cellular models and postmortem human brain tissue indicates that mitochondrial dysfunction plays a central role in pathophysiology of the neurodegenerative disorders including Parkinson's disease (PD), and Huntington's disease (HD). This review discusses the emerging understanding of the role of mitochondrial dysfunction including bioenergetics defects, mitochondrial DNA mutations, familial nuclear DNA mutations, altered mitochondrial fusion/fission and morphology, mitochondrial transport/trafficking, altered transcription and increased interaction of pathogenic proteins with mitochondria in the pathogenesis of PD and HD. This review recapitulates some of the key therapeutic strategies applied to surmount mitochondrial dysfunction in these debilitating disorders. We discuss the therapeutic role of mitochondrial bioenergetic agents such as creatine, Coenzyme-Q10, mitochondrial targeted antioxidants and peptides, the SIRT1 activator resveratrol, and the pan-PPAR agonist bezafibrate in toxin and genetic cellular and animal models of PD and HD. We also summarize the phase II-III clinical trials conducted using some of these agents. Lastly, we discuss PGC-1α, TORC and Sirtuins as potential therapeutic targets for mitochondrial dysfunction in neurodegenerative disorders. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.

  7. Therapeutic targeting of cancers with loss of PTEN function

    PubMed Central

    Dillon, Lloye M.; Miller, Todd W.

    2015-01-01

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is one of the most frequently disrupted tumor suppressors in cancer. The lipid phosphatase activity of PTEN antagonizes the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway to repress tumor cell growth and survival. In the nucleus, PTEN promotes chromosome stability and DNA repair. Consequently, loss of PTEN function increases genomic instability. PTEN deficiency is caused by inherited germline mutations, somatic mutations, epigenetic and transcriptional silencing, post-translational modifications, and protein-protein interactions. Given the high frequency of PTEN deficiency across cancer subtypes, therapeutic approaches that exploit PTEN loss-of-function could provide effective treatment strategies. Herein, we discuss therapeutic strategies aimed at cancers with loss of PTEN function, and the challenges involved in treating patients afflicted with such cancers. We review preclinical and clinical findings, and highlight novel strategies under development to target PTEN-deficient cancers. PMID:24387334

  8. Vitamin A-aldehyde adducts: AMD risk and targeted therapeutics

    PubMed Central

    Sparrow, Janet R.

    2016-01-01

    Although currently available treatment options for age-related macular degeneration (AMD) are limited, particularly for atrophic AMD, the identification of predisposing genetic variations has informed clinical studies addressing therapeutic options such as complement inhibitors and anti-inflammatory agents. To lower risk of early AMD, recommended lifestyle interventions such as the avoidance of smoking and the intake of low glycemic antioxidant-rich diets have largely followed from the identification of nongenetic modifiable factors. On the other hand, the challenge of understanding the complex relationship between aging and cumulative damage leading to AMD has fueled investigations of the visual cycle adducts that accumulate in retinal pigment epithelial (RPE) cells and are a hallmark of aging retina. These studies have revealed properties of these compounds that provide insights into processes that may compromise RPE and could contribute to disease mechanisms in AMD. This work has also led to the design of targeted therapeutics that are currently under investigation. PMID:27071115

  9. Engineering therapeutic antibodies targeting G-protein–coupled receptors

    PubMed Central

    Jo, Migyeong; Jung, Sang Taek

    2016-01-01

    G-protein–coupled receptors (GPCRs) are one of the most attractive therapeutic target classes because of their critical roles in intracellular signaling and their clinical relevance to a variety of diseases, including cancer, infection and inflammation. However, high conformational variability, the small exposed area of extracellular epitopes and difficulty in the preparation of GPCR antigens have delayed both the isolation of therapeutic anti-GPCR antibodies as well as studies on the structure, function and biochemical mechanisms of GPCRs. To overcome the challenges in generating highly specific anti-GPCR antibodies with enhanced efficacy and safety, various forms of antigens have been successfully designed and employed for screening with newly emerged systems based on laboratory animal immunization and high-throughput-directed evolution. PMID:26846450

  10. Targeted complement inhibition and microvasculature in transplants: a therapeutic perspective.

    PubMed

    Khan, M A; Hsu, J L; Assiri, A M; Broering, D C

    2016-02-01

    Active complement mediators play a key role in graft-versus-host diseases, but little attention has been given to the angiogenic balance and complement modulation during allograft acceptance. The complement cascade releases the powerful proinflammatory mediators C3a and C5a anaphylatoxins, C3b, C5b opsonins and terminal membrane attack complex into tissues, which are deleterious if unchecked. Blocking complement mediators has been considered to be a promising approach in the modern drug discovery plan, and a significant number of therapeutic alternatives have been developed to dampen complement activation and protect host cells. Numerous immune cells, especially macrophages, develop both anaphylatoxin and opsonin receptors on their cell surface and their binding affects the macrophage phenotype and their angiogenic properties. This review discusses the mechanism that complement contributes to angiogenic injury, and the development of future therapeutic targets by antagonizing activated complement mediators to preserve microvasculature in rejecting the transplanted organ.

  11. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia.

    PubMed

    McCarthy, Cathal; Kenny, Louise C

    2016-01-01

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates. PMID:27604418

  12. Exosomal miRNAs as cancer biomarkers and therapeutic targets.

    PubMed

    Thind, Arron; Wilson, Clive

    2016-01-01

    Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA) expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA) profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analysed. Exosomes are a stable source of miRNA in bodily fluids but, despite a number of methods for exosome extraction and miRNA quantification, their suitability for diagnostics in a clinical setting is questionable. Furthermore, exosomally transferred miRNAs can alter the behaviour of recipient tumour and stromal cells to promote oncogenesis, highlighting a role in cell communication in cancer. However, our incomplete understanding of exosome biogenesis and miRNA loading mechanisms means that strategies to target exosomes or their transferred miRNAs are limited and not specific to tumour cells. Therefore, if ex-miRNA is to be employed in novel non-invasive diagnostic approaches and as a therapeutic target in cancer, two further advances are necessary: in methods to isolate and detect ex-miRNA, and a better understanding of their biogenesis and functions in tumour-cell communication. PMID:27440105

  13. Therapeutics targeting persistent inflammation in chronic kidney disease.

    PubMed

    Machowska, Anna; Carrero, Juan Jesus; Lindholm, Bengt; Stenvinkel, Peter

    2016-01-01

    Systemic inflammation is a condition intrinsically linked to chronic kidney disease (CKD) and its other typical sequelae, such as acquired immune dysfunction, protein-energy wasting (PEW), and accelerated vascular aging that promote premature cardiovascular disease (CVD) and infections, the two leading causes of death in CKD patients. Inflammation is a major contributor to complications in CKD, and inflammatory markers, such as C-reactive protein and pro- and anti-inflammatory cytokines, correlate with underlying causes and consequences of the inflamed uremic phenotype, such as oxidative stress, endothelial dysfunction, CVD, PEW, and infections, and are sensitive and independent predictors of outcome in CKD. Therefore, inflammation appears to be a logical target for potential preventive and therapeutic interventions in patients with CKD. Putative anti-inflammatory therapy strategies aiming at preventing complications and improving outcomes in CKD span over several areas: (1) dealing with the source of inflammation (such as cardiovascular, gastrointestinal or periodontal disease and depression); (2) providing nonspecific immune modulatory effects by promoting healthy dietary habits and other lifestyle changes; (3) promoting increased use of recognized pharmacologic interventions that have pleiotropic effects; and, (4) introducing novel targeted anticytokine interventions. This review provides a brief update on inflammatory biomarkers and possible therapeutic approaches targeting inflammation and the uremic inflammatory milieu in patients with CKD. PMID:26173187

  14. Glioblastoma Stem Cells as a New Therapeutic Target for Glioblastoma

    PubMed Central

    Kalkan, Rasime

    2015-01-01

    Primary and secondary glioblastomas (GBMs) are two distinct diseases. The genetic and epigenetic background of these tumors is highly variable. The treatment procedure for these tumors is often unsuccessful because of the cellular heterogeneity and intrinsic ability of the tumor cells to invade healthy tissues. The fatal outcome of these tumors promotes researchers to find out new markers associated with the prognosis and treatment planning. In this communication, the role of glioblastoma stem cells in tumor progression and the malignant behavior of GBMs are summarized with attention to the signaling pathways and molecular regulators that are involved in maintaining the glioblastoma stem cell phenotype. A better understanding of these stem cell-like cells is necessary for designing new effective treatments and developing novel molecular strategies to target glioblastoma stem cells. We discuss hypoxia as a new therapeutic target for GBM. We focus on the inhibition of signaling pathways, which are associated with the hypoxia-mediated maintenance of glioblastoma stem cells, and the knockdown of hypoxia-inducible factors, which could be identified as attractive molecular target approaches for GBM therapeutics. PMID:26617463

  15. Apoptotic pathways as a therapeutic target for colorectal cancer treatment.

    PubMed

    Abraha, Aman M; Ketema, Ezra B

    2016-08-15

    Colorectal cancer is the second leading cause of death from cancer among adults. The disease begins as a benign adenomatous polyp, which develops into an advanced adenoma with high-grade dysplasia and then progresses to an invasive cancer. Appropriate apoptotic signaling is fundamentally important to preserve a healthy balance between cell death and cell survival and in maintaining genome integrity. Evasion of apoptotic pathway has been established as a prominent hallmark of several cancers. During colorectal cancer development, the balance between the rates of cell growth and apoptosis that maintains intestinal epithelial cell homeostasis gets progressively disturbed. Evidences are increasingly available to support the hypothesis that failure of apoptosis may be an important factor in the evolution of colorectal cancer and its poor response to chemotherapy and radiation. The other reason for targeting apoptotic pathway in the treatment of cancer is based on the observation that this process is deregulated in cancer cells but not in normal cells. As a result, colorectal cancer therapies designed to stimulate apoptosis in target cells would play a critical role in controlling its development and progression. A better understanding of the apoptotic signaling pathways, and the mechanisms by which cancer cells evade apoptotic death might lead to effective therapeutic strategies to inhibit cancer cell proliferation with minimal toxicity and high responses to chemotherapy. In this review, we analyzed the current understanding and future promises of apoptotic pathways as a therapeutic target in colorectal cancer treatment. PMID:27574550

  16. Exosomal miRNAs as cancer biomarkers and therapeutic targets

    PubMed Central

    Thind, Arron; Wilson, Clive

    2016-01-01

    Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA) expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA) profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analysed. Exosomes are a stable source of miRNA in bodily fluids but, despite a number of methods for exosome extraction and miRNA quantification, their suitability for diagnostics in a clinical setting is questionable. Furthermore, exosomally transferred miRNAs can alter the behaviour of recipient tumour and stromal cells to promote oncogenesis, highlighting a role in cell communication in cancer. However, our incomplete understanding of exosome biogenesis and miRNA loading mechanisms means that strategies to target exosomes or their transferred miRNAs are limited and not specific to tumour cells. Therefore, if ex-miRNA is to be employed in novel non-invasive diagnostic approaches and as a therapeutic target in cancer, two further advances are necessary: in methods to isolate and detect ex-miRNA, and a better understanding of their biogenesis and functions in tumour-cell communication. PMID:27440105

  17. Apoptotic pathways as a therapeutic target for colorectal cancer treatment

    PubMed Central

    Abraha, Aman M; Ketema, Ezra B

    2016-01-01

    Colorectal cancer is the second leading cause of death from cancer among adults. The disease begins as a benign adenomatous polyp, which develops into an advanced adenoma with high-grade dysplasia and then progresses to an invasive cancer. Appropriate apoptotic signaling is fundamentally important to preserve a healthy balance between cell death and cell survival and in maintaining genome integrity. Evasion of apoptotic pathway has been established as a prominent hallmark of several cancers. During colorectal cancer development, the balance between the rates of cell growth and apoptosis that maintains intestinal epithelial cell homeostasis gets progressively disturbed. Evidences are increasingly available to support the hypothesis that failure of apoptosis may be an important factor in the evolution of colorectal cancer and its poor response to chemotherapy and radiation. The other reason for targeting apoptotic pathway in the treatment of cancer is based on the observation that this process is deregulated in cancer cells but not in normal cells. As a result, colorectal cancer therapies designed to stimulate apoptosis in target cells would play a critical role in controlling its development and progression. A better understanding of the apoptotic signaling pathways, and the mechanisms by which cancer cells evade apoptotic death might lead to effective therapeutic strategies to inhibit cancer cell proliferation with minimal toxicity and high responses to chemotherapy. In this review, we analyzed the current understanding and future promises of apoptotic pathways as a therapeutic target in colorectal cancer treatment. PMID:27574550

  18. Emerging Therapeutic Strategies for Targeting Chronic Myeloid Leukemia Stem Cells

    PubMed Central

    El Sabban, Maya; Mouteirik, Maha; Nasr, Rihab

    2013-01-01

    Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder. Current targeted therapies designed to inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein have made a significant breakthrough in the treatment of CML patients. However, CML remains a chronic disease that a patient must manage for life. Although tyrosine kinase inhibitors (TKI) therapy has completely transformed the prognosis of CML, it has made the therapeutic management more complex. The interruption of TKI treatment results in early disease progression because it does not eliminate quiescent CML stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML to achieve a permanent cure, and to allow TKI interruption. This review summarizes recent research done on alternative targeted therapies with a particular focus on some important signaling pathways (such as Alox5, Hedgehog, Wnt/b-catenin, autophagy, and PML) that have the potential to target CML stem cells and potentially provide cure for CML. PMID:23935640

  19. Therapeutic potential of targeting glucose metabolism in glioma stem cells.

    PubMed

    Nakano, Ichiro

    2014-11-01

    Glioblastoma is a highly lethal cancer. Glioma stem cells (GSCs) are potentially an attractive therapeutic target and eradication of GSCs may impact tumor growth and sensitize tumors to conventional therapies. The brain is one of the most metabolically active organs with glucose representing the most important, but not the only, source of energy and carbon. Like all other cancers, glioblastoma requires a continuous source of energy and molecular resources for new cell production with a preferential use of aerobic glycolysis, recognized as the Warburg effect. As selected metabolic nodes are amenable to therapeutic targeting, we observed that the Warburg effect may causally contribute to glioma heterogeneity. This Editorial summarizes recent studies that examine the relationship between GSCs and metabolism and briefly provides our views for the future directions. The ultimate goal is to establish a new concept by incorporating both the cellular hierarchical theory and the cellular evolution theory to explain tumor heterogeneity. Such concept may better elucidate the mechanisms of how tumors gain cellular and molecular complexity and guide us develop novel and effective targeted therapies.

  20. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia

    PubMed Central

    McCarthy, Cathal; Kenny, Louise C.

    2016-01-01

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates. PMID:27604418

  1. Therapeutics targeting persistent inflammation in chronic kidney disease.

    PubMed

    Machowska, Anna; Carrero, Juan Jesus; Lindholm, Bengt; Stenvinkel, Peter

    2016-01-01

    Systemic inflammation is a condition intrinsically linked to chronic kidney disease (CKD) and its other typical sequelae, such as acquired immune dysfunction, protein-energy wasting (PEW), and accelerated vascular aging that promote premature cardiovascular disease (CVD) and infections, the two leading causes of death in CKD patients. Inflammation is a major contributor to complications in CKD, and inflammatory markers, such as C-reactive protein and pro- and anti-inflammatory cytokines, correlate with underlying causes and consequences of the inflamed uremic phenotype, such as oxidative stress, endothelial dysfunction, CVD, PEW, and infections, and are sensitive and independent predictors of outcome in CKD. Therefore, inflammation appears to be a logical target for potential preventive and therapeutic interventions in patients with CKD. Putative anti-inflammatory therapy strategies aiming at preventing complications and improving outcomes in CKD span over several areas: (1) dealing with the source of inflammation (such as cardiovascular, gastrointestinal or periodontal disease and depression); (2) providing nonspecific immune modulatory effects by promoting healthy dietary habits and other lifestyle changes; (3) promoting increased use of recognized pharmacologic interventions that have pleiotropic effects; and, (4) introducing novel targeted anticytokine interventions. This review provides a brief update on inflammatory biomarkers and possible therapeutic approaches targeting inflammation and the uremic inflammatory milieu in patients with CKD.

  2. Novel clinical therapeutics targeting the epithelial to mesenchymal transition

    PubMed Central

    2014-01-01

    The epithelial to mesenchymal transition (EMT) is implicated in many processes, ranging from tissue and organogenesis to cancer and metastatic spread. Understanding the key regulatory mechanisms and mediators within this process offers the opportunity to develop novel therapeutics with broad clinical applicability. To date, several components of EMT already are targeted using pharmacologic agents in fibrosis and cancer. As our knowledge of EMT continues to grow, the potential for novel therapeutics will also increase. This review focuses on the role of EMT both as a necessary part of development and a key player in disease progression, specifically the similarity in pathways used during both processes as targets for drug development. Also, the key role of the tumor microenvironment with EMT is outlined, focusing on both co-factors and cell types with the ability to modulate the progression of EMT in cancer and metastatic disease. Lastly, we discuss the current status of clinical therapies both in development and those progressed to clinical trial specifically targeting pathologic EMTs including small molecule inhibitors, non-coding RNAs, exogenous co-factors, and adjunctive therapies to current chemotherapeutics. PMID:25343018

  3. Systems approaches to design of targeted therapeutic delivery

    PubMed Central

    Myerson, Jacob W.; Brenner, Jacob S.; Greineder, Colin F.; Muzykantov, Vladimir R.

    2016-01-01

    Targeted drug delivery aims to improve therapeutic effects and enable mechanisms that are not feasible for untargeted agents (e.g., due to impermeable biological barriers). To achieve targeting, a drug or its carrier should possess properties providing specific accumulation from circulation at the desired site. There are several examples of systems-inspired approaches that have been applied to achieve this goal. First, proteomics analysis of plasma membrane fraction of the vascular endothelium has identified a series of target molecules and their ligands (e.g., antibodies) that deliver conjugated cargoes to well-defined vascular cells and subcellular compartments. Second, selection of ligands binding to cells of interest using phage display libraries in vitro and in vivo has provided peptides and polypeptides that bind to normal and pathologically altered cells. Finally, large-scale high-throughput combinatorial synthesis and selection of lipid- and polymer-based nanocarriers varying their chemical components has yielded a series of carriers accumulating in diverse organs and delivering RNA interference agents to diverse cells. Together, these approaches offer a basis for systems-based design and selection of targets, targeting molecules, and targeting vehicles. Current studies focus on expanding the arsenal of these and alternative targeting strategies, devising drug delivery systems capitalizing on these strategies and evaluation of their benefit/risk ratio in adequate animal models of human diseases. These efforts, combined with better understanding of mechanisms and unintended consequences of these targeted interventions, need to be ultimately translated into industrial development and the clinical domain. PMID:25946066

  4. Therapeutic targeting of liver inflammation and fibrosis by nanomedicine

    PubMed Central

    Warzecha, Klaudia Theresa; Tacke, Frank

    2014-01-01

    Nanomedicine constitutes the emerging field of medical applications for nanotechnology such as nanomaterial-based drug delivery systems. This technology may hold exceptional potential for novel therapeutic approaches to liver diseases. The specific and unspecific targeting of macrophages, hepatic stellate cells (HSC), hepatocytes, and liver sinusoidal endothelial cells (LSEC) using nanomedicine has been developed and tested in preclinical settings. These four major cell types in the liver are crucially involved in the complex sequence of events that occurs during the initiation and maintenance of liver inflammation and fibrosis. Targeting different cell types can be based on their capacity to ingest surrounding material, endocytosis, and specificity for a single cell type can be achieved by targeting characteristic structures such as receptors, sugar moieties or peptide sequences. Macrophages and especially the liver-resident Kupffer cells are in the focus of nanomedicine due to their highly efficient and unspecific uptake of most nanomaterials as well as due to their critical pathogenic functions during inflammation and fibrogenesis. The mannose receptor enables targeting macrophages in liver disease, but macrophages can also become activated by certain nanomaterials, such as peptide-modified gold nanorods (AuNRs) that render them proinflammatory. HSC, the main collagen-producing cells during fibrosis, are currently targeted using nanoconstructs that recognize the mannose 6-phosphate and insulin-like growth factor II, peroxisome proliferator activated receptor 1, platelet-derived growth factor (PDGF) receptor β, or integrins. Targeting of the major liver parenchymal cell, the hepatocyte, has only recently been achieved with high specificity by mimicking apolipoproteins, naturally occurring nanoparticles of the body. LSEC were found to be targeted most efficiently using carboxy-modified micelles and their integrin receptors. This review will summarize important

  5. Therapeutic targeting of liver inflammation and fibrosis by nanomedicine.

    PubMed

    Bartneck, Matthias; Warzecha, Klaudia Theresa; Tacke, Frank

    2014-12-01

    Nanomedicine constitutes the emerging field of medical applications for nanotechnology such as nanomaterial-based drug delivery systems. This technology may hold exceptional potential for novel therapeutic approaches to liver diseases. The specific and unspecific targeting of macrophages, hepatic stellate cells (HSC), hepatocytes, and liver sinusoidal endothelial cells (LSEC) using nanomedicine has been developed and tested in preclinical settings. These four major cell types in the liver are crucially involved in the complex sequence of events that occurs during the initiation and maintenance of liver inflammation and fibrosis. Targeting different cell types can be based on their capacity to ingest surrounding material, endocytosis, and specificity for a single cell type can be achieved by targeting characteristic structures such as receptors, sugar moieties or peptide sequences. Macrophages and especially the liver-resident Kupffer cells are in the focus of nanomedicine due to their highly efficient and unspecific uptake of most nanomaterials as well as due to their critical pathogenic functions during inflammation and fibrogenesis. The mannose receptor enables targeting macrophages in liver disease, but macrophages can also become activated by certain nanomaterials, such as peptide-modified gold nanorods (AuNRs) that render them proinflammatory. HSC, the main collagen-producing cells during fibrosis, are currently targeted using nanoconstructs that recognize the mannose 6-phosphate and insulin-like growth factor II, peroxisome proliferator activated receptor 1, platelet-derived growth factor (PDGF) receptor β, or integrins. Targeting of the major liver parenchymal cell, the hepatocyte, has only recently been achieved with high specificity by mimicking apolipoproteins, naturally occurring nanoparticles of the body. LSEC were found to be targeted most efficiently using carboxy-modified micelles and their integrin receptors. This review will summarize important

  6. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis

    PubMed Central

    Ouellet, Hugues; Johnston, Jonathan B.; Ortiz de Montellano, Paul R.

    2011-01-01

    Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects 10 million worldwide and kills 2 million people every year. The uptake and utilization of nutrients by Mtb within the host cell is still poorly understood, although lipids play an important role in Mtb persistence. The recent identification of a large regulon of cholesterol catabolic genes suggests that Mtb can use host sterol for infection and persistence. In this review, we report on recent progress in elucidation of the Mtb cholesterol catabolic reactions and their potential utility as targets for tuberculosis therapeutic agents. PMID:21924910

  7. T cells as a therapeutic target in SLE

    PubMed Central

    Comte, Denis; Karampetsou, Maria P.; Tsokos, George C.

    2014-01-01

    Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by a loss of tolerance to multiple endogenous antigens. SLE etiology remains largely unknown, despite recent insight into the immunopathogenesis of the disease. T cells are important in the development of the disease by amplifying the immune response and contributing to organ damage. Aberrant signaling, cytokine secretion and tissue homing displayed by SLE T cells have been extensively studied and the underlying pathogenic molecular mechanisms are starting to be elucidated. T-cell targeted treatments are being explored in SLE patients. This review is an update on the T-cell abnormalities and related therapeutic options in SLE. PMID:25801878

  8. Oxidative Stress in Intracerebral Hemorrhage: Sources, Mechanisms, and Therapeutic Targets

    PubMed Central

    Hu, Xin; Tao, Chuanyuan; Gan, Qi; Zheng, Jun; Li, Hao; You, Chao

    2016-01-01

    Intracerebral hemorrhage (ICH) is associated with the highest mortality and morbidity despite only constituting approximately 10–15% of all strokes. Complex underlying mechanisms consisting of cytotoxic, excitotoxic, and inflammatory effects of intraparenchymal blood are responsible for its highly damaging effects. Oxidative stress (OS) also plays an important role in brain injury after ICH but attracts less attention than other factors. Increasing evidence has demonstrated that the metabolite axis of hemoglobin-heme-iron is the key contributor to oxidative brain damage after ICH, although other factors, such as neuroinflammation and prooxidases, are involved. This review will discuss the sources, possible molecular mechanisms, and potential therapeutic targets of OS in ICH. PMID:26843907

  9. Brain Arteriovenous Malformation Modeling, Pathogenesis and Novel Therapeutic Targets

    PubMed Central

    Chen, Wanqiu; Choi, Eun-Jung; McDougall, Cameron M.; Su, Hua

    2014-01-01

    Patients harboring brain arteriovenous malformation (bAVM) are at life-threatening risk of rupture and intracranial hemorrhage (ICH). The pathogenesis of bAVM has not been completely understood. Current treatment options are invasive and ≈ 20% of patients are not offered interventional therapy because of excessive treatment risk. There are no specific medical therapies to treat bAVMs. The lack of validated animal models has been an obstacle for testing hypotheses of bAVM pathogenesis and testing new therapies. In this review, we summarize bAVM model development; and bAVM pathogenesis and potential therapeutic targets that have been identified during model development. PMID:24723256

  10. Nuclear Targeting of Gold Nanoparticles for Improved Therapeutics.

    PubMed

    Yang, Celina J; Chithrani, Devika B

    2016-01-01

    Nanomedicine is an exponentially growing field, and gold nanoparticles (GNPs) in particular are extensively used in research due to their abilities as anti-cancer drug carriers for chemotherapy and as dose enhancers in radiotherapy. Most GNP research in the past involved a system where GNP localization was in the cytoplasm of the cell. However, it is predicted that therapy response can be enhanced if GNPs can be effectively targeted into the nucleus. With nuclear targeting, there is a possibility in producing additional free radicals in response to irradiation within the nucleus. This can cause more damage to the DNA of cancer cells. In this review article, we discuss the successful NP-based platforms available for nuclear targeting. In addition, we also present the possible mechanisms of nuclear targeting in detail followed by its applications in cancer therapy.

  11. Delivery of Therapeutic RNAs Into Target Cells IN VIVO

    NASA Astrophysics Data System (ADS)

    Ng, Mei Ying; Hagen, Thilo

    2014-02-01

    RNA-based therapy is one of the most promising approaches to treat human diseases. Specifically, the use of short interfering RNA (siRNA) siRNA and microRNA (miRNA) mimics for in vivo RNA interference has immense potential as it directly lowers the expression of the therapeutic target protein. However, there are a number of major roadblocks to the successful implementation of siRNA and other RNA based therapies in the clinic. These include the instability of RNAs in vivo and the difficulty to efficiently deliver the RNA into the target cells. Hence, various innovative approaches have been taken over the years to develop effective RNA delivery methods. These methods include liposome-, polymeric nanoparticle- and peptide-mediated cellular delivery. In a recent innovative study, bioengineered bacterial outer membrane vesicles were used as vehicles for effective delivery of siRNA into cells in vivo.

  12. In Search of New Therapeutic Targets in Obesity Treatment: Sirtuins

    PubMed Central

    Kurylowicz, Alina

    2016-01-01

    Most of the available non-invasive medical therapies for obesity are non-efficient in a long-term evaluation; therefore there is a constant need for new methods of treatment. Research on calorie restriction has led to the discovery of sirtuins (silent information regulators, SIRTs), enzymes regulating different cellular pathways that may constitute potential targets in the treatment of obesity. This review paper presents the role of SIRTs in the regulation of glucose and lipid metabolism as well as in the differentiation of adipocytes. How disturbances of SIRTs’ expression and activity may lead to the development of obesity and related complications is discussed. A special emphasis is placed on polymorphisms in genes encoding SIRTs and their possible association with susceptibility to obesity and metabolic complications, as well as on data regarding altered expression of SIRTs in human obesity. Finally, the therapeutic potential of SIRTs-targeted strategies in the treatment of obesity and related disorders is discussed. PMID:27104517

  13. Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets

    PubMed Central

    Humphries, Edward S. A.

    2015-01-01

    Potassium (K+) channels, with their diversity, often tissue-defined distribution, and critical role in controlling cellular excitability, have long held promise of being important drug targets for the treatment of dysrhythmias in the heart and abnormal neuronal activity within the brain. With the exception of drugs that target one particular class, ATP-sensitive K+ (KATP) channels, very few selective K+ channel activators or inhibitors are currently licensed for clinical use in cardiovascular and neurological disease. Here we review what a range of human genetic disorders have told us about the role of specific K+ channel subunits, explore the potential of activators and inhibitors of specific channel populations as a therapeutic strategy, and discuss possible reasons for the difficulty in designing clinically relevant K+ channel modulators. PMID:26303307

  14. New dimension in therapeutic targeting of BCL-2 family proteins

    PubMed Central

    Besbes, Samaher; Mirshahi, Massoud; Pocard, Marc; Billard, Christian

    2015-01-01

    Proteins of the BCL-2 family control the mitochondrial pathway of apoptosis. Targeting these proteins proves to be an attractive strategy for anticancer therapy. The biological context is based on the fact that BH3-only members of the family are specific antagonists of prosurvival members. This prompted the identification of “BH3 mimetic” compounds. These small peptides or organic molecules indeed mimic the BH3 domain of BH3-only proteins: by selectively binding and antagonizing prosurvival proteins, they can induce apoptosis in malignant cells. Some small-molecule inhibitors of prosurvival proteins have already entered clinical trials in cancer patients and two of them have shown significant therapeutic effects. The latest developments in the field of targeting BCL-2 family proteins highlight several new antagonists of prosurvival proteins as well as direct activators of proapoptotic proteins. These compounds open up novel prospects for the development of BH3 mimetic anticancer drugs. PMID:25970783

  15. Macrophages: an elusive yet emerging therapeutic target of atherosclerosis.

    PubMed

    Tiwari, R L; Singh, V; Barthwal, M K

    2008-07-01

    Macrophages are central to the initiation and progression of atherosclerosis and thus can be very appropriate targets for therapy. Cell adhesion molecules mediating monocytes recruitment to the endothelium are attractive therapy targets and their inhibitors are in clinical trials. Macrophage scavenger receptors like SR-A and CD-36 mediate foam cell formation by facilitating the uptake of modified lipids. Peroxisome proliferator-activated receptors (PPAR), liver X receptor (LXR)-mediated signaling, mitogen-activated protein kinase (MAPK) induced phosphorylation events seem to play an important role in this phenomenon. Proteins affecting macrophage cholesterol metabolism and transport, including ATP-binding cassette (ABC) A1, ABCG1, acyl-CoA:cholesterol acyltransferase (ACAT), apolipoprotein A-1 (ApoA-1), neutral cholesteryl ester hydrolase (NCEH) also regulate foam cell formation and are being developed as therapeutic targets by many pharmaceutical companies. Macrophage proliferation and apoptosis are important events controlling inflammatory response, plaque vulnerability, and destabilization. Free cholesterol (FC) activates the macrophage endoplasmic reticulum (ER) stress pathway and apoptosis. Free radicals and nitric oxide also modulate macrophage foam cell formation and apoptosis. Various antioxidants like AGI-1067 and BO-653 are in clinical trials for atherosclerosis treatment. Macrophage matrix metalloproteinase's (MMP's) play a significant role in weakening and rupture of plaques. Efforts are on to develop isoform specific MMP inhibitor. CD-14, MMP-3, ABCA1, Toll-like receptor-4 (TLR-4), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), arachidonate lipoxygenase-15 (ALOX-15), and Connexin37 polymorphisms and macrophage dysfunction signify their importance in atherosclerosis. Deciphering the role of macrophages in regulating dyslipidemia and inflammation during atherosclerosis is important for developing them as therapeutic targets. PMID

  16. Bone marrow endothelium-targeted therapeutics for metastatic breast cancer.

    PubMed

    Mai, Junhua; Huang, Yi; Mu, Chaofeng; Zhang, Guodong; Xu, Rong; Guo, Xiaojing; Xia, Xiaojun; Volk, David E; Lokesh, Ganesh L; Thiviyanathan, Varatharasa; Gorenstein, David G; Liu, Xuewu; Ferrari, Mauro; Shen, Haifa

    2014-08-10

    Effective treatment of cancer metastasis to the bone relies on bone marrow drug accumulation. The surface proteins in the bone marrow vascular endothelium provide docking sites for targeted drug delivery. We have developed a thioaptamer that specifically binds to E-selectin that is overexpressed in the vasculature of tumor and inflammatory tissues. In this study, we tested targeted delivery of therapeutic siRNA loaded in the E-selectin thioaptamer-conjugated multistage vector (ESTA-MSV) drug carrier to bone marrow for the treatment of breast cancer bone metastasis. We evaluated tumor type- and tumor growth stage-dependent targeting in mice bearing metastatic breast cancer in the bone, and carried out studies to identify factors that determine targeting efficiency. In a subsequent study, we delivered siRNA to knock down expression of the human STAT3 gene in murine xenograft models of human MDA-MB-231 breast tumor, and assessed therapeutic efficacy. Our studies revealed that the CD31(+)E-selectin(+) population accounted for 20.8%, 26.4% and 29.9% of total endothelial cells respectively inside the femur of mice bearing early, middle and late stage metastatic MDA-MB-231 tumors. In comparison, the double positive cells remained at a basal level in mice with early stage MCF-7 tumors, and jumped to 23.9% and 28.2% when tumor growth progressed to middle and late stages. Accumulation of ESTA-MSV inside the bone marrow correlated with the E-selectin expression pattern. There was up to 5-fold enrichment of the targeted MSV in the bone marrow of mice bearing early or late stage MDA-MB-231 tumors and of mice with late stage, but not early stage, MCF-7 tumors. Targeted delivery of STAT3 siRNA in ESTA-MSV resulted in knockdown of STAT3 expression in 48.7% of cancer cells inside the bone marrow. Weekly systemic administration of ESTA-MSV/STAT3 siRNA significantly extended survival of mice with MDA-MB-231 bone metastasis. In conclusion, targeting the overexpressed E

  17. Evaluation of Cysteinyl Leukotriene Signaling as a Therapeutic Target for Colorectal Cancer

    PubMed Central

    Burke, Lorraine; Butler, Clare T.; Murphy, Adrian; Moran, Bruce; Gallagher, William M.; O'Sullivan, Jacintha; Kennedy, Breandán N.

    2016-01-01

    Colorectal cancer is the third most common cancer worldwide and is associated with significant morbidity and mortality. Current pharmacotherapy options include cytotoxic chemotherapy, anti-VEGF, and anti-EGFR targeting drugs, but these are limited by toxic side effects, limited responses and ultimately resistance. Cysteinyl leukotriene (CysLT) signaling regulates intestinal homeostasis with mounting evidence suggesting that CysLT signaling also plays a role in the pathogenesis of colorectal cancer. Therefore, CysLT signaling represents a novel target for this malignancy. This review evaluates reported links between CysLT signaling and established hallmarks of cancer in addition to its pharmacological potential as a new therapeutic target. PMID:27709113

  18. Endocannabinoid System: A Multi-Facet Therapeutic Target.

    PubMed

    Kaur, Rimplejeet; Ambwani, Sneha R; Singh, Surjit

    2016-01-01

    the therapeutic targets for both cannabinoid receptor agonists and antagonists. One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that act selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted. Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids. In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as "protective" and "disease inducing substance", time-dependent changes in the expression of cannabinoid receptors.

  19. Endocannabinoid System: A Multi-Facet Therapeutic Target.

    PubMed

    Kaur, Rimplejeet; Ambwani, Sneha R; Singh, Surjit

    2016-01-01

    the therapeutic targets for both cannabinoid receptor agonists and antagonists. One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that act selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted. Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids. In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as "protective" and "disease inducing substance", time-dependent changes in the expression of cannabinoid receptors. PMID:27086601

  20. Carcinoma-Associated Fibroblasts Are a Promising Therapeutic Target

    PubMed Central

    Togo, Shinsaku; Polanska, Urszula M.; Horimoto, Yoshiya; Orimo, Akira

    2013-01-01

    Human carcinomas frequently exhibit significant stromal reactions such as the so-called “desmoplastic stroma” or “reactive stroma”, which is characterised by the existence of large numbers of stromal cells and extracellular matrix proteins. Carcinoma-associated fibroblasts (CAFs), which are rich in activated fibroblast populations exemplified by myofibroblasts, are among the predominant cell types present within the tumour-associated stroma. Increased numbers of stromal myofibroblasts are often associated with high-grade malignancies with poor prognoses in humans. CAF myofibroblasts possess abilities to promote primary tumour development, growth and progression by stimulating the processes of neoangiogenesis as well as tumour cell proliferation, survival, migration and invasion. Moreover, it has been demonstrated that CAFs serve as a niche supporting the metastatic colonisation of disseminated carcinoma cells in distant organs. Their contribution to primary and secondary malignancies makes these fibroblasts a potential therapeutic target and they also appear to be relevant to the development of drug resistance and tumour recurrence. This review summarises our current knowledge of tumour-promoting CAFs and discusses the therapeutic feasibility of targeting these cells as well as disrupting heterotypic interactions with other cell types in tumours that may improve the efficacy of current anti-tumour therapies. PMID:24216702

  1. Metformin and prostate cancer stem cells: a novel therapeutic target.

    PubMed

    Mayer, M J; Klotz, L H; Venkateswaran, V

    2015-12-01

    Prostate cancer is the second most frequently diagnosed cancer in the world. Localized disease can be effectively treated with radiation therapy or radical prostatectomy. However, advanced prostate cancer is more difficult to treat and if metastatic, is incurable. There is a need for more effective therapy for advanced prostate cancer. One potential target is the cancer stem cell (CSC). CSCs have been described in several solid tumors, including prostate cancer, and contribute to therapeutic resistance and tumor recurrence. Metformin, a common oral biguanide used to treat type 2 diabetes, has been demonstrated to have anti-neoplastic effects. Specifically, metformin targets CSCs in breast cancer, pancreatic cancer, glioblastoma and colon cancer. Metformin acts directly on the mitochondria to inhibit oxidative phosphorylation and reduce mitochondrial ATP production. This forces tumor cells to compensate by increasing the rate of glycolysis. CSCs rely heavily on mitochondrial oxidative phosphorylation for energy production. The glycolytic switch results in an energy crisis in these cells. Metformin could be used to exploit this metabolic weakness in CSCs. This would increase CSC sensitivity to conventional cancer therapies, circumventing treatment resistance and enhancing treatment efficacy. This review will explore the characteristics of prostate CSCs, their role in tumor propagation and therapeutic resistance and the role of metformin as a potential prostate CSC sensitizer to current anticancer therapies. PMID:26215782

  2. Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics.

    PubMed

    Winkler, Gian C; Barle, Ester Lovsin; Galati, Giuseppe; Kluwe, William M

    2014-10-01

    There is no nationally or internationally binding definition of the term "cytotoxic drug" although this term is used in a variety of regulations for pharmaceutical development and manufacturing of drugs as well as in regulations for protecting medical personnel from occupational exposure in pharmacy, hospital, and other healthcare settings. The term "cytotoxic drug" is frequently used as a synonym for any and all oncology or antineoplastic drugs. Pharmaceutical companies generate and receive requests for assessments of the potential hazards of drugs regularly - including cytotoxicity. This publication is intended to provide functional definitions that help to differentiate between generically-cytotoxic cancer drugs of significant risk to normal human tissues, and targeted cancer therapeutics that pose much lesser risks. Together with specific assessments, it provides comprehensible guidance on how to assess the relevant properties of cancer drugs, and how targeted therapeutics discriminate between cancer and normal cells. The position of several regulatory agencies in the long-term is clearly to regulate all drugs regardless of classification, according to scientific risk based data. Despite ongoing discussions on how to replace the term "cytotoxic drugs" in current regulations, it is expected that its use will continue for the near future.

  3. Metformin and prostate cancer stem cells: a novel therapeutic target.

    PubMed

    Mayer, M J; Klotz, L H; Venkateswaran, V

    2015-12-01

    Prostate cancer is the second most frequently diagnosed cancer in the world. Localized disease can be effectively treated with radiation therapy or radical prostatectomy. However, advanced prostate cancer is more difficult to treat and if metastatic, is incurable. There is a need for more effective therapy for advanced prostate cancer. One potential target is the cancer stem cell (CSC). CSCs have been described in several solid tumors, including prostate cancer, and contribute to therapeutic resistance and tumor recurrence. Metformin, a common oral biguanide used to treat type 2 diabetes, has been demonstrated to have anti-neoplastic effects. Specifically, metformin targets CSCs in breast cancer, pancreatic cancer, glioblastoma and colon cancer. Metformin acts directly on the mitochondria to inhibit oxidative phosphorylation and reduce mitochondrial ATP production. This forces tumor cells to compensate by increasing the rate of glycolysis. CSCs rely heavily on mitochondrial oxidative phosphorylation for energy production. The glycolytic switch results in an energy crisis in these cells. Metformin could be used to exploit this metabolic weakness in CSCs. This would increase CSC sensitivity to conventional cancer therapies, circumventing treatment resistance and enhancing treatment efficacy. This review will explore the characteristics of prostate CSCs, their role in tumor propagation and therapeutic resistance and the role of metformin as a potential prostate CSC sensitizer to current anticancer therapies.

  4. [Interleukin-17 as a therapeutic target in psoriasis].

    PubMed

    Torres, Tiago; Filipe, Paulo

    2014-01-01

    Psoriasis is a chronic, immune-mediated inflammatory disease that affects up to 1-3% of the general population. An advanced understanding of the immune-pathogenesis of psoriasis has led to the development of new drugs that refine existing treatments or target novel molecular and immunologic pathways. IL-17 and Th17 cells play an important role in the pathogenesis of several autoimmune and immune-mediated disorders, including psoriasis. IL-17A, a pro-inflammatory cytokine, is produced by Th17 cells along with other effector cytokines, such as IL-17F an IL-22, but it is also expressed by other cells of the innate immune system, including mast cells, neutrophils or dendritic cells, that are found in psoriatic lesions. For this reason IL-17 has emerged as an attractive therapeutic target. Agents that inhibit IL-17 are in development and preliminary clinical results are promising, confirming the importance of IL-17 in psoriasis pathophysiology. Their selective intervention in the immune system makes them an attractive therapeutic approach to autoimmune diseases, particularly psoriasis, being possible that in the near future these novel therapies could be a valid alternative for currently available biologic agents.

  5. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    PubMed

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  6. Cancer stem cells niche: a target for novel cancer therapeutics.

    PubMed

    Yi, Shan-Yong; Hao, Yi-Bin; Nan, Ke-Jun; Fan, Tian-Li

    2013-05-01

    Nowadays, cancer has been a frequent disease, and the first or second most common cause of death worldwide. Despite a better understanding of the biology of cancer cells, the therapy of most cancers has not significantly changed for the past four decades. It is because conventional chemotherapies and/or radiation therapies are usually designed to eradicate highly proliferative cells. Mounting evidence has implicated that cancer is a disease of stem cells. Cancer stem cells (CSC) are often relatively quiescent, and therefore may not be affected by therapies targeting rapidly dividing cells. Like normal stem cells (NSC) residing in a "stem cell niche" that maintains them in a stem-like state, CSC also require a special microenvironment to control their self-renewal and undifferentiated state. The "CSC niche" is likely to be the most crucial target in the treatment of cancer. In this article, we summarize the current knowledge regarding CSC and their niche microenvironments. Understanding of CSC's origin, molecular profile, and interaction with their microenvironments, this could be a paradigm shift in the treatment of cancer, away from targeting the blast cells and towards the targeting of the CSC, thus improving therapeutic outcome.

  7. Current and novel therapeutic molecules and targets in Alzheimer's disease.

    PubMed

    Kumar, Ashwini; Nisha, Chaluveelaveedu Murleedharan; Silakari, Chitrangda; Sharma, Isha; Anusha, Kanukanti; Gupta, Nityasha; Nair, Prateek; Tripathi, Timir; Kumar, Awanish

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline, i.e., dementia. The disease starts with mild symptoms and gradually becomes severe. AD is one of the leading causes of mortality worldwide. Several different hallmarks of the disease have been reported such as deposits of β-amyloid around neurons, hyperphosphorylated tau protein, oxidative stress, dyshomeostasis of bio-metals, low levels of acetylcholine, etc. AD is not simple to diagnose since there is no single diagnostic test for it. Pharmacotherapy for AD currently provides only symptomatic relief and mostly targets cognitive revival. Computational biology approaches have proved to be reliable tools for the selection of novel targets and therapeutic ligands. Molecular docking is a key tool in computer-assisted drug design and development. Docking has been utilized to perform virtual screening on large libraries of compounds, and propose structural hypotheses of how the ligands bind with the target with lead optimization. Another potential application of docking is optimization stages of the drug-discovery cycle. This review summarizes the known drug targets of AD, in vivo active agents against AD, state-of-the-art docking studies done in AD, and future prospects of the docking with particular emphasis on AD. PMID:26220908

  8. Drugs or diet? – Developing novel therapeutic strategies targeting the free fatty acid family of GPCRs

    PubMed Central

    Dranse, H J; Kelly, M E M; Hudson, B D

    2013-01-01

    Free fatty acids (FFAs) are metabolic intermediates that may be obtained through the diet, synthesized endogenously, or produced via fermentation of carbohydrates by gut microbiota. In addition to serving as an important source of energy, FFAs are known to produce a variety of both beneficial and detrimental effects on metabolic and inflammatory processes. While historically, FFAs were believed to produce these effects only through intracellular targets such as peroxisome proliferator-activated receptors, it has now become clear that FFAs are also agonists for several GPCRs, including a family of four receptors now termed FFA1-4. Increasing evidence suggests that FFA1-4 mediate many of the beneficial properties of FFAs and not surprisingly, this has generated significant interest in the potential of these receptors as therapeutic targets for the treatment of a variety of metabolic and inflammatory disorders. In addition to the traditional strategy of developing small-molecule therapeutics targeting these receptors, there has also been some consideration given to alternate therapeutic approaches, specifically by manipulating endogenous FFA concentrations through alteration of either dietary intake, or production by gut microbiota. In this review, the current state of knowledge for FFA1-4 will be discussed, together with their potential as therapeutic targets in the treatment of metabolic and inflammatory disorders. In particular, the evidence in support of small molecule versus dietary and microbiota-based therapeutic approaches will be considered to provide insight into the development of novel multifaceted strategies targeting the FFA receptors for the treatment of metabolic and inflammatory disorders. PMID:23937426

  9. Clinical Implementation of Novel Targeted Therapeutics in Advanced Breast Cancer.

    PubMed

    Chamberlin, Mary D; Bernhardt, Erica B; Miller, Todd W

    2016-11-01

    The majority of advanced breast cancers have genetic alterations that are potentially targetable with drugs. Through initiatives such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), data can be mined to provide context for next-generation sequencing (NGS) results in the landscape of advanced breast cancer. Therapies for targets other than estrogen receptor alpha (ER) and HER2, such as cyclin-dependent kinases CDK4 and CDK6, were recently approved based on efficacy in patient subpopulations, but no predictive biomarkers have been found, leaving clinicians to continue a trial-and-error approach with each patient. Next-generation sequencing identifies potentially actionable alterations in genes thought to be drivers in the cancerous process including phosphatidylinositol 3-kinase (PI3K), AKT, fibroblast growth factor receptors (FGFRs), and mutant HER2. Epigenetically directed and immunologic therapies have also shown promise for the treatment of breast cancer via histone deacetylases (HDAC) 1 and 3, programmed T cell death 1 (PD-1), and programmed T cell death ligand 1 (PD-L1). Identifying biomarkers to predict primary resistance in breast cancer will ultimately affect clinical decisions regarding adjuvant therapy in the first-line setting. However, the bulk of medical decision-making is currently made in the secondary resistance setting. Herein, we review the clinical potential of PI3K, AKT, FGFRs, mutant HER2, HDAC1/3, PD-1, and PD-L1 as therapeutic targets in breast cancer, focusing on the rationale for therapeutic development and the status of clinical testing. J. Cell. Biochem. 117: 2454-2463, 2016. © 2016 Wiley Periodicals, Inc.

  10. Novel Opportunities for Thymidylate Metabolism as a Therapeutic Target

    PubMed Central

    Wilson, Peter M.; Fazzone, William; LaBonte, Melissa J.; Deng, Jinxia; Neamati, Nouri; Ladner, Robert D.

    2008-01-01

    For over 40 years, the fluoropyrimidine 5-fluorouracil (5-FU) has remained the central agent in therapeutic regimens employed in the treatment of colorectal cancer (CRC) and is frequently combined with the DNA-damaging agent's oxaliplatin and irinotecan increasing response rates and improving overall survival. However, many patients will derive little or no benefit from treatment, highlighting the need to identify novel therapeutic targets to improve the efficacy of current 5-FU-based chemotherapeutic strategies. Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and PPi providing substrate for thymidylate synthase (TS) and DNA synthesis and repair. Although dUTP is a normal intermediate in DNA synthesis, its accumulation and misincorporation into DNA as uracil is lethal. Importantly, uracil misincorporation represents an important mechanism of cytotoxicity induced by the TS-targeted class of chemotherapeutic agents including 5-FU. A growing body of evidence suggests that dUTPase is an important mediator of response to TS-targeted agents. In this manuscript we present further evidence demonstrating that elevated expression of dUTPase can protect breast cancer cells from the expansion of the intracellular uracil pool, translating to reduced growth inhibition following treatment with 5-FU. We therefore report the implementation of in silico drug development techniques to identify and develop small molecule inhibitors of dUTPase. As 5-FU and the oral 5-FU pro-drug capecitabine remain central agents in the treatment of a variety of malignancies, the clinical utility of a small molecule inhibitor to dUTPase represents a viable strategy to improve the clinical efficacy of these mainstay chemotherapeutic agents. PMID:18790783

  11. Epigenetic regulators as promising therapeutic targets in acute myeloid leukemia.

    PubMed

    Gallipoli, Paolo; Giotopoulos, George; Huntly, Brian J P

    2015-06-01

    Acute myeloid leukemia (AML), the most prevalent acute leukemia in adults, is an aggressive hematological malignancy arising in hematopoietic stem and progenitor cells. With the exception of a few specific AML subtypes, the mainstays of treatment have not significantly changed over the last 20 years, and are still based on standard cytotoxic chemotherapy. As a result, clinical outcome remains poor for the majority of patients, with overall long-term survival in the region of 20-30%. Recent successes in characterizing the genetic landscape of AML have highlighted that, despite its heterogeneity, many cases of AML carry recurrent mutations in genes encoding epigenetic regulators. Transcriptional dysregulation and altered epigenetic function have therefore emerged as exciting areas in AML research and it is becoming increasingly clear that epigenetic dysfunction is central to leukemogenesis in AML. This has subsequently paved the way for the development of epigenetically targeted therapies. In this review, we will discuss the most recent advances in our understanding of the role of epigenetic dysregulation in AML pathobiology. We will particularly focus on those altered epigenetic programs that have been shown to be central to the development and maintenance of AML in preclinical models. We will discuss the recent development of therapeutics specifically targeting these key epigenetic programs in AML, describe their mechanism of action and present their current clinical development. Finally, we will discuss the opportunities presented by epigenetically targeted therapy in AML and will highlight future challenges ahead for the AML community, to ensure that these novel therapeutics are optimally translated into clinical practice and result in clinical improvement for AML patients.

  12. Mast cells: new therapeutic target in helminth immune modulation.

    PubMed

    Vukman, K V; Lalor, R; Aldridge, A; O'Neill, S M

    2016-01-01

    Helminth infection and their secreted antigens have a protective role in many immune-mediated inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. However, studies have focused primarily on identifying immune protective mechanisms of helminth infection and their secreted molecules on dendritic cells and macrophages. Given that mast cells have been shown to be implicated in the pathogenesis and progression of many inflammatory disorders, their role should also be examined and considered as cellular target for helminth-based therapies. As there is a dearth of studies examining the interaction of helminth-derived antigens and mast cells, this review will focus on the role of mast cells during helminth infection and examine our current understanding of the involvement of mast cells in TH 1/TH 17-mediated immune disorders. In this context, potential mechanisms by which helminths could target the TH 1/TH 17 promoting properties of mast cells can be identified to unveil novel therapeutic mast cell driven targets in combating these inflammatory disorders. PMID:26577605

  13. Key cancer cell signal transduction pathways as therapeutic targets.

    PubMed

    Bianco, Roberto; Melisi, Davide; Ciardiello, Fortunato; Tortora, Giampaolo

    2006-02-01

    Growth factor signals are propagated from the cell surface, through the action of transmembrane receptors, to intracellular effectors that control critical functions in human cancer cells, such as differentiation, growth, angiogenesis, and inhibition of cell death and apoptosis. Several kinases are involved in transduction pathways via sequential signalling activation. These kinases include transmembrane receptor kinases (e.g., epidermal growth factor receptor EGFR); or cytoplasmic kinases (e.g., PI3 kinase). In cancer cells, these signalling pathways are often altered and results in a phenotype characterized by uncontrolled growth and increased capability to invade surrounding tissue. Therefore, these crucial transduction molecules represent attractive targets for cancer therapy. This review will summarize current knowledge of key signal transduction pathways, that are altered in cancer cells, as therapeutic targets for novel selective inhibitors. The most advanced targeted agents currently under development interfere with function and expression of several signalling molecules, including the EGFR family; the vascular endothelial growth factor and its receptors; and cytoplasmic kinases such as Ras, PI3K and mTOR.

  14. Rational approaches to design of therapeutics targeting molecular markers.

    PubMed

    Klasa, R J; List, A F; Cheson, B D

    2001-01-01

    This paper introduces novel therapeutic strategies focusing on a molecular marker relevant to a particular hematologic malignancy. Four different approaches targeting specific molecules in unique pathways will be presented. The common theme will be rational target selection in a strategy that has reached the early phase of human clinical trial in one malignancy, but with a much broader potential applicability to the technology. In Section I Dr. Richard Klasa presents preclinical data on the use of antisense oligonucleotides directed at the bcl-2 gene message to specifically downregulate Bcl-2 protein expression in non-Hodgkin's lymphomas and render the cells more susceptible to the induction of apoptosis. In Section II Dr. Alan List reviews the targeting of vascular endothelial growth factor (VEGF) and its receptor in anti-angiogenesis strategies for acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). In Section III Dr. Bruce Cheson describes recent progress in inhibiting cell cycle progression by selectively disrupting cyclin D1 with structurally unique compounds such as flavopiridol in mantle cell lymphoma as well as describing a new class of agents that affect proteasome degradation pathways.

  15. Nuclear receptors as therapeutic targets in cholestatic liver diseases

    PubMed Central

    Zollner, Gernot; Trauner, Michael

    2009-01-01

    Cholestasis results in intrahepatic accumulation of cytotoxic bile acids, which cause liver damage ultimately leading to biliary fibrosis and cirrhosis. Cholestatic liver injury is counteracted by a variety of adaptive hepatoprotective mechanisms including alterations in bile acid transport, synthesis and detoxification. The underlying molecular mechanisms are mediated mainly at a transcriptional level via a complex network involving nuclear receptors including the farnesoid X receptor, pregnane X receptor, vitamin D receptor and constitutive androstane receptor, which target overlapping, although not identical, sets of genes. Because the intrinsic adaptive response to bile acids cannot fully prevent liver injury in cholestasis, therapeutic targeting of these receptors via specific and potent agonists may further enhance the hepatic defence against toxic bile acids. Activation of these receptors results in repression of bile acid synthesis, induction of phases I and II bile acid hydroxylation and conjugation and stimulation of alternative bile acid export while limiting hepatocellular bile acid import. Furthermore, the use of nuclear receptor ligands may not only influence bile acid transport and metabolism but may also directly target hepatic fibrogenesis and inflammation. Many drugs already used to treat cholestasis and its complications such as pruritus (e.g. ursodeoxycholic acid, rifampicin, fibrates) may act via activation of nuclear receptors. More specific and potent nuclear receptor ligands are currently being developed. This article will review the current knowledge on nuclear receptors and their potential role in the treatment of cholestatic liver diseases. PMID:19133988

  16. Therapeutic Targeting of Fibroblast Growth Factor Receptors in Gastric Cancer

    PubMed Central

    Fujimori, Yoshitaka; Otsuki, Sho; Sato, Yuya; Nakagawa, Masatoshi

    2015-01-01

    Chemotherapy has become the global standard treatment for patients with metastatic or unresectable gastric cancer (GC), although outcomes remain unfavorable. Many molecular-targeted therapies inhibiting signaling pathways of various tyrosine kinase receptors have been developed, and monoclonal antibodies targeting human epidermal growth factor receptor 2 (HER2) have become standard therapy for HER2-positive GC. An inhibitor of vascular endothelial growth factor receptor 2 or MET has also produced promising results in patients with GC. Fibroblast growth factor receptors (FGFR) play key roles in tumor growth via activated signaling pathways in GC. Genomic amplification of FGFR2 leads to the aberrant activation found in GC tumors and is related to survival in patients with GC. This review discusses the clinical relevance of FGFR in GC and examines FGFR as a potential therapeutic target in patients with GC. Preclinical studies in animal models suggest that multitargeted tyrosine kinase inhibitors (TKIs), including FGFR inhibitor, suppress tumor cell proliferation and delay tumor progression. Several TKIs are now being evaluated in clinical trials as treatment for metastatic or unresectable GC harboring FGFR2 amplification. PMID:26000013

  17. Therapeutic targeting of BET protein BRD4 delays murine lupus.

    PubMed

    Wei, Shitong; Sun, Yonghua; Sha, Hongyu

    2015-12-01

    BRD4 is a member of the BET (bromodomain and extraterminal domain) family proteins that can bind acetylated histones and influence transcription, which are considered as potential therapeutic targets in many distinct diseases. And the BET inhibitor JQ1 has been proven to be effective in suppressing multiple inflammatory and autoimmune diseases. This study aimed to examine the therapeutic potential of JQ1 on a lupus model, MRL-lpr mice. Ten-week-old MRL-lpr mice were treated with JQ1 (oral administration of 200mg/kg) or vehicle for 8weeks. The proteinuria, nephritic damage, serum biochemistry, autoantibodies and cytokines were examined. Splenocytes of MRL-lpr mice were isolated for in vitro experiments. Treatment with JQ1 significantly attenuated the progression of proteinuria and nephritis. The serum concentrations of anti-dsDNA antibody as well as B-cell activating factor (BAFF), interleukin (IL)-1β, IL-6, IL-17 and INF-γ were inhibited, and IL-10 augmented by JQ1. Importantly, JQ1 improved the survival of lupus mice. In vitro, BAFF, IL-1β, IL-6, IL-17 and INF-γ were inhibited, and IL-10 augmented by JQ1 (500nM) in the cultures of splenocytes from diseased MRL-lpr mice, which was further supported by a significant reduction in immune complex-mediated activation of human monocytes in vitro by JQ1. Taken together, JQ1 effectively alleviates lupus in MRL-lpr mice by suppressing BAFF, pro-inflammatory cytokines and autoimmunity, supporting the therapeutic value of JQ1 in lupus disease. PMID:26590112

  18. Dietary lipids and adipocytes: potential therapeutic targets in cancers.

    PubMed

    Kwan, Hiu Yee; Chao, Xiaojuan; Su, Tao; Fu, Xiu-Qiong; Liu, Bin; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2015-04-01

    Lipids play an important role to support the rapid growth of cancer cells, which can be derived from both the endogenous synthesis and exogenous supplies. Enhanced de novo fatty acid synthesis and mobilization of stored lipids in cancer cells promote tumorigenesis. Besides, lipids and fatty acids derived from diet or transferred from neighboring adipocytes also influence the proliferation and metastasis of cancer cells. Indeed, the pathogenic roles of adipocytes in the tumor microenvironment have been recognized recently. The adipocyte-derived mediators or the cross talk between adipocytes and cancer cells in the microenvironment is gaining attention. This review will focus on the impacts of lipids on cancers and the pathogenic roles of adipocytes in tumorigenesis and discuss the possible anticancer therapeutic strategies targeting lipids in the cancer cells.

  19. Inflammation as a Therapeutic Target for Diabetic Neuropathies.

    PubMed

    Pop-Busui, Rodica; Ang, Lynn; Holmes, Crystal; Gallagher, Katherine; Feldman, Eva L

    2016-03-01

    Diabetic neuropathies (DNs) are one of the most prevalent chronic complications of diabetes and a major cause of disability, high mortality, and poor quality of life. Given the complex anatomy of the peripheral nervous system and types of fiber dysfunction, DNs have a wide spectrum of clinical manifestations. The treatment of DNs continues to be challenging, likely due to the complex pathogenesis that involves an array of systemic and cellular imbalances in glucose and lipids metabolism. These lead to the activation of various biochemical pathways, including increased oxidative/nitrosative stress, activation of the polyol and protein kinase C pathways, activation of polyADP ribosylation, and activation of genes involved in neuronal damage, cyclooxygenase-2 activation, endothelial dysfunction, altered Na(+)/K(+)-ATPase pump function, impaired C-peptide-related signaling pathways, endoplasmic reticulum stress, and low-grade inflammation. This review summarizes current evidence regarding the role of low-grade inflammation as a potential therapeutic target for DNs.

  20. Glucocorticoid receptor co-factors as therapeutic targets

    PubMed Central

    Simons, S. Stoney

    2010-01-01

    Summary Numerous transcriptional cofactors (e.g., coactivators, corepressors, and comodulators) are known to alter the maximal transcriptional activity (Amax) in gene induction and repression by steroid receptors in general and glucocorticoids in particular. However, recent data advance the earlier reports that these same factors also modify other parameters of glucocorticoid receptor transcriptional activity: the potency of agonists (or EC50) and the partial agonist activity of antisteroids (or PAA). In several instances, factors modulate the EC50 and/or PAA without changing Amax. Thus, studies of all three parameters reveal new factors acting at various stages of receptor action, thereby increasing the potential therapeutic targets for adjusting GR actions in pathological situations. PMID:20801081

  1. Featuring the nucleosome surface as a therapeutic target.

    PubMed

    da Silva, Isabel Torres Gomes; de Oliveira, Paulo Sergio Lopes; Santos, Guilherme Martins

    2015-05-01

    Chromatin is the major regulator of gene expression and genome maintenance. Proteins that bind the nucleosome, the repetitive unit of chromatin, and the histone H4 tail are critical to establishing chromatin architecture and phenotypic outcomes. Intriguingly, nucleosome-binding proteins (NBPs) and the H4 tail peptide compete for the same binding site at an acidic region on the nucleosome surface. Although the essential facts about the nucleosome were revealed 17 years ago, new insights into its atomic structure and molecular mechanisms are still emerging. Several complex nucleosome:NBP structures were recently revealed, characterizing the NBP-binding sites on the nucleosome surface. Here we discuss the potential of the nucleosome surface as a therapeutic target and the impact and development of exogenous nucleosome-binding molecules (eNBMs).

  2. Escorts Take the Lead: Molecular Chaperones as Therapeutic Targets

    PubMed Central

    Williams, Dumaine; Devi, Lakshmi A.

    2011-01-01

    The functional and physiological diversity of transmembrane receptors results from factors that influence the pharmacology, signaling, and trafficking of these receptors. Receptor mutations and other modifications may lead to misfolding, intracellular retention, and ineffective signaling of transmembrane receptors. The importance of such mutations is highlighted by the fact that various diseases have been linked to mutations that lead to ineffective signaling of these receptors, resulting from the retention of receptors in intracellular compartments. Studies focused on understanding the regulation of trafficking and cell surface expression of newly synthesized receptors have highlighted molecular chaperones as key regulators of receptor maturation and sorting. In this chapter, we discuss the functions of molecular chaperones in the regulation of seven-transmembrane-containing G-protein-coupled receptor function and trafficking and explore ways in which chaperones can serve as novel therapeutic targets. PMID:20691961

  3. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases.

    PubMed

    Duarte-Neves, Joana; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-11-01

    Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.

  4. Functions of astrocytes and their potential as therapeutic targets

    PubMed Central

    Kimelberg, Harold K.; Nedergaard, Maiken

    2010-01-01

    Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise, that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review will focus on the supportive roles of astrocytes, a line of study relevant to essentially all acute and chronic neurological diseases. Furthermore, this review will critically re-evaluate our concepts of the functional properties of astrocytes and relate these tasks to their intricate morphology. PMID:20880499

  5. Tetraspanins as therapeutic targets in hematological malignancy: a concise review

    PubMed Central

    Beckwith, Kyle A.; Byrd, John C.; Muthusamy, Natarajan

    2015-01-01

    Tetraspanins belong to a family of transmembrane proteins which play a major role in the organization of the plasma membrane. While all immune cells express tetraspanins, most of these are present in a variety of other cell types. There are a select few, such as CD37 and CD53, which are restricted to hematopoietic lineages. Tetraspanins associate with numerous partners involved in a diverse set of biological processes, including cell activation, survival, proliferation, adhesion, and migration. The historical view has assigned them a scaffolding role, but recent discoveries suggest some tetraspanins can directly participate in signaling through interactions with cytoplasmic proteins. Given their potential roles in supporting tumor survival and immune evasion, an improved understanding of tetraspanin activity could prove clinically valuable. This review will focus on emerging data in the study of tetraspanins, advances in the clinical development of anti-CD37 therapeutics, and the future prospects of targeting tetraspanins in hematological malignancy. PMID:25852576

  6. Mitochondrial metals as a potential therapeutic target in neurodegeneration

    PubMed Central

    Grubman, A; White, A R; Liddell, J R

    2014-01-01

    Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24206195

  7. Interleukin-23: a promising therapeutic target in seronegative spondyloarthropathy.

    PubMed

    Sherlock, Jonathan P; Cua, Daniel J

    2013-06-01

    Particular therapeutic challenges are raised by the spondyloarthropathies which represent a key area of unmet medical need. Recent investigations have shown that these conditions are characterised both by altered responsiveness to interleukin(IL)-23 and expansion of IL-23 responsive cells as well as increased production of IL-23. The gut in particular has emerged as a key site of IL-23 production, and gut inflammation is known to be strongly clinically associated with these conditions. Moreover, HLA-B27, which is strongly associated with spondyloarthropathy, has also been shown to stimulate IL-23 production. The view is thus emerging that dysregulation of IL-23 biology is a unifying feature of spondyloarthropathy, suggesting that treatments targeting this cytokine are likely to be highly efficacious.

  8. Inflammation as a Therapeutic Target for Diabetic Neuropathies.

    PubMed

    Pop-Busui, Rodica; Ang, Lynn; Holmes, Crystal; Gallagher, Katherine; Feldman, Eva L

    2016-03-01

    Diabetic neuropathies (DNs) are one of the most prevalent chronic complications of diabetes and a major cause of disability, high mortality, and poor quality of life. Given the complex anatomy of the peripheral nervous system and types of fiber dysfunction, DNs have a wide spectrum of clinical manifestations. The treatment of DNs continues to be challenging, likely due to the complex pathogenesis that involves an array of systemic and cellular imbalances in glucose and lipids metabolism. These lead to the activation of various biochemical pathways, including increased oxidative/nitrosative stress, activation of the polyol and protein kinase C pathways, activation of polyADP ribosylation, and activation of genes involved in neuronal damage, cyclooxygenase-2 activation, endothelial dysfunction, altered Na(+)/K(+)-ATPase pump function, impaired C-peptide-related signaling pathways, endoplasmic reticulum stress, and low-grade inflammation. This review summarizes current evidence regarding the role of low-grade inflammation as a potential therapeutic target for DNs. PMID:26897744

  9. Cellular FLICE-inhibitory protein: an attractive therapeutic target?

    PubMed Central

    Micheau, Olivier

    2003-01-01

    Cellular FLIP, also known as FLICE-inhibitory protein, has been identified as an inhibitor of apoptosis triggered by engagement of Death Receptor (DR) such as Fas or TRAIL. c-FLIP is recruited to DR signalling complexes, where it prevents caspase activation. Animal models indicated that c-FLIP plays an important role in T-cell proliferation and heart development. Abnormal c-FLIP expression has been identified in various diseases such as multiple sclerosis, Alzheimer’s disease, diabetes mellitus, rheumatoid arthritis and various cancers. The present review focuses on recent insights in c-FLIP dysregulation associated with human diseases, and addresses the possibilities of using c-FLIP as a therapeutic target. PMID:12885274

  10. EZH2 in Bladder Cancer, a Promising Therapeutic Target

    PubMed Central

    Martínez-Fernández, Mónica; Rubio, Carolina; Segovia, Cristina; López-Calderón, Fernando F.; Dueñas, Marta; Paramio, Jesús M.

    2015-01-01

    Bladder Cancer (BC) represents a current clinical and social challenge. The recent studies aimed to describe the genomic landscape of BC have underscored the relevance of epigenetic alterations in the pathogenesis of these tumors. Among the epigenetic alterations, histone modifications occupied a central role not only in cancer, but also in normal organism homeostasis and development. EZH2 (Enhancer of Zeste Homolog 2) belongs to the Polycomb repressive complex 2 as its catalytic subunit, which through the trimethylation of H3 (Histone 3) on K27 (Lysine 27), produces gene silencing. EZH2 is frequently overexpressed in multiple tumor types, including BC, and plays multiple roles besides the well-recognized histone mark generation. In this review, we summarize the present knowledge on the oncogenic roles of EZH2 and its potential use as a therapeutic target, with special emphasis on BC pathogenesis and management. PMID:26580594

  11. [Mitochondrial dynamics: a potential new therapeutic target for heart failure].

    PubMed

    Kuzmicic, Jovan; Del Campo, Andrea; López-Crisosto, Camila; Morales, Pablo E; Pennanen, Christian; Bravo-Sagua, Roberto; Hechenleitner, Jonathan; Zepeda, Ramiro; Castro, Pablo F; Verdejo, Hugo E; Parra, Valentina; Chiong, Mario; Lavandero, Sergio

    2011-10-01

    Mitochondria are dynamic organelles able to vary their morphology between elongated interconnected mitochondrial networks and fragmented disconnected arrays, through events of mitochondrial fusion and fission, respectively. These events allow the transmission of signaling messengers and exchange of metabolites within the cell. They have also been implicated in a variety of biological processes including embryonic development, metabolism, apoptosis, and autophagy. Although the majority of these studies have been confined to noncardiac cells, emerging evidence suggests that changes in mitochondrial morphology could participate in cardiac development, the response to ischemia-reperfusion injury, heart failure, and diabetes mellitus. In this article, we review how the mitochondrial dynamics are altered in different cardiac pathologies, with special emphasis on heart failure, and how this knowledge may provide new therapeutic targets for treating cardiovascular diseases. PMID:21820793

  12. Epigenetic modulators as therapeutic targets in prostate cancer.

    PubMed

    Graça, Inês; Pereira-Silva, Eva; Henrique, Rui; Packham, Graham; Crabb, Simon J; Jerónimo, Carmen

    2016-01-01

    Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management. PMID:27651838

  13. Autophagy as a Therapeutic Target in Cardiovascular Disease

    PubMed Central

    Nemchenko, Andriy; Chiong, Mario; Turer, Aslan; Lavandero, Sergio; Hill, Joseph A.

    2011-01-01

    The epidemic of heart failure continues apace, and development of novel therapies with clinical efficacy has lagged. Now, important insights into the molecular circuitry of cardiovascular autophagy have raised the prospect that this cellular pathway of protein quality control may be a target of clinical relevance. Whereas basal levels of autophagy are required for cell survival, excessive levels – or perhaps distinct forms of autophagic flux – contribute to disease pathogenesis. Our challenge will be to distinguish mechanisms that drive adaptive versus maladaptive autophagy and to manipulate those pathways for therapeutic gain. Recent evidence suggests this may be possible. Here, we review the fundamental biology of autophagy and its role in a variety of forms of cardiovascular disease. We discuss ways in which this evolutionarily conserved catabolic mechanism can be manipulated, discuss studies presently underway in heart disease, and provide our perspective on where this exciting field may lead in the future. PMID:21723289

  14. Stem cells as potential therapeutic targets for inflammatory bowel disease

    PubMed Central

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Mishra, Manoj K.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.; Singh, Shree Ram

    2010-01-01

    The rates of incidence and prevalence of Crohn’s disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD), are rising. Estimates indicate >1 million new cases of IBD in the United States annually. The conventional therapies available for IBD range from anti-inflammatory drugs to immunosuppressive agents, but these therapies generally fail to achieve satisfactory results due to their side effects. Interest in a new therapeutic option, that is, biological therapy, has gained much momentum recently due to its focus on different stages of the inflammatory process. Stem cell (SC) research has become a new direction for IBD therapy due to our recent understanding of cell populations involved in the pathogenic process. To this end, hematopoietic and mesenchymal stem cells are receiving more attention from IBD investigators. The intestinal environment, with its crypts and niches, supports incoming embryonic and hematopoietic stem cells and allows them to engraft and differentiate. The above findings suggest that, in the future, SC-based therapy will be a promising alternative to conventional therapy for IBD. In this review, we discuss SCs as potential therapeutic targets for future treatment of IBD. PMID:20515838

  15. Cell migration in paediatric glioma; characterisation and potential therapeutic targeting

    PubMed Central

    Cockle, J V; Picton, S; Levesley, J; Ilett, E; Carcaboso, A M; Short, S; Steel, L P; Melcher, A; Lawler, S E; Brüning-Richardson, A

    2015-01-01

    Background: Paediatric high grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are highly aggressive brain tumours. Their invasive phenotype contributes to their limited therapeutic response, and novel treatments that block brain tumour invasion are needed. Methods: Here, we examine the migratory characteristics and treatment effect of small molecule glycogen synthase kinase-3 inhibitors, lithium chloride (LiCl) and the indirubin derivative 6-bromoindirubin-oxime (BIO), previously shown to inhibit the migration of adult glioma cells, on two pHGG cell lines (SF188 and KNS42) and one patient-derived DIPG line (HSJD-DIPG-007) using 2D (transwell membrane, immunofluorescence, live cell imaging) and 3D (migration on nanofibre plates and spheroid invasion in collagen) assays. Results: All lines were migratory, but there were differences in morphology and migration rates. Both LiCl and BIO reduced migration and instigated cytoskeletal rearrangement of stress fibres and focal adhesions when viewed by immunofluorescence. In the presence of drugs, loss of polarity and differences in cellular movement were observed by live cell imaging. Conclusions: Ours is the first study to demonstrate that it is possible to pharmacologically target migration of paediatric glioma in vitro using LiCl and BIO, and we conclude that these agents and their derivatives warrant further preclinical investigation as potential anti-migratory therapeutics for these devastating tumours. PMID:25628092

  16. Prostate cancer: the need for biomarkers and new therapeutic targets*

    PubMed Central

    Felgueiras, Juliana; Silva, Joana Vieira; Fardilha, Margarida

    2014-01-01

    Prostate cancer (PCa) incidence and mortality have decreased in recent years. Nonetheless, it remains one of the most prevalent cancers in men, being a disquieting cause of men’s death worldwide. Changes in many cell signaling pathways have a predominant role in the onset, development, and progression of the disease. These include prominent pathways involved in the growth, apoptosis, and angiogenesis of the normal prostate gland, such as androgen and estrogen signaling, and other growth factor signaling pathways. Understanding the foundations of PCa is leading to the discovery of key molecules that could be used to improve patient management. The ideal scenario would be to have a panel of molecules, preferably detectable in body fluids, that are specific and sensitive biomarkers for PCa. In the early stages, androgen deprivation is the gold standard therapy. However, as the cancer progresses, it eventually becomes independent of androgens, and hormonal therapy fails. For this reason, androgen-independent PCa is still a major therapeutic challenge. By disrupting specific protein interactions or manipulating the expression of some key molecules, it might be possible to regulate tumor growth and metastasis formation, avoiding the systemic side effects of current therapies. Clinical trials are already underway to assess the efficacy of molecules specially designed to target key proteins or protein interactions. In this review, we address that recent progress made towards understanding PCa development and the molecular pathways underlying this pathology. We also discuss relevant molecular markers for the management of PCa and new therapeutic challenges. PMID:24390742

  17. The iron-regulatory hormone hepcidin: a possible therapeutic target?

    PubMed

    Rochette, Luc; Gudjoncik, Aurélie; Guenancia, Charles; Zeller, Marianne; Cottin, Yves; Vergely, Catherine

    2015-02-01

    The maintenance of stable extracellular and intracellular iron concentrations requires the coordinated regulation of iron transport into plasma. Iron is a fundamental cofactor for several enzymes involved in oxidation-reduction reactions. The redox ability of iron can lead to the production of oxygen free radicals, which can damage various cellular components. Therefore, the appropriate regulation of systemic iron homeostasis is decisive in vital processes. Hepcidin has emerged as the central regulatory molecule of systemic iron homeostasis. It is synthesized in hepatocytes and in other cells and released into the circulation. It inhibits the release of iron from enterocytes of the duodenum and from macrophages by binding to the iron exporter protein, ferroportin (FPN). FPN is a transmembrane protein responsible for iron export from cells into the plasma. Hepcidin is internalized with FPN and both are degraded in lysosomes. The hepcidin-FPN axis is the principal regulator of extracellular iron homeostasis in health and disease. Its manipulation via agonists and antagonists is an attractive and novel therapeutic strategy. Hepcidin agonists include compounds that mimic the activity of hepcidin and agents that increase the production of hepcidin by targeting hepcidin-regulatory molecules. The inhibition of hepcidin could be a potentially attractive therapeutic strategy in patients suffering from anaemia or chronic inflammation. In this review, we will summarize the role of hepcidin in iron homeostasis and its contribution to the pathophysiology of inflammation and iron disorders. We will examine emerging new strategies that modulate hepcidin metabolism.

  18. Beta-3 adrenoceptors as new therapeutic targets for cardiovascular pathologies.

    PubMed

    Gauthier, Chantal; Rozec, Bertrand; Manoury, Boris; Balligand, Jean-Luc

    2011-09-01

    Catecholamines play a key role in the regulation of cardiovascular function, classically through ß(1/2)-adrenoreceptors (AR) activation. After ß(3)-AR cloning in the late 1980s, convincing evidence for ß(3)-AR expression and function in cardiovascular tissues recently initiated a reexamination of their involvement in the pathophysiology of cardiovascular diseases. Their upregulation in diseased cardiovascular tissues and resistance to desensitization suggest they may be attractive therapeutic targets. They may substitute for inoperant ß(1/2)-AR to mediate vasodilation in diabetic or atherosclerotic vessels. In cardiac ventricle, their contractile effects are functionally antipathetic to those of ß(1/2)-AR; in normal heart, ß(3)-ARs may mediate a moderate negative inotropic effect, but in heart failure, it may protect against adverse effects of excessive catecholamine stimulation by action on excitation-contraction coupling, electrophysiology, or remodelling. Thus, prospective studies in animals and patients at different stages of heart failure should lead to identify the best therapeutic window to use ß(3)-AR agonists and/or antagonists. PMID:21633786

  19. Autobiographical Memory Disturbances in Depression: A Novel Therapeutic Target?

    PubMed Central

    Köhler, Cristiano A.; Carvalho, André F.; Alves, Gilberto S.; McIntyre, Roger S.; Hyphantis, Thomas N.; Cammarota, Martín

    2015-01-01

    Major depressive disorder (MDD) is characterized by a dysfunctional processing of autobiographical memories. We review the following core domains of deficit: systematic biases favoring materials of negative emotional valence; diminished access and response to positive memories; a recollection of overgeneral memories in detriment of specific autobiographical memories; and the role of ruminative processes and avoidance when dealing with autobiographical memories. Furthermore, we review evidence from functional neuroimaging studies of neural circuits activated by the recollection of autobiographical memories in both healthy and depressive individuals. Disruptions in autobiographical memories predispose and portend onset and maintenance of depression. Thus, we discuss emerging therapeutics that target memory difficulties in those with depression. We review strategies for this clinical domain, including memory specificity training, method-of-loci, memory rescripting, and real-time fMRI neurofeedback training of amygdala activity in depression. We propose that the manipulation of the reconsolidation of autobiographical memories in depression might represent a novel yet largely unexplored, domain-specific, therapeutic opportunity for depression treatment. PMID:26380121

  20. ENaCs and ASICs as therapeutic targets

    PubMed Central

    Qadri, Yawar J.; Rooj, Arun K.

    2012-01-01

    The epithelial Na+ channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity. PMID:22277752

  1. Targeting Cell Death Pathways for Therapeutic Intervention in Kidney Diseases.

    PubMed

    Garg, Jay P; Vucic, Domagoj

    2016-05-01

    Precise regulation of cell death and survival is essential for proper maintenance of organismal homeostasis, development, and the immune system. Deregulated cell death can lead to developmental defects, neuropathies, infections, and cancer. Kidney diseases, especially acute pathologies linked to ischemia-reperfusion injury, are among illnesses that profoundly are affected by improper regulation or execution of cell death pathways. Attempts to develop medicines for kidney diseases have been impacted by the complexity of these pathologies given the heterogeneous patient population and diverse etiologies. By analyzing cell death pathways activated in kidney diseases, we attempt to differentiate their importance for these pathologies with a goal of identifying those that have more profound impact and the best therapeutic potential. Although classic apoptosis still might be important, regulated necrosis pathways including necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-associated cell death play a significantly role in kidney diseases, especially in acute kidney pathologies. Although targeting receptor-interacting protein 1 kinase appears to be the best therapeutic strategy, combination with inhibitors of other cell death pathways is likely to bring superior benefit and possible cure to patients suffering from kidney diseases. PMID:27339381

  2. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis

    PubMed Central

    Karunakaran, Denuja; Geoffrion, Michele; Wei, Lihui; Gan, Wei; Richards, Laura; Shangari, Prakriti; DeKemp, Ella M.; Beanlands, Rachelle A.; Perisic, Ljubica; Maegdefessel, Lars; Hedin, Ulf; Sad, Subash; Guo, Liang; Kolodgie, Frank D.; Virmani, Renu; Ruddy, Terrence; Rayner, Katey J.

    2016-01-01

    Atherosclerosis results from maladaptive inflammation driven primarily by macrophages, whose recruitment and proliferation drive plaque progression. In advanced plaques, macrophage death contributes centrally to the formation of plaque necrosis, which underlies the instability that promotes plaque rupture and myocardial infarction. Hence, targeting macrophage cell death pathways may offer promise for the stabilization of vulnerable plaques. Necroptosis is a recently discovered pathway of programmed cell necrosis regulated by RIP3 and MLKL kinases that, in contrast to apoptosis, induces a proinflammatory state. We show herein that necroptotic cell death is activated in human advanced atherosclerotic plaques and can be targeted in experimental atherosclerosis for both therapeutic and diagnostic interventions. In humans with unstable carotid atherosclerosis, expression of RIP3 and MLKL is increased, and MLKL phosphorylation, a key step in the commitment to necroptosis, is detected in advanced atheromas. Investigation of the molecular mechanisms underlying necroptosis showed that atherogenic forms of low-density lipoprotein increase RIP3 and MLKL transcription and phosphorylation—two critical steps in the execution of necroptosis. Using a radiotracer developed with the necroptosis inhibitor necrostatin-1 (Nec-1), we show that 123I-Nec-1 localizes specifically to atherosclerotic plaques in Apoe−/− mice, and its uptake is tightly correlated to lesion areas by ex vivo nuclear imaging. Furthermore, treatment of Apoe−/− mice with established atherosclerosis with Nec-1 reduced lesion size and markers of plaque instability, including necrotic core formation. Collectively, our findings offer molecular insight into the mechanisms of macrophage cell death that drive necrotic core formation in atherosclerosis and suggest that this pathway can be used as both a diagnostic and therapeutic tool for the treatment of unstable atherosclerosis. PMID:27532042

  3. Hypoxia inducible factor in hepatocellular carcinoma: A therapeutic target

    PubMed Central

    Lin, Daniel; Wu, Jennifer

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed and deadly cancers worldwide; its incidence has been rising in the United States due to the increase in hepatitis C associated cirrhosis and the growing epidemic of obesity. There have been no effective therapeutic options in the advanced disease setting beyond sorafenib, a multi-targeted tyrosine kinase inhibitor that showed significant survival benefit. Because of this, there is an urgent need to search for novel pathways in sorafenib experienced patients. This review will focus on the role of hypoxia and hypoxia-inducible factor alpha (HIF-1α) in cancer development, specifically in HCC. We will discuss the biology of HIF-1α, the pathways with which it interacts, and the function of HIF-1α in HCC. Furthermore, we will review studies highlighting the relevance of HIF-1α in the clinical setting, as well as the pre-clinical data supporting its further investigation. Finally, we will conclude with a discussion of the potential role of a HIF-1α mRNA antagonist for the treatment of HCC, and hypothesize the ways in which such an inhibitor may be best utilized in the management of advanced HCC. Hypoxia plays a significant role in the development of HCC. HIF-1α is a key transcription factor involved in the hypoxic response of cancer cells. It activates transcription of genes responsible for angiogenesis, glucose metabolism, proliferation, invasion and metastasis in HCC. Its involvement in multiple, essential tumor pathways makes it an attractive potential therapeutic target in HCC. PMID:26576101

  4. Pathogenic Inflammation and Its Therapeutic Targeting in Systemic Lupus Erythematosus

    PubMed Central

    Gottschalk, Timothy A.; Tsantikos, Evelyn; Hibbs, Margaret L.

    2015-01-01

    Systemic lupus erythematosus (SLE, lupus) is a highly complex and heterogeneous autoimmune disease that most often afflicts women in their child-bearing years. It is characterized by circulating self-reactive antibodies that deposit in tissues, including skin, kidneys, and brain, and the ensuing inflammatory response can lead to irreparable tissue damage. Over many years, clinical trials in SLE have focused on agents that control B- and T-lymphocyte activation, and, with the single exception of an agent known as belimumab which targets the B-cell survival factor BAFF, they have been disappointing. At present, standard therapy for SLE with mild disease is the agent hydroxychloroquine. During disease flares, steroids are often used, while the more severe manifestations with major organ involvement warrant potent, broad-spectrum immunosuppression with cyclophosphamide or mycophenolate. Current treatments have severe and dose-limiting toxicities and thus a more specific therapy targeting a causative factor or signaling pathway would be greatly beneficial in SLE treatment. Moreover, the ability to control inflammation alongside B-cell activation may be a superior approach for disease control. There has been a recent focus on the innate immune system and associated inflammation, which has uncovered key players in driving the pathogenesis of SLE. Delineating some of these intricate inflammatory mechanisms has been possible with studies using spontaneous mouse mutants and genetically engineered mice. These strains, to varying degrees, exhibit hallmarks of the human disease and therefore have been utilized to model human SLE and to test new drugs. Developing a better understanding of the initiation and perpetuation of disease in SLE may uncover suitable novel targets for therapeutic intervention. Here, we discuss the involvement of inflammation in SLE disease pathogenesis, with a focus on several key proinflammatory cytokines and myeloid growth factors, and review the known

  5. FAK signaling in human cancer as a target for therapeutics.

    PubMed

    Lee, Brian Y; Timpson, Paul; Horvath, Lisa G; Daly, Roger J

    2015-02-01

    Focal adhesion kinase (FAK) is a key regulator of growth factor receptor- and integrin-mediated signals, governing fundamental processes in normal and cancer cells through its kinase activity and scaffolding function. Increased FAK expression and activity occurs in primary and metastatic cancers of many tissue origins, and is often associated with poor clinical outcome, highlighting FAK as a potential determinant of tumor development and metastasis. Indeed, data from cell culture and animal models of cancer provide strong lines of evidence that FAK promotes malignancy by regulating tumorigenic and metastatic potential through highly-coordinated signaling networks that orchestrate a diverse range of cellular processes, such as cell survival, proliferation, migration, invasion, epithelial-mesenchymal transition, angiogenesis and regulation of cancer stem cell activities. Such an integral role in governing malignant characteristics indicates that FAK represents a potential target for cancer therapeutics. While pharmacologic targeting of FAK scaffold function is still at an early stage of development, a number of small molecule-based FAK tyrosine kinase inhibitors are currently undergoing pre-clinical and clinical testing. In particular, PF-00562271, VS-4718 and VS-6063 show promising clinical activities in patients with selected solid cancers. Clinical testing of rationally designed FAK-targeting agents with implementation of predictive response biomarkers, such as merlin deficiency for VS-4718 in mesothelioma, may help improve clinical outcome for cancer patients. In this article, we have reviewed the current knowledge regarding FAK signaling in human cancer, and recent developments in the generation and clinical application of FAK-targeting pharmacologic agents.

  6. Tryptophan Hydroxylase-2: An Emerging Therapeutic Target for Stress Disorders

    PubMed Central

    Chen, Guo-Lin; Miller, Gregory M.

    2013-01-01

    Serotonin (5-HT) has been long recognized to modulate the stress response, and dysfunction of 5-HT has been implicated in numerous stress disorders. Accordingly, the 5-HT system has been targeted for the treatment of stress disorders. Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in 5-HT synthesis, and the recent identification of a second, neuron-specific TPH isoform (TPH2) opened up a new area of research. With a decade of extensive investigation, it is now recognized that: 1) TPH2 exhibits a highly flexible gene expression that is modulated by an increasing number of internal and external environmental factors including the biological clock, stressors, endogenous hormones, and antidepressant therapies; and 2) genetically determined TPH2 activity is linked to a growing body of stress-related neuronal correlates and behavioral traits. These findings reveal an active role of TPH2 in the stress response and provide new insights into the long recognized but not yet fully understood 5-HT-stress interaction. As a major modulator of 5-HT neurotransmission and the stress response, TPH2 is of both pathophysiological and pharmacological significance, and is emerging as a new therapeutic target for the treatment of stress disorders. Given that numerous antidepressant therapies influence TPH2 gene expression, TPH2 is already inadvertently targeted for the treatment of stress disorders. With increased understanding of the regulation of TPH2 activity we can now purposely utilize TPH2 as a target to develop new or optimize current therapies, which are expected to greatly improve the prevention and treatment of a wide variety of stress disorders. PMID:23435356

  7. Therapeutic targeting of casein kinase 1δ in breast cancer.

    PubMed

    Rosenberg, Laura H; Lafitte, Marie; Quereda, Victor; Grant, Wayne; Chen, Weimin; Bibian, Mathieu; Noguchi, Yoshihiko; Fallahi, Mohammad; Yang, Chunying; Chang, Jenny C; Roush, William R; Cleveland, John L; Duckett, Derek R

    2015-12-16

    Identification of specific drivers of human cancer is required to instruct the development of targeted therapeutics. We demonstrate that CSNK1D is amplified and/or overexpressed in human breast tumors and that casein kinase 1δ (CK1δ) is a vulnerability of human breast cancer subtypes overexpressing this kinase. Specifically, selective knockdown of CK1δ, or treatment with a highly selective and potent CK1δ inhibitor, triggers apoptosis of CK1δ-expressing breast tumor cells ex vivo, tumor regression in orthotopic models of triple-negative breast cancer, including patient-derived xenografts, and tumor growth inhibition in human epidermal growth factor receptor 2-positive (HER2(+)) breast cancer models. We also show that Wnt/β-catenin signaling is a hallmark of human tumors overexpressing CK1δ, that disabling CK1δ blocks nuclear accumulation of β-catenin and T cell factor transcriptional activity, and that constitutively active β-catenin overrides the effects of inhibition or silencing of CK1δ. Thus, CK1δ inhibition represents a promising strategy for targeted treatment in human breast cancer with Wnt/β-catenin involvement.

  8. CTGF is a therapeutic target for metastatic melanoma.

    PubMed

    Finger, E C; Cheng, C-F; Williams, T R; Rankin, E B; Bedogni, B; Tachiki, L; Spong, S; Giaccia, A J; Powell, M B

    2014-02-27

    Metastatic melanoma remains a devastating disease with a 5-year survival rate of less than five percent. Despite recent advances in targeted therapies for melanoma, only a small percentage of melanoma patients experience durable remissions. Therefore, it is critical to identify new therapies for the treatment of advanced melanoma. Here, we define connective tissue growth factor (CTGF) as a therapeutic target for metastatic melanoma. Clinically, CTGF expression correlates with tumor progression and is strongly induced by hypoxia through HIF-1 and HIF-2-dependent mechanisms. Genetic inhibition of CTGF in human melanoma cells is sufficient to significantly reduce orthotopic tumor growth, as well as metastatic tumor growth in the lung of severe combined immunodeficient (SCID) mice. Mechanistically, inhibition of CTGF decreased invasion and migration associated with reduced matrix metalloproteinase-9 expression. Most importantly, the anti-CTGF antibody, FG-3019, had a profound inhibitory effect on the progression of established metastatic melanoma. These results offer the first preclinical validation of anti-CTGF therapy for the treatment of advanced melanoma and underscore the importance of tumor hypoxia in melanoma progression.

  9. CRADA Final Report: ErbB2 Targeted Cancer Therapeutics

    SciTech Connect

    Lupu, Ruth

    2002-08-27

    The aim of the study was to design novel therapeutic strategies for the treatment of carcinomas which overexpress the erbB-2 oncogene product and/or the activator (HRG). erbB-2 is a tyrosine kinase growth factor receptor, that overexpression of which in invasive breast, prostate, ovarian and lung carcinomas correlates with poor prognosis and poor overall survival. In breast carcinomas, erbB-2 is overexpressed in 25%-30% of the invasive phenotype and in 70% of ductal carcinomas in situ. On the other hand, the erbB-2 activator, heregulin (HRG) is expressed in about 30% of invasive breast carcinomas and it is highly expressed in other carcinoIl1as including, ovarian, lung, and prostate. Interestingly, only 6% of invasive breast carcinomas co-express both HRG and erbB-2. It is known today that tumors that overexpress erbB-2 are a leading cause of death, making erbB-2 and its activator HRG critical targets for therapy. Targeting both the receptors and the activator would be beneficial for a significant number of cancer patients. At the final stages of the project we had obtained significant improvements over the peptide quality but not significant improvements were made towards the generation of humanized monoclonal antibodies.

  10. Osteocytic signalling pathways as therapeutic targets for bone fragility.

    PubMed

    Plotkin, Lilian I; Bellido, Teresita

    2016-10-01

    Osteocytes are differentiated osteoblasts that become surrounded by matrix during the process of bone formation. Acquisition of the osteocyte phenotype is achieved by profound changes in gene expression that facilitate adaptation to the changing cellular environment and constitute the molecular signature of osteocytes. During osteocytogenesis, the expression of genes that are characteristic of the osteoblast are altered and the expression of genes and/or proteins that impart dendritic cellular morphology, regulate matrix mineralization and control the function of cells at the bone surface are ordely modulated. The discovery of mutations in human osteocytic genes has contributed, in a large part, to our understanding of the role of osteocytes in bone homeostasis. Osteocytes are targets of the mechanical force imposed on the skeleton and have a critical role in integrating mechanosensory pathways with the action of hormones, which thereby leads to the orchestrated response of bone to environmental cues. Current, therapeutic approaches harness this accumulating knowledge by targeting osteocytic signalling pathways and messengers to improve skeletal health.

  11. Extracellular Bacterial Proteases in Chronic Wounds: A Potential Therapeutic Target?

    PubMed Central

    Suleman, Louise

    2016-01-01

    Significance: Bacterial biofilms are considered to be responsible for over 80% of persistent infections, including chronic lung infections, osteomyelitis, periodontitis, endocarditis, and chronic wounds. Over 60% of chronic wounds are colonized with bacteria that reside within a biofilm. The exaggerated proteolytic environment of chronic wounds, more specifically elevated matrix metalloproteinases, is thought to be one of the possible reasons as to why chronic wounds fail to heal. However, the role of bacterial proteases within chronic wounds is not fully understood. Recent Advances: Recent research has shown that bacterial proteases can enable colonization and facilitate bacterial immune evasion. The inhibition of bacterial proteases such as Pseudomonas aeruginosa elastase B (LasB) has resulted in the disruption of the bacterial biofilm in vitro. P. aeruginosa is thought to be a key pathogen in chronic wound infection, and therefore, the disruption of these biofilms, potentially through the targeting of P. aeruginosa bacterial proteases, is an attractive therapeutic endeavor. Critical Issues: Disrupting biofilm formation through the inhibition of bacterial proteases may lead to the dissemination of bacteria from the biofilm, allowing planktonic cells to colonize new sites within the wound. Future Directions: Despite a plethora of evidence supporting the role of bacterial proteases as virulence factors in infection, there remains a distinct lack of research into the effect of bacterial proteases in chronic wounds. To assess the viability of targeting bacterial proteases, future research should aim to understand the role of these proteases in a variety of chronic wound subtypes. PMID:27785379

  12. Osteocytic signalling pathways as therapeutic targets for bone fragility.

    PubMed

    Plotkin, Lilian I; Bellido, Teresita

    2016-10-01

    Osteocytes are differentiated osteoblasts that become surrounded by matrix during the process of bone formation. Acquisition of the osteocyte phenotype is achieved by profound changes in gene expression that facilitate adaptation to the changing cellular environment and constitute the molecular signature of osteocytes. During osteocytogenesis, the expression of genes that are characteristic of the osteoblast are altered and the expression of genes and/or proteins that impart dendritic cellular morphology, regulate matrix mineralization and control the function of cells at the bone surface are ordely modulated. The discovery of mutations in human osteocytic genes has contributed, in a large part, to our understanding of the role of osteocytes in bone homeostasis. Osteocytes are targets of the mechanical force imposed on the skeleton and have a critical role in integrating mechanosensory pathways with the action of hormones, which thereby leads to the orchestrated response of bone to environmental cues. Current, therapeutic approaches harness this accumulating knowledge by targeting osteocytic signalling pathways and messengers to improve skeletal health. PMID:27230951

  13. Exploring Internal Ribosome Entry Sites as Therapeutic Targets

    PubMed Central

    Komar, Anton A.; Hatzoglou, Maria

    2015-01-01

    Initiation of eukaryotic mRNA translation may proceed via several different routes, each requiring a different subset of factors and relying on different and specific interactions between the mRNA and the ribosome. Two modes predominate: (i) so-called cap-dependent initiation, which requires all canonical initiation factors and is responsible for about 95–97% of all initiation events in eukaryotic cells; and (ii) cap-independent internal initiation, which requires a reduced subset of initiation factors and accounts for up to 5% of the remaining initiation events. Internal initiation relies on the presence of so-called internal ribosome entry site (IRES) elements in the 5′ UTRs of some viral and cellular mRNAs. These elements (often possessing complex secondary and tertiary structures) promote efficient interaction of the mRNA with the 40S ribosome and allow for internal ribosome entry. Internal initiation of translation of specific mRNAs may contribute to development of severe disease and pathological states, such as hepatitis C and cancer. Therefore, this cellular mechanism represents an attractive target for pharmacological modulation. The purpose of this review is to provide insight into current strategies used to target viral and cellular IRESs and discuss the physiological consequences (and potential therapeutic implications) of abrogation/modulation of IRES-mediated translation. PMID:26539410

  14. Angiogenesis in the kidney: a new therapeutic target?

    PubMed Central

    Lerman, Lilach O.; Chade, Alejandro R.

    2009-01-01

    Purpose of review The prevalence of chronic kidney disease has been growing consistently for the past decades. Renal failure is often associated with defective angiogenesis, and recognition of the contribution of the renal microcirculation to the progression of chronic renal disease may aid in the development of therapeutic interventions. Recent findings Intra-renal proliferation, remodeling, and/or rarefaction of microvessels in response to injury can all aggravate nephron damage, and experimental evidence suggests that they may constitute the early steps in the complex pathways involved in progressive renal injury. Recent studies showed the benefits of targeted interventions deemed to promote neovascularization (e.g. progenitor cells, growth factors) on the ischemic myocardium and brain and in a few models of renal disease. Summary Evidence of aberrant renal microvascular architecture in various forms of renal disease provides the impetus to attempt modulating the renal microcirculation to interfere with the disease process. Targeted interventions to preserve the renal microcirculation may not only decrease the evolving injury in renal vascular disease but also potentially constitute a coadjuvant intervention to become part of a comprehensive management plan to improve the success of parallel strategies to preserve renal function, such as revascularization. PMID:19430335

  15. Activin signaling as an emerging target for therapeutic interventions

    PubMed Central

    Tsuchida, Kunihiro; Nakatani, Masashi; Hitachi, Keisuke; Uezumi, Akiyoshi; Sunada, Yoshihide; Ageta, Hiroshi; Inokuchi, Kaoru

    2009-01-01

    After the initial discovery of activins as important regulators of reproduction, novel and diverse roles have been unraveled for them. Activins are expressed in various tissues and have a broad range of activities including the regulation of gonadal function, hormonal homeostasis, growth and differentiation of musculoskeletal tissues, regulation of growth and metastasis of cancer cells, proliferation and differentiation of embryonic stem cells, and even higher brain functions. Activins signal through a combination of type I and II transmembrane serine/threonine kinase receptors. Activin receptors are shared by multiple transforming growth factor-β (TGF-β) ligands such as myostatin, growth and differentiation factor-11 and nodal. Thus, although the activity of each ligand is distinct, they are also redundant, both physiologically and pathologically in vivo. Activin receptors activated by ligands phosphorylate the receptor-regulated Smads for TGF-β, Smad2 and 3. The Smad proteins then undergo multimerization with the co-mediator Smad4, and translocate into the nucleus to regulate the transcription of target genes in cooperation with nuclear cofactors. Signaling through receptors and Smads is controlled by multiple mechanisms including phosphorylation and other posttranslational modifications such as sumoylation, which affect potein localization, stability and transcriptional activity. Non-Smad signaling also plays an important role in activin signaling. Extracellularly, follistatin and related proteins bind to activins and related TGF-β ligands, and control the signaling and availability of ligands. The functions of activins through activin receptors are pleiotrophic, cell type-specific and contextual, and they are involved in the etiology and pathogenesis of a variety of diseases. Accordingly, activin signaling may be a target for therapeutic interventions. In this review, we summarize the current knowledge on activin signaling and discuss the potential roles of

  16. Therapeutic approaches targeting intestinal microflora in inflammatory bowel disease

    PubMed Central

    Andoh, Akira; Fujiyama, Yoshihide

    2006-01-01

    Inflammatory bowel diseases, ulcerative colitis, and Crohn’s disease, are chronic intestinal disorders of unknown etiology in which in genetically susceptible individuals, the mucosal immune system shows an aberrant response towards commensal bacteria. The gastrointestinal tract has developed ingenious mechanisms to coexist with its autologous microflora, but rapidly responds to invading pathogens and then returns to homeostasis with its commensal bacteria after the pathogenic infection is cleared. In case of disruption of this tightly-regulated homeostasis, chronic intestinal inflammation may be induced. Previous studies showed that some commensal bacteria are detrimental while others have either no influence or have a protective action. In addition, each host has a genetically determined response to detrimental and protective bacterial species. These suggest that therapeutic manipulation of imbalance of microflora can influence health and disease. This review focuses on new insights into the role of commensal bacteria in gut health and disease, and presents recent findings in innate and adaptive immune interactions. Therapeutic approaches to modulate balance of intestinal microflora and their potential mechanisms of action are also discussed. PMID:16874854

  17. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics

    NASA Astrophysics Data System (ADS)

    Luk, Brian Tsengchi

    interactions between membranes and synthetic nanoparticles, and how the membrane coating technique faithfully translates the complexities of natural cellular membranes to the nanoscale. The following three sections explore potential therapeutic applications of membrane-coated nanoparticles for targeted drug delivery, biodetoxification, and immunomodulation. Ultimately, cell membrane-cloaked nanoparticles have the potential to significantly change the landscape of nanomedicine. The novel applications presented in this thesis are just a few of many examples currently being researched, with countless more avenues waiting to be explored.

  18. The Endocannabinoid System as a Therapeutic Target in Glaucoma

    PubMed Central

    Cairns, Elizabeth A.; Baldridge, William H.; Kelly, Melanie E. M.

    2016-01-01

    Glaucoma is an irreversible blinding eye disease which produces progressive retinal ganglion cell (RGC) loss. Intraocular pressure (IOP) is currently the only modifiable risk factor, and lowering IOP results in reduced risk of progression of the disorder. The endocannabinoid system (ECS) has attracted considerable attention as a potential target for the treatment of glaucoma, largely due to the observed IOP lowering effects seen after administration of exogenous cannabinoids. However, recent evidence has suggested that modulation of the ECS may also be neuroprotective. This paper will review the use of cannabinoids in glaucoma, presenting pertinent information regarding the pathophysiology of glaucoma and how alterations in cannabinoid signalling may contribute to glaucoma pathology. Additionally, the mechanisms and potential for the use of cannabinoids and other novel agents that target the endocannabinoid system in the treatment of glaucoma will be discussed. PMID:26881140

  19. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis.

    PubMed

    Craig, Vanessa J; Zhang, Li; Hagood, James S; Owen, Caroline A

    2015-11-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.

  20. MicroRNAs as a therapeutic target for cardiovascular diseases

    PubMed Central

    Mishra, Paras Kumar; Tyagi, Neetu; Kumar, Munish; Tyagi, Suresh C

    2009-01-01

    Abstract MicroRNAs (miRNAs) are tiny, endogenous, conserved, non-coding RNAs that negatively modulate gene expression by either promoting the degradation of mRNA or down-regulating the protein production by translational repression. They maintain optimal dose of cellular proteins and thus play a crucial role in the regulation of biological functions. Recent discovery of miRNAs in the heart and their differential expressions in pathological conditions provide glimpses of undiscovered regulatory mechanisms underlying cardiovascular diseases. Nearly 50 miRNAs are overexpressed in mouse heart. The implication of several miRNAs in cardiovascular diseases has been well documented such as miRNA-1 in arrhythmia, miRNA-29 in cardiac fibrosis, miRNA-126 in angiogenesis and miRNA-133 in cardiac hypertrophy. Aberrant expression of Dicer (an enzyme required for maturation of all miRNAs) during heart failure indicates its direct involvement in the regulation of cardiac diseases. MiRNAs and Dicer provide a particular layer of network of precise gene regulation in heart and vascular tissues in a spatiotemporal manner suggesting their implications as a powerful intervention tool for therapy. The combined strategy of manipulating miRNAs in stem cells for their target directed differentiation and optimizing the mode of delivery of miRNAs to the desired cells would determine the future potential of miRNAs to treat a disease. This review embodies the recent progress made in microRNomics of cardiovascular diseases and the future of miRNAs as a potential therapeutic target - the putative challenges and the approaches to deal with it. PMID:19320780

  1. Mitochondria as a Therapeutic Target for Aging and Neurodegenerative Diseases

    PubMed Central

    Reddy, P. Hemachandra; Reddy, Tejaswini P.

    2012-01-01

    Mitochondria are cytoplasmic organelles responsible for life and death. Extensive evidence from animal models, postmortem brain studies of and clinical studies of aging and neurodegenerative diseases suggests that mitochondrial function is defective in aging and neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Several lines of research suggest that mitochondrial abnormalities, including defects in oxidative phosphorylation, increased accumulation of mitochondrial DNA defects, impaired calcium influx, accumulation of mutant proteins in mitochondria, and mitochondrial membrane potential dissipation are important cellular changes in both early and late-onset neurodegenerative diseases. Further, emerging evidence suggests that structural changes in mitochondria, including increased mitochondrial fragmentation and decreased mitochondrial fusion, are critical factors associated with mitochondrial dysfunction and cell death in aging and neurodegenerative diseases. This paper discusses research that elucidates features of mitochondria that are associated with cellular dysfunction in aging and neurodegenerative diseases and discusses mitochondrial structural and functional changes, and abnormal mitochondrial dynamics in neurodegenerative diseases. It also outlines mitochondria-targeted therapeutics in neurodegenerative diseases. PMID:21470101

  2. Regression of Pathological Cardiac Hypertrophy: Signaling Pathways and Therapeutic Targets

    PubMed Central

    Hou, Jianglong; Kang, Y. James

    2012-01-01

    Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming. PMID:22750195

  3. DNA methylation as a target of epigenetic therapeutics in cancer.

    PubMed

    Li, Keqin K; Li, Fangcheng; Li, Qiushi S; Yang, Kun; Jin, Bilian

    2013-02-01

    Epigenetic alterations have been implicated in the development and progression of human cancer. It is noteworthy that epigenetic modifications, in contrast to genetic mutations, are intrinsically reversible. This triggers an impressive interest of researchers in treatment of cancer patients via targeting epigenetic mechanisms, leading to subsequent intensive investigations of epigenetic drugs as a novel therapeutic intervention. DNA methylation, the major form of epigenetic modifications, is catalyzed by the maintenance DNA methyltransferase (DNMT) 1 and/or the de novo methyltransferases DNMT3A and DNMT3B. Aberrant expression of DNMTs and disruption of DNA methylation are closely associated with multiple forms of cancer, although the exact mechanisms underlying this link remain elusive. An array of tumor suppressor genes (TSGs) frequently sustain promoter hypermethylation, which results in epigenetic silencing of these genes and makes cancer cells acquire growth advantages. DNA demethylating agents, re-activating TSGs via inhibiting hypermethylation of their promoter regions, are currently being tested in clinical trials, and several of them are already applied in clinics. DNA demethylating agents, used either alone or in combination with other agents, such as chemotherapeutic drugs and the histone deacetylase inhibitors, have shown to be effective in treatment of cancer, although only in a small set of patients. In this review, we examine and discuss the most recent advances in epigenetic therapy of cancer, with a focus on DNA demethylating agents.

  4. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets

    PubMed Central

    Kim, Jong Youl; Kawabori, Masahito; Yenari, Midori A.

    2014-01-01

    Stroke is a frequent cause of long-term disability and death worldwide. Ischemic stroke is more commonly encountered compared to hemorrhagic stroke, and leads to tissue death by ischemia due to occlusion of a cerebral artery. Inflammation is known to result as a result of ischemic injury, long thought to be involved in initiating the recovery and repair process. However, work over the past few decades indicates that aspects of this inflammatory response may in fact be detrimental to stroke outcome. Acutely, inflammation appears to have a detrimental effect, and anti-inflammatory treatments have been been studied as a potential therapeutic target. Chronically, reports suggest that post-ischemic inflammation is also essential for the tissue repairing and remodeling. The majority of the work in this area has centered around innate immune mechanisms, which will be the focus of this review. This review describes the different key players in neuroinflammation and their possible detrimental and protective effects in stroke. A better understanding of the roles of the different immune cells and their temporal profile of damage versus repair will help to clarify more effective modulation of inflammation post stroke. Introduction Stroke refers to conditions caused by occlusion and/or rupture of blood vessels in the brain, and is a leading cause of death and disability in the industrialized world. PMID:24372209

  5. BRD4 is a novel therapeutic target for liver fibrosis

    PubMed Central

    Ding, Ning; Hah, Nasun; Yu, Ruth T.; Sherman, Mara H.; Benner, Chris; Leblanc, Mathias; He, Mingxiao; Liddle, Christopher; Downes, Michael; Evans, Ronald M.

    2015-01-01

    Liver fibrosis is characterized by the persistent deposition of extracellular matrix components by hepatic stellate cell (HSC)-derived myofibroblasts. It is the histological manifestation of progressive, but reversible wound-healing processes. An unabated fibrotic response results in chronic liver disease and cirrhosis, a pathological precursor of hepatocellular carcinoma. We report here that JQ1, a small molecule inhibitor of bromodomain-containing protein 4 (BRD4), a member of bromodomain and extraterminal (BET) proteins, abrogate cytokine-induced activation of HSCs. Cistromic analyses reveal that BRD4 is highly enriched at enhancers associated with genes involved in multiple profibrotic pathways, where BRD4 is colocalized with profibrotic transcription factors. Furthermore, we show that JQ1 is not only protective, but can reverse the fibrotic response in carbon tetrachloride-induced fibrosis in mouse models. Our results implicate that BRD4 can act as a global genomic regulator to direct the fibrotic response through its coordinated regulation of myofibroblast transcription. This suggests BRD4 as a potential therapeutic target for patients with fibrotic complications. PMID:26644586

  6. 14-3-3 proteins as potential therapeutic targets

    PubMed Central

    Zhao, Jing; Meyerkord, Cheryl L.; Du, Yuhong; Khuri, Fadlo R.; Fu, Haian

    2011-01-01

    The 14-3-3 family of phosphoserine/phosphothreonine-binding proteins dynamically regulates the activity of client proteins in various signaling pathways that control diverse physiological and pathological processes. In response to environmental cues, 14-3-3 proteins orchestrate the highly regulated flow of signals through complex networks of molecular interactions to achieve well-controlled physiological outputs, such as cell proliferation or differentiation. Accumulating evidence now supports the concept that either an abnormal state of 14-3-3 protein expression, or dysregulation of 14-3-3/client protein interactions, contributes to the development of a large number of human diseases. In particular, clinical investigations in the field of oncology have demonstrated a correlation between upregulated 14-3-3 levels and poor survival of cancer patients. These studies highlight the rapid emergence of 14-3-3 proteins as a novel class of molecular target for potential therapeutic intervention. The current status of 14-3-3 modulator discovery is discussed. PMID:21983031

  7. GEMINs: potential therapeutic targets for spinal muscular atrophy?

    PubMed Central

    Borg, Rebecca; Cauchi, Ruben J.

    2014-01-01

    The motor neuron degenerative disease spinal muscular atrophy (SMA) remains one of the most frequently inherited causes of infant mortality. Afflicted patients loose the survival motor neuron 1 (SMN1) gene but retain one or more copies of SMN2, a homolog that is incorrectly spliced. Primary treatment strategies for SMA aim at boosting SMN protein levels, which are insufficient in patients. SMN is known to partner with a set of diverse proteins collectively known as GEMINs to form a macromolecular complex. The SMN-GEMINs complex is indispensible for chaperoning the assembly of small nuclear ribonucleoproteins (snRNPs), which are key for pre-mRNA splicing. Pharmaceutics that alleviate the neuromuscular phenotype by restoring the fundamental function of SMN without augmenting its levels are also crucial in the development of an effective treatment. Their use as an adjunct therapy is predicted to enhance benefit to patients. Inspired by the surprising discovery revealing a premier role for GEMINs in snRNP biogenesis together with in vivo studies documenting their requirement for the correct function of the motor system, this review speculates on whether GEMINs constitute valid targets for SMA therapeutic development. PMID:25360080

  8. BRD4 is a novel therapeutic target for liver fibrosis.

    PubMed

    Ding, Ning; Hah, Nasun; Yu, Ruth T; Sherman, Mara H; Benner, Chris; Leblanc, Mathias; He, Mingxiao; Liddle, Christopher; Downes, Michael; Evans, Ronald M

    2015-12-22

    Liver fibrosis is characterized by the persistent deposition of extracellular matrix components by hepatic stellate cell (HSC)-derived myofibroblasts. It is the histological manifestation of progressive, but reversible wound-healing processes. An unabated fibrotic response results in chronic liver disease and cirrhosis, a pathological precursor of hepatocellular carcinoma. We report here that JQ1, a small molecule inhibitor of bromodomain-containing protein 4 (BRD4), a member of bromodomain and extraterminal (BET) proteins, abrogate cytokine-induced activation of HSCs. Cistromic analyses reveal that BRD4 is highly enriched at enhancers associated with genes involved in multiple profibrotic pathways, where BRD4 is colocalized with profibrotic transcription factors. Furthermore, we show that JQ1 is not only protective, but can reverse the fibrotic response in carbon tetrachloride-induced fibrosis in mouse models. Our results implicate that BRD4 can act as a global genomic regulator to direct the fibrotic response through its coordinated regulation of myofibroblast transcription. This suggests BRD4 as a potential therapeutic target for patients with fibrotic complications. PMID:26644586

  9. MPS1 kinase as a potential therapeutic target in medulloblastoma

    PubMed Central

    Alimova, Irina; Ng, June; Harris, Peter; Birks, Diane; Donson, Andrew; Taylor, Michael D.; Foreman, Nicholas K.; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-01-01

    Medulloblastoma is the most common type of malignant brain tumor that affects children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients perform poorly with significant morbidity. Gene expression profiling has revealed that monopolar spindle 1 (MPS1) (TTK1) is highly expressed in medulloblastoma patient samples compared to that noted in normal cerebellum. MPS1 is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. The SAC can be activated in aneuploid cancer cells and MPS1 is overexpressed in many types of cancers. A previous study has demonstrated the effectiveness of inhibiting MPS1 with small-molecule inhibitors, but the role of MPS1 in medulloblastoma is unknown. In the present study, we demonstrated that MPS1 inhibition by shRNA or with a small-molecule drug, NMS-P715, resulted in decreased cell growth, inhibition of clonogenic potential and induction of apoptosis in cells belonging to both the Shh and group 3 medulloblastoma genomic signature. These findings highlight MPS1 as a rational therapeutic target for medulloblastoma. PMID:27633003

  10. Cancer-Associated Myeloproliferation: Old Association, New Therapeutic Target

    PubMed Central

    Wilcox, Ryan A.

    2010-01-01

    The association between malignancy and development of a paraneoplastic leukocytosis, the so-called leukemoid reaction, has long been appreciated. Although a leukemoid reaction has conventionally been defined as a peripheral blood leukocytosis composed of both mature and immature granulocytes that exceeds 50,000/μL, a less profound leukocytosis may be appreciated in many patients harboring a malignant disease. More recent insights have shed new light on this long-recognized association, because research performed in both murine models and cancer patients has uncovered multiple mechanisms by which tumors both drive myelopoiesis, sometimes leading to a clinically apparent leukocytosis, and inhibit the differentiation of myeloid cells, resulting in a qualitative change in myelopoiesis. This qualitative change leads to the accumulation of immature myeloid cells, which due to their immune suppressive effects have been collectively called myeloid-derived suppressor cells. More recently, myeloid cells have been shown to promote tumor angiogenesis. Cancer-associated myeloproliferation is not merely a paraneoplastic phenomenon of questionable importance but leads to the suppression of host immunity and promotion of tumor angiogenesis, both of which play an integral part in tumorigenesis and metastasis. Therefore, cancer-associated myeloproliferation represents a novel therapeutic target in cancer that, decades after its recognition, is only now being translated into clinical practice. PMID:20592171

  11. Heme oxygenase-1 as a potential therapeutic target for hepatoprotection.

    PubMed

    Farombi, Ebenezer Olatunde; Surh, Young Joon

    2006-09-30

    Heme oxygenase (HO), the rate limiting enzyme in the breakdown of heme into carbon monoxide (CO), iron and bilirubin, has recently received overwhelming research attention. To date three mammalian HO isozymes have been identified, and the only inducible form is HO-1 while HO-2 and HO-3 are constitutively expressed. Advances in unveiling signal transduction network indicate that a battery of redox-sensitive transcription factors, such as activator protein-1 (AP-1), nuclear factor-kappa B (NF-kappaB) and nuclear factor E2-related factor-2 (Nrf2), and their upstream kinases including mitogen-activated protein kinases play an important regulatory role in HO-1 gene induction. The products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression contributes to protection against liver damage induced by several chemical compounds such as acetaminophen, carbon tetrachloride and heavy metals, suggesting HO-1 induction as an important cellular endeavor for hepatoprotection. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect against chemically-induced liver injury as well as hepatocarcinogenesis. PMID:17002867

  12. Diacylglycerol kinase as a possible therapeutic target for neuronal diseases.

    PubMed

    Shirai, Yasuhito; Saito, Naoaki

    2014-04-07

    Diacylglycerol kinase (DGK) is a lipid kinase converting diacylglycerol to phosphatidic acid, and regulates many enzymes including protein kinase C, phosphatidylinositol 4-phosphate 5-kinase, and mTOR. To date, ten mammalian DGK subtypes have been cloned and divided into five groups, and they show subtype-specific tissue distribution. Therefore, each DGK subtype is thought to be involved in respective cellular responses by regulating balance of the two lipid messengers, diacylglycerol and phosphatidic acid. Indeed, the recent researches using DGK knockout mice have clearly demonstrated the importance of DGK in the immune system and its pathophysiological roles in heart and insulin resistance in diabetes. Especially, most subtypes show high expression in brain with subtype specific regional distribution, suggesting that each subtype has important and unique functions in brain. Recently, neuronal functions of some DGK subtypes have accumulated. Here, we introduce DGKs with their structural motifs, summarize the enzymatic properties and neuronal functions, and discuss the possibility of DGKs as a therapeutic target of the neuronal diseases.

  13. Dengue virus RNA polymerase NS5: a potential therapeutic target?

    PubMed

    Rawlinson, Stephen M; Pryor, Melinda J; Wright, Peter J; Jans, David A

    2006-12-01

    Dengue fever (DF)/dengue haemorrhagic fever (DHF) is the most common arthropod-borne viral infection, where it is now estimated that 2.5-3 billion people world-wide are at risk of infection. Currently there is no available treatment, in the form of vaccine or drug, making eradication of the mosquito vector the only viable control measure, which has proved costly and of limited success. There are a number of different vaccines undergoing testing, but whilst a dengue vaccine is clearly desirable, there are several issues which make live-attenuated vaccines problematic. These include the phenomenon of antibody-dependent enhancement (ADE) and the possibility of recombination of attenuated vaccine strains with wild-type flavivirus members reverting vaccines to a virulent form. Until we gain a better understanding of these issues and their associated risks, the safety of any live dengue vaccine cannot be assured. It therefore may be safer and more feasible for therapeutic-based approaches to be developed as an alternative to live vaccines. As our understanding of dengue molecular biology expands, new potential targets for drugs are emerging. One of the most promising is the dengue non-structural protein 5 (NS5), the largest and most highly conserved of the dengue proteins. This review examines the unique properties of NS5, including its functions, interactions, subcellular localisation and regulation, and looks at ways in which some of these may be exploited in our quest for effective drugs.

  14. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis.

    PubMed

    Xiao, Yun; Tang, Juan; Guo, Hui; Zhao, Yixia; Tang, Rong; Ouyang, Song; Zeng, Qiuming; Rappleye, Chad A; Rajaram, Murugesan V S; Schlesinger, Larry S; Tao, Lijian; Brown, Gordon D; Langdon, Wallace Y; Li, Belinda T; Zhang, Jian

    2016-08-01

    Disseminated candidiasis has become one of the leading causes of hospital-acquired blood stream infections with high mobility and mortality. However, the molecular basis of host defense against disseminated candidiasis remains elusive, and treatment options are limited. Here we report that the E3 ubiquitin ligase CBLB directs polyubiquitination of dectin-1 and dectin-2, two key pattern-recognition receptors for sensing Candida albicans, and their downstream kinase SYK, thus inhibiting dectin-1- and dectin-2-mediated innate immune responses. CBLB deficiency or inactivation protects mice from systemic infection with a lethal dose of C. albicans, and deficiency of dectin-1, dectin-2, or both in Cblb(-/-) mice abrogates this protection. Notably, silencing the Cblb gene in vivo protects mice from lethal systemic C. albicans infection. Our data reveal that CBLB is crucial for homeostatic control of innate immune responses mediated by dectin-1 and dectin-2. Our data also indicate that CBLB represents a potential therapeutic target for protection from disseminated candidiasis. PMID:27428899

  15. [Cyclooxygenase-2: a new therapeutic target in atherosclerosis?].

    PubMed

    Páramo, José A; Beloqui, Oscar; Orbe, Josune

    2006-05-27

    It is now widely accepted that atherosclerosis is a complex chronic inflammatory disorder of the arterial tree associated with several risk factors. From the initial phases to eventual rupture of vulnerable atherosclerotic plaques, a low-grade inflammation, also termed microinflammation, appears to play a key pathogenetic role. Systemic inflammatory markers (C reactive protein, cytokines adhesion molecules) also play a role in this process. Experimental and clinical evidence suggests that cyclooxygenase-2 (COX-2), an enzyme which catalyzes the generation of prostaglandins from arachidonic acid, also contributes to lesion formation. Recent reports by our group have demonstrated increased monocyte COX-2 activity and the production of prostaglandin E2 in relation to cardiovascular risk factors and subclinical atherosclerosis in asymptomatic subjects. Our findings support the notion that the COX-2/prostaglandin E2 axis may have a role, raising the question as to whether its selective inhibition might be an attractive therapeutic target in atherosclerosis. COX-2 inhibitors, collectively called "coxibs" (celecoxib, rofecoxib, valdecoxib, lumiracoxib, etc), held a promise as anti-inflammatory drugs without the some of the side effects of aspirin or non steroidal antiinflammatory agents. However, clinical studies raise several clinically relevant questions as to their beneficial role in atherosclerosis prevention, because of increased thrombogenicity and cardiovascular risk, and therefore coxibs should be restricted in atherosclerosis-prone patients.

  16. Emerging innovative therapeutic approaches targeting PCSK9 to lower lipids.

    PubMed

    Shantha, G P S; Robinson, J G

    2016-01-01

    Statins are established therapies for cardiovascular disease prevention and ezetimibe has recently been shown to modestly reduce cardiovascular events when added to background statin therapy. Yet here remains a clear unmet need for additional therapies aimed at lowering low density lipoprotein cholesterol (LDL-C) to further reduce cardiovascular risk. Multiple strategies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition have emerged as effective modalities for LDL-C lowering. PCSK9 monoclonal antibodies are the farthest along in clinical development and alirocumab and evolocumab were approved for clinical use by regulatory agencies in 2015. In addition to robust LDL-C lowering (nearly 50-65% from baseline), they improve other lipid parameters as well. Adverse events associated with these medications are minimal. Importantly, they improve clinical cardiovascular disease outcomes, although long-term study results are awaited. Cost may be an important limiting factor in their use and we propose two possible solutions which can potentially curtail cost.

  17. Targeting inhibitors of apoptosis proteins (IAPs) for new breast cancer therapeutics.

    PubMed

    Wang, Shaomeng; Bai, Longchuan; Lu, Jianfeng; Liu, Liu; Yang, Chao-Yie; Sun, Haiying

    2012-12-01

    Apoptosis resistance is a hallmark of human cancer. Research in the last two decades has identified key regulators of apoptosis, including inhibitor of apoptosis proteins (IAPs). These critical apoptosis regulators have been targeted for the development of new cancer therapeutics. In this article, we will discuss three members of IAP proteins, namely XIAP, cIAP1 and cIAP2, as cancer therapeutic targets and the progress made in developing new cancer therapeutic agents to target these IAP proteins.

  18. Target Acquired: Progress and Promise of Targeted Therapeutics in the Treatment of Prostate Cancer.

    PubMed

    Stuchbery, Ryan; Kurganovs, Natalie J; McCoy, Patrick J; Nelson, Colleen C; Hayes, Vanessa M; Corcoran, Niall M; Hovens, Christopher M

    2015-01-01

    Cancer is fundamentally a genomic disease caused by mutations or rearrangements in the DNA or epigenetic machinery of a patient. An emerging field in cancer treatment targets key aberrations arising from the mutational landscape of an individual patient's disease rather than employing a cancer-wide cytotoxic therapy approach. In prostate cancer in particular, where there is an observed variation in response to standard treatments between patients with disease of a similar pathological stage and grade, mutationdirected treatment may grow to be a viable tool for clinicians to tailor more effective treatments. This review will describe a number of mutations across multiple forms of cancer that have been successfully antagonised by targeted therapeutics including their identification, the development of targeted compounds to combat them and the development of resistance to these therapies. This review will continue to examine these same mutations in the treatment and management of prostate cancer; the prevalence of targetable mutations in prostate cancer, recent clinical trials of targeted-agents and the potential or limitations for their use.

  19. Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration.

    PubMed

    Turner, Anthony J; Fisk, Lilia; Nalivaeva, Natalia N

    2004-12-01

    The levels of amyloid beta-peptides (Abeta) in the brain represent a dynamic equilibrium state as a result of their biosynthesis from the amyloid precursor protein (APP) by beta- and gamma-secretases, their degradation by a team of amyloid-degrading enzymes, their subsequent oligomerization, and deposition into senile plaques. While most therapeutic attention has focused on developing inhibitors of secretases to prevent Abeta formation, enhancing the rate of Abeta degradation represents an alternative and viable strategy. Current evidence both in vivo and in vitro suggests that there are three major players in amyloid turnover: neprilysin, endothelin converting enzyme(s), and insulin-degrading enzyme, all of which are zinc metallopeptidases. Other proteases have also been implicated in amyloid metabolism, including angiotensin-converting enzyme, and plasmin but for these the evidence is less compelling. Neprilysin and endothelin converting enzyme(s) are homologous membrane proteins of the M13 peptidase family, which normally play roles in the biosynthesis and/or metabolism of regulatory peptides. Insulin-degrading enzyme is structurally and mechanistically distinct. The regional, cellular, and subcellular localizations of these enzymes differ, providing an efficient and diverse mechanism for protecting the brain against the normal accumulation of toxic Abeta peptides. Reduction in expression levels of some of these proteases following insults (e.g., hypoxia and ischemia) or aging might predispose to the development of Alzheimer's disease. Conversely, enhancement of their levels by gene delivery or pharmacological means could be neuroprotective. Even a relatively small enhancement of Abeta metabolism could slow the inexorable progression of the disease. The relative merits of targeting these enzymes for the treatment of Alzheimer's disease will be reviewed and possible side-effects of enhancing their activity evaluated.

  20. Inflammatory Bowel Disease: Mechanisms, Redox Considerations, and Therapeutic Targets

    PubMed Central

    Biasi, Fiorella; Leonarduzzi, Gabriella; Oteiza, Patricia I.

    2013-01-01

    Abstract Oxidative stress is thought to play a key role in the development of intestinal damage in inflammatory bowel disease (IBD), because of its primary involvement in intestinal cells' aberrant immune and inflammatory responses to dietary antigens and to the commensal bacteria. During the active disease phase, activated leukocytes generate not only a wide spectrum of pro-inflammatory cytokines, but also excess oxidative reactions, which markedly alter the redox equilibrium within the gut mucosa, and maintain inflammation by inducing redox-sensitive signaling pathways and transcription factors. Moreover, several inflammatory molecules generate further oxidation products, leading to a self-sustaining and auto-amplifying vicious circle, which eventually impairs the gut barrier. The current treatment of IBD consists of long-term conventional anti-inflammatory therapy and often leads to drug refractoriness or intolerance, limiting patients' quality of life. Immune modulators or anti-tumor necrosis factor α antibodies have recently been used, but all carry the risk of significant side effects and a poor treatment response. Recent developments in molecular medicine point to the possibility of treating the oxidative stress associated with IBD, by designing a proper supplementation of specific lipids to induce local production of anti-inflammatory derivatives, as well as by developing biological therapies that target selective molecules (i.e., nuclear factor-κB, NADPH oxidase, prohibitins, or inflammasomes) involved in redox signaling. The clinical significance of oxidative stress in IBD is now becoming clear, and may soon lead to important new therapeutic options to lessen intestinal damage in this disease. Antioxid. Redox Signal. 19, 1711–1747. PMID:23305298

  1. "Siglec"ting the allergic response for therapeutic targeting.

    PubMed

    Bochner, Bruce S

    2016-06-01

    As a physician-scientist, I have pursued research related to translational immunology with the goal of improving our ability to diagnose and treat allergic, immunologic and other diseases involving eosinophils, basophils and mast cells. We have tried to delineate novel mechanisms of human disease, working whenever possible with primary human cells and tissues, attempting to identify targets that might be amenable to the development of new therapies. As a general strategy, we have compared eosinophils, basophils, mast cells and neutrophils to look for pathways in inflammation that were unique to distinct subsets of these cells. In doing so, the concepts of glycobiology did not enter my mind until we began noticing some intriguing functional differences involving selectins and their ligands among these cell types. One simple observation, that neutrophils were coated with a glycan that allowed them to interact with an endothelial adhesion molecule while eosinophils lacked this structure, pried open the glyco-door for me. Fruitful collaborations with card-carrying glycobiologists soon followed that have forever positively influenced our science, and have enhanced our hypotheses, experimental design, research opportunities and discoveries. Within a few years, we helped to discover Siglec-8, an I-type lectin expressed only on human eosinophils, basophils, mast cells. This receptor, together with its closest mouse counterpart Siglec-F, has been the primary focus of our work now for over a decade. If not for those in the fields of glycobiology and glycoimmunology, my lab would not have made much progress toward the goal of leveraging Siglec-8 for therapeutic purposes.

  2. GABAergic Signaling as Therapeutic Target for Autism Spectrum Disorders

    PubMed Central

    Cellot, Giada; Cherubini, Enrico

    2014-01-01

    γ-Aminobutyric acid (GABA), the main inhibitory neurotransmitter in the adult brain, early in postnatal life exerts a depolarizing and excitatory action. This depends on accumulation of chloride inside the cell via the cation–chloride importer NKCC1, being the expression of the chloride exporter KCC2 very low at birth. The developmentally regulated expression of KCC2 results in extrusion of chloride with age and a shift of GABA from the depolarizing to the hyperpolarizing direction. The depolarizing action of GABA leads to intracellular calcium rise through voltage-dependent calcium channels and/or N-methyl-d-aspartate receptors. GABA-mediated calcium signals regulate a variety of developmental processes from cell proliferation migration, differentiation, synapse maturation, and neuronal wiring. Therefore, it is not surprising that some forms of neuro-developmental disorders such as autism spectrum disorders (ASDs) are associated with alterations of GABAergic signaling and impairment of the excitatory/inhibitory balance in selective neuronal circuits. In this review, we will discuss how changes of GABAA-mediated neurotransmission affect several forms of ASDs including the Fragile X, the Angelman, and Rett syndromes. Then, we will describe various animal models of ASDs with GABAergic dysfunctions, highlighting their behavioral deficits and the possibility to rescue them by targeting selective components of the GABAergic synapse. In particular, we will discuss how in some cases, reverting the polarity of GABA responses from the depolarizing to the hyperpolarizing direction with the diuretic bumetanide, a selective blocker of NKCC1, may have beneficial effects on ASDs, thus opening new therapeutic perspectives for the treatment of these devastating disorders. PMID:25072038

  3. GABAergic signaling as therapeutic target for autism spectrum disorders.

    PubMed

    Cellot, Giada; Cherubini, Enrico

    2014-01-01

    γ-Aminobutyric acid (GABA), the main inhibitory neurotransmitter in the adult brain, early in postnatal life exerts a depolarizing and excitatory action. This depends on accumulation of chloride inside the cell via the cation-chloride importer NKCC1, being the expression of the chloride exporter KCC2 very low at birth. The developmentally regulated expression of KCC2 results in extrusion of chloride with age and a shift of GABA from the depolarizing to the hyperpolarizing direction. The depolarizing action of GABA leads to intracellular calcium rise through voltage-dependent calcium channels and/or N-methyl-d-aspartate receptors. GABA-mediated calcium signals regulate a variety of developmental processes from cell proliferation migration, differentiation, synapse maturation, and neuronal wiring. Therefore, it is not surprising that some forms of neuro-developmental disorders such as autism spectrum disorders (ASDs) are associated with alterations of GABAergic signaling and impairment of the excitatory/inhibitory balance in selective neuronal circuits. In this review, we will discuss how changes of GABAA-mediated neurotransmission affect several forms of ASDs including the Fragile X, the Angelman, and Rett syndromes. Then, we will describe various animal models of ASDs with GABAergic dysfunctions, highlighting their behavioral deficits and the possibility to rescue them by targeting selective components of the GABAergic synapse. In particular, we will discuss how in some cases, reverting the polarity of GABA responses from the depolarizing to the hyperpolarizing direction with the diuretic bumetanide, a selective blocker of NKCC1, may have beneficial effects on ASDs, thus opening new therapeutic perspectives for the treatment of these devastating disorders. PMID:25072038

  4. Endocannabinoid signaling in female reproductive events: a potential therapeutic target?

    PubMed

    Maccarrone, Mauro

    2015-01-01

    Nearly 30 years after the discovery in 1964 of the psychoactive ingredient of cannabis (Cannabis sativa), Δ(9)-tetrahydrocannabinol, its endogenous counterparts were discovered and collectively termed endocannabinoids (eCBs): N-arachidonoylethanolamine (anandamide) in 1992 and 2-arachidonoylglycerol in 1995. Since then, intense research has identified additional eCBs and an ensemble of proteins that bind, synthesize and degrade them, the so-called eCB system. Altogether, these new compounds have been recognized as key mediators of several aspects of human pathophysiology, and in particular of female fertility. Here, the main features of the eCB system are presented, in order to put in a better perspective the relevance of eCB signaling in virtually all steps of human reproduction and to highlight emerging hopes that elements of this system might indeed become novel targets to combat fertility problems. PMID:26126134

  5. CXCR4 in breast cancer: oncogenic role and therapeutic targeting

    PubMed Central

    Xu, Chao; Zhao, Hong; Chen, Haitao; Yao, Qinghua

    2015-01-01

    Chemokines are 8–12 kDa peptides that function as chemoattractant cytokines and are involved in cell activation, differentiation, and trafficking. Chemokines bind to specific G-protein-coupled seven-span transmembrane receptors. Chemokines play a fundamental role in the regulation of a variety of cellular, physiological, and developmental processes. Their aberrant expression can lead to a variety of human diseases including cancer. C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1 also called CXCL12). CXCR4 belongs to the superfamily of the seven transmembrane domain heterotrimeric G protein-coupled receptors and is functionally expressed on the cell surface of various types of cancer cells. CXCR4 also plays a role in the cell proliferation and migration of these cells. Recently, CXCR4 has been reported to play an important role in cell survival, proliferation, migration, as well as metastasis of several cancers including breast cancer. This review is mainly focused on the current knowledge of the oncogenic role and potential drugs that target CXCR4 in breast cancer. Additionally, CXCR4 proangiogenic molecular mechanisms will be reviewed. Strict biunivocal binding affinity and activation of CXCR4/CXCL12 complex make CXCR4 a unique molecular target for prevention and treatment of breast cancer. PMID:26356032

  6. Engineering novel targeted nanoparticle formulations to increase the therapeutic efficacy of conventional chemotherapeutics against multiple myeloma

    NASA Astrophysics Data System (ADS)

    Ashley, Jonathan D.

    Multiple myeloma (MM) is a hematological malignancy which results from the uncontrolled clonal expansion of plasma cells within the body. Despite recent medical advances, this disease remains largely incurable, with a median survival of ˜7 years, owing to the development of drug resistance. This dissertation will explore new advances in nanotechnology that will combine the cytotoxic effects of small molecule chemotherapeutics with the tumor targeting capabilities of nanoparticles to create novel nanoparticle formulations that exhibit enhanced therapeutic indices in the treatment of MM. First, doxorubicin was surfaced conjugated onto micellar nanoparticles via an acid labile hydrazone bond to increase the drug accumulation at the tumor. The cell surface receptor Very Late Antigen-4 (VLA-4; alpha4beta1) is expressed on cancers of hematopoietic origin and plays a vital role in the cell adhesion mediated drug resistance (CAM-DR) in MM. Therefore, VLA-4 antagonist peptides were conjugated onto the nanoparticles via a multifaceted procedure to actively target MM cells and simultaneously inhibit CAM-DR. The micellar doxorubicin nanoparticles were able to overcome CAM-DR and demonstrated improved therapeutic index relative to free doxorubicin. In addition to doxorubicin, other classes of therapeutic agents, such as proteasome inhibitors, can be incorporated in nanoparticles for improved therapeutic outcomes. Utilizing boronic acid chemistry, bortezomib prodrugs were synthesized using a reversible boronic ester bond and then incorporated into liposomes. The different boronic ester bonds that could be potentially used in the synthesis of bortezomib prodrugs were screened based on stability using isobutylboronic acid. The liposomal bortezomib nanoparticles demonstrated significant proteasome inhibition and cytotoxicity in MM cells in vitro, and dramatically reduced the non-specific toxicities associated with free bortezomib while maintaining significant tumor growth

  7. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma.

    PubMed

    Grasso, Catherine S; Tang, Yujie; Truffaux, Nathalene; Berlow, Noah E; Liu, Lining; Debily, Marie-Anne; Quist, Michael J; Davis, Lara E; Huang, Elaine C; Woo, Pamelyn J; Ponnuswami, Anitha; Chen, Spenser; Johung, Tessa B; Sun, Wenchao; Kogiso, Mari; Du, Yuchen; Qi, Lin; Huang, Yulun; Hütt-Cabezas, Marianne; Warren, Katherine E; Le Dret, Ludivine; Meltzer, Paul S; Mao, Hua; Quezado, Martha; van Vuurden, Dannis G; Abraham, Jinu; Fouladi, Maryam; Svalina, Matthew N; Wang, Nicholas; Hawkins, Cynthia; Nazarian, Javad; Alonso, Marta M; Raabe, Eric H; Hulleman, Esther; Spellman, Paul T; Li, Xiao-Nan; Keller, Charles; Pal, Ranadip; Grill, Jacques; Monje, Michelle

    2015-06-01

    Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNA-seq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi-histone deacetylase inhibitor panobinostat demonstrated therapeutic efficacy both in vitro and in DIPG orthotopic xenograft models. Combination testing of panobinostat and the histone demethylase inhibitor GSK-J4 revealed that the two had synergistic effects. Together, these data suggest a promising therapeutic strategy for DIPG.

  8. Novel therapeutic approaches for pulmonary arterial hypertension: Unique molecular targets to site-specific drug delivery.

    PubMed

    Vaidya, Bhuvaneshwar; Gupta, Vivek

    2015-08-10

    Pulmonary arterial hypertension (PAH) is a cardiopulmonary disorder characterized by increased blood pressure in the small arterioles supplying blood to lungs for oxygenation. Advances in understanding of molecular and cellular biology techniques have led to the findings that PAH is indeed a cascade of diseases exploiting multi-faceted complex pathophysiology, with cellular proliferation and vascular remodeling being the key pathogenic events along with several cellular pathways involved. While current therapies for PAH do provide for amelioration of disease symptoms and acute survival benefits, their full therapeutic potential is hindered by patient incompliance and off-target side effects. To overcome the issues related with current therapy and to devise a more selective therapy, various novel pathways are being investigated for PAH treatment. In addition, inability to deliver anti-PAH drugs to the disease site i.e., distal pulmonary arterioles has been one of the major challenges in achieving improved patient outcomes and improved therapeutic efficacy. Several novel carriers have been explored to increase the selectivity of currently approved anti-PAH drugs and to act as suitable carriers for the delivery of investigational drugs. In the present review, we have discussed potential of various novel molecular pathways/targets including RhoA/Rho kinase, tyrosine kinase, endothelial progenitor cells, vasoactive intestinal peptide, and miRNA in PAH therapeutics. We have also discussed various techniques for site-specific drug delivery of anti-PAH therapeutics so as to improve the efficacy of approved and investigational drugs. This review will provide gainful insights into current advances in PAH therapeutics with an emphasis on site-specific drug payload delivery.

  9. Emerging innovative therapeutic approaches targeting PCSK9 to lower lipids.

    PubMed

    Shantha, G P S; Robinson, J G

    2016-01-01

    Statins are established therapies for cardiovascular disease prevention and ezetimibe has recently been shown to modestly reduce cardiovascular events when added to background statin therapy. Yet here remains a clear unmet need for additional therapies aimed at lowering low density lipoprotein cholesterol (LDL-C) to further reduce cardiovascular risk. Multiple strategies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition have emerged as effective modalities for LDL-C lowering. PCSK9 monoclonal antibodies are the farthest along in clinical development and alirocumab and evolocumab were approved for clinical use by regulatory agencies in 2015. In addition to robust LDL-C lowering (nearly 50-65% from baseline), they improve other lipid parameters as well. Adverse events associated with these medications are minimal. Importantly, they improve clinical cardiovascular disease outcomes, although long-term study results are awaited. Cost may be an important limiting factor in their use and we propose two possible solutions which can potentially curtail cost. PMID:26492546

  10. Sjögren's syndrome: from pathogenesis to novel therapeutic targets.

    PubMed

    Barone, Francesca; Colafrancesco, Serena

    2016-01-01

    Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune disease, characterised by a chronic infiltration of exocrine glands, mainly salivary glands, with the histological features of focal lymphocytic sialoadenitis. Disease spectrum is broad and the occurrence of several extra-glandular manifestations, and in rare cases lymphoma development, is well known. A specific approved treatment for pSS is still lacking and the detection of novel therapeutic biologic target is ongoing. The identification of biological fingerprints seems essential in order to stratify patients both in clinical trials and in real life. Discovery of new components of the inflammatory response will be the key in the future for the identification of novel additional therapeutic options. PMID:27586806

  11. Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting

    PubMed Central

    Chaudhary, Belal; Elkord, Eyad

    2016-01-01

    Recent years have seen significant efforts in understanding and modulating the immune response in cancer. In this context, immunosuppressive cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), have come under intense investigation for their proposed roles in suppressing tumor-specific immune responses and establishing an immunosuppressive tumor microenvironment, thus enabling tumor immune evasion. Additionally, recent evidence indicates that Tregs comprise diverse and heterogeneous subsets; phenotypically and functionally distinct subsets of tumor-infiltrating Tregs could contribute differently to cancer prognosis and clinical outcomes. Understanding Treg biology in the setting of cancer, and specifically the tumor microenvironment, is important for designing effective cancer therapies. In this review, we critically examine the role of Tregs in the tumor microenvironment and in cancer progression focusing on human studies. We also discuss the impact of current therapeutic modalities on Treg biology and the therapeutic opportunities for targeting Tregs to enhance anti-tumor immune responses and clinical benefits. PMID:27509527

  12. THE TRPV1 RECEPTOR: TARGET OF TOXICANTS AND THERAPEUTICS

    EPA Science Inventory

    Understanding the structural and functional complexities of the TRPV1 is essential to the therapeutic modulation of inflammation and pain. Because of its central role in initiating inflammatory processes and integrating painful stimuli, there is an understandable interest...

  13. Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis.

    PubMed

    Kameda, Yusuke; Takahata, Masahiko; Mikuni, Shintaro; Shimizu, Tomohiro; Hamano, Hiroki; Angata, Takashi; Hatakeyama, Shigetsugu; Kinjo, Masataka; Iwasaki, Norimasa

    2015-02-01

    organization of osteoclasts in both RANKL and TNF-α induced osteoclastogenesis. The present findings indicate that Siglec-15 is involved in estrogen deficiency-induced differentiation of osteoclasts and is thus a potential therapeutic target for postmenopausal osteoporosis.

  14. Functionally-defined Therapeutic Targets in Diffuse Intrinsic Pontine Glioma

    PubMed Central

    Grasso, Catherine S.; Tang, Yujie; Truffaux, Nathalene; Berlow, Noah E.; Liu, Lining; Debily, Marie-Anne; Quist, Michael J.; Davis, Lara E.; Huang, Elaine C.; Woo, Pamelyn J; Ponnuswami, Anitha; Chen, Spenser; Johung, Tessa B.; Sun, Wenchao; Kogiso, Mari; Du, Yuchen; Lin, Qi; Huang, Yulun; Hütt-Cabezas, Marianne; Warren, Katherine E.; Dret, Ludivine Le; Meltzer, Paul S.; Mao, Hua; Quezado, Martha; van Vuurden, Dannis G.; Abraham, Jinu; Fouladi, Maryam; Svalina, Matthew N.; Wang, Nicholas; Hawkins, Cynthia; Nazarian, Javad; Alonso, Marta M.; Raabe, Eric; Hulleman, Esther; Spellman, Paul T.; Li, Xiao-Nan; Keller, Charles; Pal, Ranadip; Grill, Jacques; Monje, Michelle

    2015-01-01

    Diffuse Intrinsic Pontine Glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNAseq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi-histone deacetylase inhibitor panobinostat demonstrated efficacy in vitro and in DIPG orthotopic xenograft models. Combination testing of panobinostat with histone demethylase inhibitor GSKJ4 revealed synergy. Together, these data suggest a promising therapeutic strategy for DIPG. PMID:25939062

  15. MicroRNAs in Leukemias: Emerging Diagnostic Tools and Therapeutic Targets

    PubMed Central

    Mian, Yousaf A.; Zeleznik-Le, Nancy J.

    2010-01-01

    MicroRNAs (miRNA) are small non-coding RNAs of ~22 nucleotides that regulate the translation and stability of mRNA to control different functions of the cell. Misexpression of miRNA has been linked to disruption of normal cellular functions, which results in various disorders including cancers such as leukemias. MicroRNA involvement in disease has been the subject of much attention and is increasing our current understanding of disease biology. Such linkages have been determined by high-throughput studies, which provide a framework for characterizing differential miRNA expression levels correlating to different cytogenetic abnormalities and their corresponding malignancies. In addition, functional studies of particular miRNAs have begun to define the effects of miRNA on predicted mRNA targets. It is clear that miRNAs can serve as molecular markers of leukemias and the hope is that they can also serve as new therapeutic targets. Studies are beginning to elucidate how to deliver therapeutic antagonists to attenuate overexpressed miRNAs and to replace underexpressed miRNAs. In this review, we: i) discuss the current understanding of miRNA function and expression in normal hematopoiesis, ii) provide examples of miRNAs that are misregulated in leukemias, and iii) evaluate the current status and potential future directions for the burgeoning field of antisense oligonucleotides and other therapeutic attempts to intervene in miRNA disregulation in leukemias. PMID:20370647

  16. TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets.

    PubMed

    Scotter, Emma L; Chen, Han-Jou; Shaw, Christopher E

    2015-04-01

    Therapeutic options for patients with amyotrophic lateral sclerosis (ALS) are currently limited. However, recent studies show that almost all cases of ALS, as well as tau-negative frontotemporal dementia (FTD), share a common neuropathology characterized by the deposition of TAR-DNA binding protein (TDP)-43-positive protein inclusions, offering an attractive target for the design and testing of novel therapeutics. Here we demonstrate how diverse environmental stressors linked to stress granule formation, as well as mutations in genes encoding RNA processing proteins and protein degradation adaptors, initiate ALS pathogenesis via TDP-43. We review the progressive development of TDP-43 proteinopathy from cytoplasmic mislocalization and misfolding through to macroaggregation and the addition of phosphate and ubiquitin moieties. Drawing from cellular and animal studies, we explore the feasibility of therapeutics that act at each point in pathogenesis, from mitigating genetic risk using antisense oligonucleotides to modulating TDP-43 proteinopathy itself using small molecule activators of autophagy, the ubiquitin-proteasome system, or the chaperone network. We present the case that preventing the misfolding of TDP-43 and/or enhancing its clearance represents the most important target for effectively treating ALS and frontotemporal dementia.

  17. Targeted Tumor Therapy with "Magnetic Drug Targeting": Therapeutic Efficacy of Ferrofluid Bound Mitoxantrone

    NASA Astrophysics Data System (ADS)

    Alexiou, Ch.; Schmid, R.; Jurgons, R.; Bergemann, Ch.; Arnold, W.; Parak, F.G.

    The difference between success or failure of chemotherapy depends not only on the drug itself but also on how it is delivered to its target. Biocompatible ferrofluids (FF) are paramagnetic nanoparticles, that may be used as a delivery system for anticancer agents in locoregional tumor therapy, called "magnetic drug targeting". Bound to medical drugs, such magnetic nanoparticles can be enriched in a desired body compartment (tumor) using an external magnetic field, which is focused on the area of the tumor. Through this form of target directed drug application, one attempts to concentrate a pharmacological agent at its site of action in order to minimize unwanted side effects in the organism and to increase its locoregional effectiveness. Tumor bearing rabbits (VX2 squamous cell carcinoma) in the area of the hind limb, were treated by a single intra-arterial injection (A. femoralis) of mitoxantrone bound ferrofluids (FF-MTX), while focusing an external magnetic field (1.7 Tesla) onto the tumor for 60 minutes. Complete tumor remissions could be achieved in these animals in a dose related manner (20% and 50% of the systemic dose of mitoxantrone), without any negative side effects, like e.g. leucocytopenia, alopecia or gastrointestinal disorders. The strong and specific therapeutic efficacy in tumor treatment with mitoxantrone bound ferrofluids may indicate that this system could be used as a delivery system for anticancer agents, like radionuclids, cancer-specific antibodies, anti-angiogenetic factors, genes etc.

  18. Molecular and clinical rationale for therapeutic targeting of interleukin-5 and its receptor.

    PubMed

    Molfino, N A; Gossage, D; Kolbeck, R; Parker, J M; Geba, G P

    2012-05-01

    Interleukin-5 is a Th2 homodimeric cytokine involved in the differentiation, maturation, migration, development, survival, trafficking and effector function of blood and local tissue eosinophils, in addition to basophils and mast cells. The IL-5 receptor (IL-5R) consists of an IL-5-specific α subunit that interacts in conformationally dynamic ways with the receptor's βc subunit, an aggregate of domains it shares with binding sites of IL-3 and granulocyte-macrophage colony-stimulating factor. IL-5 and IL-5R drive allergic and inflammatory immune responses characterizing numerous diseases, such as asthma, atopic dermatitis, chronic obstructive pulmonary disease, eosinophilic gastrointestinal diseases, hyper-eosinophilic syndrome, Churg-Strauss syndrome and eosinophilic nasal polyposis. Although corticosteroid therapy is the primary treatment for these diseases, a substantial number of patients exhibit incomplete responses and suffer side-effects. Two monoclonal antibodies have been designed to neutralize IL-5 (mepolizumab and reslizumab). Both antibodies have demonstrated the ability to reduce blood and tissue eosinophil counts. One additional monoclonal antibody, benralizumab (MEDI-563), has been developed to target IL-5R and attenuate eosinophilia through antibody-dependent cellular cytotoxicity. All three monoclonal antibodies are being clinically evaluated. Antisense oligonucleotide technology targeting the common βc IL-5R subunit is also being used therapeutically to inhibit IL-5-mediated effects (TPI ASM8). Small interfering RNA technology has also been used therapeutically to inhibit the expression of IL-5 in animal models. This review summarizes the structural interactions between IL-5 and IL-5R and the functional consequences of such interactions, and describes the pre-clinical and clinical evidence supporting IL-5R as a therapeutic target.

  19. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

    PubMed

    Pertwee, Roger G

    2012-12-01

    Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released 'endocannabinoids' or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive 'multi-targeting'. PMID:23108552

  20. HIV-1 gp120 as a therapeutic target: Navigating a moving labyrinth

    PubMed Central

    Acharya, Priyamvada; Lusvarghi, Sabrina; Bewley, Carole A.; Kwong, Peter D.

    2015-01-01

    Introduction The HIV-1 gp120 envelope (Env) glycoprotein mediates attachment of virus to human target cells that display requisite receptors, CD4 and co-receptor, generally CCR5. Despite high affinity interactions with host receptors and proof-of-principle by the drug maraviroc that interference with CCR5 provides therapeutic benefit, no licensed drug currently targets gp120. Areas covered An overview of the role of gp120 in HIV-1 entry and of sites of potential gp120 vulnerability to therapeutic inhibition is presented. Viral defenses that protect these sites and turn gp120 into a moving labyrinth are discussed together with strategies for circumventing these defenses to allow therapeutic targeting of gp120 sites of vulnerability. Expert opinion The gp120 envelope glycoprotein interacts with host proteins through multiple interfaces and has conserved structural features at these interaction sites. In spite of this, targeting gp120 for therapeutic purposes is challenging. Env mechanisms evolved to evade the humoral immune response also shield it from potential therapeutics. Nevertheless, substantial progress has been made in understanding HIV-1 gp120 structure and its interactions with host receptors, and in developing therapeutic leads that potently neutralize diverse HIV-1 strains. Synergies between advances in understanding, needs for therapeutics against novel viral targets, and characteristics of breadth and potency for a number of gp120-targetting lead molecules bodes well for gp120 as a HIV-1 therapeutic target. PMID:25724219

  1. The benefit of additional oviposition targets for a polyphagous butterfly.

    PubMed

    Johansson, Josefin; Bergström, Anders; Janz, Niklas

    2007-01-01

    While the reasons for the prevalence of specialists over generalists among herbivorous insects have been at the focus of much interest, less effort has been put into understanding the polyphagous exceptions. Recent studies have suggested that these exceptions may be important for insect diversification, which calls for a better understanding of the potential factors that can lead to an increased host plant repertoire. Females of the Nymphalid butterfly, Polygonia c-album, were used to test if egg output and/or likelihood of finding a host increased with the addition of a secondary host. There was no effect of prior eggs on the host for willingness to oviposit on a plant. The main experiments were conducted both in small laboratory cages and in large outdoor experimental arenas. No positive effect was found when another oviposition target was added in small cages in the laboratory. On the other hand, in the outdoor arenas the females more often found a host to oviposit on and had a higher egg output when they had access to an additional host, even though the second host was lower in their preference hierarchy. The difference between these experiments was attributed to searching for acceptable host plants within a patch, a factor that was included in the large cages but not in the small. When host availability is limited, adding oviposition targets can potentially act to counterbalance specialization and thus favor the evolution of generalization.

  2. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases.

    PubMed

    Ke, Hua Zhu; Richards, William G; Li, Xiaodong; Ominsky, Michael S

    2012-10-01

    The processes of bone growth, modeling, and remodeling determine the structure, mass, and biomechanical properties of the skeleton. Dysregulated bone resorption or bone formation may lead to metabolic bone diseases. The Wnt pathway plays an important role in bone formation and regeneration, and expression of two Wnt pathway inhibitors, sclerostin and Dickkopf-1 (DKK1), appears to be associated with changes in bone mass. Inactivation of sclerostin leads to substantially increased bone mass in humans and in genetically manipulated animals. Studies in various animal models of bone disease have shown that inhibition of sclerostin using a monoclonal antibody (Scl-Ab) increases bone formation, density, and strength. Additional studies show that Scl-Ab improves bone healing in models of bone repair. Inhibition of DKK1 by monoclonal antibody (DKK1-Ab) stimulates bone formation in younger animals and to a lesser extent in adult animals and enhances fracture healing. Thus, sclerostin and DKK1 are emerging as the leading new targets for anabolic therapies to treat bone diseases such as osteoporosis and for bone repair. Clinical trials are ongoing to evaluate the effects of Scl-Ab and DKK1-Ab in humans for the treatment of bone loss and for bone repair.

  3. Targeting ATR in DNA damage response and cancer therapeutics.

    PubMed

    Fokas, Emmanouil; Prevo, Remko; Hammond, Ester M; Brunner, Thomas B; McKenna, W Gillies; Muschel, Ruth J

    2014-02-01

    The ataxia telangiectasia and Rad3-related (ATR) plays an important role in maintaining genome integrity during DNA replication through the phosphorylation and activation of Chk1 and regulation of the DNA damage response. Preclinical studies have shown that disruption of ATR pathway can exacerbate the levels of replication stress in oncogene-driven murine tumors to promote cell killing. Additionally, inhibition of ATR can sensitise tumor cells to radiation or chemotherapy. Accumulating evidence suggests that targeting ATR can selectively sensitize cancer cells but not normal cells to DNA damage. Furthermore, in hypoxic conditions, ATR blockade results in overloading replication stress and DNA damage response causing cell death. Despite the attractiveness of ATR inhibition in the treatment of cancer, specific ATR inhibitors have remained elusive. In the last two years however, selective ATR inhibitors suitable for in vitro and - most recently - in vivo studies have been identified. In this article, we will review the literature on ATR function, its role in DDR and the potential of ATR inhibition to enhance the efficacy of radiation and chemotherapy.

  4. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    PubMed Central

    Vasconcelos, Luiz H. C.; Souza, Iara L. L.; Pinheiro, Lílian S.; Silva, Bagnólia A.

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  5. Aquaporin-4: A Potential Therapeutic Target for Cerebral Edema

    PubMed Central

    Tang, Guanghui; Yang, Guo-Yuan

    2016-01-01

    Aquaporin-4 (AQP4) is a family member of water-channel proteins and is dominantly expressed in the foot process of glial cells surrounding capillaries. The predominant expression at the boundaries between cerebral parenchyma and major fluid compartments suggests the function of aquaporin-4 in water transfer into and out of the brain parenchyma. Accumulating evidences have suggested that the dysregulation of aquaporin-4 relates to the brain edema resulting from a variety of neuro-disorders, such as ischemic or hemorrhagic stroke, trauma, etc. During edema formation in the brain, aquaporin-4 has been shown to contribute to the astrocytic swelling, while in the resolution phase, it has been seen to facilitate the reabsorption of extracellular fluid. In addition, aquaporin-4-deficient mice are protected from cytotoxic edema produced by water intoxication and brain ischemia. However, aquaporin-4 deletion exacerbates vasogenic edema in the brain of different pathological disorders. Recently, our published data showed that the upregulation of aquaporin-4 in astrocytes probably contributes to the transition from cytotoxic edema to vasogenic edema. In this review, apart from the traditional knowledge, we also introduce our latest findings about the effects of mesenchymal stem cells (MSCs) and microRNA-29b on aquaporin-4, which could provide powerful intervention tools targeting aquaporin-4. PMID:27690011

  6. Vascular patterns provide therapeutic targets in aggressive neuroblastic tumors

    PubMed Central

    Tadeo, Irene; Bueno, Gloria; Berbegall, Ana P.; Fernández-Carrobles, M. Milagro; Castel, Victoria; García-Rojo, Marcial; Navarro, Samuel; Noguera, Rosa

    2016-01-01

    Angiogenesis is essential for tumor growth and metastasis, nevertheless, in NB, results between different studies on angiogenesis have yielded contradictory results. An image analysis tool was developed to characterize the density, size and shape of total blood vessels and vascular segments in 458 primary neuroblastic tumors contained in tissue microarrays. The results were correlated with clinical and biological features of known prognostic value and with risk of progression to establish histological vascular patterns associated with different degrees of malignancy. Total blood vessels were larger, more abundant and more irregularly-shaped in tumors of patients with associated poor prognostic factors than in the favorable cohort. Tumor capillaries were less abundant and sinusoids more abundant in the patient cohort with unfavorable prognostic factors. Additionally, size of post-capillaries & metarterioles as well as higher sinusoid density can be included as predictive factors for survival. These patterns may therefore help to provide more accurate pre-treatment risk stratification, and could provide candidate targets for novel therapies. PMID:26918726

  7. Therapeutic Targets for Management of Periodontitis and Diabetes

    PubMed Central

    Sima, Corneliu; Van Dyke, Thomas E.

    2016-01-01

    The increasing incidence of diabetes mellitus (DM) and chronic periodontitis (CP) worldwide imposes a rethinking of individualized therapy for patients with both conditions. Central to bidirectional links between DM and CP is deregulated systemic inflammation and dysfunctional immune responses to altered-self and non-self. Control of blood glucose levels and metabolic imbalances associated with hyperglycemia in DM, and disruption of pathogenic subgingival biofilms in CP are currently the main therapeutic approaches for these conditions. Mounting evidence suggests the need to integrate immune modulatory therapeutics in treatment regimens that address the unresolved inflammation associated with DM and CP. The current review discusses the pathogenesis of DM and CP with emphasis on deregulated inflammation, current therapeutic approaches and the novel pro-resolution lipid mediators derived from n-3 polyunsaturated fatty acids. PMID:26881443

  8. Targeting KIT in Melanoma: A Paradigm of Molecular Medicine and Targeted Therapeutics

    PubMed Central

    Woodman, Scott E.; Davies, Michael A.

    2014-01-01

    Despite multiple clinical trials utilizing a spectrum of therapeutic modalities, melanoma remains a disease with dismal outcomes in patients with advanced disease. However, it is now clear that melanoma is not a single entity, but can be molecularly divided into subtypes that generally correspond to the anatomical location of the primary melanoma. Melanomas from acral lentiginous, mucosal, and chronic sun-damaged sites frequently harbor activating mutations and/or increased copy number in the KIT tyrosine kinase receptor gene, which are very rare in the more common cutaneous tumors. Multiple case reports and early observations from clinical trials suggest that targeting mutant KIT with tyrosine kinase inhibitors is efficacious in KIT mutant melanoma. This review recounts what is known about the role of KIT in melanocyte maturation, our current understanding of KIT genetic aberrations in melanoma, and how this knowledge is being translated into clinical oncology. PMID:20457136

  9. Therapeutic targets in the Wnt signaling pathway: Feasibility of targeting TNIK in colorectal cancer.

    PubMed

    Masuda, Mari; Sawa, Masaaki; Yamada, Tesshi

    2015-12-01

    The genetic and epigenetic alterations occurring during the course of multistage colorectal carcinogenesis have been extensively studied in the last few decades. One of the most notable findings is that the great majority of colorectal cancers (>80%) have mutations in the adenomatous polyposis coli (APC) tumor suppressor gene. Loss of functional APC protein results in activation of canonical Wnt/β-catanin signaling and initiates intestinal carcinogenesis. Mutational inactivation of APC is the first genetic event, but colorectal cancer cells retain their dependency on constitutive Wnt signal activation even after accumulation of other genetic events. Accordingly, pharmacological blocking of Wnt signaling has been considered an attractive therapeutic approach for colorectal cancer. Several therapeutics targeting various molecular components of the Wnt signaling pathway, including porcupine, frizzled receptors and co-receptor, tankyrases, and cAMP response element binding protein (CREB)-binding protein (CBP), have been developed, and some of those are currently being evaluated in early-phase clinical trials. Traf2- and Nck-interacting protein kinase (TNIK) has been identified as a regulatory component of the T-cell factor-4 and β-catenin transcriptional complex independently by two research groups. TNIK regulates Wnt signaling in the most downstream part of the pathway, and its inhibition is expected to block the signal even in colorectal cancer cells with APC gene mutation. Here we discuss some of the TNIK inhibitors under preclinical development. PMID:26542362

  10. Targeting PCSK9 for therapeutic gains: Have we addressed all the concerns?

    PubMed

    Banerjee, Yajnavalka; Santos, Raul D; Al-Rasadi, Khalid; Rizzo, Manfredi

    2016-05-01

    Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) regulates the expression of low-density lipoprotein (LDL)-receptors, through reducing their recycling by binding to the receptor along with LDL and targeting it for lysosomal destruction. PCSK9 also enhances the degradation of very-low-density-lipoprotein receptor (VLDLR) and lipoprotein receptor-related protein 1 (LRP-1) in a LDL-receptor independent manner. This role in lipid homeostasis presents PCSK9 as an attractive target for the therapeutic management of familial hypercholesterolemia as well as other refractory dyslipidaemias. However, PCSK9 mediates multifarious functions independent of its role in lipid homeostasis, which can be grouped under "pleiotropic functions" of the protein. This includes PCSK9's role in: trafficking of epithelial sodium channel; hepatic regeneration; pancreatic integrity and glucose homeostasis; antiviral activity; antimalarial activity; regulation of different cell signalling pathways; cortical neural differentiation; neuronal apoptosis and Alzheimer's disease. The question that needs to be investigated in depth is "How will the pleotropic functions of PCSK9, be affected by the therapeutic intervention of the protease's LDL-receptor lowering activity?" In this review, we appraise the different lipid lowering strategies targeting PCSK9 in light of the protein's different pleiotropic functions. Additionally, we delineate the key areas that require further examination, to ensure the long-term safety of the above lipid-lowering strategies. PMID:26987067

  11. Targeted Interventions for Homeless Children at a Therapeutic Nursery

    ERIC Educational Resources Information Center

    Norris-Shortle, Carole; Melley, Alison H.; Kiser, Laurel J.; Levey, Eric; Cosgrove, Kim; Leviton, Audrey

    2006-01-01

    PACT: Helping Children with Special Needs, an affiliate of the Kennedy Krieger Institute in Baltimore, Maryland, operates a therapeutic nursery that serves families who have at least one child from birth to 3 years of age, and who are living in a Baltimore City homeless shelter. In partnership with the Martin Luther King Early Head Start Program…

  12. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities

    PubMed Central

    Pertwee, Roger G.

    2012-01-01

    Human tissues express cannabinoid CB1 and CB2 receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB1/CB2 receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ9-tetrahydrocannabinol (Δ9-THC)) and Sativex (Δ9-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB2 receptors, and/or (v) adjunctive ‘multi-targeting’. PMID:23108552

  13. Therapeutic Targeting of the Axonal and Microvascular Change Associated with Repetitive Mild Traumatic Brain Injury

    PubMed Central

    Miyauchi, Takashi; Wei, Enoch P.

    2013-01-01

    Abstract Recent interest in mild traumatic brain injury (mTBI) has increased the recognition that repetitive mTBI occurring within the sports and military settings can exacerbate the adverse consequences of the initial injury. While multiple studies have recently reported the pathological, metabolic, and functional changes associated with repetitive mTBI, no consideration has been given to the development of therapeutic approaches to attenuate these abnormalities. In this study, we used the model of repetitive impact acceleration insult previously reported by our laboratory to cause no initial structural and functional changes, yet evoke dramatic change following second insult of the same intensity. Using this model, we employed established neuroprotective agents including FK506 and hypothermia that were administered 1 h after the second insult. Following either therapeutic intervention, changes of cerebral vascular reactivity to acetylcholine were assessed through a cranial window. Following the completion of the vascular studies, the animals were prepared to access the numbers of amyloid precursor protein (APP) positive axons, a marker of axonal damage. Following repetitive injury, cerebral vascular reactivity was dramatically preserved by either therapeutic intervention or the combination thereof compared to control group in which no intervention was employed. Similarly, APP density was significantly lower in the therapeutic intervention group compared in controls. Although the individual use of FK506 or hypothermia exerted significant protection, no additive benefit was found when both therapies were combined. In sum, the current study demonstrates that the exacerbated pathophysiological changes associated with repetitive mTBI can be therapeutically targeted. PMID:23796228

  14. Identification of the Ki-1 antigen (CD30) as a novel therapeutic target in systemic mastocytosis

    PubMed Central

    Blatt, Katharina; Cerny-Reiterer, Sabine; Schwaab, Juliana; Sotlar, Karl; Eisenwort, Gregor; Stefanzl, Gabriele; Hoermann, Gregor; Mayerhofer, Matthias; Schneeweiss, Mathias; Knapp, Sylvia; Rülicke, Thomas; Hadzijusufovic, Emir; Bauer, Karin; Smiljkovic, Dubravka; Willmann, Michael; Reiter, Andreas; Horny, Hans-Peter

    2015-01-01

    The Ki-1 antigen (CD30) is an established therapeutic target in patients with Hodgkin lymphoma and anaplastic large-cell lymphoma. We have recently shown that CD30 is expressed abundantly in the cytoplasm of neoplastic mast cells (MCs) in patients with advanced systemic mastocytosis (SM). In the current study, we asked whether CD30 is expressed on the surface of neoplastic MCs in advanced SM, and whether this surface structure may serve as therapeutic target in SM. As assessed by flow cytometry, CD30 was found to be expressed on the surface of neoplastic MCs in 3 of 25 patients (12%) with indolent SM, 4 of 7 patients (57%) with aggressive SM, and 4 of 7 patients (57%) with MC leukemia. The immature RAS-transformed human MC line MCPV-1.1 also expressed cell surface CD30, whereas the KIT-transformed MC line HMC-1.2 expressed no detectable CD30. The CD30-targeting antibody-conjugate brentuximab-vedotin inhibited proliferation in neoplastic MCs, with lower IC50 values obtained in CD30+ MCPV-1.1 cells (10 µg/mL) compared with CD30− HMC-1.2 cells (>50 µg/mL). In addition, brentuximab-vedotin suppressed the engraftment of MCPV-1.1 cells in NSG mice. Moreover, brentuximab-vedotin produced apoptosis in all CD30+ MC lines tested as well as in primary neoplastic MCs in patients with CD30+ SM, but did not induce apoptosis in neoplastic MCs in patients with CD30− SM. Furthermore, brentuximab-vedotin was found to downregulate anti-IgE–induced histamine release in CD30+ MCs. Finally, brentuximab-vedotin and the KIT D816V-targeting drug PKC412 produced synergistic growth-inhibitory effects in MCPV-1.1 cells. Together, CD30 is a promising new drug target for patients with CD30+ advanced SM. PMID:26486787

  15. MicroRNAs as therapeutic targets in human cancers

    PubMed Central

    Shah, Maitri Y.; Calin, George A.

    2015-01-01

    MicroRNAs (miRNAs) are evolutionarily conserved, small, regulatory RNAs that negatively regulate gene expression. Extensive research in the last decade has implicated miRNAs as master regulators of cellular processes with essential role in cancer initiation, progression and metastasis, making them promising therapeutic tools for cancer management. In this review, we will briefly review the structure, biogenesis, functions and mechanism of action of these miRNAs, followed by a detailed analysis of the therapeutic potential of these miRNAs. We will focus on the strategies presently used for miRNA therapy; discuss their use and drawbacks, and the challenges and future directions for development of miRNA-based therapy for human cancers. PMID:24687772

  16. BMPs as Therapeutic Targets and Biomarkers in Astrocytic Glioma

    PubMed Central

    González-Gómez, Pilar; Anselmo, Nilson Praia; Mira, Helena

    2014-01-01

    Astrocytic glioma is the most common brain tumor. The glioma initiating cell (GIC) fraction of the tumor is considered as highly chemoresistant, suggesting that GICs are responsible for glioma relapse. A potential treatment for glioma is to induce differentiation of GICs to a more benign and/or druggable cell type. Given BMPs are among the most potent inducers of GIC differentiation, they have been considered as noncytotoxic therapeutic compounds that may be of use to prevent growth and recurrence of glioma. We herein summarize advances made in the understanding of the role of BMP signaling in astrocytic glioma, with a particular emphasis on the effects exerted on GICs. We discuss the prognostic value of BMP signaling components and the implications of BMPs in the differentiation of GICs and in their sensitization to alkylating drugs and oncolytic therapy/chemotherapy. This mechanistic insight may provide new opportunities for therapeutic intervention of brain cancer. PMID:24877113

  17. Targeting the WNT Signaling Pathway in Cancer Therapeutics.

    PubMed

    Tai, David; Wells, Keith; Arcaroli, John; Vanderbilt, Chad; Aisner, Dara L; Messersmith, Wells A; Lieu, Christopher H

    2015-10-01

    The WNT signaling cascade is integral in numerous biological processes including embryonic development, cell cycle regulation, inflammation, and cancer. Hyperactivation of WNT signaling secondary to alterations to varying nodes of the pathway have been identified in multiple tumor types. These alterations converge into increased tumorigenicity, sustained proliferation, and enhanced metastatic potential. This review seeks to evaluate the evidence supporting the WNT pathway in cancer, the therapeutic strategies in modulating this pathway, and potential challenges in drug development.

  18. The therapeutic value of targeting inflammation in gastrointestinal cancers

    PubMed Central

    Sun, Beicheng; Karin, Michael

    2014-01-01

    Inflammation has been implicated in the initiation and progression of gastrointestinal (GI) cancers. Inflammation also plays important roles in subverting immune tolerance, escape from immune surveillance, and conferring resistance to chemotherapeutic agents. Targeting key regulators and mediators of inflammation represents an attractive strategy for GI cancer prevention and treatment. However, the targeting of inflammation in GI cancer is not straight-forward and sometimes inflammation may contribute to tumor regression. We discuss the origins and effects of inflammation in GI cancer and how to target it successfully. PMID:24881011

  19. Notch Signaling: A Potential Therapeutic Target for Hematologic Malignancies.

    PubMed

    Gao, Lingbao; Yuan, Keyu; Ding, Wei; Lin, Mei

    2016-01-01

    Notch signaling is a well-conserved cell-fate determining factor in embryo development, and the dyregulation of this signaling is frequently observed in many types of cancers, including hematological malignancies. In this review, we briefly describe the Notch signaling pathway, and we primarily focus on the relationship between Notch and hematological malignancies. We also discuss the clinical development of promising agents including γ-secretase inhibitors (GSIs) and monoclonal antibodies (mAbs). Complete response has been observed among patients with T-cell acute lymphoblastic leukemia (T-ALL) when treated with GSIs. Furthermore, a recent study has suggested that targeting Zmiz1, a direct, selective cofactor of Notch1, rather than targeting Notch directly, maybe helpful to reduce the current target-related toxicities. Taken together, we summarize the role of Notch signaling in hematological malignancies and discuss the treatment strategies for these diseases through targeting Notch signaling. PMID:27650987

  20. Vascular KCNQ (Kv7) potassium channels as common signaling intermediates and therapeutic targets in cerebral vasospasm.

    PubMed

    Mani, Bharath K; O'Dowd, James; Kumar, Lalit; Brueggemann, Lioubov I; Ross, Masey; Byron, Kenneth L

    2013-01-01

    Cerebral vasospasm after subarachnoid hemorrhage (SAH) is characterized by prolonged severe constriction of the basilar artery, which often leads to ischemic brain damage. Locally elevated concentrations of spasmogenic substances induce persistent depolarization of myocytes in the basilar artery, leading to continuous influx of calcium (Ca) through voltage-sensitive Ca channels and myocyte contraction. Potassium (K) channel openers may have therapeutic utility to oppose membrane depolarization, dilate the arteries, and reduce ischemia. Here, we examined the involvement of vascular Kv7 K channels in the pathogenesis of cerebral vasospasm and tested whether Kv7 channel openers are effective therapeutic agents in a rat model of SAH. Patch-clamp experiments revealed that 3 different spasmogens (serotonin, endothelin, and vasopressin) suppressed Kv7 currents and depolarized freshly isolated rat basilar artery myocytes. These effects were significantly reduced in the presence of a Kv7 channel opener, retigabine. Retigabine (10 μM) also significantly blocked L-type Ca channels, reducing peak inward currents by >50%. In the presence of a selective Kv7 channel blocker, XE991, the spasmogens did not produce additive constriction responses measured using pressure myography. Kv7 channel openers (retigabine or celecoxib) significantly attenuated basilar artery spasm in rats with experimentally induced SAH. In conclusion, we identify Kv7 channels as common targets of vasoconstrictor spasmogens and as candidates for therapeutic intervention for cerebral vasospasm.

  1. Vascular KCNQ (Kv7) potassium channels as common signaling intermediates and therapeutic targets in cerebral vasospasm

    PubMed Central

    Mani, Bharath K.; O'Dowd, James; Kumar, Lalit; Brueggemann, Lioubov I.; Ross, Masey; Byron, Kenneth L.

    2012-01-01

    Cerebral vasospasm following subarachnoid hemorrhage (SAH) is characterized by prolonged severe constriction of the basilar artery, which often leads to ischemic brain damage. Locally elevated concentrations of spasmogenic substances induce persistent depolarization of myocytes in the basilar artery, leading to continuous influx of calcium (Ca2+) through voltage-sensitive Ca2+ channels and myocyte contraction. Potassium (K+) channel openers may have therapeutic utility to oppose membrane depolarization, dilate the arteries, and reduce ischemia. Here, we examined the involvement of vascular Kv7 K+ channels in the pathogenesis of cerebral vasospasm and tested whether Kv7 channel openers are effective therapeutic agents in a rat model of SAH. Patch-clamp experiments revealed that three different spasmogens (serotonin, endothelin and vasopressin) suppressed Kv7 currents and depolarized freshly isolated rat basilar artery myocytes. These effects were significantly reduced in the presence of a Kv7 channel opener, retigabine. Retigabine (10 μmol/L) also significantly blocked L-type Ca2+ channels, reducing peak inward currents by >50%. In the presence of a selective Kv7 channel blocker, XE991, the spasmogens did not produce additive constriction responses measured using pressure myography. Kv7 channel openers (retigabine or celecoxib) significantly attenuated basilar artery spasm in rats with experimentally-induced SAH. In conclusion, we identify Kv7 channels as common targets of vasoconstrictor spasmogens and as candidates for therapeutic intervention for cerebral vasospasm. PMID:23107868

  2. Emerging therapeutic targets for the treatment of hepatic fibrosis.

    PubMed

    Fagone, Paolo; Mangano, Katia; Pesce, Antonio; Portale, Teresa Rosanna; Puleo, Stefano; Nicoletti, Ferdinando

    2016-02-01

    Fibrosis represents a response to chronic injury, aimed at maintaining organ integrity. Hepatic fibrosis is mainly related to chronic viral hepatitis B or C (HBV or HCV), alcoholic and nonalcoholic steatohepatitis (NASH), and biliary diseases. A deep understanding of the cellular and molecular mechanisms underlying liver fibrosis has enabled the development of 'pathogenetic tailored' therapeutic interventions. However, effective drugs to prevent or revert hepatic fibrosis are still lacking. In this review, we discuss the cellular populations and the molecular pathways involved in liver fibrogenesis as well as the novel approaches currently being tested in clinical trials.

  3. Inflammation and hypertension: new understandings and potential therapeutic targets.

    PubMed

    De Miguel, Carmen; Rudemiller, Nathan P; Abais, Justine M; Mattson, David L

    2015-01-01

    Research studying the role of inflammation in hypertension and cardiovascular disease has flourished in recent years; however, the exact mechanisms by which the activated immune cells lead to the development and maintenance of hypertension remain to be elucidated. The objectives of this brief review are to summarize and discuss the most recent findings in the field, with special emphasis on potential therapeutics to treat or prevent hypertension. This review will cover novel immune cell subtypes recently associated to the disease including the novel role of cytokines, toll-like receptors, and inflammasomes in hypertension. PMID:25432899

  4. Inflammation and hypertension: new understandings and potential therapeutic targets

    PubMed Central

    Miguel, Carmen De; Rudemiller, Nathan P.; Abais, Justine M.; Mattson, David L.

    2015-01-01

    Research studying the role of inflammation in hypertension and cardiovascular disease has flourished in recent years; however, the exact mechanisms by which the activated immune cells lead to the development and maintenance of hypertension remain to be elucidated. The objective of this brief review is to summarize and discuss the most recent findings in the field, with special emphasis on potential therapeutics to treat or prevent hypertension. This review will cover novel immune cell subtypes recently associated to the disease including the novel role of cytokines, toll-like receptors and inflammasomes in hypertension. PMID:25432899

  5. Current Treatment, Emerging Translational Therapies, and New Therapeutic Targets for Autoimmune Myasthenia Gravis.

    PubMed

    Guptill, Jeffrey T; Soni, Madhu; Meriggioli, Matthew N

    2016-01-01

    Myasthenia gravis (MG) is an autoimmune disease associated with the production of autoantibodies against 1) the skeletal muscle acetylcholine receptor; 2) muscle-specific kinase, a receptor tyrosine kinase critical for the maintenance of neuromuscular synapses; 3) low-density lipoprotein receptor-related protein 4, an important molecular binding partner for muscle-specific kinase; and 4) other muscle endplate proteins. In addition to the profile of autoantibodies, MG may be classified according the location of the affected muscles (ocular vs generalized), the age of symptom onset, and the nature of thymic pathology. Immunopathologic events leading to the production of autoantibodies differ in the various disease subtypes. Advances in our knowledge of the immunopathogenesis of the subtypes of MG will allow for directed utilization of the ever-growing repertoire of therapeutic agents that target distinct nodes in the immune pathway relevant to the initiation and maintenance of autoimmune disease. In this review, we examine the pathogenesis of MG subtypes, current treatment options, and emerging new treatments and therapeutic targets. PMID:26510558

  6. Contactin 1: A potential therapeutic target and biomarker in gastric cancer.

    PubMed

    Chen, De-Hu; Yu, Ji-Wei; Jiang, Bo-Jian

    2015-09-01

    Despite advances in diagnosis and treatment, gastric cancer remains one of the most common malignant tumors worldwide, and early diagnosis remains a challenge. The lack of effective methods to detect these tumors early is a major factor contributing to the high mortality in patients with gastric cancer, who are typically diagnosed at an advanced stage. Additionally, the early detection of metastases and the curative treatment of gastric cancer are difficult to achieve, and the detailed mechanisms remain to be fully elucidated. Thus, the identification of valuable predictive biomarkers and therapeutic targets to improve the prognosis of patients with gastric cancer is becoming increasingly important. Contactin 1 (CNTN1), a cell adhesion molecule, is a glycosylphosphatidylinositol-anchored neuronal membrane protein that plays an important role in cancer progression. The expression of CNTN1 is upregulated in primary lesions, and its expression level correlates with tumor metastasis in cancer patients. The current evidence reveals that the functions of CNTN1 in the development and progression of cancer likely promote the invasion and metastasis of cancer cells via the VEGFC/FLT4 axis, the RHOA-dependent pathway, the Notch signaling pathway and the epithelial-mesenchymal transition progression. Therefore, CNTN1 may be a novel biomarker and a possible therapeutic target in cancer treatment in the near future.

  7. A novel mouse model identifies cooperating mutations and therapeutic targets critical for chronic myeloid leukemia progression

    PubMed Central

    Giotopoulos, George; van der Weyden, Louise; Osaki, Hikari; Rust, Alistair G.; Gallipoli, Paolo; Meduri, Eshwar; Horton, Sarah J.; Chan, Wai-In; Foster, Donna; Prinjha, Rab K.; Pimanda, John E.; Tenen, Daniel G.; Vassiliou, George S.; Koschmieder, Steffen; Adams, David J.

    2015-01-01

    The introduction of highly selective ABL-tyrosine kinase inhibitors (TKIs) has revolutionized therapy for chronic myeloid leukemia (CML). However, TKIs are only efficacious in the chronic phase of the disease and effective therapies for TKI-refractory CML, or after progression to blast crisis (BC), are lacking. Whereas the chronic phase of CML is dependent on BCR-ABL, additional mutations are required for progression to BC. However, the identity of these mutations and the pathways they affect are poorly understood, hampering our ability to identify therapeutic targets and improve outcomes. Here, we describe a novel mouse model that allows identification of mechanisms of BC progression in an unbiased and tractable manner, using transposon-based insertional mutagenesis on the background of chronic phase CML. Our BC model is the first to faithfully recapitulate the phenotype, cellular and molecular biology of human CML progression. We report a heterogeneous and unique pattern of insertions identifying known and novel candidate genes and demonstrate that these pathways drive disease progression and provide potential targets for novel therapeutic strategies. Our model greatly informs the biology of CML progression and provides a potent resource for the development of candidate therapies to improve the dismal outcomes in this highly aggressive disease. PMID:26304963

  8. Targeting Neuropilin-1 to Inhibit VEGF Signaling in Cancer: Comparison of Therapeutic Approaches

    PubMed Central

    Gabhann, Feilim Mac; Popel, Aleksander S

    2006-01-01

    Angiogenesis (neovascularization) plays a crucial role in a variety of physiological and pathological conditions including cancer, cardiovascular disease, and wound healing. Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis. Multiple VEGF receptors are expressed on endothelial cells, including signaling receptor tyrosine kinases (VEGFR1 and VEGFR2) and the nonsignaling co-receptor Neuropilin-1. Neuropilin-1 binds only the isoform of VEGF responsible for pathological angiogenesis (VEGF165), and is thus a potential target for inhibiting VEGF signaling. Using the first molecularly detailed computational model of VEGF and its receptors, we have shown previously that the VEGFR–Neuropilin interactions explain the observed differential effects of VEGF isoforms on VEGF signaling in vitro, and demonstrated potent VEGF inhibition by an antibody to Neuropilin-1 that does not block ligand binding but blocks subsequent receptor coupling. In the present study, we extend that computational model to simulation of in vivo VEGF transport and binding, and predict the in vivo efficacy of several Neuropilin-targeted therapies in inhibiting VEGF signaling: (a) blocking Neuropilin-1 expression; (b) blocking VEGF binding to Neuropilin-1; (c) blocking Neuropilin–VEGFR coupling. The model predicts that blockade of Neuropilin–VEGFR coupling is significantly more effective than other approaches in decreasing VEGF–VEGFR2 signaling. In addition, tumor types with different receptor expression levels respond differently to each of these treatments. In designing human therapeutics, the mechanism of attacking the target plays a significant role in the outcome: of the strategies tested here, drugs with similar properties to the Neuropilin-1 antibody are predicted to be most effective. The tumor type and the microenvironment of the target tissue are also significant in determining therapeutic efficacy of each of the treatments studied. PMID:17196035

  9. Cancer targeted therapeutics: From molecules to drug delivery vehicles.

    PubMed

    Liu, Daxing; Auguste, Debra T

    2015-12-10

    The pitfall of all chemotherapeutics lies in drug resistance and the severe side effects experienced by patients. One way to reduce the off-target effects of chemotherapy on healthy tissues is to alter the biodistribution of drug. This can be achieved in two ways: Passive targeting utilizes shape, size, and surface chemistry to increase particle circulation and tumor accumulation. Active targeting employs either chemical moieties (e.g. peptides, sugars, aptamers, antibodies) to selectively bind to cell membranes or responsive elements (e.g. ultrasound, magnetism, light) to deliver its cargo within a local region. This article will focus on the systemic administration of anti-cancer agents and their ability to home to tumors and, if relevant, distant metastatic sites.

  10. Actinium-225 in targeted alpha-particle therapeutic applications.

    PubMed

    Scheinberg, David A; McDevitt, Michael R

    2011-10-01

    Alpha particle-emitting isotopes are being investigated in radioimmunotherapeutic applications because of their unparalleled cytotoxicity when targeted to cancer and their relative lack of toxicity towards untargeted normal tissue. Actinium- 225 has been developed into potent targeting drug constructs and is in clinical use against acute myelogenous leukemia. The key properties of the alpha particles generated by 225Ac are the following: i) limited range in tissue of a few cell diameters; ii) high linear energy transfer leading to dense radiation damage along each alpha track; iii) a 10 day halflife; and iv) four net alpha particles emitted per decay. Targeting 225Ac-drug constructs have potential in the treatment of cancer.

  11. Actinium-225 in targeted alpha-particle therapeutic applications.

    PubMed

    Scheinberg, David A; McDevitt, Michael R

    2011-10-01

    Alpha particle-emitting isotopes are being investigated in radioimmunotherapeutic applications because of their unparalleled cytotoxicity when targeted to cancer and their relative lack of toxicity towards untargeted normal tissue. Actinium- 225 has been developed into potent targeting drug constructs and is in clinical use against acute myelogenous leukemia. The key properties of the alpha particles generated by 225Ac are the following: i) limited range in tissue of a few cell diameters; ii) high linear energy transfer leading to dense radiation damage along each alpha track; iii) a 10 day halflife; and iv) four net alpha particles emitted per decay. Targeting 225Ac-drug constructs have potential in the treatment of cancer. PMID:22202153

  12. MMPs as therapeutic targets – still a viable option?

    PubMed Central

    Fingleton, Barbara

    2009-01-01

    Matrix metalloproteinases (MMPs) appear to be ideal drug targets – they are disease-associated, extracellular enzymes with a dependence on zinc for activity. This apparently straightforward target, however, is much more complex than initially realized. Although disease associated, the roles for particular enzymes may be healing rather than harmful making broad-spectrum inhibition unwise; targeting the catalytic zinc with specificity is difficult, since other related proteases as well as non-related proteins can be affected by some chelating groups. While the failure of early-generation MMP inhibitors dampened enthusiasm for this type of drug, there has recently been a wealth of studies examining the basic biology of MMPs which will greatly inform new drug trials in this field. PMID:17693104

  13. Bone biology, signaling pathways, and therapeutic targets for osteoporosis.

    PubMed

    Iñiguez-Ariza, Nicole M; Clarke, Bart L

    2015-10-01

    Major advances have occurred recently in the treatment of osteoporosis in recent years. Most patients are currently treated with bisphosphonates, denosumab, raloxifene, or teriparatide, and in some countries, strontium ranelate. Strontium ranelate and calcitonin have recently had their use restricted due to cardiovascular concerns and malignancy, respectively. The available agents have generally provided excellent options that effectively reduce fracture risk. New targets are being sought based on appreciation of the bone biology and signaling pathways involved in bone formation and resorption. These agents will directly target these signaling pathways, and further expand the options available for treatment of osteoporosis. PMID:26255682

  14. Strategies and Advancement in Antibody-Drug Conjugate Optimization for Targeted Cancer Therapeutics

    PubMed Central

    Kim, Eunhee G.; Kim, Kristine M.

    2015-01-01

    Antibody-drug conjugates utilize the antibody as a delivery vehicle for highly potent cytotoxic molecules with specificity for tumor-associated antigens for cancer therapy. Critical parameters that govern successful antibody-drug conjugate development for clinical use include the selection of the tumor target antigen, the antibody against the target, the cytotoxic molecule, the linker bridging the cytotoxic molecule and the antibody, and the conjugation chemistry used for the attachment of the cytotoxic molecule to the antibody. Advancements in these core antibody-drug conjugate technology are reflected by recent approval of Adectris® (anti-CD30-drug conjugate) and Kadcyla® (anti-HER2 drug conjugate). The potential approval of an anti-CD22 conjugate and promising new clinical data for anti-CD19 and anti-CD33 conjugates are additional advancements. Enrichment of antibody-drug conjugates with newly developed potent cytotoxic molecules and linkers are also in the pipeline for various tumor targets. However, the complexity of antibody-drug conjugate components, conjugation methods, and off-target toxicities still pose challenges for the strategic design of antibody-drug conjugates to achieve their fullest therapeutic potential. This review will discuss the emergence of clinical antibody-drug conjugates, current trends in optimization strategies, and recent study results for antibody-drug conjugates that have incorporated the latest optimization strategies. Future challenges and perspectives toward making antibody-drug conjugates more amendable for broader disease indications are also discussed. PMID:26535074

  15. Platelets: Still a Therapeutical Target for Haemostatic Disorders

    PubMed Central

    Geraldo, Reinaldo Barros; Sathler, Plínio Cunha; Lourenço, André Luiz; Saito, Max Seidy; Cabral, Lucio M.; Rampelotto, Pabulo Henrique; Castro, Helena Carla

    2014-01-01

    Platelets are cytoplasmatic fragments from bone marrow megakaryocytes present in blood. In this work, we review the basis of platelet mechanisms, their participation in syndromes and in arterial thrombosis, and their potential as a target for designing new antithrombotic agents. The option of new biotechnological sources is also explored. PMID:25295482

  16. Targeting PARP-1 allosteric regulation offers therapeutic potential against cancer.

    PubMed

    Steffen, Jamin D; Tholey, Renee M; Langelier, Marie-France; Planck, Jamie L; Schiewer, Matthew J; Lal, Shruti; Bildzukewicz, Nikolai A; Yeo, Charles J; Knudsen, Karen E; Brody, Jonathan R; Pascal, John M

    2014-01-01

    PARP-1 is a nuclear protein that has important roles in maintenance of genomic integrity. During genotoxic stress, PARP-1 recruits to sites of DNA damage where PARP-1 domain architecture initiates catalytic activation and subsequent poly(ADP-ribose)-dependent DNA repair. PARP-1 inhibition is a promising new way to selectively target cancers harboring DNA repair deficiencies. However, current inhibitors target other PARPs, raising important questions about long-term off-target effects. Here, we propose a new strategy that targets PARP-1 allosteric regulation as a selective way of inhibiting PARP-1. We found that disruption of PARP-1 domain-domain contacts through mutagenesis held no cellular consequences on recruitment to DNA damage or a model system of transcriptional regulation, but prevented DNA-damage-dependent catalytic activation. Furthermore, PARP-1 mutant overexpression in a pancreatic cancer cell line (MIA PaCa-2) increased sensitivity to platinum-based anticancer agents. These results not only highlight the potential of a synergistic drug combination of allosteric PARP inhibitors with DNA-damaging agents in genomically unstable cancer cells (regardless of homologous recombination status), but also signify important applications of selective PARP-1 inhibition. Finally, the development of a high-throughput PARP-1 assay is described as a tool to promote discovery of novel PARP-1 selective inhibitors.

  17. Selective targeting of the stress chaperome as a therapeutic strategy

    PubMed Central

    Taldone, Tony; Ochiana, Stefan O.; Patel, Pallav D.; Chiosis, Gabriela

    2014-01-01

    Normal cellular function is maintained by coordinated proteome machinery that performs a vast array of activities. Helping the proteome in such roles is the chaperome, a network of molecular chaperones and folding enzymes. The stressed cell contains, at any time, a complex mixture of chaperome complexes; a majority performs “housekeeping functions” similarly to non-stressed, normal cells, but a finely-tuned fraction buffers the proteome altered by chronic stress. The stress chaperome is epigenetically distinct from its normal, housekeeping counterpart, providing a basis for its selective targeting by small molecules. Here we discuss development of chaperome inhibitors, and how agents targeting chaperome members in stressed cells are in fact being directed towards chaperome complexes and their effect is therefore determined by their ability to sample and engage such complexes. A new approach is needed to target and implement chaperome modulators in the investigation of diseases, and we propose that the classical thinking in drug discovery needs adjustment when developing chaperome-targeting drugs. PMID:25262919

  18. Therapeutic strategies targeting B-cells in multiple sclerosis.

    PubMed

    Milo, Ron

    2016-07-01

    Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system (CNS) that traditionally has been considered to be mediated primarily by T-cells. Increasing evidence, however, suggests the fundamental role of B-cells in the pathogenesis of the disease. Recent strategies targeting B-cells in MS have demonstrated impressive and sometimes surprising results: B-cell depletion by monoclonal antibodies targeting the B-cell surface antigen CD20 (e.g. rituximab, ocrelizumab, ofatumumab) was shown to exert profound anti-inflammatory effect in MS with favorable risk-benefit ratio, with ocrelizumab demonstrating efficacy in both relapsing-remitting (RR) and primary-progressive (PP) MS in phase III clinical trials. Depletion of CD52 expressing T- and B-cells and monocytes by alemtuzumab resulted in impressive and durable suppression of disease activity in RRMS patients. On the other hand, strategies targeting B-cell cytokines such as atacicept resulted in increased disease activity. As our understanding of the biology of B-cells in MS is increasing, new compounds that target B-cells continue to be developed which promise to further expand the armamentarium of MS therapies and allow for more individualized therapy for patients with this complex disease.

  19. 1st Joint European Conference on Therapeutic Targets and Medicinal Chemistry (TTMC 2015)

    PubMed Central

    Le Borgne, Marc; Haidar, Samer; Duval, Olivier; Wünsch, Bernhard; Jose, Joachim

    2015-01-01

    The European Conference on Therapeutic Targets and Medicinal Chemistry is a new two-day meeting on drug discovery that is focused on therapeutic targets and the use of tools to explore all fields of drug discovery and drug design such as molecular modelling, bioorganic chemistry, NMR studies, fragment screening, in vitro assays, in vivo assays, structure activity relationships, autodisplay. Abstracts of keynote lectures, plenary lectures, junior lectures, flash presentations, and posters presented during the meeting are collected in this report. PMID:26712767

  20. 1st Joint European Conference on Therapeutic Targets and Medicinal Chemistry (TTMC 2015).

    PubMed

    Le Borgne, Marc; Haidar, Samer; Duval, Olivier; Wünsch, Bernhard; Jose, Joachim

    2015-01-01

    The European Conference on Therapeutic Targets and Medicinal Chemistry is a new two-day meeting on drug discovery that is focused on therapeutic targets and the use of tools to explore all fields of drug discovery and drug design such as molecular modelling, bioorganic chemistry, NMR studies, fragment screening, in vitro assays, in vivo assays, structure activity relationships, autodisplay. Abstracts of keynote lectures, plenary lectures, junior lectures, flash presentations, and posters presented during the meeting are collected in this report. PMID:26712767

  1. Nanoparticle-based targeted therapeutics in head-and-neck cancer.

    PubMed

    Wu, Ting-Ting; Zhou, Shui-Hong

    2015-01-01

    Head-and-neck cancer is a major form of the disease worldwide. Treatment consists of surgery, radiation therapy and chemotherapy, but these have not resulted in improved survival rates over the past few decades. Versatile nanoparticles, with selective tumor targeting, are considered to have the potential to improve these poor outcomes. Application of nanoparticle-based targeted therapeutics has extended into many areas, including gene silencing, chemotherapeutic drug delivery, radiosensitization, photothermal therapy, and has shown much promise. In this review, we discuss recent advances in the field of nanoparticle-mediated targeted therapeutics for head-and-neck cancer, with an emphasis on the description of targeting points, including future perspectives.

  2. Targeting the Raf kinase cascade in cancer therapy--novel molecular targets and therapeutic strategies.

    PubMed

    Lee, John T; McCubrey, James A

    2002-12-01

    The mitogen-activated protein kinases (MAPKs) are a group of signal transducers with oncogenic potential in an assortment of cell types. Dysregulated signalling from any of the members of this family has been shown to result in development of human malignancies. Consequently, the collective goal of the scientific community is to inhibit aberrant signalling initiated from these molecules whilst minimising toxicity associated with such inhibition. This review covers events responsible for MAPK activation in detail, with an emphasis placed upon possible points of pharmacological intervention. A discussion addressing numerous chemotherapeutic approaches that have been developed over the previous decade for MAPK inhibition is also included. In addition, emphasis is placed upon the various arrays of kinase inhibitors, small molecule inhibitors, competitive inhibitors, nucleic acid aptamers and other molecules which have been proven effective in prevention of MAPK signalling. Finally, the potential therapeutic promise of many of these compounds is addressed in a manner that encompasses the complexities of MAPK signal transduction, in addition to concerns surrounding the development of drug resistance.

  3. Targeting Notch degradation system provides promise for breast cancer therapeutics.

    PubMed

    Liu, Jing; Shen, Jia-Xin; Wen, Xiao-Fen; Guo, Yu-Xian; Zhang, Guo-Jun

    2016-08-01

    Notch receptor signaling pathways play an important role, not only in normal breast development but also in breast cancer development and progression. As a group of ligand-induced proteins, different subtypes of mammalian Notch (Notch1-4) are sensitive to subtle changes in protein levels. Thus, a clear understanding of mechanisms of Notch protein turnover is essential for understanding normal and pathological mechanisms of Notch functions. It has been suggested that there is a close relationship between the carcinogenesis and the dysregulation of Notch degradation. However, this relationship remains mostly undefined in the context of breast cancer, as protein degradation is mediated by numerous signaling pathways as well as certain molecule modulators (activators/inhibitors). In this review, we summarize the published data regarding the regulation of Notch family member degradation in breast cancer, while emphasizing areas that are likely to provide new therapeutic modalities for mechanism-based anti-cancer drugs.

  4. Muscle wasting: the gut microbiota as a new therapeutic target?

    PubMed

    Bindels, Laure B; Delzenne, Nathalie M

    2013-10-01

    Muscle wasting is characterized by a loss of muscle mass and strength, and occurs in several pathological conditions such as cancer, chronic heart failure, chronic infection and malnutrition. Muscle wasting can be caused by inflammation and inappropriate nutritional status. Interestingly, gut microbiota has recently been proposed as an environmental factor involved, among others, in energy sparing from the diet, and in the regulation of host immunity and metabolism. This review presents evidence supporting the existence of a gut microbiota-muscle axis and discusses the potential role and therapeutic interest of gut microbiota in muscle wasting, specifically in the context of cancer and malnutrition. This review also proposes possible molecular mechanisms underlying the gut microbiota-muscle axis. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.

  5. Autophagy: an emerging therapeutic target in vascular diseases

    PubMed Central

    Vindis, Cécile

    2015-01-01

    Autophagy is a cellular catabolic process responsible for the destruction of long-lived proteins and organelles via lysosome-dependent pathway. This process is of great importance in maintaining cellular homeostasis, and deregulated autophagy has been implicated in the pathogenesis of a wide range of diseases. A growing body of evidence suggests that autophagy can be activated in vascular disorders such as atherosclerosis. Autophagy occurs under basal conditions and mediates homeostatic functions in cells but in the setting of pathological states up-regulated autophagy can exert both protective and detrimental functions. Therefore, the precise role of autophagy and its relationship with the progression of the disease need to be clarified. This review highlights recent findings regarding autophagy activity in vascular cells and its potential contribution to vascular disorders with a focus on atherogenesis. Finally, whether the manipulation of autophagy represents a new therapeutic approach to treat or prevent vascular diseases is also discussed. PMID:25537552

  6. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases

    PubMed Central

    Bento, Carla F.

    2015-01-01

    Autophagy is a conserved process that uses double-membrane vesicles to deliver cytoplasmic contents to lysosomes for degradation. Although autophagy may impact many facets of human biology and disease, in this review we focus on the ability of autophagy to protect against certain neurodegenerative and infectious diseases. Autophagy enhances the clearance of toxic, cytoplasmic, aggregate-prone proteins and infectious agents. The beneficial roles of autophagy can now be extended to supporting cell survival and regulating inflammation. Autophagic control of inflammation is one area where autophagy may have similar benefits for both infectious and neurodegenerative diseases beyond direct removal of the pathogenic agents. Preclinical data supporting the potential therapeutic utility of autophagy modulation in such conditions is accumulating. PMID:26101267

  7. Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications.

    PubMed

    Xu, Chenjie; Sun, Shouheng

    2009-08-01

    Superparamagnetic nanoparticles (NPs) have been attractive for medical diagnostics and therapeutics due to their unique magnetic properties and their ability to interact with various biomolecules of interest. The solution phase based chemical synthesis provides a near precise control on NP size, and monodisperse magnetic NPs with standard deviation in diameter of less than 10% are now routinely available. Upon controlled surface functionalization and coupling with fragments of DNA strands, proteins, peptides or antibodies, these NPs can be well-dispersed in biological solutions and used for drug delivery, magnetic separation, magnetic resonance imaging contrast enhancement and magnetic fluid hyperthermia. This Perspective reviews the common syntheses and controlled surface functionalization of monodisperse Fe(3)O(4)-based superparamagnetic NPs. It further outlines the exciting application potentials of these NPs in magnetic resonance imaging and drug delivery. PMID:20449070

  8. Overview of Nrf2 as Therapeutic Target in Epilepsy

    PubMed Central

    Carmona-Aparicio, Liliana; Pérez-Cruz, Claudia; Zavala-Tecuapetla, Cecilia; Granados-Rojas, Leticia; Rivera-Espinosa, Liliana; Montesinos-Correa, Hortencia; Hernández-Damián, Jacqueline; Pedraza-Chaverri, José; Sampieri, Aristides III; Coballase-Urrutia, Elvia; Cárdenas-Rodríguez, Noemí

    2015-01-01

    Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2), which plays a central role in the regulation of antioxidant response elements (ARE) and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy. PMID:26262608

  9. Tau as a Therapeutic Target for Alzheimer’s Disease

    PubMed Central

    Boutajangout, Allal; Sigurdsson, Einar M.; Krishnamurthy, Pavan K.

    2012-01-01

    Neurofibrillary tangles (NFTs) are one of the pathological hallmarks of Alzheimer’s disease (AD) and are primarily composed of aggregates of hyperphosphorylated forms of the microtubule associated protein tau. It is likely that an imbalance of kinase and phosphatase activities leads to the abnormal phosphorylation of tau and subsequent aggregation. The wide ranging therapeutic approaches that are being developed include to inhibit tau kinases, to enhance phosphatase activity, to promote microtubule stability, and to reduce tau aggregate formation and/or enhance their clearance with small molecule drugs or by immunotherapeutic means. Most of these promising approaches are still in preclinical development whilst some have progressed to Phase II clinical trials. By pursuing these lines of study, a viable therapy for AD and related tauopathies may be obtained. PMID:21679154

  10. [The development of therapeutics targeting oxidative stress in prostate cancer].

    PubMed

    Shiota, Masaki; Yokomizo, Akira; Naito, Seiji

    2014-12-01

    Oxidative stress is caused by increased reactive-oxygen species (ROS) due to augmented ROS production and impaired anti-oxidative capacity. Recently, oxidative stress has been revealed to promote castration resistance via androgen receptor(AR)-dependent pathway such as AR overexpression, AR cofactor, and AR post-translational modification as well as AR-independent pathway, leading to the emergence of castration-resistant prostate cancer (CRPC). Therefore, antioxidants therapy using natural and chemical ROS scavengers and inhibitors of ROS production seems to be a promising therapy for CRPC as well as preventing castration resistance. However, at present, the application to therapeutics is limited. Therefore, further research on oxidative stress in prostate cancer, as well as on the development for clinical application would be needed.

  11. Overview of Nrf2 as Therapeutic Target in Epilepsy.

    PubMed

    Carmona-Aparicio, Liliana; Pérez-Cruz, Claudia; Zavala-Tecuapetla, Cecilia; Granados-Rojas, Leticia; Rivera-Espinosa, Liliana; Montesinos-Correa, Hortencia; Hernández-Damián, Jacqueline; Pedraza-Chaverri, José; Sampieri, Aristides; Coballase-Urrutia, Elvia; Cárdenas-Rodríguez, Noemí

    2015-08-07

    Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2), which plays a central role in the regulation of antioxidant response elements (ARE) and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.

  12. Targeting Chelatable Iron as a Therapeutic Modality in Parkinson's Disease

    PubMed Central

    Moreau, Caroline; Devedjian, Jean Christophe; Kluza, Jérome; Petrault, Maud; Laloux, Charlotte; Jonneaux, Aurélie; Ryckewaert, Gilles; Garçon, Guillaume; Rouaix, Nathalie; Duhamel, Alain; Jissendi, Patrice; Dujardin, Kathy; Auger, Florent; Ravasi, Laura; Hopes, Lucie; Grolez, Guillaume; Firdaus, Wance; Sablonnière, Bernard; Strubi-Vuillaume, Isabelle; Zahr, Noel; Destée, Alain; Corvol, Jean-Christophe; Pöltl, Dominik; Leist, Marcel; Rose, Christian; Defebvre, Luc; Marchetti, Philippe; Cabantchik, Z. Ioav; Bordet, Régis

    2014-01-01

    Abstract Aims: The pathophysiological role of iron in Parkinson's disease (PD) was assessed by a chelation strategy aimed at reducing oxidative damage associated with regional iron deposition without affecting circulating metals. Translational cell and animal models provided concept proofs and a delayed-start (DS) treatment paradigm, the basis for preliminary clinical assessments. Results: For translational studies, we assessed the effect of oxidative insults in mice systemically prechelated with deferiprone (DFP) by following motor functions, striatal dopamine (HPLC and MRI-PET), and brain iron deposition (relaxation-R2*-MRI) aided by spectroscopic measurements of neuronal labile iron (with fluorescence-sensitive iron sensors) and oxidative damage by markers of protein, lipid, and DNA modification. DFP significantly reduced labile iron and biological damage in oxidation-stressed cells and animals, improving motor functions while raising striatal dopamine. For a pilot, double-blind, placebo-controlled randomized clinical trial, early-stage Parkinson's patients on stabilized dopamine regimens enrolled in a 12-month single-center study with DFP (30 mg/kg/day). Based on a 6-month DS paradigm, early-start patients (n=19) compared to DS patients (n=18) (37/40 completed) responded significantly earlier and sustainably to treatment in both substantia nigra iron deposits (R2* MRI) and Unified Parkinson's Disease Rating Scale motor indicators of disease progression (p<0.03 and p<0.04, respectively). Apart from three rapidly resolved neutropenia cases, safety was maintained throughout the trial. Innovation: A moderate iron chelation regimen that avoids changes in systemic iron levels may constitute a novel therapeutic modality for PD. Conclusions: The therapeutic features of a chelation modality established in translational models and in pilot clinical trials warrant comprehensive evaluation of symptomatic and/or disease-modifying potential of chelation in PD. Antioxid

  13. Passive solar addition to therapeutic pre-school. Final technical report

    SciTech Connect

    Not Available

    1983-10-01

    This project consisted of designing and constructing a passive solar system on a new classroom addition to the Peanut Butter and Jelly Therapeutic Pre-School in Albuquerque, NM. The purpose of this project was to demonstrate the applicability of solar space heating systems to large institutional buildings, and to demonstrate the energy and cost savings available through the use of such systems. Preliminary estimates indicated that the passive solar systems will provide about 90 percent of the heating and cooling needs for the new classroom addition to the school.

  14. Voltage-gated Potassium Channels as Therapeutic Drug Targets

    PubMed Central

    Wulff, Heike; Castle, Neil A.; Pardo, Luis A.

    2009-01-01

    The human genome contains 40 voltage-gated potassium channels (KV) which are involved in diverse physiological processes ranging from repolarization of neuronal or cardiac action potentials, over regulating calcium signaling and cell volume, to driving cellular proliferation and migration. KV channels offer tremendous opportunities for the development of new drugs for cancer, autoimmune diseases and metabolic, neurological and cardiovascular disorders. This review first discusses pharmacological strategies for targeting KV channels with venom peptides, antibodies and small molecules and then highlights recent progress in the preclinical and clinical development of drugs targeting KV1.x, KV7.x (KCNQ), KV10.1 (EAG1) and KV11.1 (hERG) channels. PMID:19949402

  15. Wnt Signaling as a Therapeutic Target for Bone Diseases

    PubMed Central

    Hoeppner, Luke H.; Secreto, Frank J.; Westendorf, Jennifer J.

    2010-01-01

    Background There is a need to develop new bone anabolic agents because current bone regeneration regimens have limitations. The Wingless-type MMTV integration site (Wnt) pathway has emerged as a crucial regulator of bone formation and regeneration. Objective Toreview the molecular basis for Wnt pathway modulation and discuss potential strategies that target it and improve bone mass. Methods Data in peer-reviewed reports and meeting abstracts are discussed. Results/Conclusions Neutralizing inhibitors of Wnt signaling have emerged as promising and feasible strategies. Small molecule inhibitors of GSK3β increase bone mass, lower adiposity and reduce fracture risk. Neutralizing antibodies to Dickkopf 1, secreted Frizzled-related protein 1 and sclerostin produce similar outcomes in animal models. These drugs are exciting breakthroughs, but they are not without risks. The challenges include tissue-specific targeting and consequently, long-term safety. PMID:19335070

  16. Immune checkpoint and inflammation as therapeutic targets in pancreatic carcinoma

    PubMed Central

    Kimbara, Shiro; Kondo, Shunsuke

    2016-01-01

    Pancreatic adenocarcinoma (PAC) is one of the most deadly malignant neoplasms, and the efficacy of conventional cytotoxic chemotherapy is far from satisfactory. Recent research studies have revealed that immunosuppression and inflammation are associated with oncogenesis, as well as tumor development, invasion, and metastasis in PAC. Thus, immunosuppression-related signaling, especially that involving immune checkpoint and inflammation, has emerged as novel treatment targets for PAC. However, PAC is an immune-resistant tumor, and it is still unclear whether immune checkpoint or anti-inflammation therapies would be an ideal strategy. In this article, we will review immune checkpoint and inflammation as potential targets, as well as clinical trials and the prospects for immunotherapy in PAC.

  17. Mitochondria as a Therapeutic Target in Heart Failure

    PubMed Central

    Bayeva, Marina; Gheorghiade, Mihai; Ardehali, Hossein

    2013-01-01

    Heart failure is a pressing public health problem with no curative treatment currently available. The existing therapies provide symptomatic relief, but are unable to reverse molecular changes that occur in cardiomyocytes. The mechanisms of heart failure are complex and multiple, but mitochondrial dysfunction appears to be a critical factor in the development of this disease. Thus, it is important to focus research efforts on targeting mitochondrial dysfunction in the failing heart in order to revive the myocardium and its contractile function. This review highlights the three promising areas for the development of heart failure therapies, including mitochondrial biogenesis, mitochondrial oxidative stress and mitochondrial iron handling. Moreover, the translational potential of compounds targeting these pathways is discussed. PMID:23219298

  18. Immune checkpoint and inflammation as therapeutic targets in pancreatic carcinoma

    PubMed Central

    Kimbara, Shiro; Kondo, Shunsuke

    2016-01-01

    Pancreatic adenocarcinoma (PAC) is one of the most deadly malignant neoplasms, and the efficacy of conventional cytotoxic chemotherapy is far from satisfactory. Recent research studies have revealed that immunosuppression and inflammation are associated with oncogenesis, as well as tumor development, invasion, and metastasis in PAC. Thus, immunosuppression-related signaling, especially that involving immune checkpoint and inflammation, has emerged as novel treatment targets for PAC. However, PAC is an immune-resistant tumor, and it is still unclear whether immune checkpoint or anti-inflammation therapies would be an ideal strategy. In this article, we will review immune checkpoint and inflammation as potential targets, as well as clinical trials and the prospects for immunotherapy in PAC. PMID:27672267

  19. Immune checkpoint and inflammation as therapeutic targets in pancreatic carcinoma.

    PubMed

    Kimbara, Shiro; Kondo, Shunsuke

    2016-09-01

    Pancreatic adenocarcinoma (PAC) is one of the most deadly malignant neoplasms, and the efficacy of conventional cytotoxic chemotherapy is far from satisfactory. Recent research studies have revealed that immunosuppression and inflammation are associated with oncogenesis, as well as tumor development, invasion, and metastasis in PAC. Thus, immunosuppression-related signaling, especially that involving immune checkpoint and inflammation, has emerged as novel treatment targets for PAC. However, PAC is an immune-resistant tumor, and it is still unclear whether immune checkpoint or anti-inflammation therapies would be an ideal strategy. In this article, we will review immune checkpoint and inflammation as potential targets, as well as clinical trials and the prospects for immunotherapy in PAC. PMID:27672267

  20. Mitochondrial Nitroreductase Activity Enables Selective Imaging and Therapeutic Targeting.

    PubMed

    Chevalier, Arnaud; Zhang, Yanmin; Khdour, Omar M; Kaye, Justin B; Hecht, Sidney M

    2016-09-21

    Nitroreductase (NTR) activities have been known for decades, studied extensively in bacteria and also in systems as diverse as yeast, trypanosomes, and hypoxic tumors. The putative bacterial origin of mitochondria prompted us to explore the possible existence of NTR activity within this organelle and to probe its behavior in a cellular context. Presently, by using a profluorescent near-infrared (NIR) dye, we characterize the nature of NTR activity localized in mammalian cell mitochondria. Further, we demonstrate that this mitochondrially localized enzymatic activity can be exploited both for selective NIR imaging of mitochondria and for mitochondrial targeting by activating a mitochondrial poison specifically within that organelle. This constitutes a new mechanism for mitochondrial imaging and targeting. These findings represent the first use of mitochondrial enzyme activity to unmask agents for mitochondrial fluorescent imaging and therapy, which may prove to be more broadly applicable.

  1. Prostanoid receptor EP2 as a therapeutic target.

    PubMed

    Ganesh, Thota

    2014-06-12

    Cycoloxygenase-2 (COX-2) induction is prevalent in a variety of (brain and peripheral) injury models where COX-2 levels correlate with disease progression. Thus, COX-2 has been widely explored for anti-inflammatory therapy with COX-2 inhibitors, which proved to be effective in reducing the pain and inflammation in patients with arthritis and menstrual cramps, but they have not provided any benefit to patients with chronic inflammatory neurodegenerative disease. Recently, two COX-2 drugs, rofecoxib and valdecoxib, were withdrawn from the United States market due to cardiovascular side effects. Thus, future anti-inflammatory therapy could be targeted through a specific prostanoid receptor downstream of COX-2. The PGE2 receptor EP2 is emerging as a pro-inflammatory target in a variety of CNS and peripheral diseases. Here we highlight the latest developments on the role of EP2 in diseases, mechanism of activation, and small molecule discovery targeted either to enhance or to block the function of this receptor.

  2. Update on Aurora Kinase Targeted Therapeutics in Oncology

    PubMed Central

    Green, Myke R.; Woolery, Joseph E.

    2011-01-01

    Introduction Mammalian cells contain three distinct serine/threonine protein kinases with highly conserved catalytic domains, including aurora A and B kinases that are essential regulators of mitotic entry and progression. Overexpression of aurora A and/or B kinase is associated with high proliferation rates and poor prognosis, making them ideal targets for anti-cancer therapy. Disruption of mitotic machinery is a proven anti-cancer strategy employed by multiple chemotherapeutic agents. Numerous small molecule inhibitors of the aurora kinases have been discovered and tested in vivo and in vitro, with a few currently in phase II testing. Areas covered This review provides the reader with updated results from both preclinical and human studies for each of the aurora kinase inhibitors (AKI) that are currently being investigated. The paper also covers in detail the late breaking and phase I data presented for AKIs thereby allowing the reader to compare and contrast individual and classrelated effects of AKIs. Expert opinion While the successful development and approval of an AKI for anti-cancer therapy remains unresolved, pre-clinical identification of resistant mechanisms would help design better early phase clinical trials where relevant combinations may be evaluated prior to phase II testing. The authors believe that aurora kinases are important anti-cancer targets that operate in collaboration with other oncogenes intimately involved in uncontrolled tumor proliferation and by providing a unique, targeted and complimentary anti-cancer mechanism, expand the available armamentarium against cancer. PMID:21556291

  3. Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics.

    PubMed

    Ubaldi, Massimo; Cannella, Nazzareno; Ciccocioppo, Roberto

    2016-01-01

    Drug abuse represents a considerable burden of disease and has enormous economic impacts on societies. Over the years, few medications have been developed for clinical use. Their utilization is endowed with several limitations, including partial efficacy or significant side effects. On the other hand, the successful advancement of these compounds provides an important proof of concept for the feasibility of drug development programs in addiction. In recent years, a wealth of information has been generated on the psychological mechanisms, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption that interact with each other to contribute to disease progression. It is now clear that addiction develops through phases, from initial recreational use to excessive consumption and compulsive drug seeking, with a shift from positive to negative reinforcement driving motivated behaviors. A greater understanding of these mechanisms has opened new vistas in drug development programs. Researchers' attention has been shifted from investigation of classical targets associated with reward to biological substrates responsible for negative reinforcement, impulse loss of control, and maladaptive mechanisms resulting from protracted drug use. From this research, several new biological targets for the development of innovative therapies have started to emerge. This chapter offers an overview of targets currently under scrutiny for the development of new medications for addiction. This work is not exhaustive but rather it provides a few examples of how this research has advanced in recent years by virtue of studies carried out in our laboratory. PMID:26822362

  4. Brain Insulin Resistance and Deficiency as Therapeutic Targets in Alzheimer's Disease

    PubMed Central

    de la Monte, Suzanne M

    2012-01-01

    Alzheimer's disease [AD] is the most common cause of dementia in North America. Despite 30+ years of intense investigation, the field lacks consensus regarding the etiology and pathogenesis of sporadic AD, and therefore we still do not know the best strategies for treating and preventing this debilitating and costly disease. However, growing evidence supports the concept that AD is fundamentally a metabolic disease with substantial and progressive derangements in brain glucose utilization and responsiveness to insulin and insulin-like growth factor [IGF] stimulation. Moreover, AD is now recognized to be heterogeneous in nature, and not solely the end-product of aberrantly processed, misfolded, and aggregated oligomeric amyloid-beta peptides and hyperphosphorylated tau. Other factors, including impairments in energy metabolism, increased oxidative stress, inflammation, insulin and IGF resistance, and insulin/IGF deficiency in the brain should be incorporated into all equations used to develop diagnostic and therapeutic approaches to AD. Herein, the contributions of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism are reviewed. In addition, we discuss current therapeutic strategies and suggest additional approaches based on the hypothesis that AD is principally a metabolic disease similar to diabetes mellitus. Ultimately, our ability to effectively detect, monitor, treat, and prevent AD will require more efficient, accurate and integrative diagnostic tools that utilize clinical, neuroimaging, biochemical, and molecular biomarker data. Finally, it is imperative that future therapeutic strategies for AD abandon the concept of uni-modal therapy in favor of multi-modal treatments that target distinct impairments at different levels within the brain insulin/IGF signaling cascades. PMID:22329651

  5. Morphogen-related therapeutic targets for liver fibrosis

    PubMed Central

    Fung, Eileen; Tsukamoto, Hidekazu

    2015-01-01

    Recent research on hepatic stellate cells (HSCs) has spotlighted the involvement of morphogens in their cell fate determination in liver fibrosis. Temporally and spatially expressed during embryonic development, morphogens are involved in regulation of cell proliferation and differentiation, and tissue patterning. In normal adult liver, morphogens are generally expressed at low levels. However, in liver disease, myofibroblastic HSCs express morphogens such as Wnt, Shh, Necdin, DLK1, and Notch as part of their participation in fibrogenesis and wound healing. Liver regeneration involves cell proliferation and differentiation akin to embryonic liver development where the cells appear to undergo similar fates, and not surprisingly the morphogens are re-activated for the regenerative purpose in adult liver injury. Evidence also points to crosstalk of these morphogens in regulation of HSC fate determination. Genetic ablation or pharmacologic inhibition of morphogens reverts activated HSC to quiescent cells in culture and attenuates progression of hepatic fibrosis. However, positive regulation of liver regeneration by the morphogens needs to be spared. Therapeutically, manipulation of morphogen activities in a cell type and phase-specific manner, should offer new modalities for chronic liver disease. PMID:26206577

  6. PPARγ as a Novel Therapeutic Target in Lung Cancer

    PubMed Central

    2016-01-01

    Lung cancer is the leading cause of cancer-related death, with more than half the patients having advanced-stage disease at the time of initial diagnosis and thus facing a poor prognosis. This dire situation poses a need for new approaches in prevention and treatment. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. Its involvement in adipocyte differentiation and glucose and lipid homeostasis is well-recognized, but accumulating evidence now suggests that PPARγ may also function as a tumor suppressor, inhibiting development of primary tumors and metastases in lung cancer and other malignancies. Besides having prodifferentiation, antiproliferative, and proapoptotic effects, PPARγ agonists have been shown to prevent cancer cells from acquiring the migratory and invasive capabilities essential for successful metastasis. Angiogenesis and secretion of certain matrix metalloproteinases and extracellular matrix proteins within the tumor microenvironment are also regulated by PPARγ. This review of the current literature highlights the potential of PPARγ agonists as novel therapeutic modalities in lung cancer, either as monotherapy or in combination with standard cytotoxic chemotherapy.

  7. Therapeutics targeting inflammation in the immune reconstitution inflammatory syndrome.

    PubMed

    Shahani, Lokesh; Hamill, Richard J

    2016-01-01

    Immune reconstitution inflammatory syndrome (IRIS) is characterized by improvement in a previously incompetent human immune system manifesting as worsening of clinical symptoms secondary to the ability of the immune system to now mount a vigorous inflammatory response. IRIS was first recognized in the setting of human immunodeficiency virus, and this clinical setting continues to be where it is most frequently encountered. Hallmarks of the pathogenesis of IRIS, independent of the clinical presentation and the underlying pathogen, include excessive activation of the immune system, with increased circulating effector memory T cells, and elevated levels of serum cytokines and inflammatory markers. Patients with undiagnosed opportunistic infections remain at risk for unmasking IRIS at the time of active antiretroviral therapy (ART) initiation. Systematic screening for opportunistic infections before starting ART is a key element to prevent this phenomenon. Appropriate management of IRIS requires prompt recognition of the syndrome and exclusion of alternative diagnoses, particularly underlying infections and drug resistance. Controlled studies supporting the use of pharmacologic interventions in IRIS are scare, and recommendations are based on case series and expert opinions. The only controlled trial published to date, showed reduction in morbidity in patients with paradoxical tuberculosis-related IRIS with the use of oral corticosteroids. There are currently limited data to recommend other anti-inflammatory or immunomodulatory therapies that are discussed in this review, and further research is needed. Ongoing research regarding the immune pathogenesis of IRIS will likely direct future rational therapeutic approaches and clinical trials.

  8. PPARγ as a Novel Therapeutic Target in Lung Cancer

    PubMed Central

    2016-01-01

    Lung cancer is the leading cause of cancer-related death, with more than half the patients having advanced-stage disease at the time of initial diagnosis and thus facing a poor prognosis. This dire situation poses a need for new approaches in prevention and treatment. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. Its involvement in adipocyte differentiation and glucose and lipid homeostasis is well-recognized, but accumulating evidence now suggests that PPARγ may also function as a tumor suppressor, inhibiting development of primary tumors and metastases in lung cancer and other malignancies. Besides having prodifferentiation, antiproliferative, and proapoptotic effects, PPARγ agonists have been shown to prevent cancer cells from acquiring the migratory and invasive capabilities essential for successful metastasis. Angiogenesis and secretion of certain matrix metalloproteinases and extracellular matrix proteins within the tumor microenvironment are also regulated by PPARγ. This review of the current literature highlights the potential of PPARγ agonists as novel therapeutic modalities in lung cancer, either as monotherapy or in combination with standard cytotoxic chemotherapy. PMID:27698657

  9. Endogenous Cardiotonic Steroids: Physiology, Pharmacology, and Novel Therapeutic Targets

    PubMed Central

    Bagrov, Alexei Y.; Shapiro, Joseph I.; Fedorova, Olga V.

    2009-01-01

    Endogenous cardiotonic steroids (CTS), also called digitalis-like factors, have been postulated to play important roles in health and disease for nearly half a century. Recent discoveries, which include the specific identification of endogenous cardenolide (endogenous ouabain) and bufadienolide (marinobufagenin) CTS in humans along with the delineation of an alternative mechanism by which CTS can signal through the Na+/K+-ATPase, have increased the interest in this field substantially. Although CTS were first considered important in the regulation of renal sodium transport and arterial pressure, more recent work implicates these hormones in the regulation of cell growth, differentiation, apoptosis, and fibrosis, the modulation of immunity and of carbohydrate metabolism, and the control of various central nervous functions and even behavior. This review focuses on the physiological interactions between CTS and other regulatory systems that may be important in the pathophysiology of essential hypertension, preeclampsia, end-stage renal disease, congestive heart failure, and diabetes mellitus. Based on our increasing understanding of the regulation of CTS as well as the molecular mechanisms of these hormone increases, we also discuss potential therapeutic strategies. PMID:19325075

  10. V-ATPase as an effective therapeutic target for sarcomas

    SciTech Connect

    Perut, Francesca; Avnet, Sofia; Fotia, Caterina; Baglìo, Serena Rubina; Salerno, Manuela; Hosogi, Shigekuni; Kusuzaki, Katsuyuki; Baldini, Nicola

    2014-01-01

    Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern. Esomeprazole administration interfered with proton compartmentalization in acidic organelles and induced a significant dose-dependent toxicity. Among the different histotypes, rhabdomyosarcoma, expressing the highest levels of V-ATPase and whose lysosomes are most acidic, was mostly susceptible to ESOM treatment. - Highlights: • Osteosarcoma, rhabdomyosarcoma, and chondrosarcoma survive in acidic microenvironment. • At acidic extracellular pH, sarcoma survival is dependent on V-ATPase expression. • Esomeprazole administration induce a significant dose-dependent toxicity.

  11. Therapeutics targeting inflammation in the immune reconstitution inflammatory syndrome.

    PubMed

    Shahani, Lokesh; Hamill, Richard J

    2016-01-01

    Immune reconstitution inflammatory syndrome (IRIS) is characterized by improvement in a previously incompetent human immune system manifesting as worsening of clinical symptoms secondary to the ability of the immune system to now mount a vigorous inflammatory response. IRIS was first recognized in the setting of human immunodeficiency virus, and this clinical setting continues to be where it is most frequently encountered. Hallmarks of the pathogenesis of IRIS, independent of the clinical presentation and the underlying pathogen, include excessive activation of the immune system, with increased circulating effector memory T cells, and elevated levels of serum cytokines and inflammatory markers. Patients with undiagnosed opportunistic infections remain at risk for unmasking IRIS at the time of active antiretroviral therapy (ART) initiation. Systematic screening for opportunistic infections before starting ART is a key element to prevent this phenomenon. Appropriate management of IRIS requires prompt recognition of the syndrome and exclusion of alternative diagnoses, particularly underlying infections and drug resistance. Controlled studies supporting the use of pharmacologic interventions in IRIS are scare, and recommendations are based on case series and expert opinions. The only controlled trial published to date, showed reduction in morbidity in patients with paradoxical tuberculosis-related IRIS with the use of oral corticosteroids. There are currently limited data to recommend other anti-inflammatory or immunomodulatory therapies that are discussed in this review, and further research is needed. Ongoing research regarding the immune pathogenesis of IRIS will likely direct future rational therapeutic approaches and clinical trials. PMID:26303886

  12. The Sphenopalatine Ganglion: Anatomy, Pathophysiology, and Therapeutic Targeting in Headache.

    PubMed

    Robbins, Matthew S; Robertson, Carrie E; Kaplan, Eugene; Ailani, Jessica; Charleston, Larry; Kuruvilla, Deena; Blumenfeld, Andrew; Berliner, Randall; Rosen, Noah L; Duarte, Robert; Vidwan, Jaskiran; Halker, Rashmi B; Gill, Nicole; Ashkenazi, Avi

    2016-02-01

    The sphenopalatine ganglion (SPG) has attracted the interest of practitioners treating head and face pain for over a century because of its anatomical connections and role in the trigemino-autonomic reflex. In this review, we discuss the anatomy of the SPG, as well as what is known about its role in the pathophysiology of headache disorders, including cluster headache and migraine. We then address various therapies that target the SPG, including intranasal medication delivery, new SPG blocking catheter devices, neurostimulation, chemical neurolysis, and ablation procedures.

  13. Beyond the dopamine receptor: novel therapeutic targets for treating schizophrenia

    PubMed Central

    Coyle, Joseph T.; Balu, Darrick; Benneyworth, Michael; Basu, Alo; Roseman, Alexander

    2010-01-01

    All current drugs approved to treat schizophrenia appear to exert their antipsychotic effects through blocking the dopamine D2 receptor. Recent meta-analyses and comparative efficacy studies indicate marginal differences in efficacy of newer atypical antipsychotics and the older drugs, and little effects on negative and cognitive symptoms. This review integrates findings from postmortem, imaging, and drug-challenge studies to elucidate a corticolimbic “pathologic circuit” in schizophrenia that may be particularly relevant to the negative symptoms and cognitive impairments of schizophrenia. Potential sites for pharmacologic intervention targeting glutatatergic, GABAergic, and cholinergic neurotransmission to treat these symptoms of schizophrenia are discussed. PMID:20954431

  14. MDSCs in cancer: Conceiving new prognostic and therapeutic targets.

    PubMed

    De Sanctis, Francesco; Solito, Samantha; Ugel, Stefano; Molon, Barbara; Bronte, Vincenzo; Marigo, Ilaria

    2016-01-01

    The incomplete clinical efficacy of anti-tumor immunotherapy can depend on the presence of an immunosuppressive environment in the host that supports tumor progression. Tumor-derived cytokines and growth factors induce an altered hematopoiesis that modifies the myeloid cell differentiation process, promoting proliferation and expansion of cells with immunosuppressive skills, namely myeloid derived suppressor cells (MDSCs). MDSCs promote tumor growth not only by shaping immune responses towards tumor tolerance, but also by supporting several processes necessary for the neoplastic progression such as tumor angiogenesis, cancer stemness, and metastasis dissemination. Thus, MDSC targeting represents a promising tool to eliminate host immune dysfunctions and increase the efficacy of immune-based cancer therapies.

  15. Therapeutic Targets in Sepsis: Past, Present, and Future.

    PubMed

    Seeley, Eric J; Bernard, Gordon R

    2016-06-01

    Antibiotics and fluids have been standard treatment for sepsis since World War II. Many molecular mediators of septic shock have since been identified. In models of sepsis, blocking these mediators improved organ injury and decreased mortality. Clinical trials, however, have failed. The absence of new therapies has been vexing to clinicians, clinical researchers, basic scientists, and the pharmaceutical industry. This article examines the evolution of sepsis therapy and theorizes about why so many well-reasoned therapies have not worked in human trials. We review new molecular targets for sepsis and examine trial designs that might lead to successful treatments for sepsis. PMID:27229636

  16. MicroRNAs as predictive biomarkers and therapeutic targets in prostate cancer

    PubMed Central

    Wen, Xin; Deng, Fang-Ming; Wang, Jinhua

    2014-01-01

    Prostatectomy or irradiation is the most common traditional treatments for localized prostate cancer. In the event of recurrence and/or metastasis, androgen ablation therapy has been the mainstay treatment for many years. Although initially effective, the cancer inevitably recurs as androgen-independent PCa, a disease with limited effective treatments. Enhanced predictive biomarkers are needed at the time of diagnosis to better tailor therapies for patients. MicroRNAs are short nucleotide sequences which can complementary bind to and control gene expression at the post-transcriptional level. Recent studies have demonstrated that many miRNAs are variably expressed in cancers vs. normal tissues, including PCa. In this review, we summarize PCa-specific miRNAs that show potential for their utilization as identifiers of aggressive disease and predictors for risk of recurrence. Additionally, we discuss their potential clinical applications as biomarkers and therapeutic targets. PMID:25374924

  17. The apelin-APJ axis: A novel potential therapeutic target for organ fibrosis.

    PubMed

    Huang, Shifang; Chen, Linxi; Lu, Liqun; Li, Lanfang

    2016-05-01

    Apelin, an endogenous ligand of the G-protein-coupled receptor APJ, is expressed in a diverse number of organs. The apelin-APJ axis helps to control the processes of pathological and physiological fibrosis, including renal fibrosis, cardiac fibrosis, liver fibrosis and pulmonary fibrosis. However, the role of apelin-APJ in organ fibrosis remains controversial due to conflicting study results. The apelin-APJ axis is a detrimental mechanism which promotes liver fibrosis mainly via up-regulation the expression of collagen-II and platelet-derived growth factor receptor β (PDGFRβ). On the contrary, the apelin-APJ axis is beneficial for renal fibrosis, cardiac fibrosis and pulmonary fibrosis. The apelin-APJ axis alleviates renal fibrosis by restraining the expression of transforming growth factor-β1 (TGF-β1). In addition, the apelin-APJ axis attenuates cardiac fibrosis through multiple pathways. Furthermore, the apelin-APJ axis has beneficial effects on experimental bronchopulmonary dysplasia (BPD) and acute respiratory distress syndrome (ARDS) which suggest the apelin-APJ axis potentially alleviates pulmonary fibrosis. In this article, we review the controversies associated with apelin-APJ in organ fibrosis and introduce the drugs that target apelin-APJ. We conclude that future studies should place more emphasis on the relationship among apelin isoforms, APJ receptor subtypes and organ fibrosis. The apelin-APJ axis will be a potential therapeutic target and those drugs targeted for apelin-APJ may constitute a novel therapeutic strategy for renal fibrosis, cardiac fibrosis, liver fibrosis and pulmonary fibrosis. PMID:26944568

  18. IKK is a therapeutic target in KRAS-Induced lung cancer with disrupted p53 activity

    PubMed Central

    Bassères, Daniela S.; Ebbs, Aaron; Cogswell, Patricia C.; Baldwin, Albert S.

    2014-01-01

    Activating mutations in KRAS are prevalent in cancer, but therapies targeted to oncogenic RAS have been ineffective to date. These results argue that targeting downstream effectors of RAS will be an alternative route for blocking RAS-driven oncogenic pathways. We and others have shown that oncogenic RAS activates the NF-κB transcription factor pathway and that KRAS-induced lung tumorigenesis is suppressed by expression of a degradation-resistant form of the IκBα inhibitor or by genetic deletion of IKKβ or the RELA/p65 subunit of NF-κB. Here, genetic and pharmacological approaches were utilized to inactivate IKK in human primary lung epithelial cells transformed by KRAS, as well as KRAS mutant lung cancer cell lines. Administration of the highly specific IKKβ inhibitor Compound A (CmpdA) led to NF-κB inhibition in different KRAS mutant lung cells and siRNA-mediated knockdown of IKKα or IKKβ reduced activity of the NF-κB canonical pathway. Next, we determined that both IKKα and IKKβ contribute to oncogenic properties of KRAS mutant lung cells, particularly when p53 activity is disrupted. Based on these results, CmpdA was tested for potential therapeutic intervention in the Kras-induced lung cancer mouse model (LSL-KrasG12D) combined with loss of p53 (LSL-KrasG12D/p53fl/fl). CmpdA treatment was well tolerated and mice treated with this IKKβ inhibitor presented smaller and lower grade tumors than mice treated with placebo. Additionally, IKKβ inhibition reduced inflammation and angiogenesis. These results support the concept of targeting IKK as a therapeutic approach for oncogenic RAS-driven tumors with altered p53 activity. PMID:24955217

  19. SPARC: A Potential Prognostic and Therapeutic Target in Pancreatic Cancer.

    PubMed

    Vaz, Juan; Ansari, Daniel; Sasor, Agata; Andersson, Roland

    2015-10-01

    Pancreatic cancer is a complex and heterogeneous disease that often lacks disease-specific symptoms in early stages. The malignancy is currently the fourth leading cause of cancer-related death in Western countries. In advanced stages, the overall 5-year survival is less than 1% to 2%. Most available treatments lack convincing cost-efficiency determinations and are generally not associated with relevant success rates. Targeting stromal components and stromal depletion is currently becoming an area of extensive research in pancreatic cancer. In this context, a glycoprotein, SPARC (secreted protein acidic and rich in cysteine) appears to play a central role. Still, the role of SPARC in carcinogenesis is controversial because conflicting results have been reported, and the pathways involved in SPARC signaling are not well established. Nonetheless, SPARC is highly expressed in the tumor stroma, principally in peritumoral fibroblasts, and the overexpression of SPARC in this compartment is associated with poorer prognosis. Interestingly, it has been suggested that SPARC present in the tumor stroma could sequester albumin-bound paclitaxel, enhancing the delivery of paclitaxel into the tumor microenvironment. In the present review, we summarize the known associations between SPARC and pancreatic cancer. Moreover, present and future therapies comprising SPARC-targeting are discussed. PMID:26335014

  20. Therapeutic targets in prostaglandin E2 signaling for neurologic disease

    PubMed Central

    Cimino, P.J.; Keene, C. Dirk; Breyer, Richard M.; Montine, Kathleen S.; Montine, Thomas J.

    2009-01-01

    Prostaglandins (PGs) are potent autocrine and paracrine oxygenated lipid molecules that contribute appreciably to physiologic and pathophysiologic responses in almost all organs, including brain. Emerging data indicate that the PGs, and more specifically PGE2, play a central role in brain diseases including ischemic injury and several neurodegenerative diseases. Given concerns over the potential toxicity from protracted use of cyclooxygenase inhibitors in the elderly, attention is now focused on blocking PGE2 signaling that is mediated by interactions with four distinct G protein-coupled receptors, EP1-4, which are differentially expressed on neuronal and glial cells throughout the central nervous system. EP1 activation has been shown to mediate Ca2+-dependent neurotoxicity in ischemic injury. EP2 activation has been shown to mediate microglial-induced paracrine neurotoxicity as well as suppress microglia internalization of aggregated neurotoxic peptides. Animal models support the potential efficacy of targeting specific EP receptor subtypes in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and ischemic stroke. However promising these preclinical studies are, they have yet to be followed by clinical trials targeting any EP receptor in neurologic diseases. PMID:18691044

  1. Nuclear receptor coregulators: modulators of pathology and therapeutic targets

    PubMed Central

    Lonard, David M.; O’Malley, Bert W.

    2013-01-01

    The nuclear receptor superfamily includes transcription factors that transduce steroid, thyroid and retinoid hormones and other ligands in conjunction with coregulators. To date, over 350 coregulators have been reported in the literature, and advances in proteomic analyses of coregulator protein complexes have revealed that a far greater number of coregulator-interacting proteins also exist. Coregulator dysfunction has been implicated in diverse pathological states, genetic syndromes and cancer. A hallmark of disease related to the disruption of normal coregulator function is the pleiotropic effect on animal physiology, which is frequently manifested as the dysregulation of metabolic and neurological systems. Coregulators have broad physiological and pathological functions that make them promising new drug targets for diseases such as hormone-dependent cancers. Advances in proteomics, genomics and transcriptomics have provided novel insights into the biology of coregulators at a system-wide level and will lead the way to a new understanding of how coregulators can be evaluated in the context of complex and multifaceted genetic factors, hormones, diet, the environment and stress. Ultimately, better knowledge of the associations that exist between coregulator function and human diseases is expected to expand the indications for the use of future coregulator-targeted drugs. PMID:22733267

  2. Matricellular proteins in drug delivery: Therapeutic targets, active agents, and therapeutic localization.

    PubMed

    Sawyer, Andrew J; Kyriakides, Themis R

    2016-02-01

    Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases.

  3. Targeting nicotine addiction: the possibility of a therapeutic vaccine

    PubMed Central

    Escobar-Chávez, José Juan; Domínguez-Delgado, Clara Luisa; Rodríguez-Cruz, Isabel Marlen

    2011-01-01

    Cigarette smoking is the primary cause of lung cancer, cardiovascular diseases, reproductive disorders, and delayed wound healing all over the world. The goals of smoking cessation are both to reduce health risks and to improve quality of life. The development of novel and more effective medications for smoking cessation is crucial in the treatment of nicotine dependence. Currently, first-line smoking cessation therapies include nicotine replacement products and bupropion. The partial nicotinic receptor agonist, varenicline, has recently been approved by the US Food and Drug Administration (FDA) for smoking cessation. Clonidine and nortriptyline have demonstrated some efficacy, but side effects may limit their use to second-line treatment products. Other therapeutic drugs that are under development include rimonabant, mecamylamine, monoamine oxidase inhibitors, and dopamine D3 receptor antagonists. Nicotine vaccines are among newer products seeking approval from the FDA. Antidrug vaccines are irreversible, provide protection over years and need booster injections far beyond the critical phase of acute withdrawal symptoms. Interacting with the drug in the blood rather than with a receptor in the brain, the vaccines are free of side effects due to central interaction. For drugs like nicotine, which interacts with different types of receptors in many organs, this is a further advantage. Three anti-nicotine vaccines are today in an advanced stage of clinical evaluation. Results show that the efficiency of the vaccines is directly related to the antibody levels, a fact which will help to optimize the vaccine effect. The vaccines are expected to appear on the market between 2011 and 2012. PMID:21607018

  4. Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma.

    PubMed

    Rosean, Timothy R; Tompkins, Van S; Tricot, Guido; Holman, Carol J; Olivier, Alicia K; Zhan, Fenghuang; Janz, Siegfried

    2014-08-01

    Studies on the biologic and molecular genetic underpinnings of multiple myeloma (MM) have identified the pleiotropic, pro-inflammatory cytokine, interleukin-6 (IL-6), as a factor crucial to the growth, proliferation and survival of myeloma cells. IL-6 is also a potent stimulator of osteoclastogenesis and a sculptor of the tumor microenvironment in the bone marrow of patients with myeloma. This knowledge has engendered considerable interest in targeting IL-6 for therapeutic purposes, using a variety of antibody- and small-molecule-based therapies. However, despite the early recognition of the importance of IL-6 for myeloma and the steady progress in our knowledge of IL-6 in normal and malignant development of plasma cells, additional efforts will be required to translate the promise of IL-6 as a target for new myeloma therapies into significant clinical benefits for patients with myeloma. This review summarizes published research on the role of IL-6 in myeloma development and describes ongoing efforts by the University of Iowa Myeloma Multidisciplinary Oncology Group to develop new approaches to the design and testing of IL-6-targeted therapies and preventions of MM.

  5. Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens

    PubMed Central

    Abushahba, Mostafa F. N.; Mohammad, Haroon; Thangamani, Shankar; Hussein, Asmaa A. A.; Seleem, Mohamed N.

    2016-01-01

    There is a pressing need for novel and innovative therapeutic strategies to address infections caused by intracellular pathogens. Peptide nucleic acids (PNAs) present a novel method to target intracellular pathogens due to their unique mechanism of action and their ability to be conjugated to cell penetrating peptides (CPP) to overcome challenging delivery barriers. In this study, we targeted the RNA polymerase α subunit (rpoA) using a PNA that was covalently conjugated to five different CPPs. Changing the conjugated CPP resulted in a pronounced improvement in the antibacterial activity observed against Listeria monocytogenes in vitro, in cell culture, and in a Caenorhabditis elegans (C. elegans) infection model. Additionally, a time-kill assay revealed three conjugated CPPs rapidly kill Listeria within 20 minutes without disrupting the bacterial cell membrane. Moreover, rpoA gene silencing resulted in suppression of its message as well as reduced expression of other critical virulence genes (Listeriolysin O, and two phospholipases plcA and plcB) in a concentration-dependent manner. Furthermore, PNA-inhibition of bacterial protein synthesis was selective and did not adversely affect mitochondrial protein synthesis. This study provides a foundation for improving and developing PNAs conjugated to CPPs to better target intracellular pathogens. PMID:26860980

  6. Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens.

    PubMed

    Abushahba, Mostafa F N; Mohammad, Haroon; Thangamani, Shankar; Hussein, Asmaa A A; Seleem, Mohamed N

    2016-02-10

    There is a pressing need for novel and innovative therapeutic strategies to address infections caused by intracellular pathogens. Peptide nucleic acids (PNAs) present a novel method to target intracellular pathogens due to their unique mechanism of action and their ability to be conjugated to cell penetrating peptides (CPP) to overcome challenging delivery barriers. In this study, we targeted the RNA polymerase α subunit (rpoA) using a PNA that was covalently conjugated to five different CPPs. Changing the conjugated CPP resulted in a pronounced improvement in the antibacterial activity observed against Listeria monocytogenes in vitro, in cell culture, and in a Caenorhabditis elegans (C. elegans) infection model. Additionally, a time-kill assay revealed three conjugated CPPs rapidly kill Listeria within 20 minutes without disrupting the bacterial cell membrane. Moreover, rpoA gene silencing resulted in suppression of its message as well as reduced expression of other critical virulence genes (Listeriolysin O, and two phospholipases plcA and plcB) in a concentration-dependent manner. Furthermore, PNA-inhibition of bacterial protein synthesis was selective and did not adversely affect mitochondrial protein synthesis. This study provides a foundation for improving and developing PNAs conjugated to CPPs to better target intracellular pathogens.

  7. Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma

    PubMed Central

    Rosean, Timothy R.; Tompkins, Van S.; Tricot, Guido; Holman, Carol J.; Olivier, Alicia K.; Zhan, Fenghuang; Janz, Siegfried

    2014-01-01

    Studies on the biologic and molecular genetic underpinnings of multiple myeloma (MM) have identified the pleiotropic, pro-inflammatory cytokine, interleukin-6 (IL-6), as a factor crucial to the growth, proliferation and survival of myeloma cells. IL-6 is also a potent stimulator of osteoclastogenesis and a sculptor of the tumor microenvironment in the bone marrow of patients with myeloma. This knowledge has engendered considerable interest in targeting IL-6 for therapeutic purposes, using a variety of antibody- and small-molecule-based therapies. However, despite the early recognition of the importance of IL-6 for myeloma and the steady progress in our knowledge of IL-6 in normal and malignant development of plasma cells, additional efforts will be required to translate the promise of IL-6 as a target for new myeloma therapies into significant clinical benefits for patients with myeloma. This review summarizes published research on the role of IL-6 in myeloma development and describes ongoing efforts by the University of Iowa Myeloma Multidisciplinary Oncology Group to develop new approaches to the design and testing of IL-6-targeted therapies and preventions of MM. PMID:24845460

  8. NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives.

    PubMed

    McCann, Sarah K; Roulston, Carli L

    2013-01-01

    Oxidative stress caused by an excess of reactive oxygen species (ROS) is known to contribute to stroke injury, particularly during reperfusion, and antioxidants targeting this process have resulted in improved outcomes experimentally. Unfortunately these improvements have not been successfully translated to the clinical setting. Targeting the source of oxidative stress may provide a superior therapeutic approach. The NADPH oxidases are a family of enzymes dedicated solely to ROS production and pre-clinical animal studies targeting NADPH oxidases have shown promising results. However there are multiple factors that need to be considered for future drug development: There are several homologues of the catalytic subunit of NADPH oxidase. All have differing physiological roles and may contribute differentially to oxidative damage after stroke. Additionally, the role of ROS in brain repair is largely unexplored, which should be taken into consideration when developing drugs that inhibit specific NADPH oxidases after injury. This article focuses on the current knowledge regarding NADPH oxidase after stroke including in vivo genetic and inhibitor studies. The caution required when interpreting reports of positive outcomes after NADPH oxidase inhibition is also discussed, as effects on long term recovery are yet to be investigated and are likely to affect successful clinical translation. PMID:24961415

  9. The CBM signalosome: Potential therapeutic target for aggressive lymphoma?

    PubMed Central

    Yang, Chenghua; David, Liron; Qiao, Qi; Damko, Ermelinda; Wu, Hao

    2014-01-01

    The CBM signalosome plays a pivotal role in mediating antigen-receptor induced NF-κB signaling to regulate lymphocyte functions. The CBM complex forms filamentous structure and recruits downstream signaling components to activate NF-κB. MALT1, the protease component in the CBM complex, cleaves key proteins in the feedback loop of the NF-κB signaling pathway and enhances NF-κB activation. The aberrant activity of the CBM complex has been linked to aggressive lymphoma. Recent years have witnessed dramatic progresses in understanding the assembly mechanism of the CBM complex, and advances in the development of targeted therapy for aggressive lymphoma. Here, we will highlight these progresses and give an outlook on the potential translation of this knowledge from bench to bedside for aggressive lymphoma patients. PMID:24411492

  10. Autophagy as a target for therapeutic uses of multifunctional peptides.

    PubMed

    Muciño, Gabriel; Castro-Obregón, Susana; Hernandez-Pando, Rogelio; Del Rio, Gabriel

    2016-04-01

    The emergence of complex diseases is promoting a change from one-target to multitarget drugs and peptides are ideal molecules to fulfill this polypharmacologic role. Here we review current status in the design of polypharmacological peptides aimed to treat complex diseases, focusing on tuberculosis. In this sense, combining multiple activities in single molecules is a two-sided sword, as both positive and negative side effects might arise. These polypharmacologic compounds may be directed to regulate autophagy, a catabolic process that enables cells to eliminate intracellular microbes (xenophagy), such as Mycobacterium tuberculosis (MBT). Here we review some strategies to control MBT infection and propose that a peptide combining both antimicrobial and pro-autophagic activities would have a greater potential to limit MBT infection. This endeavor may complement the knowledge gained in understanding the mechanism of action of antibiotics and may lead to the design of better polypharmacological peptides to treat complex diseases such as tuberculosis. PMID:26968336

  11. BMI-1, a promising therapeutic target for human cancer

    PubMed Central

    WANG, MIN-CONG; LI, CHUN-LI; CUI, JIE; JIAO, MIN; WU, TAO; JING, LI; NAN, KE-JUN

    2015-01-01

    BMI-1 oncogene is a member of the polycomb-group gene family and a transcriptional repressor. Overexpression of BMI-1 has been identified in various human cancer tissues and is known to be involved in cancer cell proliferation, cell invasion, distant metastasis, chemosensitivity and patient survival. Accumulating evidence has revealed that BMI-1 is also involved in the regulation of self-renewal, differentiation and tumor initiation of cancer stem cells (CSCs). However, the molecular mechanisms underlying these biological processes remain unclear. The present review summarized the function of BMI-1 in different human cancer types and CSCs, and discussed the signaling pathways in which BMI-1 is potentially involved. In conclusion, BMI-1 may represent a promising target for the prevention and therapy of various cancer types. PMID:26622537

  12. Skp2 is a Promising Therapeutic Target in Breast Cancer

    PubMed Central

    Wang, Zhiwei; Fukushima, Hidefumi; Inuzuka, Hiroyuki; Wan, Lixin; Liu, Pengda; Gao, Daming; Sarkar, Fazlul H.; Wei, Wenyi

    2011-01-01

    Breast cancer is the most common type of cancer among American women, and remains the second leading cause of cancer-related death for female in the United States. It has been known that several signaling pathways and various factors play critical roles in the development and progression of breast cancer, such as estrogen receptor, Notch, PTEN, human epidermal growth factor receptor 2, PI3K/Akt, BRCA1, and BRCA2. Emerging evidence has shown that the F-box protein S-phase kinase associated protein 2 (Skp2) also plays an important role in the pathogenesis of breast cancer. Therefore, in this brief review, we summarize the novel functions of Skp2 in the pathogenesis of breast cancer. Moreover, we provide further evidence regarding the state of our knowledge toward the development of novel Skp2 inhibitors especially natural “chemopreventive agents” as targeted approach for the prevention and/or treatment of breast cancer. PMID:22279619

  13. Albuminuria Is an Appropriate Therapeutic Target in Patients with CKD: The Pro View

    PubMed Central

    Gansevoort, Ron T.

    2015-01-01

    The presence of elevated levels of albuminuria is associated with an increased risk of progressive renal function loss over time. This association is found in various pathophysiological conditions, including diabetic nephropathy, hypertensive nephropathy, and various primary renal diseases, but also, the general, otherwise healthy population. Emerging data report that elevated albuminuria causes tubulointerstitial damage through activation of proinflammatory mediators, which ultimately leads to a progressive decline in renal function. Nowadays, various drugs are available that decrease the rate of GFR loss in patients with kidney disease. Well known are renin-angiotensin-aldosterone system inhibitors, but there are also other drugs and interventions, like intensive glucose control, anti-inflammatory agents (pentoxifylline), or a low-protein diet. These interventions have an additional effect beyond their original target, namely lowering albuminuria. Analyses from clinical trials show that the reduction in albuminuria observed during the first months of treatment with these drugs correlates with the degree of long-term renal protection: the larger the initial reduction in albuminuria, the lower the risk of ESRD during treatment. In addition, in treated patients, residual albuminuria is again the strongest risk marker for renal disease progression. These observations combined provide a strong argument that albuminuria is an appropriate therapeutic target in patients with CKD. PMID:25887073

  14. WIP1 phosphatase as a potential therapeutic target in neuroblastoma.

    PubMed

    Richter, Mark; Dayaram, Tajhal; Gilmartin, Aidan G; Ganji, Gopinath; Pemmasani, Sandhya Kiran; Van Der Key, Harjeet; Shohet, Jason M; Donehower, Lawrence A; Kumar, Rakesh

    2015-01-01

    The wild-type p53-induced phosphatase 1 (WIP1) is a serine/threonine phosphatase that negatively regulates multiple proteins involved in DNA damage response including p53, CHK2, Histone H2AX, and ATM, and it has been shown to be overexpressed or amplified in human cancers including breast and ovarian cancers. We examined WIP1 mRNA levels across multiple tumor types and found the highest levels in breast cancer, leukemia, medulloblastoma and neuroblastoma. Neuroblastoma is an exclusively TP53 wild type tumor at diagnosis and inhibition of p53 is required for tumorigenesis. Neuroblastomas in particular have previously been shown to have 17q amplification, harboring the WIP1 (PPM1D) gene and associated with poor clinical outcome. We therefore sought to determine whether inhibiting WIP1 with a selective antagonist, GSK2830371, can attenuate neuroblastoma cell growth through reactivation of p53 mediated tumor suppression. Neuroblastoma cell lines with wild-type TP53 alleles were highly sensitive to GSK2830371 treatment, while cell lines with mutant TP53 were resistant to GSK2830371. The majority of tested neuroblastoma cell lines with copy number gains of the PPM1D locus were also TP53 wild-type and sensitive to GSK2830371A; in contrast cell lines with no copy gain of PPM1D were mixed in their sensitivity to WIP1 inhibition, with the primary determinant being TP53 mutational status. Since WIP1 is involved in the cellular response to DNA damage and drugs used in neuroblastoma treatment induce apoptosis through DNA damage, we sought to determine whether GSK2830371 could act synergistically with standard of care chemotherapeutics. Treatment of wild-type TP53 neuroblastoma cell lines with both GSK2830371 and either doxorubicin or carboplatin resulted in enhanced cell death, mediated through caspase 3/7 induction, as compared to either agent alone. Our data suggests that WIP1 inhibition represents a novel therapeutic approach to neuroblastoma that could be integrated with

  15. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy

    PubMed Central

    Hernández, Cristina; Simó, Rafael

    2016-01-01

    Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed. PMID:27123463

  16. DNA repair: From genome maintenance to biomarker and therapeutic target

    PubMed Central

    Jalal, Shadia; Earley, Jennifer N.; Turchi, John J.

    2011-01-01

    A critical link exists between an individual's ability to repair cellular DNA damage and cancer development, progression and response to therapy. Knowledge gained regarding the proteins involved and types of damage repaired by the individual DNA repair pathways has led to the development of a variety of assays aimed at determining an individual's DNA repair capacity. These assays and their use in the analysis of clinical samples has yielded useful though somewhat conflicting data. In this review article, we discuss the major DNA repair pathways, the proteins and genes required for each, assays used to assess activity and the relevant clinical studies to date. With the recent results from clinical trials targeting specific DNA repair proteins for the treatment of cancer, accurate, reproducible and relevant analysis of DNA repair takes on an even greater significance. We highlight the strengths and limitations of these DNA repair studies and assays with respect to the clinical assessment of DNA repair capacity to determine cancer development and response to therapy. PMID:21908578

  17. The meninges: new therapeutic targets for multiple sclerosis.

    PubMed

    Russi, Abigail E; Brown, Melissa A

    2015-02-01

    The central nervous system (CNS) largely comprises nonregenerating cells, including neurons and myelin-producing oligodendrocytes, which are particularly vulnerable to immune cell-mediated damage. To protect the CNS, mechanisms exist that normally restrict the transit of peripheral immune cells into the brain and spinal cord, conferring an "immune-specialized" status. Thus, there has been a long-standing debate as to how these restrictions are overcome in several inflammatory diseases of the CNS, including multiple sclerosis (MS). In this review, we highlight the role of the meninges, tissues that surround and protect the CNS and enclose the cerebral spinal fluid, in promoting chronic inflammation that leads to neuronal damage. Although the meninges have traditionally been considered structures that provide physical protection for the brain and spinal cord, new data have established these tissues as sites of active immunity. It has been hypothesized that the meninges are important players in normal immunosurveillance of the CNS but also serve as initial sites of anti-myelin immune responses. The resulting robust meningeal inflammation elicits loss of localized blood-brain barrier (BBB) integrity and facilitates a large-scale influx of immune cells into the CNS parenchyma. We propose that targeting the cells and molecules mediating these inflammatory responses within the meninges offers promising therapies for MS that are free from the constraints imposed by the BBB. Importantly, such therapies may avoid the systemic immunosuppression often associated with the existing treatments.

  18. The mitochondrial death pathway: a promising therapeutic target in diseases

    PubMed Central

    Gupta, Sanjeev; Kass, George EN; Szegezdi, Eva; Joseph, Bertrand

    2009-01-01

    The mitochondrial pathway to apoptosis is a major pathway of physiological cell death in vertebrates. The mitochondrial cell death pathway commences when apoptogenic molecules present between the outer and inner mitochondrial membranes are released into the cytosol by mitochondrial outer membrane permeabilization (MOMP). BCL-2 family members are the sentinels of MOMP in the mitochondrial apoptotic pathway; the pro-apoptotic B cell lymphoma (BCL)-2 proteins, BCL-2 associated x protein and BCL-2 antagonist killer 1 induce MOMP whereas the anti-apoptotic BCL-2 proteins, BCL-2, BCL-xl and myeloid cell leukaemia 1 prevent MOMP from occurring. The release of pro-apoptotic factors such as cytochrome c from mitochondria leads to formation of a multimeric complex known as the apoptosome and initiates caspase activation cascades. These pathways are important for normal cellular homeostasis and play key roles in the pathogenesis of many diseases. In this review, we will provide a brief overview of the mitochondrial death pathway and focus on a selection of diseases whose pathogenesis involves the mitochondrial death pathway and we will examine the various pharmacological approaches that target this pathway. PMID:19220575

  19. Proteomic Approaches and Identification of Novel Therapeutic Targets for Alcoholism

    PubMed Central

    Gorini, Giorgio; Adron Harris, R; Dayne Mayfield, R

    2014-01-01

    Recent studies have shown that gene regulation is far more complex than previously believed and does not completely explain changes at the protein level. Therefore, the direct study of the proteome, considerably different in both complexity and dynamicity to the genome/transcriptome, has provided unique insights to an increasing number of researchers. During the past decade, extraordinary advances in proteomic techniques have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. When combined with complementary approaches, these advances provide the contextual information for decoding large data sets into meaningful biologically adaptive processes. Neuroproteomics offers potential breakthroughs in the field of alcohol research by leading to a deeper understanding of how alcohol globally affects protein structure, function, interactions, and networks. The wealth of information gained from these advances can help pinpoint relevant biomarkers for early diagnosis and improved prognosis of alcoholism and identify future pharmacological targets for the treatment of this addiction. PMID:23900301

  20. CD30 is a potential therapeutic target in malignant mesothelioma.

    PubMed

    Dabir, Snehal; Kresak, Adam; Yang, Michael; Fu, Pingfu; Wildey, Gary; Dowlati, Afshin

    2015-03-01

    CD30 is a cytokine receptor belonging to the TNF superfamily (TNFRSF8) that acts as a regulator of apoptosis. The presence of CD30 antigen is important in the diagnosis of Hodgkin disease and anaplastic large cell lymphoma. There have been sporadic reports of CD30 expression in nonlymphoid tumors, including malignant mesothelioma. Given the remarkable success of brentuximab vedotin, an antibody-drug conjugate directed against CD30 antigen, in lymphoid malignancies, we undertook a study to examine the incidence of CD30 in mesothelioma and to investigate the ability to target CD30 antigen in mesothelioma. Mesothelioma tumor specimens (N = 83) were examined for CD30 expression by IHC. Positive CD30 expression was noted in 13 mesothelioma specimens, primarily those of epithelial histology. There was no significant correlation of CD30 positivity with tumor grade, stage, or survival. Examination of four mesothelioma cell lines (H28, H2052, H2452, and 211H) for CD30 expression by both FACS analysis and confocal microscopy showed that CD30 antigen localized to the cell membrane. Brentuximab vedotin treatment of cultured mesothelioma cells produced a dose-dependent decrease in cell growth and viability at clinically relevant concentrations. Our studies validate the presence of CD30 antigen in a subgroup of epithelial-type mesothelioma tumors and indicate that selected mesothelioma patients may derive benefit from brentuximab vedotin treatment.

  1. CD30 is a potential therapeutic target in malignant mesothelioma

    PubMed Central

    Dabir, Snehal; Kresak, Adam; Yang, Michael; Fu, Pingfu; Wildey, Gary; Dowlati, Afshin

    2015-01-01

    CD30 is a cytokine receptor belonging to the tumor necrosis factor superfamily (TNFRSF8) that acts as a regulator of apoptosis. The presence of CD30 antigen is important in the diagnosis of Hodgkin’s disease and anaplastic large cell lymphoma. There have been sporadic reports of CD30 expression in non-lymphoid tumors, including malignant mesothelioma. Given the remarkable success of brentuximab vedotin, an antibody-drug conjugate directed against CD30 antigen, in lymphoid malignancies, we undertook a study to examine the incidence of CD30 in mesothelioma and to investigate the ability to target CD30 antigen in mesothelioma. Mesothelioma tumor specimens (N = 83) were examined for CD30 expression by immunohistochemistry. Positive CD30 expression was noted in 13 mesothelioma specimens, primarily those of epithelial histology. There was no significant correlation of CD30 positivity with either tumor grade, stage or survival. Examination of four mesothelioma cell lines (H28, H2052, H2452, and 211H) for CD30 expression by both FACS analysis and confocal microscopy showed that CD30 antigen localized to the cell membrane. Brentuximab vedotin treatment of cultured mesothelioma cells produced a dose-dependent decrease in cell growth and viability at clinically relevant concentrations. Our studies validate the presence of CD30 antigen in a subgroup of epithelial-type mesothelioma tumors and indicate that selected mesothelioma patients may derive benefit from brentuximab vedotin treatment. PMID:25589494

  2. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    PubMed

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain.

  3. Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis

    PubMed Central

    Zhang, Shufang; Pan, Chuli; Zhou, Feifei; Yuan, Zhi; Wang, Huiying; Cui, Wei; Zhang, Gensheng

    2015-01-01

    Hydrogen sulfide (H2S), produced endogenously by the activation of two major H2S-generating enzymes (cystathionine β-synthase and cystathionine γ-lyase), plays important regulatory roles in different physiologic and pathologic conditions. The abnormal metabolism of H2S is associated with fibrosis pathogenesis, causing damage in structure and function of different organs. A number of in vivo and in vitro studies have shown that both endogenous H2S level and the expressions of H2S-generating enzymes in plasma and tissues are significantly downregulated during fibrosis. Supplement with exogenous H2S mitigates the severity of fibrosis in various experimental animal models. The protective role of H2S in the development of fibrosis is primarily attributed to its antioxidation, antiapoptosis, anti-inflammation, proangiogenesis, and inhibition of fibroblasts activities. Future studies might focus on the potential to intervene fibrosis by targeting the pathway of endogenous H2S-producing enzymes and H2S itself. PMID:26078809

  4. Squalene Synthase As a Target for Chagas Disease Therapeutics

    PubMed Central

    Chan, Hsiu-Chien; Li, Jikun; Zheng, Yingying; Huang, Chun-Hsiang; Ren, Feifei; Chen, Chun-Chi; Zhu, Zhen; Galizzi, Melina; Li, Zhu-Hong; Rodrigues-Poveda, Carlos A.; Gonzalez-Pacanowska, Dolores; Veiga-Santos, Phercyles; de Carvalho, Tecia Maria Ulisses; de Souza, Wanderley; Urbina, Julio A.; Wang, Andrew H.-J.; Docampo, Roberto; Li, Kai; Liu, Yi-Liang; Oldfield, Eric; Guo, Rey-Ting

    2014-01-01

    Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease. PMID:24789335

  5. Squalene synthase as a target for Chagas disease therapeutics.

    PubMed

    Shang, Na; Li, Qian; Ko, Tzu-Ping; Chan, Hsiu-Chien; Li, Jikun; Zheng, Yingying; Huang, Chun-Hsiang; Ren, Feifei; Chen, Chun-Chi; Zhu, Zhen; Galizzi, Melina; Li, Zhu-Hong; Rodrigues-Poveda, Carlos A; Gonzalez-Pacanowska, Dolores; Veiga-Santos, Phercyles; de Carvalho, Tecia Maria Ulisses; de Souza, Wanderley; Urbina, Julio A; Wang, Andrew H-J; Docampo, Roberto; Li, Kai; Liu, Yi-Liang; Oldfield, Eric; Guo, Rey-Ting

    2014-05-01

    Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease. PMID:24789335

  6. Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets

    PubMed Central

    Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent

    2014-01-01

    By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711

  7. Enolase-1 is a therapeutic target in endometrial carcinoma

    PubMed Central

    Shu, Luyun; Wang, Lijing; Chen, YiYu; Fu, Qiaofen; Liu, Yan; Hua, Shengni; Fan, Yue; Liu, Yiyi; Deng, Xiaojie; Luo, Rongcheng; Mei, Zhong; Jiang, Qinping; Liu, Zhen

    2015-01-01

    ENO1 plays a paradoxical role in driving the pathogenesis of tumors. However, the clinical significance of ENO1 expression remains unclear and its function and modulatory mechanisms have never been reported in endometrial carcinoma (EC). In this study, ENO1 silencing significantly reduced cell glycolysis, proliferation, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo by modulating p85 suppression. This in turn mediated inactivation of PI3K/AKT signaling and its downstream signals including glycolysis, cell cycle progression, and epithelial-mesenchymal transition (EMT)-associated genes. These effects on glycolysis and cell growth were not observed after ENO1 suppression in normal human endometrial epithelial cells (HEEC). Knocking down ENO1 could significantly enhance the sensitivity of EC cells to cisplatin (DDP) and markedly inhibited the growth of EC xenografts in vivo. In clinical samples, EC tissues exhibited higher expression levels of ENO1 mRNA and protein compared with normal endometrium tissues. Patients with higher ENO1 expression had a markedly shorter overall survival than patients with low ENO1 expression. We conclude that ENO1 favors carcinogenesis, representing a potential target for gene-based therapy. PMID:25951350

  8. Elevated immune-inflammatory signaling in mood disorders: a new therapeutic target?

    PubMed Central

    McNamara, Robert K; Lotrich, Francis E

    2012-01-01

    Converging translational evidence has implicated elevated immune-inflammatory signaling activity in the pathoetiology of mood disorders, including major depressive disorder and bipolar disorder. This is supported in part by cross-sectional evidence for increased levels of proinflammatory eicosanoids, cytokines and acute-phase proteins during mood episodes, and prospective longitudinal evidence for the emergence of mood symptoms in response to chronic immune-inflammatory activation. In addition, mood-stabilizer and atypical antipsychotic medications downregulate initial components of the immune-inflammatory signaling pathway, and adjunctive treatment with anti-inflammatory agents augment the therapeutic efficacy of antidepressant, mood stabilizer and atypical antipsychotic medications. Potential pathogenic mechanisms linked with elevated immune-inflammatory signaling include perturbations in central serotonin neurotransmission and progressive white matter pathology. Both heritable genetic factors and environmental factors including dietary fatty-acid composition may act in concert to sustain elevated immune-inflammatory signaling. Collectively, these data suggest that elevated immune-inflammatory signaling is a mechanism that is relevant to the pathoetiology of mood disorders, and may therefore represent a new therapeutic target for the development of more effective treatments. PMID:23039393

  9. Animal models and therapeutic molecular targets of cancer: utility and limitations.

    PubMed

    Cekanova, Maria; Rathore, Kusum

    2014-01-01

    Cancer is the term used to describe over 100 diseases that share several common hallmarks. Despite prevention, early detection, and novel therapies, cancer is still the second leading cause of death in the USA. Successful bench-to-bedside translation of basic scientific findings about cancer into therapeutic interventions for patients depends on the selection of appropriate animal experimental models. Cancer research uses animal and human cancer cell lines in vitro to study biochemical pathways in these cancer cells. In this review, we summarize the important animal models of cancer with focus on their advantages and limitations. Mouse cancer models are well known, and are frequently used for cancer research. Rodent models have revolutionized our ability to study gene and protein functions in vivo and to better understand their molecular pathways and mechanisms. Xenograft and chemically or genetically induced mouse cancers are the most commonly used rodent cancer models. Companion animals with spontaneous neoplasms are still an underexploited tool for making rapid advances in human and veterinary cancer therapies by testing new drugs and delivery systems that have shown promise in vitro and in vivo in mouse models. Companion animals have a relatively high incidence of cancers, with biological behavior, response to therapy, and response to cytotoxic agents similar to those in humans. Shorter overall lifespan and more rapid disease progression are factors contributing to the advantages of a companion animal model. In addition, the current focus is on discovering molecular targets for new therapeutic drugs to improve survival and quality of life in cancer patients.

  10. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect

    PubMed Central

    Chen, Xi-sha; Li, Lan-ya; Guan, Yi-di; Yang, Jin-ming; Cheng, Yan

    2016-01-01

    Tumor cells rely mainly on glycolysis for energy production even in the presence of sufficient oxygen, a phenomenon termed the Warburg effect, which is the most outstanding characteristic of energy metabolism in cancer cells. This metabolic adaptation is believed to be critical for tumor cell growth and proliferation, and a number of onco-proteins and tumor suppressors, including the PI3K/Akt/mTOR signaling pathway, Myc, hypoxia-inducible factor and p53, are involved in the regulation of this metabolic adaptation. Moreover, glycolytic cancer cells are often invasive and impervious to therapeutic intervention. Thus, altered energy metabolism is now appreciated as a hallmark of cancer and a promising target for cancer treatment. A better understanding of the biology and the regulatory mechanisms of aerobic glycolysis has the potential to facilitate the development of glycolysis-based therapeutic interventions for cancer. In addition, glycolysis inhibition combined with DNA damaging drugs or chemotherapeutic agents may be effective anticancer strategies through weakening cell damage repair capacity and enhancing drug cytotoxicity. PMID:27374491

  11. Hydrogen peroxide-activatable antioxidant prodrug as a targeted therapeutic agent for ischemia-reperfusion injury

    PubMed Central

    Lee, Dongwon; Park, Seunggyu; Bae, Soochan; Jeong, Dahee; Park, Minhyung; Kang, Changsun; Yoo, Wooyoung; Samad, Mohammed A.; Ke, Qingen; Khang, Gilson; Kang, Peter M.

    2015-01-01

    Overproduction of hydrogen peroxide (H2O2) causes oxidative stress and is the main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury. Suppression of oxidative stress is therefore critical in the treatment of I/R injury. Here, we report H2O2-activatable antioxidant prodrug (BRAP) that is capable of specifically targeting the site of oxidative stress and exerting anti-inflammatory and anti-apoptotic activities. BRAP with a self-immolative boronic ester protecting group was designed to scavenge H2O2 and release HBA (p-hydroxybenzyl alcohol) with antioxidant and anti-inflammatory activities. BRAP exerted potent antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)- and H2O2-stimulated cells by suppressing the generation of ROS and pro-inflammatory cytokines. In mouse models of hepatic I/R and cardiac I/R, BRAP exerted potent antioxidant, anti-inflammatory and anti-apoptotic activities due to the synergistic effects of H2O2-scavenging boronic esters and therapeutic HBA. In addition, administration of high doses of BRAP daily for 7 days showed no renal or hepatic function abnormalities. Therefore BRAP has tremendous therapeutic potential as H2O2-activatable antioxidant prodrug for the treatment of I/R injuries. PMID:26563741

  12. Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment.

    PubMed

    Zemanova, Lucie; Hofman, Jakub; Novotna, Eva; Musilek, Kamil; Lundova, Tereza; Havrankova, Jana; Hostalkova, Anna; Chlebek, Jakub; Cahlikova, Lucie; Wsol, Vladimír

    2015-11-25

    AKR1B10 is an NADPH-dependent reductase that plays an important function in several physiological reactions such as the conversion of retinal to retinol, reduction of isoprenyl aldehydes, and biotransformation of procarcinogens and drugs. A growing body of evidence points to the important role of the enzyme in the development of several types of cancer (e.g., breast, hepatocellular), in which it is highly overexpressed. AKR1B10 is regarded as a therapeutic target for the treatment of these diseases, and potent and specific inhibitors may be promising therapeutic agents. Several inhibitors of AKR1B10 have been described, but the area of natural plant products has been investigated sparingly. In the present study almost 40 diverse phenolic compounds and alkaloids were examined for their ability to inhibit the recombinant AKR1B10 enzyme. The most potent inhibitors-apigenin, luteolin, and 7-hydroxyflavone-were further characterized in terms of IC50, selectivity, and mode of action. Molecular docking studies were also conducted, which identified putative binding residues important for the interaction. In addition, cellular studies demonstrated a significant inhibition of the AKR1B10-mediated reduction of daunorubicin in intact cells by these inhibitors without a considerable cytotoxic effect. Although these compounds are moderately potent and selective inhibitors of AKR1B10, they constitute a new structural type of AKR1B10 inhibitor and may serve as a template for the development of better inhibitors. PMID:26529431

  13. Hydrogen peroxide-activatable antioxidant prodrug as a targeted therapeutic agent for ischemia-reperfusion injury.

    PubMed

    Lee, Dongwon; Park, Seunggyu; Bae, Soochan; Jeong, Dahee; Park, Minhyung; Kang, Changsun; Yoo, Wooyoung; Samad, Mohammed A; Ke, Qingen; Khang, Gilson; Kang, Peter M

    2015-11-13

    Overproduction of hydrogen peroxide (H2O2) causes oxidative stress and is the main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury. Suppression of oxidative stress is therefore critical in the treatment of I/R injury. Here, we report H2O2-activatable antioxidant prodrug (BRAP) that is capable of specifically targeting the site of oxidative stress and exerting anti-inflammatory and anti-apoptotic activities. BRAP with a self-immolative boronic ester protecting group was designed to scavenge H2O2 and release HBA (p-hydroxybenzyl alcohol) with antioxidant and anti-inflammatory activities. BRAP exerted potent antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)- and H2O2-stimulated cells by suppressing the generation of ROS and pro-inflammatory cytokines. In mouse models of hepatic I/R and cardiac I/R, BRAP exerted potent antioxidant, anti-inflammatory and anti-apoptotic activities due to the synergistic effects of H2O2-scavenging boronic esters and therapeutic HBA. In addition, administration of high doses of BRAP daily for 7 days showed no renal or hepatic function abnormalities. Therefore BRAP has tremendous therapeutic potential as H2O2-activatable antioxidant prodrug for the treatment of I/R injuries.

  14. The GSK-3 family as therapeutic target for myocardial diseases

    PubMed Central

    Lal, Hind; Ahmad, Firdos; Woodgett, James; Force, Thomas

    2014-01-01

    GSK-3 is one of the very few signaling molecules that regulate a truly astonishing number of critical intracellular signaling pathways. It has been implicated in a number of diseases including heart failure, bipolar disorder, diabetes, Alzheimer’s disease, aging, inflammation and cancer. Furthermore, a recent clinical trial has validated the feasibility of targeting GSK-3 with small molecule inhibitors for human diseases. In the current review we will focus on its expanding role in the heart, concentrating primarily on recent studies that have employed cardiomyocyte- and fibroblast-specific conditional gene deletion in mouse models. We will highlight the role of the GSK-3 isoforms in various pathological conditions including myocardial aging, ischemic injury, myocardial fibrosis and cardiomyocyte proliferation. We will discuss our recent findings that deletion of GSK-3α specifically in cardiomyocytes attenuates ventricular remodeling and cardiac dysfunction post-MI by limiting scar expansion and promoting cardiomyocyte proliferation. The recent emergence of GSK-3β as a regulator of myocardial fibrosis will also be discussed. We will review our very recent findings that specific deletion of GSK-3β in cardiac fibroblasts leads to fibrogenesis, left ventricular dysfunction and excessive scarring in the ischemic heart. Finally, we will examine the underlying mechanisms that drive the aberrant myocardial fibrosis in the models in which GSK-3β is specifically deleted in cardiac fibroblasts. We will summarize these recent results and offer explanations, whenever possible, and hypotheses when not. For these studies we will rely heavily on our models and those of others to reconcile some of the apparent inconsistencies in the literature. PMID:25552693

  15. Therapeutic hypothermia and targeted temperature management in traumatic brain injury: Clinical challenges for successful translation.

    PubMed

    Dietrich, W Dalton; Bramlett, Helen M

    2016-06-01

    The use of therapeutic hypothermia (TH) and targeted temperature management (TTM) for severe traumatic brain injury (TBI) has been tested in a variety of preclinical and clinical situations. Early preclinical studies showed that mild reductions in brain temperature after moderate to severe TBI improved histopathological outcomes and reduced neurological deficits. Investigative studies have also reported that reductions in post-traumatic temperature attenuated multiple secondary injury mechanisms including excitotoxicity, free radical generation, apoptotic cell death, and inflammation. In addition, while elevations in post-traumatic temperature heightened secondary injury mechanisms, the successful implementation of TTM strategies in injured patients to reduce fever burden appear to be beneficial. While TH has been successfully tested in a number of single institutional clinical TBI studies, larger randomized multicenter trials have failed to demonstrate the benefits of therapeutic hypothermia. The use of TH and TTM for treating TBI continues to evolve and a number of factors including patient selection and the timing of the TH appear to be critical in successful trial design. Based on available data, it is apparent that TH and TTM strategies for treating severely injured patients is an important therapeutic consideration that requires more basic and clinical research. Current research involves the evaluation of alternative cooling strategies including pharmacologically-induced hypothermia and the combination of TH or TTM approaches with more selective neuroprotective or reparative treatments. This manuscript summarizes the preclinical and clinical literature emphasizing the importance of brain temperature in modifying secondary injury mechanisms and in improving traumatic outcomes in severely injured patients. This article is part of a Special Issue entitled SI:Brain injury and recovery. PMID:26746342

  16. Transferrin receptors and the targeted delivery of therapeutic agents against cancer

    PubMed Central

    Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.

    2012-01-01

    Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850

  17. Copper signaling axis as a target for prostate cancer therapeutics.

    PubMed

    Safi, Rachid; Nelson, Erik R; Chitneni, Satish K; Franz, Katherine J; George, Daniel J; Zalutsky, Michael R; McDonnell, Donald P

    2014-10-15

    Previously published reports indicate that serum copper levels are elevated in patients with prostate cancer and that increased copper uptake can be used as a means to image prostate tumors. It is unclear, however, to what extent copper is required for prostate cancer cell function as we observed only modest effects of chelation strategies on the growth of these cells in vitro. With the goal of exploiting prostate cancer cell proclivity for copper uptake, we developed a "conditional lethal" screen to identify compounds whose cytotoxic actions were manifested in a copper-dependent manner. Emerging from this screen was a series of dithiocarbamates, which, when complexed with copper, induced reactive oxygen species-dependent apoptosis of malignant, but not normal, prostate cells. One of the dithiocarbamates identified, disulfiram (DSF), is an FDA-approved drug that has previously yielded disappointing results in clinical trials in patients with recurrent prostate cancer. Similarly, in our studies, DSF alone had a minimal effect on the growth of prostate cancer tumors when propagated as xenografts. However, when DSF was coadministered with copper, a very dramatic inhibition of tumor growth in models of hormone-sensitive and of castrate-resistant disease was observed. Furthermore, we determined that prostate cancer cells express high levels of CTR1, the primary copper transporter, and additional chaperones that are required to maintain intracellular copper homeostasis. The expression levels of most of these proteins are increased further upon treatment of androgen receptor (AR)-positive prostate cancer cell lines with androgens. Not surprisingly, robust CTR1-dependent uptake of copper into prostate cancer cells was observed, an activity that was accentuated by activation of AR. Given these data linking AR to intracellular copper uptake, we believe that dithiocarbamate/copper complexes are likely to be effective for the treatment of patients with prostate cancer whose

  18. Copper signaling axis as a target for prostate cancer therapeutics.

    PubMed

    Safi, Rachid; Nelson, Erik R; Chitneni, Satish K; Franz, Katherine J; George, Daniel J; Zalutsky, Michael R; McDonnell, Donald P

    2014-10-15

    Previously published reports indicate that serum copper levels are elevated in patients with prostate cancer and that increased copper uptake can be used as a means to image prostate tumors. It is unclear, however, to what extent copper is required for prostate cancer cell function as we observed only modest effects of chelation strategies on the growth of these cells in vitro. With the goal of exploiting prostate cancer cell proclivity for copper uptake, we developed a "conditional lethal" screen to identify compounds whose cytotoxic actions were manifested in a copper-dependent manner. Emerging from this screen was a series of dithiocarbamates, which, when complexed with copper, induced reactive oxygen species-dependent apoptosis of malignant, but not normal, prostate cells. One of the dithiocarbamates identified, disulfiram (DSF), is an FDA-approved drug that has previously yielded disappointing results in clinical trials in patients with recurrent prostate cancer. Similarly, in our studies, DSF alone had a minimal effect on the growth of prostate cancer tumors when propagated as xenografts. However, when DSF was coadministered with copper, a very dramatic inhibition of tumor growth in models of hormone-sensitive and of castrate-resistant disease was observed. Furthermore, we determined that prostate cancer cells express high levels of CTR1, the primary copper transporter, and additional chaperones that are required to maintain intracellular copper homeostasis. The expression levels of most of these proteins are increased further upon treatment of androgen receptor (AR)-positive prostate cancer cell lines with androgens. Not surprisingly, robust CTR1-dependent uptake of copper into prostate cancer cells was observed, an activity that was accentuated by activation of AR. Given these data linking AR to intracellular copper uptake, we believe that dithiocarbamate/copper complexes are likely to be effective for the treatment of patients with prostate cancer whose

  19. Copper Signaling Axis as a Target for Prostate Cancer Therapeutics

    PubMed Central

    Safi, Rachid; Nelson, Erik R.; Chitneni, Satish K.; Franz, Katherine J.; George, Daniel J.; Zalutsky, Michael R.; McDonnell, Donald P.

    2014-01-01

    Previously published reports indicate that serum copper levels are elevated in prostate cancer (PCa) patients and that increased copper uptake can be used as a means to image prostate tumors. It is unclear, however, to what extent copper is required for PCa cell function as we observed only modest effects of chelation strategies on the growth of these cells in vitro. With the goal of exploiting PCa cell proclivity for copper uptake, we developed a “conditional lethal” screen to identify compounds whose cytotoxic actions were manifest in a copper-dependent manner. Emerging from this screen were a series of dithiocarbamates, which when complexed with copper, induced Reactive Oxygen Species (ROS)-dependent apoptosis of malignant, but not normal, prostate cells. One of the dithiocarbamates identified, Disulfiram (DSF), is an FDA approved drug that has previously yielded disappointing results in clinical trials in patients with recurrent prostate cancer. Similarly, in our studies DSF alone had a minimal effect on the growth of PCa tumors when propagated as xenografts. However, when DSF was coadministered with copper a very dramatic inhibition of tumor growth in models of hormone sensitive and of castrate resistant disease was observed. Furthermore, we determined that prostate cancer (PCa) cells express high levels of CTR1, the primary copper transporter, and additional chaperones that are required to maintain intracellular copper homeostasis. The expression levels of most of these proteins are increased further upon treatment of AR-positive PCa cell lines with androgens. Not surprisingly robust CTR1-dependent uptake of copper into PCa cells was observed; an activity that was accentuated by activation of androgen receptor (AR). Given these data linking AR to intracellular copper uptake, we believe that dithiocarbamate/copper complexes are likely to be effective for the treatment of PCa patients whose disease is resistant to classical androgen ablation therapies. PMID

  20. Chemokines as Therapeutic Targets to Improve Healing Efficiency of Chronic Wounds

    PubMed Central

    Satish, Latha

    2015-01-01

    Significance: Impaired wound healing leading to chronic wounds is an important clinical problem that needs immediate attention to develop new effective therapies. Members of the chemokine family seem to be attractive and amenable to stimulate the healing process in chronic wounds. Targeting specific chemokines and/or their receptors has the potential to modify chronic inflammation to acute inflammation, which will hasten the healing process. Recent Advances: Over the years, expression levels of various chemokines and their receptors have been identified as key players in the inflammatory phase of wound healing. In addition, they contribute to regulating other phases of wound healing making them key targets for novel therapies. Understanding the signaling pathways of these chemokines will provide valuable clues for modulating their function to enhance the wound healing process. Critical Issues: Inflammation, an important first-stage process in wound healing, is dysregulated in chronic wounds; emerging studies show that chemokines play a crucial role in regulating inflammation. The knowledge gained so far is still limited in understanding the enormous complexity of the chemokine network during inflammation not just in chronic wounds but also in acute (normal) wounds. A much better understanding of the individual chemokines will pave the way for better targets and therapies to improve the healing efficiency of chronic wounds. Future Directions: Effective understanding of the interaction of chemokines and their receptors during chronic wound healing would facilitate the design of novel therapeutic drugs. Development of chemokine-based drugs targeting specific inflammatory cells will be invaluable in the treatment of chronic wounds, in which inflammation plays a major role. PMID:26543679

  1. Therapeutic Targeting of Siglecs using Antibody- and Glycan-Based Approaches.

    PubMed

    Angata, Takashi; Nycholat, Corwin M; Macauley, Matthew S

    2015-10-01

    The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of immunomodulatory receptors whose functions are regulated by their glycan ligands. Siglecs are attractive therapeutic targets because of their cell type-specific expression pattern, endocytic properties, high expression on certain lymphomas/leukemias, and ability to modulate receptor signaling. Siglec-targeting approaches with therapeutic potential encompass antibody- and glycan-based strategies. Several antibody-based therapies are in clinical trials and continue to be developed for the treatment of lymphoma/leukemia and autoimmune disease, while the therapeutic potential of glycan-based strategies for cargo delivery and immunomodulation is a promising new approach. Here we review these strategies with special emphasis on emerging approaches and disease areas that may benefit from targeting the Siglec family. PMID:26435210

  2. Stress-induced pain: a target for the development of novel therapeutics.

    PubMed

    Johnson, Anthony C; Greenwood-Van Meerveld, Beverley

    2014-11-01

    Although current therapeutics provide relief from acute pain, drugs used for treatment of chronic pain are typically less efficacious and limited by adverse side effects, including tolerance, addiction, and gastrointestinal upset. Thus, there is a significant need for novel therapies for the treatment of chronic pain. In concert with chronic pain, persistent stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic pain disorders. Stress exacerbation of chronic pain suggests that centrally acting drugs targeting the pain- and stress-responsive brain regions represent a valid target for the development of novel therapeutics. This review provides an overview of how stress modulates spinal and central pain pathways, identifies key neurotransmitters and receptors within these pathways, and highlights their potential as novel targets for therapeutics to treat chronic pain.

  3. The Importance of CD44 as a Stem Cell Biomarker and Therapeutic Target in Cancer

    PubMed Central

    Thapa, Ranjeeta; Wilson, George D.

    2016-01-01

    CD44 is a cell surface HA-binding glycoprotein that is overexpressed to some extent by almost all tumors of epithelial origin and plays an important role in tumor initiation and metastasis. CD44 is a compelling marker for cancer stem cells of many solid malignancies. In addition, interaction of HA and CD44 promotes EGFR-mediated pathways, consequently leading to tumor cell growth, tumor cell migration, and chemotherapy resistance in solid cancers. Accumulating evidence indicates that major HA-CD44 signaling pathways involve a specific variant of CD44 isoforms; however, the particular variant almost certainly depends on the type of tumor cell and the stage of the cancer progression. Research to date suggests use of monoclonal antibodies against different CD44 variant isoforms and targeted inhibition of HA/CD44-mediated signaling combined with conventional radio/chemotherapy may be the most favorable therapeutic strategy for future treatments of advanced stage malignancies. Thus, this paper briefly focuses on the association of the major CD44 variant isoforms in cancer progression, the role of HA-CD44 interaction in oncogenic pathways, and strategies to target CD44-overexpressed tumor cells. PMID:27200096

  4. Dynamic Regulation of APE1/Ref-1 as a Therapeutic Target Protein

    PubMed Central

    Choi, Sunga; Joo, Hee Kyoung

    2016-01-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 functions in the DNA base excision repair pathway, the redox regulation of several transcription factors, and the control of intracellular redox status through the inhibition of reactive oxygen species (ROS) production. APE1/Ref-1 is predominantly localized in the nucleus; however, its subcellular localization is dynamically regulated and it may be found in the mitochondria or elsewhere in the cytoplasm. Studies have identified a nuclear localization signal and a mitochondrial target sequence in APE1/Ref-1, as well as the involvement of the nuclear export system, as determinants of APE1/Ref-1 subcellular distribution. Recently, it was shown that APE1/Ref-1 is secreted in response to hyperacetylation at specific lysine residues. Additionally, post-translational modifications such as phosphorylation, S-nitrosation, and ubiquitination appear to play a role in fine-tuning the activities and subcellular localization of APE1/Ref-1. In this review, we will introduce the multifunctional role of APE1/Ref-1 and its potential usefulness as a therapeutic target in cancer and cardiovascular disease. PMID:27231670

  5. Epigenetic Control and Cancer: The Potential of Histone Demethylases as Therapeutic Targets

    PubMed Central

    Lizcano, Fernando; Garcia, Jeison

    2012-01-01

    The development of cancer involves an immense number of factors at the molecular level. These factors are associated principally with alterations in the epigenetic mechanisms that regulate gene expression profiles. Studying the effects of chromatin structure alterations, which are caused by the addition/removal of functional groups to specific histone residues, are of great interest as a promising way to identify markers for cancer diagnosis, classify the disease and determine its prognosis, and these markers could be potential targets for the treatment of this disease in its different forms. This manuscript presents the current point of view regarding members of the recently described family of proteins that exhibit histone demethylase activity; histone demethylases are genetic regulators that play a fundamental role in both the activation and repression of genes and whose expression has been observed to increase in many types of cancer. Some fundamental aspects of their association with the development of cancer and their relevance as potential targets for the development of new therapeutic strategies at the epigenetic level are discussed in the following manuscript. PMID:24280700

  6. Dynamic Regulation of APE1/Ref-1 as a Therapeutic Target Protein.

    PubMed

    Choi, Sunga; Joo, Hee Kyoung; Jeon, Byeong Hwa

    2016-05-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 functions in the DNA base excision repair pathway, the redox regulation of several transcription factors, and the control of intracellular redox status through the inhibition of reactive oxygen species (ROS) production. APE1/Ref-1 is predominantly localized in the nucleus; however, its subcellular localization is dynamically regulated and it may be found in the mitochondria or elsewhere in the cytoplasm. Studies have identified a nuclear localization signal and a mitochondrial target sequence in APE1/Ref-1, as well as the involvement of the nuclear export system, as determinants of APE1/Ref-1 subcellular distribution. Recently, it was shown that APE1/Ref-1 is secreted in response to hyperacetylation at specific lysine residues. Additionally, post-translational modifications such as phosphorylation, S-nitrosation, and ubiquitination appear to play a role in fine-tuning the activities and subcellular localization of APE1/Ref-1. In this review, we will introduce the multifunctional role of APE1/Ref-1 and its potential usefulness as a therapeutic target in cancer and cardiovascular disease.

  7. Overexpressed targeting protein for Xklp2 (TPX2) serves as a promising prognostic marker and therapeutic target for gastric cancer.

    PubMed

    Liang, Bo; Zheng, Wenjuan; Fang, Lu; Wu, Linquan; Zhou, Fan; Yin, Xiangbao; Yu, Xin; Zou, Zhenhong

    2016-08-01

    The targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a putative oncogene in different human cancers. This study assessed TPX2 expression in gastric cancer tissue samples and then determined the effects of TPX2 knockdown on the regulation of gastric cancer cell malignant behaviors in vitro. Tissue samples from 115 gastric cancer patients were analyzed for TPX2 expression. The effects of TPX2 siRNA on gastric cancer cells were assessed in vitro, including cell viability, cell cycle distribution, apoptosis, migration, and invasion. The data showed that TPX2 was overexpressed in gastric cancer tissues compared to that in the adjacent normal epithelia. Moreover, TPX2 overexpression was associated with a poor overall survival and was an independent prognostic predictor of gastric cancer. In addition, the in vitro study further confirmed the ex vivo data, i.e., knockdown of TPX2 expression reduced gastric cancer cell viability but induced apoptosis and arrested cells at the G2/M phase of the cell cycle. Knockdown of TPX2 expression also inhibited the tumor cell migration and invasion capacity in vitro. At the gene level, knockdown of TPX2 expression upregulated the levels of cyclin B1, cdk4, p53, Bax, caspase-3, and E-cadherin, but downregulated the levels of cyclin D1, cdk2, N-cadherin, slug, matrix metalloprotease (MMP)-2, and MMP-9, suggesting that knockdown of TPX2 expression suppressed tumor cell epithelial-mesenchymal transition (EMT). This study demonstrated that detection of TPX2 overexpression could serve as a prognostic marker and therapeutic target for gastric cancer. PMID:27314162

  8. Targeted localized use of therapeutic antibodies: a review of non-systemic, topical and oral applications.

    PubMed

    Jones, Russell G A; Martino, Angela

    2016-01-01

    Therapeutic antibodies provide important tools in the "medicine chest" of today's clinician for the treatment of a range of disorders. Typically monoclonal or polyclonal antibodies are administered in large doses, either directly or indirectly into the circulation, via a systemic route which is well suited for disseminated ailments. Diseases confined within a specific localized tissue, however, may be treated more effectively and at reduced cost by a delivery system which targets directly the affected area. To explore the advantages of the local administration of antibodies, we reviewed current alternative, non-systemic delivery approaches which are in clinical use, being trialed or developed. These less conventional approaches comprise: (a) local injections, (b) topical and (c) peroral administration routes. Local delivery includes intra-ocular injections into the vitreal humor (i.e. Ranibizumab for age-related macular degeneration), subconjunctival injections (e.g. Bevacizumab for corneal neovascularization), intra-articular joint injections (i.e. anti-TNF alpha antibody for persistent inflammatory monoarthritis) and intratumoral or peritumoral injections (e.g. Ipilimumab for cancer). A range of other strategies, such as the local use of antibacterial antibodies, are also presented. Local injections of antibodies utilize doses which range from 1/10th to 1/100th of the required systemic dose therefore reducing both side-effects and treatment costs. In addition, any therapeutic antibody escaping from the local site of disease into the systemic circulation is immediately diluted within the large blood volume, further lowering the potential for unwanted effects. Needle-free topical application routes become an option when the condition is restricted locally to an external surface. The topical route may potentially be utilized in the form of eye drops for infections or corneal neovascularization or be applied to diseased skin for psoriasis, dermatitis, pyoderma

  9. Transporter-mediated tissue targeting of therapeutic molecules in drug discovery.

    PubMed

    Zhou, Jingye; Xu, Jianfeng; Huang, Zheng; Wang, Minmin

    2015-03-01

    Tissue concentrations of endogenous chemicals and nutrients are in large part regulated by membrane transporters through their substrate specificity and differential tissue distributions. These transporters also play a key role in the disposition of therapeutic agents thus affecting their efficacy and safety profile. A transporter-mediated tissue targeting strategy, where the structural features recognized by the transporters are incorporated into the therapeutic molecule, is emerging as an effective approach in drug discovery. In this digest, we review this phenomenon and highlight recent cases in the design of liver and kidney targeted drug molecules.

  10. Lentiviral-based approach for the validation of cancer therapeutic targets in vivo.

    PubMed

    Ambrogio, Chiara; Stern, Patrick; Scuoppo, Claudio; Kranz, Harald; Barbacid, Mariano; Santamaría, David

    2014-10-01

    Despite the pressing need for novel cancer treatments, our improved understanding of tumor biology is not being successfully translated into better therapies. Here we present a lentiviral vector that enables in vivo validation of cancer therapeutic targets when combined with existing cancer animal models that faithfully reproduce the natural history of human disease. Unlike the conventional genetic approaches with targeted alleles, the outlined experimental strategy could be used to assess the preclinical efficacy of a growing number of putative therapeutic hits in a rapid and cost-effective manner. PMID:25312087

  11. Taking Aim at the Extracellular Matrix: CCN Proteins as Emerging Therapeutic Targets

    PubMed Central

    Jun, Joon-Il; Lau, Lester F.

    2013-01-01

    The CCN family of matricellular proteins is critical for embryonic development and plays important roles in inflammation, wound healing, and injury repair in the adult. Deregulation of their expression or activities contributes to the pathobiology of myriad diseases, many of which may arise when inflammation or tissue injury becomes chronic, including fibrosis, arthrosclerosis, arthritis, diabetic nephropathy and retinopathy, and cancer. Emerging studies indicate that targeting CCN expression or signaling pathways holds promise in the development of diagnostics and therapeutics for such diseases. This review summarizes the biology of CCN proteins, their roles in various pathologies, and potential as therapeutic targets. PMID:22129992

  12. Cerebral Edema in Traumatic Brain Injury: Pathophysiology and Prospective Therapeutic Targets.

    PubMed

    Winkler, Ethan A; Minter, Daniel; Yue, John K; Manley, Geoffrey T

    2016-10-01

    Traumatic brain injury is a heterogeneous disorder resulting from an external force applied to the head. The development of cerebral edema plays a central role in the evolution of injury following brain trauma and is closely associated with neurologic outcomes. Recent advances in the understanding of the molecular and cellular pathways contributing to the posttraumatic development of cerebral edema have led to the identification of multiple prospective therapeutic targets. The authors summarize the pathogenic mechanisms underlying cerebral edema and highlight the molecular pathways that may be therapeutically targeted to mitigate cerebral edema and associated sequelae following traumatic brain injury. PMID:27637397

  13. Prospects on Strategies for Therapeutically Targeting Oncogenic Regulatory Factors by Small-Molecule Agents

    PubMed Central

    Chou, Chih-Chien; Salunke, Santosh B.; Kulp, Samuel K.; Chen, Ching-Shih

    2014-01-01

    Although the Human Genome Project has raised much hope for the identification of druggable genetic targets for cancer and other diseases, this genetic target-based approach has not improved productivity in drug discovery over the traditional approach. Analyses of known human target proteins of currently marketed drugs reveal that these drugs target only a limited number of proteins as compared to the whole proteome. In contrast to genome-based targets, mechanistic targets are derived from empirical research, at cellular or molecular levels, in disease models and/or in patients, thereby enabling the exploration of a greater number of druggable targets beyond the genome and epigenome. The paradigm shift has made a tremendous headway in developing new therapeutic agents targeting different clinically relevant mechanisms/pathways in cancer cells. In this Prospects article, we provide an overview of potential drug targets related to the following four emerging areas: (1) tumor metabolism (the Warburg effect), (2) dysregulated protein turnover (E3 ubiquitin ligases), (3) protein–protein interactions, and (4) unique DNA high-order structures and protein–DNA interactions. Nonetheless, considering the genetic and phenotypic heterogeneities that characterize cancer cells, the development of drug resistance in cancer cells by adapting signaling circuitry to take advantage of redundant pathways or feedback/crosstalk systems is possible. This “phenotypic adaptation” underlies the rationale of using therapeutic combinations of these targeted agents with cytotoxic drugs. PMID:24166934

  14. Prospects on strategies for therapeutically targeting oncogenic regulatory factors by small-molecule agents.

    PubMed

    Chou, Chih-Chien; Salunke, Santosh B; Kulp, Samuel K; Chen, Ching-Shih

    2014-04-01

    Although the Human Genome Project has raised much hope for the identification of druggable genetic targets for cancer and other diseases, this genetic target-based approach has not improved productivity in drug discovery over the traditional approach. Analyses of known human target proteins of currently marketed drugs reveal that these drugs target only a limited number of proteins as compared to the whole proteome. In contrast to genome-based targets, mechanistic targets are derived from empirical research, at cellular or molecular levels, in disease models and/or in patients, thereby enabling the exploration of a greater number of druggable targets beyond the genome and epigenome. The paradigm shift has made a tremendous headway in developing new therapeutic agents targeting different clinically relevant mechanisms/pathways in cancer cells. In this Prospects article, we provide an overview of potential drug targets related to the following four emerging areas: (1) tumor metabolism (the Warburg effect), (2) dysregulated protein turnover (E3 ubiquitin ligases), (3) protein-protein interactions, and (4) unique DNA high-order structures and protein-DNA interactions. Nonetheless, considering the genetic and phenotypic heterogeneities that characterize cancer cells, the development of drug resistance in cancer cells by adapting signaling circuitry to take advantage of redundant pathways or feedback/crosstalk systems is possible. This "phenotypic adaptation" underlies the rationale of using therapeutic combinations of these targeted agents with cytotoxic drugs.

  15. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination.

    PubMed

    Hussain, Rashad; Ghoumari, Abdel M; Bielecki, Bartosz; Steibel, Jérôme; Boehm, Nelly; Liere, Philippe; Macklin, Wendy B; Kumar, Narender; Habert, René; Mhaouty-Kodja, Sakina; Tronche, François; Sitruk-Ware, Regine; Schumacher, Michael; Ghandour, M Said

    2013-01-01

    Myelin regeneration is a major therapeutic goal in demyelinating diseases, and the failure to remyelinate rapidly has profound consequences for the health of axons and for brain function. However, there is no efficient treatment for stimulating myelin repair, and current therapies are limited to anti-inflammatory agents. Males are less likely to develop multiple sclerosis than females, but often have a more severe disease course and reach disability milestones at an earlier age than females, and these observations have spurred interest in the potential protective effects of androgens. Here, we demonstrate that testosterone treatment efficiently stimulates the formation of new myelin and reverses myelin damage in chronic demyelinated brain lesions, resulting from the long-term administration of cuprizone, which is toxic for oligodendrocytes. In addition to the strong effect of testosterone on myelin repair, the number of activated astrocytes and microglial cells returned to low control levels, indicating a reduction of neuroinflammatory responses. We also identify the neural androgen receptor as a novel therapeutic target for myelin recovery. After the acute demyelination of cerebellar slices in organotypic culture, the remyelinating actions of testosterone could be mimicked by 5α-dihydrotestosterone, a metabolite that is not converted to oestrogens, and blocked by the androgen receptor antagonist flutamide. Testosterone treatment also failed to promote remyelination after chronic cuprizone-induced demyelination in mice with a non-functional androgen receptor. Importantly, testosterone did not stimulate the formation of new myelin sheaths after specific knockout of the androgen receptor in neurons and macroglial cells. Thus, the neural brain androgen receptor is required for the remyelination effect of testosterone, whereas the presence of the receptor in microglia and in peripheral tissues is not sufficient to enhance remyelination. The potent synthetic

  16. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets.

    PubMed

    Haq, Iram J; Gray, Michael A; Garnett, James P; Ward, Christopher; Brodlie, Malcolm

    2016-03-01

    Cystic fibrosis (CF) is a life-limiting disease characterised by recurrent respiratory infections, inflammation and lung damage. The volume and composition of the airway surface liquid (ASL) are important in maintaining ciliary function, mucociliary clearance and antimicrobial properties of the airway. In CF, these homeostatic mechanisms are impaired, leading to a dehydrated and acidic ASL. ASL volume depletion in CF is secondary to defective anion transport by the abnormal cystic fibrosis transmembrane conductance regulator protein (CFTR). Abnormal CFTR mediated bicarbonate transport creates an unfavourable, acidic environment, which impairs antimicrobial function and alters mucus properties and clearance. These disease mechanisms create a disordered airway milieu, consisting of thick mucopurulent secretions and chronic bacterial infection. In addition to CFTR, there are additional ion channels and transporters in the apical airway epithelium that play a role in maintaining ASL homeostasis. These include the epithelial sodium channel (ENaC), the solute carrier 26A (SLC26A) family of anion exchangers, and calcium-activated chloride channels. In this review we discuss how the ASL is abnormal in CF and how targeting these alternative channels and transporters could provide an attractive therapeutic strategy to correct the underlying ASL abnormalities evident in CF. PMID:26719229

  17. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets.

    PubMed

    Haq, Iram J; Gray, Michael A; Garnett, James P; Ward, Christopher; Brodlie, Malcolm

    2016-03-01

    Cystic fibrosis (CF) is a life-limiting disease characterised by recurrent respiratory infections, inflammation and lung damage. The volume and composition of the airway surface liquid (ASL) are important in maintaining ciliary function, mucociliary clearance and antimicrobial properties of the airway. In CF, these homeostatic mechanisms are impaired, leading to a dehydrated and acidic ASL. ASL volume depletion in CF is secondary to defective anion transport by the abnormal cystic fibrosis transmembrane conductance regulator protein (CFTR). Abnormal CFTR mediated bicarbonate transport creates an unfavourable, acidic environment, which impairs antimicrobial function and alters mucus properties and clearance. These disease mechanisms create a disordered airway milieu, consisting of thick mucopurulent secretions and chronic bacterial infection. In addition to CFTR, there are additional ion channels and transporters in the apical airway epithelium that play a role in maintaining ASL homeostasis. These include the epithelial sodium channel (ENaC), the solute carrier 26A (SLC26A) family of anion exchangers, and calcium-activated chloride channels. In this review we discuss how the ASL is abnormal in CF and how targeting these alternative channels and transporters could provide an attractive therapeutic strategy to correct the underlying ASL abnormalities evident in CF.

  18. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer

    PubMed Central

    Moran-Jones, Kim; Gloss, Brian S.; Murali, Rajmohan; Chang, David K.; Colvin, Emily K.; Jones, Marc D.; Yuen, Samuel; Howell, Viive M.; Brown, Laura M.; Wong, Carol W.; Spong, Suzanne M.; Scarlett, Christopher J.; Hacker, Neville F.; Ghosh, Sue; Mok, Samuel C.; Birrer, Michael J.; Samimi, Goli

    2015-01-01

    Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer. PMID:26575166

  19. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer.

    PubMed

    Moran-Jones, Kim; Gloss, Brian S; Murali, Rajmohan; Chang, David K; Colvin, Emily K; Jones, Marc D; Yuen, Samuel; Howell, Viive M; Brown, Laura M; Wong, Carol W; Spong, Suzanne M; Scarlett, Christopher J; Hacker, Neville F; Ghosh, Sue; Mok, Samuel C; Birrer, Michael J; Samimi, Goli

    2015-12-29

    Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer.

  20. Promise and challenges on the horizon of MET-targeted cancer therapeutics

    PubMed Central

    Zhang, Yu-Wen

    2015-01-01

    MET (MNNG HOS transforming gene) is one of the receptor tyrosine kinases whose activities are frequently altered in human cancers, and it is a promising therapeutic target. MET is normally activated by its lone ligand, hepatocyte growth factor (HGF), eliciting its diverse biological activities that are crucial for development and physiology. Alteration of the HGF-MET axis results in inappropriate activation of a cascade of intracellular signaling pathways that contributes to hallmark cancer events including deregulated cell proliferation and survival, angiogenesis, invasion, and metastasis. Aberrant MET activation results from autocrine or paracrine mechanisms due to overexpression of HGF and/or MET or from a ligand-independent mechanism caused by activating mutations or amplification of MET. The literature provides compelling evidence for the role of MET signaling in cancer development and progression. The finding that cancer cells often use MET activation to escape therapies targeting other pathways strengthens the argument for MET-targeted therapeutics. Diverse strategies have been explored to deactivate MET signaling, and compounds and biologics targeting the MET pathway are in clinical development. Despite promising results from various clinical trials, we are still waiting for true MET-targeted therapeutics in the clinic. This review will explore recent progress and hurdles in the pursuit of MET-targeted cancer drugs and discuss the challenges in such development. PMID:26009700

  1. Small flexible structure for targeted delivery of therapeutic and imaging moieties in precision medicine

    PubMed Central

    Li, Bingjie; Qiu, Xiuchun; Zou, Chaoxia; Ran, Henry; Zhang, Fujun; Ke, Shi

    2016-01-01

    The goals of precision medicine are to link diagnostic and therapeutic agents, improve clinical outcomes, and minimize side effects. We present a simple, small, flexible three-armed core structure that can be conjugated to targeting, imaging, and therapeutic moieties. The targeting molecule can be a peptide, protein, or chemical compound. The diagnostic reporter can be optical and/or nuclear in nature, and can be replaced by chemo- and/or radiotherapeutic compounds for treatment using a single targeting molecule. Imaging components can be used to detect disease biomarkers, monitor treatment response, and guide surgery in real-time to create a tumor-free margin. Isotope impurity can be exploited to visualize whole-body distribution of therapeutic agents. The one-to-one ratio of targeting component to therapeutic agents facilitates dose calculation. The simple synthesis and flexible, modular nature of the agent facilitate high-purity, large-scale production. The core capacity to “seek, treat, and see” may advance precision medicine in the future. PMID:27027441

  2. MicroRNA-based Therapeutic Strategies for Targeting Mutant and Wild Type RAS in Cancer

    PubMed Central

    Sharma, Sriganesh B.; Ruppert, J. Michael

    2015-01-01

    MicroRNAs (miRs) have been causally implicated in the progression and development of a wide variety of cancers. miRs modulate the activity of key cell signaling networks by regulating the translation of pathway component proteins. Thus, the pharmacological targeting of miRs that regulate cancer cell signaling networks, either by promoting (using miR-supplementation) or by suppressing (using anti-sense oligonucleotide based strategies) miR activity is an area of intense research. The RAS-Extracellular signal regulated kinase (ERK) pathway represents a major miR-regulated signaling network that endows cells with some of the classical hallmarks of cancer, and is often inappropriately activated in malignancies by somatic genetic alteration through point mutation or alteration of gene copy number. In addition, recent progress indicates that many tumors may be deficient in GTPase activating proteins (GAPs) due to the collaborative action of oncogenic microRNAs. Recent studies also suggest that in tumors harboring a mutant RAS allele there is a critical role for wild type RAS proteins in determining overall RAS-ERK pathway activity. Together, these two advances comprise a new opportunity for therapeutic intervention. In this review, we evaluate miR-based therapeutic strategies for modulating RAS-ERK signaling in cancers, in particular for more direct modulation of RAS-GTP levels, with the potential to complement current strategies in order to yield more durable treatment responses. To this end, we discuss the potential for miR-based therapies focused on three prominent miRs including the pan-RAS regulator let-7 and the GAP regulator comprised of miR-206 and miR-21 (miR-206/21). PMID:26284568

  3. Phytochemical-mediated Protein Expression Profiling and the Potential Applications in Therapeutic Drug Target Identifications.

    PubMed

    Wong, Fai-Chu; Tan, Siok-Thing; Chai, Tsun-Thai

    2016-07-29

    Many phytochemicals derived from edible medicinal plants have been investigated intensively for their various bioactivities. However, the detailed mechanism and their corresponding molecular targets frequently remain elusive. In this review, we present a summary of the research works done on phytochemical-mediated molecular targets, identified via proteomic approach. Concurrently, we also highlighted some pharmaceutical drugs which could be traced back to their origins in phytochemicals. For ease of presentation, these identified protein targets were categorized into two important healthcare-related fields, namely anti-bacterial and anti-cancer research. Through this review, we hope to highlight the usefulness of comparative proteomic as a powerful tool in phytochemical-mediated protein target identifications. Likewise, we wish to inspire further investigations on some of these protein targets identified over the last few years. With contributions from all researchers, the accumulative efforts could eventually lead to the discovery of some target-specific, low-toxicity therapeutic agents.

  4. [Target antigens for therapeutic antibodies in oncology: many candidates, few successes].

    PubMed

    Ceze, Nicolas; Probst, Alicia; Lecomte, Thierry; Ohresser, Marc; Paintaud, Gilles; Watier, Hervé

    2007-01-01

    Targeted therapies, especially monoclonal antibodies, have reached an increasing importance in oncology. High-throughput techniques have allowed the identification of numerous transcripts, proteins, or non-protein antigens, which have generated the concept of immunome. This epitope library constitutes a huge reservoir of candidate antigens susceptible to become some say the target of an antibody for passive immunotherapy. However, the conception and development of a therapeutic antibody represent a very important investment, both in terms of human power and finance, such that there is a requirement for an early identification of the best candidates among the potential target antigens. Among multiple criteria, the function of the antigen is crucial when it has been identified. A receptor antigen can be targeted by an agonistic or an antagonistic antibody, according to what is sought. When the antigen function is unknown, a therapeutic antibody can be useful, for instance through induction of apoptosis or through accrual of immuno-competent cells, via its Fc portion (complement-dependent cytotoxicity or antibody-dependent cytotoxicity). Other antibody features, unrelated to its function, can also be exploited, such as its internalisation or its translocation in membrane lipid rafts. The expression of the target antigen may also be crucial, in terms of localisation and levels, as is its tumour specificity, which can influence the efficacy and toxicity of the targeting antibody. The multiplicity of the factors to be taken into account and the complexity of the mechanism of action of therapeutic antibodies renders the choice of a target antigen a hazardous bet. Very often, this is only when the clinical efficacy of a targeting antibody is demonstrated that the antigen can be considered as a good target. PMID:17964990

  5. Recent Advances in Targetable Therapeutics in Metastatic Non-Squamous NSCLC

    PubMed Central

    Bansal, Pranshu; Osman, Diaa; Gan, Gregory N.; Simon, George R.; Boumber, Yanis

    2016-01-01

    Lung adenocarcinoma is the most common subtype of non-small cell lung cancer (NSCLC). With the discovery of epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) rearrangements, and effective targeted therapies, therapeutic options are expanding for patients with lung adenocarcinoma. Here, we review novel therapies in non-squamous NSCLC, which are directed against oncogenic targets, including EGFR, ALK, ROS1, BRAF, MET, human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor receptor 2 (VEGFR2), RET, and NTRK. With the rapidly evolving molecular testing and development of new targeted agents, our ability to further personalize therapy in non-squamous NSCLC is rapidly expanding. PMID:27200298

  6. In vitro study of deep capture of paramagnetic particle for targeting therapeutics

    NASA Astrophysics Data System (ADS)

    Pei, Ning; Huang, Zheyong; Ma, Wenli; Ge, Junbo; Zheng, Wenling

    2009-09-01

    Magnetic targeting, a promising therapeutic strategy for localizing systemically delivered drug to target tissue, is limited by magnetic attenuation. To satisfy the need of deep magnetic targeting, a special apparatus in which the magnetic flux density can be focused at a distance from the pole was designed. To test the aggregation property of this apparatus, we observed the accumulation of 500-nm paramagnetic particles as flowing through a tube served as a model of blood vessels. The relationship of the accumulation of the paramagnetic particles, the magnetic flux density, the magnetic field gradient and the fluid velocity was studied by theoretical considerations.

  7. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect.

    PubMed

    Sajja, Hari Krishna; East, Michael P; Mao, Hui; Wang, Y Andrew; Nie, Shuming; Yang, Lily

    2009-03-01

    Nanotechnology is a multidisciplinary scientific field undergoing explosive development. Nanometer-sized particles offer novel structural, optical and electronic properties that are not attainable with individual molecules or bulk solids. Advances in nanomedicine can be made by engineering biodegradable nanoparticles such as magnetic iron oxide nanoparticles, polymers, dendrimers and liposomes that are capable of targeted delivery of both imaging agents and anticancer drugs. This leads toward the concept and possibility of personalized medicine for the potential of early detection of cancer lesions, determination of molecular signatures of the tumor by noninvasive imaging and, most importantly, molecular targeted cancer therapy. Increasing evidence suggests that the nanoparticles, whose surface contains a targeting molecule that binds to receptors highly expressed in tumor cells, can serve as cancer image contrast agents to increase sensitivity and specificity in tumor detection. In comparison with other small molecule contrast agents, the advantage of using nanoparticles is their large surface area and the possibility of surface modifications for further conjugation or encapsulation of large amounts of therapeutic agents. Targeted nanoparticles ferry large doses of therapeutic agents into malignant cells while sparing the normal healthy cells. Such multifunctional nanodevices hold the promise of significant improvement of current clinical management of cancer patients. This review explores the development of nanoparticles for enabling and improving the targeted delivery of therapeutic agents, the potential of nanomedicine, and the development of novel and more effective diagnostic and screening techniques to extend the limits of molecular diagnostics providing point-of-care diagnosis and more personalized medicine.

  8. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting

    PubMed Central

    Kumar, Raj

    2016-01-01

    Steroid hormone receptors (SHRs) act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM) ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to the fact that current SRMs generally target ligand binding domain (LBD)/AF2 and neglect intrinsically disordered (ID) N-terminal domain (NTD)/AF1, clinically relevant SRMs lack selectivity and are also prone to the development of resistance over time. Therefore, to maximize the efficacy of SHR-based therapeutics, the possibility of developing unique modulators that act to control AF1 activity must be considered. Recent studies targeting androgen receptor's (AR's) ID AF1 domain for the castration-resistant prostate cancer has provided the possibility of therapeutically targeting ID NTD/AF1 surfaces by allosteric modulations to achieve desired effects. In this review article, we discuss how inter- and intra- molecular allosteric regulations controlled by AR's structural flexibility and dynamics particularly the ID NTD/AF1 is an emerging area of investigation, which could be exploited for drug development and therapeutic targeting of prostate cancer. PMID:27364545

  9. Identification of novel therapeutic targets in acute leukemias with NRAS mutations using a pharmacologic approach.

    PubMed

    Nonami, Atsushi; Sattler, Martin; Weisberg, Ellen; Liu, Qingsong; Zhang, Jianming; Patricelli, Matthew P; Christie, Amanda L; Saur, Amy M; Kohl, Nancy E; Kung, Andrew L; Yoon, Hojong; Sim, Taebo; Gray, Nathanael S; Griffin, James D

    2015-05-14

    Oncogenic forms of NRAS are frequently associated with hematologic malignancies and other cancers, making them important therapeutic targets. Inhibition of individual downstream effector molecules (eg, RAF kinase) have been complicated by the rapid development of resistance or activation of bypass pathways. For the purpose of identifying novel targets in NRAS-transformed cells, we performed a chemical screen using mutant NRAS transformed Ba/F3 cells to identify compounds with selective cytotoxicity. One of the compounds identified, GNF-7, potently and selectively inhibited NRAS-dependent cells in preclinical models of acute myelogenous leukemia and acute lymphoblastic leukemia. Mechanistic analysis revealed that its effects were mediated in part through combined inhibition of ACK1/AKT and of mitogen-activated protein kinase kinase kinase kinase 2 (germinal center kinase). Similar to genetic synthetic lethal approaches, these results suggest that small molecule screens can be used to identity novel therapeutic targets in cells addicted to RAS oncogenes.

  10. Aberrant Lipid Metabolism: An Emerging Diagnostic and Therapeutic Target in Ovarian Cancer

    PubMed Central

    Pyragius, Carmen E.; Fuller, Maria; Ricciardelli, Carmela; Oehler, Martin K.

    2013-01-01

    Ovarian cancer remains the most lethal gynaecological cancer. A better understanding of the molecular pathogenesis of ovarian cancer is of critical importance to develop early detection tests and identify new therapeutic targets that would increase survival. Cancer cells depend on de novo lipid synthesis for the generation of fatty acids to meet the energy requirements for increased tumour growth. There is increasing evidence that lipid metabolism is deregulated in cancers, including ovarian cancer. The increased expression and activity of lipogenic enzymes is largely responsible for increased lipid synthesis, which is regulated by metabolic and oncogenic signalling pathways. This article reviews the latest knowledge on lipid metabolism and the alterations in the expression of lipogenic enzymes and downstream signalling pathways in ovarian cancer. Current developments for exploiting lipids as biomarkers for the detection of early stage ovarian cancer and therapeutic targets are discussed. Current research targeting lipogenic enzymes and lipids to increase the cytotoxicity of chemotherapy drugs is also highlighted. PMID:23574936

  11. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family

    PubMed Central

    Shepard, H. Michael; Brdlik, Cathleen M.; Schreiber, Hans

    2008-01-01

    The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family–targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences. PMID:18982164

  12. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma.

    PubMed

    Varshosaz, Jaleh; Farzan, Maryam

    2015-11-14

    Hepatocellular carcinoma (HCC) is the 5(th) most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein

  13. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma

    PubMed Central

    Varshosaz, Jaleh; Farzan, Maryam

    2015-01-01

    Hepatocellular carcinoma (HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein

  14. Essential proteins and possible therapeutic targets of Wolbachia endosymbiont and development of FiloBase-a comprehensive drug target database for Lymphatic filariasis

    PubMed Central

    Sharma, Om Prakash; Kumar, Muthuvel Suresh

    2016-01-01

    Lymphatic filariasis (Lf) is one of the oldest and most debilitating tropical diseases. Millions of people are suffering from this prevalent disease. It is estimated to infect over 120 million people in at least 80 nations of the world through the tropical and subtropical regions. More than one billion people are in danger of getting affected with this life-threatening disease. Several studies were suggested its emerging limitations and resistance towards the available drugs and therapeutic targets for Lf. Therefore, better medicine and drug targets are in demand. We took an initiative to identify the essential proteins of Wolbachia endosymbiont of Brugia malayi, which are indispensable for their survival and non-homologous to human host proteins. In this current study, we have used proteome subtractive approach to screen the possible therapeutic targets for wBm. In addition, numerous literatures were mined in the hunt for potential drug targets, drugs, epitopes, crystal structures, and expressed sequence tag (EST) sequences for filarial causing nematodes. Data obtained from our study were presented in a user friendly database named FiloBase. We hope that information stored in this database may be used for further research and drug development process against filariasis. URL: http://filobase.bicpu.edu.in. PMID:26806463

  15. Androgen receptor cofactors in prostate cancer: potential therapeutic targets of castration-resistant prostate cancer.

    PubMed

    Shiota, Masaki; Yokomizo, Akira; Fujimoto, Naohiro; Naito, Seiji

    2011-09-01

    Androgens, acting through the androgen receptor (AR), are responsible for many male reproductive and nonreproductive functions. Moreover, aberrant androgen/AR signaling plays a critical role in androgen-dependent prostate cancer (PCa) as well as castration-resistant prostate cancer (CRPC). The formation of a productive AR transcriptional complex requires AR cofactors that interact functionally and structurally with the AR. Since the discovery of the first such cofactor in 1995, an ever increasing number of proteins have been identified as AR coactivators or corepressors. The expression and function of several AR cofactors have been investigated in PCa, and a clear link between AR cofactors and the development and progression of PCa has been identified. Recently, AR splice variants in CRPC were reported, which display significant constitutive activity in the absence of ligand. Then, this discovery revolutionized the concept of AR cofactors in CRPC. The current review aims to provide an overview of AR cofactor proteins in the context of PCa. In addition, we discuss the potential of AR cofactors as novel therapeutic targets for PCa, particularly for CRPC.

  16. Review of novel therapeutic targets for improving heart failure treatment based on experimental and clinical studies

    PubMed Central

    Bonsu, Kwadwo Osei; Owusu, Isaac Kofi; Buabeng, Kwame Ohene; Reidpath, Daniel Diamond; Kadirvelu, Amudha

    2016-01-01

    Heart failure (HF) is a major public health priority due to its epidemiological transition and the world’s aging population. HF is typified by continuous loss of contractile function with reduced, normal, or preserved ejection fraction, elevated vascular resistance, fluid and autonomic imbalance, and ventricular dilatation. Despite considerable advances in the treatment of HF over the past few decades, mortality remains substantial. Pharmacological treatments including β-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone antagonists have been proven to prolong the survival of patients with HF. However, there are still instances where patients remain symptomatic, despite optimal use of existing therapeutic agents. This understanding that patients with chronic HF progress into advanced stages despite receiving optimal treatment has increased the quest for alternatives, exploring the roles of additional pathways that contribute to the development and progression of HF. Several pharmacological targets associated with pathogenesis of HF have been identified and novel therapies have emerged. In this work, we review recent evidence from proposed mechanisms to the outcomes of experimental and clinical studies of the novel pharmacological agents that have emerged for the treatment of HF. PMID:27350750

  17. Inside the Envelope: Endogenous Retrovirus-K Env as a Biomarker and Therapeutic Target

    PubMed Central

    Nadeau, Marie-Josée; Manghera, Mamneet; Douville, Renée N.

    2015-01-01

    Due to multiple ancestral human retroviral germ cell infections, the modern human genome is strewn with relics of these infections, termed endogenous retroviruses (ERVs). ERV expression has been silenced due to negative selective pressures and genetic phenomena such as mutations and epigenetic silencing. Nonetheless, select ERVs have retained the capacity to be damaging to their host when reawakened. Much of the current research on the ERVK Env protein strongly suggests a causal or contributive role in the pathogenesis of various cancers, autoimmune and infectious diseases. Additionally, there is a small body of research suggesting that ERVK Env has been domesticated for use in placental development, akin to the ERVW syncytin. Though much is left to ascertain, the innate immune response to ERVK Env expression has been partially characterized and appears to be due to a region located in the transmembrane domain of the Env protein. In this review, we aim to highlight ERVK Env as a biomarker for inflammatory conditions and explore its use as a future therapeutic target for cancers, HIV infection and neurological disease. PMID:26617584

  18. New Therapeutic Targets in Idiopathic Pulmonary Fibrosis. Aiming to Rein in Runaway Wound-Healing Responses

    PubMed Central

    Ahluwalia, Neil; Shea, Barry S.

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease, with a median survival as short as 3 years from the time of diagnosis and no pharmacological therapies yet approved by the U.S. Food and Drug Administration. To address the great unmet need for effective IPF therapy, a number of new drugs have recently been, or are now being, evaluated in clinical trials. The rationales for most of these therapeutic candidates are based on the current paradigm of IPF pathogenesis, in which recurrent injury to the alveolar epithelium is believed to drive aberrant wound healing responses, resulting in fibrosis rather than repair. Here we discuss drugs in recently completed or currently ongoing phase II and III IPF clinical trials in the context of their putative mechanisms of action and the aberrant repair processes they are believed to target: innate immune activation and polarization, fibroblast accumulation and myofibroblast differentiation, or extracellular matrix deposition and stiffening. Placed in this context, the positive results of recently completed trials of pirfenidone and nintedanib, and results that will come from ongoing trials of other agents, should provide valuable insights into the still-enigmatic pathogenesis of this disease, in addition to providing benefits to patients with IPF. PMID:25090037

  19. Antibody response to BK polyomavirus as a prognostic biomarker and potential therapeutic target in prostate cancer

    PubMed Central

    Keller, Xavier Etienne; Kardas, Piotr; Acevedo, Claudio; Sais, Giovanni; Poyet, Cédric; Banzola, Irina; Mortezavi, Ashkan; Seifert, Burkhardt; Sulser, Tullio

    2015-01-01

    Infectious agents, including the BK polyomavirus (BKPyV), have been proposed as important inflammatory pathogens in prostate cancer. Here, we evaluated whether the preoperative antibody response to BKPyV large T antigen (LTag) and viral capsid protein 1 (VP1) was associated with the risk of biochemical recurrence in 226 patients undergoing radical prostatectomy for primary prostate cancer. Essentially, the multivariate Cox regression analysis revealed that preoperative seropositivity to BKPyV LTag significantly reduced the risk of biochemical recurrence, independently of established predictors of biochemical recurrence such as tumor stage, Gleason score and surgical margin status. The predictive accuracy of the regression model was denotatively increased by the inclusion of the BKPyV LTag serostatus. In contrast, the VP1 serostatus was of no prognostic value. Finally, the BKPyV LTag serostatus was associated with a peculiar cytokine gene expression profile upon assessment of the cellular immune response elicited by LTag. Taken together, our findings suggest that the BKPyV LTag serology may serve as a prognostic factor in prostate cancer. If validated in additional studies, this biomarker may allow for better treatment decisions after radical prostatectomy. Finally, the favorable outcome of LTag seropositive patients may provide a potential opportunity for novel therapeutic approaches targeting a viral antigen. PMID:25749042

  20. Clinical investigation of TROP-2 as an independent biomarker and potential therapeutic target in colon cancer.

    PubMed

    Zhao, Peng; Yu, Hai-Zheng; Cai, Jian-Hui

    2015-09-01

    Colon cancer is associated with a severe demographic and economic burden worldwide. The pathogenesis of colon cancer is highly complex and involves sequential genetic and epigenetic mechanisms. Despite extensive investigation, the pathogenesis of colon cancer remains to be elucidated. As the third most common type of cancer worldwide, the treatment options for colon cancer are currently limited. Human trophoblast cell‑surface marker (TROP‑2), is a cell‑surface transmembrane glycoprotein overexpressed by several types of epithelial carcinoma. In addition, TROP‑2 has been demonstrated to be associated with tumorigenesis and invasiveness in solid types of tumor. The aim of the present study was to investigate the protein expression of TROP‑2 in colon cancer tissues, and further explore the association between the expression of TROP‑2 and clinicopathological features of patients with colon cancer. The expression and localization of the TROP‑2 protein was examined using western blot analysis and immunofluorescence staining. Finally, the expression of TROP‑2 expression was correlated to conventional clinicopathological features of colon cancer using a χ2 test. The results revealed that TROP‑2 protein was expressed at high levels in the colon cancer tissues, which was associated with the development and pathological process of colon cancer. Therefore, TROP‑2 may be used as a biomarker to determine the clinical prognosis, and as a potential therapeutic target in colon cancer.

  1. Inhibitor of Apoptosis Proteins (IAPs) as therapeutic targets in Multiple Myeloma (MM)

    PubMed Central

    Ramakrishnan, Vijay; Painuly, Utkarsh; Kimlinger, Teresa; Haug, Jessica; Rajkumar, S. Vincent; Kumar, Shaji

    2014-01-01

    The inhibitor of apoptosis (IAP) proteins plays a critical role in the control of apoptotic machinery, and has been explored as a therapeutic target. Here, we have examined the functional importance of IAPs in multiple myeloma (MM) by using a Smac-mimetic LCL161. We observed that LCL161 was able to potently induce apoptosis in some MM cell lines but not in others. Examining the levels of XIAP, cIAP1 and cIAP2 post LCL161 treatment indicated clear down regulation of both XIAP activity and cIAP1 levels in both the sensitive and less sensitive (resistant) cell lines. cIAP2, however, was not down regulated in the cell line resistant to the drug. siRNA mediated silencing of cIAP2 significantly enhanced the effect of LCL161 indicating the importance of down regulating all IAPs simultaneously for induction of apopotsis in MM cells. LCL161 induced marked up regulation of the Jak2/Stat3 pathway in the resistant MM cell lines. Combining LCL161 with a Jak2 specific inhibitor resulted in synergistic cell death in MM cell lines and patient cells. In addition, combining LCL161 with death inducing ligands clearly showed that LCL161 sensitized MM cells to both FAS-L and TRAIL. PMID:24402161

  2. Long noncoding RNA MALAT1 as a potential therapeutic target in osteosarcoma.

    PubMed

    Cai, Xianyi; Liu, Yunlu; Yang, Wen; Xia, Yun; Yang, Cao; Yang, Shuhua; Liu, Xianzhe

    2016-06-01

    Recent studies have revealed that long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays an important role in the development of several solid tumors. However, the function of MALAT1 in the tumorigenesis of osteosarcoma remains unknown. In the present study, levels of MALAT1 in human osteosarcoma cell lines and tissues were detected by quantitative real-time polymerase chain reaction (RT-PCR). The roles of MALAT1 in osteosarcoma were investigated by using in vitro and in vivo assays. We observed that MALAT1 expression was up-regulated in human osteosarcoma cell lines and tissues. In vitro knockdown of MALAT1 by siRNA significantly inhibited cell proliferation and migration, and induced cell cycle arrest and apoptosis in osteosarcoma cells. In addition, MALAT1 knockdown markedly suppressed the formation of tubular network structures and caused breakage of stress fibers in osteosarcoma cell lines U2OS and MNNG/HOS. Furthermore, MALAT1 knockdown delayed tumor growth in an osteosarcoma xenograft model. Specifically, we found that administration of MALAT1 siRNA decreased the protein levels of RhoA and its downstream effectors Rho-associated coiled-coil containing protein kinases (ROCKs). Taken together, these findings suggest that MALAT1 plays an oncogenic role in osteosarcoma and may be a promising therapeutic target for the treatment of osteosarcoma patients. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:932-941, 2016.

  3. The sympathetic nervous system in polycystic ovary syndrome: a novel therapeutic target?

    PubMed

    Lansdown, Andrew; Rees, D Aled

    2012-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition associated with long-term health risks, including type 2 diabetes and vascular dysfunction in addition to reproductive sequelae. Many of the common features of PCOS, such as central obesity, hyperinsulinaemia and obstructive sleep apnoea (OSA), are associated with chronic sympathetic overactivity, suggesting that sympathoexcitation may be involved in the pathogenesis of this condition. Rodent models of polycystic ovaries have shown that ovarian sympathetic outflow may be increased, accompanied by elevated intra-ovarian synthesis of nerve growth factor (NGF) which may be involved in initiation of ovarian pathology. Patients with PCOS have evidence of increased muscle sympathetic nerve activity (MSNA), altered heart rate variability and attenuated heart rate recovery postexercise, compared with age- and BMI-matched controls, suggesting a generalized increase in sympathetic nerve activity. Active weight loss can reduce MSNA and whole body noradrenaline spillover, whereas low-frequency electroacupuncture decreased MSNA in overweight women with PCOS. Treatment of OSA with continuous positive airways pressure may reduce plasma noradrenaline levels and diastolic blood pressure and improve cardiac sympathovagal balance. Renal sympathetic denervation also reduced MSNA, noradrenaline spillover and blood pressure in two PCOS subjects with hypertension, accompanied by improved insulin sensitivity. The sympathetic nervous system may thus offer a new therapeutic target in PCOS but larger and longer-term studies are needed before these treatments can be considered in clinical practice. PMID:22882204

  4. Cholesterol: the good, the bad, and the ugly - therapeutic targets for the treatment of dyslipidemia.

    PubMed

    Elshourbagy, Nabil A; Meyers, Harold V; Abdel-Meguid, Sherin S

    2014-01-01

    Maintaining cholesterol and triglyceride (TG) levels within healthy limits is critical for decreasing the risk of heart disease. Dyslipidemia refers to the abnormal levels of lipids in the blood, including low high-density lipoprotein cholesterol (HDL-C), also known as good cholesterol, high low-density lipoprotein cholesterol (LDL-C), also known as bad cholesterol, and/or high TG levels that contribute to the development and progression of atherosclerosis. In this article we reviewed some of the current therapeutic targets for the treatment of dyslipidemia, with a primary focus on endothelial lipase and lecithin cholesterol acyl transferase for raising HDL-C, and the proprotein convertase subtilisin-like kexin type 9 (PCSK9), microsomal triglyceride transfer protein, and the messenger RNA of apolipoprotein B for lowering LDL-C. In addition, we reviewed the role of apolipoprotein AI (apoAI) in raising HDL-C, where we discuss three apoAI-based drugs under development. These are its mutated dimer (apoAI-Milano), a complex with phospholipids, and a mimetic peptide. Atherosclerosis, mainly because of dyslipidemia, is a leading cause of cardiovascular disease. Regarding the title of this article, the 'good' refers to HDL-C, the 'bad' refers to LDL-C, and the 'ugly' refers to atherosclerosis. PMID:24334831

  5. The sympathetic nervous system in polycystic ovary syndrome: a novel therapeutic target?

    PubMed

    Lansdown, Andrew; Rees, D Aled

    2012-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition associated with long-term health risks, including type 2 diabetes and vascular dysfunction in addition to reproductive sequelae. Many of the common features of PCOS, such as central obesity, hyperinsulinaemia and obstructive sleep apnoea (OSA), are associated with chronic sympathetic overactivity, suggesting that sympathoexcitation may be involved in the pathogenesis of this condition. Rodent models of polycystic ovaries have shown that ovarian sympathetic outflow may be increased, accompanied by elevated intra-ovarian synthesis of nerve growth factor (NGF) which may be involved in initiation of ovarian pathology. Patients with PCOS have evidence of increased muscle sympathetic nerve activity (MSNA), altered heart rate variability and attenuated heart rate recovery postexercise, compared with age- and BMI-matched controls, suggesting a generalized increase in sympathetic nerve activity. Active weight loss can reduce MSNA and whole body noradrenaline spillover, whereas low-frequency electroacupuncture decreased MSNA in overweight women with PCOS. Treatment of OSA with continuous positive airways pressure may reduce plasma noradrenaline levels and diastolic blood pressure and improve cardiac sympathovagal balance. Renal sympathetic denervation also reduced MSNA, noradrenaline spillover and blood pressure in two PCOS subjects with hypertension, accompanied by improved insulin sensitivity. The sympathetic nervous system may thus offer a new therapeutic target in PCOS but larger and longer-term studies are needed before these treatments can be considered in clinical practice.

  6. Therapeutic microRNAs targeting the NF-kappa B Signaling Circuits of Cancers

    PubMed Central

    Tong, Lingying; Yuan, Ye; Wu, Shiyong

    2014-01-01

    MicroRNAs (miRNAs) not only directly regulate NF-κB expression, but also up- or down-regulate NF-κB activity via upstream and downstream signaling pathways of NF-κB. In many cancer cells, miRNA expressions are altered accompanied with an elevation of NF-κB, which often plays a role in promoting cancer development and progression as well as hindering the effectiveness of chemo and radiation therapies. Thus NF-κB-targeting miRNAs have been identified and characterized as potential therapeutics for cancer treatment and sensitizers of chemo and radiotherapies. However, due to cross-targeting and instability of miRNAs, some limitations of using miRNA as cancer therapeutics still exist. In this review, the mechanisms for miRNA-mediated alteration of NF-κB expression and activation in different types of cancers will be discussed. The results of therapeutic use of NF-κB-targeting miRNA for cancer treatment will be examined. Some limitations, challenges and potential strategies in future development of miRNA as cancer therapeutics are also assessed. PMID:25220353

  7. Therapeutic microRNAs targeting the NF-kappa B signaling circuits of cancers.

    PubMed

    Tong, Lingying; Yuan, Ye; Wu, Shiyong

    2015-01-01

    MicroRNAs (miRNAs) not only directly regulate NF-κB expression, but also up- or down-regulate NF-κB activity via upstream and downstream signaling pathways of NF-κB. In many cancer cells, miRNA expressions are altered accompanied with an elevation of NF-κB activity, which often plays a role in promoting cancer development and progression as well as hindering the effectiveness of chemo and radiation therapies. Thus NF-κB-targeting miRNAs have been identified and characterized as potential therapeutics for cancer treatment and sensitizers of chemo and radiotherapies. However, due to cross-targeting and instability of miRNAs, some limitations of using miRNA as cancer therapeutics still exist. In this review, the mechanisms for miRNA-mediated alteration of NF-κB expression and activation in different types of cancers will be discussed. The results of therapeutic use of NF-κB-targeting miRNA for cancer treatment will be examined. Some limitations, challenges and potential strategies in future development of miRNA as cancer therapeutics are also assessed. PMID:25220353

  8. Functional signaling pathway analysis of lung adenocarcinomas identifies novel therapeutic targets for KRAS mutant tumors.

    PubMed

    Baldelli, Elisa; Bellezza, Guido; Haura, Eric B; Crinó, Lucio; Cress, W Douglas; Deng, Jianghong; Ludovini, Vienna; Sidoni, Angelo; Schabath, Matthew B; Puma, Francesco; Vannucci, Jacopo; Siggillino, Annamaria; Liotta, Lance A; Petricoin, Emanuel F; Pierobon, Mariaelena

    2015-10-20

    Little is known about the complex signaling architecture of KRAS and the interconnected RAS-driven protein-protein interactions, especially as it occurs in human clinical specimens. This study explored the activated and interconnected signaling network of KRAS mutant lung adenocarcinomas (AD) to identify novel therapeutic targets.Thirty-four KRAS mutant (MT) and twenty-four KRAS wild-type (WT) frozen biospecimens were obtained from surgically treated lung ADs. Samples were subjected to Laser Capture Microdissection and Reverse Phase Protein Microarray analysis to explore the expression/activation levels of 150 signaling proteins along with co-activation concordance mapping. An independent set of 90 non-small cell lung cancers (NSCLC) was used to validate selected findings by immunohistochemistry (IHC).Compared to KRAS WT tumors, the signaling architecture of KRAS MT ADs revealed significant interactions between KRAS downstream substrates, the AKT/mTOR pathway, and a number of Receptor Tyrosine Kinases (RTK). Approximately one-third of the KRAS MT tumors had ERK activation greater than the WT counterpart (p<0.01). Notably 18% of the KRAS MT tumors had elevated activation of the Estrogen Receptor alpha (ER-α) (p=0.02).This finding was verified in an independent population by IHC (p=0.03).KRAS MT lung ADs appear to have a more intricate RAS linked signaling network than WT tumors with linkage to many RTKs and to the AKT-mTOR pathway. Combination therapy targeting different nodes of this network may be necessary to treat this group of patients. In addition, for patients with KRAS MT tumors and activation of the ER-α, anti-estrogen therapy may have important clinical implications. PMID:26468985

  9. B7-H3, a potential therapeutic target, is expressed in diffuse intrinsic pontine glioma.

    PubMed

    Zhou, Zhiping; Luther, Neal; Ibrahim, George M; Hawkins, Cynthia; Vibhakar, Rajeev; Handler, Michael H; Souweidane, Mark M

    2013-02-01

    Diffuse intrinsic pontine glioma (DIPG) is a brain cancer with a median survival of only 1 year. Lack of molecular characterization of this tumor impedes the development of novel therapies. Membrane protein B7-H3, aka CD276, involved in interactions with host defenses in certain cancers, has been shown to be over-expressed in the majority of malignant neuroectodermal tumors including adult high-grade glioma. Targeting B7-H3 with a monoclonal antibody has demonstrated safety and efficacy in the salvage treatment of stage IV childhood neuroblastoma, another neuroectodermal tumor. It thus stands to reason that B7-H3 might serve as a therapeutic target in DIPG. B7-H3 immunoreactivity was determined in DIPG and non-diffuse brainstem glioma specimens with immunohistochemistry. In addition, B7-H3 mRNA expression was evaluated with microarrays in another set of specimens. All of the nine (100 %) DIPG specimens were shown to be B7-H3 immunoreactive. In the non-diffuse brainstem glioma group, none of the eight WHO grade I specimens showed B7-H3 immunoreactivity and nine of the 24 WHO grade II specimens (37.5 %) showed B7-H3 immunoreactivity. The association between histological grade and B7-H3 immunoreactivity was statistically highly significant. B7-H3 mRNA expression was also significantly higher in DIPG samples than in normal brain and juvenile pilocytic astrocytoma (WHO grade I) specimens. In summary, B7-H3 is over-expressed in DIPG. Given the need for novel treatment in this disease, antibody-based immunotherapy against B7-H3 in DIPG warrants further investigation.

  10. Propagation of tau pathology in Alzheimer's disease: identification of novel therapeutic targets.

    PubMed

    Pooler, Amy M; Polydoro, Manuela; Wegmann, Susanne; Nicholls, Samantha B; Spires-Jones, Tara L; Hyman, Bradley T

    2013-01-01

    Accumulation and aggregation of the microtubule-associated protein tau are a pathological hallmark of neurodegenerative disorders such as Alzheimer's disease (AD). In AD, tau becomes abnormally phosphorylated and forms inclusions throughout the brain, starting in the entorhinal cortex and progressively affecting additional brain regions as the disease progresses. Formation of these inclusions is thought to lead to synapse loss and cell death. Tau is also found in the cerebrospinal fluid (CSF), and elevated levels are a biomarker for AD. Until recently, it was thought that the presence of tau in the CSF was due to the passive release of aggregated tau from dead or dying tangle-bearing neurons. However, accumulating evidence from different AD model systems suggests that tau is actively secreted and transferred between synaptically connected neurons. Transgenic mouse lines with localized expression of aggregating human tau in the entorhinal cortex have demonstrated that, as these animals age, tau becomes mislocalized from axons to cell bodies and dendrites and that human tau-positive aggregates form first in the entorhinal cortex and later in downstream projection targets. Numerous in vitro and in vivo studies have provided insight into the mechanisms by which tau may be released and internalized by neurons and have started to provide insight into how tau pathology may spread in AD. In this review, we discuss the evidence for regulated tau release and its specific uptake by neurons. Furthermore, we identify possible therapeutic targets for preventing the propagation of tau pathology, as inhibition of tau transfer may restrict development of tau tangles in a small subset of neurons affected in early stages of AD and therefore prevent widespread neuron loss and cognitive dysfunction associated with later stages of the disease.

  11. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells

    PubMed Central

    Stangeland, Biljana; Mughal, Awais A.; Grieg, Zanina; Sandberg, Cecilie Jonsgar; Joel, Mrinal; Nygård, Ståle; Meling, Torstein; Murrell, Wayne; Vik Mo, Einar O.; Langmoen, Iver A.

    2015-01-01

    Glioblastoma (GBM) is both the most common and the most lethal primary brain tumor. It is thought that GBM stem cells (GSCs) are critically important in resistance to therapy. Therefore, there is a strong rationale to target these cells in order to develop new molecular therapies. To identify molecular targets in GSCs, we compared gene expression in GSCs to that in neural stem cells (NSCs) from the adult human brain, using microarrays. Bioinformatic filtering identified 20 genes (PBK/TOPK, CENPA, KIF15, DEPDC1, CDC6, DLG7/DLGAP5/HURP, KIF18A, EZH2, HMMR/RHAMM/CD168, NOL4, MPP6, MDM1, RAPGEF4, RHBDD1, FNDC3B, FILIP1L, MCC, ATXN7L4/ATXN7L1, P2RY5/LPAR6 and FAM118A) that were consistently expressed in GSC cultures and consistently not expressed in NSC cultures. The expression of these genes was confirmed in clinical samples (TCGA and REMBRANDT). The first nine genes were highly co-expressed in all GBM subtypes and were part of the same protein-protein interaction network. Furthermore, their combined up-regulation correlated negatively with patient survival in the mesenchymal GBM subtype. Using targeted proteomics and the COGNOSCENTE database we linked these genes to GBM signalling pathways. Nine genes: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, KIF18A, EZH2 and HMMR should be further explored as targets for treatment of GBM. PMID:26295306

  12. Annexin A9 (ANXA9) biomarker and therapeutic target in epithelial cancer

    DOEpatents

    Hu, Zhi; Kuo, Wen-Lin; Neve, Richard M.; Gray, Joe W.

    2012-06-12

    Amplification of the ANXA9 gene in human chromosomal region 1q21 in epithelial cancers indicates a likelihood of both in vivo drug resistance and metastasis, and serves as a biomarker indicating these aspects of the disease. ANXA9 can also serve as a therapeutic target. Interfering RNAs (iRNAs) (such as siRNA and miRNA) and shRNA adapted to inhibit ANXA9 expression, when formulated in a therapeutic composition, and delivered to cells of the tumor, function to treat the epithelial cancer.

  13. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease.

    PubMed

    Mitroulis, Ioannis; Alexaki, Vasileia I; Kourtzelis, Ioannis; Ziogas, Athanassios; Hajishengallis, George; Chavakis, Triantafyllos

    2015-03-01

    Infection or sterile inflammation triggers site-specific attraction of leukocytes. Leukocyte recruitment is a process comprising several steps orchestrated by adhesion molecules, chemokines, cytokines and endogenous regulatory molecules. Distinct adhesive interactions between endothelial cells and leukocytes and signaling mechanisms contribute to the temporal and spatial fine-tuning of the leukocyte adhesion cascade. Central players in the leukocyte adhesion cascade include the leukocyte adhesion receptors of the β2-integrin family, such as the αLβ2 and αMβ2 integrins, or of the β1-integrin family, such as the α4β1-integrin. Given the central involvement of leukocyte recruitment in different inflammatory and autoimmune diseases, the leukocyte adhesion cascade in general, and leukocyte integrins in particular, represent key therapeutic targets. In this context, the present review focuses on the role of leukocyte integrins in the leukocyte adhesion cascade. Experimental evidence that has implicated leukocyte integrins as targets in animal models of inflammatory disorders, such as experimental autoimmune encephalomyelitis, psoriasis, inflammatory bone loss and inflammatory bowel disease as well as preclinical and clinical therapeutic applications of antibodies that target leukocyte integrins in various inflammatory disorders are presented. Finally, we review recent findings on endogenous inhibitors that modify leukocyte integrin function, which could emerge as promising therapeutic targets.

  14. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics.

    PubMed

    Lorenzer, Cornelia; Dirin, Mehrdad; Winkler, Anna-Maria; Baumann, Volker; Winkler, Johannes

    2015-04-10

    Therapeutic gene silencing promises significant progress in pharmacotherapy, including considerable expansion of the druggable target space and the possibility for treating orphan diseases. Technological hurdles have complicated the efficient use of therapeutic oligonucleotides, and siRNA agents suffer particularly from insufficient pharmacokinetic properties and poor cellular uptake. Intense development and evolution of delivery systems have resulted in efficient uptake predominantly in liver tissue, in which practically all nanoparticulate and liposomal delivery systems show the highest accumulation. The most efficacious strategies include liposomes and bioconjugations with N-acetylgalactosamine. Both are in early clinical evaluation stages for treatment of liver-associated diseases. Approaches for achieving knockdown in other tissues and tumors have been proven to be more complicated. Selective targeting to tumors may be enabled through careful modulation of physical properties, such as particle size, or by taking advantage of specific targeting ligands. Significant barriers stand between sufficient accumulation in other organs, including endothelial barriers, cellular membranes, and the endosome. The brain, which is shielded by the blood-brain barrier, is of particular interest to facilitate efficient oligonucleotide therapy of neurological diseases. Transcytosis of the blood-brain barrier through receptor-specific docking is investigated to increase accumulation in the central nervous system. In this review, the current clinical status of siRNA therapeutics is summarized, as well as innovative and promising preclinical concepts employing tissue- and tumor-targeted ligands. The requirements and the respective advantages and drawbacks of bioconjugates and ligand-decorated lipid or polymeric particles are discussed.

  15. Receptor Crosslinking: A General Method to Trigger Internalization and Lysosomal Targeting of Therapeutic Receptor:Ligand Complexes

    PubMed Central

    Moody, Paul R; Sayers, Edward J; Magnusson, Johannes P; Alexander, Cameron; Borri, Paola; Watson, Peter; Jones, Arwyn T

    2015-01-01

    A major unmet clinical need is a universal method for subcellular targeting of bioactive molecules to lysosomes. Delivery to this organelle enables either degradation of oncogenic receptors that are overexpressed in cancers, or release of prodrugs from antibody–drug conjugates. Here, we describe a general method that uses receptor crosslinking to trigger endocytosis and subsequently redirect trafficking of receptor:cargo complexes from their expected route, to lysosomes. By incubation of plasma membrane receptors with biotinylated cargo and subsequent addition of streptavidin to crosslink receptor:cargo–biotin complexes, we achieved rapid and selective lysosomal targeting of transferrin, an anti-MHC class I antibody, and the clinically approved anti-Her2 antibody trastuzumab. These three protein ligands each target a receptor with a distinct cellular function and intracellular trafficking profile. Importantly, we confirmed that crosslinking of trastuzumab increased lysosomal degradation of its cognate oncogenic receptor Her2 in breast cancer cell lines SKBR3 and BT474. These data suggest that crosslinking could be exploited for a wide range of target receptors, for navigating therapeutics through the endolysosomal pathway, for significant therapeutic benefit. PMID:26412588

  16. The role of animal models in unravelling therapeutic targets in coeliac disease.

    PubMed

    Costes, Léa M M; Meresse, Bertrand; Cerf-Bensussan, Nadine; Samsom, Janneke N

    2015-06-01

    Coeliac disease is a complex small intestinal enteropathy that develops consequently to a breach of tolerance to gliadin, a storage protein abundantly found in cereals such as wheat, rye and barley. The understanding of the mechanisms underlying the development of coeliac disease in HLA-DQ2 and HLA-DQ8 genetically susceptible individuals has greatly improved during the last decades but so far did not allow to develop curative therapeutics, leaving a long-life gluten free diet as the only treatment option for the patients. In order to bring new therapeutic targets to light and to test the safety and efficacy of putative drugs, animal models recapitulating features of the disease are needed. Here, we will review the existing animal models and the clinical features of coeliac disease they reflect and discuss their relevance for modelling immune pathways that may lead to potential therapeutic approaches.

  17. Combinatorial therapeutic activation with heparin and AICAR stimulates additive effects on utrophin A expression in dystrophic muscles.

    PubMed

    Péladeau, Christine; Ahmed, Aatika; Amirouche, Adel; Crawford Parks, Tara E; Bronicki, Lucas M; Ljubicic, Vladimir; Renaud, Jean-Marc; Jasmin, Bernard J

    2016-01-01

    Upregulation of utrophin A is an attractive therapeutic strategy for treating Duchenne muscular dystrophy (DMD). Over the years, several studies revealed that utrophin A is regulated by multiple transcriptional and post-transcriptional mechanisms, and that pharmacological modulation of these pathways stimulates utrophin A expression in dystrophic muscle. In particular, we recently showed that activation of p38 signaling causes an increase in the levels of utrophin A mRNAs and protein by decreasing the functional availability of the destabilizing RNA-binding protein called K-homology splicing regulatory protein, thereby resulting in increases in the stability of existing mRNAs. Here, we treated 6-week-old mdx mice for 4 weeks with the clinically used anticoagulant drug heparin known to activate p38 mitogen-activated protein kinase, and determined the impact of this pharmacological intervention on the dystrophic phenotype. Our results show that heparin treatment of mdx mice caused a significant ∼1.5- to 3-fold increase in utrophin A expression in diaphragm, extensor digitorum longus and tibialis anterior (TA) muscles. In agreement with these findings, heparin-treated diaphragm and TA muscle fibers showed an accumulation of utrophin A and β-dystroglycan along their sarcolemma and displayed improved morphology and structural integrity. Moreover, combinatorial drug treatment using both heparin and 5-amino-4-imidazolecarboxamide riboside (AICAR), the latter targeting 5' adenosine monophosphate-activated protein kinase and the transcriptional activation of utrophin A, caused an additive effect on utrophin A expression in dystrophic muscle. These findings establish that heparin is a relevant therapeutic agent for treating DMD, and illustrate that combinatorial treatment of heparin with AICAR may serve as an effective strategy to further increase utrophin A expression in dystrophic muscle via activation of distinct signaling pathways.

  18. ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers

    PubMed Central

    Augustyn, Alexander; Borromeo, Mark; Wang, Tao; Fujimoto, Junya; Shao, Chunli; Dospoy, Patrick D.; Lee, Victoria; Tan, Christopher; Sullivan, James P.; Larsen, Jill E.; Girard, Luc; Behrens, Carmen; Wistuba, Ignacio I.; Xie, Yang; Cobb, Melanie H.; Gazdar, Adi F.; Johnson, Jane E.; Minna, John D.

    2014-01-01

    Aggressive neuroendocrine lung cancers, including small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), represent an understudied tumor subset that accounts for approximately 40,000 new lung cancer cases per year in the United States. No targeted therapy exists for these tumors. We determined that achaete-scute homolog 1 (ASCL1), a transcription factor required for proper development of pulmonary neuroendocrine cells, is essential for the survival of a majority of lung cancers (both SCLC and NSCLC) with neuroendocrine features. By combining whole-genome microarray expression analysis performed on lung cancer cell lines with ChIP-Seq data designed to identify conserved transcriptional targets of ASCL1, we discovered an ASCL1 target 72-gene expression signature that (i) identifies neuroendocrine differentiation in NSCLC cell lines, (ii) is predictive of poor prognosis in resected NSCLC specimens from three datasets, and (iii) represents novel “druggable” targets. Among these druggable targets is B-cell CLL/lymphoma 2, which when pharmacologically inhibited stops ASCL1-dependent tumor growth in vitro and in vivo and represents a proof-of-principle ASCL1 downstream target gene. Analysis of downstream targets of ASCL1 represents an important advance in the development of targeted therapy for the neuroendocrine class of lung cancers, providing a significant step forward in the understanding and therapeutic targeting of the molecular vulnerabilities of neuroendocrine lung cancer. PMID:25267614

  19. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    NASA Astrophysics Data System (ADS)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  20. Targeting the Sonic Hedgehog-Gli1 Pathway as a Potential New Therapeutic Strategy for Myelodysplastic Syndromes

    PubMed Central

    Zou, Jixue; Zhou, Zhigang; Wan, Liping; Tong, Yin; Qin, Youwen; Wang, Chun; Zhou, Kun

    2015-01-01

    The complex mechanistic array underlying the pathogenesis of myelodysplastic syndrome (MDS) is still unclear. Although dysregulations of different signaling pathways involved in MDS have been described, the identification of specific biomarkers and therapy targets remains an important task in order to establish novel therapeutic approaches. Here, we demonstrated that the Shh signaling pathway is active in MDS and correlated it with disease progression. Additionally, the knockdown of Gli1 significantly inhibited cell proliferation in vitro and in vivo. Gli1 silencing also induced apoptosis and G0/G1 phase arrest. Furthermore, Gli1 silencing enhanced the demethylating effect of 5-aza-2'-deoxycytidine on the p15 gene promoter and subsequently promoted its expression by inhibiting DNA methyltransferase 1(DNMT1). Our findings show that the Shh signaling pathway plays a role in the pathogenesis and disease progression of MDS, and proceeds by modulating DNA methylation. This pathway may prove to be a potential therapeutic target for enhancing the therapeutic effects of 5-azacytidine on malignant transformation of MDS. PMID:26317501

  1. Applications of metabolomics for kidney disease research: from biomarkers to therapeutic targets.

    PubMed

    Wettersten, Hiromi I; Weiss, Robert H

    2013-01-01

    Metabolomics is one of the relative newcomers of the omics techniques and is likely the one most closely related to actual real-time disease pathophysiology. Hence, it has the power to yield not only specific biomarkers but also insight into the pathophysiology of disease. Despite this power, metabolomics as applied to kidney disease is still in its early adolescence and has not yet reached the mature stage of clinical application, i.e., specific biomarker and therapeutic target discovery. On the other hand, the insight gained from hints into what makes these diseases tick, as is evident from the metabolomics pathways which have been found to be altered in kidney cancer, are now beginning to bear fruit in leading to potential therapeutic targets. It is quite likely that, with greater numbers of clinical materials and with more investigators jumping into the field, metabolomics may well change the course of kidney disease research. PMID:23538740

  2. Cell division cycle associated 1 as a novel prognostic biomarker and therapeutic target for oral cancer.

    PubMed

    Thang, Phung Manh; Takano, Atsushi; Yoshitake, Yoshihiro; Shinohara, Masanori; Murakami, Yoshinori; Daigo, Yataro

    2016-10-01

    Oral cavity carcinoma (OCC) is one of the most common causes of cancer-related death worldwide and has poor clinical outcome after standard therapies. Therefore, new prognostic biomarkers and therapeutic targets for OCC are urgently needed. We selected cell division cycle associated 1 (CDCA1) as a candidate OCC biomarker. Immunohistochemical analysis confirmed that CDCA1 protein was expressed in 67 of 99 OCC tissues (67.7%), but not in healthy oral epithelia. CDCA1 expression was significantly associated with poor prognosis in OCC patients (P=0.0244). Knockdown of CDCA1 by siRNAs significantly increased apoptosis of tumor cells. These data suggest that CDCA1 represents a novel prognostic biomarker and therapeutic target for OCC. PMID:27499128

  3. Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders.

    PubMed

    Aiyar, Raeka S; Bohnert, Maria; Duvezin-Caubet, Stéphane; Voisset, Cécile; Gagneur, Julien; Fritsch, Emilie S; Couplan, Elodie; von der Malsburg, Karina; Funaya, Charlotta; Soubigou, Flavie; Courtin, Florence; Suresh, Sundari; Kucharczyk, Roza; Evrard, Justine; Antony, Claude; St Onge, Robert P; Blondel, Marc; di Rago, Jean-Paul; van der Laan, Martin; Steinmetz, Lars M

    2014-01-01

    Mitochondrial diseases are systemic, prevalent and often fatal; yet treatments remain scarce. Identifying molecular intervention points that can be therapeutically targeted remains a major challenge, which we confronted via a screening assay we developed. Using yeast models of mitochondrial ATP synthase disorders, we screened a drug repurposing library, and applied genomic and biochemical techniques to identify pathways of interest. Here we demonstrate that modulating the sorting of nuclear-encoded proteins into mitochondria, mediated by the TIM23 complex, proves therapeutic in both yeast and patient-derived cells exhibiting ATP synthase deficiency. Targeting TIM23-dependent protein sorting improves an array of phenotypes associated with ATP synthase disorders, including biogenesis and activity of the oxidative phosphorylation machinery. Our study establishes mitochondrial protein sorting as an intervention point for ATP synthase disorders, and because of the central role of this pathway in mitochondrial biogenesis, it holds broad value for the treatment of mitochondrial diseases. PMID:25519239

  4. Delivery of therapeutics using nanocarriers for targeting cancer cells and cancer stem cells.

    PubMed

    Krishnamurthy, Sangeetha; Ke, Xiyu; Yang, Yi Yan

    2015-01-01

    Development of cancer resistance, cancer relapse and metastasis are attributed to the presence of cancer stem cells (CSCs). Eradication of this subpopulation has been shown to increase life expectancy of patients. Since the discovery of CSCs a decade ago, several strategies have been devised to specifically target them but with limited success. Nanocarriers have recently been employed to deliver anti-CSC therapeutics for reducing the population of CSCs at the tumor site with great success. This review discusses the different therapeutic strategies that have been employed using nanocarriers, their advantages, success in targeting CSCs and the challenges that are to be overcome. Exploiting this new modality of cancer treatment in the coming decade may improve outcomes profoundly with promise of effective treatment response and reducing relapse and metastasis.

  5. The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases

    PubMed Central

    Joshi, Gururaj; Johnson, Jeffrey A.

    2013-01-01

    Modulation of NF-E2 related factor 2 (Nrf2) has been shown in several neurodegenerative disorders. The overexpression of Nrf2 has become a potential therapeutic avenue for various neurodegenerative disorders such as Parkinson, Amyotrophic lateral sclerosis, and Alzheimer’s disease. The expression of phase II detoxification enzymes is governed by the cis-acting regulatory element known as antioxidant response element (ARE). The transcription factor Nrf2 binds to ARE thereby transcribing multitude of antioxidant genes. Keap1, a culin 3-based E3 ligase that targets Nrf2 for degradation, sequesters Nrf2 in cytoplasm. Disruption of Keap1-Nrf2 interaction or genetic overexpression of Nrf2 can increase the endogenous antioxidant capacity of the brain thereby rendering protection against oxidative stress in neurodegenerative disorders. This review primarily focuses on targeted Nrf2 overexpression as a promising therapeutic strategy for the treatment of neurodegenerative disorders. PMID:22742419

  6. Potential Therapeutic Strategies for Alzheimer's Disease Targeting or Beyond β-Amyloid: Insights from Clinical Trials

    PubMed Central

    Jia, Qiutian; Qing, Hong

    2014-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder with two hallmarks: β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer's disease. PMID:25136630

  7. Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease.

    PubMed

    Mullen, Lisa M; Chamberlain, Giselle; Sacre, Sandra

    2015-05-15

    The pattern recognition receptors of the innate immune system are part of the first line of defence against pathogens. However, they also have the ability to respond to danger signals that are frequently elevated during tissue damage and at sites of inflammation. Inadvertent activation of pattern recognition receptors has been proposed to contribute to the pathogenesis of many conditions including inflammatory rheumatic diseases. Prolonged inflammation most often results in pain and damage to tissues. In particular, the Toll-like receptors and nucleotide-binding oligomerisation domain-like receptors that form inflammasomes have been postulated as key contributors to the inflammation observed in rheumatoid arthritis, osteoarthritis, gout and systemic lupus erythematosus. As such, there is increasing interest in targeting these receptors for therapeutic treatment in the clinic. Here the role of pattern recognition receptors in the pathogenesis of these diseases is discussed, with an update on the development of interventions to modulate the activity of these potential therapeutic targets.

  8. Targeting EGFR signalling in chronic lung disease: therapeutic challenges and opportunities

    PubMed Central

    Vallath, Sabari; Hynds, Robert E.; Succony, Laura; Janes, Sam M.; Giangreco, Adam

    2014-01-01

    Chronic respiratory diseases, including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD) and lung cancer, are the second leading cause of death among Europeans. Despite this, there have been only a few therapeutic advances in these conditions over the past 20 years. In this review we provide evidence that targeting the epidermal growth factor receptor (EGFR) signalling pathway may represent a novel therapeutic panacea for treating chronic lung disease. Using evidence from human patient samples, transgenic animal models, and cell and molecular biology studies we highlight the roles of this signalling pathway in lung development, homeostasis, repair, and disease ontogeny. We identify mechanisms underlying lung EGFR pathway regulation and suggest how targeting these mechanisms using new and existing therapies has the potential to improve future lung cancer, COPD and pulmonary fibrosis patient outcomes. PMID:24435005

  9. Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders

    PubMed Central

    Aiyar, Raeka S.; Bohnert, Maria; Duvezin-Caubet, Stéphane; Voisset, Cécile; Gagneur, Julien; Fritsch, Emilie S.; Couplan, Elodie; von der Malsburg, Karina; Funaya, Charlotta; Soubigou, Flavie; Courtin, Florence; Suresh, Sundari; Kucharczyk, Roza; Evrard, Justine; Antony, Claude; St.Onge, Robert P.; Blondel, Marc; di Rago, Jean-Paul; van der Laan, Martin; Steinmetz, Lars M.

    2014-01-01

    Mitochondrial diseases are systemic, prevalent and often fatal; yet treatments remain scarce. Identifying molecular intervention points that can be therapeutically targeted remains a major challenge, which we confronted via a screening assay we developed. Using yeast models of mitochondrial ATP synthase disorders, we screened a drug repurposing library, and applied genomic and biochemical techniques to identify pathways of interest. Here we demonstrate that modulating the sorting of nuclear-encoded proteins into mitochondria, mediated by the TIM23 complex, proves therapeutic in both yeast and patient-derived cells exhibiting ATP synthase deficiency. Targeting TIM23-dependent protein sorting improves an array of phenotypes associated with ATP synthase disorders, including biogenesis and activity of the oxidative phosphorylation machinery. Our study establishes mitochondrial protein sorting as an intervention point for ATP synthase disorders, and because of the central role of this pathway in mitochondrial biogenesis, it holds broad value for the treatment of mitochondrial diseases. PMID:25519239

  10. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer

    PubMed Central

    Yang, Xiaojing; Han, Han; De Carvalho, Daniel D.; Lay, Fides D.; Jones, Peter A.; Liang, Gangning

    2014-01-01

    SUMMARY DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the over-expression of genes, many of which are involved in metabolic processes regulated by c-MYC. Down-regulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may therefore be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene over-expression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. PMID:25263941

  11. Gestational trophoblastic neoplasia, an ancient disease: new light and potential therapeutic targets.

    PubMed

    Alazzam, Mo'iad; Tidy, John; Hancock, Barry W; Powers, Hilary

    2010-02-01

    Gestational trophoblastic neoplasia is a rare malignancy, which can occur after any type of pregnancy. The incidence varies according to the geographical location and ethnic origin. Although most patients with gestational trophoblastic neoplasia are cured by conventional chemotherapy and surgery, some suffer resistant disease and may die. New therapeutic agents are needed to reduce the toxicity associated with conventional chemotherapy and treat those with resistant or refractory disease. Molecular targeted treatment provides an exciting avenue, however, the biology of gestational trophoblastic neoplasia is not well understood. This review briefly summarises the recent advances in understanding the pathogenesis and molecular biology of this group of diseases and sheds light on molecules that could provide potential therapeutic targets.

  12. Applications of metabolomics for kidney disease research: from biomarkers to therapeutic targets.

    PubMed

    Wettersten, Hiromi I; Weiss, Robert H

    2013-01-01

    Metabolomics is one of the relative newcomers of the omics techniques and is likely the one most closely related to actual real-time disease pathophysiology. Hence, it has the power to yield not only specific biomarkers but also insight into the pathophysiology of disease. Despite this power, metabolomics as applied to kidney disease is still in its early adolescence and has not yet reached the mature stage of clinical application, i.e., specific biomarker and therapeutic target discovery. On the other hand, the insight gained from hints into what makes these diseases tick, as is evident from the metabolomics pathways which have been found to be altered in kidney cancer, are now beginning to bear fruit in leading to potential therapeutic targets. It is quite likely that, with greater numbers of clinical materials and with more investigators jumping into the field, metabolomics may well change the course of kidney disease research.

  13. The Molecular Phenotype of Endocapillary Proliferation: Novel Therapeutic Targets for IgA Nephropathy

    PubMed Central

    John, Rohan; Grone, Elisabeth; Porubsky, Stefan; Gröne, Hermann-Josef; Herzenberg, Andrew M.; Scholey, James W.; Hladunewich, Michelle; Cattran, Daniel C.

    2014-01-01

    IgA nephropathy (IgAN) is a clinically and pathologically heterogeneous disease. Endocapillary proliferation is associated with higher risk of progressive disease, and clinical studies suggest that corticosteroids mitigate this risk. However, corticosteroids are associated with protean cellular effects and significant toxicity. Furthermore the precise mechanism by which they modulate kidney injury in IgAN is not well delineated. To better understand molecular pathways involved in the development of endocapillary proliferation and to identify novel specific therapeutic targets, we evaluated the glomerular transcriptome of microdissected kidney biopsies from 22 patients with IgAN. Endocapillary proliferation was defined according to the Oxford scoring system independently by 3 nephropathologists. We analyzed mRNA expression using microarrays and identified transcripts differentially expressed in patients with endocapillary proliferation compared to IgAN without endocapillary lesions. Next, we employed both transcription factor analysis and in silico drug screening and confirmed that the endocapillary proliferation transcriptome is significantly enriched with pathways that can be impacted by corticosteroids. With this approach we also identified novel therapeutic targets and bioactive small molecules that may be considered for therapeutic trials for the treatment of IgAN, including resveratrol and hydroquinine. In summary, we have defined the distinct molecular profile of a pathologic phenotype associated with progressive renal insufficiency in IgAN. Exploration of the pathways associated with endocapillary proliferation confirms a molecular basis for the clinical effectiveness of corticosteroids in this subgroup of IgAN, and elucidates new therapeutic strategies for IgAN. PMID:25133636

  14. Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities.

    PubMed

    Au, Jessie L-S; Yeung, Bertrand Z; Wientjes, Michael G; Lu, Ze; Wientjes, M Guillaume

    2016-02-01

    Advances in molecular medicine have led to identification of worthy cellular and molecular targets located in extracellular and intracellular compartments. Effectiveness of cancer therapeutics is limited in part by inadequate delivery and transport in tumor interstitium. Parts I and II of this report give an overview on the kinetic processes in delivering therapeutics to their intended targets, the transport barriers in tumor microenvironment and extracellular matrix (TME/ECM), and the experimental approaches to overcome such barriers. Part III discusses new concepts and findings concerning nanoparticle-biocorona complex, including the effects of TME/ECM. Part IV outlines the challenges in animal-to-human translation of cancer nanotherapeutics. Part V provides an overview of the background, current status, and the roles of TME/ECM in immune checkpoint inhibition therapy, the newest cancer treatment modality. Part VI outlines the development and use of multiscale computational modeling to capture the unavoidable tumor heterogeneities, the multiple nonlinear kinetic processes including interstitial and transvascular transport and interactions between cancer therapeutics and TME/ECM, in order to predict the in vivo tumor spatiokinetics of a therapeutic based on experimental in vitro biointerfacial interaction data. Part VII provides perspectives on translational research using quantitative systems pharmacology approaches.

  15. G-Protein-Coupled Receptors: Next Generation Therapeutic Targets in Head and Neck Cancer?

    PubMed Central

    Kanazawa, Takeharu; Misawa, Kiyoshi; Misawa, Yuki; Uehara, Takayuki; Fukushima, Hirofumi; Kusaka, Gen; Maruta, Mikiko; Carey, Thomas E.

    2015-01-01

    Therapeutic outcome in head and neck squamous cell carcinoma (HNSCC) is poor in most advanced cases. To improve therapeutic efficiency, novel therapeutic targets and prognostic factors must be discovered. Our studies have identified several G protein-coupled receptors (GPCRs) as promising candidates. Significant epigenetic silencing of GPCR expression occurs in HNSCC compared with normal tissue, and is significantly correlated with clinical behavior. Together with the finding that GPCR activity can suppress tumor cell growth, this indicates that GPCR expression has potential utility as a prognostic factor. In this review, we discuss the roles that galanin receptor type 1 (GALR1) and type 2 (GALR2), tachykinin receptor type 1 (TACR1), and somatostatin receptor type 1 (SST1) play in HNSCC. GALR1 inhibits proliferation of HNSCC cells though ERK1/2-mediated effects on cell cycle control proteins such as p27, p57, and cyclin D1, whereas GALR2 inhibits cell proliferation and induces apoptosis in HNSCC cells. Hypermethylation of GALR1, GALR2, TACR1, and SST1 is associated with significantly reduced disease-free survival and a higher recurrence rate. Although their overall activities varies, each of these GPCRs has value as both a prognostic factor and a therapeutic target. These data indicate that further study of GPCRs is a promising strategy that will enrich pharmacogenomics and prognostic research in HNSCC. PMID:26251921

  16. G-Protein-Coupled Receptors: Next Generation Therapeutic Targets in Head and Neck Cancer?

    PubMed

    Kanazawa, Takeharu; Misawa, Kiyoshi; Misawa, Yuki; Uehara, Takayuki; Fukushima, Hirofumi; Kusaka, Gen; Maruta, Mikiko; Carey, Thomas E

    2015-08-01

    Therapeutic outcome in head and neck squamous cell carcinoma (HNSCC) is poor in most advanced cases. To improve therapeutic efficiency, novel therapeutic targets and prognostic factors must be discovered. Our studies have identified several G protein-coupled receptors (GPCRs) as promising candidates. Significant epigenetic silencing of GPCR expression occurs in HNSCC compared with normal tissue, and is significantly correlated with clinical behavior. Together with the finding that GPCR activity can suppress tumor cell growth, this indicates that GPCR expression has potential utility as a prognostic factor. In this review, we discuss the roles that galanin receptor type 1 (GALR1) and type 2 (GALR2), tachykinin receptor type 1 (TACR1), and somatostatin receptor type 1 (SST1) play in HNSCC. GALR1 inhibits proliferation of HNSCC cells though ERK1/2-mediated effects on cell cycle control proteins such as p27, p57, and cyclin D1, whereas GALR2 inhibits cell proliferation and induces apoptosis in HNSCC cells. Hypermethylation of GALR1, GALR2, TACR1, and SST1 is associated with significantly reduced disease-free survival and a higher recurrence rate. Although their overall activities varies, each of these GPCRs has value as both a prognostic factor and a therapeutic target. These data indicate that further study of GPCRs is a promising strategy that will enrich pharmacogenomics and prognostic research in HNSCC.

  17. Actionable pathways: interactive discovery of therapeutic targets using signaling pathway models

    PubMed Central

    Salavert, Francisco; Hidago, Marta R.; Amadoz, Alicia; Çubuk, Cankut; Medina, Ignacio; Crespo, Daniel; Carbonell-Caballero, Jose; Dopazo, Joaquín

    2016-01-01

    The discovery of actionable targets is crucial for targeted therapies and is also a constituent part of the drug discovery process. The success of an intervention over a target depends critically on its contribution, within the complex network of gene interactions, to the cellular processes responsible for disease progression or therapeutic response. Here we present PathAct, a web server that predicts the effect that interventions over genes (inhibitions or activations that simulate knock-outs, drug treatments or over-expressions) can have over signal transmission within signaling pathways and, ultimately, over the cell functionalities triggered by them. PathAct implements an advanced graphical interface that provides a unique interactive working environment in which the suitability of potentially actionable genes, that could eventually become drug targets for personalized or individualized therapies, can be easily tested. The PathAct tool can be found at: http://pathact.babelomics.org. PMID:27137885

  18. Insights into Orphan Nuclear Receptors as Prognostic Markers and Novel Therapeutic Targets for Breast Cancer

    PubMed Central

    Aesoy, Reidun; Clyne, Colin D.; Chand, Ashwini L.

    2015-01-01

    There is emerging evidence asserting the importance of orphan nuclear receptors (ONRs) in cancer initiation and progression. In breast cancer, there is a lot unknown about ONRs in terms of their expression profile and their transcriptional targets in the various stages of tumor progression. With the classification of breast tumors into distinct molecular subtypes, we assess ONR expression in the different breast cancer subtypes and with patient outcomes. Complementing this, we review evidence implicating ONR-dependent molecular pathways in breast cancer progression to identify candidate ONRs as potential prognostic markers and/or as therapeutic targets. PMID:26300846

  19. Targeting JNK for therapeutic depletion of stem-like glioblastoma cells

    PubMed Central

    Matsuda, Ken-ichiro; Sato, Atsushi; Okada, Masashi; Shibuya, Keita; Seino, Shizuka; Suzuki, Kaori; Watanabe, Eriko; Narita, Yoshitaka; Shibui, Soichiro; Kayama, Takamasa; Kitanaka, Chifumi

    2012-01-01

    Control of the stem-like tumour cell population is considered key to realizing the long-term survival of patients with glioblastoma, one of the most devastating human malignancies. To date, possible therapeutic targets and targeting methods have been described, but none has yet proven to target stem-like glioblastoma cells in the brain to the extent necessary to provide a survival benefit. Here we show that targeting JNK in vivo, the activity of which is required for the maintenance of stem-like glioblastoma cells, via transient, systemic administration of a small-molecule JNK inhibitor depletes the self-renewing and tumour-initiating populations within established tumours, inhibits tumour formation by stem-like glioblastoma cells in the brain, and provide substantial survival benefit without evidence of adverse events. Our findings not only implicate JNK in the maintenance of stem-like glioblastoma cells but also demonstrate that JNK is a viable, clinically relevant therapeutic target in the control of stem-like glioblastoma cells. PMID:22816039

  20. Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours.

    PubMed

    Parker, Brittany C; Engels, Manon; Annala, Matti; Zhang, Wei

    2014-01-01

    The emergence of fibroblast growth factor receptor (FGFR) family fusions across diverse cancers has brought attention to FGFR-derived cancer therapies. The discovery of the first recurrent FGFR fusion in glioblastoma was followed by discoveries of FGFR fusions in bladder, lung, breast, thyroid, oral, and prostate cancers. Drug targeting of FGFR fusions has shown promising results and should soon be translating into clinical trials. FGFR fusions form as a result of various mechanisms – predominantly deletion for FGFR1, translocation for FGFR2, and tandem duplication for FGFR3. The ability to exploit the unique targetability of FGFR fusions proves that FGFR-derived therapies could have a promising future in cancer therapeutics. Drug targeting of fusion genes has proven to be an extremely effective therapeutic approach for cancers such as the recurrent BCR–ABL1 fusion in chronic myeloid leukaemia. The recent discovery of recurrent FGFR family fusions in several cancer types has brought to attention the unique therapeutic potential for FGFR-positive patients. Understanding the diverse mechanisms of FGFR fusion formation and their oncogenic potential will shed light on the impact of FGFR-derived therapy in the future. PMID:24588013

  1. Identifying targets for topical RNAi therapeutics in psoriasis: assessment of a new in vitro psoriasis model.

    PubMed

    Bracke, S; Desmet, E; Guerrero-Aspizua, S; Tjabringa, S G; Schalkwijk, J; Van Gele, M; Carretero, M; Lambert, J

    2013-08-01

    Diseases of the skin are amenable to RNAi-based therapies and targeting key components in the pathophysiology of psoriasis using RNAi may represent a successful new therapeutic strategy. We aimed to develop a straightforward and highly reproducible in vitro psoriasis model useful to study the effects of gene knockdown by RNAi and to identify new targets for topical RNAi therapeutics. We evaluated the use of keratinocytes derived from psoriatic plaques and normal human keratinocytes (NHKs). To induce a psoriatic phenotype in NHKs, combinations of pro-inflammatory cytokines (IL-1α, IL-17A, IL-6 and TNF-α) were tested. The model based on NHK met our needs of a reliable and predictive preclinical model, and this model was further selected for gene expression analyses, comprising a panel of 55 psoriasis-associated genes and five micro-RNAs (miRNAs). Gene silencing studies were conducted by using small interfering RNAs (siRNAs) and miRNA inhibitors directed against potential target genes such as CAMP and DEFB4 and miRNAs such as miR-203. We describe a robust and highly reproducible in vitro psoriasis model that recapitulates expression of a large panel of genes and miRNAs relevant to the pathogenesis of psoriasis. Furthermore, we show that our model is a powerful first step model system for testing and screening RNAi-based therapeutics.

  2. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand?

    PubMed Central

    Baig, S; Seevasant, I; Mohamad, J; Mukheem, A; Huri, H Z; Kamarul, T

    2016-01-01

    Underneath the intricacy of every cancer lies mysterious events that impel the tumour cell and its posterity into abnormal growth and tissue invasion. Oncogenic mutations disturb the regulatory circuits responsible for the governance of versatile cellular functions, permitting tumour cells to endure deregulated proliferation, resist to proapoptotic insults, invade and erode normal tissues and above all escape apoptosis. This disruption of apoptosis has been highly implicated in various malignancies and has been exploited as an anticancer strategy. Owing to the fact that apoptosis causes minimal inflammation and damage to the tissue, apoptotic cell death-based therapy has been the centre of attraction for the development of anticancer drugs. Increased understanding of the molecular pathways underlying apoptosis has enabled scientists to establish unique approaches targeting apoptosis pathways in cancer therapeutics. In this review, we reconnoitre the two major pathways (intrinsic and extrinsic) targeted cancer therapeutics, steering toward chief modulators of these pathways, such as B-cell lymphoma 2 protein family members (pro- and antiapoptotic), inhibitor of apoptosis proteins, and the foremost thespian of extrinsic pathway regulator, tumour necrosis factor-related apoptosis-inducing agent. Together, we also will have a look from clinical perspective to address the agents (drugs) and therapeutic strategies adopted to target these specific proteins/pathways that have entered clinical trials. PMID:26775709

  3. Peptide-directed HPMA copolymer-doxorubicin conjugates as targeted therapeutics for colorectal cancer.

    PubMed

    Kopansky, Eva; Shamay, Yosi; David, Ayelet

    2011-12-01

    Synthetic oligopeptides have emerged as a promising class of targeting ligands, providing a variety of choices for the construction of conjugates for desired ligand functionality. To explore the potential of short peptides as ligands for targeted delivery of macromolecular therapeutics for colorectal cancer (CRC), fluorescently labelled HPMA copolymers--bearing either G3-C12 or GE11 for targeting galectin-3 and epidermal growth factor receptor (EGFR), respectively--were synthesised and the mechanisms of their internalisation and subcellular fate in CRC cells were studied. The targetability of the G3-C12 bearing copolymers towards galectin-3 was further compared to that of galactose-containing copolymers. The resulting G3-C12-bearing conjugate actively and selectively targets CRC tumour cells over-expressing galectin-3 and exhibits superior targetability to galectin-3 when compared to the galactose-bearing copolymer. GE11 copolymer conjugate binds specifically and efficiently to EGFR over-expressing cells, thus mediating internalisation to a significantly higher extent relative the copolymer conjugated to a scrambled sequence peptide. We further incorporated doxorubicin (DOX) into GE11 bearing copolymer via an acid-labile hydrazone bond. The GE11-DOX copolymer conjugate demonstrated higher cytotoxicity toward EGFR over-expressing cells relative to the control non-targeted DOX conjugate. Altogether, our results show a proof of principle for the selective delivery of DOX to the target CRC cells. PMID:22074249

  4. Peptide-directed HPMA copolymer-doxorubicin conjugates as targeted therapeutics for colorectal cancer.

    PubMed

    Kopansky, Eva; Shamay, Yosi; David, Ayelet

    2011-12-01

    Synthetic oligopeptides have emerged as a promising class of targeting ligands, providing a variety of choices for the construction of conjugates for desired ligand functionality. To explore the potential of short peptides as ligands for targeted delivery of macromolecular therapeutics for colorectal cancer (CRC), fluorescently labelled HPMA copolymers--bearing either G3-C12 or GE11 for targeting galectin-3 and epidermal growth factor receptor (EGFR), respectively--were synthesised and the mechanisms of their internalisation and subcellular fate in CRC cells were studied. The targetability of the G3-C12 bearing copolymers towards galectin-3 was further compared to that of galactose-containing copolymers. The resulting G3-C12-bearing conjugate actively and selectively targets CRC tumour cells over-expressing galectin-3 and exhibits superior targetability to galectin-3 when compared to the galactose-bearing copolymer. GE11 copolymer conjugate binds specifically and efficiently to EGFR over-expressing cells, thus mediating internalisation to a significantly higher extent relative the copolymer conjugated to a scrambled sequence peptide. We further incorporated doxorubicin (DOX) into GE11 bearing copolymer via an acid-labile hydrazone bond. The GE11-DOX copolymer conjugate demonstrated higher cytotoxicity toward EGFR over-expressing cells relative to the control non-targeted DOX conjugate. Altogether, our results show a proof of principle for the selective delivery of DOX to the target CRC cells.

  5. Synthesis, characterization and preclinical studies of two-photon-activated targeted PDT therapeutic triads

    NASA Astrophysics Data System (ADS)

    Spangler, C. W.; Starkey, J. R.; Rebane, A.; Meng, F.; Gong, A.; Drobizhev, M.

    2006-02-01

    Photodynamic therapy (PDT) continues to evolve into a mature clinical treatment of a variety of cancer types as well as age-related macular degeneration of the eye. However, there are still aspects of PDT that need to be improved in order for greater clinical acceptance. While a number of new PDT photo-sensitizers, sometimes referred to as second- or third- generation therapeutic agents, are currently under clinical investigation, the direct treatment through the skin of subcutaneous tumors deeper than 5 mm remains problematic. Currently approved PDT porphyrin photo-sensitizers, as well as several modified porphyrins (e.g. chlorins, bacteriochlorins, etc.) that are under clinical investigation can be activated at 630-730 nm, but none above 800 nm. It would be highly desirable if new PDT paradigms could be developed that would allow photo-activation deep in the tissue transparency window in the Near-infrared (NIR) above 800 nm to reduce scattering and absorption phenomena that reduce deep tissue PDT efficacy. Rasiris and MPA Technologies have developed new porphyrins that have greatly enhanced two-photon absorption ( P A ) cross-sections and can be activated deep in the NIR (ca. 780-850 nm). These porphyrins can be incorporated into a therapeutic triad that also employs an small molecule targeting agent that directs the triad to over-expressed tumor receptor sites, and a NIR onephoton imaging agent that allows tracking the delivery of the triad to the tumor site, as well as clearance of excess triad from healthy tissue prior to the start of PDT treatment. We are currently using these new triads in efficacy studies with a breast cancer cell line that has been transfected with luciferase genes that allow implanted tumor growth and post- PDT treatment efficacy studies in SCID mouse models by following the rise and decay of the bioluminescence signal. We have also designed highly absorbing and scattering collagen breast cancer phantoms in which we have demonstrated

  6. Targeting DNA replication before it starts: Cdc7 as a therapeutic target in p53-mutant breast cancers.

    PubMed

    Rodriguez-Acebes, Sara; Proctor, Ian; Loddo, Marco; Wollenschlaeger, Alex; Rashid, Mohammed; Falzon, Mary; Prevost, A Toby; Sainsbury, Richard; Stoeber, Kai; Williams, Gareth H

    2010-10-01

    Treatment options for triple-receptor negative (ER-/PR-/Her2-) and Her2-overexpressing (ER-/PR-/Her2+) breast cancers with acquired or de novo resistance are limited, and metastatic disease remains incurable. Targeting of growth signaling networks is often constrained by pathway redundancy or growth-independent cancer cell cycles. The cell-cycle protein Cdc7 regulates S phase by promoting DNA replication. This essential kinase acts as a convergence point for upstream growth signaling pathways and is therefore an attractive therapeutic target. We show that increased Cdc7 expression during mammary tumorigenesis is linked to Her2-overexpressing and triple-negative subtypes, accelerated cell cycle progression (P < 0.001), arrested tumor differentiation (P < 0.001), genomic instability (P = 0.019), increasing NPI score (P < 0.001), and reduced disease-free survival (HR = 1.98 [95% CI: 1.27-3.10]; P = 0.003), thus implicating its deregulation in the development of aggressive disease. Targeting Cdc7 with RNAi, we demonstrate that p53-mutant Her2-overexpressing and triple-negative breast cancer cell lines undergo an abortive S phase and apoptotic cell death due to loss of a p53-dependent Cdc7-inhibition checkpoint. In contrast, untransformed breast epithelial cells arrest in G1, remain viable, and are able to resume cell proliferation on recovery of Cdc7 kinase activity. Thus, Cdc7 appears to represent a potent and highly specific anticancer target in Her2-overexpressing and triple-negative breast cancers. Emerging Cdc7 kinase inhibitors may therefore significantly broaden the therapeutic armamentarium for treatment of the aggressive p53-mutant breast cancer subtypes identified in this study.

  7. Tuberculosis therapeutics: Engineering of nanomedicinal systems for local delivery of targeted drug cocktails

    NASA Astrophysics Data System (ADS)

    D'Addio, Suzanne M.

    therapeutic nanocarrier formulations. We present three translational technologies. (1) The intrinsic dissolution rates of drug nanocarriers are determined using a novel assay, based on high surface area lipid sink particles and magnetic separations, to improve in vitro/in vivo correlations. (2) The nanocarrier interaction with whole serum and the polymer surface conformation are correlated to in vivo clearance and general rules are proposed for the design of nanocarriers produced by Flash NanoPrecipitation with extended circulation times for targeted delivery. (3) In Hydrogen Bonding Coacervate Precipitation, polyethylene glycol coated nanocarriers are controllably flocculated with the addition of polyacids to enable rapid filtration and drying. In summary, this research outlines approaches to the customization of nanocarrier drug delivery systems to specifically improve outcomes in tuberculosis therapy. New assays and processing techniques for transitioning formulations from bench research to the clinic are developed. The methods are flexible and can be applied to target various diseases, coupled with rational design of nanocarrier payloads, surface functionality, and dosing route.

  8. Development of Multifunctional Nanoparticles for Targeted Drug Delivery and Non-invasive Imaging of Therapeutic Effect

    PubMed Central

    Sajja, Hari Krishna; East, Michael P.; Mao, Hui; Wang, Andrew Y.; Nie, Shuming; Yang, Lily

    2011-01-01

    Nanotechnology is a multidisciplinary scientific field undergoing explosive development. Nanometer-sized particles offer novel structural, optical and electronic properties that are not attainable with individual molecules or bulk solids. Advances in nanomedicine can be made by engineering biodegradable nanoparticles such as magnetic iron oxide nanoparticles, polymers, dendrimers and liposomes that are capable of targeted delivery of both imaging agents and anticancer drugs. This leads toward the concept and possibility of personalized medicine for the potential of early detection of cancer lesions, determination of molecular signatures of the tumor by non-invasive imaging and, most importantly, molecular targeted cancer therapy. Increasing evidence suggests that the nanoparticles, whose surface contains a targeting molecule that binds to receptors highly expressed in tumor cells, can serve as cancer image contrast agents to increase sensitivity and specificity in tumor detection. In comparison with other small molecule contrast agents, the advantage of using nanoparticles is their large surface area and the possibility of surface modifications for further conjugation or encapsulation of large amounts of therapeutic agents. Targeted nanoparticles ferry large doses of therapeutic agents into malignant cells while sparing the normal healthy cells. Such multifunctional nanodevices hold the promise of significant improvement of current clinical management of cancer patients. This review explores the development of nanoparticles for enabling and improving the targeted delivery of therapeutic agents, the potential of nanomedicine, and the development of novel and more effective diagnostic and screening techniques to extend the limits of molecular diagnostics providing point-of-care diagnosis and more personalized medicine. PMID:19275541

  9. Engineering Multi-Walled Carbon Nanotube Therapeutic Bionanofluids to Selectively Target Papillary Thyroid Cancer Cells

    PubMed Central

    Paliouras, Miltiadis; Mitmaker, Elliot J.; Trifiro, Mark A.

    2016-01-01

    Background The incidence of papillary thyroid carcinoma (PTC) has risen steadily over the past few decades as well as the recurrence rates. It has been proposed that targeted ablative physical therapy could be a therapeutic modality in thyroid cancer. Targeted bio-affinity functionalized multi-walled carbon nanotubes (BioNanofluid) act locally, to efficiently convert external light energy to heat thereby specifically killing cancer cells. This may represent a promising new cancer therapeutic modality, advancing beyond conventional laser ablation and other nanoparticle approaches. Methods Thyroid Stimulating Hormone Receptor (TSHR) was selected as a target for PTC cells, due to its wide expression. Either TSHR antibodies or Thyrogen or purified TSH (Thyrotropin) were chemically conjugated to our functionalized Bionanofluid. A diode laser system (532 nm) was used to illuminate a PTC cell line for set exposure times. Cell death was assessed using Trypan Blue staining. Results TSHR-targeted BioNanofluids were capable of selectively ablating BCPAP, a TSHR-positive PTC cell line, while not TSHR-null NSC-34 cells. We determined that a 2:1 BCPAP cell:α-TSHR-BioNanofluid conjugate ratio and a 30 second laser exposure killed approximately 60% of the BCPAP cells, while 65% and >70% of cells were ablated using Thyrotropin- and Thyrogen-BioNanofluid conjugates, respectively. Furthermore, minimal non-targeted killing was observed using selective controls. Conclusion A BioNanofluid platform offering a potential therapeutic path for papillary thyroid cancer has been investigated, with our in vitro results suggesting the development of a potent and rapid method of selective cancer cell killing. Therefore, BioNanofluid treatment emphasizes the need for new technology to treat patients with local recurrence and metastatic disease who are currently undergoing either re-operative neck explorations, repeated administration of radioactive iodine and as a last resort external beam

  10. miR-145 Is a Promising Therapeutic Target to Prevent Cornea Scarring.

    PubMed

    Ratuszny, Dominica; Gras, Christiane; Bajor, Anna; Börger, Ann-Kathrin; Pielen, Amelie; Börgel, Martin; Framme, Carsten; Blasczyk, Rainer; Figueiredo, Constança

    2015-10-01

    Corneal scarring is an expected outcome of corneal injury or infection and is one of the major causes for visual loss. The formation of light-scattering myofibroblasts is thought to be the underlying cause of corneal haze formation. Recently, microRNA (miRNA) gene therapies have been proposed as novel approach for complex processes such as fibrosis and scarring. In this study, we focused on the role of miR-145 in corneal myofibroblast differentiation and function. Analysis of human corneal scar tissue and transforming growth factor (TGF)-β1-induced corneal myofibroblasts showed a 13- and 4-fold increase of miR-145, respectively, compared with healthy cornea and nonstimulated fibroblasts (p<0.01). Furthermore, myofibroblasts showed an increase in α-smooth muscle actin (α-SMA) expression and a decreased expression of Kruppel-like factor 4 (KLF4). These results indicated that TGF-β1 increases miR-145 expression, which indirectly induces α-SMA expression via downregulation of KLF4, a known negative regulator of α-SMA. Consistently, miR-145 silencing in corneal myofibroblasts using a specific antimiR resulted in increased KLF4 and strongly decreased α-SMA expression. In addition, miR-145 inhibition also significantly decreased myofibroblast contractility, migratory capacity, and TGF-β1 secretion, which are all thought to contribute to corneal scarring. Hence, miR-145 plays an important role in TGF-β1-stimulated corneal myofibroblast differentiation and activation, which can be reversed by miR-145 silencing. Therefore, we suggest miR-145 as a promising therapeutic target for miRNA-based gene therapy to prevent or treat visual loss caused by corneal fibrosis.

  11. Molecular Expression Profile Reveals Potential Biomarkers and Therapeutic Targets in Canine Endometrial Lesions

    PubMed Central

    Voorwald, Fabiana Azevedo; Marchi, Fabio Albuquerque; Villacis, Rolando Andre Rios; Alves, Carlos Eduardo Fonseca; Toniollo, Gilson Hélio; Amorim, Renee Laufer

    2015-01-01

    Cystic endometrial hyperplasia (CEH), mucometra, and pyometra are common uterine diseases in intact dogs, with pyometra being a life threatening disease. This study aimed to determine the gene expression profile of these lesions and potential biomarkers for closed-cervix pyometra, the most severe condition. Total RNA was extracted from 69 fresh endometrium samples collected from 21 healthy female dogs during diestrus, 16 CEH, 15 mucometra and 17 pyometra (eight open and nine closed-cervixes). Global gene expression was detected using the Affymetrix Canine Gene 1.0 ST Array. Unsupervised analysis revealed two clusters, one mainly composed of diestrus and CEH samples and the other by 12/15 mucometra and all pyometra samples. When comparing pyometra with other groups, 189 differentially expressed genes were detected. SLPI, PTGS2/COX2, MMP1, S100A8, S100A9 and IL8 were among the top up-regulated genes detected in pyometra, further confirmed by external expression data. Notably, a particular molecular profile in pyometra from animals previously treated with exogenous progesterone compounds was observed in comparison with pyometra from untreated dogs as well as with other groups irrespective of exogenous hormone treatment status. In addition to S100A8 and S100A9 genes, overexpression of the inflammatory cytokines IL1B, TNF and IL6 as well as LTF were detected in the pyometra from treated animals. Interestingly, closed pyometra was more frequently detected in treated dogs (64% versus 33%), with IL1B, TNF, LBP and CXCL10 among the most relevant overexpressed genes. This molecular signature associated with potential biomarkers and therapeutic targets, such as CXCL10 and COX2, should guide future clinical studies. Based on the gene expression profile we suggested that pyometra from progesterone treated dogs is a distinct molecular entity. PMID:26222498

  12. Molecular Expression Profile Reveals Potential Biomarkers and Therapeutic Targets in Canine Endometrial Lesions.

    PubMed

    Voorwald, Fabiana Azevedo; Marchi, Fabio Albuquerque; Villacis, Rolando Andre Rios; Alves, Carlos Eduardo Fonseca; Toniollo, Gilson Hélio; Amorim, Renee Laufer; Drigo, Sandra Aparecida; Rogatto, Silvia Regina

    2015-01-01

    Cystic endometrial hyperplasia (CEH), mucometra, and pyometra are common uterine diseases in intact dogs, with pyometra being a life threatening disease. This study aimed to determine the gene expression profile of these lesions and potential biomarkers for closed-cervix pyometra, the most severe condition. Total RNA was extracted from 69 fresh endometrium samples collected from 21 healthy female dogs during diestrus, 16 CEH, 15 mucometra and 17 pyometra (eight open and nine closed-cervixes). Global gene expression was detected using the Affymetrix Canine Gene 1.0 ST Array. Unsupervised analysis revealed two clusters, one mainly composed of diestrus and CEH samples and the other by 12/15 mucometra and all pyometra samples. When comparing pyometra with other groups, 189 differentially expressed genes were detected. SLPI, PTGS2/COX2, MMP1, S100A8, S100A9 and IL8 were among the top up-regulated genes detected in pyometra, further confirmed by external expression data. Notably, a particular molecular profile in pyometra from animals previously treated with exogenous progesterone compounds was observed in comparison with pyometra from untreated dogs as well as with other groups irrespective of exogenous hormone treatment status. In addition to S100A8 and S100A9 genes, overexpression of the inflammatory cytokines IL1B, TNF and IL6 as well as LTF were detected in the pyometra from treated animals. Interestingly, closed pyometra was more frequently detected in treated dogs (64% versus 33%), with IL1B, TNF, LBP and CXCL10 among the most relevant overexpressed genes. This molecular signature associated with potential biomarkers and therapeutic targets, such as CXCL10 and COX2, should guide future clinical studies. Based on the gene expression profile we suggested that pyometra from progesterone treated dogs is a distinct molecular entity. PMID:26222498

  13. Phosphoprotein enriched in astrocytes (PEA)-15: A potential therapeutic target in multiple disease states

    PubMed Central

    Greig, Fiona H.; Nixon, Graeme F.

    2014-01-01

    Phosphoprotein enriched in astrocytes-15 (PEA-15) is a cytoplasmic protein that sits at an important junction in intracellular signalling and can regulate diverse cellular processes, such as proliferation and apoptosis, dependent upon stimulation. Regulation of these processes occurs by virtue of the unique interaction of PEA-15 with other signalling proteins. PEA-15 acts as a cytoplasmic tether for the mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 (ERK1/2) preventing nuclear localisation. In order to release ERK1/2, PEA-15 requires to be phosphorylated via several potential pathways. PEA-15 (and its phosphorylation state) therefore regulates many ERK1/2-dependent processes, including proliferation, via regulating ERK1/2 nuclear translocation. In addition, PEA-15 contains a death effector domain (DED) which allows interaction with other DED-containing proteins. PEA-15 can bind the DED-containing apoptotic adaptor molecule, Fas-associated death domain protein (FADD) which is also dependent on the phosphorylation status of PEA-15. PEA-15 binding of FADD can inhibit apoptosis as bound FADD cannot participate in the assembly of apoptotic signalling complexes. Through these protein–protein interactions, PEA-15-regulated cellular effects have now been investigated in a number of disease-related studies. Changes in PEA-15 expression and regulation have been observed in diabetes mellitus, cancer, neurological disorders and the cardiovascular system. These changes have been suggested to contribute to the pathology related to each of these disease states. As such, new therapeutic targets based around PEA-15 and its associated interactions are now being uncovered and could provide novel avenues for treatment strategies in multiple diseases. PMID:24657708

  14. SF3B1 mutations constitute a novel therapeutic target in breast cancer

    PubMed Central

    Maguire, Sarah L; Leonidou, Andri; Wai, Patty; Marchiò, Caterina; Ng, Charlotte KY; Sapino, Anna; Salomon, Anne-Vincent; Reis-Filho, Jorge S; Weigelt, Britta; Natrajan, Rachael C

    2015-01-01

    Mutations in genes encoding proteins involved in RNA splicing have been found to occur at relatively high frequencies in several tumour types including myelodysplastic syndromes, chronic lymphocytic leukaemia, uveal melanoma, and pancreatic cancer, and at lower frequencies in breast cancer. To investigate whether dysfunction in RNA splicing is implicated in the pathogenesis of breast cancer, we performed a re-analysis of published exome and whole genome sequencing data. This analysis revealed that mutations in spliceosomal component genes occurred in 5.6% of unselected breast cancers, including hotspot mutations in the SF3B1 gene, which were found in 1.8% of unselected breast cancers. SF3B1 mutations were significantly associated with ER-positive disease, AKT1 mutations, and distinct copy number alterations. Additional profiling of hotspot mutations in a panel of special histological subtypes of breast cancer showed that 16% and 6% of papillary and mucinous carcinomas of the breast harboured the SF3B1 K700E mutation. RNA sequencing identified differentially spliced events expressed in tumours with SF3B1 mutations including the protein coding genes TMEM14C, RPL31, DYNL11, UQCC, and ABCC5, and the long non-coding RNA CRNDE. Moreover, SF3B1 mutant cell lines were found to be sensitive to the SF3b complex inhibitor spliceostatin A and treatment resulted in perturbation of the splicing signature. Albeit rare, SF3B1 mutations result in alternative splicing events, and may constitute drivers and a novel therapeutic target in a subset of breast cancers. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:25424858

  15. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations.

    PubMed

    Williams, Dustin K; Wang, Jingyi; Papke, Roger L

    2011-10-15

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations