Science.gov

Sample records for additional thermal treatment

  1. Vaporization Mechanisms of Water-Insoluble Cs in Ash During Thermal Treatment with Calcium Chloride Addition.

    PubMed

    Jiao, Facun; Iwata, Norie; Kinoshita, Norikazu; Kawaguchi, Masato; Asada, Motoyuki; Honda, Maki; Sueki, Keisuke; Ninomiya, Yoshihiko

    2016-12-20

    The vaporization mechanisms of water-insoluble Cs in raw ash and Cs-doped ash during thermal treatment with CaCl2 addition was systematically examined in a lab-scale electrical heating furnace over a temperature range of 500-1500 °C. The results indicate that the water-insoluble Cs in the ash was associated with aluminosilicate as pollucite. Addition of 10% CaCl2 caused the maximum vaporization ratio of Cs in the raw ash to reach approximately 80% at temperatures higher than 1200 °C, whereas approximately 95% of Cs was vaporized at temperatures higher than 1300 °C when 30% CaCl2 was added. The formation of an intermediate compound, CsCaCl3, through the chemical reaction of Cs with CaCl2 was responsible for Cs vaporization by means of the subsequent decomposition of this intermediate upon the increase in temperature. The indirect chlorination of Cs by the gaseous chlorine released from the decomposition of CaCl2 was insignificant. A high CaCl2 content in the resulting annealed products with 30% CaCl2 addition delayed the decomposition of CsCaCl3 and thus lowered the Cs vaporization ratio compared to that with 10% CaCl2 addition at 900-1250 °C. Thermal treatment with CaCl2 addition is a proposed method to remove Cs from Cs-contaminated incineration ash.

  2. Preparation and characterization of ceramic products by thermal treatment of sewage sludge ashes mixed with different additives.

    PubMed

    Merino, Ignacio; Arévalo, Luis F; Romero, Fernando

    2007-01-01

    The study of the ceramic characteristics of sludge ashes, alone or mixed with additives (kaolin, montmorillonite, illitic clay, powdered flat glass) includes characterization of additives, preparation of probes (dry or wet mixed), thermal treatment (up to 1200 degrees C, except melting or deformation) and control (densities, compressive strengths and water absorption). Thermal treatment increases the density and compressive strength of probes (both parameters go through maxima, with later decreases) and decreases the absorption of water. The densification is also revealed by the evolution of the ratio of decrease of volume/loss of mass. The maximum values of compressive strengths were obtained for 25% of illitic clay, montmorillonite and glass powder. Densification concerning probes with sludge ashes alone does not occur with kaolin. Experimental data were adjusted to exponential relationships between compressive strengths and densities for every composition, and also to a general equation for all probes. The apparent density obtained was adjusted to a non-linear dependence with temperature, leading to a maximum in density and permitting calculating the temperature of occurrence of this maximum. The adjustment was not possible for probes containing kaolin, requiring presumably higher temperatures to densify. Water absorption has low values for ashes or kaolin probes, intermediate values for illite and powdered flat glass probes and high values for montmorillonite probes. Excepting with kaolin, ceramic materials with better characteristics than sludge ashes without additives were obtained at lower treatment temperatures.

  3. Thermal treatment wall

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  4. Radiation Therapy: Additional Treatment Options

    MedlinePlus

    ... SNIPEND SNIPSTART Find A Radiation Oncologist SNIPEND Additional Treatment Options SNIPSTART A A SNIPEND Chemotherapy Medicines prescribed ... such as antibodies, to fight cancer. Novel Targeted Therapies Cancer doctors now know much more about how ...

  5. Thermal Response of an Additive Manufactured Aluminum

    SciTech Connect

    Wu, Tong; Wereszczak, Andrew A; Wang, Hsin; Ozpineci, Burak; Ayers, Curtis William

    2016-01-01

    In this paper, the impacts of abnormal thermal property introduced by additive manufacture has been analysis based on simulation and experiment of a 3D printed liquid-cooled heat sink. Comparisons to the heat sink with identical geometry and conventionally manufactured by Aluminum 6061 are presented. Micro-structure analysis is implemented and solutions to eliminate the impacts by different manufacture methods are proposed.

  6. Underground Coal Thermal Treatment

    SciTech Connect

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  7. Metal-Ion Additives Reduce Thermal Expansion Of Polyimides

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M.; St. Clair, Anne K.; Emerson, Burt R., Jr.; Willis, George L.

    1994-01-01

    Polyimides widely used as high-performance polymers because of their excellent thermal stability and toughness. However, their coefficients of thermal expansion (CTE's) greater than those of metals, ceramics, and glasses. Decreasing CTE's of polyimides increase usefulness for aerospace and electronics applications in which dimensional stability required. Additives containing metal ions reduce coefficients of thermal expansion of polyimides. Reductions range from 11 to over 100 percent.

  8. Thermal Treatment Technologies: Lessons Learned

    DTIC Science & Technology

    2011-11-01

    source •43 deep /48 shallow electrodes 19 Example 1: Sampling Locations Supplemental data collection emphasizes post-treatment groundwater quality and...shallow and deep geology. SDC – supplemental data collection site for this project 32 Mass Discharge Summary – All Sites Site No. Heating Technology...Opportunities for Enhanced Post-Thermal Treatment Bioremediation ● Bioaugmentation with non- methanogenic consortia can increase the efficiency of the

  9. Thermal treatment of magnetite nanoparticles

    PubMed Central

    Wykowska, Urszula; Satula, Dariusz; Nordblad, Per

    2015-01-01

    Summary This paper presents the results of a thermal treatment process for magnetite nanoparticles in the temperature range of 50–500 °C. The tested magnetite nanoparticles were synthesized using three different methods that resulted in nanoparticles with different surface characteristics and crystallinity, which in turn, was reflected in their thermal durability. The particles were obtained by coprecipitation from Fe chlorides and decomposition of an Fe(acac)3 complex with and without a core–shell structure. Three types of ferrite nanoparticles were produced and their thermal stability properties were compared. In this study, two sets of unmodified magnetite nanoparticles were used where crystallinity was as determinant of the series. For the third type of particles, a Ag shell was added. By comparing the coated and uncoated particles, the influence of the metallic layer on the thermal stability of the nanoparticles was tested. Before and after heat treatment, the nanoparticles were examined using transmission electron microscopy, IR spectroscopy, differential scanning calorimetry, X-ray diffraction and Mössbauer spectroscopy. Based on the obtained results, it was observed that the fabrication methods determine, to some extent, the sensitivity of the nanoparticles to external factors. PMID:26199842

  10. Thermal Treatment of EDTA Solutions

    SciTech Connect

    Denne, B.

    2006-07-01

    Chemical cleaning of commercial nuclear power facility secondary systems, using EDTA, results in large volumes of chelated liquids requiring some form of treatment prior to disposal. The Nuclear Regulatory Commission regulates the presence of chelates in disposal cells and this paper will look at several methods used to ensure compliance with disposal site criteria. The emphasis of this paper will be on results achieved through thermal treatment of chemical cleaning wastes at the Pacific EcoSolutions' (PEcoS) low level and mixed radioactive waste processing facility in Richland, Washington. We will discuss challenges in transportation, receipt, storage, processing, and disposal associated with EDTA solutions and how those challenges are overcome. (author)

  11. Conceptual Thermal Treatment Technologies Feasibility Study

    SciTech Connect

    Suer, A.

    1996-02-28

    This report presents a conceptual Thermal Treatment Technologies Feasibility Study (FS) for the Savannah River Site (SRS) focusing exclusively on thermal treatment technologies for contaminated soil, sediment, or sludge remediation projects.

  12. Low coefficient of thermal expansion polyimides containing metal ion additives

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1992-01-01

    Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The incorporation of metal ion-containing additives into polyimides, resulting in significantly lowered CTE's, has been studied. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12 percent to over 100 percent depending on the choice of additive and its concentration.

  13. Additive for iron disulfide cathodes used in thermal batteries

    DOEpatents

    Not Available

    1982-03-23

    The invention comprises thermal batteries employing an FeS/sub 2/ depolarizer itself. A minor amount of CaSi/sub 2/ preferably 1-3% by weight is provided as an additive in the FeS/sub 2/ depolarizer to eliminate the voltage transient (spike) which normally occurs upon activation of batteries of this type. The amount of FeS/sub 2/ by weight generally comprises 64 to 90%.

  14. Additive for iron disulfide cathodes used in thermal batteries

    DOEpatents

    Armijo, James R.; Searcy, Jimmie Q.

    1983-01-01

    The invention comprises thermal batteries employing an FeS.sub.2 depolarizer, i.e. cathode material, and the depolarizer itself. A minor amount of CaSi.sub.2 preferably, 1-3% by weight is provided as an additive in the FeS.sub.2 depolarizer to eliminate the voltage transient (spike) which normally occurs upon activation of batteries of this type. The amount of FeS.sub.2 by weight generally comprises 64-90%.

  15. The thermal conductivity of silicon nitride with molybdenum disilicide additions

    SciTech Connect

    Beecher, S.C.; Dinwiddie, R.B.; Abeel, A.M.; Lowden, R.A.

    1993-12-31

    Room-temperature thermal conductivity has been measured for a series of silicon nitride (Si{sub 3}N{sub 4}) matrix composites with molybdenum disilicide (MoSi{sub 2}) additions of 2, 5 10, 25 and 50 wt. %. Included in these measurements were a pure MoSi{sub 2} sample and a Si{sub 3}N{sub 4} sample containing only sintering aids. Aluminum oxide (Al{sub 2}O{sub 3}) and yttrium oxide (Y{sub 2}O{sub 3}) were added as the sintering aids, at approximately 6 and 2 respectively. When the amount of MoSi{sub 2} was increased to greater than 10 wt. %, the amount of the sintering aids necessary to densify the composite was decreased. No sintering aids were added to the pure MoSi{sub 2} sample. Thermal conductivities of the Si{sub 3}N{sub 4} sample without MoSi{sub 2} and the pure MoSi{sub 2} sample wee 36 W/m.K and 52 W/m.K respectively, which agree very well with the literature values for similar materials. No statistically significant changes were observed in the thermal conductivity for those samples containing up to 10 wt. % MoSi{sub 2}. However, between 10 and 25 wt. % MoSi{sub 2} there was a dramatic decrease in the thermal conductivity from 37 to 20.9 W/m.K. The thermal conductivity then increased steadily with further additions of MoSi{sub 2} up to 52 W/m.K for the pure MoSi{sub 2} specimen.

  16. Study on thermal effects & sulfurized additives, in lubricating greases

    NASA Astrophysics Data System (ADS)

    Shah, Ami Atul

    Lithium Base grease constitutes about 50% of market. The greases are developed to be able to work in multiple working conditions and have longer working life. Greases with extreme pressure additives and anti-wear additives have been developed as a solution to many of the applications. These developed greases are tested under ASTM D2266 testing conditions to meet the requirements. The actual working conditions, although, differ than the real testing conditions. The loading, speed and temperature conditions can be more harsh, or fluctuating in nature. The cyclic nature of the parameters cannot be directly related to the test performance. For this purpose studies on the performance under spectrum loading, variable speed and fluctuating temperature must be performed. This study includes tests to understand the effect of thermal variation on some of the most commonly used grease additives that perform well under ASTM D2266 testing conditions. The studied additives include most widely used industrial extreme pressure additive MoS2. Performance of ZDDP which is trying to replace MoS2 in its industrial applications has also been studied. The tests cover study of extreme pressure, anti-wear and friction modifier additives to get a general idea on the effects of thermal variation in three areas. Sulphur is the most common extreme pressure additive. Sulphur based MoS 2 is extensively used grease additive. Study to understand the tribological performance of this additive through wear testing and SEM/EDX studies has been done. This performance is also studied for other metallic sulfides like WS2 and sulphur based organic compound. The aim is to study the importance of the type of bond that sulphur shares in its additive's structure on its performance. The MoS2 film formation is found to be on the basis of the FeS formation on the substrate and protection through sacrificial monolayer deposition of the MoS2 sheared structure. The free Mo then tends to oxidise. An attempt to

  17. Thermal Decomposition of RP-2 with Stabilizing Additives

    DTIC Science & Technology

    2010-04-01

    RP-2 are that the allowed sulfur content is much lower in RP-2 (0.1 mg/kg, compared to 30 mg/kg in RP-1), the allowed olefin concentration is lower...28,30-35 decahydronaphthalene (decalin), 33,35 and benzyl alcohol . 28,36-38 In related work, a major research effort initiated by the U.S. Air Force...additives (e.g., benzyl alcohol ). We would also like to test the effect of different reactor materials, particularly copper, on the thermal stability of

  18. Additional Characterization of Min-K TE-1400 Thermal Insulation

    SciTech Connect

    Hemrick, James Gordon; King, James

    2011-01-01

    Min-K 1400TE (Thermal Ceramics, Augusta, Georgia) insulation material was further characterized at Oak Ridge National Laboratory (ORNL) for use in structural applications under gradient temperature conditions in an inert environment. Original characterization of Min-K was undertaken from April 1997 to July 2008 to determine its high temperature compressive strength and stress relaxation behavior up to 900 C in helium along with the formulation of a general model for the mechanical behavior exhibited by Min-K under these conditions. The additional testing described in this report was undertaken from April 2009 to June 2010 in an effort to further evaluate the mechanical behavior of Min-K when subjected to a variety of conditions including alternative test temperatures and time scales than previously measured. The behavior of Min-K under changing environments (temperature and strain), lateral loads, and additional isothermal temperatures was therefore explored.

  19. Thermal processing of EVA encapsulants and effects of formulation additives

    SciTech Connect

    Pern, F.J.; Glick, S.H.

    1996-05-01

    The authors investigated the in-situ processing temperatures and effects of various formulation additives on the formation of ultraviolet (UV) excitable chromophores, in the thermal lamination and curing of ethylene-vinyl acetate (EVA) encapsulants. A programmable, microprocessor-controlled, double-bag vacuum laminator was used to study two commercial as formulated EVA films, A9918P and 15295P, and solution-cast films of Elvaxrm (EVX) impregnated with various curing agents and antioxidants. The results show that the actual measured temperatures of EVA lagged significantly behind the programmed profiles for the heating elements and were affected by the total thermal mass loaded inside the laminator chamber. The antioxidant Naugard P{trademark}, used in the two commercial EVA formulations, greatly enhances the formation of UV-excitable, short chromophores upon curing, whereas other tested antioxidants show little effect. A new curing agent chosen specifically for the EVA formulation modification produces little or no effect on chromophore formation, no bubbling problems in the glass/EVX/glass laminates, and a gel content of {approximately}80% when cured at programmed 155{degrees}C for 4 min. Also demonstrated is the greater discoloring effect with higher concentrations of curing-generated chromophores.

  20. Effective control of photomask surface chemical residuals through thermal treatment

    NASA Astrophysics Data System (ADS)

    Kang, Han-Byul; Kim, Jong-Min; Kim, Yong-Dae; Cho, Hyun-Joon; Choi, Sang-Soo

    2005-05-01

    We investigated the control of residual ions on the mask surface and the phase/transmission change rate by using thermal treatment after a conventional cleaning process. We hypothesized that the remaining sulfuric ions on the mask surface could combine with other ions and produce compounds during the thermal treatment. These compounds are easily removed by a hot D.I water rinse. Our study shows that the amount of remaining sulfuric ions is 250ng/mask when the mask has been thermally treated. The amount of sulfuric ions is substantially reduced compared to the results of other cleaning processes. Additionally we have found that the thermal treatment can be reduced varying the phase/trans value according to the cleaning cycle and the variation was stable even with a higher concentration of SC-1 solution.

  1. Thermal treatment of dissimilar steels' welded joints

    NASA Astrophysics Data System (ADS)

    Nikulina, A. A.; Denisova, A. S.; Gradusov, I. N.; Ryabinkina, P. A.; Rushkovets, M. V.

    2016-04-01

    In this paper combinations of chrome-nickel steel and high-carbon steel, produced by flash butt welding after heat treatment, are investigated. Light and electron microscopic studies show that the welded joints after heat treatment have a complex structure consisting of several phases as initial welded joints. A martensite structure in welded joints after thermal treatment at 300... 800 °C has been found.

  2. Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives

    SciTech Connect

    baney, Ronald; Tulenko, James

    2012-11-20

    The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

  3. 10. Water treatment plant, view to S. 1965 addition is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Water treatment plant, view to S. 1965 addition is in the foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  4. Thermal treatment of dyes from military munitions

    SciTech Connect

    1996-09-01

    Los Alamos National Laboratory has developed thermal treatment equipment to treat Navy smoke and dye compounds. Navy smokes were burned in the Los Alamos Controlled Air Incinerator (CAI) in the early 1980s. These test results were used in the development of a portable system consisting of a Thermal Treatment Unit (TTU), feed preparation and pumping skid, utility skid, and control trailer. This equipment was started up at Navy facilities at China Lake, CA where several destruction removal efficiency tests were completed in 1993 burning smoke compositions. The equipment was set up at the Nevada Test Site (NTS) in 1996 where tests were completed burning green Navy spotting dyes. Operating and test results from the NTS efforts resulted in clearer understanding of equipment deficiencies, dye characteristics and composition, and secondary wastes generated. Future tests, scheduled for July, 1996 will demonstrate higher bum rates, better pH measurement and control, and stack emission test results for other colored dyes.

  5. Treatment of nitrocellulose by thermal decomposition

    SciTech Connect

    Campbell, R.K.; Freedman, D.L.; Kim, B.J.

    1999-07-01

    Waste fines generated during the manufacture of nitrocellulose (NC) are classified as a RCRA K044 hazardous waste due to their explosive properties. The objective of this study was to evaluate controlled thermal treatment of NC in order to render it nonhazardous and allow for more economical ultimate disposal. The results indicate that controlled thermal decomposition at 130--150 C is a technically feasible process. Rates improved significantly at higher temperatures. At 150 C, only 10 hours were needed to reduce the nitrogen content of NC from 13.7% to below 10% (versus 105 h at 130 C), a level found in many commercial, nonhazardous grades of NC. The air flow rate over the heated NC, and the moisture content of the NC or air above it had no discernible effect on rates of nitrogen removal. Greater mass loss from the NC than what was attributable to the nitro groups alone indicated that decomposition of the polymer backbone also occurred. This was confirmed by FTIR analyses, the appearance of CO{sub 2} in the off-gas, and a lack of correlation between percent nitrogen and heat of combustion. Samples of thermally treated NC containing 9.7% nitrogen failed three of the basic tests used by the Bureau of Explosives to ascertain explosive characteristics, indicating that the product was no longer hazardous based on its energetic properties. Although technically feasible, use of thermal decomposition to treat NC fines will most likely be restricted by safety concerns. Operating close to 130 C would mitigate the risk, but considerably extends the time required for treatment. The most suitable application of this technology may instead by treatment of NC-contaminated soils.

  6. Cryosurgery as Additional Treatment in Tenosynovial Giant Cell Tumors

    PubMed Central

    Scholte, A.; van der Geest, I. C. M.; Hannink, G.; Schreuder, H. W. B.

    2016-01-01

    Introduction. Tenosynovial giant cell tumors (TGCT) emerge from the synovium and can behave aggressively. Surgical resection is the standard treatment. However, up to half of the patients with diffuse type show recurrences. Several additional treatments have been applied to reduce recurrences; none of these treatments was proven to be superior to surgical resection solely. This article describes the results of additional cryosurgery to surgical resection. Materials and Methods. We retrospectively evaluated 141 TGCT patients, between 1999 and 2007. Twelve patients had additional cryosurgery. The knee (n = 8), hip (n = 2), ankle (n = 1), and elbow (n = 1) were affected. Primary outcome variables were treatment indications, recurrences, and complications. Results. Indications for additional cryosurgery were extended disease, bone involvement, and locations that are difficult to surgically get disease-free such as cruciate ligaments. Five patients had recurrent disease, all of which had prior treatments. None of the primary treated patients had recurrent disease. One patient had a deep infection. Discussion. Cryosurgery may serve as an additional treatment for diffuse TCGT in selected cases. However, because of the small number of patients and the heterogeneous group we could not prove an advantage of additional cryosurgery over surgical resection only. Cryosurgery should be considered for further evaluation in a prospective study. If there is any effect it would be helpful, especially in patients with multiple TGCT recurrences. PMID:28115910

  7. Beneficiation of Turkish lignites by thermal treatment and magnetic separation

    SciTech Connect

    Onal, G.; Renda, D.; Mustafaev, I.; Dogan, Z.

    1999-07-01

    In this paper, the improvement of Turkish lignites by semi-coking and REMS magnetic separation, in two stages, is discussed. The oxidation and decomposition of pyrite through the thermal treatment result in the formation of iron oxide and pyrrhotite on the surface. In addition to pyrite, part of the organic sulfur is also removed. After thermal treatment of lignites at temperatures ranging from 370 to 650 C, the application of REMS magnetic separator produces a product higher in calorific value and lower in sulfur content. The product can be utilized after briquetting. The volatile gases can also be used after sulfur removal. This process appears to be feasible as a clean coal manufacture from the point of energy efficiency. A short economic analysis is also presented.

  8. Thermally stable drilling fluid additive comprised of a copolymer of catechol-based monomer

    SciTech Connect

    Patel, A.D.

    1986-06-17

    A water soluble polymer is described having thermal stability and exhibiting utility as an aqueous drilling fluid additive comprising: (a) a major portion of a catechol based monomer; (b) a minor portion of a dicarboxylic acid monomer.

  9. Summary of comparative results integrated nonthermal treatment and integrated thermal treatment systems studies

    SciTech Connect

    1996-12-01

    In July 1994, the Idaho National Engineering Laboratory (INEL), under a contract from U.S. Department of Energy`s (DOE) Environment Management Office of Science and Technology (OST, EM-50) published a report entitled {open_quotes}Integrated Thermal Treatment System Study - Phase 1 Results{close_quotes} (EGG-MS-11211). This report was the culmination of over a year of analysis involving scientists and engineers within the DOE complex and from private industry. The purpose of that study was {open_quotes}to conduct a systematic engineering evaluation of a variety of mixed low level waste (MLLW) treatment system alternatives.{close_quotes} The study also {open_quotes}identified the research and development, demonstrations, and testing and evaluation needed to assure unit operability in the most promising alternative system.{close_quotes} This study evaluated ten primary thermal treatment technologies, organized into complete {open_quotes}cradle-to-grave{close_quotes} systems (including complete engineering flow sheets), to treat DOE MLLW and calculated mass balances and 20-year total life cycle costs (TLCC) for all systems. The waste input used was a representative heterogenous mixture of typical DOE MLLW. An additional study was conducted, and then, based on response to these studies, additional work was started to investigate and evaluate non-thermal treatment options on a footing comparable to the effort devoted to thermal options. This report attempts to present a summary overview of the thermal and non-thermal treatment technologies which were examined in detail in the process of the above mentioned reviews.

  10. 40 CFR 265.370 - Other thermal treatment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... enclosed devices using controlled flame combustion, except as § 265.1 provides otherwise. Thermal treatment... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Other thermal treatment. 265.370... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE,...

  11. 40 CFR 265.370 - Other thermal treatment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... enclosed devices using controlled flame combustion, except as § 265.1 provides otherwise. Thermal treatment... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Other thermal treatment. 265.370... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE,...

  12. 40 CFR 265.370 - Other thermal treatment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... enclosed devices using controlled flame combustion, except as § 265.1 provides otherwise. Thermal treatment... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Other thermal treatment. 265.370... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE,...

  13. 40 CFR 265.370 - Other thermal treatment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... enclosed devices using controlled flame combustion, except as § 265.1 provides otherwise. Thermal treatment... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Other thermal treatment. 265.370... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE,...

  14. 40 CFR 265.370 - Other thermal treatment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... enclosed devices using controlled flame combustion, except as § 265.1 provides otherwise. Thermal treatment... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Other thermal treatment. 265.370... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE,...

  15. Dithienobenzodithiophene-Based Small Molecule Organic Solar Cells with over 7% Efficiency via Additive- and Thermal-Annealing-Free Processing.

    PubMed

    Song, Hyeng Gun; Kim, Yu Jin; Lee, Ji Sang; Kim, Yun-Hi; Park, Chan Eon; Kwon, Soon-Ki

    2016-12-21

    Here we introduce a novel small molecule based on dithienobenzodithiophene and rhodanine, DTBDT-Rho, developed to study the effect of the rhodanine substitutuent on small molecule bulk heterojunction (BHJ) solar cells. DTBDT-Rho possesses distinct crystalline characteristics, sufficient solubility in chlorinated solvents, and broad absorption properties. Therefore, solution-processed BHJ photovoltaic cells made with DTBDT-Rho:PC71BM blends showed an extremely high power conversion efficiency (PCE; 7.10%); notably, this PCE value was obtained without the use of additives or thermal treatments. To our knowledge, the PCE over 7% is a significantly powerful value among rhodanine-based small molecule BHJ solar cells without additives or thermal treatments.

  16. Harnessing the immunomodulatory effect of thermal and non-thermal ablative therapies for cancer treatment.

    PubMed

    Bastianpillai, Christopher; Petrides, Neophytos; Shah, Taimur; Guillaumier, Stephanie; Ahmed, Hashim U; Arya, Manit

    2015-12-01

    Minimally invasive interventional therapies are evolving rapidly and their use for the treatment of solid tumours is becoming more extensive. The in situ destruction of solid tumours by such therapies is thought to release antigens that can prime an antitumour immune response. In this review, we offer an overview of the current evidence for immune response activation associated with the utilisation of the main thermal and non-thermal ablation therapies currently in use today. This is followed by an assessment of the hypothesised mechanisms behind this immune response priming and by a discussion of potential methods of harnessing this specific response, which may subsequently be applicable in the treatment of cancer patients. References were identified through searches of PubMed/MEDLINE and Cochrane databases to identify peer-reviewed original articles, meta-analyses and reviews. Papers were searched from 1850 until October 2014. Articles were also identified through searches of the authors' files. Only papers published in English were reviewed. Thermal and non-thermal therapies have the potential to stimulate antitumour immunity although the current body of evidence is based mostly on murine trials or small-scale phase 1 human trials. The evidence for this immune-modulatory response is currently the strongest in relation to cryotherapy and radiotherapy, although data is accumulating for related ablative treatments such as high-intensity focused ultrasound, radiofrequency ablation and irreversible electroporation. This effect may be greatly enhanced by combining these therapies with other immunostimulatory interventions. Evidence is emerging into the immunomodulatory effect associated with thermal and non-thermal ablative therapies used in cancer treatment in addition to the mechanism behind this effect and how it may be harnessed for therapeutic use. A potential exists for treatment approaches that combine ablation of the primary tumour with control and possible

  17. High-temperature thermal treatment of the uterus

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Xiao, Jia Hua; Chung, Juh Yun

    2003-06-01

    More than 200,000 hysterectomies are performed annually in the US due to abnormal uterine bleeding from excessive menstrual flow. A minimally invasive procedure has been developed using thermal treatment combined with pressure to the endometrial lining of the uterus. Results from a 3-D finite element model will be shown, as well as experimental data. Good correlation was seen between simulations and experiments. The study found similar results then temperatures were increased and times for treatment were shortened.More than 200,000 hysterectomies are performed annually in the US due to abnormal uterine bleeding from excessive menstrual flow. A minimally invasive procedure has been developed using a balloon-based thermal treatment combined with pressure to the endometrial lining of the uterus. A 3D finite element model was set up to simulate the balloon ablation device in the human uterus as used in over 150,000 patients to date. Several additional simulations were made at higher temperatures to seek alternative combinations with higher temperature and shorter time intervals for the same depth of penetration, or deeper penetration at longer times and elevated temperatures. A temperature range of 87 to 150°C was explored. The Bioheat Equation was used in the simulations to predict temperature distributions in tissue. The Damage Integral was also used to characterize the location at depth of irreversible damage in the uterus. Treatment safety issues were also analyzed as the simulations showed the depth of penetration into the myometrium, towards the serosa.

  18. Effect of additives on jet fuel thermal stability determined using the gravimetric JFTOT

    SciTech Connect

    Pande, S.G.; Hardy, D.R.

    1996-10-01

    In an effort to address the need for improving the thermal stabilities of jet fuels, various additives are being examined. These include the antioxidant, BHT; a metal deactivator, MDA (N,N{prime}-Disalicylidene-1,2-propane diamine); a combination of BHT and MDA; and two dispersant/detergent additives, viz., a Betz and Mobil additive. In general, the additives were screened in three test fuels, viz., a refinery sampling blend (RSB), a JP-8, and a Jet A. Additive effectiveness on aging a fuel in the presence of 400 ppb copper was examined in the RSB fuel. Based on the studies conducted, the most effective additives were the MDA/BHT combination, the Betz, and the Mobil additive (when tested). For example, these additives significantly lowered the total thermal deposits formed for the copper-doped aged fuel. For the remaining two test fuels, differentiation in effectiveness among the additives screened was considerably less. These results, which are likely due to the test fuels being relatively thermally stable, focus on the necessity of using less stable fuels to better differentiate additive effectiveness.

  19. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    SciTech Connect

    O'Connor, W.K.; Turner, P.C.

    1999-09-01

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  20. Structural, Thermal, Physical, Mechanical, and Barrier Properties of Chitosan Films with the Addition of Xanthan Gum.

    PubMed

    de Morais Lima, Maria; Carneiro, Lucia Cesar; Bianchini, Daniela; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa; Prentice, Carlos; Moreira, Angelita da Silveira

    2017-03-01

    Films based on chitosan and xanthan gum were prepared using casting technique aiming to investigate the potential of these polymers as packaging materials. Six formulations of films were studied varying the proportion of chitosan and xanthan gum: 100:0 (chitosan:xanthan gum, w/w, C100XG0 film); 90:10 (chitosan:xanthan gum, w/w, C90XG10 film); 80:20 (chitosan:xanthan gum, w/w, C80XG20 film); 70:30 (chitosan:xanthan gum, w/w, C70XG30 film); 60:40 (chitosan:xanthan gum, w/w, C60XG40 film); and 50:50 (chitosan:xanthan gum, w/w, C50XG50 film). The total quantity of solids (chitosan and xanthan gum) in the filmogenic solution was 1.5 g per 100 mL of aqueous solution for all treatments, according to the proportion of each polymer. The films were evaluated by their functional groups, structural, thermal, morphological, physical, mechanical, and barrier properties. All films have presented endothermic peaks in the range of 122 to 175 °C and broad exothermic peaks above 200 °C, which were assigned to the melting temperature and thermal decomposition, respectively. These results demonstrated that films with xanthan gum have the highest Tm and Δm H. The films containing higher content of xanthan gum show also the highest tensile strength and the lowest elongation. Xanthan gum addition did not affect the water vapor permeability, solubility, and moisture of films. This set of data suggests the formation of chitosan-xanthan complexes in the films.

  1. Improvement of water treatment at thermal power plants

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Bushuev, E. N.; Larin, A. B.; Karpychev, E. A.; Zhadan, A. V.

    2015-04-01

    Prospective and existing technologies for water treatment at thermal power plants, including pretreatment, ion exchange, and membrane method are considered. The results obtained from laboratory investigations and industrial tests of the proposed technologies carried out at different thermal power plants are presented. The possibilities of improving the process and environmental indicators of water treatment plants are shown.

  2. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  3. Evidence of thermal additivity during short laser pulses in an in vitro retinal model

    NASA Astrophysics Data System (ADS)

    Denton, Michael L.; Tijerina, Amanda J.; Dyer, Phillip N.; Oian, Chad A.; Noojin, Gary D.; Rickman, John M.; Shingledecker, Aurora D.; Clark, Clifton D.; Castellanos, Cherry C.; Thomas, Robert J.; Rockwell, Benjamin A.

    2015-03-01

    Laser damage thresholds were determined for exposure to 2.5-ms 532-nm pulses in an established in vitro retinal model. Single and multiple pulses (10, 100, 1000) were delivered to the cultured cells at three different pulse repetition frequency (PRF) values, and overt damage (membrane breach) was scored 1 hr post laser exposure. Trends in the damage data within and across the PRF range identified significant thermal additivity as PRF was increased, as evidenced by drastically reduced threshold values (< 40% of single-pulse value). Microthermography data that were collected in real time during each exposure also provided evidence of thermal additivity between successive laser pulses. Using thermal profiles simulated at high temporal resolution, damage threshold values were predicted by an in-house computational model. Our simulated ED50 value for a single 2.5-ms pulse was in very good agreement with experimental results, but ED50 predictions for multiple-pulse trains will require more refinement.

  4. Censored data treatment using additional information in intelligent medical systems

    NASA Astrophysics Data System (ADS)

    Zenkova, Z. N.

    2015-11-01

    Statistical procedures are a very important and significant part of modern intelligent medical systems. They are used for proceeding, mining and analysis of different types of the data about patients and their diseases; help to make various decisions, regarding the diagnosis, treatment, medication or surgery, etc. In many cases the data can be censored or incomplete. It is a well-known fact that censorship considerably reduces the efficiency of statistical procedures. In this paper the author makes a brief review of the approaches which allow improvement of the procedures using additional information, and describes a modified estimation of an unknown cumulative distribution function involving additional information about a quantile which is known exactly. The additional information is used by applying a projection of a classical estimator to a set of estimators with certain properties. The Kaplan-Meier estimator is considered as an estimator of the unknown cumulative distribution function, the properties of the modified estimator are investigated for a case of a single right censorship by means of simulations.

  5. Thermal treatment of solid residues from WtE units: A review

    SciTech Connect

    Lindberg, Daniel Molin, Camilla Hupa, Mikko

    2015-03-15

    Highlights: • We review the thermal treatment methods for ashes and residues from WtE plants. • We review the results from extensive laboratory work on vitrification, melting and vaporization of ash. • We analyze the results from the extensive patent literature on thermal treatment. • We review industrial concepts for thermal treatment of ash. - Abstract: Thermal treatment methods of bottom ash, fly ash and various types of APC (air pollution control) residues from waste-to-energy plants can be used to obtain environmentally stable material. The thermal treatment processes are meant to reduce the leachability of harmful residue constituents, destroy toxic organic compounds, reduce residue volume, and produce material suitable for utilization. Fly ash and APC residues often have high levels of soluble salts, particularly chlorides, metals such as cadmium, lead, copper and zinc, and trace levels of organic pollutants such as dioxins and furans. Different thermal treatment methods can be used to either decompose or stabilize harmful elements and compounds in the ash, or separate them from the ash to get a material that can be safely stored or used as products or raw materials. In the present paper, thermal treatment methods, such as sintering, vitrification, and melting have been reviewed. In addition to a review of the scientific literature, a survey has been made of the extensive patent literature in the field.

  6. Does betahistine treatment have additional benefits to vestibular rehabilitation?

    PubMed

    Karapolat, Hale; Celebisoy, Nese; Kirazli, Yesim; Bilgen, Cem; Eyigor, Sibel; Gode, Sercan; Akyuz, Aycan; Kirazli, Tayfun

    2010-08-01

    The aim of this study was to investigate the effect of high-dose betahistine treatment added to vestibular rehabilitation (VR) on the disability, balance and postural stability in patients with unilateral vestibular disorder. The VR group (group 1, n = 24) and the VR + betahistine group (group 2, n = 23) were analyzed retrospectively. All patients were evaluated before and after an 8-week customized VR in terms of disability (Dizziness Handicap Inventory, DHI), dynamic balance [Dynamic Gait Index (DGI)] and postural stability (static posturography). In group 1 and group 2, differences between DHI, DGI and falling index score on static posturography before and after the exercise program were significant (p < 0.05). In addition, a significant difference was detected only in group 2 in the variables evaluated in static posturography-Fourier 4 analysis (p < 0.05). Both VR and betahistine + VR have a positive effect on disability and balance in patients with unilateral vestibular disorder. Betahistine treatment added to VR was effective in increasing postural stability.

  7. Phase stability of thermal barrier oxides based on t'-zirconia with trivalent oxide additions

    NASA Astrophysics Data System (ADS)

    Rebollo Franco, Noemi Rosa

    Zirconia stabilized with 7+/-1 wt.% addition of yttria (7YSZ) is widely used for thermal barrier coatings (TBC's) on actively cooled gas turbine components, selected partly because of its superior durability under thermal cyclic conditions. As deposited, 7YSZ occurs as a metastable single-phase tetragonal solid solution (t') that is thermodynamically stable against the deleterious transformation to monoclinic upon cooling. However, at high temperatures t' is driven to decompose diffusionally into an equilibrium mixture of high-Y cubic and low-Y tetragonal; the latter becomes transformable to monoclinic compromising the mechanical integrity of the system. This dissertation explores the effects of trivalent stabilizers, including Y, Sc and selected rare-earth oxides (REO's), on the phase stability of the resulting solid solutions in zirconia. The REO additions are of interest because they can potentially enhance the insulation efficiency on the coating allowing higher operating temperatures. However, understanding of their effects on phase stability and potentially on cyclic durability at the projected use temperature in next generation engines (1200-1400°C) is insufficient to guide the design of coatings with the desirable combination of lower thermal conductivity and acceptable durability. Sc was also investigated because of previous reports on the higher phase stability of materials doped with Sc, and Y served as the baseline. The experimental approach is based on powders synthesized by reverse co-precipitation of precursor solutions, usually compacted and then subjected to a variety of heat treatments, following their evolution by means of X-ray diffractometry, dilatometry, transmission electron microscopy and Raman spectroscopy. The use of powders facilitated the synthesis of a wider range of compositions that would not have been possible by coating deposition approaches, and because the synthesis occurs at low temperature, it also enabled the starting

  8. Thermal ablation for the treatment of abdominal tumors.

    PubMed

    Brace, Christopher L; Hinshaw, J Louis; Lubner, Meghan G

    2011-03-07

    associated bleeding risks frequently seen in cirrhotic patients. In addition, sudden release of tumor cellular contents when the frozen tissue thaws can lead to a potentially serious condition known as cryoshock. Thermal tumor ablation can be performed at open surgery, laparoscopy or using a percutaneous approach. When performed percutaneously, the ablation procedure relies on imaging for diagnosis, planning, applicator guidance, treatment monitoring and follow-up. Ultrasound is the most popular modality for guidance and treatment monitoring worldwide, but computed tomography (CT) and magnetic resonance imaging (MRI) are commonly used as well. Contrast-enhanced CT or MRI are typically employed for diagnosis and follow-up imaging.

  9. DEMONSTRATION BULLETIN: LOW TEMPERATURE THERMAL TREATMENT (LT3®) SYSTEM

    EPA Science Inventory

    The Roy F. Weston, Inc. (Weston) low temperature thermal treatment (LT3®) system thermally desorbs organic compounds from contaminated soil without heating the soil to combustion temperatures. The transportable system is comprised of equipment assembled on thre...

  10. Thermal and Tribological Properties of Jatropha Oil as Additive in Commercial Oil

    NASA Astrophysics Data System (ADS)

    Gallardo-Hernández, E. A.; Lara-Hernández, G.; Nieto-Camacho, F.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Hernández-Aguilar, C.; Contreras-Gallegos, E.; Torres, M. Vite; Flores-Cuautle, J. J. A.

    2017-04-01

    The recent use that has been given to bio-oil as an additive, in a commercial engine oil, raises the necessity to study its physical properties. The present study is aimed to obtain thermal properties of blends made with Jatropha-Curcas L. Oil, Crude, and Refined, at different concentrations using SAE40W oil (EO) as a lubricant base. By using photothermal techniques, thermal effusivity and diffusivity were obtained. The obtained results show that thermal effusivity increases from 455 Ws^{1/2}{\\cdot }m^{-2}{\\cdot }K^{-1} to 520 Ws^{1/2}{\\cdot }m^{-2}{\\cdot }K^{-1} as the percentage of additive increases as well, whereas thermal diffusivity values range from 7× 10^{-8}m2{\\cdot }s^{-1} to 10× 10^{-8}m2{\\cdot }s^{-1}. In the present study, four balls test was used in order to obtain friction coefficient and wear scar values for studied samples, the obtained results point out that in general refined Jatropha-Curcas L. oil presents smaller wear scars than the crude one.

  11. Characteristics of phase-change materials containing oxide nano-additives for thermal storage

    PubMed Central

    2012-01-01

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin. PMID:23127224

  12. Retrieval/ex situ thermal treatment scoring interaction report

    SciTech Connect

    Raivo, B.D.; Richardson, J.G.

    1993-11-01

    A retrieval/ex situ thermal treatment technology process for the Idaho National Engineering Laboratory transuranic waste pits and trenches is present. A system performance score is calculated, and assumptions, requirements, and reference baseline technologies for all subelements are included.

  13. Effects of potential additives to promote seal swelling on the thermal stability of synthetic jet fuels

    SciTech Connect

    Lind, D.D.; Gormley, R.G.; Zandhuis, P.H.; Baltrus, J.P.

    2007-10-01

    Synthetic fuels derived from the Fischer-Tropsch (F-T) process using natural gas or coal-derived synthesis gas as feedstocks can be used for powering of ground vehicles, aircraft and ships. Because of their chemical and physical properties, F-T fuels will probably require additives in order to meet specifications with respect to lubricity and seal swell capability for use in ground and air vehicles. These additives can include oxygenates and compounds containing other heteroatoms that may adversely affect thermal stability. In order to understand what additives will be the most beneficial, a comprehensive experimental and computational study of conventional and additized fuels has been undertaken. The experimental approach includes analysis of the trace oxygenate and nitrogen-containing compounds present in conventional petroleum-derived fuels and trying to relate their presence (or absence) to changes in the desired properties of the fuels. This paper describes the results of efforts to test the thermal stability of synthetic fuels and surrogate fuels containing single-component additives that have been identified in earlier research as the best potential additives for promoting seal swelling in synthetic fuels, as well as mixtures of synthetic and petroleum-derived fuels.

  14. Potential Additives to Promote Seal Swell in Synthetic Fuels and Their Effect on Thermal Stability

    SciTech Connect

    Link, D.D.; Gormley, R.J.; Baltrus, J.P.; Anderson, R.R.; Zandhuis, P.H.

    2008-03-01

    Synthetic fuels derived from the Fischer–Tropsch (F-T) process using natural gas or coal-derived synthesis gas as feedstocks can be used for powering ground vehicles, aircraft, and ships. Because of their chemical and physical properties, F-T fuels will probably require additives in order to meet specifications with respect to lubricity and seal swell capability for use in ground and air vehicles. Using both experimental and computational studies, the propensity of certain species to enhance the seal swell characteristics of synthetic fuels and surrogates has been determined, and promising additives have been identified. Important structural characteristics for potential additives, namely an aromatic ring along with a polar constituent, are described. The thermal stability of synthetic and surrogate fuels containing the single-component additive benzyl alcohol, which is representative of this structural class, has been determined by batch stressing of the mixtures at 350 °C for up to 12 h. Synthetic fuels spiked with benzyl alcohol at concentrations (vol %) of 1.0, 0.75, and 0.5 have demonstrated the ability to swell nitrile rubber o-rings to a comparable degree as petroleum jet fuel. Further, batch reactor studies have shown that addition of benzyl alcohol does not degrade the thermal oxidative stability of the fuel based on gravimetric analysis of the solid deposits after stressing. GC-MS was used to characterize the products from thermal stressing of neat and additized surrogate jet fuel, and their compositions were compared with respect to the creation of certain species and their potential effect on deposition.

  15. Integrated thermal treatment system sudy: Phase 2, Results

    SciTech Connect

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

  16. Low level mixed waste thermal treatment technical basis report

    SciTech Connect

    Place, B.G.

    1994-12-01

    Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated.

  17. Improved thermal treatment of aluminum alloy 7075

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.

    1968-01-01

    Newly developed tempering treatment considerably increases the corrosion resistance of 7075-T6 alloy and concomitantly preserves its yield strength. The results of tests on samples of the alloy subjected to the above treatments show that when the overaging period is 12 hours /at 325 degrees F/, the alloy exhibits a yield strength of 73,000 psi.

  18. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    SciTech Connect

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

  19. [Impacts of alkaline thermal treatment on characteristics of sludge from sewage treatment plant].

    PubMed

    Yang, Shi-Dong; Chen, Xia; Liu, Cao; Xiao, Ben-Yi

    2015-02-01

    Alkaline thermal treatment is an important pretreatment method for sewage sludge. In this paper, in order to optimize the alkaline thermal treatment conditions for sludge pretreatment, four pretreatment parameters ( sludge concentration, pH, temperature and treatment time) were investigated through orthogonal experiments to determine their effects on the sludge disintegration, sludge concentration and sludge morphology of sewage sludge. The experimental results showed that the significance of the four factors on sludge characteristics was in the order of pH > temperature > treatment time > sludge concentration. Additionally, the optimal conditions of the four factors for the release of soluble chemical oxygen demand (SCOD) of unit sludge and decrease of sludge concentration were as follows: 36.55 g x L(-1), pH 12.45, 175 degrees C and 60 min. While the optimal conditions for the decrease of particle size and fractal dimension were 36.55 g x L(-1), pH 12.5, 175 degrees C and 45 min.

  20. Bis(pinacolato)diboron as an additive for the detection of thermal neutrons in plastic scintillators

    NASA Astrophysics Data System (ADS)

    Mahl, Adam; Yemam, Henok A.; Stuntz, John; Remedes, Tyler; Sellinger, Alan; Greife, Uwe

    2016-04-01

    A readily available and inexpensive boron compound was tested as an additive for the detection of thermal neutrons in plastic scintillators. Bis(pinacolato)diboron (B2Pin2) was determined to be a compatible boron source (8.51 wt% boron, 1.70 wt% 10B) in poly(vinyltoluene) based matrices. Plastic scintillator blends of 1-20 wt% 2,5-diphenyloxazole (PPO), 0.1 wt% 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP) and 1-15 wt% B2Pin2 were prepared that provided optical clarity, good mechanical properties, and the capability of thermal neutron detection. Independent of B2Pin2 concentration, strong 10B neutron capture signals around 90 keVee were observed at essentially constant light output. Increasing PPO concentration allowed for the use of pulse shape discrimination (PSD) in both fast and thermal neutron detection. High PPO concentrations appear to cause additional alpha quenching that affected the 10B neutron capture signal. Aging effects after storage in air for several months were observed, which led to degradation of performance and in some samples of mechanical stability.

  1. Tensile properties and thermal shock reliability of Sn-Ag-Cu solder joint with indium addition.

    PubMed

    Yu, A-Mi; Jang, Jae-Won; Lee, Jong-Hyun; Kim, Jun-Ki; Kim, Mok-Soon

    2012-04-01

    The thermal shock reliability and tensile properties of a newly developed quaternary Sn-1.2Ag-0.5Cu-0.4In (wt%) solder alloy were investigated and compared to those of ternary Sn-Ag-Cu based Pb-free solder alloys. It was revealed that the Sn-1.2Ag-0.5Cu-0.4In solder alloy shows better thermal shock reliability compared to the Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu solder alloys. The quaternary alloy has higher strength than Sn-1.0Ag-0.5Cu alloy, and higher elongation than Sn-3.0Ag-0.5Cu alloy. It was also revealed that the addition of indium promotes the formation of Ag3(Sn, In) phase in the solder joint during reflow process.

  2. Integrated thermal treatment systems study. Internal review panel report

    SciTech Connect

    Cudahy, J.; Escarda, T.; Gimpel, R.

    1995-04-01

    The U.S. Department of Energy (DOE) Office of Technology Development (OTD) commissioned two studies to evaluate nineteen thermal treatment technologies for treatment of DOE mixed low-level waste. These studies were called the Integrated Thermal Treatment System (ITTS) Phase I and Phase II. With the help of the DOE Office of Environmental Management (EM) Mixed Waste Focus Group, OTD formed an ITTS Internal Review Panel to review and comment on the ITTS studies. This Panel was composed of scientists and engineers from throughout the DOE complex, the U.S. Environmental Protection Agency, the California EPA, and private experts. The Panel met from November 15-18, 1994 to review the ITTS studies and to make recommendations on the most promising thermal treatment systems for DOE mixed low-level wastes and on research and development necessary to prove the performance of the technologies. This report describes the findings and presents the recommendations of the Panel.

  3. Field-enhanced electrodes for additive-injection non-thermal plasma (NTP) processor

    DOEpatents

    Rosocha, Louis A.; Ferreri, Vincent; Kim, Yongho

    2009-04-21

    The present invention comprises a field enhanced electrode package for use in a non-thermal plasma processor. The field enhanced electrode package includes a high voltage electrode and a field-enhancing electrode with a dielectric material layer disposed in-between the high voltage electrode and the field-enhancing electrode. The field-enhancing electrode features at least one raised section that includes at least one injection hole that allows plasma discharge streamers to occur primarily within an injected additive gas.

  4. A theoretical study of wave dispersion and thermal conduction for HMX/additive interfaces

    NASA Astrophysics Data System (ADS)

    Long, Yao; Chen, Jun

    2014-04-01

    The wave dispersion rule for non-uniform material is useful for ultrasonic inspection and engine life prediction, and also is key in achieving an understanding of the energy dissipation and thermal conduction properties of solid material. On the basis of linear response theory and molecular dynamics, we derive a set of formulas for calculating the wave dispersion rate of interface systems, and study four kinds of interfaces inside plastic bonded explosives: HMX/{HMX, TATB, F2312, F2313}. (HMX: octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; TATB: 1,3,5-triamino-2,4,6-trinitrobenzene; F2312, F2313: fluoropolymers). The wave dispersion rate is obtained over a wide frequency range from kHz to PHz. We find that at low frequency, the rate is proportional to the square of the frequency, and at high frequency, the rate couples with the molecular vibration modes at the interface. By using the results, the thermal conductivities of HMX/additive interfaces are derived, and a physical model is built for describing the total thermal conductivity of mixture explosives, including HMX multi-particle systems and {TATB, F2312, F2313}-coated HMX.

  5. [A new treatment: thermal therapy for chronic fatigue syndrome].

    PubMed

    Masuda, Akinori; Munemoto, Takao; Tei, Chuwa

    2007-06-01

    Thermal therapy using far-infrared ray dry sauna was performed for patients with chronic fatigue syndrome (CFS). Symptoms such as fatigue, pain, and low-grade fever were dramatically improved on two patients. And prednisolone administration was discontinued and became socially rehabilitated 6 months after discharge. On other 11 patients with CFS, physical symptoms such as fatigue and pain improved, too. Furthermore, we reported that repeated thermal therapy had relaxation effect and diminishes appetite loss and subjective complaints in mildly depressed patients. These results suggest that repeated thermal therapy may be a promising method for the treatment of CFS.

  6. Strategies for microwave thermal treatment planning, navigation, and assessment

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.

    2011-03-01

    Thermal treatment is commonly performed interstitially in either surgical or percutaneous procedures, using microwave antenna sources at 915 or 2540 MHz. There are a number of tools or aids as well as challenges for clinicians performing these procedures in the course of patient treatment. These challenges will be present whether the procedure is surgical, laparoscopic, or percutaneous, and include treatment planning, image guidance, navigation, coregistration in 3D, and treatment assessment. Treatment planning has been used historically in hyperthermia for microwave antenna arrays, but has yet to be properly applied in thermal ablation. Image assessment of thermal treatment is not typically performed in real time, although these tools will provide the clinician with further information to understand the extent of treatment and whether further treatment is needed. 3D imaging is available, but not coregistered to patient space. Navigation has been used in many medical specialties, but is also not in the clinician's toolbox in thermal treatment. Although treatment planning will lay out the skin entry and trajectory for each antenna placed, subsequently, each antenna needs to be tracked to accurately show placement in the patient and overlaid in patient space, along with the tumor target location. Some patient treatments may consist of multiple, but sequential single placements of an antenna, and guidance is even more critical to track positions and plan for the next insertion. Lastly, real-time image assessment will show the extent and shape of the coagulated lesion and which targets may have been undertreated. If used synchronously in arrays, MW power steering may also aid in filling in the ablation as the treatment progresses. This paper will analyze the present state-of-the art as well as a strategy to incorporate the various facets of planning, guidance, and assessment of treatment. The integration of thermal treatment planning, navigation and guidance, robotics

  7. Review of the integrated thermal and nonthermal treatment system studies

    SciTech Connect

    Durrani, H.A.; Schmidt, L.J.; Erickson, T.A.; Sondreal, E.A.; Erjavec, J.; Steadman, E.N.; Fabrycky, W.J.; Wilson, J.S.; Musich, M.A.

    1996-07-01

    This report analyzes three systems engineering (SE) studies performed on integrated thermal treatment systems (ITTSs) and integrated nonthermal treatment systems (INTSs) for the remediation of mixed low-level waste (MLLW) stored throughout the US Department of Energy (DOE) weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center (EERC), Science Applications International Corporation (SAIC), the Waste Policy Institute (WPI), and Virginia Tech (VT). The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions taken in the studies might bias the resulting economic evaluations of both thermal and nonthermal systems, (2) identify the critical areas of the studies that would benefit from further investigation, and (3) develop a standard template that could be used in future studies to produce sound SE applications.

  8. Review of the integrated thermal and nonthermal treatment system studies

    SciTech Connect

    1996-08-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  9. Evaluation of the JP-8+100 additive candidates in the extended duration thermal stability test system

    SciTech Connect

    Binns, K.E.; Dieterle, G.L.

    1996-10-01

    The most promising JP-8+100 additive candidates consists of dispersants, detergents, antioxidants and metal deactivators. A series of tests were conducted in the Extended Duration Thermal Stability Test System to determine the thermal stability effects of the individual JP-8+100 additives and combinations of the additives. This paper will cover the test results and their relationship to future aircraft fuel systems. The Extended Duration Thermal Stability Test System was designed to conduct long duration tests at non-accelerated temperature conditions and resident times representative or aircraft/engine fuel systems. This system and its operating characteristics will also be covered in this paper.

  10. Current status of thermal ablation treatments for lung malignancies.

    PubMed

    Dupuy, Damian E; Shulman, Maria

    2010-09-01

    About 75% of lung cancer patients are not surgical candidates, either due to advanced disease or medical comorbidities. Furthermore, conventional treatments that can be offered to these patients are beneficial only to a small percentage of them. Thermal ablation is a minimally invasive treatment that is commonly used in this group of patients, and which has shown promising results. Currently, the most widely used ablation techniques in the treatment of lung malignancies are radiofrequency ablation (RFA), microwave ablation, and cryoablation. Although the most studied technique is RFA, recent studies with microwave ablation and cryoablation have shown some advantages over RFA. This article reviews the application of thermal ablation in the thorax, including patient selection, basic aspects of procedure technique, imaging follow-up, treatment outcomes, and comparison of ablation techniques.

  11. Patient specific optimization-based treatment planning for catheter-based ultrasound hyperthermia and thermal ablation

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Chen, Xin; Wootton, Jeffery; Pouliot, Jean; Hsu, I.-Chow; Diederich, Chris J.

    2009-02-01

    to model thermal ablation, including the addition of temperature dependent attenuation, perfusion, and tissue damage. Pilot point control at the target boundaries was implemented to control power delivery to each transducer section, simulating an approach feasible for MR guided procedures. The computer model of thermal ablation was evaluated on representative patient anatomies to demonstrate the feasibility of using catheter-based ultrasound thermal ablation for treatment of benign prostate hyperplasia (BPH) and prostate cancer, and to assist in designing applicators and treatment delivery strategies.

  12. Simulation of flow in a continuous galvanizing bath: Part I. Thermal effects of ingot addition

    NASA Astrophysics Data System (ADS)

    Ajersch, F.; Ilinca, F.; Hétu, J.-F.

    2004-02-01

    A numerical analysis has been developed to simulate the velocity and temperature fields in an industrial galvanizing bath for the continuous coating of steel strip. Operating variables such as ingot addition, line speed, and inductor mixing were evaluated in order to determine their effect on the velocity and temperature distribution in the bath. The simulations were carried out using high-performance computational fluid-dynamics software developed at the Industrial Materials Institute of the National Research Council Canada (IMI-NRC) in solving the incompressible Navier-Stokes equations for steady-state and transient turbulent flow using the k-ɛ model. Cases with and without temperature-dependent density conditions were considered. It was found that the strip velocity does not alter the global flow pattern but modifies the velocities in the snout, near the strip, and near the sink and guide rolls. At a low inductor capacity, the effect of induced mixing is small but is considerably increased at the maximum inductor capacities used during ingot-melting periods. When considering the thermal effects, the flow is affected by variations in density especially near the inductors and the ingot, while little effect is observed near the sheet-and-roller region. Thermal effects are also amplified when the inductor operates at high capacity during ingot melting. The simulations allow visualization of regions of varying velocity and temperature fields and clearly illustrate the mixed and stagnant zones for different operating conditions.

  13. Additional experiments relative to the shelf life of Li(Si)/FeS2 thermal batteries

    NASA Astrophysics Data System (ADS)

    Searcy, J. Q.; Armijo, J. R.

    1985-02-01

    A continuing effort to develop a new thermal battery technology based on the Li(Si)/FeS2 electrochemical couple is reported. The results relate to the long shelf life requirement for thermal batteries designed by Sandia, and include topics relevant to leakage through the hermetic seal and accelerated aging experiments with materials new to the technology. Conclusions relevant to leakage through the hermetic seal are that the maximum leak rate must not exceed 1.8 x 10(-7) w, where w is the grams of Li(Si) contained by a battery, and that a bomb type leak test can be designed that is adequate for most Li(Si)/FeS2 batteries. Conclusions relevant to long term compatibility of new materials include the following: nickel is not compatible with the iron disulfide in the cathode; the CaSi2 additive used to suppress the initial voltage transient does not react or degrade during accelerated aging experiments, but the use of that material can lead to an increase in the variability of the activated lives, especially for long life batteries; Grafoil current collectors used with the cathode do not degrade in accelerated aging experiments.

  14. Enhancement of poly(3-hydroxybutyrate) thermal and processing stability using a bio-waste derived additive.

    PubMed

    Persico, Paola; Ambrogi, Veronica; Baroni, Antonio; Santagata, Gabriella; Carfagna, Cosimo; Malinconico, Mario; Cerruti, Pierfrancesco

    2012-12-01

    Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer, whose applicability is limited by its brittleness and narrow processing window. In this study a pomace extract (EP), from the bio-waste of winery industry, was used as thermal and processing stabilizer for PHB, aimed to engineer a totally bio-based system. The results showed that EP enhanced the thermal stability of PHB, which maintained high molecular weights after processing. This evidence was in agreement with the slower decrease in viscosity over time observed by rheological tests. EP also affected the melt crystallization kinetics and the overall crystallinity extent. Finally, dynamic mechanical and tensile tests showed that EP slightly improved the polymer ductility. The results are intriguing, in view of the development of sustainable alternatives to synthetic polymer additives, thus increasing the applicability of bio-based materials. Moreover, the reported results demonstrated the feasibility of the conversion of an agro-food by-product into a bio-resource in an environmentally friendly and cost-effective way.

  15. Thermal treatment and mechanical properties of aluminum-2021

    NASA Technical Reports Server (NTRS)

    Brennecke, M. W.

    1970-01-01

    Mechanical properties, after thermal treatments, are summarized for sheet and plate of copper-rich, high-strength, heat-treatable aluminum-2021. The alloy is quench sensitive, quench rate and variations in aging affect corrosion behavior. Aging effects on yield strength, tensile strength, and elongation of sheet and plate are compared.

  16. Treatment of Solar and Thermal Radiation in Global Climate Models

    NASA Astrophysics Data System (ADS)

    Lacis, A. A.; Oinas, V.

    2015-12-01

    It is the interaction of solar and thermal radiation with the climate system constituents that determines the prevailing climate on Earth. The principal radiative constituents of the climate system are clouds, aerosols, greenhouse gases, and the ground surface. Accurate rendering of their interaction with the incident solar radiation and the outgoing thermal radiation is required if a climate model is to be capable of simulating and predicting the complex changes that take place in the terrestrial climate system. In the GISS climate model, these radiative tasks are accomplished with a GCM radiation model that utilizes the correlated k-distribution treatment that closely matches Line-by-Line accuracy (Lacis and Oinas, 1991) for the gaseous absorbers, and an adaptation of the doubling/adding method (Lacis and Hansen, 1974) to compute multiple scattering by clouds and aerosols. The radiative parameters to model the spectral dependence of solar and longwave radiation (UV to microwave) utilizes Mie scattering and T-matrix calculations covering the broad range of particle sizes and compositions encountered in the climate system. Cloud treatment also incorporates an empirical representation of sub-grid inhomogeneity and space-time variability of cloud optical properties (derived from ISCCP data) that utilizes a Monte Carlo-based re-scaling parameterization of the cloud plane-parallel radiative parameters (Cairns et al, 2001). The longwave calculations compute correlated k-distribution radiances at three quadrature points (without scattering), and include the effects of cloud scattering in parameterized form for the outgoing and downwelling LW fluxes. For hygroscopic aerosols (e.g., sulfates, nitrates, sea salt), the effects of changing relative humidity on particle size and refractive index are explicitly taken into account. In this way, the GISS GCM radiation model calculates the SW and LW radiative fluxes, and the corresponding radiative heating and cooling rates in

  17. Solar neutrinos and the influences of opacity, thermal instability, additional neutrino sources, and a central black hole on solar models

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.; Ezer, D.

    1972-01-01

    Significant quantities that affect the internal structure of the sun are examined for factors that reduce the temperature near the sun's center. The four factors discussed are: opacity, central black hole, thermal instability, and additional neutrino sources.

  18. From hydrophobic to superhydrophobic and superhydrophilic siloxanes by thermal treatment.

    PubMed

    Karapanagiotis, Ioannis; Manoudis, Panagiotis N; Zurba, Andreea; Lampakis, Dimitrios

    2014-11-11

    The cross-influence effects of treatment temperature and time on the wettability of a siloxane elastomer is investigated in detail, through static and tilt contact angle measurements. The material is heated at 400, 500, 600, 650, 700, and 800 °C for various periods, ranging from 1 to 300 s. The siloxane surface is subjected to multiple wettability transitions with treatment time: from intrinsic hydrophobicity to superhydrophobicity (and water repellency) and then through intermediate stages (hydrophobicity and hydrophilicity) to superhydrophilicity. For the time scale used herein (1-300 s), this scenario is recorded for treatment at 650, 700, and 800 °C. For treatment at lower temperatures (400, 500, and 600 °C) only the first transition, from intrinsic hydrophobicity to superhydrophobicity, is recorded. Scanning electron microscopy, micro-Fourier transform infrared (micro-FTIR), and micro-Raman spectroscopies are employed to correlate the aforementioned wettability transitions with structural and chemical changes of the siloxane surface, developed during thermal treatment. It is shown that the first transition from intrinsic hydrophobicity to superhydrophobicity is accompanied by a severe surface-structure evolution that increases surface roughness. Once superhydrophobicity is achieved, the surface structure reaches a saturation point and it is not subjected to any other change with further thermal treatment. FTIR spectroscopy shows that the intensity of the O-H/C-H peaks increases/decreases with treatment time, and Raman measurements show that the C-Si-C vibrations gradually disappear with treatment time. The evaporation of a droplet resting on a superhydrophobic, water-repellent siloxane surface, which was produced after appropriate thermal treatment, is monitored. It is shown that droplet evaporation initially follows the constant contact area mode. At later evaporation stages, a transition to the constant contact angle mode is recorded. Finally, it is

  19. Treatment of acute puerperal metritis with flunixin meglumine in addition to antibiotic treatment.

    PubMed

    Drillich, M; Voigt, D; Forderung, D; Heuwieser, W

    2007-08-01

    The objective of this field trial was to evaluate effects of a single administration of 2.2 mg/kg of body weight (BW) of flunixin meglumine (FM) in addition to a systemic antibiotic treatment in cows with acute puerperal metritis (APM). Outcome variables tested were proportion of cows with a fever, prevalence of chronic endometritis 18 to 22 and 32 to 35 d in milk (DIM), and reproductive performance measures in the current lactation. In addition, serum concentrations of haptoglobin and fibrinogen were analyzed. Daily milk yield within 6 d after the first treatment was recorded. Cows were examined 4 to 5 DIM by rectal palpation and vaginoscopy, and rectal temperature was measured. Fetid vulvar discharge and a body temperature > or = 39.5 degrees C were signs of APM. Cows with APM were treated in the reference group with 1.0 mg/kg of BW of ceftiofur on 3 to 5 consecutive days (CEF, n = 119). In the study group, cows received the same antibiotic treatment as in CEF and 2.2 mg/kg of BW of FM on treatment d 1 (CEF + FM, n = 119). Blood samples were collected 4, 6, and 10 DIM and analyzed for concentrations of haptoglobin and fibrinogen. A group of cows without APM remained untreated and served as controls (n = 9). There were no significant differences between CEF and CEF + FM in the proportion of cows with fever 1 d after the first treatment (33.6 vs. 46.2%), milk yield per milking 10 DIM (7.5 +/- 0.3 vs. 7.6 +/- 0.3 kg in primiparous, 9.6 +/- 0.4 vs. 10.6 +/- 0.4 kg in multiparous cows), prevalence of chronic endometritis 32 to 35 DIM (64.3 vs. 52.2%), and in reproductive performance (31.5 vs. 34.3% conception to first AI, 58.0 vs. 54.6% pregnancy rate, 107.8 +/- 36.9 vs. 101.6 +/- 41.4 d open). Compared with the control, CEF and CEF + FM had significantly greater concentrations of haptoglobin (1.1 +/- 0.28 vs. 1.9 +/- 0.06 and 1.8 +/- 0.07 mg/mL at 4 DIM; 0.3 +/- 0.15 vs. 1.1 +/- 0.06 and 1.2 +/- 0.07 mg/mL at 10 DIM) and fibrinogen (2.2 +/- 0.17 vs. 3.9 +/- 0.14 and

  20. Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice.

    PubMed

    Santhirasegaram, Vicknesha; Razali, Zuliana; Somasundram, Chandran

    2013-09-01

    Ultrasonic treatment is an emerging food processing technology that has growing interest among health-conscious consumers. Freshly squeezed Chokanan mango juice was thermally treated (at 90 °C for 30 and 60s) and sonicated (for 15, 30 and 60 min at 25 °C, 40 kHz frequency, 130 W) to compare the effect on microbial inactivation, physicochemical properties, antioxidant activities and other quality parameters. After sonication and thermal treatment, no significant changes occurred in pH, total soluble solids and titratable acidity. Sonication for 15 and 30 min showed significant improvement in selected quality parameters except color and ascorbic acid content, when compared to freshly squeezed juice (control). A significant increase in extractability of carotenoids (4-9%) and polyphenols (30-35%) was observed for juice subjected to ultrasonic treatment for 15 and 30 min, when compared to the control. In addition, enhancement of radical scavenging activity and reducing power was observed in all sonicated juice samples regardless of treatment time. Thermal and ultrasonic treatment exhibited significant reduction in microbial count of the juice. The results obtained support the use of sonication to improve the quality of Chokanan mango juice along with safety standard as an alternative to thermal treatment.

  1. The Effect of Homogenization Heat Treatment on Thermal Expansion Coefficient and Dimensional Stability of Low Thermal Expansion Cast Irons

    NASA Astrophysics Data System (ADS)

    Chen, Li-Hao; Liu, Zong-Pei; Pan, Yung-Ning

    2016-08-01

    In this paper, the effect of homogenization heat treatment on α value [coefficient of thermal expansion (10-6 K-1)] of low thermal expansion cast irons was studied. In addition, constrained thermal cyclic tests were conducted to evaluate the dimensional stability of the low thermal expansion cast irons with various heat treatment conditions. The results indicate that when the alloys were homogenized at a relatively low temperature, e.g., 1023 K (750 °C), the elimination of Ni segregation was not very effective, but the C concentration in the matrix was moderately reduced. On the other hand, if the alloys were homogenized at a relatively high temperature, e.g., 1473 K (1200 °C), opposite results were obtained. Consequently, not much improvement (reduction) in α value was achieved in both cases. Therefore, a compound homogenization heat treatment procedure was designed, namely 1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ, in which a relatively high homogenization temperature of 1473 K (1200 °C) can effectively eliminate the Ni segregation, and a subsequent holding stage at 1023.15 K (750 °C) can reduce the C content in the matrix. As a result, very low α values of around (1 to 2) × 10-6 K-1 were obtained. Regarding the constrained thermal cyclic testing in 303 K to 473 K (30 °C to 200 °C), the results indicate that regardless of heat treatment condition, low thermal expansion cast irons exhibit exceedingly higher dimensional stability than either the regular ductile cast iron or the 304 stainless steel. Furthermore, positive correlation exists between the α 303.15 K to 473.15 K value and the amount of shape change after the thermal cyclic testing. Among the alloys investigated, Heat I-T3B (1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ) exhibits the lowest α 303 K to 473 K value (1.72 × 10-6 K-1), and hence has the least shape change (7.41 μm) or the best dimensional stability.

  2. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    SciTech Connect

    Kusworo, T. D. Aryanti, N. Firdaus, M. M. H.; Sukmawati, H.

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  3. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    NASA Astrophysics Data System (ADS)

    Kusworo, T. D.; Aryanti, N.; Firdaus, M. M. H.; Sukmawati, H.

    2015-12-01

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  4. Effect of experimental wood addition on hyporheic exchange and thermal dynamics in a losing meadow stream

    NASA Astrophysics Data System (ADS)

    Sawyer, Audrey H.; Cardenas, M. Bayani

    2012-10-01

    Stream restoration structures such as large wood can enhance shallow river-groundwater exchange, or hyporheic exchange, and alter temperature dynamics in restored reaches. We added and then removed channel-spanning logs in a second-order mountain meadow stream to test short-term impacts on hyporheic exchange, streambed temperatures, and surface water temperatures. Based on vertical seepage measurements and numerical simulations of hyporheic fluid and heat flow, large wood addition increased hyporheic exchange and altered streambed temperatures. In this losing stream, meter-scale hyporheic exchange cells formed beneath large wood. Upwelling pore water downstream of logs stabilized diel temperature cycles across <8% of the streambed, creating localized but potentially valuable thermal refuge. Exchange rates were <0.1% of channel discharge—too small to impact the range of diel temperature signals in surface water. However, the lag between downstream and upstream diel temperature signals was slightly greater with large wood, which may indicate that surface storage zones rather than hyporheic storage zones increased thermal retardation. Losing conditions limited the spatial extent and rates of hyporheic exchange near large wood. Impacts of large wood reintroduction on hyporheic exchange depend on ambient groundwater discharge or recharge, streambed permeability, channel Froude number, large wood blockage ratio, and large wood spacing. In many streams, large wood reintroduction may increase hyporheic habitat volume and complexity but may not increase exchange rates enough to alter surface water temperature or chemistry. Surface storage zones such as eddies and pools can still influence heat and solute retention in the channel.

  5. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis.

    PubMed

    Ometto, Francesco; Quiroga, Gerardo; Pšenička, Pavel; Whitton, Rachel; Jefferson, Bruce; Villa, Raffaella

    2014-11-15

    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatments on three microalgae species, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. The analysis of the composition of the soluble COD released and of the TEM images of the cells showed two main degradation actions associated with the processes: (1) cell wall damage with the release of intracellular AOM (thermal, thermal hydrolysis and ultrasound) and (2) degradation of the cell wall constituents with the release of intracellular AOM and the solubilisation of the cell wall biopolymers (enzymatic hydrolysis). As a result of this, enzymatic hydrolysis showed the greatest biogas yield increments (>270%) followed by thermal hydrolysis (60-100%) and ultrasounds (30-60%).

  6. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Interim status thermal treatment... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Thermal Treatment § 265.383 Interim status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of...

  7. Thermal stability improvements to the ESPaDOnS spectrograph with the addition of a thermal enclosure

    NASA Astrophysics Data System (ADS)

    Barrick, Gregory; Benedict, Tom; Moutou, Claire; Malo, Lison; White, John; Chene, André-Nicolas; Lundquist, Michael

    2016-08-01

    As part of GRACES (Gemini Remote Access to CFHT ESPaDOnS Spectrograph), a project to link the Gemini-North telescope to the ESPaDOnS (Echelle Polarimetric Device for the Observation of Stars) spectrograph at CFHT (Canada- France-Hawaii Telescope), the original thermal enclosure of the spectrograph needed to be modified. Although the modifications were slight, there was a significant possibility that the thermal stability of ESPaDOnS would be somewhat compromised. To eliminate this risk, a walk-in thermal enclosure was purchased and installed around the ESPaDOnS spectrograph as part of the GRACES project. The thermal impact of these modifications to the ESPaDOnS environment will be analyzed and the effect of the changes on the amplitude and behavior of the spectral drift for the ESPaDOnS and GRACES instruments will be examined. While the outer enclosure has reduced the extremes in thermal variation, this has not had a direct effect on the stability of the spectra.

  8. Pilot scale cooling tower fouled fill treatment: AFCATT (Anti-Fouling Chemical Additive Test Tower)

    SciTech Connect

    Newton, M.T.; Noble, R.T.; Philpot, E.F.; Eastis, J.H.

    1995-02-01

    Polyvinylchloride (PVC) film-type cellular fill is the fill of choice in replacing cement asbestor board fill in existing cooling towers and in new cooling towers because of its high thermal performance, ease of installation, and low initial cost. However, PVC fill has been found to foul quickly with biological and sediment material, significant reducing tower performance and the fill`s useful life. The Anti-Fouling Chemical Additives Test Tower (AFCATT) has been built to study accumulation rates of fouling deposits in corrugated PVC film fill and to study methods of cleaning and preventing the fouling deposits. This small mechanical draft cooling tower is located next to the Unit 4 natural draft cooling tower at Georgia Power Company`s Plant Bowen. The once-through mechanical draft tower receives hot water from the condenser and returns the cold water to the basin of the host tower. The pilot tower is divided into four chambers allowing for three different treatment programs and one control to be run simultaneously. PVC fill packs are suspended from load cells to allow the weight of the fill packs to be measured continuously. Six vendors participated in the summer 1993 test program. Each proposed different methods of cleaning the fouled fill and were given the opportunity to try their proposed method of fill cleaning. The success of each treatment program was determined by its ability to reduce fill pack weight (i.e., reduce fouling).

  9. Treatment of waste thermal waters by ozonation and nanofiltration.

    PubMed

    Kiss, Z L; Szép, A; Kertész, S; Hodúr, C; László, Z

    2013-01-01

    After their use for heating, e.g. in greenhouses, waste thermal waters may cause environmental problems due to their high contents of ions, and in some cases organic matter (associated with an oxygen demand) or toxic compounds. The aims of this work were to decrease the high organic content of waste thermal water by a combination of ozone treatment and membrane separation, and to investigate the accompanying membrane fouling. The results demonstrated that the chemical oxygen demand and the total organic content can be effectively decreased by a combination of ozone pretreatment and membrane filtration. Ozone treatment is more effective for phenol elimination than nanofiltration alone: with a combination of the two processes, 100% elimination efficiency can be achieved. The fouling index b proved to correlate well with the fouling and polarization layer resistances.

  10. Review of the integrated thermal and nonthermal treatment system studies

    SciTech Connect

    1996-10-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  11. Multiscale 3D manufacturing: combining thermal extrusion printing with additive and subtractive direct laser writing

    NASA Astrophysics Data System (ADS)

    Malinauskas, Mangirdas; Lukoševičius, Laurynas; MackevičiÅ«tÄ--, DovilÄ--; BalčiÅ«nas, Evaldas; RekštytÄ--, Sima; Paipulas, Domas

    2014-05-01

    A novel approach for efficient manufacturing of three-dimensional (3D) microstructured scaffolds designed for cell studies and tissue engineering applications is presented. A thermal extrusion (fused filament fabrication) 3D printer is employed as a simple and low-cost tabletop device enabling rapid materialization of CAD models out of biocompatible and biodegradable polylactic acid (PLA). Here it was used to produce cm- scale microporous (pore size varying from 100 to 400 µm) scaffolds. The fabricated objects were further laser processed in a direct laser writing (DLW) subtractive (ablation) and additive (lithography) manners. The first approach enables precise surface modification by creating micro-craters, holes and grooves thus increasing the surface roughness. An alternative way is to immerse the 3D PLA scaffold in a monomer solution and use the same DLW setup to refine its inner structure by fabricating dots, lines or a fine mesh on top as well as inside the pores of previously produced scaffolds. The DLW technique is empowered by ultrafast lasers - it allows 3D structuring with high spatial resolution in a great variety of photosensitive materials. Structure geometry on macro- to micro- scales could be finely tuned by combining these two fabrication techniques. Such artificial 3D substrates could be used for cell growth or as biocompatible-biodegradable implants. This combination of distinct material processing techniques enables rapid fabrication of diverse functional micro- featured and integrated devices. Hopefully, the proposed approach will find numerous applications in the field of ms, microfluidics, microoptics and many others.

  12. Comparative environmental analysis of waste brominated plastic thermal treatments

    SciTech Connect

    Bientinesi, M. Petarca, L.

    2009-03-15

    The aim of this research activity is to investigate the environmental impact of different thermal treatments of waste electric and electronic equipment (WEEE), applying a life cycle assessment methodology. Two scenarios were assessed, which both allow the recovery of bromine: (A) the co-combustion of WEEE and green waste in a municipal solid waste combustion plant, and (B) the staged-gasification of WEEE and combustion of produced syngas in gas turbines. Mass and energy balances on the two scenarios were set and the analysis of the life cycle inventory and the life cycle impact assessment were conducted. Two impact assessment methods (Ecoindicator 99 and Impact 2002+) were slightly modified and then used with both scenarios. The results showed that scenario B (staged-gasification) had a potentially smaller environmental impact than scenario A (co-combustion). In particular, the thermal treatment of staged-gasification was more energy efficient than co-combustion, and therefore scenario B performed better than scenario A, mainly in the impact categories of 'fossil fuels' and 'climate change'. Moreover, the results showed that scenario B allows a higher recovery of bromine than scenario A; however, Br recovery leads to environmental benefits for both the scenarios. Finally the study demonstrates that WEEE thermal treatment for energy and matter recovery is an eco-efficient way to dispose of this kind of waste.

  13. Recycling supercapacitors based on shredding and mild thermal treatment.

    PubMed

    Jiang, Guozhan; Pickering, Stephen J

    2016-02-01

    Supercapacitors are widely used in electric and hybrid vehicles, wind farm and low-power equipment due to their high specific power density and huge number of charge-discharge cycles. Waste supercapacitors should be recycled according to EU directive 2002/96/EC on waste electric and electronic equipment. This paper describes a recycling approach for end-of-life supercapacitors based on shredding and mild thermal treatment. At first, supercapacitors are shredded using a Retsch cutting mill. The shredded mixture is then undergone thermal treatment at 200°C to recycle the organic solvent contained in the activated carbon electrodes. After the thermal treatment, the mixture is roughly separated using a fluidized bed method to remove the aluminium foil particles and paper particles from the activated carbon particles, which is subsequently put into water for a wet shredding into fine particles that can be re-used. The recycled activated carbon has a BET surface area of up to 1200m(2)/g and the recycled acetonitrile has a high purity.

  14. Thermal Characteristics of Hyperaccumulator and Fate of Heavy Metals during Thermal Treatment of Sedum plumbizincicola.

    PubMed

    Zhong, Daoxu; Zhong, Zhaoping; Wu, Longhua; Xue, Hui; Song, Zuwei; Luo, Yongming

    2015-01-01

    Thermal treatment is one of the most promising disposal techniques for heavy metal- (HM)-enriched hyperaccumulators. However, the thermal characteristics and fate of HMs during thermal treatment of hyperaccumulator biomass need to be known in detail. A horizontal tube furnace was used to analyze the disposal process of hyperaccumulator biomass derived from a phyto-extracted field in which the soil was moderately contaminated with heavy metals. Different operational conditions regarding temperature and gas composition were tested. A thermo-dynamic analysis by advanced system for process engineering was performed to predict HM speciation during thermal disposal and SEM-EDS, XRD and sequential chemical extraction were used to characterize the heavy metals. The recovery of Zn, Pb and Cd in bottom ash decreased with increasing temperature but recovery increased in the fly ash. Recovery of Zn, Pb and Cd fluctuated with increasing air flow rate and the metal recovery rates were higher in the fly ash than the bottom ash. Most Cl, S, Fe, Al and SiO2 were found as alkali oxides, SO2, Fe2(SO4)3, iron oxide, Ca3Al2O6, K2SiO3 and SiO2 instead of reacting with HMs. Thus, the HMs were found to occur as the pure metals and their oxides during the combustion process and as the sulfides during the reducing process.

  15. Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of different fiber treatments, namely washing with water, alkali treatment (mercerization) and bleaching, on mechanical and thermal properties of starch/EVA/coir biocomposites were evaluated by tensile tests and thermogravimetry (TG), respectively. Additionally, the fiber/matrix interfac...

  16. 40 CFR 141.711 - Filtered system additional Cryptosporidium treatment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced... following filtration treatment in full compliance with subparts H, P, and T of this part (as applicable), then the additional Cryptosporidium treatment requirements are . . . Conventional filtration...

  17. Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment

    SciTech Connect

    Chen, C.C.; Lee, W.J.; Shih, S.I.; Mou, J.L.

    2009-07-01

    Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.

  18. Thermal hydrolysis for sewage treatment: A critical review.

    PubMed

    Barber, W P F

    2016-11-01

    A review concerning the development and applicability of sewage sludge thermal hydrolysis especially prior to anaerobic digestion is presented. Thermal hydrolysis has proven to be a successful approach to making sewage sludge more amenable to anaerobic digestion. Currently there are 75 facilities either in operation or planning, spanning several continents with the first installation in 1995. The reported benefits of thermal hydrolysis relate to: increased digestion loading rate due to altered rheological properties, improved biodegradation of (especially activated) sludge and enhanced dewaterability. In spite of its relative maturity, there has been no attempt to perform a critical review of the pertinent literature relating to the technology. Closer look at the literature reveals complications with comparing both experimental- and full-scale results due to differences in experimental set-up and capability, and also site-specific conditions at full-scale. Furthermore, it appears that understanding of thermodynamic and rheological properties of sludge is key to optimizing the process, however these parameters are largely overlooked by the literature. This paper aims to bridge these complexities in order to elucidate the benefits of thermal hydrolysis for sewage treatment, and makes recommendations for further development and research.

  19. The 1996 meeting of the national technical workgroup on mixed waste thermal treatment

    SciTech Connect

    1996-12-31

    The National Technical Workgroup on Mixed Waste Thermal Treatment held its annual meeting in Atlanta Georgia on March 12-14, 1996. The National Technical Workgroup (NTW) and this meeting were sponsored under an interagency agreement between EPA and DOE. The 1996 Annual Meeting was hosted by US DOE Oak Ridge Operations in conjunction with Lockheed Martin Energy Systems - Center for Waste Management. A new feature of the annual meeting was the Permit Writer Panel Session which provided an opportunity for the state and federal permit writers to discuss issues and potential solutions to permitting mixed waste treatment systems. In addition, there was substantial discussion on the impacts of the Waste Combustion Performance Standards on mixed waste thermal treatment which are expected to proposed very soon. The 1996 meeting also focussed on two draft technical resource documents produced by NTW on Waste Analysis Plans and Compliance Test Procedures. Issues discussed included public involvement, waste characterization, and emission issues.

  20. Integrated thermal treatment system study: Phase 1 results. Volume 1

    SciTech Connect

    Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

    1994-07-01

    An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked.

  1. Treatment of bone tumours by radiofrequency thermal ablation.

    PubMed

    Santiago, Fernando Ruiz; Del Mar Castellano García, María; Montes, Jose Luis Martínez; García, Manuel Ruiz; Fernández, Juan Miguel Tristán

    2009-03-01

    Radiofrequency thermal ablation (RFTA) is considered the treatment of choice for osteoid osteomas, in which it has long been safely used. Other benign conditions (chondroblastoma, osteoblastoma, giant cell tumour, etc.) can also be treated by this technique, which is less invasive than traditional surgical procedures. RFTA ablation is also an option for the palliation of localized, painful osteolytic metastatic and myeloma lesions. The reduction in pain improves the quality of life of patients with cancer, who often have multiple morbidities and a limited life expectancy. In some cases, these patients are treated with RFTA because conventional therapies (surgery, radiotherapy, chemotherapy, etc.) have been exhausted. In other cases, it is combined with conventional therapies or other percutaneous treatments, e.g., cementoplasty, offering faster pain relief and bone strengthening. A multidisciplinary approach to the management of these patients is recommended to select the optimal treatment, including orthopaedic surgeons, neurosurgeons, medical and radiation oncologists and interventional radiologists.

  2. Optically active surfaces formed by ion implantation and thermal treatment

    SciTech Connect

    Gea, L.A.; Boatner, L.A.; Evans, H.M.; Zuhr, R.

    1996-08-01

    Embedded VO{sub 2} precipitates have been formed in single-crystal sapphire by the ion co-implantation of vanadium and oxygen and subsequent thermal annealing. The embedded VO{sub 2} particles have been shown to exhibit an optical switching behavior that is comparable to that of continuous thin films. In this work, the mechanisms of formation of these optically active particles are investigated. It is shown that precipitation of the vanadium dioxide phase is favored when the thermal treatment is performed on an ion-damaged but still crystalline (rather than amorphized) Al{sub 2}O{sub 3} substrate. The best optical switching behavior is observed in this case, and this behavior is apparently correlated with a more-favorable dispersion of VO{sub 2} small particles inside the matrix.

  3. Additional thermal fatigue data on nickel- and cobalt-base superalloys, part 1

    NASA Technical Reports Server (NTRS)

    Howes, M. A. H.

    1973-01-01

    The fluidized bed technique was used to measure the relative thermal fatigue resistance of twenty-one superalloys. Among the thirty-six variations of composition, solidification method, and surface protection the cycles to cracking differed by two to three orders of magnitude. Some alloys suffered serious weight losses and oxidation. Thermal fatigue data, oxidation, and dimensional changes are reported. The types of superalloys are identified.

  4. Thermal treatments modulate bacterial adhesion to dental enamel.

    PubMed

    Hu, X L; Ho, B; Lim, C T; Hsu, C S

    2011-12-01

    Numerous studies have demonstrated the effects of laser-induced heat on demineralization of enamel; however, no studies have investigated the link between heat/laser-induced changes in physicochemical properties and bacterial adhesion. In this study, we investigated the effects of thermal treatment on surface properties of enamel such as hydrophobicity and zeta potential. Bacterial adhesion to treated surfaces was characterized by confocal laser scanning microscopy, and adhesion force was quantified by atomic force microscopy. The hydrophobicity of enamel increased after heating (p < 0.05), and the zeta potential of heated enamel became more negative than that of the control (p < 0.01). Streptococcus oralis and S. mitis were more hydrophilic than S. sanguis, with more negative zeta potential (all p < 0.01). S. mitis and S. oralis occupied significantly less area on enamel after being heated (p < 0.05). Heating reduced the adhesion force of both S. mitis and S. oralis to enamel with or without saliva coating. Reduction of adhesion force was statistically significant for S. mitis (p < 0.01), whereas that of S. oralis was not statistically significant (p > 0.05). Heating did not affect the adhesion of S. sanguis with or without saliva coating. In conclusion, thermal treatment and photothermal/laser treatments may modulate the physicochemical properties of enamel, preventing the adhesion of some bacterial species.

  5. Effects of thermal treatments on donkey milk nutritional characteristics.

    PubMed

    Polidori, Paolo; Vincenzetti, Silvia

    2013-12-01

    Human breast milk is the best nutritional support to ensure right development and influence immune status of the newborn infant. However, when it is not possible to breast feed it may be necessary to use commercial infant formulas that mimic, where possible, the levels and types of nutrients present in human milk. Despite this, some formula-fed infants develop allergy and/or atopic disease compared to breast-fed infants. Most infants with cow's milk protein allergy (CMPA) develop symptoms before 1 month of age, often within 1 week after introduction of cow's milk-based formula. Donkey milk may be considered a good substitute for cow's milk in feeding children with CMPA since its composition is very similar to human milk. An in-depth analysis of the donkey milk protein profile has been performed in this study. The interest was focused on the milk proteins considered safe for the prevention and treatment of various disorders in human. Since donkey milk supply is related to its seasonal availability during the year, in this study were evaluated the effects of different thermal treatments on the protein fractions of donkey milk. The results obtained in fresh, frozen, powdered and lyophilized donkey milk showed different values in total proteins, caseins, whey proteins and lysozyme content. This study demonstrated the possibility of using lyophilization in order to maintain the nutritional characteristics of donkey milk. The article presents some promising patents on the effects of thermal treatments on donkey milk nutritional characteristics.

  6. Fluorescence sensor array for identification of commercial milk samples according to their thermal treatments.

    PubMed

    Mungkarndee, Radeemada; Techakriengkrai, Ittipon; Tumcharern, Gamolwan; Sukwattanasinitt, Mongkol

    2016-04-15

    Identification of processed milk is of importance for commercial and legal concerns. The fluorescence response patterns induced by fluorophore/protein interactions allow a possible discrimination of processed milk samples corresponding to their thermal treatment. The fluorescence responses of 4 fluorophores upon addition of commercial milk samples in 96-well plate are measured in the range of 400-600 nm using the excitation wavelength at 375 nm. The pattern recognition of the 53,126 fluorescence responses (4 fluorophores×41 wavelengths×4 thermally processed milks×3 brands×3 lots×3 bottles×3 repeats) are analyzed by multivariate statistical methods. Linear discriminant analysis (LDA) successfully recognizes the milk samples according to their thermal processing, i.e. pasteurized milk, sterilized milk, UHT fresh milk and recombined milk (UHT milk having milk powder), with 100% classification accuracy in a cross validation using a leave-one-out technique.

  7. Inactivation of Lactobacillus helveticus bacteriophages by thermal and chemical treatments.

    PubMed

    Quiberoni, A; Suárez, V B; Reinheimer, J A

    1999-08-01

    The effect of several biocides and thermal treatments on the viability of four Lactobacillus helveticus phages was investigated. Times to achieve 99% inactivation of phages at 63 degrees C and 72 degrees C in three suspension media were calculated. The three suspension media were tris magnesium gelatin buffer (10 mM Tris-HCl, 10 mM MgSO4, and 0.1% wt/vol gelatin), reconstituted skim milk sterile reconstituted commercial nonfat dry skim milk, and Man Rogosa Sharpe broth. The thermal resistance depended on the phage considered, but a treatment of 5 min at 90 degrees C produced a total inactivation of high titer suspensions of all phages studied. The results obtained for the three tested media did not allow us to establish a clear difference among them, since some phages were more heat resistant in Man Rogosa Sharpe broth and others in tris magnesium gelatin buffer. From the investigation on biocides, we established that sodium hypochlorite at a concentration of 100 ppm was very effective in inactivating phages. The suitability of ethanol 75%, commonly used to disinfect utensils and laboratory equipment, was confirmed. Isopropanol turned out to be, in general, less effective than ethanol at the assayed concentrations. In contrast, peracetic acid (0.15%) was found to be an effective biocide for the complete inactivation of all phages studied after 5 min of exposure. The results allowed us to establish a basis for adopting the most effective thermal and chemical treatments for inactivating phages in dairy plant and laboratory environments.

  8. Regulatory framework for the thermal treatment of various waste streams.

    PubMed

    Lee, C C; Huffman, G L; Mao, Y L

    2000-08-28

    Since 1990, regulations and standards have changed considerably. This article is an update of the regulatory requirements for the thermal treatment of various waste streams. The waste categories covered, along with the laws they are governed under, include: Hazardous waste under Subtitle C of the Resource Conservation and Recovery Act (RCRA) and under the Clean Air Act; municipal solid waste under Subtitle D of the RCRA; medical waste under Subtitle J of the RCRA; Superfund waste under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA); toxic waste under the Toxic Substances Control Act (TSCA); and sludge waste under the Clean Water Act (CWA).

  9. Non-thermal Plasma for VOC Treatment in Flue Gases

    NASA Astrophysics Data System (ADS)

    Ikaunieks, Janis; Mezmale, Liga; Zandeckis, Aivars; Pubule, Jelena; Blumberga, Andra; Veidenbergs, Ivars

    2011-01-01

    The paper discusses non-thermal plasmas, their generation and characteristics, formation mechanisms of ozone and the treatment of volatile organic compounds (VOCs). In the experimental part, undecane (C11H24 as model VOCs) was treated with assistance of low temperature plasma at an atmospheric pressure which was generated in the so-called stack reactor. The gas composition was 13% of oxygen in nitrogen with impurities of carbon dioxide, carbon monoxide and undecane. The formation of by-products, as well as the removal efficiency, were investigated.

  10. Thermal Treatment Improvement of CuSbS2 Absorbers

    SciTech Connect

    de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; Dippo, Patricia C.; Mascaro, Lucia H.; Zakutayev, Andriy

    2015-06-14

    Thermal treatment in Sb2S3 vapor was used to improve the quality of CuSbS2 thin films, a promising non-toxic and earth-abundant absorber. A change in the CuSbS2 crystallographic texture and a decrease in the lattice stress were observed, as well as increases in the grain size, photoluminescence intensity and photoconductivity. To eliminate the influence of the possible Sb2S3 rich surface layer on photovoltaic performance, a selective chemical etching with KOH was developed.

  11. Development of the laser absorption radiation thermometry technique to measure thermal diffusivity in addition to temperature

    NASA Astrophysics Data System (ADS)

    Levick, Andrew; Lobato, Killian; Edwards, Gordon

    2003-01-01

    A comparative technique based on photothermal radiometry has been developed to measure thermal diffusivity of semi-infinite targets with arbitrary geometry. The technique exploits the principle that the frequency response of the temperature modulation induced by a periodic modulated heating source (in this case a laser spot) scales with thermal diffusivity. To demonstrate this technique, a photothermal radiometer has been developed, which detects modulated thermal radiance at a wavelength of 2 μm due to a small temperature modulation induced on the target surface by a modulated erbium fiber laser of power 1 W. Two frequency responses were measured for platinum and oxidized Inconel 600 targets (the frequency response is a scan of the amplitude of the modulated thermal radiance over laser modulation frequency). Scaling the two responses with respect to frequency gives a ratio of thermal diffusivities Dplatinum/DInconel of 4.45(33) which compares with a literature value of 4.46(50). The aim is to combine this technique with laser absorption radiation thermometry to produce multithermal property instrument for measuring "industrial" targets.

  12. Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols

    SciTech Connect

    Koroesi, Laszlo; Papp, Szilvia; Hornok, Viktoria; Oszko, Albert; Petrik, Peter; Patko, Daniel; Horvath, Robert; Dekany, Imre

    2012-08-15

    Titanate nanotubes were synthesized from TiO{sub 2} in alkaline medium by a conventional hydrothermal method (150 Degree-Sign C, 4.7 bar). To obtain hydrogen titanates, the as-prepared sodium titanates were treated with either HCl or H{sub 3}PO{sub 4} aqueous solutions. A simple synthesis procedure was devised for stable titanate nanotube sols without using any additives. These highly stable ethanolic sols can readily be used to prepare transparent titanate nanotube thin films of high quality. The resulting samples were studied by X-ray diffraction, N{sub 2}-sorption measurements, Raman spectroscopy, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The comparative results of using two kinds of acids shed light on the superior thermal stability of the H{sub 3}PO{sub 4}-treated titanate nanotubes (P-TNTs). X-ray photoelectron spectroscopy revealed that P-TNTs contains P in the near-surface region and the thermal stability was enhanced even at a low ({approx}0.5 at%) concentration of P. After calcination at 500 Degree-Sign C, the specific surface areas of the HCl- and H{sub 3}PO{sub 4}-treated samples were 153 and 244 m{sup 2} g{sup -1}, respectively. The effects of H{sub 3}PO{sub 4} treatment on the structure, morphology and porosity of titanate nanotubes are discussed. - Graphical Abstract: TEM picture (left) shows P-TNTs with diameters about 5-6 nm. Inset shows a stable titanate nanotube sol illuminated by a 532 nm laser beam. Due to the presence of the nanoparticles the way of the light is visible in the sol. Cross sectional SEM picture (right) as well as ellipsometry revealed the formation of optical quality P-TNT films with thicknesses below 50 nm. Highlights: Black-Right-Pointing-Pointer H{sub 3}PO{sub 4} treatment led to TNTs with high surface area even after calcination at 500 Degree-Sign C. Black-Right-Pointing-Pointer H{sub 3}PO{sub 4}-treated TNTs preserved their nanotube morphology up to 500

  13. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    DOEpatents

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  14. Flame retardancy and thermal stability of polyurethane foam composites containing carbon additives

    NASA Astrophysics Data System (ADS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Lee, Geesoo; Han, San Wook; Kim, Hyunchul; Lee, Ki-Dong; Han, Joo-Kwon

    2016-03-01

    Polyurethane (PU) is an important class of polymers that have wide application in a number of different industrial sectors. The goal of this work was the synthesis of flame-retarded PU foam with expandable graphite (EG) or commercial graphene. The flame retardancy and thermal stability of the foams has been studied through cone calorimeter analysis, the limited oxygen index and thermal conductivity. The presence of expandable graphite brings an improvement in fire behavior. In particular, the limited oxygen index increases in a linear way and the highest limited oxygen index values are obtained for EG-PU foams. The results from the cone calorimeter are in agreement with those of oxygen index; EG filled foams show a considerable decrease of maximum-heat release rate (M-HRR) with respect to unfilled foams. The results of thermal conductivity show that an increase in expandable graphite amount in PU foams lead to an increased conductivity.

  15. Installation for the thermal treatment of pulverant mineral products

    SciTech Connect

    Lebesque, J.

    1985-06-11

    An installation for the thermal treatment of a pulverant mineral product by gases has a support frame at a first level, a furnace for the thermal treatment of the pulverant mineral product in suspension in hot gases generated by the combustion of air and a fuel, two groups of series-connected cyclones connected to the furnace, one of the groups of cyclones being arranged upstream of the furnace and the other group of cyclones being arranged downstream of the furnace, and conduits connecting the cyclones to each other and to the furnace so that exhaust gases from the furnace pass successively through all the cyclones of the one group while a current of air passes through all the cyclones of the other group before entering the furnace to serve as the combustion air, the exhaust gases heating the product before it enters the furnace and the air current cooling the treated product. The furnace and two of the cyclones located, respectively, immediately upstream and immediately downstream of the furnace are mounted on the support frame at the first level. A superstructure is affixed to the support frame and supports the remaining cyclones at a second level higher than the first level.

  16. Nitrogen oxides and methane treatment by non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Alva, E.; Pacheco, M.; Colín, A.; Sánchez, V.; Pacheco, J.; Valdivia, R.; Soria, G.

    2015-03-01

    Non thermal plasma was used to treat nitrogen oxides (NOx) and methane (CH4), since they are important constituents of hydrocarbon combustion emissions processes and, both gases, play a key role in the formation of tropospheric ozone. These gases are involved in environmental problems like acid rain and some diseases such as bronchitis and pneumonia. In the case of methane is widely known its importance in the global climate change, and currently accounts for 30% of global warming. There is a growing concern for methane leaks, associated with a rapid expansion of unconventional oil and gas extraction techniques as well as a large-scale methane release from Arctic because of ice melting and the subsequent methane production of decaying organic matter. Therefore, methane mitigation is a key to avoid dangerous levels of global warming. The research, here reported, deals about the generation of non-thermal plasma with a double dielectric barrier (2DBD) at atmospheric pressure with alternating current (AC) for NOx and CH4 treatment. The degradation efficiencies and their respective power consumption for different reactor configurations (cylindrical and planar) are also reported. Qualitative and quantitative analysis of gases degradation are reported before and after treatment with cold plasma. Experimental and theoretical results are compared obtaining good removal efficiencies, superior to 90% and to 20% respectively for NOx and CH4.

  17. Speciation Dynamics of Phosphorus during (Hydro)Thermal Treatments of Sewage Sludge.

    PubMed

    Huang, Rixiang; Tang, Yuanzhi

    2015-12-15

    (Hydro)thermal treatments of sewage sludge from wastewater treatment process can significantly reduce waste volume and transform sludge into valuable products such as pyrochar and hydrochar. Given the global concern with phosphorus (P) resource depletion, P recycling/reclamation from or direct soil application of the derived chars can be potential P recycling practices. In order to evaluate P recyclability as well as the selection and optimization of treatment techniques, it is critical to understand the effects of different treatment techniques and conditions on P speciation and distribution. In the present study, we systematically characterized P speciation in chars derived from thermal (i.e., pyrolysis) and hydrothermal treatments of municipal sewage sludge using complementary chemical extraction and nuclear magnetic resonance (NMR) spectroscopy methods. P species in the raw activated sludge was dominated by orthophosphate and long-chain polyphosphates, whereas increased amounts of pyrophosphate and short-chain polyphosphates formed after pyrolysis at 250-600 °C. In contrast, hydrothermal treatments resulted in the production of only inorganic orthophosphate in the hydrochar. In addition to the change of molecular speciation, thermal treatments also altered the physical state and extractability of different P species in the pyrochars from pyrolysis, with both total P and polyphosphate being less extractable with increasing pyrolysis temperature. Results from this study suggest that P speciation and availability in sludge-derived chars are tunable by varying treatment techniques and conditions, and provide fundamental knowledge basis for the design and selection of waste management strategies for better nutrient (re)cycling and reclamation.

  18. Percutaneous treatment of bone tumors by radiofrequency thermal ablation.

    PubMed

    Ruiz Santiago, Fernando; Castellano García, María del Mar; Guzmán Álvarez, Luis; Martínez Montes, Jose Luis; Ruiz García, Manuel; Tristán Fernández, Juan Miguel

    2011-01-01

    We present our experience of the treatment of bone tumors with radiofrequency thermal ablation (RFTA). Over the past 4 years, we have treated 26 cases (22 benign and 4 malignant) using CT-guided RFTA. RFTA was the sole treatment in 19 cases and was combined with percutaneous cementation during the same session in the remaining seven cases. Our approach to the tumors was simplified, using a single point of entrance for both RFTA and percutaneous osteoplasty. In the benign cases, clinical success was defined as resolution of pain within 1 month of the procedure and no recurrence during the follow-up period. It was achieved in 19 out of the 21 patients in which curative treatment was attempted. The two non-resolved cases were a patient with osteoid osteoma who developed a symptomatic bone infarct after a symptom-free period of 2 months and another with femoral diaphysis osteoblastoma who suffered a pathological fracture after 8 months without symptoms. The procedure was considered clinically successful in the five cases (4 malign and 1 benign) in which palliative treatment was attempted, because there was a mean (±SD) reduction in visual analogue scale (VAS) pain score from 9.0±0.4 before the procedure to <4 during the follow-up period.

  19. Magnetic nanoparticles for thermal lysis and application in cancer treatment

    NASA Astrophysics Data System (ADS)

    Das, Sumana; Javvaji, Brahmanandam; Veerla, Sarath Chandra; Roy Mahapatra, D.

    2016-03-01

    Chemotherapy and radiation-therapy are conventional treatment procedure of cancer. Though radiation therapy is very common practice for cancer treatment, it has limitations including incomplete and non specific destruction. Heating characteristics of magnetic nanoparticle (MNP) is modelled using molecular dynamics simulation setup. This model would give an understanding for the treatment of cancer cell through MNP associated radiation-therapy. In this paper, alternating magnetic field driven heat generation of MNP is studied using classical molecular dynamics. Temperature is measured as an ensemble average of velocity of the atoms. Temperature stabilization is achieved. Under this simulation setting with certain parameters, 45°C temperature was obtained in our simulations. Simulation data would be helpful for experimental analysis to treat cancerous cell in presence of MNP under exposure to radiofrequency. The in vitro thermal characteristics of magnetite nanoparticles using magnetic coil of various frequencies (5, 7.5, 10 and 15 kHz), the saturation temperature was found at 0.5 mg/mL concentration. At frequency 50 kHz the live/dead and MTT assay was performed on magnetite nanoparticles using MC3T3 cells for 10 min duration. Low radio frequency (RF) radiation induced localized heat into the metallic nanoparticles which is clearly understood using the molecular dynamics simulation setup. Heating of nanoparticle trigger the killing of the tumor cells, acts as a local therapy, as it generates less side effects in comparison to other treatments like chemotherapy and radiation therapy.

  20. Effect of alkali addition on DC conductivity and thermal properties of vanadium-bismo-borate glasses

    SciTech Connect

    Khasa, S. Dahiya, M. S.; Agarwal, A.

    2014-04-24

    The DC Conductivity and Differential Thermal Analysis of glasses with composition (30−x)Li{sub 2}O⋅xV{sub 2}O{sub 5}⋅20Bi{sub 2}O{sub 3}⋅50B{sub 2}O{sub 3}(x=15, 10, 5) has been carried out in order to study the effect of replacing the Transition Metal Oxide (TMO) with alkali oxide. A significant increase in the DC conductivity has been observed with increase in alkali content. Again the thermal measurements have shown the decrease in both glass transition temperature (T{sub g}) and crystallization temperature (T{sub x}). The Glass Stability (GS) and Glass Forming Ability (GFA) have also been calculated and these also were found to decrease with increase in alkali oxide content at the cost of TMO.

  1. Influence of collagen addition on the thermal and morphological properties of chitosan/xanthan hydrogels.

    PubMed

    Horn, Marilia M; Martins, Virginia C A; Plepis, Ana Maria de Guzzi

    2015-09-01

    This study investigates the collagen influence on thermal and morphological characteristics of chitosan/xanthan hydrogels for potential tissue engineering applications. Anionic collagen was prepared by selective hydrolysis of type I collagen found in bovine tendons. Chitosan was obtained from the partial deacetylation of squid pen β-chitin and xanthan was acquired from Fluka. The hydrogels were obtained in different ratios and were characterized by thermal and morphological analysis. FT-IR suggested only electrostatic interactions between NH3(+) groups of chitosan and COO(-) groups of xanthan and collagen. Thermogravimetric curves showed that hydrogels contain a great amount of water (above 98%) and the presence of collagen does not change this characteristic. Freezing-bound water transition in DSC curves was shifted to higher values due to the increase of water/polymer interaction, mainly when different ratios of chitosan and xanthan were used. SEM images showed sheet-form structures with the presence of collagen promoting an increase in pore size.

  2. Thermal stability of kudzu root (Pueraria Radix) isoflavones as additives to beef patties.

    PubMed

    Kumari, S; Raines, J M; Martin, J M; Rodriguez, J M

    2015-03-01

    Kudzu root, Pueraria radix, extracts are a rich source of isoflavones. This study investigates the thermal stability of Pueraria radix extracts as a natural nutraceutical supplement in beef patties. The extract contained puerarin, diadzin, genistin, ononin, daidzein, glycitein, calycosin, genistein, formononetin and biochanin A; however, puerarin, daidzein and glycitein were the main components. The isoflavones concentrations in the spiked beef patties with kudzu root extracts were unaffected by cooking.

  3. Additional thermal fatigue data on nickel and cobalt-base superalloys

    NASA Technical Reports Server (NTRS)

    Howes, M. A. H.

    1973-01-01

    The fluidized bed technique was used to measure the relative thermal fatigue resistance of 21 superalloys: B1900, B1900 DID, IN-100, MAR-M 200, Udimet 700 wrought and cast, NX-188, WAZ-20, TAZ-8A, M22, IN 713C, IN 738, IN 162, MAR-M 509, Rene 80, RBH, NASA VI A, TD-NiCr, MAR-M 302, WI-52, and X-40. IN-100, MAR-M 200, NX-188, WAZ-20 and TAZ-8A were also tested in the directionally solidified form. B1900, B1900 DID, IN-100, MAR-M200, Udimet 700, NX-188, WAZ-20 and TAZ-8A were tested with surface protection. Among the 36 variations of composition, solidification method, and surface protection the cycles to cracking differed by 2 to 3 orders of magnitude. Some alloys suffered serious weight losses and oxidation. Previous fluidized bed thermal fatigue data on some of these alloys were reported in N71-10027. Thermal fatigue data, oxidation, and dimensional changes are reported in N73-30507. Metallographic and hardness data are given in this report.

  4. Thermal treatment of medical waste in a rotary kiln.

    PubMed

    Bujak, J

    2015-10-01

    This paper presents the results of a study of an experimental system with thermal treatment (incineration) of medical waste conducted at a large complex of hospital facilities. The studies were conducted for a period of one month. The processing system was analysed in terms of the energy, environmental and economic aspects. A rotary combustion chamber was designed and built with the strictly assumed length to inner diameter ratio of 4:1. In terms of energy, the temperature distribution was tested in the rotary kiln, secondary combustion (afterburner) chamber and heat recovery system. Calorific value of medical waste was 25.0 MJ/kg and the thermal efficiency of the entire system equalled 66.8%. Next, measurements of the pollutant emissions into the atmosphere were performed. Due to the nature of the disposed waste, particular attention was paid to the one-minute average values of carbon oxide and volatile organic compounds as well as hydrochloride, hydrogen fluoride, sulphur dioxide and total dust. Maximum content of non-oxidized organic compounds in slag and bottom ash were also verified during the analyses. The best rotary speed for the combustion chamber was selected to obtain proper afterburning of the bottom slag. Total organic carbon content was 2.9%. The test results were used to determine the basic economic indicators of the test system for evaluating the profitability of its construction. Simple payback time (SPB) for capital expenditures on the implementation of the project was 4 years.

  5. Fluoride glass starting materials - Characterization and effects of thermal treatment

    NASA Technical Reports Server (NTRS)

    Chen, William; Dunn, Bruce; Shlichta, Paul; Neilson, George F.; Weinberg, Michael C.

    1987-01-01

    The production of heavy metal fluoride (HMF) glasses, and the effects of thermal treatments on the HMF glasses are investigated. ZrF4, BaF2, AlF3, LaF3, and NaF were utilized in the synthesis of zirconium-barium-lanthanum-aluminum-sodium fluoride glass. The purity of these starting materials, in particular ZrF4, is evaluated using XRD analysis. The data reveal that low temperature heating of ZrF4-H2O is effective in removing the water of hydration, but causes the production of ZrF4 and oxyfluorides; however, dehydration followed by sublimation results in the production of monoclinic ZrFe without water or oxyfluoride contaminants.

  6. Mechanisms of boron fiber strengthening by thermal treatment

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1979-01-01

    The fracture strain for boron on tungsten fibers was studied for improvement by heat treatment under vacuum or argon environments. The mechanical basis for this improvement is thermally-induced axial contraction of the entire fiber, whereby strength-controlling core flaws are compressed and fiber fracture strain increased by the value of the contraction strain. By highly sensitive measurements of fiber density and volume, the physical mechanism responsible for contraction under both environments was identified as boron atom diffusion out of the fiber sheath. The fiber contracts because the average volume of the resulting microvoid was determined to be only 0.26 plus or minus 0.09 the average atomic volume of the removed atom. The basic and practical implications of these results are discussed with particular emphasis on the theory, use, and limitations of heat-induced contraction as a simple cost-effective secondary processing method.

  7. Effects of Thermal Treatment on the Dynamic Mechanical Properties of Coal Measures Sandstone

    NASA Astrophysics Data System (ADS)

    Li, Ming; Mao, Xianbiao; Cao, Lili; Pu, Hai; Mao, Rongrong; Lu, Aihong

    2016-09-01

    Many projects such as the underground gasification of coal seams and coal-bed methane mining (exploitation) widely involve the dynamic problems of coal measures sandstone achieved via thermal treatment. This study examines the dynamic mechanical properties of coal measures sandstone after thermal treatment by means of an MTS653 high-temperature furnace and Split Hopkinson pressure bar test system. Experimental results indicate that 500 °C is a transition point for the dynamic mechanical parameters of coal measures sandstone. The dynamic elastic modulus and peak strength increase linearly from 25 to 500 °C while the dynamic peak strain decreases linearly over the same temperature range. The dynamic elastic modulus and peak strength drop quickly from 500 to 800 °C, with a significant increase in the dynamic peak strain over the same temperature range. The rock mechanics are closely linked to material composition and mesoscopic structure. Analysis by X-ray diffraction and scanning electron microscopy indicate that the molecules inside the sandstone increase in density due to the thermal expansion of the material particles, which effectively improves the deformation resistance and carrying capacity of the sandstone and reduces the likelihood of axial deformation. With heat treatment that exceeds 500 °C, the dynamic mechanical properties rapidly weaken due to the decomposition of kaolinite; additionally, hot cracking of the mineral particles within the materials arises from coal sandstone internal porosity, and other defects gradually appear.

  8. Behavior of Fe-ODS Alloys After Thermal Aging Treatments

    NASA Astrophysics Data System (ADS)

    Serrano Garcia, Marta; Hernández-Mayoral, Mercedes; Esparraguera, Elvira Oñorbe

    2016-06-01

    Oxide dispersion alloys are one of the candidates as cladding materials for Gen IV fast reactors, due to their high strength at high temperature, good creep properties, and swelling resistance. This good performance is mainly due to a fine dispersion of nano-oxide particles on the microstructure and to non-grained structure. The microstructural stability and the mechanical properties of a Fe-ODS alloy are studied after different thermal aging experiments at 973 K (700 °C), 5000 hours; 973 K (700 °C), 10,000 hours; and 1123 K (850 °C), 10,000 hours. SEM/EBSD and TEM together with tensile and impact tests on the as-received and thermally aged material have been carried out. In general, for all the tested conditions, a slight softening effect is observed attributed to the changes in the grain structure as well as to the changes in the amount and size of nano-oxide particles. In addition, the aged material shows a lower impact USE value while the DBTT is maintained.

  9. Minimally Invasive Thermal Therapy for Cancer Treatment by Using Thin Coaxial Antennas

    DTIC Science & Technology

    2001-10-25

    Therapy Hyperthermia is one of the modalities for cancer treatment , utilizing the difference of the thermal sensitivity between tumor and normal...structure of the coaxial-slot antenna. MINIMALLY INVASIVE THERMAL THERAPY FOR CANCER TREATMENT BY USING THIN COAXIAL ANTENNAS K. Ito1, K. Saito1, T...Minimally Invasive Thermal Therapy for Cancer Treatment by Using Thin Coaxial Antennas Contract Number Grant Number Program Element Number Author(s

  10. Additivity in both thermodynamic stability and thermal transition temperature for rubredoxin chimeras via hybrid native partitioning.

    PubMed

    LeMaster, David M; Hernández, Griselda

    2005-08-01

    Given any operational definition of pairwise interaction, the set of residues that differ between two structurally homologous proteins can be uniquely partitioned into subsets of clusters for which no such interactions occur between clusters. Although hybrid protein sequences that preserve such clustering are consistent with tertiary structures composed of only parental native-like interactions, the stability of such predicted structures will depend upon the physical robustness of the assumed interaction potential. A simple distance cutoff criterion was applied to the most thermostable protein known to predict such a seven-residue cluster in the metal binding site region of Pyrococcus furiosus rubredoxin and a mesophile homolog. Both conformational stability and thermal transition temperature measurements demonstrate that 39% of the differential stability arises from these seven residues.

  11. Treatment and recycling of incinerated ash using thermal plasma technology.

    PubMed

    Cheng, T W; Chu, J P; Tzeng, C C; Chen, Y S

    2002-01-01

    To treat incinerated ash is an important issue in Taiwan. Incinerated ashes contain a considerable amount of hazardous materials such as dioxins and heavy metals. If these hazardous materials are improperly treated or disposed of, they shall cause detrimental secondary contamination. Thermal plasma vitrification is a robust technology to treat and recycle the ash residues. Under the high temperature plasma environment, incinerated ashes are vitrified into benign slag with large volume reduction and extreme detoxification. Several one-step heat treatment processes are carried out at four temperatures (i.e. 850, 950, 1,050 and 1,150 degrees C) to obtain various "microstructure materials". The major phase to form these materials is a solid solution of gehlenite (Ca2Al2SiO7) and åkermanite (Ca2MgSi2O7) belonging to the melilite group. The physical and mechanical properties of the microstructure materials are improved by using one-step post-heat treatment process after plasma vitrification. These microstructure materials with good quality have great potential to serve as a viable alternative for construction applications.

  12. Thermal acclimation and thyroxine treatment modify the electric organ discharge frequency in an electric fish, Apteronotus leptorhynchus.

    PubMed

    Dunlap, K D; Ragazzi, M A

    2015-11-01

    In ectotherms, the rate of many neural processes is determined externally, by the influence of the thermal environment on body temperature, and internally, by hormones secreted from the thyroid gland. Through thermal acclimation, animals can buffer the influence of the thermal environment by adjusting their physiology to stabilize certain processes in the face of environmental temperature change. The electric organ discharge (EOD) used by weak electric fish for electrocommunication and electrolocation is highly temperature sensitive. In some temperate species that naturally experience large seasonal fluctuations in environmental temperature, the thermal sensitivity (Q10) of the EOD shifts after long-term temperature change. We examined thermal acclimation of EOD frequency in a tropical electric fish, Apteronotus leptorhynchus that naturally experiences much less temperature change. We transferred fish between thermal environments (25.3 and 27.8 °C) and measured EOD frequency and its thermal sensitivity (Q10) over 11 d. After 6d, fish exhibited thermal acclimation to both warming and cooling, adjusting the thermal dependence of EOD frequency to partially compensate for the small change (2.5 °C) in water temperature. In addition, we evaluated the thyroid influence on EOD frequency by treating fish with thyroxine or the anti-thyroid compound propylthiouricil (PTU) to stimulate or inhibit thyroid activity, respectively. Thyroxine treatment significantly increased EOD frequency, but PTU had no effect. Neither thyroxine nor PTU treatment influenced the thermal sensitivity (Q10) of EOD frequency during acute temperature change. Thus, the EOD of Apteronotus shows significant thermal acclimation and responds to elevated thyroxine.

  13. Effect of thermal and freezing treatments on rheological, textural and color properties of basil seed gum.

    PubMed

    Zameni, Akefe; Kashaninejad, Mahdi; Aalami, Mehran; Salehi, Fakhreddin

    2015-09-01

    Hydrocolloids are macromolecular carbohydrates that are added to many foodstuffs to achieve the appropriate rheological and textural properties and to prevent synersis or to increase the viscosity and stability of foodstuffs. In this study the effect of different thermal treatments (25, 50, 75, 100 and 121°C for 20 min) and freezing treatments (-18 and -25 °C for 24 h) on rheological, textural and color change of basil seed gum as a new source of hydrocolloids was investigated. The results demonstrated that basil seed gum solutions had desirable rheological and textural properties. Power law model well described non-newtonian pseudoplastic behavior of basil seed gum in all conditions. When the hydrocolloid samples were heated or frozen, increase in viscosity of basil seed gum solutions was observed. Hardness, adhesiveness and consistency of basil seed gel for control sample were 13.5 g, 16.79, 52.59 g.s, respectively and all increased after thermal treatments. The results revealed that basil seed gum has the excellent ability to stand against heat treatment and the highest hardness, adhesiveness and consistency value of gum gels were observed in sample treated at 121 °C for 20 min. In addition this gum gel has the good ability to stand against freeze-thaw treatment and its textural properties improved after freezing. Therefore, basil seed gum can be employed as a textural and rheological modifier in formulation of foods exposed to thermal and freezing temperatures.

  14. The effect of TiO2/aluminosilicate nanocomposite additives on the mechanical and thermal properties of polyacrylic coatings

    NASA Astrophysics Data System (ADS)

    Nosrati, Rahimeh; Olad, Ali

    2015-12-01

    The commercial grade polyacrylic latex was modified in order to prepare a mechanical and thermal improved coating. TiO2/Ag-exchanged-aluminosilicate nanocomposites with montmorillonite, zeolite-A and clinoptilolite aluminosilicates were prepared and used as additive in the matrix of polyacrylic latex to achieve a coating with proper mechanical and thermal properties. X-ray diffraction patterns and FESEM were used to characterize the composition, structure, and morphology of the nanocomposite additives. Polyacrylic coatings modified by TiO2/Ag-exchanged-aluminosilicate nanocomposite additives showed higher adhesion strength and hardness compared to unmodified commercial grade polyacrylic coatings. Differential Scanning Calorimetry (DSC) analysis showed lower glass transition temperature for modified polyacrylic coatings than that of unmodified polyacrylic coatings. The tensile tests were also carried out for unmodified and modified polyacrylic coatings. According to the results, the modified polyacrylic based coating with TiO2/Ag-exchanged-clinoptilolite nanocomposite additive was the best coating considering most of useful properties.

  15. Thermal imaging for assessment of electron-beam freeform fabrication (EBF3) additive manufacturing deposits

    NASA Astrophysics Data System (ADS)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy; Martin, Richard E.

    2013-05-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA's electron beam freeform fabrication (EBF3) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF3 technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF3 system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality deposit, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for deposit assessment metrics.

  16. Treatment of Uterine Myomas by Radiofrequency Thermal Ablation

    PubMed Central

    Chen, Ming; Yang, Shujun; Li, Juan; Zhu, Tongyu; Zhao, Xiaoli

    2015-01-01

    Patients’ selection criteria, effectiveness, and safety of radiofrequency thermal ablation (RFTA) therapy for uterine myomas (UM) were assessed using a 10-year retrospective cohort study. From July 2001 to July 2011, a total of 1216 patients treated for UM were divided into 2 groups. Group A consisted of 476 premenopause patients, average age 36.5 ± 8.5 years, average number of myomas 1.7 ± 0.9, and average diameter of myomas 4.5 ± 1.5 cm, and group B consisted of 740 menopause patients, average age 48.5 ± 3.5 years, average number of myomas 2.6 ± 1.3, and average diameter of myomas 5.0 ± 2.5 cm. Average follow-up period was 36.5 ± 11.5 months. At 1, 3, 6, 12, and 24 months after RFTA, average diameters of myomas in group A were 3.8, 3.0, 2.7, 2.4, and 2.2 cm, respectively, and 47.7% (227 of 476) of patients had tumor trace at 12 months after RFTA. In group B, the results were 4.7, 3.7, 3.3, 2.3, and 2.3 cm, respectively, and 58.8% (435 of 740) of patients had tumor trace at 12 months after RFTA. Three months after treatment, myoma volumes were significantly reduced in both the groups (P < .01), and group B had higher rate of tumor trace at 12 months after RFTA than group A (P < .05). Clinical symptoms and health-related quality-of-life outcome (HRQL) were significantly improved after RFTA in both groups and the postoperative recurrence rate of UM was significantly higher in group A at 10.7% (51 of 476) than group B at 2.4% (18 of 740; P < .05). Radiofrequency thermal ablation is an excellent minimally invasive treatment for UM smaller than 5.0 cm in diameter. PMID:25355802

  17. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement

    PubMed Central

    Khandaker, Morshed; Vaughan, Melville B; Morris, Tracy L; White, Jeremiah J; Meng, Zhaotong

    2014-01-01

    The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate) (PMMA). Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size), such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell adhesion of the PMMA samples. The results of this study could be useful for improving the union of implant-PMMA or bone-PMMA interfaces by incorporating nanoparticles into PMMA cement for orthopedic and orthodontic applications. PMID:24920906

  18. Effect of Copper/Graphite Addition on Electrical Conductivity and Thermal Insulation of Unsaturated Polyester/Jute Composites

    NASA Astrophysics Data System (ADS)

    Biswas, Bhabatosh; Chabri, Sumit; Mitra, Bhairab Chandra; Das, Kunal; Bandyopadhyay, Nil Ratan; Sinha, Arijit

    2017-04-01

    Jute fibre along with Cu particle reinforced unsaturated polyester composites having different filler loading viz. 2, 5, 10 and 15 wt% were fabricated by compression molding technique. In present investigation, it was observed that with fillers (Jute and Cu) incorporation, the electrical conductivity was monotonically increased up to 10 wt% of filler content followed by saturation at 15 wt% of filler content. It was further observed that along with fillers (Jute and Cu) incorporation, the thermal insulation was decreased monotonically up to 10 wt% of filler content and achieved a saturation at 15 wt% of filler content. A similar trend was observed with the variation of electrical conductivity and thermal insulation after incorporation of graphite within copper reinforced UP/Jute composites. Structural investigation through SEM, XRD and FTIR confirm the dispersion of fillers. An improvement of crystallinity of the matrix with fillers addition was observed from XRD analyses. The interfacial bonding between fillers and matrix was studied from FTIR pattern.

  19. Effect of Copper/Graphite Addition on Electrical Conductivity and Thermal Insulation of Unsaturated Polyester/Jute Composites

    NASA Astrophysics Data System (ADS)

    Biswas, Bhabatosh; Chabri, Sumit; Mitra, Bhairab Chandra; Das, Kunal; Bandyopadhyay, Nil Ratan; Sinha, Arijit

    2016-02-01

    Jute fibre along with Cu particle reinforced unsaturated polyester composites having different filler loading viz. 2, 5, 10 and 15 wt% were fabricated by compression molding technique. In present investigation, it was observed that with fillers (Jute and Cu) incorporation, the electrical conductivity was monotonically increased up to 10 wt% of filler content followed by saturation at 15 wt% of filler content. It was further observed that along with fillers (Jute and Cu) incorporation, the thermal insulation was decreased monotonically up to 10 wt% of filler content and achieved a saturation at 15 wt% of filler content. A similar trend was observed with the variation of electrical conductivity and thermal insulation after incorporation of graphite within copper reinforced UP/Jute composites. Structural investigation through SEM, XRD and FTIR confirm the dispersion of fillers. An improvement of crystallinity of the matrix with fillers addition was observed from XRD analyses. The interfacial bonding between fillers and matrix was studied from FTIR pattern.

  20. Primary explosives: electrostatic discharge initiation, additive effect and its relation to thermal and explosive characteristics.

    PubMed

    Talawar, M B; Agrawal, A P; Anniyappan, M; Wani, D S; Bansode, M K; Gore, G M

    2006-09-21

    All explosives, under all conditions must be considered vulnerable to generation, accumulation and discharge of static charge. The low energy static hazards of the order as low as 2-3 mJ need to be guarded against in case of highly sensitive compounds namely primary explosives. The hazard is normally associated with manufacturing and filling operations due to discharge of static charge accumulated on a person supplying energy up to 20 mJ. To reduce the risk associated with static initiation hazard in the processing and handling of the explosives, the electrostatic sensitivity tests can provide an important input regarding electrostatic hazards. This paper presents electrostatic sensitivity data in terms of zero ignition probability data (E(SE0)) of some of the initiatory explosives such as nickel/cobalt hydrazinium nitrate, silver azide, lead azide and mercury salt of 5-nitro tetrazole. Similar data has also been presented for samples coated with polyvinyl pyrrolidone to study its effect on electrostatic sensitivity. The electrostatic spark sensitivity of some conventional and novel made to explain the increased spark sensitivity behavior on the basis of the possible primary explosives has been studied. The electrostatic spark sensitivity of primary explosives decreased in the order of AgN3 = NHN > PbN6 > MNT > CoHN > BNCP. A possible correlation of spark energy with approximation and assumption has been drawn with thermal, detonation and mechanical properties. The polyvinyl pyrrolidone coated samples followed the same order but interestingly with increased spark sensitivity. An attempt has been reasoning of dielectric nature of the materials or exothermic effects of decomposition products of PVP. The present work also reports the electrostatic spark sensitivity of cap compositions.

  1. Thermal expansion of CaFe2As2: Effect of cobalt doping and postgrowth thermal treatment

    NASA Astrophysics Data System (ADS)

    Bud'ko, Sergey L.; Ran, Sheng; Canfield, Paul C.

    2013-08-01

    We report thermal expansion measurements on Ca(Fe1-xCox)2As2 single crystals with different thermal treatment, with samples chosen to represent four different ground states observed in this family. For all samples, thermal expansion is anisotropic with different signs of the in-plane and c-axis thermal expansion coefficients in the high temperature, tetragonal phase. The features in thermal expansion associated with the phase transitions are of opposite signs as well, pointing to a different response of transition temperatures to the in-plane and the c-axis stress. These features, and consequently the inferred pressure derivatives, are very large, clearly and substantially exceeding those in the Ba(Fe1-xCox)2As2 family. For all transitions the c-axis response is dominant.

  2. Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months

    NASA Astrophysics Data System (ADS)

    Pelliccia, Maria; Andreozzi, Patrizia; Paulose, Jayson; D'Alicarnasso, Marco; Cagno, Valeria; Donalisio, Manuela; Civra, Andrea; Broeckel, Rebecca M.; Haese, Nicole; Jacob Silva, Paulo; Carney, Randy P.; Marjomäki, Varpu; Streblow, Daniel N.; Lembo, David; Stellacci, Francesco; Vitelli, Vincenzo; Krol, Silke

    2016-11-01

    Up to 80% of the cost of vaccination programmes is due to the cold chain problem (that is, keeping vaccines cold). Inexpensive, biocompatible additives to slow down the degradation of virus particles would address the problem. Here we propose and characterize additives that, already at very low concentrations, improve the storage time of adenovirus type 5. Anionic gold nanoparticles (10-8-10-6 M) or polyethylene glycol (PEG, molecular weight ~8,000 Da, 10-7-10-4 M) increase the half-life of a green fluorescent protein expressing adenovirus from ~48 h to 21 days at 37 °C (from 7 to >30 days at room temperature). They replicate the known stabilizing effect of sucrose, but at several orders of magnitude lower concentrations. PEG and sucrose maintained immunogenicity in vivo for viruses stored for 10 days at 37 °C. To achieve rational design of viral-vaccine stabilizers, our approach is aided by simplified quantitative models based on a single rate-limiting step.

  3. Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months

    PubMed Central

    Pelliccia, Maria; Andreozzi, Patrizia; Paulose, Jayson; D'Alicarnasso, Marco; Cagno, Valeria; Donalisio, Manuela; Civra, Andrea; Broeckel, Rebecca M.; Haese, Nicole; Jacob Silva, Paulo; Carney, Randy P.; Marjomäki, Varpu; Streblow, Daniel N.; Lembo, David; Stellacci, Francesco; Vitelli, Vincenzo; Krol, Silke

    2016-01-01

    Up to 80% of the cost of vaccination programmes is due to the cold chain problem (that is, keeping vaccines cold). Inexpensive, biocompatible additives to slow down the degradation of virus particles would address the problem. Here we propose and characterize additives that, already at very low concentrations, improve the storage time of adenovirus type 5. Anionic gold nanoparticles (10−8–10−6 M) or polyethylene glycol (PEG, molecular weight ∼8,000 Da, 10−7–10−4 M) increase the half-life of a green fluorescent protein expressing adenovirus from ∼48 h to 21 days at 37 °C (from 7 to >30 days at room temperature). They replicate the known stabilizing effect of sucrose, but at several orders of magnitude lower concentrations. PEG and sucrose maintained immunogenicity in vivo for viruses stored for 10 days at 37 °C. To achieve rational design of viral-vaccine stabilizers, our approach is aided by simplified quantitative models based on a single rate-limiting step. PMID:27901019

  4. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    SciTech Connect

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  5. Comparison of Thermal and Non-Thermal Processing of Swine Feed and the Use of Selected Feed Additives on Inactivation of Porcine Epidemic Diarrhea Virus (PEDV)

    PubMed Central

    Trudeau, Michaela P.; Verma, Harsha; Sampedro, Fernando; Urriola, Pedro E.; Shurson, Gerald C.; McKelvey, Jessica; Pillai, Suresh D.; Goyal, Sagar M.

    2016-01-01

    Infection with porcine epidemic diarrhea virus (PEDV) causes diarrhea, vomiting, and high mortality in suckling pigs. Contaminated feed has been suggested as a vehicle of transmission for PEDV. The objective of this study was to compare thermal and electron beam processing, and the inclusion of feed additives on the inactivation of PEDV in feed. Feed samples were spiked with PEDV and then heated to 120–145°C for up to 30 min or irradiated at 0–50 kGy. Another set of feed samples spiked with PEDV and mixed with Ultracid P (Nutriad), Activate DA (Novus International), KEM-GEST (Kemin Agrifood), Acid Booster (Agri-Nutrition), sugar or salt was incubated at room temperature (~25°C) for up to 21 days. At the end of incubation, the virus titers were determined by inoculation of Vero-81 cells and the virus inactivation kinetics were modeled using the Weibull distribution model. The Weibull kinetic parameter delta represented the time or eBeam dose required to reduce virus concentration by 1 log. For thermal processing, delta values ranged from 16.52 min at 120°C to 1.30 min at 145°C. For eBeam processing, a target dose of 50 kGy reduced PEDV concentration by 3 log. All additives tested were effective in reducing the survival of PEDV when compared with the control sample (delta = 17.23 days). Activate DA (0.81) and KEM-GEST (3.28) produced the fastest inactivation. In conclusion, heating swine feed at temperatures over 130°C or eBeam processing of feed with a dose over 50 kGy are effective processing steps to reduce PEDV survival. Additionally, the inclusion of selected additives can decrease PEDV survivability. PMID:27341670

  6. Effect of addition of thermally modified cowpea protein on sensory acceptability and textural properties of wheat bread and sponge cake.

    PubMed

    Campbell, Lydia; Euston, Stephen R; Ahmed, Mohamed A

    2016-03-01

    This paper investigates the sensory acceptability and textural properties of leavened wheat bread and sponge cake fortified with cow protein isolates that had been denatured and glycated by thermal treatment. Defatted cowpea flour was prepared from cow pea beans and the protein isolate was prepared (CPI) and thermally denatured (DCPI). To prepare glycated cowpea protein isolate (GCPI) the cowpea flour slurry was heat treated before isolation of the protein. CPI was more susceptible to thermal denaturation than GCPI as determined by turbidity and sulphydryl groups resulting in greater loss of solubility. This is attributed to the higher glycation degree and higher carbohydrate content of GCPI as demonstrated by glycoprotein staining of SDS PAGE gels. Water absorption of bread dough was significantly enhanced by DCPI and to a larger extent GCPI compared to the control, resulting in softer texture. CPI resulted in significantly increased crumb hardness in baked bread than the control whereas DCPI or GCPI resulted in significantly softer crumb. Bread fortified with 4% DCPI or GCPI was similar to control as regards sensory and textural properties whereas 4% CPI was significantly different, limiting its inclusion level to 2%. There was a trend for higher sensory acceptability scores for GCPI containing bread compared DCPI. Whole egg was replaced by 20% by GCPI (3.5%) in sponge cake without affecting the sensory acceptability, whereas CPI and DCPI supplemented cakes were significantly different than the control.

  7. Pt and Hf Additions to NiAl Bond Coats and Their Effect on the Lifetime of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Gleeson, B.; Sordelet, D.; Barrett, C. A.

    2003-01-01

    The lifetimes of thermal barrier coatings (TBC's) with various NiAlPt(HfZr) bond coats were determined by cyclic oxidation testing at 1163 C (2125 F). The bond coats were sprayed from powders by low pressure plasma spraying onto Rene N5 superalloy substrates. Yttria stabilized zirconia (8YSZ) top coats were applied by air plasma spraying. Surprisingly, there was not a strong correlation between TBC lifetime and Pt or Hf content although Zr additions decreased lifetimes. TBC failure morphologies and bond coat microstructures were examined and are discussed with respect to the bond coat compositions.

  8. Energy recovery from thermal treatment of dewatered sludge in wastewater treatment plants.

    PubMed

    Yang, Qingfeng; Dussan, Karla; Monaghan, Rory F D; Zhan, Xinmin

    Sewage sludge is a by-product generated from municipal wastewater treatment (WWT) processes. This study examines the conversion of sludge via energy recovery from gasification/combustion for thermal treatment of dewatered sludge. The present analysis is based on a chemical equilibrium model of thermal conversion of previously dewatered sludge with moisture content of 60-80%. Prior to combustion/gasification, sludge is dried to a moisture content of 25-55% by two processes: (1) heat recovered from syngas/flue gas cooling and (2) heat recovered from syngas combustion. The electricity recovered from the combined heat and power process can be reused in syngas cleaning and in the WWT plant. Gas temperature, total heat and electricity recoverable are evaluated using the model. Results show that generation of electricity from dewatered sludge with low moisture content (≤ 70%) is feasible within a self-sufficient sludge treatment process. Optimal conditions for gasification correspond to an equivalence ratio of 2.3 and dried sludge moisture content of 25%. Net electricity generated from syngas combustion can account for 0.071 kWh/m(3) of wastewater treated, which is up to 25.4-28.4% of the WWT plant's total energy consumption.

  9. Effect of Si additions on thermal stability and the phase transition sequence of sputtered amorphous alumina thin films

    SciTech Connect

    Bolvardi, H.; Baben, M. to; Nahif, F.; Music, D. Schnabel, V.; Shaha, K. P.; Mráz, S.; Schneider, J. M.; Bednarcik, J.; Michalikova, J.

    2015-01-14

    Si-alloyed amorphous alumina coatings having a silicon concentration of 0 to 2.7 at. % were deposited by combinatorial reactive pulsed DC magnetron sputtering of Al and Al-Si (90-10 at. %) split segments in Ar/O{sub 2} atmosphere. The effect of Si alloying on thermal stability of the as-deposited amorphous alumina thin films and the phase formation sequence was evaluated by using differential scanning calorimetry and X-ray diffraction. The thermal stability window of the amorphous phase containing 2.7 at. % of Si was increased by more than 100 °C compared to that of the unalloyed phase. A similar retarding effect of Si alloying was also observed for the α-Al{sub 2}O{sub 3} formation temperature, which increased by more than 120 °C. While for the latter retardation, the evidence for the presence of SiO{sub 2} at the grain boundaries was presented previously, this obviously cannot explain the stability enhancement reported here for the amorphous phase. Based on density functional theory molecular dynamics simulations and synchrotron X-ray diffraction experiments for amorphous Al{sub 2}O{sub 3} with and without Si incorporation, we suggest that the experimentally identified enhanced thermal stability of amorphous alumina with addition of Si is due to the formation of shorter and stronger Si–O bonds as compared to Al–O bonds.

  10. Building ceramics with an addition of pulverized combustion fly ash from the thermal power plant Nováky

    NASA Astrophysics Data System (ADS)

    Húlan, Tomáš; Trník, Anton; Medved, Igor; Štubňa, Igor; Kaljuvee, Tiit

    2016-07-01

    Pulverized combustion fly ash (PFA) from the Power plant Nováky (Slovakia) is analyzed for its potential use in the production of building ceramics. Three materials are used to prepare the mixtures: illite-rich clay (IRC), PFA and IRC fired at 1000 °C (called grog). The mixtures contain 60 % of IRC and 40 % of a non-plastic compound (grog or PFA). A various amount of the grog is replaced by PFA and the effect of this substitution is studied. Thermal analyses (TGA, DTA, thermodilatometry, and dynamical thermomechanical analysis) are used to analyze the processes occurring during firing. The flexural strength and thermal conductivity are determined at room temperature after firing in the temperature interval from 800 to 1100 °C. The results show that an addition of PFA slightly decreases the flexural strength. The thermal conductivity and porosity are practically unaffected by the presence of PFA. Thus, PFA from the Power plant Nováky is a convenient non-plastic component for manufacturing building ceramics.

  11. 19 CFR 10.248 - Additional requirements for preferential treatment of brassieres.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Andean Trade Promotion and Drug Eradication Act Apparel and Other Textile Articles Under the Andean Trade Promotion and Drug Eradication Act § 10.248 Additional requirements for preferential treatment of brassieres... United States means: (i) The price of the fabrics when last purchased, f.o.b. port of exportation, as...

  12. Additive effects of neurofeedback on the treatment of ADHD: A randomized controlled study.

    PubMed

    Lee, Eun-Jeong; Jung, Chul-Ho

    2017-02-01

    Neurofeedback (NF) has been identified as a "possibly efficacious" treatment in current evidence-based reviews; therefore, more research is needed to determine its effects. The current study examined the potential additive effect of NF for children diagnosed with ADHD beginning a medication trial first. Thirty-six children (6-12 years) with a DSM-IV-TR diagnosis of ADHD were randomly assigned to an NF with medication (NF condition) or a medication only condition. Children in the NF group attended 20 twice-weekly sessions. Outcome measures included individual cognitive performance scores (ADS, K-WISC-III), ADHD rating scores completed by their parents (ARS, CRS) and brainwave indices of left and right hemispheres before and after NF treatment. Significant additive treatment effect in any of the symptom variables was found and a reduction of theta waves in both the right and left hemispheres was recorded in NF condition participants. However our randomized controlled study could not demonstrate superior effects of combined NF on intelligent functioning compared to the medication treatment only. This study suggested any possible evidence of positive and additive treatment effects of NF on brainwaves and ADHD symptomatology.

  13. Enhancing the interlayer adhesive force in twisted multilayer MoS2 by thermal annealing treatment

    NASA Astrophysics Data System (ADS)

    Jin, Ke; LIU, Dameng; Tian, Yu

    2015-10-01

    Few-layer MoS2 has recently gained great attention owing to its remarkable mechanical and photoelectric properties, which are strongly influenced by the interactions and relative orientations between layers. Here, we report on Raman scattering measurements of twisted MoS2 flakes prepared by exfoliation and nondestructive transfer. Thermal annealing treatment can effectively enhance the interlayer coupling of twisted MoS2 and lead to a van der Waals (vdW) interaction between two stacked layers. We have roughly calculated the interlayer coupling force by a diatomic chain model (DCM) and found that the interlayer adhesive force increased by ˜20% compared with no-treatment samples. We additionally found that the non-Bernal stacking structure of MoS2 induces a weakening in the interlayer coupling. This study could promote the development of novel semiconductors, optoelectronic devices, and superlubricity materials.

  14. Enhancing the interlayer adhesive force in twisted multilayer MoS₂ by thermal annealing treatment.

    PubMed

    Jin, Ke; Liu, Dameng; Tian, Yu

    2015-10-09

    Few-layer MoS2 has recently gained great attention owing to its remarkable mechanical and photoelectric properties, which are strongly influenced by the interactions and relative orientations between layers. Here, we report on Raman scattering measurements of twisted MoS2 flakes prepared by exfoliation and nondestructive transfer. Thermal annealing treatment can effectively enhance the interlayer coupling of twisted MoS2 and lead to a van der Waals (vdW) interaction between two stacked layers. We have roughly calculated the interlayer coupling force by a diatomic chain model (DCM) and found that the interlayer adhesive force increased by ∼20% compared with no-treatment samples. We additionally found that the non-Bernal stacking structure of MoS2 induces a weakening in the interlayer coupling. This study could promote the development of novel semiconductors, optoelectronic devices, and superlubricity materials.

  15. Sintering and properties of Si3N4 with and without additives by HIP treatment

    NASA Technical Reports Server (NTRS)

    Kuratani, S.; Shimada, M.; Koizumi, M.

    1986-01-01

    Hot Isostatic Pressing (HIP) of Si3N4 powders with and without additives was performed using a glass container, and various kinds of pressureless-sintered Si3N4 were HIP'ed without a container. The effects of HIP treatment on density, microstructure, flexural strength, microhardness, and fracture toughness on Si3N4 ceramics were studied. Using a glass container it was difficult to reach theoretical density. The microhardness of HIP'ed Si3N4 without additives was low, and the fracture toughness of HIP'ed Si3N4 with and without additives was 22 to 25 W/m-K, and it decreased with increasing the amount of additives. The density and flexural strength, and hardness of pressureless-sintered Si3N4 which contained Al2O and Y2O3 as oxide additives were remarkably improved by HIP treatment using nitrogen as a pressure transmitting gas. It is very important to select the sintering conditions for fabricating the presintered body of Si3N4 in order to improve the mechanical properties of Si3N4 by HIP treatment.

  16. Net positive energy wastewater treatment plant via thermal pre-treatment of sludge: A theoretical case study.

    PubMed

    Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky

    2017-01-13

    In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.

  17. Effluent treatment for nuclear thermal propulsion ground testing

    NASA Technical Reports Server (NTRS)

    Shipers, Larry R.

    1993-01-01

    The objectives are to define treatment functions, review concept options, discuss PIPET effluent treatment system (ETS), and outline future activities. The topics covered include the following: reactor exhaust; effluent treatment functions; effluent treatment categories; effluent treatment options; concept evaluation; PIPETS ETS envelope; PIPET effluent treatment concept; and future activities.

  18. Effect of gelatinization and additives on morphology and thermal behavior of corn starch/PVA blend films.

    PubMed

    Luo, Xuegang; Li, Jiwei; Lin, Xiaoyan

    2012-11-06

    The blend films of ungelatinized and gelatinized starch/polyvinyl alcohol (PVA) were prepared with a solution casting method by the introduction of additives (glycerol/urea) or not. The phase morphologies and thermal behaviors of the blends were carefully analyzed. A droplet phase was observed in the blends containing ungelatinized starch and a laminated phase was observed in the blends containing gelatinized starch. For both ungelatinized and gelatinized starch/PVA blends, the melting temperature (T(m)) (210-230 °C) of PVA was detected, and the T(m) of gelatinized starch/PVA blends was higher than that of the ungelatinized starch/PVA blends. Blend films containing 16.8 wt% of glycerol or urea exhibited a decreased T(m). The introduction of additives (glycerol or urea) reduced the decomposition onset temperature of the blend films. These various morphologies and thermal behaviors could be attributed to the different hydrogen bonding interaction characteristics between starch and polyvinyl alcohol at different conditions.

  19. In-situ Thermal Treatment of Trichloroethene at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Cole, Jason; McElroy, William J.; Glasgow, Jason; Heron, Gorm; Galligan, Jim; Parker, Ken; Davis, E. F.

    2008-01-01

    This viewgraph presentation describes the in-situ thermal treatment of trichloroethene at Marshall space Flight Center. The contents include: 1) Background 1 and 2; 2) Source Area-13; 3) In-situ Thermal Treatment; 4) SA-13 Lithology; 5) SA-13 In-Situ Thermal TS; 6) SA-13 ISTD System Components; 7) ISTD Overview; 8) Heaters; 9) SA-13 ISTD Wellfield Layout; 10) SA-13 Well Field; 11) ISTD Process and Instrumentation; 12) Treatment Zone Temperature; 13) SA-13 System Removals; 14) SA-13 DNAPL (typical photos); 15) Treatment Results 1-5; and 16) SA-13 TCE Removal Summary.

  20. Modeling Penicillium expansum resistance to thermal and chlorine treatments.

    PubMed

    Salomão, Beatriz C M; Churey, John J; Aragão, Gláucia M F; Worobo, Randy W

    2009-12-01

    Apples and apple products are excellent substrates for Penicillium expansum to produce patulin. In an attempt to avoid excessive levels of patulin, limiting or reducing P. expansum contamination levels on apples designated for storage in packinghouses and/or during apple juice processing is critical. The aim of this work was (i) to determine the thermal resistance of P. expansum spores in apple juice, comparing the abilities of the Bigelow and Weibull models to describe the survival curves and (ii) to determine the inactivation of P. expansum spores in aqueous chlorine solutions at varying concentrations of chlorine solutions, comparing the abilities of the biphasic and Weibull models to fit the survival curves. The results showed that the Bigelow and Weibull models were similar for describing the heat inactivation data, because the survival curves were almost linear. In this case, the concept of D- and z-values could be used, and the D-values obtained were 10.68, 6.64, 3.32, 1.14, and 0.61 min at 50, 52, 54, 56, and 60 degrees C, respectively, while the z-value was determined to be 7.57 degrees C. For the chlorine treatments, although the biphasic model gave a slightly superior performance, the Weibull model was selected, considering the parsimony principle, because it has fewer parameters than the biphasic model has. In conclusion, the typical pasteurization regimen used for refrigerated apple juice (71 degrees C for 6 s) is capable of achieving a 6-log reduction of P. expansum spores.

  1. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review.

    PubMed

    Guo, Bin; Liu, Bo; Yang, Jian; Zhang, Shengen

    2017-05-15

    Safe disposal of solid wastes containing heavy metals is a significant task for environment protection. Immobilization treatment is an effective technology to achieve this task. Cementitious material treatments and thermal treatments are two types of attractive immobilization treatments due to that the heavy metals could be encapsulated in their dense and durable wasteforms. This paper discusses the heavy metal immobilization mechanisms of these methods in detail. Physical encapsulation and chemical stabilization are two fundamental mechanisms that occur simultaneously during the immobilization processes. After immobilization treatments, the wasteforms build up a low permeable barrier for the contaminations. This reduces the exposed surface of wastes. Chemical stabilization occurs when the heavy metals transform into more stable and less soluble metal bearing phases. The heavy metal bearing phases in the wasteforms are also reviewed in this paper. If the heavy metals are incorporated into more stable and less soluble metal bearing phases, the potential hazards of heavy metals will be lower. Thus, converting heavy metals into more stable phases during immobilization processes should be a common way to enhance the immobilization effect of these immobilization methods.

  2. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    SciTech Connect

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-12-15

    thermal and mixed-field thermal neutron sensitivities derived from measurements performed at the RA-6 were compared and no significant differences were found. Global RA-6-based thermal neutron sensitivity showed agreement with pure thermal neutron sensitivity measurements performed in the RA-3 spectrum. Additionally, the detector response proved nearly unchanged by differences in neutron spectra from real (RA-6 BNCT beam) and ideal (considered for calibration calculations at RA-3) neutron source descriptions. The results confirm that the special design of the Rh SPND can be considered as having a pure thermal response for neutron spectra with epithermal-to-thermal flux ratios up to 12%. In addition, the linear response of the detector to thermal flux allows the use of a mixed-field thermal neutron sensitivity of 1.95 {+-} 0.05 x 10{sup -21} A n{sup -1}{center_dot}cm{sup 2}{center_dot}s. This sensitivity can be used in spectra with up to 21% epithermal-to-thermal flux ratio without significant error due to epithermal neutron and gamma induced effects. The values of the measured fluxes in clinical applications had discrepancies with calculated results that were in the range of -25% to +30%, which shows the importance of a local on-line independent measurement as part of a treatment planning quality control system. Conclusions: The usefulness of the CNEA Rh SPND for the on-line local measurement of thermal neutron flux on BNCT patients has been demonstrated based on an appropriate neutron spectra calibration and clinical applications.

  3. Amantadine as an additive treatment in patients suffering from drug-resistant unipolar depression.

    PubMed

    Rogóz, Zofia; Skuza, Grazyna; Daniel, Władysława A; Wójcikowski, Jacek; Dudek, Dominika; Wróbel, Andrzej

    2007-01-01

    The paper describes the effect of amantadine addition to imipramine therapy in patients suffering from treatment-resistant unipolar depression who fulfilled DSM IV criteria for major (unipolar) depression. Fifty patients were enrolled in the study on the basis of their histories of illness and therapy. After a 2-week drug-free period, 25 subjects belonging to the first group were treated only with imipramine twice daily (100 mg/day) for 12 weeks, and 25 subjects belonging to the second group were treated with imipramine twice daily (100 mg/day) for 6 weeks and then amantadine was introduced (150 mg/day, twice daily) and administered jointly with imipramine for the successive 6 weeks. Hamilton Depression Rating Scale (HDRS) was used to assess the efficacy of antidepressant therapy. Imipramine did not change the HDRS score after 3, 6 or 12 weeks of treatment when compared with the washout (before treatment). The addition of amantadine to the classic antidepressant reduced HDRS scores after 6-week joint treatment. Moreover, the obtained pharmacokinetic data indicated that amantadine did not significantly influence the plasma concentration of imipramine and its metabolite desipramine in patients treated jointly with imipramine and amantadine, which suggests lack of a pharmacokinetic interaction. The obtained results indicate that joint therapy with an antidepressant and amantadine may be effective in treatment-resistant unipolar depression.

  4. Photolytic, thermal, addition, and cycloaddition reactions of 2-diazo-5,6- and -3,8-disubstituted acenaphthenones.

    PubMed

    Blair, Patricia A; Chang, Sou-Jen; Shechter, Harold

    2004-10-15

    Preparation and varied thermal and photolytic reactions of 2-diazo-5,6-(disubstituted)acenaphthenones (11a-d) and 2-diazo-3,8-dimethoxyacenaphthenone (12) are reported. Alcohols react thermally and photolytically with 11a-c with losses of N(2) to yield 2-alkoxynaphthenones (24a,band 47a,b) and acenaphthenones (25 and 48a,b). Aniline and diphenylamine are converted by 11a-c at 180 degrees C to acenaph[1,2-b]indoles (29a,b and 53a,b). Thermolyses of 11a-c at approximately 450 degrees C (0.15 mmHg) yield reduction products 25 and 48a,b, respectively. Wolff rearrangements to 1,8-naphthyleneketenes (15a-d) and/or their derivatives are not observed in the above experiments. Oxygen converts 11a-c thermally to acenaphthenequinones (19a-c) and/or 1,8-naphthalic anhydrides. Insertion, addition, substitution, and/or isomerization reactions occur upon irradiation of 2-diazoacenaphthenones in cyclohexane, benzene, and tetrahydrofuran. Photolysis of 11d in benzene in the presence of O(2) yields the insertion-oxidation product 2-hydroxy-5,6-dinitro-2-phenylacenaphthenone (60). Photolyses of 11a-c in nitriles result in N(2) evolution and dipolar cycloaddition to give acenaph[1,2-d]oxazoles (41 and 61a,b). Acetylenes undergo thermal and photolytic cycloaddition/1,5-sigmatropic rearrangement reactions with 11a-d with N(2) retention to give pyrazolo[5,1-a]quinolin-7-ones (69f-j). 2-Diazoacenaphthenones 1a and 11a react thermally and photolytically with electronegatively-substituted olefins with N(2) expulsion to yield (E)- and (Z)-2-oxospiro[acenaphthylene-1(2H),1'cyclopropanes] 73a-c and 74a-c, respectively. The mechanisms of the reactions of 1a, 11a-d, and 12 reported are discussed.

  5. Temporal Treatment of a Thermal Response for Defect Depth Estimation

    NASA Technical Reports Server (NTRS)

    Plotnikov, Y. A.; Winfree, W. P.

    2004-01-01

    Transient thermography, which employs pulse surface heating of an inspected component followed by acquisition of the thermal decay stage, is gaining wider acceptance as a result of its remoteness and rapidness. Flaws in the component s material may induce a thermal contrast in surface thermograms. An important issue in transient thermography is estimating the depth of a subsurface flaw from the thermal response. This improves the quantitative ability of the thermal evaluation: from one scan it is possible to locate regions of anomalies in thickness (caused by corrosion) and estimate the implications of the flaw on the integrity of the structure. Our research focuses on thick composite aircraft components. A long square heating pulse and several minutes observation period are required to receive an adequate thermal response from such a component. Application of various time-related informative parameters of the thermal response for depth estimation is discussed. A three-dimensional finite difference model of heat propagation in solids in Cartesian coordinates is used to simulate the thermographic process. Typical physical properties of polymer graphite composites are assumed for the model.

  6. Morphology-Controlled High-Efficiency Small Molecule Organic Solar Cells without Additive Solvent Treatment

    PubMed Central

    Kim, Il Ku; Jo, Jun Hyung; Yun, Jung-Ho

    2016-01-01

    This paper focuses on nano-morphology-controlled small-molecule organic solar cells without solvent treatment for high power-conversion efficiencies (PCEs). The maximum high PCE reaches up to 7.22% with a bulk-heterojunction (BHJ) thickness of 320 nm. This high efficiency was obtained by eliminating solvent additives such as 1,8-diiodooctane (DIO) to find an alternative way to control the domain sizes in the BHJ layer. Furthermore, the generalized transfer matrix method (GTMM) analysis has been applied to confirm the effects of applying a different thickness of BHJs for organic solar cells from 100 to 320 nm, respectively. Finally, the study showed an alternative way to achieve high PCE organic solar cells without additive solvent treatments to control the morphology of the bulk-heterojunction.

  7. In vitro gastrointestinal digestion of glabrous canaryseed proteins as affected by variety and thermal treatment.

    PubMed

    Rajamohamed, Sahul H; Aryee, Alberta N A; Hucl, Pierre; Patterson, Carol Ann; Boye, Joyce I

    2013-09-01

    Glabrous or hairless canaryseed is a nutritional grain that could be a good addition to the diet if approved as a novel food. To assess the impact of thermal treatment on its digestibility; raw, roasted or boiled flours prepared from three different varieties of glabrous canaryseed were subjected to in vitro gastrointestinal digestion conditions and the effect on protein electrophoretic profiles was examined using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Roasting was done by dry-heat in an oven at 176 °C for 12 min whereas boiling was done in water at 98 °C for 12 min. SDS-PAGE showed approximately twenty-five protein bands in the undigested raw flour with molecular masses (MM) ranging from <14 kDa to >97 kDa. The dominant proteins had low MM, between the ranges of ~57 to 12 kDa. Roasting markedly altered the protein electrophoretic profile with the appearance of large molecular weight aggregates. Canaryseed proteins were more easily digested after thermal treatment and under sequential gastric-duodenal conditions than under gastric or duodenal conditions alone. Furthermore, roasting appeared to have a greater impact on in vitro protein digestibility than boiling.

  8. Local treatment of coal-water slurries from thermal power plants with the use of coagulants

    NASA Astrophysics Data System (ADS)

    Sarapulova, G. I.; Logunova, N. I.

    2015-04-01

    The coagulation of coal particles in a coal-water slurry from the Novo-Irkutsk thermal power plant was studied. The advisability of the application of highly basic aluminum hydroxochloride of grade B for the treatment of contaminated water with a concentration of suspended particles of 30 g/dm3 was shown. The granulometric analysis of coal particles was performed. The application of the reagent was revealed to be efficient for the coagulation of both coarse particles and a finely dispersed fraction. Carbonate hardness values of up to 1.5 mmol-equiv/dm3 and pH ≤ 7.8 were shown to be typical for the contaminated water from the fuel supply shop. They were the most optimal parameters for hydrolysis and efficient flocculation and did not require the addition of sodium bicarbonate and flocculants. The process flowsheet of the separate purification of a coal-water slurry was developed for the fuel supply shop. Among the advantages of this purification method are the return of rather highly purified water for thermal power plant needs, and also the production of additional fuel in the form of recovered coal particles. The product was characterized by improved engineering parameters in comparison with the initial fuel, i.e., had a higher calorific value and a lower sulfur content. The purified water corresponded to the normative requirements to the content of residual aluminum. This technology of purification was resource-saving, environmental-friendly, and economically profitable.

  9. Effect of Cu Addition to Zn-12Al Alloy on Thermal Properties and Wettability on Cu and Al Substrates

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Pstruś, Janusz; Mosińska, Sylwia; Pawlak, Sylwia

    2016-01-01

    The thermal properties, electrical resistivity, thermal linear expansion and tensile strength of a new high-temperature lead-free solder based on a eutectic Zn-Al alloy with 0.5, 1.0, or 1.5 at. pct Cu added were studied. Wettability studies on Cu substrate were performed with flux at 773 K (500 °C) for 60, 180, 240, 900, 1800, and 3600 seconds, and for 480 seconds at 733 K, 753 K, 773 K, 793 K, and 823 K (460 °C, 480 °C, 500 °C, 520 °C, and 550 °C, respectively). The experiment was designed to demonstrate the effect of the addition of Cu on the kinetics of the formation and growth of the CuZn, Cu5Zn8, CuZn4, and Al4Cu9 phases, which were identified by X-ray diffraction analysis. Wetting tests were also performed on the Al substrate, for 15 and 30 seconds at 773 K and 793 K (500 °C and 520 °C, respectively). Very low contact angles on Al pads were obtained. The electrical resistivity of Zn-Al-Cu alloys was slightly higher than that of the ZnAl eutectic alloy. The present results are discussed with respect to the available literature on Zn-Al and Zn-Al-Cu alloys.

  10. Investigation into the effect of some additives on the mechanical strength, quality and thermal conductivity of clay bricks

    NASA Astrophysics Data System (ADS)

    Zaid, Adnan I. O.; Qandil, A.; Qattous, M. A. A.

    2016-08-01

    It was repeatedly reported that the clay bricks industry in Jordan is facing both weak mechanical strength and poor quality which caused marketing problems where it is expected to serve the increasing demand of housing in the country especially after the political crises in the neighboring countries Iraq and Syria. It is therefore anticipated that improvement of the mechanical strength and quality of the produced clay evaluation of the brick industry in Jordan is worth investigating. In this paper, theoretical and experimental investigation obtained from field visits to the factories producing clay bricks were carried out. Furthermore, the effect of using some additives from locally available materials namely: Battn El-Ghoul Clay, Suweileh sand and Olive extracts on the mechanical strength, thermal conductivity and surface quality of the produced bricks is investigated and discussed. The experimental results indicated that thermal conductivity, color and durability were all enhanced and the ultimate compressive strength was reduced but remained higher than the acceptable value for brickwork.

  11. Thermal plasma technology for the treatment of wastes: a critical review.

    PubMed

    Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R

    2009-01-30

    This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future.

  12. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    SciTech Connect

    Akbarzadeh, Omid Abdullah, Bawadi Subbarao, Duvvuri; Zabidi, Noor Asmawati Mohd

    2015-07-22

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  13. Sono-thermal pre-treatment of waste activated sludge before anaerobic digestion.

    PubMed

    Şahinkaya, Serkan; Sevimli, Mehmet Faik

    2013-01-01

    Sonication and thermalization can be applied successfully to disrupt the complex waste activated sludge (WAS) floc structure and to release extra and intra cellular polymeric substances into soluble phase along with solubilization of particulate organic matters, before sludge digestion. In this study, sonication has been combined with thermalization to improve its disintegration efficiency. It was aimed that rise in temperature occurring during the sonication of sludge was used to be as an advantage for the following thermalization in the combined pre-treatment. Thus, the effects of sonication, thermalization and sono-thermalization on physical and chemical properties of sludge were investigated separately under different pre-treatment conditions. The disintegration efficiencies of these methods were in the following descending order: sono-thermalization > sonication > thermalization. The optimum operating conditions for sono-thermalization were determined as the combination of 1-min sonication at 1.0 W/mL and thermalization at 80 °C for 1h. The influences of sludge pre-treatment on biodegradability of WAS were experienced with biochemical methane potential assay in batch anaerobic reactors. Relative to the control reactor, total methane production in the sono-thermalized reactor increased by 13.6% and it was more than the sum of relative increases achieved in the sonicated and thermalized reactors. Besides, the volatile solids and total chemical oxygen demand reductions in the sono-thermalized reactor were enhanced as well. However, it was determined that sludge pre-treatment techniques applied in this study was not feasible due to their high energy requirements.

  14. Three-dimensional finite element simulations of vertebral body thermal treatment (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Patel, Samit J.; Morris, Ronit; Hoopes, P. J.; Bergeron, Jeffrey A.; Mahajan, Roop

    2005-04-01

    Lower back pain affects a large group of people worldwide and when in its early stages, has no viable interventional treatment. In order to avoid the eventuality of an invasive surgical procedure, which is further down the Care Pathway, an interventional treatment that is minimally invasive and arrests the patient's pain would be of tremendous clinical benefit. There is a hypothesis that if the basivertebral nerve in the vertebral body is defunctionalized, lower back pain may be lessened. To further investigate creating a means to provide localized thermal therapy, bench and animal studies were planned, but to help select the applicator configuration and placement, numerical modeling studies were undertaken. A 3D finite element model was utilized to predict the electric field pattern and power deposition pattern of radiofrequency (RF) based electrodes. Three types of tissues were modeled: 1) porcine (ex-vivo), ovine (in-vivo preclinical), and 3) human (ex-vivo, in-vivo). Two types of RF devices were simulated: 1) a pair of converging, hollow electrodes, and 2) an in-line pair of spaced-apart electrodes. Temperature distributions over time were plotted using the electric field results and the bioheat equation. Since the thermal and electrical properties of the vertebral bodies of porcine, ovine, and human tissue were not available, measurements were undertaken to capture these data to input into the model. The measurements of electrical and thermal properties of cancellous and cortical vertebral body were made over a range of temperatures. The simulation temperature results agreed with live animal and human cadaver studies. In addition, the lesion shapes predicted in the simulations matched CT and MRI studies done during the chronic ovine study, as well as histology results. In conclusion, the simulations aided in shaping and sizing the RF electrodes, as well as positioning them in the vertebral body structures to assure that the basivertebral nerve was ablated, but

  15. Thermal irritation of teeth during dental treatment procedures

    PubMed Central

    Kwon, Su-Jung; Park, Yoon-Jung; Jun, Sang-Ho; Ahn, Jin-Soo; Lee, In-Bog; Cho, Byeong-Hoon; Son, Ho-Hyun

    2013-01-01

    While it is reasonably well known that certain dental procedures increase the temperature of the tooth's surface, of greater interest is their potential damaging effect on the pulp and tooth-supporting tissues. Previous studies have investigated the responses of the pulp, periodontal ligament, and alveolar bone to thermal irritation and the temperature at which thermal damage is initiated. There are also many in vitro studies that have measured the temperature increase of the pulp and tooth-supporting tissues during restorative and endodontic procedures. This review article provides an overview of studies measuring temperature increases in tooth structures during several restorative and endodontic procedures, and proposes clinical guidelines for reducing potential thermal hazards to the pulp and supporting tissues. PMID:24010075

  16. Treatment-resistant depression in adolescents: is the addition of cognitive behavioral therapy of benefit?

    PubMed Central

    Hetrick, Sarah E; Cox, Georgina R; Merry, Sally N

    2011-01-01

    Background Many young people with major depression fail first-line treatments. Treatment-resistant depression has various definitions in the literature but typically assumes nonresponse to medication. In young people, cognitive behavioral therapy (CBT) is the recommended first-line intervention, thus the definition of treatment resistance should be expanded. Therefore, our aim was to synthesize the existing evidence of any interventions for treatment-resistant depression, broadly defined, in children and adolescents and to investigate the effectiveness of CBT in this context. Methods We used Cochrane Collaboration methodology, with electronic searches of Medline, PsycINFO, Embase, and the Cochrane Depression Anxiety and Neurosis Group trials registers. Only randomized controlled trials were included, and were assessed for risk of bias. Meta- analysis was undertaken where possible and appropriate. Results Of 953 articles retrieved, four trials were eligible for inclusion. For one study, only the trial registration document was available, because the study was never completed. All other studies were well conducted with a low risk of bias, although one study had a high dropout rate. Two studies assessed the effect of adding CBT to medication. While an assertive trial of antidepressants does appear to lead to benefit, when compared with placebo, there was no significant advantage, in either study, or in a meta-analysis of data from these trials, that clearly demonstrated an additional benefit of CBT. The third trial showed little advantage of a tricyclic antidepressant over placebo in the context of an inpatient admission. Conclusion Few randomized controlled trials have investigated interventions for treatment-resistant depression in young people, and results from these show modest benefit from antidepressants with no additional benefit over medication from CBT. Overall, there is a lack of evidence about effective interventions to treat young people who have failed to

  17. The impact of bismuth addition to sequential treatment on Helicobacter pylori eradication: A pilot study.

    PubMed

    Basyigit, Sebahat; Kefeli, Ayse; Sapmaz, Ferdane; Yeniova, Abdullah Ozgür; Asilturk, Zeliha; Hokkaomeroglu, Murat; Uzman, Metin; Nazligul, Yasar

    2015-10-25

    The success of the current anti-Helicobacter pylori (H. pylori) treatment protocols is reported to decrease by years, and research is needed to strengthen the H. pylori eradication treatment. Sequential treatment (ST), one of the treatment modalities for H. pylori eradication, includes amoxicillin 1 gr b.i.d and proton pump inhibitor b.i.d for first 5 days and then includes clarithromycin 500 mg b.i.d, metronidazole 500 mg b.i.d and a proton pump inhibitor b.i.d for remaining 5 days. In this study, we investigated efficacy and tolerability of bismuth addition in to ST. We included patients that underwent upper gastrointestinal endoscopy in which H. pylori infection was diagnosed by histological examination of antral and corporal gastric mucosa biopsy. Participants were randomly administered ST or bismuth containing ST (BST) protocols for the first-line H. pylori eradication therapy. Participants have been tested by urea breath test for eradication success 6 weeks after the completion of treatment. One hundred and fifty patients (93 female, 57 male) were enrolled. There were no significant differences in eradication rates for both intention to treat population (70.2%, 95% confidence interval [CI]: 66.3-74.1% vs. 71.8%, 95% CI: 61.8-81.7%, for ST and BST, respectively, p>0.05) and per protocol population (74.6%, 95% CI: 63.2-85.8% vs. 73.7%, 95% CI: 63.9-83.5% for ST and BST, respectively, p>0.05). Despite the undeniable effect of bismuth, there may be several possible reasons of unsatisfactory eradication success. Drug administration time, coadministration of other drugs, possible H. pylori resistance to bismuth may affect the eradication success. The addition of bismuth subcitrate to ST regimen does not provide significant increase in eradication rates.

  18. The Role of Home Practice in the Thermal Biofeedback Treatment of Migraine Headache.

    ERIC Educational Resources Information Center

    Gauthier, Janel; And Others

    1994-01-01

    Examined role of home practice of hand warming in thermal biofeedback treatment of migraine headache. Seventeen female migraine sufferers were assigned to thermal biofeedback with or without regular home practice. Subjects on home practice group experienced decreases in headache activity and medication intake that were both statistically and…

  19. Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure

    NASA Astrophysics Data System (ADS)

    Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.

    2016-03-01

    17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.

  20. Improvement of activated sludge resistance to shock loading by fungal enzyme addition during textile wastewater treatment.

    PubMed

    Manai, Imène; Miladi, Baligh; El Mselmi, Abdellatif; Hamdi, Moktar; Bouallagui, Hassib

    2017-04-01

    The effects of the additions of the fungal enzymatic extract were investigated in relation to the treatment of real textile wastewater (RTW) by the activated sludge process (ASP). The used enzyme cocktail was produced by a new isolated fungal Chaetomium globosum IMA1. The system that was operated with enzyme addition showed a better chemical oxygen demand (COD) removal efficiency (95%) compared to the control system (75%). In addition, the improvement of color removal (OD620) efficiencies was around 15%, when the newly consortium fungal enzymes was added. As the organic loading rate (OLR) increased from 0.33 g to 0.66 g COD L(-1) d(-1), a decrease in the performance of the two reactors was observed by monitoring the quality of treated effluents. However, the ASP working with enzyme addition showed a strong resistance to shock loadings and restored after few days compared to the control system, which was strongly inhibited. In fact, the enzyme addition improved the sludge volume index (SVI) and the activity of microorganisms. A high activity of laccase (300 U.L(-1)) enzyme was observed throughout the decolorization process in the improved system.

  1. Hyperbaric oxygen therapy as additional treatment in deep sternal wound infections – a single center's experience

    PubMed Central

    Bryndza, Magdalena; Chrapusta, Anna; Kobielska, Ewa; Kapelak, Bogusław; Grudzień, Grzegorz

    2016-01-01

    Introduction Deep sternal wound infection (DSWI) is one of the most serious complications after cardiac surgery procedures, observed in 5% of patients. Current standard medical therapy for DSWI includes antibiotics, surgical debridement, resuturing or negative pressure wound therapy (NPWT). Unfortunately, in some cases these methods are insufficient, and additional therapeutic options are needed. Aim To assess the effects and usefulness of additional hyperbaric oxygen therapy (HBO2) in patients with DSWI after cardiac surgery procedures. Material and methods A retrospective analysis of 10 patients after cardiac surgery who developed DSWI in the period 2010–2012 was performed. After 3 months of ineffective conventional therapy including targeted antibiotic, surgical sternal debridement and NPWT, patients were qualified for additional HBO2 therapy. A total of 20 sessions of HBO2 therapy were performed, each 92 minutes long. Results After 4 weeks of HBO2 treatment, 7 patients presented complete wound healing with fibrous scar formation. One patient was qualified for the another cycle of HBO2 therapy with 20 additional sessions, and complete wound healing was observed. In 2 cases, after 5 and 19 sessions, HBO2 was interrupted because of improper qualifications. Conclusions The HBO2 as an additional therapy in DSWI was successful in 80% of cases, and no complications were observed. However, due to the small number of published studies with a small number of patients, randomized, clinical trials are needed to assess the clinical results of HBO2 in DSWI after cardiac surgery procedures. PMID:27785131

  2. Additional Treatments for High-Risk Obstetric Antiphospholipid Syndrome: a Comprehensive Review.

    PubMed

    Ruffatti, Amelia; Hoxha, Ariela; Favaro, Maria; Tonello, Marta; Colpo, Anna; Cucchini, Umberto; Banzato, Alessandra; Pengo, Vittorio

    2016-06-25

    Most investigators currently advocate prophylactic-dose heparin plus low-dose aspirin as the preferred treatment of otherwise healthy women with obstetric antiphospholipid syndrome, whilst women with a history of vascular thrombosis alone or associated with pregnancy morbidity are usually treated with therapeutic heparin doses in association with low-dose aspirin in an attempt to prevent both thrombosis and pregnancy morbidity. However, the protocols outlined above fail in about 20 % of pregnant women with antiphospholipid syndrome. Identifying risk factors associated with pregnancy failure when conventional therapies are utilized is an important step in establishing guidelines to manage these high-risk patients. Some clinical and laboratory risk factors have been found to be related to maternal-foetal complications in pregnant women on conventional therapy. However, the most efficacious treatments to administer to high-risk antiphospholipid syndrome women in addition to conventional therapy in order to avoid pregnancy complications are as yet unestablished. This is a comprehensive review on this topic and an invitation to participate in a multicentre study in order to identify the best additional treatments to be used in this subset of antiphospholipid syndrome patients.

  3. Reduction of hole doping of chemical vapor deposition grown graphene by photoresist selection and thermal treatment.

    PubMed

    Sul, Onejae; Kim, Kyumin; Choi, Eunseok; Kil, Joonpyo; Park, Wanjun; Lee, Seung-Beck

    2016-12-16

    The doping effect on graphene by photoresists were studied in this article. Polymethyl methacrylate (PMMA) is the usual choice for graphene transfer, but it is known to leave a significant amount of residue. PMMA results in strong hole doping and reduction of mobility of the graphene devices. Not only PMMA, but photoresists also leave residues during the lithographic steps and dope the graphene in strong hole-doping states along with water and oxygen molecules. In this article, we tested three types of photoresists for their effects on graphene's electrical properties. It was found that a specific photoresist can significantly reduce the amount of hole-doping of the graphene transistor more than other photoresists. The use of hydrophobic substrates and additional thermal treatment can help reducing the hole-doping further.

  4. Reduction of hole doping of chemical vapor deposition grown graphene by photoresist selection and thermal treatment

    NASA Astrophysics Data System (ADS)

    Sul, Onejae; Kim, Kyumin; Choi, Eunseok; Kil, Joonpyo; Park, Wanjun; Lee, Seung-Beck

    2016-12-01

    The doping effect on graphene by photoresists were studied in this article. Polymethyl methacrylate (PMMA) is the usual choice for graphene transfer, but it is known to leave a significant amount of residue. PMMA results in strong hole doping and reduction of mobility of the graphene devices. Not only PMMA, but photoresists also leave residues during the lithographic steps and dope the graphene in strong hole-doping states along with water and oxygen molecules. In this article, we tested three types of photoresists for their effects on graphene’s electrical properties. It was found that a specific photoresist can significantly reduce the amount of hole-doping of the graphene transistor more than other photoresists. The use of hydrophobic substrates and additional thermal treatment can help reducing the hole-doping further.

  5. EFFECTS OF THERMAL TREATMENTS ON THE CHEMICAL REACTIVITY OF TRICHLOROETHYLENE

    EPA Science Inventory

    A series of experiments was completed to investigate abiotic degradation and reaction product formation of trichloroethylene (TCE) when heated. A quartz-tube apparatus was used to study short residence time and high temperature conditions that are thought to occur during thermal ...

  6. 5-HMF and carbohydrates content in stingless bee honey by CE before and after thermal treatment.

    PubMed

    Biluca, Fabíola C; Della Betta, Fabiana; de Oliveira, Gabriela Pirassol; Pereira, Lais Morilla; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Fett, Roseane

    2014-09-15

    This study aimed to assess 5-hydroximethylfurfural and carbohydrates (fructose, glucose, and sucrose) in 13 stingless bee honey samples before and after thermal treatment using a capillary electrophoresis method. The methods were validated for the parameters of linearity, matrix effects, precision, and accuracy. A factorial design was implemented to determine optimal thermal treatment conditions and then verify the postprocedural 5-HMF formation, but once 5-HMF were thermal treatment, Apis mellifera honey presented higher 5-HMF content than stingless bee honey. Results suggest that a high temperature related to briefer thermal treatment could be an efficient way to extend shelf life without affecting 5-HMF content in stingless bee honey.

  7. In Situ Thermal Treatment of Chlorinated Solvents: Fundamentals and Field Applications

    EPA Pesticide Factsheets

    This report contains information about the use of in situ thermal treatment technologies to treat chlorinated solvents in source zones containing free-phase contamination or high concentrations of contaminants.

  8. Low Conductive Thermal Barrier Coatings Produced by Ion Beam Assisted EB-PVD with Controlled Porosity, Microstructure Refinement and Alloying Additions for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Wolfe, Douglas E.; Singh, Jogender

    2005-01-01

    Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.

  9. The Facial Aesthetic index: An additional tool for assessing treatment need

    PubMed Central

    Sundareswaran, Shobha; Ramakrishnan, Ranjith

    2016-01-01

    Objectives: Facial Aesthetics, a major consideration in orthodontic diagnosis and treatment planning, may not be judged correctly and completely by simply analyzing dental occlusion or osseous structures. Despite this importance, there is no index to guarantee availability of treatment or prioritize patients based on their soft tissue treatment needs. Individuals having well-aligned teeth but unaesthetic convex profiles do not get included for treatment as per current malocclusion indices. The aim of this investigation is to develop an aesthetic index based on facial profiles which could be used as an additional tool with malocclusion indices. Materials and Methods: A chart showing typical facial profile changes due to underlying malocclusions was generated by soft tissue manipulations of standardized profile photographs of a well-balanced male and female face. A panel of 62 orthodontists judged the profile photographs of 100 patients with different soft tissue patterns for assessing profile variations and treatment need. The index was later tested in a cross-section of school population. Statistical analysis was done using “irr” package of R environment version 2.15.1. Results: The index exhibited very good reliability in determining profile variations (Fleiss kappa 0.866, P < 0.001), excellent reproducibility (kappa 0.9078), high sensitivity, and specificity (95.7%). Testing in population yielded excellent agreement among orthodontists (kappa 0.9286). Conclusions: A new Facial Aesthetic index, based on patient's soft tissue profile requirements is proposed, which can complement existing indices to ensure treatment to those in need. PMID:27127752

  10. Additive effect of ketoconazole and octreotide in the treatment of severe adrenocorticotropin-dependent hypercortisolism.

    PubMed

    Vignati, F; Loli, P

    1996-08-01

    Over the last few years ketoconazole and octreotide have been employed in the treatment of pituitary-dependent or ectopic Cushing's syndrome. In four patients (two men and two women, aged 25-64 yr) with severe ACTH-dependent hypercortisolism in whom medical treatment with ketoconazole showed limited effectiveness and/or tolerability, we tried the association with octreotide. In all patients ketoconazole (200-1000 mg) induced a marked decrease in urinary free cortisol (UFC) excretion, but normalization could not be achieved. After ketoconazole discontinuation, three patients received octreotide alone (300-1500 micrograms/day, sc). This drug caused a dramatic decrease in UFC excretion, although not normalization; in all patients, escape from treatment occurred. Combined treatment was carried out for 10-180 days. Urinary cortisol excretion normalized and remained steadily within normal limits in three of four patients in whom normal UFC excretion had never been attained with both single drug regimens; in the fourth patient, UFC excretion decreased to levels lower than those achieved with ketoconazole or octreotide alone. The association with octreotide allowed a reduction in the daily dose of ketoconazole in three patients. Consistent with the steady reduction of cortisol production, a striking clinical improvement occurred in all patients after starting combined treatment. The normalization of UFC in three of four patients treated with both agents suggests that this approach may be useful in the long term treatment of severe forms of hypercortisolism of both pituitary and ectopic origin. In contrast to the limited effectiveness of each drug taken singularly at the same or higher doses, the association of the two drugs had an additive effect in the attainment of normal urinary cortisol excretion.

  11. Novel approaches to treatment of hepatocellular carcinoma and hepatic metastases using thermal ablation and thermosensitive liposomes.

    PubMed

    Dewhirst, Mark W; Landon, Chelsea D; Hofmann, Christina L; Stauffer, Paul R

    2013-07-01

    Because of the limitations of surgical resection, thermal ablation is commonly used for the treatment of hepatocellular carcinoma and liver metastases. Current methods of ablation can result in marginal recurrences of larger lesions and in tumors located near large vessels. This review presents a novel approach for extending treatment out to the margins where temperatures do not provide complete treatment with ablation alone, by combining thermal ablation with drug-loaded thermosensitive liposomes. A history of the development of thermosensitive liposomes is presented. Clinical trials have shown that the combination of radiofrequency ablation and doxorubicin-loaded thermosensitive liposomes is a promising treatment.

  12. The effects of different thermal treatments and organic acid levels on nutrient digestibility in broilers.

    PubMed

    Goodarzi Boroojeni, F; Mader, A; Knorr, F; Ruhnke, I; Röhe, I; Hafeez, A; Männer, K; Zentek, J

    2014-05-01

    Poultry feed is a potential vector for pathogens. Heat processing and organic acid treatments may decontaminate feed and can affect bird performance as well as feed digestibility. The present study was performed to investigate the effect of different thermal treatments including pelleting (P), long-term conditioning at 85°C for 3 min (L), or expanding at 110°C (E110) and 130°C for 3 to 5 s (E130) without or with 0.75 and 1.5% organic acid supplementation (63.75% formic acid, 25.00% propionic acid, and 11.25% water) on performance, nutrient digestibility, and organ weights of broilers. In total, 960 one-day-old broiler chicks were randomly assigned to 8 replicates using a 3 × 4 factorial arrangement. Performance variables were determined, and the relative organ weights and ileal and total amino acid (AA) digestibilities were measured at d 35. The organic acid inclusion linearly improved feed efficiency in the first week (P ≤ 0.05). The acid inclusion levels and thermal treatments had no significant effect on the performance variables at later intervals of the growing period of the birds. The L group showed the lowest ileal AA and CP digestibility. The inclusion of organic acids had a quadratic effect on total and ileal digestibility of isoleucine (P ≤ 0.05), whereas it had no significant effect on the ileal digestibility of other AA and nutrients. The relative weights of the jejunum and small intestine were significantly higher in the E130 group compared with P and L (P ≤ 0.05). In conclusion, our study demonstrated that long-term heat conditioning can decrease ileal nutrient digestibility, whereas pelleting and expansion, independently of organic acid addition, seemed to have no negative impact on broiler performance and nutrient digestibilities. Moreover, adding a blend of organic acids to broiler diets had neither positive nor negative effects on nutrient digestibility and final broiler performance. This indicates the feasibility of short-term thermal

  13. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    SciTech Connect

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  14. [Endovenous thermal treatment of varices of the lower extremities].

    PubMed

    Bækgaard, Niels; Schroeder, Torben V

    2011-03-28

    Using a systematic review process, we identified 15 randomised controlled trials comparing either of the two endovenous thermal techniques, radiofrequency or laser ablation, with conventional open surgery for great saphenous varicose veins. The majority of trials were small and had short-term follow-up only. In general, we found no difference in reflux or recurrences in the short term. Endovenously treated patients seemed to be on sick leave for a shorter period of time than patients having undergone open surgery.

  15. 40 CFR 141.711 - Filtered system additional Cryptosporidium treatment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... treatment. Bin 2 1-log treatment 1.5-log treatment 1-log treatment (1) Bin 3 2-log treatment 2.5-log treatment 2-log treatment (2) Bin 4 2.5-log treatment 3-log treatment 2.5-log treatment (3) 1 As determined by the State such that the total Cryptosporidium removal and inactivation is at least 4.0-log. 2...

  16. 40 CFR 141.711 - Filtered system additional Cryptosporidium treatment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... treatment. Bin 2 1-log treatment 1.5-log treatment 1-log treatment (1) Bin 3 2-log treatment 2.5-log treatment 2-log treatment (2) Bin 4 2.5-log treatment 3-log treatment 2.5-log treatment (3) 1 As determined by the State such that the total Cryptosporidium removal and inactivation is at least 4.0-log. 2...

  17. 40 CFR 141.711 - Filtered system additional Cryptosporidium treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment. Bin 2 1-log treatment 1.5-log treatment 1-log treatment (1) Bin 3 2-log treatment 2.5-log treatment 2-log treatment (2) Bin 4 2.5-log treatment 3-log treatment 2.5-log treatment (3) 1 As determined by the State such that the total Cryptosporidium removal and inactivation is at least 4.0-log. 2...

  18. 40 CFR 141.711 - Filtered system additional Cryptosporidium treatment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... treatment. Bin 2 1-log treatment 1.5-log treatment 1-log treatment (1) Bin 3 2-log treatment 2.5-log treatment 2-log treatment (2) Bin 4 2.5-log treatment 3-log treatment 2.5-log treatment (3) 1 As determined by the State such that the total Cryptosporidium removal and inactivation is at least 4.0-log. 2...

  19. Application of acidic thermal treatment for one- and two-stage anaerobic digestion of sewage sludge.

    PubMed

    Takashima, M; Tanaka, Y

    2010-01-01

    The effectiveness of acidic thermal treatment (ATT) was examined in a 106-day continuous experiment, when applied to one- or two-stage anaerobic digestion of sewage sludge (4.3% TS). The ATT was performed at 170 °C and pH 5 for 1 hour (sulfuric acid for lowering pH). The one-stage process was mesophilic at 20 days hydraulic retention time (HRT), and incorporated the ATT as pre-treatment. The two-stage process consisted of a thermophilic digester at 5 days HRT and a mesophilic digester at 15 days HRT, and incorporated the ATT as interstage-treatment. On average, VSS reduction was 48.7% for the one-stage control, 65.8% for the one-stage ATT, 52.7% for the two-stage control and 67.6% for the two-stage ATT. Therefore, VSS reduction was increased by 15-17%, when the ATT was combined in both one- and two-stage processes. In addition, the dewaterability of digested sludge was remarkably improved, and phosphate release was enhanced. On the other hand, total methane production did not differ significantly, and color generation was noted in the digested sludge solutions with the ATT. In conclusion, the anaerobic digestion with ATT can be an attractive alternative for sludge reduction, handling, and phosphorus recovery.

  20. Consolidated conversion of hulled barley into fermentable sugars using chemical, thermal, and enzymatic (CTE) treatment.

    PubMed

    Kim, Tae Hyun; Nghiem, Nhuan P; Taylor, Frank; Hicks, Kevin B

    2011-06-01

    A novel process using chemical, thermal, and enzymatic treatment for conversion of hulled barley into fermentable sugars was developed. The purpose of this process is to convert both lignocellulosic polysaccharides and starch in hulled barley grains into fermentable sugars simultaneously without a need for grinding and hull separation. In this study, hulled barley grains were treated with 0.1 and 1.0 wt.-% sulfuric acid at various temperatures ranging from 110 to 170 °C in a 63-ml flow-through packed-bed stainless steel reactor. After sulfuric acid pretreatment, simultaneous conversion of lignocellulose and starch in the barley grains into fermentable sugars was performed using an enzyme cocktail, which included α-amylase, glucoamylase, cellulase, and β-glucosidase. Both starch and non-starch polysaccharides in the pre-treated barley grains were readily converted to fermentable sugars. The treated hulled barley grains, including their hull, were completely hydrolyzed to fermentable sugars with recovery of almost 100% of the available glucose and xylose. The pretreatment conditions of this chemical, thermal, and enzymatic (CTE) process for achieving maximum yield of fermentable sugars were 1.0 wt.% sulfuric acid and 110 °C. In addition to starch, the acid pretreatment also retained most of the available proteins in solid form, which is essential for subsequent production of fuel ethanol and high protein distiller's dried grains with solubles co-product.

  1. Thermal treatment for chlorine removal from coal. Final technical report, September 1, 1991--December 31, 1992

    SciTech Connect

    Muchmore, C.B.; Hesketh, H.E.; Chen, Han Lin

    1992-12-31

    It was the goal of this research to provide the technical basis for development of a process to remove chlorine from coal prior to combustion, based on a thermal treatment process. Reaction rate constants and activation energy have been determined, and energy and mass balances performed. Substitution of a synthetic flue gas (7% 0{sub 2}, 12% CO{sub 2}, 81% N{sub 2}) for nitrogen in the tube furnace resulted in at least equivalent chlorine removal (85.5%) compared to nitrogen. The fluidized bed dechlorination system modifications have resulted in a steady increase in performance, the most recent run providing 64% reduction in chlorine concentration. Addition of supplemental heat to the column should permit attainment of the slightly higher temperatures required to attain over 80% removal of the chlorine. Calcium chloride by-product of 67% purity has been produced. A bench scale catenary grid concentrator with supplemental heating coils and limited insulation is capable of concentrating CaCl{sub 2} solution up to essentially 40%, with no sign of scale or plugging. Further development of the process should include a thorough evaluation of the use of combustion gases to serve as the fluidizing medium and to provide the energy for the thermal dechlorination process.

  2. Advanced thermal hydrolysis: optimization of a novel thermochemical process to aid sewage sludge treatment.

    PubMed

    Abelleira, Jose; Pérez-Elvira, Sara I; Portela, Juan R; Sánchez-Oneto, Jezabel; Nebot, Enrique

    2012-06-05

    The aim of this work was to study in depth the behavior and optimization of a novel process, called advanced thermal hydrolysis (ATH), to determine its utility as a pretreatment (sludge solubilization) or postreatment (organic matter removal) for anaerobic digestion (AD) in the sludge line of wastewater treatment plants (WWTPs). ATH is based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H(2)O(2)) addition and takes advantage of a peroxidation/direct steam injection synergistic effect. On the basis of the response surface methodology (RSM) and a modified Doehlert design, an empirical second-order polynomial model was developed for the total yield of: (a) disintegration degree [DD (%)] (solubilization), (b) filtration constant [F(c) (cm(2)/min)] (dewaterability), and (c) organic matter removal (%). The variables considered were operation time (t), temperature reached after initial heating (T), and oxidant coefficient (n = oxygen(supplied)/oxygen(stoichiometric)). As the model predicts, in the case of the ATH process with high levels of oxidant, it is possible to achieve an organic matter removal of up to 92%, but the conditions required are prohibitive on an industrial scale. ATH operated at optimal conditions (oxygen amount 30% of stoichiometric, 115 °C and 24 min) gave promising results as a pretreatment, with similar solubilization and markedly better dewaterability levels in comparison to those obtained with TH at 170 °C. The empirical validation of the model was satisfactory.

  3. Laboratory study of non-aqueous phase liquid and water co-boiling during thermal treatment.

    PubMed

    Zhao, C; Mumford, K G; Kueper, B H

    2014-08-01

    In situ thermal treatment technologies, such as electrical resistance heating and thermal conductive heating, use subsurface temperature measurements in addition to the analysis of soil and groundwater samples to monitor remediation performance. One potential indication of non-aqueous phase liquid (NAPL) removal is an increase in temperature following observations of a co-boiling plateau, during which subsurface temperatures remain constant as NAPL and water co-boil. However, observed co-boiling temperatures can be affected by the composition of the NAPL and the proximity of the NAPL to the temperature measurement location. Results of laboratory heating experiments using single-component and multi-component NAPLs showed that local-scale temperature measurements can be mistakenly interpreted as an indication of the end of NAPL-water co-boiling, and that significant NAPL saturations (1% to 9%) remain despite observed increases in temperature. Furthermore, co-boiling of multi-component NAPL results in gradually increasing temperature, rather than a co-boiling plateau. Measurements of gas production can serve as a complementary metric for assessing NAPL removal by providing a larger-scale measurement integrated over multiple smaller-scale NAPL locations. Measurements of the composition of the NAPL condensate can provide ISTT operators with information regarding the progress of NAPL removal for multi-component sources.

  4. Results of thermal desorption treatability studies on soils from wood treatment sites

    SciTech Connect

    Shealy, S.E.; Lin, W.C.; Richards, M.K.; Culp, J.

    1997-12-31

    Thermal desorption is one of the most effective technologies for treatment of soils or wastes containing organic contaminants. This includes the polycyclic aromatic hydrocarbons, pentachlorophenol and dioxins/furans that are the typical contaminants of concern at wood treatment sites. This paper summarizes the results of bench-scale thermal desorption treatability studies on soils from two wood treatment sites. The testing identified the time-temperature combination needed for contaminant removal and provided data on the composition of the treatment residuals from the thermal treatment process. This study included testing in static trays and in a small bench-scale rotary kiln. The static tray tests are a bench-scale method of readily evaluating the effect of various target temperatures and residence times on contaminant removal. These tests use 40--50 grams, of soil, which is aliquoted into a tray and placed into a muffle furnace at a pre-determined time and temperature. These tests are used to identify effective treatment conditions. The Rotary Thermal Apparatus (RTA) is also a bench-scale device that is used to treat 1 to 1.5 kilograms of soil in an indirectly heated rotary tube. This device simulates the heat and mass transfer in rotary kiln. The RTA is a batch device and can be purged with nitrogen, oxygen or other gases to simulate the atmosphere of various thermal treatment processes.

  5. Nitrification in lake sediment with addition of drinking water treatment residuals.

    PubMed

    Wang, Changhui; Liu, Juanfeng; Wang, Zhixin; Pei, Yuansheng

    2014-06-01

    Drinking water treatment residuals (WTRs), non-hazardous by-products generated during potable water production, can effectively reduce the lake internal phosphorus (P) loading and improve water quality in lakes. It stands to reason that special attention regarding the beneficial reuse of WTRs should be given not only to the effectiveness of P pollution control, but also to the effects on the migration and transformation of other nutrients (e.g., nitrogen (N)). In this work, based on laboratory enrichment tests, the effects of WTRs addition on nitrification in lake sediment were investigated using batch tests, fluorescence in situ hybridization, quantitative polymerase chain reaction and phylogenetic analysis techniques. The results indicated that WTRs addition had minor effects on the morphologies of AOB and NOB; however, the addition slightly enhanced the sediment nitrification potential from 12.8 to 13.2 μg-N g(-1)-dry sample h(-1) and also increased the ammonia oxidation bacteria (AOB) and nitrite oxidizing bacteria (NOB) abundances, particularly the AOB abundances (P < 0.05), which increased from 1.11 × 10(8) to 1.31 × 10(8) copies g(-1)-dry sample. Moreover, WTRs addition was beneficial to the enrichment of Nitrosomonas and Nitrosospira multiformis and promoted the emergence of a new Nitrospira cluster, causing the increase in AOB and NOB diversities. Further analysis showed that the variations of nitrification in lake sediment after WTRs addition were primarily due to the decrease of bioavailable P, the introduction of new nitrifiers and the increase of favorable carriers for microorganism attachment in sediments. Overall, these results suggested that WTRs reuse for the control of lake internal P loading would also lead to conditions that are beneficial to nitrification.

  6. Radon variations during treatment in thermal spas of Lesvos Island (Greece).

    PubMed

    Vogiannis, Efstratios; Nikolopoulos, Dimitrios; Louizi, Anna; Halvadakis, C P

    2004-01-01

    The aim of this paper was to study the variations of radon and daughter nuclei during treatment in the thermal spas of Lesvos Island (Greece). For this purpose, in the thermal spas of Lesvos we have measured the radon concentrations of thermal waters, as well as indoor radon, daughter and coarse particle (>500 nm) concentration. Various instruments and procedures were employed for measurements. Radon concentrations of thermal waters were found to lie in the range 10 and 304 Bq l(-1). Concentration peaks both for radon, radon daughter and coarse particle, were found to appear during filling of baths in the treatment process. The doses delivered to the bathers during treatment were in the range of 0.00670 mSv per year to 0.1279 mSv per year, while the doses delivered to personnel were below 20 mSv per year.

  7. Study of Thermal Fatigue of H13 Die Steel with Various Surface Treatments

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Ferguson, W. G.; Paine, I. R.

    Surfaces of die-casting dies are subjected to very severe conditions of cyclical thermal and mechanical load, and chemical and mechanical wear. Dies mostly fail due to a combination of heat checking, erosion, corrosion and soldering. It is conceivable that appropriate surface treatments and coatings have a favourable influence on the temperature dependant performance of the surface of the die. The objective of this study was to examine various surface treatments and coatings. including shot peening, nitriding, nitro-carburizing, laser hardening and remelting, electro-spark alloying (deposition) and plasma spraying, under thermal fatigue conditions. Thermal cycling tests were conducted by alternate dipping of treated samples in an LM24 melt and in water. Results and interpretation are presented in this paper. The best thermal fatigue resistance was shown for a double surface treatment of laser hardening plus electro-spark deposition.

  8. Improving the bond strength between steel rebar and concrete by ozone treatment of rebar and polymer addition to concrete

    SciTech Connect

    Fu, X.; Chung, D.D.L.

    1997-05-01

    Ozone treatment of steel rebar, together with latex addition (20% by weight of cement) to concrete, resulted in a 39% increase in the shear bond strength between rebar and concrete, compared to a 25% increase resulted from either ozone treatment alone or latex addition alone. Ozone treatment and latex addition resulted in similarly small increases in the contact electrical resistivity between rebar and concrete. Methylcellulose addition (0.4% by weight of cement) to concrete gave slightly less bond strength increase than the latex addition, but did not affect the contact resistivity.

  9. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    SciTech Connect

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

  10. Thermal aging of traditional and additively manufactured foams: analysis by time-temperature-superposition, constitutive, and finite-element models

    SciTech Connect

    Maiti, A.; Weisgraber, T. H.; Small, W.; Lewicki, J. P.; Duoss, E. B.; Spadaccini, C. M.; Pearson, M. A.; Chinn, S. C.; Wilson, T. S.; Maxwell, R. S.

    2016-12-08

    Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component in our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.

  11. Structure and properties of PVDF membrane with PES-C addition via thermally induced phase separation process

    NASA Astrophysics Data System (ADS)

    Wu, Lishun; Sun, Junfen

    2014-12-01

    Polyvinylidene fluoride (PVDF) membrane and PVDF membrane with phenolphthalein polyethersulfone (PES-C) addition were prepared via thermally induced phase separation (TIPS) method by using diphenyl carbonate (DPC) and dimethyl acetamide (DMAc) as mixed diluents. The effects of coagulation temperature and pre-evaporation time on structure and properties of membranes were studied. The changes of sewage flux in MBR and the attenuation coefficient of sewage flux were investigated. The resistance distributions of PVDF and PVDF/PES-C membranes were compared by resistance analysis. Membrane composition and structure were characterized by ATR-FTIR, TGA, SEM and AFM. The foulant on membranes was analyzed by FTIR. The contact angle of PVDF/PES-C membrane was lower than that of PVDF membrane. A thinner skin layer and a porous cellular support layer formed in PVDF/PES-C membrane and resulted in a higher porosity and pure water flux. The pure water flux and porosity of PVDF/PES-C membrane increased with rising coagulation temperature and decreased with extending pre-evaporation time. The flux attenuation coefficient, the cake layer resistance and internal fouling resistance of PVDF/PES-C membrane in MBR were smaller than those of PVDF membrane in MBR. The FTIR spectrum of foulant on membrane indicated that the foulant on PVDF/PES-C membrane was mostly composed of protein and polysaccharide, while the foulant on pure PVDF membrane included biopolymer clusters besides protein and polysaccharide.

  12. Addition of meloxicam to the treatment of clinical mastitis improves subsequent reproductive performance.

    PubMed

    McDougall, S; Abbeloos, E; Piepers, S; Rao, A S; Astiz, S; van Werven, T; Statham, J; Pérez-Villalobos, N

    2016-03-01

    A blinded, negative controlled, randomized intervention study was undertaken to test the hypothesis that addition of meloxicam, a nonsteroidal anti-inflammatory drug, to antimicrobial treatment of mild to moderate clinical mastitis would improve fertility and reduce the risk of removal from the herd. Cows (n=509) from 61 herds in 8 regions (sites) in 6 European countries were enrolled. Following herd-owner diagnosis of mild to moderate clinical mastitis within the first 120 d of lactation in a single gland, the rectal temperature, milk appearance, and California Mastitis Test score were assessed. Cows were randomly assigned within each site to be treated either with meloxicam or a placebo (control). All cows were additionally treated with 1 to 4 intramammary infusions of cephalexin and kanamycin at 24-h intervals. Prior to treatment and at 14 and 21 d posttreatment, milk samples were collected for bacteriology and somatic cell count. Cows were bred by artificial insemination and pregnancy status was subsequently defined. General estimating equations were used to determine the effect of treatment (meloxicam versus control) on bacteriological cure, somatic cell count, the probability of being inseminated by 21 d after the voluntary waiting period, the probability of conception to first artificial insemination, the number of artificial insemination/conception, the probability of pregnancy by 120 or 200 d postcalving, and the risk of removal by 300 d after treatment. Cox's proportional hazards models were used to test the effect of treatment on the calving to first insemination and calving to conception intervals. Groups did not differ in terms of age, clot score, California Mastitis Test score, rectal temperature, number of antimicrobial treatments given or bacteria present at the time of enrollment, but cows treated with meloxicam had greater days in milk at enrollment. Cows treated with meloxicam had a higher bacteriological cure proportion than those treated with

  13. Inactivation of Bacillus subtilis spores using various combinations of ultraviolet treatment with addition of hydrogen peroxide.

    PubMed

    Zhang, Yiqing; Zhou, Lingling; Zhang, Yongji; Tan, Chaoqun

    2014-01-01

    This study aims at comparing the inactivation of Bacillus subtilis spores by various combinations of UV treatment and hydrogen peroxide (H2O2) addition. The combinations included sequential (UV-H2O2, H2O2-UV) and simultaneous (UV/H2O2) processes. Results showed that B. subtilis spores achieved a certain inactivation effect through UV treatment. However, hardly any inactivation effect by H2O2 alone was observed. H2O2 had a significant synergetic effect when combined with UV treatment, while high irradiance and H2O2 concentration both favored the reaction. When treated with 0.60 mm H2O2 and 113.0 μW/cm(2) UV irradiance for 6 min, the simultaneous UV/H2O2 treatment showed significantly improved disinfection effect (4.13 log) compared to that of UV-H2O2 (3.03 log) and H2O2-UV (2.88 log). The relationship between the inactivation effect and the exposure time followed a typical pseudo-first-order kinetics model. The pseudo-first-order rate constants were 0.478, 0.447 and 0.634 min(-1), for the UV-H2O2, H2O2-UV and UV/H2O2 processes, respectively, further confirming the optimal disinfection effect of the UV/H2O2 process. The disinfection could be ascribed to the OH radicals, as verified by the level of para-chlorobenzoic acid (pCBA).

  14. Thermal stress-relief treatments for 2219 aluminum alloy are evaluated

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Evaluation of three thermal stress relief treatments for 2219 aluminum alloy in terms of their effect on residual stress, mechanical properties, and stress corrosion resistance. The treatments are post aging and stress relieving fullscale and subscale parts formed in the aged T81 condition, and aging subscale parts formed in the unaged T31 condition.

  15. LOW TEMPERATURE THERMAL TREATMENT (LT3®) TECHNOLOGY - ROY F. WESTON, INC. - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This report evaluates the Low Temperature Thermal Treatment (LT3®) system's ability to remove VOC and SVOC compounds from solid wastes. This evaluation is based on treatment performance and cost data from the Superfund Innovative Technology (SITE) demonstration and fi...

  16. Combined ultrasonication and thermal pre-treatment of sewage sludge for increasing methane production.

    PubMed

    Trzcinski, Antoine Prandota; Tian, Xinbo; Wang, Chong; Lin, Li Leonard; Ng, Wun Jern

    2015-01-01

    This article focuses on the combination of ultrasonic and thermal treatment of sewage sludge (SS). The combination involved ultrasonicating a fraction of the sludge and thermal treatment at various temperatures and this resulted in solubilization of proteins and carbohydrates, and so contributing to increased COD solubilization. During the treatment, SCOD, soluble proteins and carbohydrates increased from 760 mg L(-1) to 10,200 mg L(-1), 110 mg L(-1) to 2,900 mg L(-1) and 60 mg L(-1) to 630 mg L(-1), respectively. It was found ultrasonication of only a fraction of the sludge (>20%) followed by thermal treatment led to significant improvement compared to thermal and ULS treatments applied on their own. At 65°C, the kinetic of solubilization was improved and the hyper-thermophilic treatment time could be reduced to a few hours when ultrasonication was used first. A linear correlation (R(2) = 95%) was found between the SCOD obtained after ultrasonication pre-treatment and anaerobic biodegradability. The combined treatment resulted in 20% increase in biogas production during the anaerobic digestion of the pre-treated sludge.

  17. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different thermal conditions.

    PubMed

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-06-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn-Ag-Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided.

  18. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    PubMed Central

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. PMID:27877786

  19. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment.

    PubMed

    Hii, Kevin; Baroutian, Saeid; Parthasarathy, Raj; Gapes, Daniel J; Eshtiaghi, Nicky

    2014-03-01

    With rapid world population growth and strict environmental regulations, increasingly large volumes of sludge are being produced in today's wastewater treatment plants (WWTP) with limited disposal routes. Sludge treatment has become an essential process in WWTP, representing 50% of operational costs. Sludge destruction and resource recovery technologies are therefore of great ongoing interest. Hydrothermal processing uses unique characteristics of water at elevated temperatures and pressures to deconstruct organic and inorganic components of sludge. It can be broadly categorized into wet oxidation (oxidative) and thermal hydrolysis (non-oxidative). While wet air oxidation (WAO) can be used for the final sludge destruction and also potentially producing industrially useful by-products such as acetic acid, thermal hydrolysis (TH) is mainly used as a pre-treatment method to improve the efficiency of anaerobic digestion. This paper reviews current hydrothermal technologies, roles of wet air oxidation and thermal hydrolysis in sludge treatment, and challenges faced by these technologies.

  20. Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Huang, Jun; Du, Ning; Liu, Xiao-Di; Wang, Xing-Quan; Lv, Guo-Hua; Zhang, Guo-Ping; Guo, Li-Hong; Yang, Si-Ze

    2012-07-01

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O2 plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O2 plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O2 (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  1. Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition

    SciTech Connect

    Chen Wei; Huang Jun; Wang Xingquan; Lv Guohua; Zhang Guoping; Du Ning; Liu Xiaodi; Guo Lihong; Yang Size

    2012-07-01

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O{sub 2} plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O{sub 2} plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O{sub 2} (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  2. [Neckpain: additional investigations only when there is an indication--treatment is rarely necessary].

    PubMed

    Vermeulen, M Rien

    2013-01-01

    In this article, we describe the case of a 44-year-old secretary who developed neck pain. Without first having consulted her general practitioner, she visited a chiropractor who concluded that she had 'irritation of the nerves', which the patient interpreted as a herniation of a cervical disc. She believed an MRI to be necessary. She underwent a total body scan at a commercial facility which revealed degenerative changes of the cervical and lumbar spine and an arachnoid cyst in the brain. We could not reassure this patient; however, unnecessary investigations and treatment in a different patient could be prevented. Additional investigations for neck pain without neurological signs on examination are only necessary for a few patients. Chiropractic may have serious side effects. Confusing information about neck pain appearing on the Internet and in medical journals should be contested with information based on the solid, critical appraisal of studies.

  3. Exhaust after-treatment system with in-cylinder addition of unburnt hydrocarbons

    DOEpatents

    Coleman, Gerald N.; Kesse, Mary L.

    2007-10-30

    Certain exhaust after-treatment devices, at least periodically, require the addition of unburnt hydrocarbons in order to create reductant-rich exhaust conditions. The present disclosure adds unburnt hydrocarbons to exhaust from at least one combustion chamber by positioning, at least partially within a combustion chamber, a mixed-mode fuel injector operable to inject fuel into the combustion chamber in a first spray pattern with a small average angle relative to a centerline of the combustion chamber and a second spray pattern with a large average angle relative to the centerline of the combustion chamber. An amount of fuel is injected in the first spray pattern into a non-combustible environment within the at least one combustion chamber during at least one of an expansion stroke and exhaust stroke. The exhaust with the unburnt amount of fuel is moved into an exhaust passage via an exhaust valve.

  4. Effect of PAC addition on immersed ultrafiltration for the treatment of algal-rich water.

    PubMed

    Zhang, Yan; Tian, Jiayu; Nan, Jun; Gao, ShanShan; Liang, Heng; Wang, Meilian; Li, Guibai

    2011-02-28

    The aim of this study was to evaluate the effect of powdered activated carbon (PAC) addition on the treatment of algal-rich water by immersed ultrafiltration (UF), in terms of permeate quality and membrane fouling. Experiments were performed with a hollow-fiber polyvinyl chloride ultrafiltration membrane at a laboratory scale, 20-25°C and 10 L/(m(2) h) constant permeate flux. UF could achieve an absolute removal of Microcystis aeruginosa cells, but a poor removal of algogenic organic matter (AOM) released into water, contaminants responsible for severe membrane fouling. The addition of 4 g/L PAC to the immersed UF reactor significantly alleviated the development of trans-membrane pressure and enhanced the removal of dissovled organic carbon (by 10.9±1.7%), UV(254) (by 27.1±1.7%), and microcystins (expressed as MC-LR(eq), by 40.8±4.2%). However, PAC had little effect on the rejection of hydrophilic high molecular weight AOM such as carbohydrates and proteins. It was also identified that PAC reduced the concentrations of carbohydrates and proteins in the reactor due to decreased light intensity, as well as the MC-LR(eq) concentration by PAC adsorption.

  5. Efficacy of additional treatment with azathioprine in a patient with prednisolone-dependent gastric sarcoidosis

    PubMed Central

    Murata, Masaki; Sugimoto, Mitsushige; Yokota, Yoshihiro; Ban, Hiromitsu; Inatomi, Osamu; Bamba, Shigeki; Kushima, Ryoji; Andoh, Akira

    2016-01-01

    Gastric sarcoidosis with noncaseating granuloma is rare. Although corticosteroid produces a dramatic clinical response, it is unknown whether azathioprine show efficacy in prednisolone-dependent cases. Here, we report a case of gastric sarcoidosis in a 25-year-old man with severe epigastlargia. Gastroendoscopy revealed multiple map-like ulcerations. Histological examination showed multiple noncaseating granulomatous lesions in gastric mucosa, which were incompatible with diagnoses of Crohn’s disease or tuberculosis. He was started on prednisolone at 30 mg/d, and his symptoms improved within 7-d. The prednisolone was gradually tapered by 5 mg every 2-wk, but oral azathioprine at 50 mg was added after symptoms recurred at tapered dose of 10 mg. Endoscopy 4-wk later showed healing ulcers, and, lymphocytic infiltration was absent. The efficacy of additional azathioprine in gastric sarcoidosis is not well defined. Here, we report a case of prednisolone-dependent gastric sarcoidosis that improved after additional azathioprine, and also review the literature concerning the treatment, especially for prednisolone-dependent cases. PMID:28058029

  6. Influence of Sulfur Fertilization on the Antioxidant Activities of Onion Juices Prepared by Thermal Treatment.

    PubMed

    Koh, Eunmi; Surh, Jeonghee

    2016-06-01

    Two onions (Sulfur-1 and Sulfur-4) cultivated with different sulfur applications were thermally processed to elucidate the effects of heat treatment on browning index and antioxidant activity. Sulfur-4 onion had higher sulfur content compared with the Sulfur-1 onion. After thermal processing, browning intensity was different between the two onions juices, with lower values observed for Sulfur-4 onion juice. This suggests that sulfur inhibits the Maillard browning reaction. The total reducing capacity of the juices increased at higher thermal processing temperatures; however, it was also lower in the Sulfur-4 onion juice. This suggests that the heat treatment of onions enhanced their antioxidant activity, but the effect was offset in the Sulfur-4 onion juice presumably due to higher sulfur content. This study indicates that sulfur, a core element for the functionality of onions, can decrease the antioxidant activity of thermally processed onions because of its potential as a Maillard reaction inhibitor.

  7. Influence of Sulfur Fertilization on the Antioxidant Activities of Onion Juices Prepared by Thermal Treatment

    PubMed Central

    Koh, Eunmi; Surh, Jeonghee

    2016-01-01

    Two onions (Sulfur-1 and Sulfur-4) cultivated with different sulfur applications were thermally processed to elucidate the effects of heat treatment on browning index and antioxidant activity. Sulfur-4 onion had higher sulfur content compared with the Sulfur-1 onion. After thermal processing, browning intensity was different between the two onions juices, with lower values observed for Sulfur-4 onion juice. This suggests that sulfur inhibits the Maillard browning reaction. The total reducing capacity of the juices increased at higher thermal processing temperatures; however, it was also lower in the Sulfur-4 onion juice. This suggests that the heat treatment of onions enhanced their antioxidant activity, but the effect was offset in the Sulfur-4 onion juice presumably due to higher sulfur content. This study indicates that sulfur, a core element for the functionality of onions, can decrease the antioxidant activity of thermally processed onions because of its potential as a Maillard reaction inhibitor. PMID:27390734

  8. Biochar Addition to Stormwater Treatment Media for Enhanced Removal of Nitrogen

    NASA Astrophysics Data System (ADS)

    Imhoff, P. T.; Jin, J.; Tian, J.; Chiu, P.; Guo, M.

    2015-12-01

    Urban stormwater management systems, such as bioretention facilities, require substantial land area and are often ineffective in removing nitrogen. This project seeks to improve nitrogen removal in bioretention media by modifying the hydraulic and treatment characteristics of the infiltration medium with biochar addition. A commercial wood biochar pyrolyzed from Southern Yellow Pine at 500°C was used. Laboratory experiments demonstrated that biochar addition to a typical bioretention medium (soil-mix: 4% saw dust, 88% sand, 8% clay) increased ammonium sorption at typical stormwater concentrations (2 mg/L) by a factor of 6, total porosity by 16.6%, and water retention at most matric potentials. The effect of the biochar-amended medium on nitrate removal was evaluated in pilot-scale experiments. Side-by-side experimental cells (91 cm dia., 1.2 m deep) were constructed to treat stormwater runoff from a parking lot. The control cell contained 100% soil mix while the biochar cell contained 4% biochar and 96% soil-mix by mass. Treatment media were 76.2 cm in depth and overlain by 5.1 cm of wood mulch in both cells, with a water table maintained at the bottom of the treatment zones. Cells were instrumented with TDR moisture sensors, pressure transducers, and redox and temperature sensors. Two pilot-scale experiments were conducted that included a bromide tracer and nitrate with a hydraulic loading of 5.5cm/h for 24 h in early spring and 36 h in summer. Effluent was continuously sampled for nitrogen compounds during these tests. Tracer tests and TDR measurements showed that biochar increased the average volumetric water content of the vadose zone by 14.7% and the mean residence time by 12.6%. For the spring field test at 14°C, nitrate in the control cell effluent increased by 6.1% but decreased by 43.5% for the biochar cell. For the summer field test at 22°C, 30.6% and 84.7% of influent nitrate was removed in the control and biochar cells, respectively. In the summer

  9. Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage.

    PubMed

    Calugaru, Iuliana Laura; Neculita, Carmen Mihaela; Genty, Thomas; Bussière, Bruno; Potvin, Robin

    2016-06-05

    Intensive research is ongoing for developing low-cost and highly efficient materials in metal removal from contaminated effluents. The present study evaluated dolomite [CaMg(CO3)2], both raw and modified by thermal activation (charring), for Ni and Zn treatment in contaminated neutral drainage (CND). Batch adsorption testing (equilibrium and kinetics) were conducted at pH 6, to evaluate the performance of initial vs. modified dolomite, and to assess potential mechanisms of metal removal. Charring of dolomite led to a rigid and porous material, mainly consisting of CaCO3 and MgO, which showed a sorption capacity increased sevenfold for Zn and doubled for Ni, relative to the raw material. In addition, Freundlich model best described the sorption of the both metals by dolomite, whereas the Langmuir model best described their sorption on charred dolomite. Plausible mechanisms of metal removal include cation exchange, surface precipitation and sorption processes, with carbonate ions and magnesium oxides acting as active centers. Based on these results, charred dolomite seems a promising option for the efficient treatment of Ni and Zn in CND.

  10. 78 FR 14508 - Notice of Affirmation of Addition of a Treatment Schedule for Methyl Bromide Fumigation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... Treatment Schedule for Methyl Bromide Fumigation of Cottonseed AGENCY: Animal and Plant Health Inspection... to immediately add to the Plant Protection and Quarantine Treatment Manual a treatment schedule for...: Effective on March 6, 2013, we are affirming the addition to the Plant Protection and Quarantine...

  11. Sildenafil Treatment Eliminates Pruritogenesis and Thermal Hyperalgesia in Rats with Portacaval Shunts.

    PubMed

    Belghiti, Majedeline; Agusti, Ana; Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Llansola, Marta; Felipo, Vicente

    2017-03-01

    Pruritus is a common symptom in chronic liver diseases, which may also alter thermal sensitivity. The underlying mechanisms remain unclear and treatments are not satisfactory. Portal-systemic shunting has been proposed to alter thermal sensitivity in cirrhotics. Inflammation-induced enhanced activity of the Transient Receptor Potential Vanilloid 1 (TRPV1) may contribute to pruritus and thermal hyperalgesia. Sildenafil reduces neuroinflammation in portacaval shunt (PCS) rats. The aims were to assess whether: (1) PCS rats show enhanced scratching or thermal sensitivity; (2) TRPV1 activity is enhanced in PCS rats; (3) treatment with sildenafil reduces TRPV1 activation, scratching and thermal hyperalgesia. Rats were treated with sildenafil beginning 3 weeks after surgery. The number of scratches performed were counted. Thermal hyperalgesia was analyzed using the Hargreaves' Plantar Test. TRPV1 activation by measuring the increase in Ca(2+) induced by capsaicin in dorsal root ganglia neurons. PCS rats show enhanced scratching behavior, reaching 66 ± 5 scratches/h (p < 0.01) at 21 days after surgery, while controls show 37 ± 2 scratches/h. PCS rats show thermal hyperalgesia. Paw withdrawal latency was reduced (p < 0.05) to 10 ± 1 s compared to controls (21 ± 2 s). Capsaicin-induced calcium increase was higher in dorsal root ganglia cultures from PCS rats, indicating TRPV1functional increase. PCS rats show enhanced scratching behavior and thermal sensitivity and are a good model to study these alterations in chronic liver diseases. Enhanced sensitivity and activity of TRPV1 channel underlies these alterations. Treatment with sildenafil reduces TRPV1 channel sensitivity and activity and normalizes scratching behavior and thermal sensitivity.

  12. Thermal and high magnetic field treatment of materials and associated apparatus

    DOEpatents

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2010-06-29

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  13. Thermal and high magnetic field treatment of materials and associated apparatus

    DOEpatents

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2007-01-09

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  14. Luminescence properties of Yb:Er:KY3F10 nanophosphor and thermal treatment effects

    NASA Astrophysics Data System (ADS)

    Gomes, Laércio; Linhares, Horácio Marconi da Silva M. D.; Ichikawa, Rodrigo Uchida; Martinez, Luis Gallego; Baldochi, Sonia Licia

    2016-04-01

    In this work, we present the spectroscopic properties of KY3F10 nanocrystals activated with erbium and codoped with ytterbium ions. The most important processes that lead to the erbium upconversion of green and red emissions of Er3+ were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays of 4S3/2 and 4F9/2 excited levels of Er3+ and to determine the upconversion processes and the luminescence efficiencies of erbium in the visible. Analysis of the luminescence kinetics in Yb:Er:KY3F10 shows a rapid upconversion (Up1) for the green emission with a time constant of 0.31 μs after pulsed laser excitation at 972 nm for as synthesized nanocrystals, which is faster than the time constant measured for the bulk crystal (23 μs). In addition, it is observed a second upconversion process (non-resonant) (Up2) responsible for the red emission (Er3+), which competes with Up1 process. However, the luminescence efficiency of the green emission (4S3/2) is observed to be very low (1.6%) for the as synthesized nanocrystal (25 °C). Nevertheless, it increases with the nanopowder heat treatment reaching an efficiency of 99% (T = 550 °C) relative to the bulk crystal. Similar luminescence behavior was observed for the 4F9/2 level (Er3+) that emits red emission. X-ray diffraction analysis of nanopowder by Rietveld method reveled that the mean crystallite size remains unchanged (8.3-12.3 nm) after thermal treatments with T ∼ 400 °C, while the 4S3/2 luminescence efficiency strongly increases to 20%. The luminescence dynamics indicates that Er3+ ions distribution plays a determinant role in the luminescence efficiency of green and red emissions of Er3+ besides also the strong influence on the upconversions processes. The observed luminescence effect is caused by the non-uniform Er3+ (and Yb3+) ions distribution due to the nanocrystal grown, which introduces a concentration gradient that increases towards the nanoparticle

  15. Effect of thermal additions on the density and distribution of thermophilic amoebae and pathogenic Naegleria fowleri in a newly created cooling lake

    SciTech Connect

    Tyndall, R.L.; Ironside, K.S.; Metler, P.L.; Tan, E.L. ); Hazen, T.C.; Fliermans, C.B. )

    1989-03-01

    Pathogenic Naegleria fowleri is the causative agent of fatal human amoebic meningoencephalitis. The protozoan is ubiquitous in nature, and its presence is enhanced by thermal additions. In this investigation, water and sediments from a newly created cooling lake were quantitatively analyzed for the presence of thermophilic amoebae, thermophilic Naegleria spp., and the pathogen Naegleria fowleri. During periods of thermal additions, the concentrations of thermophilic amoebae and thermophilic Naegleria spp. increased as much as 5 orders of magnitude, and the concentration of the pathogen N. fowleri increased as much as 2 orders of magnitude. Concentrations of amoebae returned to prior thermal perturbation levels within 30 to 60 days after cessation of thermal additions. Increases in the thermophilic amoeba concentrations were noted in Savannah River oxbows downriver from the Savannah River plant discharge streams as compared with oxbows upriver from the discharges. Concentrations of thermophilic amoebae and thermophilic Naegleria spp. correlated significantly with temperature and conductivity. Air samples taken proximal to the lade during periods of thermal addition showed no evidence of thermophilic Naegleria spp. Isoenzyme patterns of the N. fowleri isolated from the cooling lake were identical to patterns of N. fowleri isolated from other sites in the United States and Belgium.

  16. Effect of thermal additions on the density and distribution of thermophilic amoebae and pathogenic Naegleria fowleri in a newly created cooling lake.

    PubMed Central

    Tyndall, R L; Ironside, K S; Metler, P L; Tan, E L; Hazen, T C; Fliermans, C B

    1989-01-01

    Pathogenic Naegleria fowleri is the causative agent of fatal human amoebic meningoencephalitis. The protozoan is ubiquitous in nature, and its presence is enhanced by thermal additions. In this investigation, water and sediments from a newly created cooling lake were quantitatively analyzed for the presence of thermophilic amoebae, thermophilic Naegleria spp., and the pathogen Naegleria fowleri. During periods of thermal additions, the concentrations of thermophilic amoebae and thermophilic Naegleria spp. increased as much as 5 orders of magnitude, and the concentration of the pathogen N. fowleri increased as much as 2 orders of magnitude. Concentrations of amoebae returned to prior thermal perturbation levels within 30 to 60 days after cessation of thermal additions. Increases in the thermophilic amoeba concentrations were noted in Savannah River oxbows downriver from the Savannah River plant discharge streams as compared with oxbows upriver from the discharges. Concentrations of thermophilic amoebae and thermophilic Naegleria spp. correlated significantly with temperature and conductivity. Air samples taken proximal to the lake during periods of thermal addition showed no evidence of thermophilic Naegleria spp. Isoenzyme patterns of the N. fowleri isolated from the cooling lake were identical to patterns of N. fowleri isolated from other sites in the United States and Belgium. PMID:2930172

  17. 42 CFR 412.107 - Special treatment: Hospitals that receive an additional update for FYs 1998 and 1999.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... additional update for FYs 1998 and 1999. 412.107 Section 412.107 Public Health CENTERS FOR MEDICARE... Inpatient Operating Costs § 412.107 Special treatment: Hospitals that receive an additional update for FYs 1998 and 1999. (a) Additional payment update. A hospital that meets the criteria set forth in...

  18. Mixed N-Heterocyclic Carbene-Bis(oxazolinyl)borato Rhodium and Iridium Complexes in Photochemical and Thermal Oxidative Addition Reactions

    SciTech Connect

    Xu, Songchen; Manna, Kuntal; Ellern, Arkady; Sadow, Aaron D

    2014-12-08

    In order to facilitate oxidative addition chemistry of fac-coordinated rhodium(I) and iridium(I) compounds, carbene–bis(oxazolinyl)phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB(OxMe2)2(ImtBuH) (H[1]; OxMe2 = 4,4-dimethyl-2-oxazoline; ImtBuH = 1-tert-butylimidazole) and PhB(OxMe2)2(ImMesH) (H[2]; ImMesH = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K[1] and K[2], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB(OxMe2)2ImtBu}Rh(η4-C8H12) (3), {PhB(OxMe2)2ImMes}Rh(η4-C8H12) (4), {PhB(OxMe2)2ImMes}Rh(CO)2 (5), {PhB(OxMe2)2ImMes}Ir(η4-C8H12) (6), and {PhB(OxMe2)2ImMes}Ir(CO)2 (7) are synthesized along with ToMM(η4-C8H12) (M = Rh (8); M = Ir (9); ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). The spectroscopic and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (tert-butyl vs mesityl), effects of replacing an oxazoline in ToM with a carbene donor, and the influence of the donor ligand (CO vs C8H12). The reactions of K[2] and [M(μ-Cl)(η2-C8H14)2]2 (M = Rh, Ir) provide {κ4-PhB(OxMe2)2ImMes'CH2}Rh(μ-H)(μ-Cl)Rh(η2-C8H14)2 (10) and {PhB(OxMe2)2ImMes}IrH(η3-C8H13) (11). In the former compound, a spontaneous oxidative addition of a mesityl ortho-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds 5 and 7 result in C–H bond oxidative addition providing the compounds {κ4-PhB(OxMe2)2ImMes'CH2}RhH(CO) (12) and {PhB(OxMe2)2ImMes}IrH(Ph)CO (13). In 12, oxidative addition results in cyclometalation of the mesityl ortho-methyl similar to 10, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized cis

  19. Nanoparticles in treatment of thermal injured rats: Is it safe?

    NASA Astrophysics Data System (ADS)

    Melo, P. S.; Marcato, P. D.; Huber, S. C.; Ferreira, I. R.; de Paula, L. B.; Almeida, A. B. A.; Durán, N.; Torsoni, S.; Seabra, A. B.; Alves, O. L.

    2011-07-01

    The aim of this study was to assess whether thermal trauma induced oxidative stress altered the balance between oxidant and antioxidant systems in the blood of burn wound rats in the absence and presence of silver nanoparticles and S-nitrosoglutathione, GSNO. Free silver nanoparticles, free GSNO and silver nanoparticles + GSNO had no cytotoxic effects. Under anesthesia, the shaved dorsum of the rats was exposed to 90°C (burn group) water bath. Studied compounds were administered topically immediately and at 28 days after the burn injury, four times a day. Silver nanoparticles and silver nanoparticles + GSNO were no toxic in vitro and in vivo. There were no significant differences in the levels of urea, creatinine, aminotransferases and hematological parameters, in control-burn groups (free silver nanoparticles) and treated-burn groups (free GSNO or silver nanoparticles + GSNO). There were no differences in lipid peroxidation and in the levels of protein carbonyls and glutathione, used as oxidative stress markers. A little inflammatory cell response, papillary dermis vascularization, fibroblasts differentiated into contractile myofibroblasts and the presence of a large amount of extracellular matrix were evidenced in treated groups following skin injury. These results indicate that silver nanoparticles and GSNO may provide an effective action on wound healing.

  20. US - European Workshop on Thermal Waste Treatment for Naval Vessels

    DTIC Science & Technology

    1997-01-01

    CONCEPT PROCESS ENERGY CARRIER Biological Heat Anaerobic Biogas conversion Bg digestion Boa Starved I Low quality Ar d Gasification syngas 4.11 MJIm3...Hazardous Materials by Dan D. Jensen, General Atomics, USA d. Hydrothermal Conversion of Wastes by Frangois Cansell, University of Bordeaux, France 2...Supercritical Water Oxidation for the On-Board Treatment of Naval Excess Hazardous Materials by Dan D. Jensen, General Atomics, USA 16.45-17.30 Hydrothermal

  1. Preparation of vermiculite nanoparticles using thermal hydrogen peroxide treatment.

    PubMed

    Weiss, Zdenĕk; Valásková, Marta; Seidlerová, Jana; Supová-Krístková, Monika; Sustai, Ondrej; Matĕjka, Vlastimil; Capková, Pavla

    2006-03-01

    Powdered natural Mg-vermiculite (Letovice, Czech Republic), with the formula (Mg0.35K0.02Ca0.01) (Mg2.39Fe0.51(3+)Fe0.02(2+)Al0.08) (Si2.64Al1.33Ti0.03) O10(OH)2 x 4.97H2O and particle size < 5 microm, was used for the investigation of exfoliation after hydrogen peroxide and/or microwave treatment (600 W). A sample heated in the microwave oven for 40 min exhibits a 11% mass loss and reduction of the 001 peak intensity in the X-ray diffraction pattern. The basal 001 peak intensity of untreated Mg-vermiculite sample (/001 = 100%) drops to 35% in the microwave treated sample. Only the sample treated for 5 h at 80 degrees C fully rehydrated after 120 min at room temperature. A more pronounced reduction of the 001 peak intensity (to 8%) was observed after hydrogen peroxide treatment of the sample at 25 degrees C. The combination of a five-hour hydrogen peroxide treatment at 80 degrees C and subsequent microwave heating leads to an effective extinction of the 001 diffraction in the XRD pattern. The 001 diffraction profile becomes very diffuse with peak intensity less than 1%. The degree of reduction of the 001 diffraction intensity also depends on the time and temperature of hydrogen peroxide treatment and on the peroxide concentration. An even more pronounced reduction of the peak intensity is caused by exfoliation of particles to nano-domains coupled with a randomization of the c-axes.

  2. Integrated Thermal Treatment Systems study: US Department of Energy Internal Review Panel report

    SciTech Connect

    Cudahy, J.; Escarda, T.; Gimpel, R.

    1995-04-01

    The U.S. Department of Energy`s (DOE) Office of Technology Development (OTD) commissioned two studies to uniformly evaluate nineteen thermal treatment technologies. These studies were called the Integrated Thermal Treatment System (ITTS) Phase I and Phase II. With the advice and guidance of the DOE Office of Environmental Management`s (EM`s) Mixed Waste Focus Group, OTD formed an ITTS Internal Review Panel, composed of scientists and engineers from throughout the DOE complex, the U.S. Environmental Protection Agency (EPA), the California EPA, and private experts. The Panel met from November 15-18, 1994, to review and comment on the ITTS studies, to make recommendations on the most promising thermal treatment systems for DOE mixed low level wastes (MLLW), and to make recommendations on research and development necessary to prove the performance of the technologies on MLLW.

  3. Selective release of phosphorus and nitrogen from waste activated sludge with combined thermal and alkali treatment.

    PubMed

    Kim, Minwook; Han, Dong-Woo; Kim, Dong-Jin

    2015-08-01

    Selective release characteristics of phosphorus and nitrogen from waste activated sludge (WAS) were investigated during combined thermal and alkali treatment. Alkali (0.001-1.0N NaOH) treatment and combined thermal-alkali treatment were applied to WAS for releasing total P(T-P) and total nitrogen(T-N). Combined thermal-alkali treatment released 94%, 76%, and 49% of T-P, T-N, and COD, respectively. Release rate was positively associated with NaOH concentration, while temperature gave insignificant effect. The ratio of T-N and COD to T-P that released with alkali treatment ranged 0.74-0.80 and 0.39-0.50, respectively, while combined thermal-alkali treatment gave 0.60-0.90 and 0.20-0.60, respectively. Selective release of T-P and T-N was negatively associated with NaOH. High NaOH concentration created cavities on the surface of WAS, and these cavities accelerated the release rate, but reduced selectivity. Selective release of P and N from sludge has a beneficial effect on nutrient recovery with crystallization processes and it can also enhance methane production.

  4. Ultrasound interstitial thermal therapy (USITT) for the treatment of uterine myomas

    NASA Astrophysics Data System (ADS)

    Nau, William H., Jr.; Diederich, Chris J.; Simko, Jeff; Juang, Titania; Jacoby, Alison; Burdette, E. C.

    2007-02-01

    Uterine myomas (fibroids) are the most common pelvic tumors occurring in women, and are the leading cause of hysterectomy. Symptoms can be severe, and traditional treatments involve either surgical removal of the uterus (hysterectomy), or the fibroids (myomectomy). Interstitial ultrasound technologies have demonstrated potential for hyperthermia and high temperature thermal therapy in the treatment of benign and malignant tumors. These ultrasound devices offer favorable energy penetration allowing large volumes of tissue to be treated in short periods of time, as well as axial and angular control of heating to conform thermal treatment to a targeted tissue, while protecting surrounding tissues from thermal damage. The goal of this project is to evaluate interstitial ultrasound for controlled thermal coagulation of fibroids. Multi-element applicators were fabricated using tubular transducers, some of which were sectored to produce 180° directional heating patterns, and integrated with water cooling. Human uterine fibroids were obtained after routine myomectomies, and instrumented with thermocouples spaced at 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 cm from the applicator. Power levels ranging from 8-15 W per element were applied for up to 15 minute heating periods. Results demonstrated that therapeutic temperatures >50° C and cytotoxic thermal doses (t 43) extended beyond 2 cm radially from the applicator (>4 cm diameter). It is anticipated that this system will make a significant contribution toward the treatment of uterine fibroids.

  5. Release of terpenes from fir wood during its long-term use and in thermal treatment.

    PubMed

    Kačík, František; Veľková, Veronika; Šmíra, Pavel; Nasswettrová, Andrea; Kačíková, Danica; Reinprecht, Ladislav

    2012-08-21

    Building structures made from fir wood are often attacked by wood-destroying insects for which the terpenes it contains serve as attractants. One of the possibilities for extending the lifetime of structures is to use older wood with a lower content of terpenes and/or thermally modified wood. The study evaluated the levels of terpenes in naturally aged fir wood (108, 146, 279, 287 and 390 years) and their decrease by thermal treatment (the temperature of 60 °C and 120 °C, treatment duration of 10 h). Terpenes were extracted from wood samples by hexane and analyzed by gas-chromatography mass-spectrometry (GC-MS). The results indicate that recent fir wood contained approximately 60 times more terpenes than the oldest wood (186:3.1 mg/kg). The thermal wood treatment speeded up the release of terpenes. The temperature of 60 °C caused a loss in terpenes in the recent fir wood by 62%, the temperature of 120 °C even by >99%. After the treatment at the temperature of 60 °C the recent fir wood had approximately the same quantity of terpenes as non-thermally treated 108 year old wood, i.e., approximately 60-70 mg/kg. After the thermal treatment at the temperature of 120 °C the quantity of terpenes dropped in the recent as well as the old fir wood to minimum quantities (0.7-1.1 mg/kg). The thermal treatment can thus be used as a suitable method for the protection of fir wood from wood-destroying insects.

  6. Technical Project Plan for The Enhanced Thermal Conductivity of Oxide Fuels Through the Addition of High Thermal Conductivity Fibers and Microstructural Engineering

    SciTech Connect

    Hollenbach, Daniel F; Ott, Larry J; Besmann, Theodore M; Armstrong, Beth L; Wereszczak, Andrew A; Lin, Hua-Tay; Ellis, Ronald James; Becher, Paul F; Jubin, Robert Thomas; Voit, Stewart L

    2010-09-01

    The commercial nuclear power industry is investing heavily in advanced fuels that can produce higher power levels with a higher safety margin and be produced at low cost. Although chemically stable and inexpensive to manufacture, the in-core performance of UO{sub 2} fuel is limited by its low thermal conductivity. There will be enormous financial benefits to any utility that can exploit a new type of fuel that is chemically stable, has a high thermal conductivity, and is inexpensive to manufacture. At reactor operating temperatures, UO{sub 2} has a very low thermal conductivity (<5 W/m {center_dot}K), which decreases with temperature and fuel burnup. This low thermal conductivity limits the rate at which energy can be removed from the fuel, thus limiting the total integrated reactor power. If the fuel thermal conductivity could be increased, nuclear reactors would be able to operate at higher powers and larger safety margins thus decreasing the overall cost of electricity by increasing the power output from existing reactors and decreasing the number of new electrical generating plants needed to meet base load demand. The objective of the work defined herein is to produce an advanced nuclear fuel based on the current UO{sub 2} fuel with superior thermal conductivity and structural integrity that is suitable for current and future nuclear reactors, using the existing fuel fabrication infrastructure with minimal modifications. There are two separate components to the research: (1) Enhanced Thermal Conductivity (ETC) - adding high conductivity fibers to the UO{sub 2} prior to sintering, which act as conduits for moving the heat energy generated within the pellet to the outer surface, (2) Microstructural Engineering (ME) - adding second phase particulates to UO{sub 2} bodies to retard grain growth and to increase thermal conductivity, as well as improve fracture and creep resistance. Different groups will perform the laboratory work for each of these research

  7. Preliminary Study of Thermal Treatment of Coke Wastewater Sludge Using Plasma Torch

    NASA Astrophysics Data System (ADS)

    Li, Mingshu; Li, Shengli; Sun, Demao; Liu, Xin; Feng, Qiubao

    2016-10-01

    Thermal plasma was applied for the treatment of coke wastewater sludge derived from the steel industry in order to investigate the feasibility of the safe treatment and energy recovery of the sludge. A 30 kW plasma torch system was applied to study the vitrification and gas production of coke wastewater sludge. Toxicity leaching results indicated that the sludge treated via the thermal plasma process converted into a vitrified slag which resisted the leaching of heavy metals. CO2 was utilized as working gas to study the production and heat energy of the syngas. The heating value of the gas products by thermal plasma achieved 8.43 kJ/L, indicating the further utilization of the gas products. Considering the utilization of the syngas and recovery heat from the gas products, the estimated treatment cost of coke wastewater sludge via plasma torch was about 0.98 CNY/kg sludge in the experiment. By preliminary economic analysis, the dehydration cost takes an important part of the total sludge treatment cost. The treatment cost of the coke wastewater sludge with 50 wt.% moisture was calculated to be about 1.45 CNY/kg sludge dry basis. The treatment cost of the coke wastewater sludge could be effectively controlled by decreasing the water content of the sludge. These findings suggest that an economic dewatering pretreatment method could be combined to cut the total treatment cost in an actual treatment process.

  8. Cheap and Cheerful Stream Restoration - An Example of System Wide Woody Addition Treatment

    NASA Astrophysics Data System (ADS)

    Wheaton, J. M.; Bennett, S. N.; Bouwes, N.; Camp, R.

    2012-12-01

    Stream restoration has been plagued with high price tags, limited spatial extents, and questionable effectiveness in light of largely absent monitoring efforts. One prominent example is the placement of large woody debris (LWD) structures and engineered log jams that are frequently employed to promote heterogeneity of instream habitat. Ironically, many of these treatments attempt to lock in place and over-engineer the woody structures as opposed to allowing them to adjust and rearrange themselves as natural LWD would have. We are in the midst of a large scale restoration experiment using LWD to recover ESA-listed steelhead trout (Oncorhynchus mykiss) populations in the Asotin Creek Watershed of Southeast Washington. The project is an Intensively Monitored Watershed (IMW) where the restoration treatment and monitoring use a hierarchal staircase design maximizing the power to detect a population level response in steelhead. We are treating over 12 km of stream with enough LWD input (> 200 pieces per km) to mimic the historic background wood loading and encourage the stream to reshape and regularly rework itself leaving. We are using hundreds of structures we call DWS (dynamic woody structures), which generally consist of a series of wooden fence posts driven into the stream bed and complex LWD anchored between them to invoke a specific hydrogeomorphic response. The real advantage of these DWS are their cost. They can be installed quickly (15-30 minutes each) and cheaply (< $100/DWS); even in remote settings with a 2-3 person crew, hydraulic post pounder, very cheap materials, and avoiding impacts associated with operating heavy equipment. This allows us to install lots of the structures at high density (every 5-15 channel widths) over an entire stream system. We call this overall approach System Wide Woody Addition Treatment (SWWAT). In the long term, we hypothesize that the SWWAT will provide an intial input LWD that will become a part of study creeks which are more

  9. Fourier transform infrared and Raman spectroscopic study of the effect of the thermal treatment and extraction methods on the characteristics of ayocote bean starches.

    PubMed

    Bernardino-Nicanor, Aurea; Acosta-García, Gerardo; Güemes-Vera, Norma; Montañez-Soto, José Luis; de Los Ángeles Vivar-Vera, María; González-Cruz, Leopoldo

    2017-03-01

    Starches isolated from four ayocote bean varieties were modified by thermal treatment to determinate the effect of the treatment on the structural changes of ayocote bean starch. Scanning electron microscopy indicates that the starch granules have oval and round shapes, with heterogeneous sizes and fractures when the extraction method is used. The presence of new bands at 2850 and 1560 cm(-1) in the FT-IR spectra showed that the thermal treatment of ayocote beans induced an interaction between the protein or lipid and the amylose or amylopectin, while the sharpest band at 3400 cm(-1) indicated a dehydration process in the starch granule in addition to the presence of the band at 1260 cm(-1), indicating the product of the retrogradation process. The thermal treatment reduced the crystallinity as well as short-range order. Raman spectroscopy revealed that acute changes occurred in the polysaccharide bonds after thermal treatment. This study showed that the thermal treatment affected the structural properties of ayocote bean starches, the interactions of the lipids and proteins with starch molecules and the retrogradation process of starch.

  10. Numerical simulation of thermal disposition with induction heating used for oncological hyperthermic treatment.

    PubMed

    Dughiero, F; Corazza, S

    2005-01-01

    Hyperthermia plays an important role in oncological therapies, most often being used in combination with radiotherapy, chemotherapy and immunotherapy. The success of this therapy is strongly dependent on the precision and control of thermal deposition. Hyperthermia based on induction heating, with thermally self-regulating thermoseeds inserted into the tumorous mass, is used for interstitial treatment. The technique was the subject of the numerical study presented in the paper. The analysis was carried out using coupled electromagnetic heating and thermo-fluid dynamic FEM simulations. During thermal deposition by induction heating of inserted seeds, the simulations estimated the thermal field inside and outside the tumour, as well as the sensitivity of the thermal field to variations regarding seed temperature, configuration and proximity to vessels. The method, for which accurate anatomical patient's information is essential, is suitable for providing useful qualitative and quantitative information about thermal transients and power density distribution for hyperthermic treatment. Several grid steps were analysed and compared. A 1 cm seed grid was resulted in good homogeneity and effectiveness of the thermal deposition. The cold spot effect caused by large vessels was demonstrated and quantified. Simulations of the heating of a tumorous mass in the liver showed that an indcutor generator operating at 200 kHz frequency and 500 A current, producing a pulsating magnetic field of H = 60 A cm(-1), was adequate for the treatment. The seeds that perform best among those tested (Nicu (28% Cu), PdNi (27.2% Ni), PdCo (6.15% Co) and ferrite core) were the PdNi (1 mm radius, 10 mm length), as they have a low Curie temperature (52 degrees C), which is the closest to the desired treatment temperature and thus reduces the risk of hot spots.

  11. Additive effects of exogenous IL-12 supplementation and antibiotic treatment in infection prophylaxis.

    PubMed

    Boyce, Brandon M; Lindsey, Brock A; Clovis, Nina B; Smith, E Suzanne; Hobbs, Gerald R; Hubbard, David F; Emery, Sanford E; Barnett, John B; Li, Bingyun

    2012-02-01

    The increasing clinical incidence and host risk of open fracture-associated infections, as well as the reduced effectiveness of conventional antibiotics to treat such infections, have driven the development of new therapies for the prophylaxis of open fracture-associated infections. We investigated percutaneous supplementation of a natural cytokine (i.e., interleukin 12p70 or IL-12) at an open fracture site to reduce open fracture-associated infections. We also determined the efficacy of the combination therapy of IL-12 and conventional antibiotic therapy in the prophylaxis of open fracture-associated infections. An open femur fracture infection model was produced by direct inoculation of a clinical isolate of Staphylococcus aureus after creating a femur fracture using rats. The animals were assigned to one of four groups: no drug administration, percutaneous supplementation of IL-12, intraperitoneal administration of the antibiotic ampicillin, or percutaneous IL-12 in combination with intraperitoneal ampicillin. Animals were euthanized at postoperative days 6, 10, 14, and 21. Percutaneous IL-12 led to a reduction in infection at postoperative days 6 and 10. For the first time, exogenous IL-12 was found to have additive effects in the prevention of infection when combined with conventional treatment (i.e., antibiotic therapy). Combination therapy of ampicillin and IL-12 substantially reduced the infection rate at postoperative day 6 and also decreased the time needed for complete inhibition of infection. Therefore, exogenous IL-12, providing a mechanism of protection independent of antibiotic resistance, complements the routine use of antibiotics.

  12. Physicochemical and thermal characteristics of the sludge produced after thermochemical treatment of petrochemical wastewater.

    PubMed

    Verma, Shilpi; Prasad, Basheshwar; Mishra, I M

    2012-01-01

    The present work describes the physicochemical and thermal characteristics of the sludge generated after thermochemical treatment of wastewater from a petrochemical plant manufacturing purified terephthalic acid (PTA). Although FeCl3 was found to be more effective than CuSO4 in removing COD from wastewater, the settling and filtration characteristics of FeCl3 sludge were poorer. Addition of cationic polyacrylamide (CPAA; 0.050kg/m3) to the FeCl3 wastewater system greatly improved the values of the filter characteristics of specific cake resistance (1.2 x 10(8) m/kg) and resistance of filter medium (9.9 x 10(8) m(-1)) from the earlier values of 1.9 x 10(9) m/kg and 1.7 x 10(8) m(-1), respectively. SEM-EDAX and FTIR studies were undertaken, to understand the sludge structure and composition, respectively. The moisture distribution in the CuSO4 sludge, FeCl3 sludge and FeCl3 + CPAA sludge showed that the amount of bound water content in the CuSO4 and FeCl3 + CPAA sludges is less than that of the FeCl3 sludge and there was a significant reduction in the solid-water bond strength of FeCl3 + CPAA sludge, which was responsible for better settling and filtration characteristics. Due to the hazardous nature of the sludge, land application is not a possible route of disposal. The thermal degradation behaviour of the sludge was studied for its possible use as a co-fuel. The studies showed that degradation behaviour of the sludge was exothermic in nature. Because of the exothermic nature of the sludge, it can be used in making fuel briquettes or it can be disposed of via wet air oxidation.

  13. Review of the integrated thermal and nonthermal treatment system studies. Final report

    SciTech Connect

    1996-10-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1 -- issued July 1994; Integrated Thermal Treatment System Study, Phase 2 -- issued February 1996; and Integrated Nonthermal Treatment System Study -- drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  14. Comparison of cryotherapy and thermal therapy for breast cancer treatment simulations

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.

    2001-05-01

    Breast cancer presents an ongoing challenge in regard to treatment efficacy and successful clinical outcomes. There has been a challenge to increase the survival rate over the past 50 years and only recently have clinical outcomes improved, although slightly. Thermal treatment regimes have been evolving and most recently, have been applied in situ. A standalone treatment for malignancies is challenging due to the rigor in achieving homogeneity in the distribution of therapeutic temperatures in the tumor and the lack of therapy in the adjacent normal tissue. Although initial work used lasers, contemporary work utilizes radiofrequency (RF) or cryotherapy as a treatment modality. Both monopolar and bipolar RF devices were modeled for the RF treatments in the breast. Using finite element techniques, these two modalities were simulated in breast tissue and the results of the bioheat equation compared for similar sized devices. The model incorporated changing electrical and thermal properties of tissue with temperature, as well as blood flow changes. For thermal treatment, the isotherm of +55 degree(s)C was considered the margin of coagulation necrosis, while for cryotreatment, the -40 degree(s)C isotherm was used. The comparison aids in the selection of the best method to improve clinical outcomes, while paying attention to the size of the applicator and time length of treatment.

  15. Influence of nanographene platelets (NGP) incorporation on Fe3O4 nanoparticles as materials additives for enhancement thermal properties stearic acid

    NASA Astrophysics Data System (ADS)

    Nuryadin, M. K.; Andiarto, R.; Taufik, A.; Saleh, R.

    2016-11-01

    In this work, Fe3O4 nanoparticles, and Fe3O4/NGP composite were used as material additive for enhancement thermal properties of stearic acid (SA). The both material additive were synthesized using sol-gel method. Phase change material (PCM) composites SA-Fe3O4 and Sa-Fe3O4/NGP mixtures were made through the dispersion technique with three different weight % ratio of material additives into stearic acid: 1 wt.%, 3 wt.%, and 5 wt.%. X-Ray Diffractometer (XRD) and Fourier Transform Infrared (FTIR) spectroscopy were used to investigate the structural properties. Magnetic properties also measured by vibrating sample magnetometer (VSM) to see influence of NGP in PCM composites. Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) were used in order to analyse the thermal properties of the samples. The results show an enhancement of the latent heat, thermal stability as well as specific heat by the presence of material additives in SA. Compare to SA- Fe3O4, SA-Fe3O4/NGP show better improvement in enhancement of thermal performance of SA. The improvement by about 41.2% in specific heat and 21.2% in latent heat.

  16. Thermal therapy: a viable adjunct in the treatment of heart failure?

    PubMed

    Mussivand, Tofy; Alshaer, Hisham; Haddad, Haissam; Beanlands, Donald S; Beanlands, Rob; Chan, Kwan-Leung; Higginson, Lyall; Leenen, Frans; Ruddy, Terrence D; Mesana, Thierry; Silver, Marc A

    2008-01-01

    The aim of this work was to review and provide a summary of published literature on the clinical impact of thermal therapy (ie, warm water immersion, traditional sauna bathing, and dry infrared sauna) in patients with heart failure. Medline and Embase database literature searches were conducted, and studies that included measurement of heart failure-related clinical parameters were reviewed. Thermal therapy was found to have a positive impact on key heart failure-related parameters across multiple studies. Significant improvements were noted across a wide scope of heart failure-related parameters in the areas of (1) endothelial function, (2) hemodynamics, (3) cardiac geometry, (4) neurohormonal markers, and (5) quality of life. Of special note, thermal therapy also conveyed a strong antiarrhythmic effect in heart failure patients. The clinical evidence highlights repeatable and compelling data showing that thermal therapy may provide an important and viable adjunct in the treatment of heart failure.

  17. Pressurized heat treatment of glass-ceramic to control thermal expansion

    DOEpatents

    Kramer, Daniel P.

    1985-01-01

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  18. A methodology to analyze treatment zone geometry and variability of percutaneous thermal ablation

    NASA Astrophysics Data System (ADS)

    Keshava, Krishna N.; Kimia, Benjamin B.; Cook, Madeleine; Dupuy, Damian E.; Collins, Scott A.; Merck, Derek

    2015-03-01

    A major challenge for image guided tumor ablation is the high treatment variability due to heterogeneous tissue characteristics and thermal sinks. In this work, we present a methodology to analyze the geometry of the treatment zones and treatment zone variability. Our first contribution is an applicator centric co-ordinate system which enables us to compare treatment zones and vendor specifications across patients. Our second contribution is the analysis of the shape of the ablation zone using applicator centric longitudinal 2D cross sections. We present initial results of applying this methodology to analyze the geometry and variability in synthetic examples like ellipsoid, sphere and real microwave ablation zones in lung and liver.

  19. Improving thermal dewatering characteristics of mechanically dewatered sludge: response surface analysis of combined lime-heat treatment.

    PubMed

    Tunçal, Tolga

    2011-05-01

    In this study, disintegration of dewatered sludge (dry solids content [DS%] = 23 +/- 2) was studied to assess the possibility of enhancing the overall performance of a thermal dewatering processes. Powdered lime was used as an alkaline disintegrator. The combined effects of drying temperature, powdered lime dosage, and organic content on the thermal drying rate of dewatered sludge were investigated in a full-scale wastewater treatment plant. Effects of selected design parameters on the sludge drying rate were modeled using a response surface method. In addition, the possible interaction between lost on ignition and total organic carbon parameters also was investigated statistically. Specific resistance to filtration and free water contents of raw and disintegrated mixed sludge (DS% = 1.0 to 1.8) samples were compared statistically. The obtained results indicated that all of the selected design parameters have a significant effect on thermal dewatering characteristics, and the alkaline disintegration technique could remarkably improve thermal evaporation rate of dewatered sludge. These results are important because they could help to establish a sustainable sludge management model, which is critical in reducing environmental health risks.

  20. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    SciTech Connect

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  1. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    SciTech Connect

    Sun, Shibin; Chang, Xueting; Li, Zhenjiang

    2010-09-15

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 {sup o}C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  2. Effects of particle size and hydro-thermal treatment of feed on performance and stomach health in fattening pigs.

    PubMed

    Liermann, Wendy; Berk, Andreas; Böschen, Verena; Dänicke, Sven

    2015-01-01

    Effects of grinding and hydro-thermal treatment of feed on growth performance, slaughter traits, nutrient digestibility, stomach content and stomach health were examined by using 96 crossbred fattening pigs. Pigs were fed a grain-soybean meal-based diet processed by various technical treatments. Feeding groups differed in particle size after grinding (finely vs. coarsely ground feed) and hydro-thermal treatment (without hydro-thermal treatment, pelleting, expanding, expanding and pelleting). Fine grinding and hydro-thermal treatment showed significant improvements on the digestibility of crude nutrients and content of metabolisable energy. Hydro-thermal treatment influenced average daily gain (ADG) and average daily feed intake (DFI) significantly. Finely ground pelleted feed without expanding enhanced performances by increasing ADG and decreasing feed-to-gain ratio (FGR) of fattening pigs. Coarsely ground feed without hydro-thermal treatment resulted in the highest ADG and DFI, however also in the highest FGR. Expanded feed decreased DFI and ADG. Slaughter traits were not affected by treatments. Coarsely ground feed without hydro-thermal treatment had protective effects on the health of gastric pars nonglandularis, however, pelleting increased gastric lesions. Hydro-thermal treatment, especially expanding, resulted in clumping of stomach content which possibly induced satiety by slower ingesta passage rate and thus decreased feed intake. Pigs fed pelleted feed showed less pronounced development of clumps in stomach content compared with expanded feed.

  3. Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass.

    PubMed

    Jiang, Long; Hu, Song; Sun, Lun-shi; Su, Sheng; Xu, Kai; He, Li-mo; Xiang, Jun

    2013-10-01

    To study the catalytic role of alkali and alkaline earth metallic species and eliminate their negative impact during biomass thermal utilization, different leaching methods have been applied in numerous experiments. Thus it is necessary to investigate the potential influence on biomass physicochemical structure using different agents. Rice straw was selected to study the demineralization impact on physicochemical structure and pyrolysis characteristics. It is shown that strong acid leaching exhibited higher removal efficiency of minerals, but it introduced more notable impact on physicochemical structure of biomass comparing to water and weak acid leaching. Different leaching methods give chance to study catalysis characteristics of intrinsic metals on biomass thermal reaction. Contrast to alkaline earth metals especially Ca hindering thermal decomposition, alkali metals promoted this reaction obviously. In addition, comparing to physicochemical structure changes created by leaching process, the influence of removal of minerals played the dominant role in biomass thermal behavior.

  4. Cooling Rate Study of Nickel-Rich Material During Thermal Treatment and Quench

    NASA Technical Reports Server (NTRS)

    Thomas, Fransua; Murguia, Silvia Briseno (Editor)

    2016-01-01

    To investigate quench cracking that results from water quenching after heat treatment of binary and Ni-rich material, cooling rates of specimens were measured during quenching and hardness post-thermal treatment. For specific applications binary Ni-Ti is customarily thermally treated and quenched to attain desired mechanical properties and hardness. However, one problem emerging from this method is thermal cracking, either during the heat treatment process or during the specimen's application. This can result in material and equipment failure as well as financial losses. The objective of the study is to investigate the internal cooling rate of 60-NiTi during quenching and determine possible factors causing thermal cracking. Cubic (1 in.3) samples of both material were heat treated in air at 1000 deg C for 2 hrs and quenched in room temperature water using two methods: (1) dropped in the water and (2) agitated in the water. Hardness of the two fore-mentioned methods was measured post heat treatment. Results indicate that the quenching method had an effect on cooling rate during quenching but hardness was observed to be essentially the same through the thickness of the samples.

  5. Oxidation resistance, thermal conductivity, and spectral emittance of fully dense zirconium diboride with silicon carbide and tantalum diboride additives

    NASA Astrophysics Data System (ADS)

    Van Laningham, Gregg Thomas

    Zirconium diboride (ZrB2) is a ceramic material possessing ultra-high melting temperatures. As such, this compound could be useful in the construction of thermal protection systems for aerospace applications. This work addresses a primary shortcoming of this material, namely its propensity to destructively oxidize at high temperatures, as well as secondary issues concerning its heat transport properties. To characterize and improve oxidation properties, thermogravimetric studies were performed using a specially constructed experimental setup. ZrB 2-SiC two-phase ceramic composites were isothermally oxidized for ~90 min in flowing air in the range 1500-1900°C. Specimens with 30 mol% SiC formed distinctive reaction product layers which were highly protective; 28 mol% SiC - 6 mol% TaB2 performed similarly. At higher temperatures, specimens containing lower amounts of SiC were shown to be non-protective, whereas specimens containing greater amounts of SiC produced unstable oxide layers due to gas evolution. Oxide coating thicknesses calculated from weight loss data were consistent with those measured from SEM micrographs. In order to characterize one aspect of the materials' heat transport properties, the thermal diffusivities of ZrB2-SiC composites were measured using the laser flash technique. These were converted to thermal conductivities using temperature dependent specific heat and density data; thermal conductivity decreased with increasing temperature over the range 25-2000°C. The composition with the highest SiC content showed the highest thermal conductivity at room temperature, but the lowest at temperatures in excess of ~400°C, because of the greater temperature sensitivity of the thermal conductivity of the SiC phase, as compared to more electrically-conductive ZrB2. Subsequent finite difference calculations were good predictors of multi-phase thermal conductvities for the compositions examined. The thermal conductivities of pure ZrB2 as a function of

  6. Possible Applications of Hardening Slurries with Fly Ash from Thermal Treatment of Municipal Sewage Sludge in Environmental Protection Structures

    NASA Astrophysics Data System (ADS)

    Falacinski, Paweł; Szarek, Łukasz

    2016-06-01

    In Poland, in recent years, there has been a rapid accumulation of sewage sludge - a by-product in the treatment of urban wastewater. This has come about as a result of infrastructure renewal, specifically, the construction of modern sewage treatment plants. The more stringent regulations and strategic goals adopted for modern sewage management have necessitated the application of modern engineering methodology for the disposal of sewage sludge. One approach is incineration. As a consequence, the amount of fly ash resulting from the thermal treatment of municipal sewage sludge has grown significantly. Hence, intensive work is in progress for environmentally safe management of this type of waste. The aim of the experiment was to evaluate the possibility of using the fly ash that results from municipal sewage sludge thermal treatment (SSTT) as an additive to hardening slurries. This type of hardening slurry with various types of additives, e.g. coal combustion products, is used in the construction of cut-off walls in hydraulic structures. The article presents the technological and functional parameters of hardening slurries with an addition of fly ash obtained by SSTT. Moreover, the usefulness of these slurries is analysed on the basis of their basic properties, i.e. density, contractual viscosity, water separation, structural strength, volumetric density, hydraulic conductivity, compressive and tensile strength. The mandated requirements for slurries employed in the construction of cut-off walls in flood embankments are listed as a usefulness criteria. The article presents the potential uses of fly ash from SSTT in hardening slurry technology. It also suggests directions for further research to fully identify other potential uses of this by-product in this field.

  7. Effect of Cu species on leaching behavior of simulated copper sludge after thermal treatment: ESCA analysis.

    PubMed

    Chou, Jing-Dong; Lin, Chiou-Liang; Wey, Ming-Yen; Chang, Shih-Hsien

    2010-07-15

    The aim of this study is to evaluate the efficiency of thermal treatment on residual copper sludge after separation treatment. The toxicity characteristic leaching procedure (TCLP) concentration, pattern distribution and possible Cu species of simulated copper sludge were analyzed. Parameters such as different reaction time and temperature are also discussed in this study. The TCLP leaching results showed that the TCLP concentration of Cu in thermally treated simulated copper sludge decreased (T=900 degrees C) as the reaction time increased to 4 h. The sequential extraction results showed that the main fraction of raw simulated copper sludge was carbonate. When temperatures were 500 and 700 degrees C, the main fraction of thermally treated simulated copper sludge was also carbonate. The percentage of Fe-Mn oxides and residue increased when T=900 degrees C. Electron Spectroscopy for Chemical Analysis (ESCA) showed that the possible Cu species of raw simulated copper sludge was Cu(OH)(2). The main possible Cu species of thermally treated simulated copper sludge were CuO and Cu(2)O when T was 500 and 700 degrees C, respectively. CuO, Cu(2)O, and Cu(3)O(2) were the possible Cu species in thermally treated simulated copper sludge when T=900 degrees C.

  8. Enhancing the photoelectrochemical properties of titanium dioxide by thermal treatment in oxygen deficient environment

    NASA Astrophysics Data System (ADS)

    Singh, Aadesh P.; Kodan, Nisha; Mehta, Bodh R.

    2016-05-01

    The effect of thermal treatment on TiO2 thin films under oxygen deficient environment (5% H2 in Ar) at partial pressure of 2 × 10-2 Torr have been studied for photoelectrochemical (PEC) water splitting application. Thermal treatment in anatase TiO2 thin films exhibits a shift in optical absorption from UV to visible region and activates TiO2 for water splitting application under visible light. X-ray photoelectron spectroscopy results showed that the thermal treated thin films contain oxygen vacancies, which suggests improved charge transport. Optical absorption, X-ray spectroscopy (XPS) and Kelvin probe force microscope (KPFM) studies show reduction in band gap by 0.36 eV, shift in valence band maximum by 0.49 eV towards the Fermi level and work function values by 0.3 eV towards the vacuum level. The pristine TiO2 thin films exhibit very less photoactivity in terms of photocurrent density, whereas thermally treated thin films displayed a markedly enhanced photocurrent density of ∼2.41 mA/cm2 at 0.23 V vs. Ag/AgCl. Higher values of photocurrent density in thermal treated TiO2 films have been explained in terms of change in the optical and electrical properties along with energy band diagram.

  9. Treatment of kidney diseases in the thermal springs of Pithecusa during the XVIII Century.

    PubMed

    Ricciardi, Elisabetta; Ricciardi, Carlo Alberto; Ricciardi, Biagio

    2016-02-01

    The island of Pithecusa (Ischia) is a volcanic island in the Tyrrhenian Sea in the north end of the Gulf of Naples at about 30 kilometers from the same city. Pithecusa is very popular for its hot springs which even the ancients used. This report aims to analyze the renal therapeutic benefits of the Pithacusa thermal mineral spring through a review of two different manuscripts: i) "Di Napoli il seno cratero"(The gulf of Naples) of Domenico Antonio Parrino (1642-1708) and ii) "De' rimedi naturali che sono nell'isola di Pithecusa oggi detta Ischia"(On the natural cures of the island of Pithecusa known today as Ischia)of Giulio Iasolino (1583-1622). These two manuscripts published during the 18th century and both manuscripts highlight the thermal virtues of the thermal springs of Pithecusa. In the past natural remedies were important in the treatment of different diseases including that of thermal springs dating back to ancient Rome. Thermal springs were used to treat spasms, skin diseases, hair loss and various renal ailments. Both manuscripts describe the thermal springs in Ischia and their therapeutic benefits in medical diseases.

  10. Comprehensive stabilization mechanism of electron-beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment

    PubMed Central

    Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho

    2016-01-01

    An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100–130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130–140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization. PMID:27349719

  11. Effect of thermal treatments on technological properties of wood from two Eucalyptus species.

    PubMed

    Cademartori, Pedro Henrique G; Missio, André L; Mattos, Bruno D; Gatto, Darci A

    2015-03-01

    The effect of thermal treatments on physical and mechanical properties of rose gum and Sydney blue gum wood was evaluated. Wood samples were thermally modified in a combination: pre-treatment in an autoclave (127°C - 1h) and treatment in an oven (180-240°C - 4h); and only treatment in an oven at 180-240°C for 4h. Chemical changes in the structure of woods were evaluated through infrared spectroscopy. Evaluation of physical properties was performed through mass loss, specific gravity, equilibrium moisture content and dimensional stability tests. Surface changes were analyzed through apparent contact angle technique and static bending tests were carried out to evaluate the mechanical behavior. Use of pre-treatment in autoclave affected the properties analyzed, however oven, resulted in the highest changes on wood from both species. Chemical changes were related to the degradation of hemicelluloses. Moreover, a significant decrease of hygroscopicity and mechanical strength of thermally modified woods was observed, while specific gravity did not significantly change for either of the species studied. The best results of decrease of wettability were found in low temperatures, while dimensional stability increased as a function of temperature of exposure in oven. The highest loss of mechanical strength was observed at 240°C for both species.

  12. Laser interstitial thermal therapy in treatment of brain tumors--the NeuroBlate System.

    PubMed

    Mohammadi, Alireza M; Schroeder, Jason L

    2014-03-01

    Treatment of brain tumors remains challenging. Cytoreductive surgery is used as the first line treatment for most brain tumors. However complete, curative, resection is not achievable in many tumors leading to the need for adjuvant chemotherapy and radiation therapy. Laser interstitial thermal therapy (LITT) is a minimally invasive cytoreductive treatment. A low voltage laser is used to induce hyperthermia and to kill tumor cells. The extent of thermal damage is controlled through use of real-time MR-thermography guidance. Initial results have shown the feasibility of LITT for a variety of brain pathologies. LITT can be considered as an alternative type of surgery for difficult to access brain tumors and also for tumors in patients who are deemed high risk for more traditional surgery. Randomized trials are currently planned to continue assessing the efficacy of LITT and long-term follow-up data are awaited.

  13. Characterization of Ti-6Al-4V Tribopairs: Effect of Thermal Oxidation Treatment

    NASA Astrophysics Data System (ADS)

    Durante, Massimo; Boccarusso, Luca; Velotti, Carla; Astarita, Antonello; Squillace, Antonino; Carrino, Luigi

    2017-02-01

    This paper deals with the study of the influence of the thermal oxidation (TO) treatment on the tribological properties of Ti-6Al-4V tribopairs. A detailed experimental campaign, including tribological tests, microgeometrical measurements, microhardness tests and phase composition analyses, was carried out on both treated and untreated components. The tribological behavior was studied through the pin-on-disk tests in four different contact conditions: treated disk coupled with untreated pin, untreated disk coupled with treated pin, both treated and both untreated. The effectiveness of the treatment in enhancing the tribological properties of the Ti-6Al-4V alloy sheets was found. In particular, the thermal oxidation treatment, promoting hardness enhancement and the formation of a superficial rutile layer, changed the wear mechanism of the titanium alloy, passing from adhesive wear type, for the untreated case, to abrasive wear, in the treated one.

  14. Characterization of Ti-6Al-4V Tribopairs: Effect of Thermal Oxidation Treatment

    NASA Astrophysics Data System (ADS)

    Durante, Massimo; Boccarusso, Luca; Velotti, Carla; Astarita, Antonello; Squillace, Antonino; Carrino, Luigi

    2016-12-01

    This paper deals with the study of the influence of the thermal oxidation (TO) treatment on the tribological properties of Ti-6Al-4V tribopairs. A detailed experimental campaign, including tribological tests, microgeometrical measurements, microhardness tests and phase composition analyses, was carried out on both treated and untreated components. The tribological behavior was studied through the pin-on-disk tests in four different contact conditions: treated disk coupled with untreated pin, untreated disk coupled with treated pin, both treated and both untreated. The effectiveness of the treatment in enhancing the tribological properties of the Ti-6Al-4V alloy sheets was found. In particular, the thermal oxidation treatment, promoting hardness enhancement and the formation of a superficial rutile layer, changed the wear mechanism of the titanium alloy, passing from adhesive wear type, for the untreated case, to abrasive wear, in the treated one.

  15. Potential of thermal treatment for decontamination of mercury containing wastes from chlor-alkali industry.

    PubMed

    Busto, Y; Cabrera, X; Tack, F M G; Verloo, M G

    2011-02-15

    Old dumps of mercury waste sludges from chlor-alkaline industry are an environmental threat if not properly secured. Thermal retortion can be used to remove mercury from such wastes. This treatment reduces the total mercury content, and also may reduce the leachability of the residual mercury. The effects of treatment temperature and treatment time on both residual mercury levels and mercury leachability according to the US EPA TCLP leaching procedure, were investigated. Treatment for 1h at 800°C allowed to quantitatively remove the mercury. Treatment at 400°C and above allowed to decrease the leachable Hg contents to below the US EPA regulations. The ultimate choice of treatment conditions will depend on requirements of further handling options and cost considerations.

  16. Self-immobilization and/or thermal treatment for preparing silica-poly(methyloctylsiloxane) stationary phases.

    PubMed

    Bottoli, Carla B G; Vigna, Camila R M; Fischer, Gerd; Albert, Klaus; Collins, Kenneth E; Collins, Carol H

    2004-03-19

    Batches of poly(methyloctylsiloxane) (PMOS)-loaded silica were prepared by the deposition of PMOS, into the pores of HPLC silica. Portions of PMOS-loaded silica were allowed to remain at ambient temperature, without further treatment for 2, 9, 20, 31, 51, 105 and 184 days after preparation to undergo self-immobilization (irreversible adsorption of a layer of polymer on silica at ambient temperature in the absence of initiators). Other portions were subjected to a thermal treatment (100 degrees C for 4h) after 1, 2, 5, 7, 9, 15, 20, 25, 70, 111 and 184 days. Self-immobilized and thermally treated samples were characterized by % C, 29Si cross-polarization magic angle spinning (CP/MAS) NMR spectroscopy and reversed-phase column performance. The results show that thermal immobilization accelerates the distribution and rearrangement of the polymer on the silica surface. However, from the time that a monolayer has been formed by self-immobilization (approximately 100 days for PMOS on Kromasil silica), the thermal treatment does not alter this configuration and, thus, does not change the resulting chromatographic parameters.

  17. Demonstration of thermal plasma gasification/vitrification for municipal solid waste treatment.

    PubMed

    Byun, Youngchul; Namkung, Won; Cho, Moohyun; Chung, Jae Woo; Kim, Young-Suk; Lee, Jin-Ho; Lee, Carg-Ro; Hwang, Soon-Mo

    2010-09-01

    Thermal plasma treatment has been regarded as a viable alternative for the treatment of highly toxic wastes, such as incinerator residues, radioactive wastes, and medical wastes. Therefore, a gasification/vitrification unit for the direct treatment of municipal solid waste (MSW), with a capacity of 10 tons/day, was developed using an integrated furnace equipped with two nontransferred thermal plasma torches. The overall process, as well as the analysis of byproducts and energy balance, has been presented in this paper to assess the performance of this technology. It was successfully demonstrated that the thermal plasma process converted MSW into innocuous slag, with much lower levels of environmental air pollutant emissions and the syngas having a utility value as energy sources (287 Nm3/MSW-ton for H2 and 395 Nm3/MSW-ton for CO), using 1.14 MWh/MSW-ton of electricity (thermal plasma torch (0.817 MWh/MSW-ton)+utilities (0.322 MWh/MSW-ton)) and 7.37 Nm3/MSW-ton of liquefied petroleum gas.

  18. Dual-wavelength photoacoustic technique for monitoring tissue status during thermal treatments

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Sing; Wang, Xueding; Deng, Cheri X.

    2013-06-01

    Photoacoustic (PA) techniques have been exploited for monitoring thermal treatments. However, PA signals depend not only on tissue temperature but also on tissue optical properties which indicate tissue status (e.g., native or coagulated). The changes in temperature and tissue status often occur simultaneously during thermal treatments, so both effects cause changes to PA signals. A new dual-wavelength PA technique to monitor tissue status independent of temperature is performed. By dividing the PA signal intensities obtained at two wavelengths at the same temperature, a ratio, which only depends on tissue optical properties, is obtained. Experiments were performed with two experimental groups, one with untreated tissue samples and the other with high-intensity focused ultrasound treated tissue samples including thermal coagulated lesion, using ex vivo porcine myocardium specimens to test the technique. The ratio of PA signal intensities obtained at 700 and 800 nm was constant for both groups from 25 to 43°C, but with distinct values for the two groups. Tissue alteration during thermal treatment was then studied using water bath heating of tissue samples from 35 to 60°C. We found that the ratio stayed constant before it exhibited a marked increase at around 55°C, indicating tissue changes at this temperature.

  19. [Impact of Thermal Treatment on Biogas Production by Anaerobic Digestion of High-solid-content Swine Manure].

    PubMed

    Hu, Yu-ying; Wu, Jing; Wang, Shi-feng; Cao, Zhi-ping; Wang, Kai-jun; Zuo, Jian-e

    2015-08-01

    Livestock manure is a kind of waste with high organic content and sanitation risk. In order to investigate the impact of thermal treatment on the anaerobic digestion of high-solid-content swine manure, 70 degrees C thermal treatment was conducted to treat raw manure (solid content 27.6%) without any dilution. The results indicated that thermal treatment could reduce the organic matters and improve the performance of anaerobic digestion. When the thermal treatment time was 1d, 2d, 3d, 4d, the VS removal rates were 15.1%, 15.5%, 17.8% and 20.0%, respectively. The methane production rates (CH4/VSadd) were 284.4, 296.3, 309.2 and 264.4 mL x g(-1), which was enhanced by 49.7%, 55.9%, 62.7% and 39.2%, respectively. The highest methane production rate occurred when the thermal treatment time was 3d. The thermal treatment had an efficient impact on promoting the performance of methane production rate with a suitable energy consumption. On the other hand, thermal treatment could act as pasteurization. This showed that thermal treatment would be of great practical importance.

  20. Synergistic effect of rice husk addition on hydrothermal treatment of sewage sludge: fate and environmental risk of heavy metals.

    PubMed

    Shi, Wansheng; Liu, Chunguang; Shu, Youju; Feng, Chuanping; Lei, Zhongfang; Zhang, Zhenya

    2013-12-01

    Hydrothermal treatment (HTT) at 200°C was applied to immobilize heavy metals (HMs) and the effect of rice husk (RH) addition was investigated based on total HMs concentration, fractionation and leaching tests. The results indicated that a synergistic effect of RH addition and HTT could be achieved on reducing the risk of HMs from medium and low risk to no risk. Metals were redistributed and transformed from weakly bounded state to stable state during the HTT process under RH addition. Notably at a RH/sludge ratio of 1/1.75 (d.w.), all the HMs showed no eco-toxicity and no leaching toxicity, with the concentrations of leachable Cr, Ni, Cu and Cd decreased by 17%, 89%, 95% and 93%, respectively. This synergistic effect of RH addition and HTT on the risk reduction of HMs implies that HTT process with RH addition could be a promising and safe disposal technology for sewage sludge treatment in practice.

  1. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization.

    PubMed

    Huang, Xingyi; Wang, Shen; Zhu, Ming; Yang, Ke; Jiang, Pingkai; Bando, Yoshio; Golberg, Dmitri; Zhi, Chunyi

    2015-01-09

    Thermally conductive and electrically insulating polymer/boron nitride (BN) nanocomposites are highly attractive for various applications in many thermal management fields. However, so far most of the preparation methods for polymer/BN nanocomposites have usually caused difficulties in the material post processing. Here, an in situ grafting approach is designed to fabricate thermally conductive, electrically insulating and post-melt processable polystyrene (PS)/BN nanosphere (BNNS) nanocomposites by initiating styrene (St) on the surface functionalized BNNSs via reversible addition fragmentation chain transfer polymerization. The nanocomposites exhibit significantly enhanced thermal conductivity. For example, at a St/BN feeding ratio of 5:1, an enhancement ratio of 1375% is achieved in comparison with pure PS. Moreover, the dielectric properties of the nanocomposites show a desirable weak dependence on frequency, and the dielectric loss tangent of the nanocomposites remains at a very low level. More importantly, the nanocomposites can be subjected to multiple melt processing to form different shapes. Our method can become a universal approach to prepare thermally conductive, electrically insulating and melt-processable polymer nanocomposites with diverse monomers and nanofillers.

  2. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization

    NASA Astrophysics Data System (ADS)

    Huang, Xingyi; Wang, Shen; Zhu, Ming; Yang, Ke; Jiang, Pingkai; Bando, Yoshio; Golberg, Dmitri; Zhi, Chunyi

    2015-01-01

    Thermally conductive and electrically insulating polymer/boron nitride (BN) nanocomposites are highly attractive for various applications in many thermal management fields. However, so far most of the preparation methods for polymer/BN nanocomposites have usually caused difficulties in the material post processing. Here, an in situ grafting approach is designed to fabricate thermally conductive, electrically insulating and post-melt processable polystyrene (PS)/BN nanosphere (BNNS) nanocomposites by initiating styrene (St) on the surface functionalized BNNSs via reversible addition fragmentation chain transfer polymerization. The nanocomposites exhibit significantly enhanced thermal conductivity. For example, at a St/BN feeding ratio of 5:1, an enhancement ratio of 1375% is achieved in comparison with pure PS. Moreover, the dielectric properties of the nanocomposites show a desirable weak dependence on frequency, and the dielectric loss tangent of the nanocomposites remains at a very low level. More importantly, the nanocomposites can be subjected to multiple melt processing to form different shapes. Our method can become a universal approach to prepare thermally conductive, electrically insulating and melt-processable polymer nanocomposites with diverse monomers and nanofillers.

  3. Additional treatment of wastewater reduces endocrine disruption in wild fish--a comparative study of tertiary and advanced treatments.

    PubMed

    Baynes, Alice; Green, Christopher; Nicol, Elizabeth; Beresford, Nicola; Kanda, Rakesh; Henshaw, Alan; Churchley, John; Jobling, Susan

    2012-05-15

    Steroid estrogens are thought to be the major cause of feminization (intersex) in wild fish. Widely used wastewater treatment technologies are not effective at removing these contaminants to concentrations thought to be required to protect aquatic wildlife. A number of advanced treatment processes have been proposed to reduce the concentrations of estrogens entering the environment. Before investment is made in such processes, it is imperative that we compare their efficacy in terms of removal of steroid estrogens and their feminizing effects with other treatment options. This study assessed both steroid removal and intersex induction in adult and early life stage fish (roach, Rutilus rutilus). Roach were exposed directly to either secondary (activated sludge process (ASP)), tertiary (sand filtrated (SF)), or advanced (chlorine dioxide (ClO(2)), granular activated charcoal (GAC)) treated effluents for six months. Surprisingly, both the advanced GAC and tertiary SF treatments (but not the ClO(2) treatment) significantly removed the intersex induction associated with the ASP effluent; this was not predicted by the steroid estrogen measurements, which were higher in the tertiary SF than either the GAC or the ClO(2). Therefore our study highlights the importance of using both biological and chemical analysis when assessing new treatment technologies.

  4. Improvement of an integrated system of membrane bioreactor and worm reactor by phosphorus removal using additional post-chemical treatment.

    PubMed

    Liu, Jia; Zuo, Wei; Tian, Yu; Zhang, Jun; Li, Hui; Li, Lipin

    2016-11-01

    A membrane bioreactor (MBR) coupled with a worm reactor (SSBWR) was designed as SSBWR-MBR for sewage treatment and excess sludge reduction. However, total phosphorus (TP) release caused by worm predation in the SSBWR could increase the effluent TP concentration in the SSBWR-MBR. To decrease the amount of TP excreted, chemical treatment reactor was connected after the SSBWR-MBR to remove the excess phosphorus (P). The effects of chemical treatment at different time intervals on the performance of the SSBWR-MBR were assessed. The results showed that a maximum TP removal efficiency of 21.5 ± 1.0% was achieved in the SSBWR-MBR after chemical treatment. More importantly, a higher sulfate concentration induced by chemical treatment could promote TP release in the SSBWR, which provided further TP removal from the SSBWR-MBR. Additionally, chemical oxygen demand (COD) removal efficiency of the SSBWR-MBR was increased by 1.3% after effective chemical treatment. In the SSBWR-MBR, the chemical treatment had little effects on NH3-N removal and sludge production. Eventually, chemical treatment also alleviated the membrane fouling in the SSBWR-MBR. In this work, the improvement on TP, COD removal and membrane fouling alleviation was achieved in the SSBWR-MBR using additional chemical treatment.

  5. Treatment of hepatic tumors by thermal versus mechanical effects of pulsed high intensity focused ultrasound in vivo

    NASA Astrophysics Data System (ADS)

    Peng, Song; Zhou, Ping; He, Wei; Liao, Manqiong; Chen, Lili; Ma, C.-M.

    2016-09-01

    The purpose of this study is to comparatively assess the thermal versus mechanical effects of pulsed high intensity focused ultrasound (HIFU) treatment on hepatic tumors in vivo. Forty-five rabbits with hepatic VX2 tumors were randomly separated into three groups (15 animals per group) before HIFU ablation. The total HIFU energy (in situ) of 1250 J was used for each tumor for three groups. In groups I and II, animals were treated with 1 MHz pulsed ultrasound at 1 Hz pulsed repetition frequency (PRF), 0.5 duty cycle (0.5 s on and 0.5 s off) and10 s duration for one spot sonication. For group II, in addition to HIFU treatment, microbubbles (SonoVue, Bracco, Milan, Italy) were injected via vein before sonication acting as a synergist. In group III, animals were treated with 1 MHz pulsed ultrasound at 10 Hz PRF, 0.1 duty cycle (0.1 s on and 0.9 s off) and 10 s duration for one sonication. The total treatment spots were calculated according to the tumor volume. Tumors were examined with contrast-enhanced computed tomography (CECT) immediately prior to and post HIFU treatment. Histopathologic assessment was performed 3 h after treatment. Our study showed that all animals tolerated the HIFU treatment well. Our data showed that mechanical HIFU could lead to controlled injury in rabbit hepatic tumors with different histological changes in comparison to thermal HIFU with or without microbubbles.

  6. Measurement of Insertion Loss of an Acoustic Treatment in the Presence of Additional Uncorrelated Sound Sources

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Palumbo, Daniel L.

    2003-01-01

    A method to intended for measurement of the insertion loss of an acoustic treatment applied to an aircraft fuselage in-situ is documented in this paper. Using this method, the performance of a treatment applied to a limited portion of an aircraft fuselage can be assessed even though the untreated fuselage also radiates into the cabin, corrupting the intensity measurement. This corrupting noise in the intensity measurement incoherent with the panel vibration of interest is removed by correlating the intensity to reference transducers such as accelerometers. Insertion loss of the acoustic treatments is estimated from the ratio of correlated intensity measurements with and without a treatment applied. In the case of turbulent boundary layer excitation of the fuselage, this technique can be used to assess the performance of noise control methods without requiring treatment of the entire fuselage. Several experimental studies and numerical simulations have been conducted, and results from three case studies are documented in this paper. Conclusions are drawn about the use of this method to study aircraft sidewall treatments.

  7. Effects of processing treatment and sorbate addition on the flavor characteristics of apple cider.

    PubMed

    Boylston, Terri D; Wang, Hui; Reitmeier, Cheryll A; Glatz, Bonita A

    2003-03-26

    Processing treatments used to produce a microbiologically "safe" apple cider were evaluated to determine the impact of these treatments on the overall flavor characteristics. Apple cider with (0.1%) and without (0%) potassium sorbate was subjected to four processing treatments: untreated, irradiated at 2 kGy, irradiated at 4 kGy, and pasteurized. Volatile flavor compounds were isolated from the cider using solid-phase microextraction methods with gas chromatographic analysis. A trained descriptive analysis panel evaluated sensory attributes. The effects of the processing treatment were dependent on the presence of sorbate in the apple cider. Irradiation treatments resulted in a decrease in the content of esters characteristic of apple flavor and an increase in the content of alcohols and aldehydes formed through lipid oxidation reactions. The presence of sorbate reduced the effects of the irradiation treatments on these volatile flavor compounds. Sensory panelists, however, detected higher intensities of undesirable flavor attributes, including "cardboard flavor", and lower intensities of the desirable "apple flavor" in irradiated cider with added sorbate.

  8. Thermal Stability Testing of Fischer-Tropsch Fuel and Various Blends with Jet A, as Well as Aromatic Blend Additives

    NASA Technical Reports Server (NTRS)

    Klettlinger, J.; Rich, R.; Yen, C.; Surgenor, A.

    2011-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  9. Thermal treatment of galactose-branched polyelectrolyte microcapsules to improve drug delivery with reserved targetability.

    PubMed

    Zhang, Fu; Wu, Qi; Liu, Li-Jun; Chen, Zhi-Chun; Lin, Xian-Fu

    2008-06-05

    A novel multilayered drug delivery system by LbL assembly of galactosylated polyelectrolyte, which is possible to have the potential in hepatic targeting by the presence of galactose residues at the microcapsule's surface, is designed. Thermal treatment was performed on the capsules and a dramatic thermal shrinkage up to 60% decrease of capsule diameter above 50 degrees C was observed. This thermal behavior was then used to manipulate drug loading capacity and release rate. Heating after drug loading could seal the capsule shell, enhancing the loading capacity and reducing the release rate significantly. Excellent affinity between galactose-binding lectin and heated galactose-containing microcapsules were observed, indicating a stable targeting potential even after high temperature elevating up to 90 degrees C.

  10. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    PubMed

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover

  11. Surrogate formulations for thermal treatment of low-level mixed waste. Part 1: Radiological surrogates

    SciTech Connect

    Stockdale, J.A.D.; Bostick, W.D.; Hoffmann, D.P.; Lee, H.T.

    1994-01-01

    The evaluation and comparison of proposed thermal treatment systems for mixed wastes can be expedited by tests in which the radioactive components of the wastes are replaced by surrogate materials chosen to mimic, as far as is possible, the chemical and physical properties of the radioactive materials of concern. In this work, sponsored by the Mixed Waste Integrated Project of the US Department of Energy, the authors have examined reported experience with such surrogates and suggest a simplified standard list of materials for use in tests of thermal treatment systems. The chief radioactive nuclides of concern in the treatment of mixed wastes are {sup 239}Pu, {sup 238}U, {sup 235}U, {sup 137}Cs, {sup 103}Ru, {sup 99}Tc, and {sup 90}Sr. These nuclides are largely by-products of uranium enrichment, reactor fuel reprocessing, and weapons program activities. Cs, Ru, and Sr all have stable isotopes that can be used as perfect surrogates for the radioactive forms. Technetium exists only in radioactive form, as do plutonium and uranium. If one wishes to preclude radioactive contamination of the thermal treatment system under trial burn, surrogate elements must be chosen for these three. For technetium, the authors suggest the use of natural ruthenium, and for both plutonium and uranium, they recommend cerium. The seven radionuclides listed can therefore be simulated by a surrogate package containing stable isotopes of ruthenium, strontium, cesium, and cerium.

  12. Effects of heat treatments on the thermal diffusivity of Uranium-Molybdenum alloy

    NASA Astrophysics Data System (ADS)

    Camarano, D. M.; Mansur, F. A.; Santos, A. M. M.; Ferraz, W. B.; Pedrosa, T. A.

    2016-07-01

    U-Mo alloys are the most investigated nuclear fuel material to be used in research reactors. The addition of molybdenum stabilizes the gamma phase of uranium and increases its melting point. A research program under development at Nuclear Technology Development Center (CDTN) aims the obtaining of uranium-molybdenum alloys to enable the high enriched uranium (HEU) to low enriched uranium (LEU) conversions. U-Mo ingots with 10% by weight were induction melted and heat treated at 300 °C for 72 h, 120 h and 240 h. Thermal diffusivity was determined by the laser flash method and thermal quadrupole method, from room temperature to 300 oC and 400oC. It was observed that the thermal diffusivity tends to increase with increasing temperature.

  13. The effect of thermal treatment on the fracture properties of alloy X-750 in aqueous environments

    SciTech Connect

    Ballinger, R.; Elliott, C.S.; Hwang, I.S.; Prybylowski, J.

    1993-05-01

    Alloy X-750 is a high strength, age hardenable nickel-base alloy used in light water nuclear reactors. The excellent corrosion resistance and high temperature strength of alloy X-750 make it suitable for use in a variety of structure components in both pressurized water reactors and boiling water reactors. These applications involve exposure of highly stressed material to aqueous media. Operational stresses are subject to low frequency thermally induced fluctuations and high frequency flow induced fluctuations. In general, alloy X-750 has performed well in light water reactors. However, an economically significant number of components have failed unexpectedly due to localized forms of attack such as corrosion fatigue and stress corrosion cracking. Thermal processing history is known to play a significant role in the fracture properties of alloy X-750 in aqueous environments. While thermal treatments have been developed recently to improve performance, in many cases the reason for improved performance remains unclear. Therefore, identification of the mechanisms responsible for the degradation of fracture properties in aqueous environments is necessary. As a corollary it is necessary to achieve an understanding of how thermal treatment influences microstructure and, in turn, how microstructure influences fracture properties in aqueous environments. This report discusses five thermal treatments which were studied: (1) SA-1 hr at 1093{degree}C, (2) AH - 24 hr at 885{degree}C + 20 hr at 704{degree}C, (3) HTH - 1 hr at 1093{degree}C + 20 hr at 704{degree}C, (4) AHTH - 1 hr at 1093{degree}C + 24 hr at 885{degree}C + 20 hr at 704{degree}C, and (5) HOA - 1 hr at 1093{degree}C + 100 hrs at 760{degree}C. Microstructural characterization of these materials was accomplished through the use of optical microscopy, transmission electron microscopy,scanning transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray diffractometry.

  14. An Additional Phytosanitary Cold Treatment Against Ceratitis capitata (Diptera: Tephritidae) in 'Oroblanco' Citrus Fruit.

    PubMed

    Gazit, Yoav; Kaspi, Roy

    2017-01-12

    For 'Oroblanco' ('Sweetie'), the sweet seedless pummelo-grapefruit hybrid, when exported from Israel to Japan, the standard cold treatment against Ceratitis capitata (Wied.) (Diptera: Tephritidae) is conducted at ≤ 1.5 °C, for 16 d. In recent years, the transportation means of exported citrus was changed from reefer vessels to individual refrigerated containers, where the fruit bulk is relatively small and may be exposed to temperature fluctuations and to the risk of chilling injuries. To reduce this risk, Israel proposed to Japan to increase the treatment temperature and extend its duration to 2.2 °C and 18 d, respectively. This study shows that the proposed treatment effectively kills the third instar larva of C. capitata, in Oroblanco.

  15. Graphite electrode thermal behavior and solid electrolyte interphase investigations: Role of state-of-the-art binders, carbonate additives and lithium bis(fluorosulfonyl)imide salt

    NASA Astrophysics Data System (ADS)

    Forestier, Coralie; Grugeon, Sylvie; Davoisne, Carine; Lecocq, Amandine; Marlair, Guy; Armand, Michel; Sannier, Lucas; Laruelle, Stephane

    2016-10-01

    The risk of thermal runaway is, for Li-ion batteries, a critical issue for large-scale applications. This results in manufacturers and researchers placing great emphasis on minimizing the heat generation and thereby mitigating safety-related risks through the search for suitable materials or additives. To this end, an in-depth stepwise investigation has been undertaken to provide a better understanding of the exothermic processes that take place at the negative electrode/electrolyte interface as well as an increased visibility of the role of the state-of-the-art electrode binders, additives and lithium salt by means of the classical DSC technique. A reliable experimental set up helped quantify the beneficial or harmful contribution of binder polymers to the exothermic behavior of the CMC/SBR containing graphite electrode film in contact with 1 M LiPF6 in EC:DMC:EMC (1:1:1 v/v/v) electrolyte. Further, the role of the VC, FEC and VEC electrolyte additives (2 wt%) in reinforcing the protective SEI layer towards thermally induced electrolyte reduction is discussed in the light of infrared spectroscopy and transmission electron microscopy analyzes results. Moreover, after a preliminary corrosion study of LiPF6/LiFSI mixtures, we showed that the 0.66/0.33 M composition can be used in commercial NMC-based LiBs with a positive effect on the thermal runaway.

  16. Effects of atmospheric pressure non-thermal plasma treatments on aflatoxigenic fungi and its host

    NASA Astrophysics Data System (ADS)

    Chen, Bo-Chen

    2015-09-01

    This experiment tests the ability of atmospheric pressure non-thermal plasma treatments in the prevention of fungi infection. There are charged particles, electric field, radicals and UV light inside plasmas and these elements might trigger different physical or chemical effects during non-thermal plasma treatments. In this experiment, the experimental samples received indirect plasma treatments with different time duration and gas compositions which mean only the remote effects caused by plasma treatments could be seen. In this work, plasmas were produced by dielectric barrier discharge method. The operation gases were air and a mixed gas of 97% He and 3%O2. After plasma treatments, fungi growth rate was observed by taking pictures and the existence of aflatoxin was qualitatively detected by black light method. The final results show that the radicals in both He/O2 and air plasma might facilitate fungi growth rate which means peanuts received indirect plasma treatments grew fungi faster than control group. The outcomes of aflatoxin detection also shows that the fungi grown on all the sample are aflatoxigenic fungi.

  17. A review of thermal sludge pre-treatment processes to improve dewaterability.

    PubMed

    Neyens, E; Baeyens, J

    2003-03-17

    As a result of the wide application and utilization of the waste activated sludge process, excess sludge presents a serious disposal problem. Many efforts have been devoted to reduce the excess sludge by treatments such as digestion and dewatering. It has been known for many years that a thermal pre-treatment gives an improvement in the dewaterability of sludges. This paper provides a literature review concerning the optimum treatment conditions to obtain enhanced dewaterability and digestibility of sludge. The main commercial hydrolysis processes (Cambi, Porteous and Zimpro) are discussed. The literature findings concerning the optimum treatment conditions of thermal or thermochemical pre-treatments are reviewed. The second part of this paper deals with the fundamentals of improving sludge dewatering. The influence of extracellular polymer (ECP) on settling and dewatering characteristics is discussed, together with the importance of cations and ECP-hydrophobicity in the flocculation and dewatering process. Finally, the effect on exocellular polymer, dewaterability, settleability and colloidal stability of activated sludge by treatment with sulfuric acid was studied.

  18. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia.

    PubMed

    Chen, Xin; Diederich, Chris J; Wootton, Jeffery H; Pouliot, Jean; Hsu, I-Chow

    2010-02-01

    A patient-specific optimisation-based hyperthermia treatment planning program for catheter-based ultrasound technology was developed for a priori evaluation of proposed applicator implant strategies and determination of initial applied power settings. The interstitial and endocavity heating applicators, designed for delivering 3-D controllable hyperthermia within High Dose Rate (HDR) brachytherapy implants, consist of linear and sectored arrays of ultrasound transducers with variable power control in both length and angle. A 3D biothermal model, which incorporates relevant anatomical structures and implant geometries based upon HDR treatment planning, has been developed to simulate the temperature distributions induced by these ultrasound applicators within the catheter implants. A temperature-based constrained optimisation algorithm was devised and integrated within the finite-element thermal solver to determine the optimal applied power levels. A temperature-expressed objective function and constraints were employed to limit maximum temperature (T(max)), maximise target coverage (T(target)), and minimise thermal exposure to normal tissue and surrounding organs. The optimisation-based treatment planning was applied on representative examples of clinical HDR implants for endocavity treatment of cervix (n = 3) and interstitial treatment of prostate (n = 3). Applicator positioning and orientation, T(max), and T(target), were varied, and temperature volume and thermal dose volume histograms calculated for each plan. The optimisation approach provided optimal applied power levels (4-24 independent transducer sections) leading to conforming or tailored temperature distributions for all cases, as indicated with improved temperature index T(90) in the target volume and negligible temperature and thermal dose (t(43,max) < 1 min) exposure in surrounding non-targeted tissues, such as bladder and rectum. The precision of the optimised power estimates was shown to be within <5

  19. Effect of heat treatment on microstructure and thermal conductivity of carbon/carbon-copper composites

    NASA Astrophysics Data System (ADS)

    Yang, Peng'ao; Yin, Jian; Zhang, Hongbo; Xiong, Xiang

    2016-03-01

    Using 2.5-dimensional carbon fiber fabrics as the reinforcement, porous carbon/carbon(C/C) substrates were firstly fabricated by impregnation/carbonization (I/C) technique with furan resin and then treated at 2000, 2300 and 3000 °C, respectively. Finally, carbon fiber reinforced carbon and copper(C/C-Cu) composites were prepared by infiltrating melt copper alloy into C/C substrates under pressure. The effects of treating temperatures on microstructures and thermal conductivities of the composites were investigated. The results show that heat treatment plays an important role in the microstructure and thermal conductivity of C/C-Cu composites. It is conducive not only to rearrange the carbon crystallite of resin-based carbon in oriented layer structure, but also to improve the content and connectivity of copper alloy. The thermal conductivity increases with the increase in heat treatment temperature in both parallel and perpendicular direction; the thermal conductivity in parallel direction is evidently superior to that in perpendicular direction.

  20. The effect of laser treatment of WC-Co coatings on their failure under thermal cycling

    NASA Astrophysics Data System (ADS)

    Kasterov, Artur; Shugurov, Artur; Kazachenok, Marina; Panin, Alexey; Cheng, Chin-Hsiang; Chang, I.-Ling

    2016-11-01

    The given paper studies the effect of surface laser treatment of WC-Co coatings on their surface morphology, phase composition and thermal cycling behavior. The coatings were sprayed on stainless steel substrates with the use of a high velocity oxy fuel spraying process. Application of the scanning electron microscopy and X-ray diffraction showed that re-melting of the coating surface layer during laser treatment induced changes in its phase composition as well as the formation of regular rows of globular asperities on the coating surface. The latter resulted in a sharp increase in thermal shock resistance of the laser treated WC-Co coatings under water quench tests; its underlying mechanism are proposed and discussed in the paper.

  1. Additive, Multi-Component Treatment of Emerging Refusal Topographies in a Pediatric Feeding Disorder

    ERIC Educational Resources Information Center

    Sharp, William G.; Jaquess, David L.; Bogard, Jennifer D.; Morton, Jane F.

    2010-01-01

    This case study describes inter-disciplinary treatment of chronic food refusal and tube dependency in a 2-year-old female with a pediatric feeding disorder. Evidence-based behavioral components--including escape extinction (EE), differential reinforcement of alterative mealtime behavior (DRA), and stimulus fading--were introduced sequentially as…

  2. A Novel Combination of Thermal Ablation and Heat-Inducible Gene therapy for Breast Cancer Treatment

    DTIC Science & Technology

    2009-04-01

    11. Khokhlova, V.A., et al., Effects of nonlinear propagation, cavitation , and boiling in lesion formation by high intensity focused ultrasound in...intensity focused ultrasound (HIFU) has been developed as an emerging non-invasive strategy for cancer treatment by thermal ablation of tumor tissue. The...Concepts, Seattle, WA) operating at its fundamental frequency (1.1 MHz) or its third harmonics (3.3 MHz). The ultrasound imaging system was a 5/7

  3. Laser treatment of female stress urinary incontinence: optical, thermal, and tissue damage simulations

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.

    2016-02-01

    Treatment of female stress urinary incontinence (SUI) by laser thermal remodeling of subsurface tissues is studied. Light transport, heat transfer, and thermal damage simulations were performed for transvaginal and transurethral methods. Monte Carlo (MC) provided absorbed photon distributions in tissue layers (vaginal wall, endopelvic fascia, urethral wall). Optical properties (n,μa,μs,g) were assigned to each tissue at λ=1064 nm. A 5-mm-diameter laser beam and power of 5 W for 15 s was used, based on previous experiments. MC output was converted into absorbed energy, serving as input for ANSYS finite element heat transfer simulations of tissue temperatures over time. Convective heat transfer was simulated with contact cooling probe set at 0 °C. Thermal properties (κ,c,ρ) were assigned to each tissue layer. MATLAB code was used for Arrhenius integral thermal damage calculations. A temperature matrix was constructed from ANSYS output, and finite sum was incorporated to approximate Arrhenius integral calculations. Tissue damage properties (Ea,A) were used to compute Arrhenius sums. For the transvaginal approach, 37% of energy was absorbed in endopelvic fascia layer with 0.8% deposited beyond it. Peak temperature was 71°C, treatment zone was 0.8-mm-diameter, and almost all of 2.7-mm-thick vaginal wall was preserved. For transurethral approach, 18% energy was absorbed in endopelvic fascia with 0.3% deposited beyond it. Peak temperature was 80°C, treatment zone was 2.0-mm-diameter, and only 0.6 mm of 2.4-mm-thick urethral wall was preserved. A transvaginal approach is more feasible than transurethral approach for laser treatment of SUI.

  4. Hydrothermal treatment of incineration fly ash for PCDD/Fs decomposition: the effect of iron addition.

    PubMed

    Chen, De-Zhen; Hu, Yu-Yan; Zhang, Peng-Fei

    2012-12-01

    The catalytic effect of Fe addition on the decomposition of polychlorinated dibenzo-dioxins and polychlorinated dibenzofurans (PCDD/Fs) contained in municipal solid waste incineration (MSWI) fly ash during the hydrothermal process was investigated. Influencing factors, such as Fe addition mode, reaction time and cooling procedure after reaction, were tested to evaluate their effects. Experimental results indicated that Fe addition in the form of a mixture of ferrous sulphate and ferric sulphate enhanced decomposition of PCDD/Fs contained in the MSWI fly ash, particularly for the decomposition of 2,3,7,8-tetrachlorodibenzo-dioxin and 2,3,7,8-tetrachlorodibenzo-furan under the reaction temperature of 563 K. The decomposition rate of PCDD/Fs reached 90.33% by international toxicity equivalent (I-TEQ) when Fe was added as a mixture of ferrous and ferric sulphates by 5% (wt/wt) with the Fe (III)/Fe (II) ratio being 2; without Fe addition, the decomposition rate of PCDD/Fs was only 46.17% by I-TEQ in the same process. Fe addition in the form of ferrous sulphate alone also showed an enhancing effect on PCDD/Fs decomposition, but the associated decomposition rates were relatively lower, suggesting iron oxides formed from the mixture of ferric and ferrous sulphates are more favourable catalysts. At the same time, the cooling procedure after the hydrothermal reaction became more flexible if Fe was added in the form of a mixture of ferric and ferrous sulphates. Although a longer reaction time was helpful to increase decomposition rates of PCDD/Fs, 1 h was proved to be a reasonable time under this condition.

  5. Survival of Bacterial Indicator Species and Bacteriophages after Thermal Treatment of Sludge and Sewage

    PubMed Central

    Mocé-Llivina, Laura; Muniesa, Maite; Pimenta-Vale, Hugo; Lucena, Francisco; Jofre, Juan

    2003-01-01

    The inactivation of naturally occurring bacterial indicators and bacteriophages by thermal treatment of a dewatered sludge and raw sewage was studied. The sludge was heated at 80°C, and the sewage was heated at 60°C. In both cases phages were significantly more resistant to thermal inactivation than bacterial indicators, with the exception of spores of sulfite-reducing clostridia. Somatic coliphages and phages infecting Bacteroides fragilis were significantly more resistant than F-specific RNA phages. Similar trends were observed in sludge and sewage. The effects of thermal treatment on various phages belonging to the three groups mentioned above and on various enteroviruses added to sewage were also studied. The results revealed that the variability in the resistance of phages agreed with the data obtained with the naturally occurring populations and that the phages that were studied were more resistant to heat treatment than the enteroviruses that were studied. The phages survived significantly better than Salmonella choleraesuis, and the extents of inactivation indicated that naturally occurring bacteriophages can be used to monitor the inactivation of Escherichia coli and Salmonella. PMID:12620828

  6. Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report

    SciTech Connect

    1995-01-01

    The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

  7. STEP wastewater treatment: a solar thermal electrochemical process for pollutant oxidation.

    PubMed

    Wang, Baohui; Wu, Hongjun; Zhang, Guoxue; Licht, Stuart

    2012-10-01

    A solar thermal electrochemical production (STEP) pathway was established to utilize solar energy to drive useful chemical processes. In this paper, we use experimental chemistry for efficient STEP wastewater treatment, and suggest a theory based on the decreasing stability of organic pollutants (hydrocarbon oxidation potentials) with increasing temperature. Exemplified by the solar thermal electrochemical oxidation of phenol, the fundamental model and experimental system components of this process outline a general method for the oxidation of environmentally stable organic pollutants into carbon dioxide, which is easily removed. Using thermodynamic calculations we show a sharply decreasing phenol oxidation potential with increasing temperature. The experimental results demonstrate that this increased temperature can be supplied by solar thermal heating. In combination this drives electrochemical phenol removal with enhanced oxidation efficiency through (i) a thermodynamically driven decrease in the energy needed to fuel the process and (ii) improved kinetics to sustain high rates of phenol oxidation at low electrochemical overpotential. The STEP wastewater treatment process is synergistic in that it is performed with higher efficiency than either electrochemical or photovoltaic conversion process acting alone. STEP is a green, efficient, safe, and sustainable process for organic wastewater treatment driven solely by solar energy.

  8. Post-deposition control of ferroelastic stripe domains and internal electric field by thermal treatment

    NASA Astrophysics Data System (ADS)

    Feigl, L.; Janolin, P.-E.; Yamada, T.; Iwanowska, M.; Sandu, C. S.; Setter, N.

    2015-01-01

    The dependence of the formation of ferroelastic stripe domain patterns on the thermal history is investigated by detailed piezoresponse force microscopy and X-ray diffraction experiments after and during annealing of tensile strained tetragonal Pb(Ti,Zr)O3 epitaxial thin films on DyScO3 substrates. In particular, the ferroelastic pattern is reversibly interchanged between a cross-hatched and a stripe domain pattern if the films are cooled at different rates after annealing above the formation temperature of a-domains. Different types of 180° and non-180° patterns can be created, depending on the thermal treatment. The changes in the 180° domain structure and lattice parameters are attributed to a change of oxygen vacancy concentration, which results in a modification of the internal electric field and unit cell size, causing also a shift of TC. Thermal treatment is done on rhombohedral La:BiFeO3 thin films as well. It is observed that also in these films, appropriate heat treatment modifies the domain pattern and films with a stripe domain pattern can be created, confirming the general validity of the developed model.

  9. First Achievements and Opportunities for Cancer Treatment Using Non-thermal Plasma

    NASA Astrophysics Data System (ADS)

    Robert, Eric; Vandamme, Marc; Sobilo, Julien; Sarron, Vanessa; Ries, Delphine; Dozias, Sébastien; Brulle, Laura; Lerondel, Stéphanie; Le Pape, Alain; Pouvesle, Jean Michel

    This paper summarizes the experimental results and plasma delivery strategy developed in Orléans for the evaluation of antitumor action of dielectric barrier discharge and plasma gun for cancer treatment. Detailed analysis of biological effects following non thermal plasma application for both in vitro and in vivo experiments reveals the role of ROS, DNA damage induction, cell cycle modification and apoptosis induction. Recent characterization of plasma splitting and ­mixing in different capillary geometries, using the plasma gun, together with preliminary tolerance study dealing with lung and colon treatment indicate that endoscopic plasma delivery may be a new and valuable therapy in cancerology.

  10. Antireflection treatment of thickness sensitive spectrally selective (TSSS) paints for thermal solar absorbers

    SciTech Connect

    Lundh, M.; Waeckelgaard, E.; Blom, T.

    2010-01-15

    There are several methods to produce solar absorbers, and one cheap alternative is painted absorbers, preferably painted with a spectrally selective paint. The optical properties of Thickness Sensitive Spectrally Selective (TSSS) paints are, however, limited by the thickness of the paint layer. In this study it is shown that the solar absorptance of two commercial TSSS paints can be increased between 0.01 and 0.02 units with an antireflection treatment using a silicon dioxide layer deposited from silica-gel. It was found that the thermal emittance (100 C) did not change significantly after the treatment. (author)

  11. Effect of titanium addition on the thermal properties of diamond/cu-ti composites fabricated by pressureless liquid-phase sintering technique.

    PubMed

    Chung, Chih-Yu; Chu, Chao-Hung; Lee, Mu-Tse; Lin, Chun-Ming; Lin, Su-Jien

    2014-01-01

    In this study, minor-addition elements such as Si, Co, Cr, W, Mo, and Ti were added to matrix to improve the wettability between the diamonds and Cu matrix. The pressureless liquid-phase sintering technique adopted in this study provides a low-cost method for producing diamond/Cu composites with high potential for industrial mass production. Thermal properties of the diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering at 1373 K with variation in Ti contents were thoroughly investigated. XRD and TEM analysis show that TiC layer formed in the interface between Cu and diamond. The composites exhibited thermal conductivity as high as 620 W/m · K for 50 vol% diamond/Cu-0.6 at % Ti composite with diamond particle size of 300 µm. This value comes up to 85% of the thermal conductivity calculated by the Hasselman and Johnson (H-J) theoretical analysis. Under these conditions, a suitable coefficient of thermal expansion of 6.9 ppm/K was obtained.

  12. Effect of Titanium Addition on the Thermal Properties of Diamond/Cu-Ti Composites Fabricated by Pressureless Liquid-Phase Sintering Technique

    PubMed Central

    Chung, Chih-Yu; Chu, Chao-Hung; Lee, Mu-Tse; Lin, Chun-Ming; Lin, Su-Jien

    2014-01-01

    In this study, minor-addition elements such as Si, Co, Cr, W, Mo, and Ti were added to matrix to improve the wettability between the diamonds and Cu matrix. The pressureless liquid-phase sintering technique adopted in this study provides a low-cost method for producing diamond/Cu composites with high potential for industrial mass production. Thermal properties of the diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering at 1373 K with variation in Ti contents were thoroughly investigated. XRD and TEM analysis show that TiC layer formed in the interface between Cu and diamond. The composites exhibited thermal conductivity as high as 620 W/m·K for 50 vol% diamond/Cu-0.6  at % Ti composite with diamond particle size of 300 µm. This value comes up to 85% of the thermal conductivity calculated by the Hasselman and Johnson (H-J) theoretical analysis. Under these conditions, a suitable coefficient of thermal expansion of 6.9 ppm/K was obtained. PMID:24715816

  13. Identification and location of 14C-bearing species in thermally treated neutron irradiated graphites NBG-18 and NBG-25: Pre- and post-thermal treatment

    NASA Astrophysics Data System (ADS)

    LaBrier, Daniel; Dunzik-Gougar, Mary Lou

    2015-05-01

    Recent studies have been performed to determine the effectiveness of thermal treatment as a method for removing 14C contamination from irradiated graphite surfaces. Samples of two grades of irradiated nuclear graphite (NBG-18 and NBG-25) were thermally treated to determine the amount of 14C contamination on irradiated graphite surfaces. The results of these analyses indicate that specific chemical forms of 14C (namely, 14CO and 14CO2) may be selectively removed based on the temperature used during thermal treatment. Characterization studies utilizing various surface analysis techniques (XPS, SIMS, SEM/EDS) were employed to investigate the chemical speciation, bond structure, and morphology of the surfaces of pre- and post-thermally treated irradiated graphite.

  14. Comparison of discrete and continuous thermal neutron scattering treatments in MCNP5

    SciTech Connect

    Pavlou, A. T.; Brown, F. B.; Martin, W. R.; Kiedrowski, B. C.

    2012-07-01

    The standard discrete thermal neutron S({alpha},{beta}) scattering treatment in MCNP5 is compared with a continuous S({alpha},{beta}) scattering treatment using a criticality suite of 119 benchmark cases and ENDF/B-VII.0 nuclear data. In the analysis, six bound isotopes are considered: beryllium metal, graphite, hydrogen in water, hydrogen in polyethylene, beryllium in beryllium oxide and oxygen in beryllium oxide. Overall, there are only small changes in the eigenvalue (k{sub eff}) between discrete and continuous treatments. In the comparison of 64 cases that utilize S({alpha},{beta}) scattering, 62 agreed at the 95% confidence level, and the 2 cases with differences larger than 3 {sigma} agreed within 1 {sigma} when more neutrons were run in the calculations. The results indicate that the changes in eigenvalue between continuous and discrete treatments are random, small, and well within the uncertainty of measured data for reactor criticality experiments. (authors)

  15. 78 FR 68021 - Notice of Affirmation of Addition of a Treatment Schedule for Methyl Bromide Fumigation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... fumigation of blueberries for Mediterranean fruit fly and South American fruit fly. In a previous notice, we... fruit flies. DATES: Effective Date: Effective on November 13, 2013, we are affirming the addition to the... our determination that a new methyl bromide treatment schedule to mitigate risk from two fruit...

  16. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants

    SciTech Connect

    Oleszek, Sylwia; Grabda, Mariusz; Shibata, Etsuro; Nakamura, Takashi

    2013-09-15

    Highlights: • Copper, silver and gold during thermal treatment with brominated flame retardants. • Distribution of copper, silver and gold during thermal processing. • Thermodynamic considerations of the bromination reactions. - Abstract: The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is

  17. Treatment of Scumming Effects of Pottery Clay by Sodium Carbonate Addition

    NASA Astrophysics Data System (ADS)

    Wasanapiarnpong, T.; Thueploy, A.; Nilpairach, S.; Arayaphong, D.

    2011-10-01

    Earthenware pottery products made by using red plastic clay in Ratchaburi province of Thailand and fired at 850-1000 °C, always shows some blemishes, caused by scumming on the surface. This scumming contains calcium sulfate, contaminated in the raw clay as gypsum form. The addition of barium carbonate is a suggested solution to prevent this white stain. However, it is difficult for barium carbonate to spread throughout the clay so that it takes a long time to complete the reaction. This research aims to find the solution by using sodium carbonate as an alternative chemical. Sodium carbonate was mixed in the clay at 1wt% dissolved in distilled water controlled the moisture at 22 % by wet weight. The mixture was kneaded and aged for 24 h, then formed, dried and fired at 850-950 °C. The types and quantities of ion in mixed clay and deposited on the surface product were determined after drying. It was found that the white stain areas were diminished, as same as the result from the addition of barium carbonate. Moreover, the sample after firing at 950 °C had lower water absorption as 12.22 %, higher three point bending strength as 32.53 MPa when compared to the addition of barium carbonate, which had higher water absorption as 15.58 % and lower three point bending strength as 25.25 MPa.

  18. Utilizing the micron sized non-thermal atmospheric pressure plasma inside the animal body for the tumor treatment application

    PubMed Central

    Mirpour, Shahriar; Piroozmand, Somayeh; Soleimani, Neda; Jalali Faharani, Neda; Ghomi, Hamidreza; Fotovat Eskandari, Hoda; Sharifi, Ali Mohammad; Mirpour, Sahar; Eftekhari, Mohammad; Nikkhah, Maryam

    2016-01-01

    This study aimed to evaluate the effects of micron sized non-thermal atmospheric pressure plasma inside the animal body on breast cancer tumor. The μ-plasma jet consists of micron sized hollow tube in which pure helium gas is ionized by high voltage (4 kV) and high frequency (6 kHz). The efficiency of the plasma treatment in killing cancer cells was first investigated by cell viability measurements of treated 4T1 cells using flow cytometry and cell cycle analysis. For exploration of the in vivo effects of the plasma treatment, the BALB/c mice inoculated by 4T1 cell lines were exposed subcutaneously to plasma for 3 minutes. In addition, H&E staining, TUNEL and Western blotting assays were performed in order to observed the effects of the non-thermal plasma on the tumor cells. The results showed that the efficiency of the plasma in suppression of the tumor growth is comparable to that of a typical chemotherapy drug. Moreover, the results indicated that the plasma induces apoptosis in the tumor tissue and increases the ratio of the apoptotic to anti-apoptotic protein expression. We believe that these findings presented herein may extend our knowledge of the mechanisms by which the plasma exerts its promising anti-cancer effects. PMID:27383714

  19. Utilizing the micron sized non-thermal atmospheric pressure plasma inside the animal body for the tumor treatment application.

    PubMed

    Mirpour, Shahriar; Piroozmand, Somayeh; Soleimani, Neda; Jalali Faharani, Neda; Ghomi, Hamidreza; Fotovat Eskandari, Hoda; Sharifi, Ali Mohammad; Mirpour, Sahar; Eftekhari, Mohammad; Nikkhah, Maryam

    2016-07-07

    This study aimed to evaluate the effects of micron sized non-thermal atmospheric pressure plasma inside the animal body on breast cancer tumor. The μ-plasma jet consists of micron sized hollow tube in which pure helium gas is ionized by high voltage (4 kV) and high frequency (6 kHz). The efficiency of the plasma treatment in killing cancer cells was first investigated by cell viability measurements of treated 4T1 cells using flow cytometry and cell cycle analysis. For exploration of the in vivo effects of the plasma treatment, the BALB/c mice inoculated by 4T1 cell lines were exposed subcutaneously to plasma for 3 minutes. In addition, H&E staining, TUNEL and Western blotting assays were performed in order to observed the effects of the non-thermal plasma on the tumor cells. The results showed that the efficiency of the plasma in suppression of the tumor growth is comparable to that of a typical chemotherapy drug. Moreover, the results indicated that the plasma induces apoptosis in the tumor tissue and increases the ratio of the apoptotic to anti-apoptotic protein expression. We believe that these findings presented herein may extend our knowledge of the mechanisms by which the plasma exerts its promising anti-cancer effects.

  20. Utilizing the micron sized non-thermal atmospheric pressure plasma inside the animal body for the tumor treatment application

    NASA Astrophysics Data System (ADS)

    Mirpour, Shahriar; Piroozmand, Somayeh; Soleimani, Neda; Jalali Faharani, Neda; Ghomi, Hamidreza; Fotovat Eskandari, Hoda; Sharifi, Ali Mohammad; Mirpour, Sahar; Eftekhari, Mohammad; Nikkhah, Maryam

    2016-07-01

    This study aimed to evaluate the effects of micron sized non-thermal atmospheric pressure plasma inside the animal body on breast cancer tumor. The μ-plasma jet consists of micron sized hollow tube in which pure helium gas is ionized by high voltage (4 kV) and high frequency (6 kHz). The efficiency of the plasma treatment in killing cancer cells was first investigated by cell viability measurements of treated 4T1 cells using flow cytometry and cell cycle analysis. For exploration of the in vivo effects of the plasma treatment, the BALB/c mice inoculated by 4T1 cell lines were exposed subcutaneously to plasma for 3 minutes. In addition, H&E staining, TUNEL and Western blotting assays were performed in order to observed the effects of the non-thermal plasma on the tumor cells. The results showed that the efficiency of the plasma in suppression of the tumor growth is comparable to that of a typical chemotherapy drug. Moreover, the results indicated that the plasma induces apoptosis in the tumor tissue and increases the ratio of the apoptotic to anti-apoptotic protein expression. We believe that these findings presented herein may extend our knowledge of the mechanisms by which the plasma exerts its promising anti-cancer effects.

  1. Ultraviolet and pulsed electric field treatments have additive effect on inactivation of E. coli in apple juice.

    PubMed

    Gachovska, T K; Kumar, S; Thippareddi, H; Subbiah, J; Williams, F

    2008-11-01

    Apple juice inoculated with Escherichia coli ATCC 23472 was processed continuously using either ultraviolet (UV), high-voltage pulsed electric field (PEF), or a combination of the PEF and UV treatment systems. Apple juice was pumped through either of the systems at 3 flow rates (8, 14, and 20 mL/min). E. coli was reduced by 3.46 log CFU/mL when exposed in a 50 cm length of UV treatment chamber at 8 mL/min (2.94 s treatment time with a product temperature increase of 13 degrees C). E. coli inactivation of 4.87 log CFU/mL was achieved with a peak electric field strength of 60 kV/cm and 11.3 pulses (average pulse width of 3.5 mus, product temperature increased to 52 degrees C). E. coli reductions resulting from a combination treatment of UV and PEF applied sequentially were evaluated. A maximum E. coli reduction of 5.35 log CFU/mL was achieved using PEF (electrical field strength of 60 kV/cm, specific energy of 162 J/mL, and 11.3 pulses) and UV treatments (length of 50 cm, treatment time of 2.94 s, and flow rate of 8 mL/min). An additive effect was observed for the combination treatments (PEF and UV), regardless of the order of treatment (P > 0.05). E. coli reductions of 5.35 and 5.30 log CFU/mL with PEF treatment (electrical field strength of 60 kV/cm, specific energy of 162 J/mL, and 11.3 pulses) followed by UV (length of 30 cm, treatment time of 1.8 s, and flow rate of 8 mL/min) and UV treatment followed by PEF (same treatment conditions), respectively. No synergistic effect was observed.

  2. Effect of sucrose and pectin addition on physical, chemical, thermal and rheological properties of frozen/thawed pineapple pulps

    NASA Astrophysics Data System (ADS)

    Conceição, Márcia Cavalcante; Fernandes, Tatiana Nunes; Prado, Mônica Elisabeth Torres; de Resende, Jaime Vilela

    2012-09-01

    Pectin (0-1.0 g/100 mL) and sucrose (0-20 g/100 mL) were added to pineapple pulp to improve their rheological properties, thermal properties and stability after freezing and thawing processes. The properties of the mixes were characterized before and after freezing and thawing. Samples were frozen at -20°C, and the freeze concentration was evaluated every 60 min. The thawing rate was evaluated at 19°C and quantified by photographic editing and image analysis software. The thawing rates and values for the freeze concentration were leveled out at pectin concentrations above 0.5 g/100 mL pectin, which indicated that pectin functions to maintain structural homogeneity during freezing. In the thawed samples, the plastic viscosity values were leveled out from pectin concentrations (0.25-0.75 g/100 mL) as the sucrose concentration increased when compared to unfrozen samples. The differences between the rheological parameters of the unfrozen and frozen/thawed pulps, the higher yield stress values after thawing were attributed to the size of suspended particles in the pulp. Applications can specify formulations of frozen products containing pectin, where these properties can be handled after thawing the product.

  3. Mechanical Properties and Fracture Behaviors of GTA-Additive Manufactured 2219-Al After an Especial Heat Treatment

    NASA Astrophysics Data System (ADS)

    Bai, J. Y.; Fan, C. L.; Lin, S. B.; Yang, C. L.; Dong, B. L.

    2017-03-01

    2219-Al parts were produced by gas tungsten arc-additive manufacturing and sequentially processed by an especial heat treatment. In order to investigate the effects of heat treatment on its mechanical properties, multiple tests were conducted. Hardness tests were carried out on part scale and layer scale along with tensile tests which were performed on welding and building directions. Results show that compared to conventional casting + T6 2219-Al, the current deposit + T6 2219-Al exhibits satisfying properties with regard to strength but unsatisfying results in plasticity. Additionally, anisotropy is significant. Fractures were observed and the cracks' propagating paths in both directional specimens are described. The effects of heat treatment on the cracks' initiation and propagation were also investigated. Ultimately, a revised formula was developed to calculate the strength of the deposit + T6 2219-Al. The aforementioned formula, which takes into consideration the belt-like porosities-distributing feature, can scientifically describe the anisotropic properties in the material.

  4. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    SciTech Connect

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat

    2013-11-27

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  5. Thermal Imaging for Assessment of Electron-Beam Free Form Fabrication (EBF(sup 3)) Additive Manufacturing Welds

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy R.; Martin, Richard E.

    2013-01-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA s electron beam free-form fabrication (EBF(sup 3)) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF(sup 3) technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF(sup 3) system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality weld, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for weld assessment metrics.

  6. A review of technologies and performances of thermal treatment systems for energy recovery from waste.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-01

    The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels

  7. Addition of a Magnetite Layer onto a Polysulfone Water Treatment Membrane to Enhance Virus Removal

    NASA Astrophysics Data System (ADS)

    Raciny, Isabel

    The applicability of low-pressure membranes systems in distributed (point of use) water treatment is hindered by, among other things, their inability to remove potentially harmful viruses and ions via size exclusion. According to the USEPA and the Safe Drinking Water Act, drinking water treatment processes must be designed for 4-log virus removal. Batch experiments using magnetite nanoparticle (nano-Fe3O4) suspensions and water filtration experiments with Polysulfone (PSf) membranes coated with nano-Fe3O 4 were conducted to assess the removal of a model virus (bacteriophage MS2). The membranes were coated via a simple filtration protocol. Unmodified membranes were a poor adsorbent for MS2 bacteriophage with less than 0.5-log removal, whereas membranes coated with magnetite nanoparticles exhibited a removal efficiency exceeding 99.99% (4-log). Thus, a cartridge of PSf membranes coated with nano-Fe3O4 particles could be used to remove viruses from water. Such membranes showed negligible iron leaching into the filtrate, thus obviating concern about colored water. Further research is needed to reduce the loss of water flux caused by coating.

  8. Addition of a magnetite layer onto a polysulfone water treatment membrane to enhance virus removal.

    PubMed

    Raciny, I; Zodrow, K R; Li, D; Li, Q; Alvarez, P J J

    2011-01-01

    The applicability of low-pressure membranes systems in distributed (point of use) water treatment is hindered by, among other things, their inability to remove potentially harmful viruses and ions via size exclusion. According to the USEPA and the Safe Drinking Water Act, drinking water treatment processes must be designed for 4-log virus removal. Batch experiments using magnetite nanoparticle (nano-Fe3O4) suspensions and water filtration experiments with polysulfone membranes coated with nano-Fe3O4 were conducted to assess the removal of a model virus (bacteriophage MS2). The membranes were coated via a simple filtration protocol. Unmodified membranes were a poor adsorbent for MS2 bacteriophage with less than 0.5-log removal, whereas membranes coated with magnetite nanoparticles exhibited a removal efficiency exceeding 99.99% (4-log). Thus, a cartridge of PSf membranes coated with nano-Fe3O4 particles could be used to remove viruses from water. Such membranes showed negligible iron leaching into the filtrate, thus obviating concern about coloured water. Further research is needed to reduce the loss of water flux caused by coating.

  9. Addition of simvastatin to carvedilol non responders: A new pharmacological therapy for treatment of portal hypertension

    PubMed Central

    Wani, Zeeshan Ahmad; Mohapatra, Sonmoon; Khan, Afaq Ahmad; Mohapatra, Ashutosh; Yatoo, Ghulam Nabi

    2017-01-01

    AIM To determine whether addition of simvastatin could be an important pharmacological rescue therapy for carvedilol non-responders. METHODS One hundred and two consecutive patients of cirrhosis of liver with significant portal hypertension were included. Hepatic venous pressure gradient (HVPG) was measured at the base line and after proper optimization of dose; chronic response was assessed at 3 mo. Carvedilol non-responders were given simvastatin 20 mg per day (increased to 40 mg per day at day 15). Carvedilol plus simvastatin was continued for 1 mo and hemodynamic response was again measured at 1 mo. RESULTS A total of 102 patients with mean age of 58.3 ± 6.6 years were included. Mean baseline HVPG was 16.75 ± 2.12 mmHg and after optimization of dose and reassessment of HVPG at 3 mo, mean reduction of HVPG from baseline was 5.5 ± 1.7 mmHg and 2.8 ± 1.6 mmHg among responders and non-responders respectively (P < 0.001). Addition of simvastatin to carvedilol non-responders resulted in significant response in 16 patients (42.1%) and thus overall response with carvedilol and carvedilol plus simvastatin was seen in 78 patients (80%). Two patients were removed in chronic protocol study with carvedilol and three patients were removed in carvedilol plus simvastatin study due to side effects. CONCLUSION Addition of simvastatin to carvedilol non-responders may prove to be an excellent rescue therapy in patients with portal hypertension. PMID:28261384

  10. The advent of non-thermal, non-tumescent techniques for treatment of varicose veins.

    PubMed

    Bootun, Roshan; Lane, Tristan R A; Davies, Alun H

    2016-02-01

    Varicose veins are common and their management has undergone a number of changes over the years. Surgery has been the traditional treatment option, but towards the 21st century, new endovenous thermal ablation techniques, namely, radiofrequency ablation and endovenous laser ablation, were introduced which have revolutionised the way varicose veins are treated. These minimally invasive techniques are associated with earlier return to normal activity and less pain, as well as enabling procedures to be carried out as day cases. They are, however, also known to cause a number of side-effects and involve infiltration of tumescent fluid which can cause discomfort. Non-thermal, non-tumescent methods are believed to be the answer to these unwelcome effects. Ultrasound-guided foam sclerotherapy is one such non-thermal, non-tumescent method and, despite a possible lower occlusion, has been shown to improve the quality of life of patients. The early results of two recently launched non-thermal, non-tumescent methods, mechanochemical ablation and cyanoacrylate glue, are promising and are discussed.

  11. [Obstetrical APS: Is there a place for additional treatment to aspirin-heparin combination?

    PubMed

    Mekinian, A; Kayem, G; Cohen, J; Carbillon, L; Abisror, N; Josselin-Mahr, L; Bornes, M; Fain, O

    2017-01-01

    Obstetrical APS is defined by thrombosis and/or obstetrical morbidity associated with persistent antiphospholipid antibodies. The aspirin and low molecular weighted heparin combination dramatically improved obstetrical outcome in APS patients. Several factors could be associated with obstetrical prognosis, as previous history of thrombosis, associated SLE, the presence of lupus anticoagulant and triple positivity of antiphospholipid antibodies. Obstetrical APS with isolated recurrent miscarriages is mostly associated with isolated anticardiolipids antibodies and have better obstetrical outcome. The pregnancy loss despite aspirin and heparin combination define the refractory obstetrical APS, and the prevalence could be estimated to 20-39%. Several other treatments have been used in small and open labeled studies, as steroids, intravenous immunoglobulins, plasma exchanges and hydroxychloroquine to improve the obstetrical outcome. Some other drugs as eculizumab and statins could also have physiopathological rational, but studies are necessary to define the place of these various drugs.

  12. Blood pressure goal achievement with olmesartan medoxomil-based treatment: additional analysis of the OLMEBEST study

    PubMed Central

    Barrios, Vivencio; Escobar, Carlos; Calderon, Alberto; Böhm, Michael

    2009-01-01

    Aims Guidelines recommend blood pressure (BP) in hypertensive patients should be <140 systolic BP (SBP) and <90 diastolic BP (DBP) mmHg. This analysis assessed goal rate achievement in hypertensive patients receiving olmesartan-based treatment in the OLMEBEST study. Methods Patients with essential hypertension (DBP ≥ 90 mmHg and <110 mmHg) received open-label olmesartan medoxomil 20 mg/day (n = 2306). After 8 weeks, patients with DBP ≥ 90 mmHg (n = 627) were randomized to 4 weeks’ double-blind treatment with olmesartan 40 mg/day monotherapy or olmesartan 20 mg/day plus hydrochlorothiazide (HCTZ) 12.5 mg/day. For this analysis, the numbers and proportions of patients who achieved SBP < 140 mmHg and/or DBP < 90 mmHg at the end of the 4 weeks were calculated. Results In patients who achieved DBP normalization (<90 mmHg) at week 8 (n = 1546) and continued open-label olmesartan 20 mg/day, 66.7% achieved SBP/DBP < 140/90 mmHg at Week 12. In patients who did not achieve DBP normalization at Week 8, 26.8% of those randomized to olmesartan 40 mg/day and 42.5% of those randomized to olmesartan 20 mg/day plus HCTZ 12.5 mg/day achieved a SBP/DBP < 140/90 mmHg at Week 12. Conclusion Olmesartan 40 mg/day and olmesartan 20 mg/day plus HCTZ 12.5 mg/day allow substantial proportions of patients to achieve BP goals. PMID:19756164

  13. [Application of TB type thermal balloon endometrial ablation for the treatment of abnormal uterine bleeding].

    PubMed

    Wang, W; Zhai, Y; Zhang, Z H; Li, Y; Zhang, Z Y

    2016-11-08

    Objective: To investigate the clinical efficacy, safety and promotion value of TB type thermal balloon endometrial ablation in the treatment of abnormal uterine bleeding. Methods: Fourty three patients who had received TB type endometrial ablation system for treatment of abnormal uterine bleeding from January, 2015 to January, 2016 in theDepartment of gynecology, Beijing Chaoyang Hospital were enrolled in this study. The intra-operative and post-operative complications and improvement of abnormal uterine bleeding and dysmenorrhea were observed. Results: There were nointra-operative complication occurred, such as uterine perforation, massive hemorrhage or surrounding organ damage. At 6 months after operation, 32 patients developed amenorrhea, 6 developed menstrual spotting, 3 developed menstruation with a small volume and 1 had a normal menstruation. No menstruation with an increased volume occurred. The occurrence of amenorrhea was 76.19% and the response rate was 97.62%.At 6 months after operation, 1 case had no response, 2 cases had partial response and 11 cases had complete response among the 14 cases of pre-operative dysmenorrhea; only 3 cases still had anemia among the 23 cases of pre-operative anemia. Compared with before treatment, patients with dysmenorrhea and anemia both significantly reduced with a statistically significant difference(P<0.01). Conclusion: TB type thermal balloon endometrial ablation has a significant efficacy with high safety for the treatment of abnormal uterine bleeding, which could have clinical promotion practice.

  14. Effect of thermal treatment on potato starch evidenced by EPR, XRD and molecular weight distribution.

    PubMed

    Bidzińska, Ewa; Michalec, Marek; Pawcenis, Dominika

    2015-12-01

    Effect of heating of the potato starch on damages of its structure was investigated by quantitative electron paramagnetic resonance (EPR) spectroscopy, X-ray diffraction and determination of the molecular weight distribution. The measurements were performed in the temperature range commonly used for starch modifications optimizing properties important for industrial applications. Upon thermal treatment, because of breaking of the polymer chains, diminishing of the average molecular weights occurred, which significantly influences generation of radicals, evidenced by EPR. For the relatively mild conditions, with heating parameters not exceeding temperature 230 °C and time of heating equal to 30 min a moderate changes of both the number of thermally generated radicals and the mean molecular weight of the starch were observed. After more drastic thermal treatment (e.g. 2 h at 230 °C), a rapid increase in the radical amount occurred, which was accompanied by significant reduction of the starch molecular size and crystallinity. Experimentally established threshold values of heating parameters should not be exceeded in order to avoid excessive damages of the starch structure accompanied by the formation of the redundant amount of radicals. This requirement is important for industrial applications, because significant destruction of the starch matrix might annihilate the positive influence of the previously performed intentional starch modification.

  15. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    NASA Astrophysics Data System (ADS)

    Panduro, E. Chavez; Cabrejos, J. Bravo

    2010-01-01

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100°C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000°C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Mössbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe3 + sites with temperature, in both clays, the analyses reproduced results such as the “camel back” curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  16. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview.

    PubMed

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-07-22

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C(-1) for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures.

  17. Improvement of mechanical properties of pellet containing tablets by thermal treatment.

    PubMed

    Csobán, Zsombor; Kállai-Szabó, Barnabás; Kállai-Szabó, Nikolett; Sebe, István; Gordon, Péter; Antal, István

    2015-12-30

    Batches of partially spray-dried lactose tablets with three different initial tensile strength (∼20N, ∼35N, ∼50N) were made. Changes along a 24h long thermal treatment at 100°C in tensile strength, friability, individual mass, water content, disintegration time, average free volume and wetting properties were evaluated. Caffeine containing gastroresistant pellets were gained by drug layering and filmcoating of inert microcrystalline cellulose pellet cores in fluid bed equipment. Shape, size, mechanical properties, drug content and dissolution profile of the coated pellets were determined. Batches of pellet containing tablets with three different pellet-filler ratios were compressed where partially spray-dried lactose was used as a filler-binder material.Characteristics of pellet containing tablets were evaluated before and after a 24h long thermal treatment at 100°C. Results shown that the poor initial mechanical properties (friability, tensile strength) were improved by thermal exposure while there were no remarkable alterations in drug release profiles.

  18. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    PubMed Central

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-01-01

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures. PMID:27455273

  19. The Effect of Thermal and Mechanical Treatments on Kaolinite: Characterization by XPS and IEP Measurements.

    PubMed

    Torres Sánchez RM; Basaldella; Marco

    1999-07-15

    The surface transformations induced on kaolinite by different thermal and mechanical treatments have been investigated by means of X-ray photoelectron spectroscopy (XPS), Bremsstrahlung induced Auger spectroscopy, and isoelectric point (IEP) measurements. Heating the kaolinite at temperatures between 500 and 750 degrees C results in the change of a substantial fraction of surface Al from octahedral to tetrahedral coordination, which we associate with the dehydroxylation of kaolinite. Heating at 900 and 980 degrees C brings about the development of an octahedral Al fraction which is associated with the formation of gamma-Al(2)O(3). The development of an Al tetrahedral component in the Al KLL spectra of the mechanically treated (ground) samples has been also observed. The Si/Al atomic ratio obtained by XPS in the thermally treated samples is the same as that shown by the original kaolinite. However, the XPS data show a clear reduction of the Si/Al atomic ratio in the mechanically treated samples, which suggests that the mechanical treatment has induced an Al enrichment of the kaolinite surface. The IEP values indicated a thermal transformation to metakaolinite and mullite with the increase of temperature (750 to 980 degrees C). The IEP change for the milled samples can be only explained by assuming a 30% kaolinite coating by the Al oxide neoformed by grinding. Copyright 1999 Academic Press.

  20. Effects of ethanol addition on formation of hydroxyapatite through hydrothermal treatment of dicalcium phosphate dihydrate

    NASA Astrophysics Data System (ADS)

    Goto, T.; Kamitakahara, M.; Kim, I. Y.; Ohtsuki, C.

    2011-10-01

    The mixture of dicalcium phosphate dihydrate (DCPD) and calcium acetate monohydrate were hydrothermally treated in a condition of water-ethanol mixed solvent at 120 °C for various periods. The rate of hydroxyapatite (HAp) formation was decreased with increasing the volume ratio of ethanol, to result in formation of dicalcium phosphate anhydrous and β-tricalcium phosphate. Needle-like HAp particles were observed in the sample treated with the mere water. The sample treated with the ethanol-water mixed solvent had nano-sized HAp particles with a form of the plate-like crystals. The size of HAp crystal was decreased with increasing the fraction of ethanol. These results show that HAp formation and crystal growth were prevented by the ethanol addition.

  1. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    SciTech Connect

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net

  2. The effect of various treatment conditions on natural zeolites: ion exchange, acidic, thermal and steam treatments.

    PubMed

    Ates, Ayten; Hardacre, Christopher

    2012-04-15

    Two different natural zeolites having different phase compositions were obtained from different regions of Turkey and modified by ion-exchange (0.5M NH(4)NO(3)) and acid leaching using 1M HCl. The natural and modified samples were treated at low temperature (LT), high temperature (HT) and steam (ST) conditions and characterised by XRF, XRD, BET, FTIR, DR-UV-Vis, NH(3)-TPD and TGA. Ion-exchange with NH(4)(+) of natural zeolites results in the exchange of the Na(+) and Ca(2+) cations and the partial exchange of the Fe(3+) and Mg(2+) cations. However, steam and acidic treatments cause significant dealumination and decationisation, as well as loss of crystalline, sintering of phases and the formation of amorphous material. The presence of mordenite and quartz phases in the natural zeolites increases the stability towards acid treatment, whereas the structure of clinoptilolite-rich zeolites is mostly maintained after high temperature and steam treatments. The natural and modified zeolites treated at high temperature and in steam were found to be less stable compared with synthetic zeolites, resulting in a loss of crystallinity, a decrease in the surface area and pore volume, a decrease in the surface acidity as well as dealumination, and decationisation.

  3. Effect of lime addition during sewage sludge treatment on characteristics of resulting SSA when it is used in cementitious materials.

    PubMed

    Vouk, D; Nakic, D; Štirmer, N; Baricevic, A

    2017-02-01

    Final disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater treatment technology, including the sludge treatment. In most EU countries, significant amounts of stabilized and dewatered sludge are incinerated, and sewage sludge ash (SSA) is generated as a by product. At the same time, lime is one of the commonly used additives in the sewage sludge treatment primarily to stabilize the sludge. In doing so, the question arose how desirable is such addition of lime if the sludge is subsequently incinerated, and the generated ash is further used in the production of cementitious materials. A series of mortars were prepared where 10-20% of the cement fraction was replaced by SSA. Since all three types of analyzed SSA (without lime, with lime added during sludge stabilization and with extra lime added during sludge incineration) yielded nearly same results, it can be concluded that if sludge incineration is accepted solution, lime addition during sludge treatment is unnecessary even from the standpoint of preserving the pozzolanic properties of the resulting SSA. Results of the research carried out on cement mortars point to the great possibilities of using SSA in concrete industry.

  4. SUPERFUND TREATABILITY CLEARINGHOUSE: LOW TEMPERATURE TREATMENT OF CERCLA SOILS AND DEBRIS USING THE IT LABORATORY SCALE THERMAL DESORPTION FURNACES

    EPA Science Inventory

    This study report on laboratory experiments on low temperature treatment of soils using thermal desorption. The purpose of the study was to determine if thermal desorption could remove volatile and semi-volatile contaminants from a synthetically prepared soil spiked with pre...

  5. Additional Electrochemical Treatment Effects on the Switching Characteristics of Anodic Porous Alumina Resistive Switching Memory

    NASA Astrophysics Data System (ADS)

    Otsuka, Shintaro; Takeda, Ryouta; Furuya, Saeko; Shimizu, Tomohiro; Shingubara, Shouso; Iwata, Nobuyuki; Watanabe, Tadataka; Takano, Yoshiki; Takase, Kouichi

    2012-06-01

    We have investigated the current-voltage characteristics of a resistive switching memory (ReRAM), especially the reproducibility of the switching voltage between an insulating state and a metallic state. The poor reproducibility hinders the practical use of this memory. According to a filament model, the variation of the switching voltage may be understood in terms of the random choice of filaments with different conductivities and lengths at each switching. A limitation of the number of conductive paths is expected to lead to the suppression of the variation of switching voltage. In this study, two strategies for the limitation have been proposed using an anodic porous alumina (APA). The first is the reduction of the number of conductive paths by restriction of the contact area between the top electrodes and the insulator. The second is the lowering of the resistivity of the insulator, which makes it possible to grow filaments with the same characteristics by electrochemical treatments using a pulse-electroplating technique.

  6. Is Correction of Iron Deficiency a New Addition to the Treatment of the Heart Failure?

    PubMed

    Silverberg, Donald S; Wexler, Dov; Schwartz, Doron

    2015-06-18

    Anemia is present in about 40% of heart failure (HF) patients. Iron deficiency (ID) is present in about 60% of the patients with anemia (about 24% of all HF patients) and in about 40% of patients without anemia (about 24% of all HF patients). Thus ID is present in about half the patients with HF. The ID in HF is associated with reduced iron stores in the bone marrow and the heart. ID is an independent risk factor for severity and worsening of the HF. Correction of ID with intravenous (IV) iron usually corrects both the anemia and the ID. Currently used IV iron preparations are very safe and effective in treating the ID in HF whereas little information is available on the effectiveness of oral iron. In HF IV iron correction of ID is associated with improvement in functional status, exercise capacity, quality of life and, in some studies, improvement in rate of hospitalization for HF, cardiac structure and function, and renal function. Large long-term adequately-controlled intervention studies are needed to clarify the effect of IV iron in HF. Several heart associations suggest that ID should be routinely sought for in all HF patients and corrected if present. In this paper we present our approach to diagnosis and treatment of iron deficiency in heart failure.

  7. Quality and microbial safety evaluation of new isotonic beverages upon thermal treatments.

    PubMed

    Gironés-Vilaplana, Amadeo; Huertas, Juan-Pablo; Moreno, Diego A; Periago, Paula M; García-Viguera, Cristina

    2016-03-01

    In the present study, it was evaluated how two different thermal treatments (Mild and Severe) may affect the anthocyanin content, antioxidant capacity (ABTS(+), DPPH, and FRAP), quality (CIELAB colour parameters), and microbiological safety of a new isotonic drink made of lemon and maqui berry over a commercial storage simulation using a shelf life of 56days at two preservation temperature (7°C and 37°C). Both heat treatments did not affect drastically the anthocyanins content and their percentage of retention. The antioxidant capacity, probably because of the short time, was also not affected. The CIELAB colour parameters were affected by the heat, although the isotonic drinks remained with attractive red colour during shelf life. From a microbiological point of view, the Mild heat treatment with storage at 7°C is the ideal for the preservation of microbial growth, being useful for keeping the quality and safety of beverages in commercial life.

  8. Influence of Thermal Treatment on the Antimicrobial Activity of Silver-Doped Biological Apatite

    NASA Astrophysics Data System (ADS)

    Popa, Cristina Liana; Ciobanu, Carmen Steluta; Voicu, Georgeta; Vasile, Eugenia; Chifiriuc, Mariana Carmen; Iconaru, Simona Liliana; Predoi, Daniela

    2015-12-01

    In this paper, we report the structural and morphological properties of silver-doped hydroxyapatite (AgHAp) with a silver concentration x Ag = 0.5 before and after being thermal treated at 600 and 1000 °C. The results obtained by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy suggest that the structure of the samples changes gradually, from hydroxyapatite (AgHAp_40) to a predominant β-TCP structure (AgHAp_1000), achieved when the thermal treatment temperature is 1000 °C. In the AgHAp_600 sample, the presence of two phases, HAp and β-TCP, was highlighted. Also, scanning electron microscopy studies suggest that the shape and dimension of the nanoparticles begin to change when the temperature increases. The antimicrobial activity of the obtained compounds was evaluated against Klebsiella pneumoniae, Staphylococcus aureus, and Candida albicans strains.

  9. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors

    SciTech Connect

    Zhang, Hongxin; Bhat, Vinay V; Gallego, Nidia C; Contescu, Cristian I

    2012-01-01

    Graphene materials were synthesized by reduction of exfoliated graphene oxide sheets by hydrazine hydrate and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction, and nitrogen adsorption / desorption. RGO forms a continuous network of crumpled sheets, which consist of numerous few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. The results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving specific capacitance, energy, and power density.

  10. Future perspective of strategic non-thermal plasma therapy for cancer treatment

    PubMed Central

    Kajiyama, Hiroaki; Utsumi, Fumi; Nakamura, Kae; Tanaka, Hiromasa; Toyokuni, Shinya; Hori, Masaru; Kikkawa, Fumitaka

    2017-01-01

    The therapeutic effects of non-thermal plasma are expected in the medical fields, including hemostasis, vascularization, prevention of organ adhesion, and cell proliferation. Cancer is an internal enemy arising from normal tissue in the body. The prognosis of metastatic and recurrent cancers is still poor despite advances in medicine. To apply non-thermal plasma in cancer treatment is now on going. The mechanism of the proliferation-inhibitory effect of plasma is reactive nitrogen oxide species/reactive oxygen species production in cells. There are a number of problems to be overcome, such as existence of intrinsic reactive oxygen species/reactive nitrogen species scavengers and the shallow infiltration of plasma on tumor surface. The current reviews makes referral to the study results of plasma therapy clarified so far, the possibility of its application in the future. PMID:28163380

  11. Effect of external lymph drainage and of coumarin treatment on thermal injury in the rat hind leg

    PubMed Central

    Földi-Börcsök, Ethel

    1972-01-01

    1. External lymph drainage brings about a significant protective effect in thermal oedema of the rat hind leg. It is suggested that external lymph drainage prevents vasoactive substances drained from the site of injury from passing into the blood stream, which would further increase permeability of the injured blood capillaries. 2. Coumarin (5,6-benzo-alpha-pyron) brings about a significant protective effect against the same injury in sham-operated rats. 3. The strongest protective effect may be attained by combining external lymph drainage with the administration of coumarin. 4. The additional therapeutic effect brought about by coumarin treatment in rats with external lymph drainage is not mediated by an increased flow. The possible mechanisms are discussed. PMID:4651772

  12. Development of an efficient amine-functionalized glass platform by additional silanization treatment with alkylsilane.

    PubMed

    Kamisetty, Nagendra Kumar; Pack, Seung Pil; Nonogawa, Mitsuru; Devarayapalli, Kamakshaiah Charyulu; Kodaki, Tsutomu; Makino, Keisuke

    2006-11-01

    Aminosilane-treated molecular layers on glass surfaces are frequently used as functional platforms for biosensor preparation. All the amino groups present on the surface are not available in reactive forms, because surface amino groups interact with remaining unreacted surface silanol groups. Such nonspecific interactions might reduce the efficiency of chemical immobilization of biomolecules such as DNA, enzymes, antibodies, etc., in biosensor fabrication. To improve immobilization efficiency we have used additional surface silanization with alkylsilane (capping) to convert the remaining silanol groups into Si-O-Si linkages, thereby liberating the amino groups from nonspecific interaction with the silanol groups. We prepared different types of capped amine surface and evaluated the effect of capping on immobilization efficiency by investigating the fluorescence intensity of Cy3-NHS (N-hydroxysuccinimide) dye that reacted with amino groups. The results indicate that most of the capped amine surfaces resulted in enhanced efficiency of immobilization of Cy3-NHS compared with the untreated control amine surface. We found a trend that trialkoxysilanes had greater capping effects on immobilization efficiency than monoalkoxysilanes. It was also found that the aliphatic chain of alkylsilane, which does not participate in the capping of the silanol, had an important function in enhancing immobilization efficiency. These results would be useful for preparation of an amine-modified surface platform, with enhanced immobilization efficiency, which is essential for developing many kinds of biosensors on a silica matrix.

  13. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    SciTech Connect

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A.; Mayberry, J.; Frazier, G.

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  14. Indication of advanced orthokeratology as an additional treatment after refractive surgeries

    NASA Astrophysics Data System (ADS)

    Mitsui, Iwane; Yamada, Yoshida

    2005-04-01

    Ortho-K was indicated for twenty-three eyes of thirteen patients after refractive surgeries such as RK(1) ,PRK(2), and LASIK(3). The average of their Uncorrective Visual Acuity (UCVA) after surgeries was 20/30 or worse, and mean spherical equivalent (SE) was -2.42D. They were followed at least two years wearing of Advanced Ortho-K lenses during night. The following studies were examined on their auto-refraction, auto-keratometry, uncorrected and corrected visual acuity, intra-ocular pressure, corneal endothelium, corneal thickness, corneal curvature, and corneal shape for more than two years. 95% of the patients improved in UCVA up to 20/20 or better, 86% of them improved up to 20/15 or better, and 76% of them improved up to 20/10. The mean SEs improved to -1.20+/-1.02D during six months, - 1.03+/-0.83D during one year, and -0.73+/-0.64D during two years. Astigmatism also slightly decreased. Ophthalmologic examinations showed no abnormalities including flap formation, intra-ocular pressure, and endothelium. Among the refractive surgeries as well as RK and PRK, LASIK has been most popularly spread all over the world. However, patient's quality of vision is not always satisfied during and/or after refractive surgeries, because of several complications such as instability of flap formation, unexpected keratoectasia, diffuse lamellar keratitis, epithelial ingrowth, irregularity of corneal surface which caused myopia regression. In such cases, additional surgical procedures should not be indicated easily. However, Ortho-K is safe and effective enough to correct refractive errors still remained or re-appeared after refractive surgeries. It enables to restore the corneal irregularity to the ideal shape.

  15. Influence of Ar addition on ozone generation in a non-thermal plasma—a numerical investigation

    NASA Astrophysics Data System (ADS)

    Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Been Chang, Moo

    2010-10-01

    A numerical model based on a dielectric barrier discharge is developed in this study to investigate the influence of Ar addition on ozone generation. The simulation results show good agreement with the experimental data, confirming the validity of the numerical model. The mechanisms regarding how the Ar addition affects ozone generation are investigated with the assistance of a numerical simulation by probing into the following two questions, (1) why the ozone concentration just slightly decreases in the low specific input energy (SIE, the ratio of discharge power to gas flow rate) region even if the inlet O2 concentration is substantially decreased and (2) why the variation of the increased rate of ozone concentration with SIE (i.e. the variation in the slope of ozone concentration versus SIE) is more significant for an O2/Ar mixture plasma. As SIE is relatively low, ozone decomposition through electron-impact and radical attack reactions is less significant because of low ozone concentration and gas temperature. Therefore, the ozone concentration depends mainly on the amount of oxygen atoms generated. The simulation results indicate that the amount of oxygen atoms generated per electronvolt for Ar concentrations of 0%, 10%, 30%, 50% and 80% are 0.178, 0.174, 0.169, 0.165 and 0.166, respectively, explaining why the ozone concentration does not decrease linearly with the inlet O2 concentration in the low SIE region. On the other hand, the simulation results show that increasing Ar concentration would lead to a lower reduced field and a higher gas temperature. The former would lead to an increase in the rate constant of e + O3 → e + O + O2 while the latter would result in a decrease in the rate constant of O + O2 + M → O3 + M and an increase in that of O3 + O → 2O2. The changes in the rate constants of these reactions would have a negative effect on ozone generation, which is the rationale for the second question.

  16. Thermally stable derivatives or propylenepolyamines as protective additives for lubricating oils used in compressors handling hydrogen sulfide-containing gas

    SciTech Connect

    Trofimov, V.A.; Panidi, I.S.; Spirkin, V.G.

    1995-09-01

    In the transmission of natural, associated, and petroleum gases containing hydrogen sulfide, carbon dioxide, water, and other corrosive impurities, problems are created by the saturation of the compressor lubricating oil with these impurities and failure of components of the lubricating and sealing system. Hydrogen sulfide is distinguished by the greatest affinity for oil and the highest corrosivity. Its solubility in oils may be as high as 10 g/liter under standard conditions. In the work reported here, we investigated the protective properties of salts and amides based on higher aliphatic, alkylaromatic, and unsaturated carboxylic acids with certain substituted propylenepolyamines. In synthesizing the additives, we used the following: a commercial C{sub 17} - C{sub 20} fraction of synthetic fatty acids (SFA): C{sub 25+} still bottoms; technical alkyl (C{sub 16} - C {sub 18}) salicylic acids; and oleic acid. From these materials, we obtained salts and amides of N,N-dimethylpropanediamine, N-benzylpropanediamine, N-cyanoethylpropanediamine, N,N,N`,N`-tetramethyldipropylenetriamine, and N,N-dimethyldipropylenetriamine.

  17. Degradation of pharmaceutical compounds in water by non-thermal plasma treatment.

    PubMed

    Magureanu, Monica; Mandache, Nicolae Bogdan; Parvulescu, Vasile I

    2015-09-15

    Pharmaceutical compounds became an important class of water pollutants due to their increasing consumption over the last years, as well as due to their persistence in the environment. Since conventional waste water treatment plants are unable to remove certain non-biodegradable pharmaceuticals, advanced oxidation processes was extensively studied for this purpose. Among them, non-thermal plasma was also recently investigated and promising results were obtained. This work reviews the recent research on the oxidative degradation of pharmaceuticals using non-thermal plasma in contact with liquid. As target compounds, several drugs belonging to different therapeutic groups were selected: antibiotics, anticonvulsants, anxiolytics, lipid regulators, vasodilatators, contrast media, antihypertensives and analgesics. It was found that these compounds were removed from water relatively fast, partly degraded, and partly even mineralized. In order to ensure the effluent is environmentally safe it is important to identify the degradation intermediates and to follow their evolution during treatment, which requires complex chemical analysis of the solutions. Based on this analysis, degradation pathways of the investigated pharmaceuticals under plasma conditions were suggested. After sufficient plasma treatment the final organic by-products present in the solutions were mainly small molecules in an advanced oxidation state.

  18. Black Dross: Processing Salt Removal from Black Dross by Thermal Treatment

    NASA Astrophysics Data System (ADS)

    Beheshti, Reza; Moosberg-Bustnes, John; Akhtar, Shahid; Aune, Ragnhild E.

    2014-11-01

    The salt removal from black dross by thermal treatment has experimentally been studied under different conditions in both a stationary resistance furnace and in a laboratory scale rotary furnace. The experiments were designed based on partial pressure calculations using the Thermo-Calc software (Thermo-Calc Software, Stockholm, Sweden). The salt removal efficiency was evaluated by scanning electron microscope (SEM) energy-dispersive x-ray spectroscopy and x-ray diffraction analyses, and the optimum conditions for treatment established, i.e., temperature, gas flow rate, holding time, rotation rate, and sample size. The overall degree of chloride removal was established to increase as a function of time and temperature, as well as by reduced pressure. Under atmospheric pressure, the highest degree of chloride removal from a 20 g sample was obtained after 10 h at 1523 K resulting in a 98% removal and a final chloride content of 0.3 wt.% in the residue. Under reduced pressure, the chloride concentrate was lowered to 0.2 wt.% after thermal treatment of a 20 g sample at 1473 K for 8 h. In the case of 200 g samples treated in a rotary furnace, the chloride concentrate was 2.5 wt.% after 14 h at 1523 K, representing a removal of 87%. Below 0.3 wt.% chloride content, the material is deemed a nonhazardous waste.

  19. Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln.

    PubMed

    Huber, Florian; Blasenbauer, Dominik; Mallow, Ole; Lederer, Jakob; Winter, Franz; Fellner, Johann

    2016-12-01

    As current disposal practices for municipal solid waste incineration (MSWI) fly ash are either associated with significant costs or negative environmental impacts, an alternative treatment was investigated in a field scale experiment. Thereto, two rotary kilns were fed with hazardous waste, and moistened MSWI fly ash (water content of 23%) was added to the fuel of one kiln with a ratio of 169kg/Mg hazardous waste for 54h and 300kg/Mg hazardous waste for 48h while the other kiln was used as a reference. It was shown that the vast majority (>90%) of the inserted MSWI fly ash was transferred to the bottom ash of the rotary kiln. This bottom ash complied with the legal limits for non-hazardous waste landfills, thereby demonstrating the potential of the investigated method to transfer hazardous waste (MSWI fly ash) into non-hazardous waste (bottom ash). The results of a simple mixing test (MSWI fly ash and rotary kiln bottom ash have been mixed accordingly without thermal treatment) revealed that the observed transformation of hazardous MSWI fly ash into non-hazardous bottom ash during thermal co-treatment cannot be referred to dilution, as the mixture did not comply with legal limits for non-hazardous waste landfills. For the newly generated fly ash of the kiln, an increase in the concentration of Cd, K and Pb by 54%, 57% and 22%, respectively, was observed. In general, the operation of the rotary kiln was not impaired by the MSWI fly ash addition.

  20. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    SciTech Connect

    Barrera, M. T. Barros, H.; Pino, F.; Sajo-Bohus, L.; Dávila, J.

    2015-07-23

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  1. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    NASA Astrophysics Data System (ADS)

    Barrera, M. T.; Barros, H.; Pino, F.; Dávila, J.; Sajo-Bohus, L.

    2015-07-01

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e'n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction 10B(n,α)7Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (˜1.6 104 neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  2. H[sub 2]OTREAT: An acid for evaluating water treatment requirements for Aquifer Thermal Energy Storage

    SciTech Connect

    Vail, L.W.; Jenne, E.A.; Eary, L.E.

    1992-08-01

    A public-domain software package is available to aid engineers in the design of water treatment systems for Aquifer Thermal Energy Storage (ATES). Geochemical phenomena that cause problems in ATES systems include formation of scale in heat exchangers, clogging of wells, corrosion in piping and heat exchangers, and degradation of aquifer materials. Preventing such problems frequently requires employing water treatment systems. Individual water treatment methods vary in cost. effectiveness, environmental impact, corrosion potential, and acceptability to regulatory bodies. Evaluating these water treatment options is generally required to determine the feasibility of ATFS systems. The H20TREAT software was developed by Pacific Northwest Laboratory for use by engineers with limited or no experience in geochemistry. At the feasibility analysis and design stages, the software utilizes a recently revised geochemical model,MINTEQ, to calculate the saturation indices of selected carbonate, oxide, and hydroxide minerals based on water chemistry and temperature data provided by the user. The saturation indices of key calcium, iron. silica, and manganese carbonates, oxides, and hydroxides (calcite, rhodochrosite, siderite, Fe(OH)[sub 3][a], birnessite, chalcedony, and SiO[sub 2]) are calculated. Currently, H20TREAT does not perform cost calculations; however, treatment capacity requirements are provided. Treatments considered include (1) Na and H ion exchangers and pellet reactors to avoid calcite precipitation, and (2) in situ nitrate addition and cascade precipitation. The H20TREAT software also provides the user with guidance on other geochemical problems that must be considered, such as SiO[sub 2] precipitation, corrosion, and environmental considerations. The sodium adsorption ratio and sodium hazard are calculated to evaluate the likelihood of clay swelling and dispersion caused by high Na concentrations. H20TREAT is available for DOS and UNIX computers.

  3. H{sub 2}OTREAT: An acid for evaluating water treatment requirements for Aquifer Thermal Energy Storage

    SciTech Connect

    Vail, L.W.; Jenne, E.A.; Eary, L.E.

    1992-08-01

    A public-domain software package is available to aid engineers in the design of water treatment systems for Aquifer Thermal Energy Storage (ATES). Geochemical phenomena that cause problems in ATES systems include formation of scale in heat exchangers, clogging of wells, corrosion in piping and heat exchangers, and degradation of aquifer materials. Preventing such problems frequently requires employing water treatment systems. Individual water treatment methods vary in cost. effectiveness, environmental impact, corrosion potential, and acceptability to regulatory bodies. Evaluating these water treatment options is generally required to determine the feasibility of ATFS systems. The H20TREAT software was developed by Pacific Northwest Laboratory for use by engineers with limited or no experience in geochemistry. At the feasibility analysis and design stages, the software utilizes a recently revised geochemical model,MINTEQ, to calculate the saturation indices of selected carbonate, oxide, and hydroxide minerals based on water chemistry and temperature data provided by the user. The saturation indices of key calcium, iron. silica, and manganese carbonates, oxides, and hydroxides (calcite, rhodochrosite, siderite, Fe(OH){sub 3}[a], birnessite, chalcedony, and SiO{sub 2}) are calculated. Currently, H20TREAT does not perform cost calculations; however, treatment capacity requirements are provided. Treatments considered include (1) Na and H ion exchangers and pellet reactors to avoid calcite precipitation, and (2) in situ nitrate addition and cascade precipitation. The H20TREAT software also provides the user with guidance on other geochemical problems that must be considered, such as SiO{sub 2} precipitation, corrosion, and environmental considerations. The sodium adsorption ratio and sodium hazard are calculated to evaluate the likelihood of clay swelling and dispersion caused by high Na concentrations. H20TREAT is available for DOS and UNIX computers.

  4. The Treatment of Giant Periurethral Condyloma in Pregnancy Using an Ultrasonic Thermal Scalpel: A Case Report and New Single Session Treatment Option

    PubMed Central

    Yavuzcan, Ali; Çağlar, Mete; Turan, Hakan; Tekin, Ali; Topuz, Seren; Yavuzcan, Gizem; Dilbaz, Serdar; Üstün, Yusuf; Aliağaoğlu, Cihangir; Kumru, Selahattin

    2015-01-01

    Multiple large polypoid lesions with exophytic appearance occurring in anal and perineal region as a result of human papilloma virus (HPV) infection are referred to as giant condyloma acuminatum (GCA). The conventional treatment of these lesions involves the use of surgical excision, laser, electrocautery, and/or application of trichloroacetic acid. A 28-year-old primigravid patient at 22 weeks of pregnancy presented to the hospital complaining of vaginal bleeding and palpable mass in the vulva. The physical examination revealed a 60 × 35 mm broad-based, fragile, and patchy hemorrhagic polypoid lesion originating 1 cm below the clitoris and completely occupying urethral orifice and partially occluding vaginal vestibule. The patient underwent excision of GCA in the midtrimester using an ultrasonic thermal scalpel (Harmonic Scalpel) without any additional treatment and subsequently delivered a single live healthy baby. The excision of GCA occurring during pregnancy using Harmonic Scalpel can be regarded as a new successful method. Prospective, randomized, and controlled studies are warranted in order to provide clear evidence of the efficiency and safety of HS in the treatment of GCA. PMID:25648983

  5. Effect of glycine addition on the structural, thermal, optical, mechanical and electrical properties of Sr (HCOO)2·2H2O crystals

    NASA Astrophysics Data System (ADS)

    Muthupoongodi, S.; Theodore David Manickam, S.; Mahadevan, C. K.; Angel Mary Greena, J.; Balakumar, S.; Sahaya Shajan, X.

    2015-10-01

    Pure and glycine doped strontium formate dihydrate (SFD) single crystals were grown by the free evaporation method to understand the effect of glycine addition on the structural, thermal, optical, mechanical and electrical properties of SFD crystal. The grown crystals were characterized by carrying out powder X-ray diffraction, high resolution X-ray diffraction, Fourier transform infrared spectral, Raman spectral, UV-vis-NIR spectral, thermogravimetric (TG/DTA), second harmonic generation (SHG), microhardness and DC electrical conductivity measurements. Results obtained in the present study indicate improvement in crystalline perfection, optical transmittance, and SHG efficiency, and change in microhardness, and DC electrical conductivity on doping SFD with glycine. In addition, a large size (~1.9 cm length, ~1.2 cm breath and ~0.6 cm height) SFD crystal with good optical quality could be grown successfully by the seeded free evaporation method.

  6. Diffusion of co-sputtered metals as bonding materials for 3D interconnects during thermal treatments.

    PubMed

    Hsu, S Y; Chen, H Y; Chen, K N

    2012-03-01

    Diffusion behaviors of co-sputtered metals during thermal treatments were investigated, where these co-sputtered metals can be used as bonding materials for 3D Interconnects. In this paper, we report the diffusion behaviors and discuss the diffusion mechanisms of co-sputtered metals before and after annealing. Atom and vacancy volume, vacancy formation energy, and activation energy are proposed to explain the diffusion direction and diffusion rate among different co-sputtered metals. Based on the excellent bonding performance of this method, Cu/metal co-sputtering bonding is considered as a potential candidate for advanced bonding technology.

  7. Analysis of the Production Cost for Various Grades of Biomass Thermal Treatment

    SciTech Connect

    Robert S Cherry; Rick A. Wood; Tyler L Westover

    2013-12-01

    Process flow sheets were developed for the thermal treatment of southern pine wood chips at four temperatures (150, 180, 230, and 270 degrees C) and two different scales (20 and 100 ton/hour). The larger capacity processes had as their primary heat source hot gas assumed to be available in quantity from an adjacent biorefinery. Mass and energy balances for these flow sheets were developed using Aspen Plus process simulation software. The hot gas demands in the larger processes, up to 1.9 million lb/hour, were of questionable feasibility because of the volume to be moved. This heat was of low utility because the torrefaction process, especially at higher temperatures, is a net heat producer if the organic byproduct gases are burned. A thermal treatment flow sheet using wood chips dried in the biorefinery to 10% moisture content (rather than 30% for green chips) with transfer of high temperature steam from the thermal treatment depot to the biorefinery was also examined. The equipment size information from all of these cases was used in several different equipment cost estimating methods to estimate the major equipment costs for each process. From these, factored estimates of other plant costs were determined, leading to estimates (+ / - 30% accuracy) of total plant capital cost. The 20 ton/hour processes were close to 25 million dollars except for the 230 degrees C case using dried wood chips which was only 15 million dollars because of its small furnace. The larger processes ranged from 64-120 million dollars. From these capital costs and projections of several categories of operating costs, the processing cost of thermally treated pine chips was found to be $28-33 per ton depending on the degree of treatment and without any credits for steam generation. If the excess energy output of the two 20 ton/hr depot cases at 270 degrees C can be sold for $10 per million BTU, the net processing cost dropped to $13/ton product starting with green wood chips or only $3 per

  8. Mineralization behavior of fluorine in perfluorooctanesulfonate (PFOS) during thermal treatment of lime-conditioned sludge.

    PubMed

    Wang, Fei; Shih, Kaimin; Lu, Xingwen; Liu, Chengshuai

    2013-03-19

    The fate and transport of the fluorine in perfluorooctanesulfonate (PFOS) during the thermal treatment of lime-conditioned sludge were observed using both qualitative and quantitative X-ray diffraction techniques. Two main fluorine mineralization mechanisms leading to the substantial formation of CaF2 and Ca5(PO4)3F phases were observed. They had a close relationship with the thermal treatment condition and the PFOS content of the sludge. At low temperatures (300-600 °C), CaF2 dominated in the product and increases in treatment time and temperature generally enhanced the fluorine transformation. However, at higher temperatures (700-900 °C), increases in treatment time and temperature had a negative effect on the overall efficiency of the fluorine crystallization. The results suggest that in the high temperature environment there were greater losses of gaseous products such as HF and SiF4 in the transformation of CaF2 to Ca5(PO4)3F, the hydrolysis of CaF2, and the reaction with SiO2. The quantitative analysis also showed that when treating sludge with low PFOS content at high temperatures, the formation of Ca5(PO4)3F may be the primary mechanism for the mineralization of the fluorine in PFOS. The overall results clearly indicate the variations in the fate and transport of fluorine in PFOS when the sludge is subject to different PFOS contents and treatment types, such as heat drying or incineration.

  9. Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water.

    PubMed

    Liu, Ting; Chen, Zhong-lin; Yu, Wen-zheng; Shen, Ji-min; Gregory, John

    2011-08-01

    A novel two-stage coagulant addition strategy applied in a coagulation-ultrafiltration (UF) process for treatment of humic-rich water at neutral pH was investigated in this study. When aluminum sulfate (alum) doses were set at a ratio of 3:1 added during rapid mix stage and half way through flocculation stage, the integrated process of two-stage alum addition achieved almost the same organic matter removal as that of conventional one-stage alum addition at the same overall dose. Whereas membrane fouling could be effectively mitigated by the two-stage addition exhibited by trans-membrane pressure (TMP) developments. The TMP developments were found to be primarily attributed to external fouling on membrane surface, which was closely associated with floc characteristics. The results of jar tests indicated that the average size of flocs formed in two-stage addition mode roughly reached one half larger than that in one-stage addition mode, which implied a beneficial effect on membrane fouling reduction. Moreover, the flocs with more irregular structure and lower effective density resulted from the two-stage alum addition, which caused higher porosity of cake layer formed by such flocs on membrane surface. Microscopic observations of membrane surface demonstrated that internal fouling in membrane pores could be also remarkably limited by two-stage alum addition. It is likely that the freshly formed hydroxide precipitates were distinct in surface characteristics from the aged precipitates due to formation of more active groups or adsorption of more labile aluminum species. Consequently, the flocs could further connect and aggregate to contribute to preferable properties for filtration performance of the coagulation-UF process. As a simple and efficient approach, two-stage coagulant addition strategy could have great practical significance in coagulation-membrane processes.

  10. The effect of temperature and length of heat shock treatment on the thermal tolerance and cell leakage of Cronobacter sakazakii BCRC 13988.

    PubMed

    Chang, Chia-Hsiang; Chiang, Ming-Lun; Chou, Cheng-Chun

    2009-09-15

    Enterobacter sakazakii is an emerging opportunistic pathogen associated with life-threatening illnesses in infants, with infant formula serving as the principal mode of transmission. In the present study, C. sakazakii (formely E. sakazakii) BCRC 13988 was subjected to various heat shock treatments (42-48 degrees C for 5-15 min). Its subsequent survival at 51 degrees C and the leakage of intracellular materials was investigated. It was found that 47 degrees C was the maximum growth temperature of the test organism. In addition, heat shock enhanced the thermal tolerance of C. sakazakii BCRC 13988. Within heat shock temperatures between 42 and 47 degrees C, the thermal tolerance enhancing effect increased as the length or temperature of the heat shock treatment was increased. However, increasing the heat shock temperature to 48 degrees C reduced the thermal tolerance enhancing effect. Among the various heat shocked cells examined, the 47 degrees C-15 min-heat shocked C. sakazakii exhibited the highest thermal tolerance. Moreover, electron micrograph analysis showed that heat shock treatment caused damage and disruption in C. sakazakii cells. There was a significant increase (P<0.05) in the leakage of nucleic acid and protein in the supernatant of the heat shocked cell suspension that increased as the temperature and duration of heat shock increased.

  11. Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response.

    PubMed

    Zhou, Xuxia; Tian, Ziqiang; Wang, Yanbo; Li, Weifen

    2010-09-01

    A feeding trial was conducted for 40 days to delineate the effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. About 360 juveniles were randomly distributed into four treatment groups, each with three replicates. Different probiotics (T-1, Bacillus subtilis B10; T-2, Bacillus coagulans B16; T-3, Rhodopseudomonas palustris G06) were added to the water of tanks at final concentration of 1 x 10(7) cfu ml(-1) every 2 days, with no probiotic added to control tanks. At the end of the feeding trial, fish treated with B. coagulans B16 (T-2) and R. palustris G06 (T-3) had significantly (P < 0.05) higher final weight, daily weight gain, and specific growth rate compared with those treated with B. subtilis B10 (T-1) and those without probiotics (control). The highest (P < 0.05) content of total serum protein was found in T-2 compared with that in T-1, T-3, and the control. However, albumin concentration and albumin/globulin ratio were not affected by the probiotics treatments. Compared with the control, probiotic supplementation remarkably improved activities of superoxide dismutase and catalase (P < 0.05). T-2 fish exhibited higher average myeloperoxidase activity than the control, T-1, and T-3 groups. Regarding serum lysozyme content in tilapia, assays showed no difference (P > 0.05) among the treatment groups. Furthermore, probiotics treatments remarkably increased respiratory burst activity compared with control, with T-2 showing higher values than T-1 and T-3. This indicated that treatment with probiotics, B. coagulans B16 and R. palustris G06, as water additives could be used to enhance immune and health status, thereby improving growth performance of O. niloticus.

  12. Fates of chlorinated volatile organic compounds in aerobic biological treatment processes: the effects of aeration and sludge addition.

    PubMed

    Chen, Wei-Hsiang; Yang, Wen-Ben; Yuan, Chung-Shin; Yang, Jun-Chen; Zhao, Qing-Liang

    2014-05-01

    The emission of volatile organic compounds (VOCs) from wastewater treatment plants (WWTPs) is becoming an environmental issue of increasing concern. As biological treatment has been considered as one important approach for VOC removal, lab-scale batch experiments were conducted in this study to investigate the fates of four chlorinated hydrocarbons, including chloroform, carbon tetrachloride, trichloroethylene (TCE), and tetrachloroethylene (PERC), in the biological treatment processes with respect to the effects of aeration and sludge addition. The VOC concentrations in the phases of air, water, and sludge under four simulated treatment stages (the first sedimentation, the forepart and rear part of aerobic biological treatment, and the second sedimentation) were analyzed. The results were used to understand the three-phase partitioning of these compounds and to estimate their potentials for volatilization and biological sorption and degradation in these technologies with the concept of fugacity. It was observed that the VOCs were mainly present in the water phase through the experiments. The effects of aeration or sludge addition on the fates of these VOCs occurred but appeared to be relatively limited. The concentration distributions of the VOCs were well below the reported partitioning coefficients. It was suggested that these compounds were unsaturated in the air and sludge phases, enhancing their potentials for volatilization and biological sorption/degradation through the processes. However, the properties of these chlorinated VOCs such as the volatility, polarity, or even biodegradability caused by their structural characteristics (e.g., the number of chlorine, saturated or unsaturated) may represent more significant factors for their fates in the aerobic biological treatment processes. These findings prove the complication behind the current knowledge of VOC pollutions in WWTPs and are of help to manage the adverse impacts on the environment and public

  13. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment.

    PubMed

    Lin, Hongjun; Wang, Fangyuan; Ding, Linxian; Hong, Huachang; Chen, Jianrong; Lu, Xiaofeng

    2011-09-15

    The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH(4)(+)-N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent.

  14. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    PubMed Central

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  15. A thermal packed-bed reactor and a silent discharge plasma cell for a two-stage treatment system

    NASA Astrophysics Data System (ADS)

    Godoy-Cabrera, O. G.; López-Callejas, R.; Mercado-Cabrera, A.; Barocio, S. R.; Valencia, R.; Muñoz-Castro, A.; Peña Eguiluz, R.; de la Piedad-Beneitez, A.

    2006-08-01

    Dielectric barrier discharge cells (DBDCs) have proved their efficiency in the generation of cold plasmas for hazardous organic compound degradation. Here, we describe the design and construction of a dual thermal packed-bed reactor and DBDC-based system to carry out the degradation of hazardous organic compounds in both liquid and gas phases. The main components of this system are: (i) the thermal treatment system, (ii) DBDC and (iii) resonant inverters of low (3.3 kHz) and high (100 kHz) calculated frequencies. The definition of the cell physical parameters considers: (a) a first-order degradation ratio of the compound and (b) the air breakdown at atmospheric pressure as a function of the transport carrier gas. The power consumed by the cells during the discharges was computed theoretically and experimentally. Using the dual system along with a gas chromatography diagnostic system, highly efficient degradations of a test compound (benzene) have been obtained, reaching 99.950% in the case of a cell experimentally operated at 3.3 kHz and up to 99.996% in another one at 94.3 kHz. An additional 3.7 times reduction in the latter case residence time with respect to the low frequency cell has been found.

  16. A novel thermal treatment modality for controlling breast tumor growth and progression.

    PubMed

    Xie, Yifan; Liu, Ping; Xu, Lisa X

    2012-01-01

    The new concept of keeping primary tumor under control in situ to suppress distant foci sheds light on the novel treatment of metastatic tumor. Hyperthermia is considered as one of the means for controlling tumor growth. In this study, a novel thermal modality was built to introduce hyperthermia effect on tumor to suppress its growth and progression using 4T1 murine mammary carcinoma, a common animal model of metastatic breast cancer. A mildly raised temperature (i.e.39°C) was imposed on the skin surface of the implanted tumor using a thermal heating pad. Periodic heating (12 hours per day) was carried out for 3 days, 7 days, 14 days, and 21 days, respectively. The tumor growth rate was found significantly decreased in comparison to the control without hyperthermia. Biological evidences associated with tumor angiogenesis and metastasis were examined using histological analyses. Accordingly, the effect of mild hyperthermia on immune cell infiltration into tumors was also investigated. It was demonstrated that a delayed tumor growth and malignancy progression was achieved by mediating tumor cell apoptosis, vascular injury, degrading metastasis potential and as well as inhibiting the immunosuppressive cell myeloid derived suppressor cells (MDSCs) recruitment. Further mechanistic studies will be performed to explore the quantitative relationship between tumor progression and thermal dose in the near future.

  17. Compositional insights and valorization pathways for carbonaceous material deposited during bio-oil thermal treatment.

    PubMed

    Ochoa, Aitor; Aramburu, Borja; Ibáñez, María; Valle, Beatriz; Bilbao, Javier; Gayubo, Ana G; Castaño, Pedro

    2014-09-01

    This work analyses the composition, morphology, and thermal behavior of the carbonaceous materials deposited during the thermal treatment of bio-oil (thermal pyrolytic lignin-TPL). The bio-oil was obtained by flash pyrolysis of lignocellulosic biomass (pine sawdust), and the TPLs were obtained in the 400-700 °C range. The TPLs were characterized by performing elemental analysis; (13)C NMR, Raman, FTIR, and X-ray photoelectron spectroscopy; SEM; and temperature-programmed oxidation analyzed by differential thermogravimetry and differential scanning calorimetry. The results are compared to a commercial lignin (CL). The TPLs have lower oxygen and hydrogen contents and a greater aromaticity and structural order than the CL material. Based on these features, different valorization routes are proposed: the TPL obtained at 500 °C is suitable for use as a fuel, and the TPL obtained at 700 °C has a suitable morphology and composition for use as an adsorbent or catalyst support.

  18. X-ray absorption spectroscopy study of a copper-containing material after thermal treatment.

    PubMed

    Wei, Y-L; Huang, M-Y; Wang, H-C; Huang, H-C; Lee, J-F

    2006-04-17

    Thermal immobilization of copper contaminant in a copper-containing solid material collected from local copper smelting and foundry area is investigated in the present work. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) are employed for copper speciation. XAS results indicate that cupric hydroxide is the major copper species in the solid material dried at 105 degrees C. After being subjected to a 500 degrees C thermal process, cupric hydroxide still remains as the main copper species, but some Cu(II) is chemically reduced to Cu(I). More cupric hydroxide is progressively converted to Cu(I) as the sample was heated at 1100 degrees C than that heated at 500 degrees C. The sample heated at 500 degrees C is in its original powder form. However, thermal treatment at 1100 degrees C transforms the powder into a hardened granule-like form that is much bigger in size and difficult to be ground into powders. The sample is sintered with the sparingly soluble cuprous oxide and elemental copper being encapsulated inside. Toxicity characteristic leaching procedure (TCLP) results depict that amount of copper leached from the sample (containing 133,000 mg copper kg-1) heated at 1100 degrees C for 2 h is considerably minor, being 367 mg copper kg-1.

  19. Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements.

    PubMed

    Voicu, Georgeta; Popa, Alexandru Mihai; Badanoiu, Alina Ioana; Iordache, Florin

    2016-02-18

    In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA) cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h) followed by rapid cooling in air. The resulted material (clinker) was ground for one hour in a laboratory planetary mill (v = 150 rot/min), in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF) and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) and thermal analysis (DTA-DTG-TG). The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1) was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2). The compressive strength values were 18.5 MPa (MTA1) and 22.9 MPa (MTA2). Both MTA cements showed good bioactivity (assessed by an in vitro test), good cytocompatibility and stimulatory effect on the proliferation of cells.

  20. Existence of Cl in municipal solid waste incineration bottom ash and dechlorination effect of thermal treatment.

    PubMed

    Yang, Shuo; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kawano, Takashi

    2014-02-28

    Municipal solid waste incineration (MSWI) is widely used in Japan, through which large amount of incineration residues are produced. The recycle/reuse of the incineration residues is troubled by many factors. This paper studied the MSWI bottom ash with the principal focus on Cl. Both bulk analysis and microanalysis methods have been carried out. The bulk analysis disclosed a particle-size dependent pattern of the Cl content in the bottom ash and the insoluble Cl is essentially in the form of Friedel's salt (3CaO·Al(2)O(3)·CaCl(2)·10H(2)O). The microanalysis revealed that Cl preferentially exists in the quench phase of the individual bottom ash particle. Since Friedel's salt and the other quench products are thermally unstable, a series of thermal treatments were carried out to decompose such Cl-bearing phases. The experimental results showed the total Cl content in the MSWI bottom ash was reduced by 55.46% after a 4-h heating process at 1000°C. The removal of the soluble Cl (originally as alkali salts) by the thermal process was found to be more effective. However, the insoluble Cl content in the heated sample was barely lowered owing to the formation of calcium chlorocalumite (11CaO·7Al(2)O(3)·CaCl(2)) in the course of heating.

  1. Thermal treatment for chlorine removal from coal. [Quarterly] technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Muchmore, C.B.; Hesketh, H.E.; Chen, Han Lin

    1992-10-01

    It is the goal of this research to provide the technical basis for development of a process to remove chlorine from coal prior to combustion, based on a thermal treatment process. Under the reaction conditions employed, the behavior of other trace elements of concern will also be evaluated. The recovery of the chlorine removed from the coal as a marketable byproduct, calcium chloride suitable for use as a road deicer, is also being investigated using a novel absorption/crystallization device. A value of 6.29 hr{sup {minus}1} was determined for the dechlorination rate constant of IBC-109 coal at 385{degrees}C, and an activation energy of 34.7 kcal/mol was obtained from an Arrhenius plot over the temperature range of 300--385{degrees}C. A significant removal of chlorine (84.3%) was attained while retaining 92% of the energy of the coal in the solid product by preheating the coal at lower temperatures prior to a six-minute reaction at 385{degrees}C. Volatiles lost during the thermal dechlorination may be recovered for their heating value, and/or as a source of chemical feedstocks; this aspect will require further study, but it appears that the overall energy balance on the system should prove to be favorable. The design of the bench scale fluidized bed thermal dechlorination unit has been completed, and components ordered. Operation of this system should provide the information required for further scale-up of the process.

  2. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to

  3. Effect of a new thermal treatment in combination with saprobic fungal incubation on the phytotoxicity level of alperujo.

    PubMed

    Sampedro, Inmaculada; Aranda, Elisabet; Rodríguez-Gutiérrez, Guillermo; Lama-Muñoz, Antonio; Ocampo, Juan Antonio; Fernández-Bolaños, Juan; García-Romera, Inmaculada

    2011-04-13

    Byproducts generated from food industries, such as olive oil mills, have been studied to decrease harmful pollution and their environmental consequences. In this work, a new thermal pretreatment and saprobic fungal incubation to detoxify alperujo (two-phase olive mill waste) have been evaluated in view of its use as fertilizer in agriculture. The sequential use of both methods simplifies the thermal conditions and incubation times of the fungal treatment. Optimization of the thermal treatment from 150 to 170 °C for 45 and 15 min, respectively, reduced the incubation time with Coriolpsis rigida from 20 to 10 weeks needed to reduce phytotoxic effects on tomato plants. Therefore, the combination of thermal and biological treatments will allow the development of the potential benefits of alperujo to improve nutrients in agricultural soil.

  4. Effect of water treatment additives on lime softening residual trace chemical composition--implications for disposal and reuse.

    PubMed

    Cheng, Weizhi; Roessler, Justin; Blaisi, Nawaf I; Townsend, Timothy G

    2014-12-01

    Drinking water treatment residues (WTR) offer potential benefits when recycled through land application. The current guidance in Florida, US allows for unrestricted land application of lime softening WTR; alum and ferric WTR require additional evaluation of total and leachable concentrations of select trace metals prior to land application. In some cases a mixed WTR is produced when lime softening is accompanied by the addition of a coagulant or other treatment chemical; applicability of the current guidance is unclear. The objective of this research was to characterize the total and leachable chemical content of WTR from Florida facilities that utilize multiple treatment chemicals. Lime and mixed lime WTR samples were collected from 18 water treatment facilities in Florida. Total and leachable concentrations of the WTR were measured. To assess the potential for disposal of mixed WTR as clean fill below the water table, leaching tests were conducted at multiple liquid to solid ratios and under reducing conditions. The results were compared to risk-based soil and groundwater contamination thresholds. Total metal concentrations of WTR were found to be below Florida soil contaminant thresholds with Fe found in the highest abundance at a concentration of 3600 mg/kg-dry. Aluminum was the only element that exceeded the Florida groundwater contaminant thresholds using SPLP (95% UCL = 0.23 mg/L; risk threshold = 0.2 mg/L). Tests under reducing conditions showed elevated concentrations of Fe and Mn, ranging from 1 to 3 orders of magnitude higher than SPLP leachates. Mixed lime WTR concentrations (total and leachable) were lower than the ferric and alum WTR concentrations, supporting that mixed WTR are appropriately represented as lime WTR. Testing of WTR under reducing conditions demonstrated the potential for release of certain trace metals (Fe, Al, Mn) above applicable regulatory thresholds; additional evaluation is needed to assess management options where

  5. Recovery of Cu and valuable metals from E-waste using thermal plasma treatment

    NASA Astrophysics Data System (ADS)

    Mitrasinovic, Aleksandar; Pershin, Larry; Wen, John Z.; Mostaghimi, Javad

    2011-08-01

    A thermal plasma treatment was employed for economical recovery of valuable metals from e-waste. Cu-clad plates that simulated circuit boards were fed at the bottom of the reactor and treated with a plasma jet at temperatures between 385 and 840°C. Organic components of the Cu-clad plates were decomposed and contributed to the increased temperature of the offgas. Due to the low temperatures at the base of the reactor, the analyzed samples did not show losses characteristic for the plasma processes such as evaporation or metal oxidation. After plasma treatment, Cu foils were separated from the fiber glass and other solid residues allowing a complete recovery. Solid residues of the plates at the bottom of the reactor were crunched into small particles, allowing easy recycling or use as construction material.

  6. Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method

    NASA Astrophysics Data System (ADS)

    Goodarz Naseri, Mahmoud; Ara, Mohammad Hossein Majles; Saion, Elias B.; Shaari, Abdul Halim

    2014-01-01

    This study investigated the synthesis of magnesium ferrite (MgFe2O4) nanoparticles with cubic symmetry that were prepared by a thermal-treatment method by using a solution that contained poly (vinyl alcohol) (PVA) as a capping agent and Mg and Fe nitrates as alternative sources of metal. Heat treatment was conducted using an electric cylinder furnace in an air atmosphere at temperatures between 673 and 973 K, and magnesium ferrite nanoparticles were produced that had different crystallite sizes ranging from5 to 8 nm. The products were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FESEM), X-ray analysis (EDXA), and Fourier transform infrared spectroscopy (FT-IR). All the samples calcined from 673 to 973 K exhibited super paramagnetic behavior with unpaired electrons spins, which was confirmed by using a vibrating sample magnetometer (VSM) and electron paramagnetic resonance (EPR) spectroscopy.

  7. Aggregation and conformational change of mushroom (Agaricus bisporus) polyphenoloxidase subjected to thermal treatment.

    PubMed

    Zhou, Lei; Liu, Wei; Zou, Liqiang; Xiong, Zhiqiang; Hu, Xiuting; Chen, Jun

    2017-01-01

    This study investigated changes in the activity, conformation and microstructure of mushroom polyphenoloxidase (PPO) subjected to thermal treatment. The inactivation of PPO can be achieved by high temperature-short time or mild temperature-long time treatment. Circular dichroism and fluorescence spectra suggested that heating process induced the rearrangement of secondary structure and the disruption of tertiary structure. Red shifts of fluorescence spectra showed positive correlations with the inactivation rate of PPO. There were significant differences in the conformation and molecular microstructure among PPO samples with the same relative activity, which were obtained by treating PPO at 45, 55 and 65°C for different times. In summary, PPO molecules were deformed at mild temperature, while higher temperature induced the formation of large aggregates. PPO with the same relative activity might exist in different forms.

  8. Thermal treatments of foods: a predictive general-purpose code for heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Barba, Anna Angela

    2005-05-01

    Thermal treatments of foods required accurate processing protocols. In this context, mathematical modeling of heat and mass transfer can play an important role in the control and definition of the process parameters as well as to design processing systems. In this work a code able to simulate heat and mass transfer phenomena within solid bodies has been developed. The code has been written with the ability of describing different geometries and it can account for any kind of different initial/boundary conditions. Transport phenomena within multi-layer bodies can be described, and time/position dependent material parameters can be implemented. Finally, the code has been validated by comparison with a problem for which the analytical solution is known, and by comparison with a differential scanning calorimetry signal that described the heating treatment of a raw potato (Solanum tuberosum).

  9. Apparatus and method for the thermal regeneration of matter in water treatment plants

    SciTech Connect

    Marquardt, K.

    1980-12-02

    Apparatus and methods are disclosed that provide a quasicontinuous thermal regeneration system for ion exchange resins and adsorption media (matter) as used, for example, in desalinization processes, comprising an operating (desalinization) vessel, means for transferring measured amounts of matter therefrom to successive regeneration and cooling means and recycle back to the operating vessel. Heat exchange means are provided to transfer residual heat from the cooling step to the regeneration step, transport water is recycled in the process with minimal losses, and optional water softening and decarbonizing pre-treatment and chemical post-treatment steps may be included, the latter to remove dirt and heavy metals from the regenerated matter prior to recycle to the operating vessel.

  10. Gallium Maltolate Treatment Eradicates Pseudomonas aeruginosa Infection in Thermally Injured Mice▿

    PubMed Central

    DeLeon, Katrina; Balldin, Fredrik; Watters, Chase; Hamood, Abdul; Griswold, John; Sreedharan, Sunil; Rumbaugh, Kendra P.

    2009-01-01

    Gallium (Ga) is a semimetallic element that has demonstrated therapeutic and diagnostic-imaging potential in a number of disease settings, including cancer and infectious diseases. Gallium's biological actions stem from its ionic radius being almost the same as that of ferric iron (Fe3+), whereby it can replace iron (Fe) in Fe3+-dependent biological systems, such as bacterial and mammalian Fe transporters and Fe3+-containing enzymes. Unlike Fe3+, ionic gallium (Ga3+) cannot be reduced, and when incorporated, it inactivates Fe3+-dependent reduction and oxidation processes that are necessary for bacterial and mammalian cell proliferation. Most pathogenic bacteria require Fe for growth and function, and the availability of Fe in the host or environment can greatly enhance virulence. We examined whether gallium maltolate (GaM), a novel formulation of Ga, had antibacterial activity in a thermally injured acute infection mouse model. Dose-response studies indicated that a GaM dose as low as 25 mg/kg of body weight delivered subcutaneously was sufficient to provide 100% survival in a lethal P. aeruginosa-infected thermally injured mouse model. Mice treated with 100 mg/kg GaM had undetectable levels of Pseudomonas aeruginosa in their wounds, livers, and spleens, while the wounds of untreated mice were colonized with over 108 P. aeruginosa CFU/g of tissue and their livers and spleens were colonized with over 105 P. aeruginosa CFU/g of tissue. GaM also significantly reduced the colonization of Staphylococcus aureus and Acinetobacter baumannii in the wounds of thermally injured mice. Furthermore, GaM was also therapeutically effective in preventing preestablished P. aeruginosa infections at the site of the injury from spreading systemically. Taken together, our data suggest that GaM is potentially a novel antibacterial agent for the prevention and treatment of wound infections following thermal injury. PMID:19188381

  11. Gallium maltolate treatment eradicates Pseudomonas aeruginosa infection in thermally injured mice.

    PubMed

    DeLeon, Katrina; Balldin, Fredrik; Watters, Chase; Hamood, Abdul; Griswold, John; Sreedharan, Sunil; Rumbaugh, Kendra P

    2009-04-01

    Gallium (Ga) is a semimetallic element that has demonstrated therapeutic and diagnostic-imaging potential in a number of disease settings, including cancer and infectious diseases. Gallium's biological actions stem from its ionic radius being almost the same as that of ferric iron (Fe(3+)), whereby it can replace iron (Fe) in Fe(3+)-dependent biological systems, such as bacterial and mammalian Fe transporters and Fe(3+)-containing enzymes. Unlike Fe(3+), ionic gallium (Ga(3+)) cannot be reduced, and when incorporated, it inactivates Fe(3+)-dependent reduction and oxidation processes that are necessary for bacterial and mammalian cell proliferation. Most pathogenic bacteria require Fe for growth and function, and the availability of Fe in the host or environment can greatly enhance virulence. We examined whether gallium maltolate (GaM), a novel formulation of Ga, had antibacterial activity in a thermally injured acute infection mouse model. Dose-response studies indicated that a GaM dose as low as 25 mg/kg of body weight delivered subcutaneously was sufficient to provide 100% survival in a lethal P. aeruginosa-infected thermally injured mouse model. Mice treated with 100 mg/kg GaM had undetectable levels of Pseudomonas aeruginosa in their wounds, livers, and spleens, while the wounds of untreated mice were colonized with over 10(8) P. aeruginosa CFU/g of tissue and their livers and spleens were colonized with over 10(5) P. aeruginosa CFU/g of tissue. GaM also significantly reduced the colonization of Staphylococcus aureus and Acinetobacter baumannii in the wounds of thermally injured mice. Furthermore, GaM was also therapeutically effective in preventing preestablished P. aeruginosa infections at the site of the injury from spreading systemically. Taken together, our data suggest that GaM is potentially a novel antibacterial agent for the prevention and treatment of wound infections following thermal injury.

  12. Ion beam surface treatment: A new technique for thermally modifying surfaces using intense, pulsed ion beams

    SciTech Connect

    Stinnett, R.W.; Buchheit, R.G.; Neau, E.L.

    1995-08-01

    The emerging capability to produce high average power (10--300 kW) pulsed ion beams at 0.2{minus}2 MeV energies is enabling us to develop a new, commercial-scale thermal surface treatment technology called Ion Beam Surface Treatment (IBEST). This new technique uses high energy, pulsed ({le}500 ns) ion beams to directly deposit energy in the top 1--20 micrometers of the surface of any material. The depth of treatment is controllable by varying the ion energy and species. Deposition of the energy in a thin surface layer allows melft of the layer with relatively small energies (1--10J/cm2) and allows rapid cooling of the melted layer by thermal conduction into the underlying substrate. Typical cooling rates of this process (109 K/sec) are sufficient to cause amorphous layer formation and the production of non-equilibrium microstructures (nanocrystalline and metastable phases). Results from initial experiments confirm surface hardening, amorphous layer and nanocrystalline grain size formation, corrosion resistance in stainless steel and aluminum, metal surface polishing, controlled melt of ceramic surfaces, and surface cleaning and oxide layer removal as well as surface ablation and redeposition. These results follow other encouraging results obtained previously in Russia using single pulse ion beam systems. Potential commercialization of this surface treatment capability is made possible by the combination of two new technologies, a new repetitive high energy pulsed power capability (0.2{minus}2MV, 25--50 kA, 60 ns, 120 Hz) developed at SNL, and a new repetitive ion beam system developed at Cornell University.

  13. Formation of PCDD and PCDF in the thermal treatment of footwear leather wastes.

    PubMed

    Godinho, Marcelo; Marcilio, Nilson Romeu; Masotti, Leonardo; Martins, Celso Brisolara; Ritter, Diego Elias; Wenzel, Bruno München

    2009-08-15

    The leather waste generated by the footwear industry is considered dangerous due to the presence of trivalent chromium, derived from the salt utilized to tan hides. In Brazil, the majority of this waste is disposed on landfills and only about 3% are recycled. The thermal treatment is an alternative method for purification of such residues. By using this technique it is possible to generate energy and recover the chromium present in the ash for the production of basic chromium sulfate (tanning industry), high carbon ferrochromium or carbon-free ferrochromium (steel industry). In the last 10 years, the gasification and combustion of footwear leather waste have been intensively studied at the Federal University of Rio Grande do Sul. The research experiment for characterization of the emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) were carried out in a semi-pilot unit (350 kW(th)). From new investments the thermal capacity of the unit will increase to 600 kW(th). The unit will produce power from the heat generated in the combustion. The experimental results indicated that during the thermal treatment of footwear leather wastes, the formation mechanism of PCDD/F is the de novo synthesis. Most of PCDD/F were found in the particulate phase (>95%). A kinetic model was used for discussion of the achieved experimental results. The model is based in the carbon gasification, PCDD/F formation, desorption and degradation. From the conclusions obtained in this work will be possible minimize the PCDD/F formation in process of combustion of footwear leather wastes.

  14. Study of thermal treatment combined with radiation on the decomposition of polysaccharides in sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Duarte, C. L.; Ribeiro, M. A.; Oikawa, H.; Mori, M. N.

    2013-03-01

    Sugarcane bagasse pretreatment is a physical and chemical process that reduces the crystalline structure and disrupts the hydrogen bonding of cellulose to improve the accessibility to hydrolytic depolymerization reactions. The combination of pretreatment technologies intends to decrease the severity of the processes and to avoid excessive sugar degradation and formation of toxic by-products. An effective pretreatment preserves the pentose fractions and limits the formation of degradation products that inhibits the growth of fermentative microorganisms. This study presents the evaluation of the cleavage of polysaccharides from sugarcane bagasse using ionizing radiation combined with thermal and diluted acid treatment to further enzymatic or chemical hydrolysis of cellulose. Samples of sugarcane bagasse were irradiated using a Radiation Dynamics electron beam accelerator with 1.5 MeV and 37 kW, with different absorbed doses, and then were submitted to thermal and acid (0.1% sulfuric acid, m/m) hydrolysis for 10, 20 and 40 min at 180 °C. Taking into account the sugars and by-products liberated in these treatments the conversion rates of cellulose and hemicelluloses were calculated.

  15. Purification of p-type CdTe crystals by thermal treatment

    NASA Astrophysics Data System (ADS)

    Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Nykoniuk, Ye.; Shlyakhovyj, V.; Bolotnikov, A. E.; Yang, Ge; James, R. B.

    2014-09-01

    We studied the influence of prolonged thermal treatment on the concentration and the acceptor energy level positions in p-CdTe samples. We found that heating them at 720 K entails a decrease in the concentration of electrically active centers, i.e., a "self-cleaning" of the adverse effects of some contaminants. In samples wherein the conductivity was determined by the concentration of acceptors of the A1 type (EV + 0.03-0.05) eV, after heating it becomes controlled by a deeper acceptor of the A2 type (EV + 0.13-0.14) eV, and both the charge-carrier's mobility and the ratio μр80/μр300 increase. This effect reflects the fact that during thermal treatment, the A1 acceptors and the compensating donors are removed from their electrically active positions, most likely due to their diffusion and trapping within the inclusions in the CdTe bulk, where they have little or no influence on carrier scattering and trapping.

  16. Economic aspects of thermal treatment of solid waste in a sustainable WM system

    SciTech Connect

    Massarutto, Antonio

    2015-03-15

    Highlights: • Provides a comprehensive review of the applied economic literature dedicated to WtE. • Offers a detailed discussion of the main assumptions that characterize alternative positions. • Highlights the most robust achievements obtained by the applied economic research in this field. • Compares economic and non-economic valuation techniques. - Abstract: This paper offers a systematic review of the literature of the last 15 years, which applies economic analysis and theories to the issue of combustion of solid waste. Waste incineration has attracted the interest of economists in the first place concerning the comparative assessment of waste management options, with particular reference to external costs and benefits. A second important field of applied economic research concerns the market failures associated with the provision of thermal treatment of waste, that justify some deviation from the standard competitive market model. Our analysis discusses the most robust achievements and the more controversial areas. All in all, the economic perspective seems to confirm the desirability of assigning a prominent role to thermal treatments in an integrated waste management strategy. Probably the most interesting original contribution it has to offer concerns the refusal of categorical assumptions and too rigid priority ladders, emphasizing instead the need to consider site-specific circumstances that may favor one or another solution.

  17. A full, self-consistent treatment of thermal wind balance on oblate fluid planets

    NASA Astrophysics Data System (ADS)

    Galanti, Eli; Kaspi, Yohai; Tziperman, Eli

    2017-01-01

    The nature of the flow below the cloud level on Jupiter and Saturn is still unknown. Relating the flow on these planets to perturbations in their density field is key to the analysis of the gravity measurements expected from both the Juno (Jupiter) and Cassini (Saturn) spacecrafts during 2016-17. Both missions will provide latitude-dependent gravity fields, which in principle could be inverted to calculate the vertical structure of the observed cloud-level zonal flow on these planets. Theories to date connecting the gravity field and the flow structure have been limited to potential theories under a barotropic assumption, or estimates based on thermal wind balance that allow analyzing baroclinic wind structures, but have made simplifying assumptions. Those include the effects of the deviations from spherical symmetry, the centrifugal force due to density perturbations, and self-gravitational effects of the density perturbations. Recent studies attempted to include some effects but not in a self-consistent manner. The present study introduces such a self-consistent perturbation approach to the thermal wind balance that incorporates all physical effects, and applies it to several example wind structures, both barotropic and baroclinic. The contribution of each term is analyzed, and the results are compared in the barotropic limit to those of potential theory. It is found that the dominant balance involves the original simplified thermal wind approach. This balance produces a good order-of-magnitude estimate of the gravitational moments, and is able, therefore, to address the order one question of how deep the flows are given measurements of gravitational moments. The additional terms are significantly smaller and none of these terms is dominant, so any approximation attempting to improve over the simplified thermal wind approach needs to include all other terms.

  18. Changes in the structure and function of microbial communities in drinking water treatment bioreactors upon addition of phosphorus.

    PubMed

    Li, Xu; Upadhyaya, Giridhar; Yuen, Wangki; Brown, Jess; Morgenroth, Eberhard; Raskin, Lutgarde

    2010-11-01

    Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors.

  19. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment.

    PubMed

    Lin, Jianjun; Lv, Yaohui; Liu, Yuxin; Sun, Zhe; Wang, Kaibo; Li, Zhuguo; Wu, Yixiong; Xu, Binshi

    2017-05-01

    Plasma arc additive manufacturing (PAM) is a novel additive manufacturing (AM) technology due to its big potential in improving efficiency, convenience and being cost-savings compared to other AM processes of high energy bea\\m. In this research, several Ti-6Al-4V thin walls were deposited by optimized weld wire-feed continuous PAM process (CPAM), in which the heat input was gradually decreased layer by layer. The deposited thin wall consisted of various morphologies, which includes epitaxial growth of prior β grains, horizontal layer bands, martensite and basket weave microstructure, that depends on the heat input, multiple thermal cycles and gradual cooling rate in the deposition process. By gradually reducing heat input of each bead and using continuous current in the PAM process, the average yield strength (YS), ultimate tensile strength (UTS) and elongation reach about 877MPa, 968MPa and 1.5%, respectively, which exceed the standard level of forging. The mechanical property was strengthened and toughened due to weakening the aspect ratio of prior β grains and separating nano-dispersoids among α lamellar. Furthermore, this research demonstrates that the CPAM process has a potential to manufacture or remanufacture in AM components of metallic biomaterials without post-processing heat treatment.

  20. Ex-situ and in-situ investigations of thermal anti-oxidation treatments of stainless steels by reflection mode EXAFS

    NASA Astrophysics Data System (ADS)

    Lützenkirchen-Hecht, D.; Wulff, D.; Wagner, R.; Holländer, U.; Maier, HJ; Frahm, R.

    2016-05-01

    Different thermal treatments were performed for the anti-oxidation of steel surfaces, and the processes were investigated ex-situ and in-situ by surface sensitive reflection mode EXAFS experiments at the Cr and Fe K-edges. While the samples for the ex-situ studies were heat-treated in a conveyor belt furnace at temperatures between 600 and 900 °C in inert carrier gases (N2 or Ar) using different additives such as hydrogen (H2) and monosilane (SiH4), the in- situ anti-oxidation treatments have been performed in a high vacuum environment (p < 10-6 mbar). While the ex-situ experiments suggest that SiH4-additives are needed for the reduction of the steel to a metallic state, the in-vacuum treatments appear successful for temperatures above approx. 900 °C.

  1. Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications.

    PubMed

    Jiménez-Sánchez, Cecilia; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2017-02-11

    This paper provides an overview of alternatives to conventional thermal treatments and a review of the literature on fruit-juice processing for three key operations in fruit-juice production such as microbial inactivation, enzyme inactivation, and juice yield enhancement, these being radiation treatments (UV light, high-intensity light pulses, γ-irradiation), electrical treatments (pulsed electric fields, radiofrequency electric fields, ohmic heating), microwave heating, ultrasound, high hydrostatic pressure, inert gas treatments (supercritical carbon dioxide, ozonation), and flash-vacuum expansion. The nonthermal technologies discussed in this review have the potential to meet industry and consumer expectations. However, the lack of standardization in operating conditions hampers comparisons among different studies, and consequently ambiguity arises within the literature. For the juice industry to advance, more detailed studies are needed on the scaling-up, process design, and optimization, as well as on the effect of such technologies on juice quality of juices in order to maximize their potential as alternative nonthermal technologies in fruit-juice processing.

  2. Non-thermal plasma treatment of Radix aconiti wastewater generated by traditional Chinese medicine processing.

    PubMed

    Wen, Yiyong; Yi, Jianping; Zhao, Shen; Jiang, Song; Chi, Yuming; Liu, Kefu

    2016-06-01

    The wastewater effluent from Radix aconiti processing, an important step in the production processes of traditional Chinese medicine (TCM), is a type of toxic wastewater and difficult to treat. Plasma oxidation methods have emerged as feasible techniques for effective decomposition of toxic organic pollutants. This study examined the performance of a plasma reactor operated in a dielectric barrier discharge (DBD) to degrade the effluent from R. aconiti processing. The effects of treatment time, discharge voltage, initial pH value and the feeding gas for the reactor on the degradation of this TCM wastewater were investigated. A bacterium bioluminescence assay was adopted in this study to test the toxicity of the TCM wastewater after non-thermal plasma treatment. The degradation ratio of the main toxic component was 87.77% after 60min treatment with oxygen used as feed gas and it was 99.59% when the initial pH value was 8.0. High discharge voltage and alkaline solution environment were beneficial for improving the degradation ratio. The treatment process was found to be capable of reducing the toxicity of the wastewater to a low level or even render it non-toxic. These experimental results suggested that the DBD plasma method may be a competitive technology for primary decomposition of biologically undegradable toxic organic pollutants in TCM wastewater.

  3. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    SciTech Connect

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

  4. Arthrocentesis with or without additional drugs in temporomandibular joint inflammatory-degenerative disease: comparison of six treatment protocols*.

    PubMed

    Manfredini, D; Rancitelli, D; Ferronato, G; Guarda-Nardini, L

    2012-04-01

    The aim of the present pilot investigation was to compare the effectiveness of six treatment protocols providing temporomandibular joint (TMJ) arthrocentesis with or without additional drugs to manage symptoms in patients with inflammatory-degenerative TMJ disease. A consecutive series of 72 patients with TMJ osteoarthritis (axis group IIIb) with pain lasting from more than 6 months were randomly assigned to one of the groups receiving the following treatment protocols: single-session two-needle arthrocentesis (A), single-session two-needle arthrocentesis plus corticosteroid (B), single-session two-needle arthrocentesis plus low molecular weight hyaluronic acid (HA) (C), single-session two-needle arthrocentesis plus high molecular weight HA (D), 5 weekly two-needle arthrocenteses plus low molecular weight HA (E) and 5 weekly single-needle arthrocenteses plus low molecular weight HA (F). At the 3-month follow-up, improvement with respect to mean baseline values was recorded in all the five treatment groups completing the protocol. No significant differences emerged between groups in any outcome variable. The protocol providing five sessions of two-needle arthrocenteses plus low molecular weight HA allowed achieving the highest improvement in almost all the outcome variables. Findings suggested that no statistically significant differences existed between the treatment groups. The clinical significance of these findings needs to be tested with future studies on larger samples with longer follow-up periods.

  5. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent.

    PubMed

    Santos, Sílvia C R; Boaventura, Rui A R

    2015-06-30

    Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD5 removals of 53-79%, but color removal was rather limited (10-18%). The performance was significantly enhanced by the addition of WS, with BOD5 removals above 91% and average color removals of 60-69%.

  6. Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites: Underlying role of reinforcement weight fraction

    NASA Astrophysics Data System (ADS)

    Gu, Dongdong; Yuan, Pengpeng

    2015-12-01

    In this study, a three-dimensional transient computational fluid dynamics model was established to investigate the influence of reinforcement weight fraction on thermal evolution behavior and fluid dynamics during selective laser melting (SLM) additive manufacturing of TiC/AlSi10Mg nanocomposites. The powder-to-solid transition and nonlinear variation of thermal physical properties of as-used materials were considered in the numerical model, using the Gaussian distributed volumetric heat source. The simulation results showed that the increase of operating temperature and the resultant formation of larger melt pool were caused by the increase of weight fraction of reinforcement. The Marangoni convection was intensified using a larger reinforcement content, accelerating the coupled motion of fluid and solid particles. The circular flows appeared when the TiC content reached 5.0 wt. % and the larger-sized circular flows were present as the reinforcement content increased to 7.5 wt. %. The experimental study on surface morphologies and microstructures on the polished sections of SLM-processed TiC/AlSi10Mg nanocomposite parts was performed. A considerably dense and smooth surface free of any balling effect and pore formation was obtained when the reinforcement content was optimized at 5.0 wt. %, due to the sufficient liquid formation and moderate Marangoni flow. Novel ring-structured reinforcing particulates were tailored because of the combined action of the attractive effect of centripetal force and repulsive force, which was consistent with the simulation results.

  7. [Introduction of additional thiol groups into glucoamylase in Aspergillus awamori and their effect on the thermal stability and catalytic activity of the enzyme].

    PubMed

    Surzhik, M A; Shmidt, A E; Glazunov, E A; Firsov, D L; Petukhov, M G

    2014-01-01

    Five mutant forms of glucoamylase (GA) from the filamentous fungus Aspergillus awamori with artificial disulfide bonds (4D-G137A\\A14C, 6D-A14C\\Y419C\\G137A, 10D-V13C\\G396C, 11D-V13C\\G396C\\A14C\\Y419C\\G137A, and 20D-G137A\\A246C\\A14C) were constructed using computer simulation and experimentally tested for thermostability. The introduction of two additional disulfide bonds between its first and thirteenth alpha-helices and that of the loop located close to a catalytic residue--E400--made it possible to assess the effects of disulfide bridges on protein thermostability. The mutant proteins with combined amino acid substitutions G137A\\A14C, V13C\\G396C\\A14C\\Y419C\\G137A, and G137A\\A246C\\A14C showed higher thermal stability as compared to the wild-type protein. At the same time, new disulfide bridges in the mutant A14C\\Y419C\\G137A and V13C\\G396C proteins led to the destabilization of their structure and the loss of thermal stability.

  8. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  9. Psychiatric comorbidity and additional abuse of drugs in maintenance treatment with L- and D,L-methadone.

    PubMed

    Wedekind, Dirk; Jacobs, Stefan; Karg, Iris; Luedecke, Christel; Schneider, Udo; Cimander, Konrad; Baumann, Pierre; Ruether, Eckart; Poser, Wolfgang; Havemann-Reinecke, Ursula

    2010-03-01

    Sixty D,L- or L-methadone treated patients in maintenance therapy were interviewed for additional drug abuse and psychiatric comorbidity; 51.7% of the entire population had a comorbid Axis-I disorder, with a higher prevalence in females (P=0.05). Comorbid patients tended to have higher abuse of benzodiazepines, alcohol, cannabis, and cocaine, but not of heroin. They had received a significantly lower D,L- (P<0.05) and L-methadone dose than non-comorbid subjects. The duration of maintenance treatment showed an inverse relationship to frequency of additional heroin intake (P<0.01). Patients with additional heroin intake over the past 30 days had been treated with a significantly lower L-methadone dosage (P<0.05) than patients without. Axis-I comorbidity appears to be decreased when relatively higher dosages of D,L- (and L-methadone) are administered; comorbid individuals, however, were on significantly lower dosages. Finally, L-, but not D,L-methadone seems to be more effective in reducing additional heroin abuse.

  10. Influence of SnO2 Nanoparticles Addition on Microstructure, Thermal Analysis, and Interfacial IMC Growth of Sn1.0Ag0.7Cu Solder

    NASA Astrophysics Data System (ADS)

    Sun, Ren; Sui, Yanwei; Qi, Jiqiu; Wei, Fuxiang; He, Yezeng; Chen, Xiao; Meng, Qingkun; Sun, Zhi

    2017-02-01

    A new lead-free Sn-1.0Ag-0.7Cu-xSnO2 composite solder was smelted in a vacuum arc furnace at 900°C for 30 min. This paper investigated the influence of SnO2 nanoparticles on the microstructure, melting properties and growth of interfacial intermetallic compounds (IMCs) at the interface between Cu and the composite solder during isothermal aging. The results indicated that SnO2 particles effectively refined the β-Sn grains and reduced the size of Cu6Sn5. The thermal analysis data showed that nano-sized SnO2 decreased the pasty range and melting temperature. In addition, the additional nanoparticles reduced the diffusion coefficient and impeded the growth of intermetallic compounds during soldering and aging. The effect of nanoparticles on solder is closely associated with the added amount of nano-SnO2 particles. When the SnO2 concentration was 1.0 wt.%, the composite solder possessed an excellent microstructure, suitable melting properties and obvious inhibition effect on the interfacial IMCs. However, excessive addition of SnO2 particles in the solder alloys decreased the inhibition effect of the interfacial IMCs.

  11. Effects of Mo addition on thermal stability and magnetic properties of a ferromagnetic Fe75P10C10B5 metallic glass

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jia, Xingjie; Li, Yanhui; Fang, Canfeng

    2014-05-01

    The effects of Mo content on the thermal stability, glass-forming ability (GFA), magnetic and mechanical properties of Fe75-xMoxP10C10B5 (x = 0-10) metallic glasses were investigated. The stabilization of supercooled liquid and GFA were significantly enhanced by addition of Mo. Although the saturation magnetization (Is) of the alloys reduced with increasing Mo content, the coercive force (Hc) decreased. The metallic glasses with x = 2.5-7.5 exhibit low glass transition temperature of 733-749 K, large supercooled liquid region of 61-96 K, and high GFA with critical fully glassy sample diameters of 1.5-3.0 mm. They also possess rather high Is of 0.81-1.11 T, low Hc of 2.07-4.87 A/m, high Vicker's hardness of 860-992, high compressive yield strength of over 3000 MPa with a distinct plastic strain.

  12. Global increasing of mean sea level and erroneous treatment of a role of thermal factors

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.

    2009-04-01

    in the northern hemisphere. At averaging of measurements over all ocean surface (mainly located in a southern hemisphere where it occupies about 80 % of the areas) there will be an effect of apparent additional increase of the sea level. Therefore this ("apparent") velocity of increase of the sea level accepts the greater value (about 2.4 mm / year) in comparison with coastal determinations of this velocity that is rather close to the data of satellite observations. The additional effect in increase of the sea level is brought by deformation of the ocean bottom. The both mentioned phenomena: the secular drift of the center of mass of the Earth and the secular expansion of southern hemisphere of the Earth have been predicted by author [2], [3] and have obtained confirmations by space geodesy methods. The offered explanation has the extremely - important value for studying a possible role of thermal and climatic factors which can not apply any more for a big component attributed to it in change of the sea level. The account of fictitious component of this velocity results practically in real value of variation of the average sea level about 1.3-1.6 mm / yr, that completely coordinate positions of researchers of ocean by coastal and altimetry (satellite) methods. Moreover, the given work opens a direct opportunity for an explanation of increase of the sea level as result of deformation of the ocean bottom. This deformation is a major factor of change of the average sea level. Water superseded in a southern hemisphere gives the significant contribution to observably value of velocity of sea level rise up to 0.8-1.2 mm / yr [3, 4]. The work fulfilled at financial support of Russian projects of RFBR: N 07-05-00939 and N 06-02-16665. This abstract (without what or changes) has been accepted to EGU GA 2008 Session IS48 "75th Anniversary of the PSML"(Convener: Woodworth P.) but was not included in its program. References. [1] Nerem R.S., Leuliette E.W., Chambers D.P. (2005

  13. Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas

    SciTech Connect

    James Spillane

    2005-10-01

    The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

  14. Improvement in coercivity, thermal stability, and corrosion resistance of sintered Nd-Fe-B magnets with Dy80Ga20 intergranular addition

    NASA Astrophysics Data System (ADS)

    Zhou, Beibei; Li, Xiangbin; Cao, Xuejing; Yan, Gaolin; Yan, Aru

    2016-11-01

    To investigate the coercivity, corrosion resistance, and thermal stability of Nd-Fe-B magnets, their properties were investigated at room and high temperature before and after doping with Dy80Ga20 (at.%) powder. The coercivity of the magnets increased from the undoped value of 12.72 kOe to a doped value of 21.44 kOe. A micro-structural analysis indicates that a well-developed core-shell structure forms in the magnets doped with Dy80Ga20 powder. The improvement in magnetic properties is believed to be related to the refined and uniform matrix grains, continuous grain boundaries, and a hardened (Nd, Dy)2Fe14B shell surrounding the matrix grains. Additionally, the doped magnets exhibit an obvious improvement in thermal stability. For the magnets with added Dy80Ga20 powder, the temperature coefficients of remanence (α) and coercivity (β) increased to -0.106% °C-1 and -0.60% °C-1 over the range 20-100 °C, compared to temperature coefficients of -0.117% °C-1 (α) and -0.74% °C-1 (β) in the regular magnets without Dy80Ga20 powder. The irreversible loss of magnetic flux (Hirr) was investigated at different temperatures. After being exposed to 150 °C for 2 h, the Hirr of magnets with 4 wt.% Dy80Ga20 decreased by ˜95% compared to that of the undoped magnets. The enhanced temperature coefficients and Hirr indicate improved thermal stability in the doped Nd-Fe-B magnets. The intergranular addition of Dy80Ga20 also improved the corrosion resistance of the magnets because of the enhanced intergranular phase. In a corrosive atmosphere for 96 h, the mass loss of the sintered magnets with 4 wt.% Dy80Ga20 was 2.68 mg/cm2, less than 10% of that suffered by the undoped magnets (28.1 mg/cm2). Project supported by the Ministry of Science and Technology of China (Grant Nos. 2014DFB50130 and 2011CB612304) and the National Natural Science Foundation of China (Grant Nos. 51172168 and 51072139).

  15. Carbon addition during the Paleocene-Eocene Thermal Maximum: Model inversion of a new, high-resolution carbon isotope record from Svalbard

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Kump, L.; Ridgwell, A.; Junium, C.; Diefendorf, A. F.; Freeman, K. H.; Urban, N.

    2010-12-01

    Newly analyzed core material from Svalbard presents the most expanded sedimentary section spanning the Paleocene Eocene Thermal Maximum (PETM) studied to date. Carbon isotopic analysis of the bulk organic matter extracted from core BH9-05 details the onset of the negative carbon isotope excursion (CIE) of approximately 4.2‰ over 19,000 years (8 m of section, sampled every 30 cm) and its recovery over 50 m of section, representing 150,000 years. The CIE of terrestrial higher plant n-alkanes (~6‰) is larger than that of the bulk organic carbon (4.2‰), suggesting the CIE of the atmospheric CO2 is in the range of 4.2 to 6‰. We use a novel approach to modeling the excursion, forcing an Earth system model of intermediate complexity to conform to the total organic carbon isotope record, yielding rates of carbon release at the PETM for a specified isotopic composition representing end-member potential sources (methane or fossil organic matter). We find that the peak rate of carbon addition is only a small fraction of the current rate of fossil fuel burning (9 Pg C/yr) whether the source is methane (0.3 Pg C/yr; δ13C = -60‰) or organic matter (1.7 Pg C/yr; δ13C = -22‰). Model/data comparison, especially the observed and modeled seafloor carbonate dissolution record, favors the higher peak rate and larger (~13,000 Pg C) cumulative addition associated with an organic-matter source, such as rapid oxidation of peat/coal/marine organic matter, thermal alteration of marine organic matter during emplacement of the N. Atlantic Volcanic Province, or a mix of relatively 13C enriched (volcanic) and relatively 13C depleted (methane) sources. However, model sensitivity analysis shows that while the rate and amount of carbon added (for a specified source type) is relatively insensitive to key model uncertainties, the predicted seafloor carbonate dissolution response is quite sensitive to the presumed initial ocean alkalinity and seafloor carbonate distribution (i.e., the

  16. Effects of salt or cosolvent addition on solubility of a hydrophobic solute in water: Relevance to those on thermal stability of a protein

    NASA Astrophysics Data System (ADS)

    Murakami, Shota; Hayashi, Tomohiko; Kinoshita, Masahiro

    2017-02-01

    The solubility of a nonpolar solute in water is changed upon addition of a salt or cosolvent. Hereafter, "solvent" is formed by water molecules for pure water, by water molecules, cations, and anions for water-salt solution, and by water and cosolvent molecules for water-cosolvent solution. Decrease and increase in the solubility, respectively, are ascribed to enhancement and reduction of the hydrophobic effect. Plenty of experimental data are available for the change in solubility of argon or methane arising from the addition. We show that the integral equation theory combined with a rigid-body model, in which the solute and solvent particles are modeled as hard spheres with different diameters, can reproduce the data for the following items: salting out by an alkali halide and salting in by tetramethylammonium bromide, increase in solubility by a monohydric alcohol, and decrease in solubility by sucrose or urea. The orders of cation or anion species in terms of the power of decreasing the solubility can also be reproduced for alkali halides. With the rigid-body model, the analyses are focused on the roles of entropy originating from the translational displacement of solvent particles. It is argued by decomposing the solvation entropy of a nonpolar solute into physically insightful constituents that the solvent crowding in the bulk is a pivotal factor of the hydrophobic effect: When the solvent crowding in the bulk becomes more serious, the effect is strengthened, and when it becomes less serious, the effect is weakened. It is experimentally known that the thermal stability of a protein is also influenced by the salt or cosolvent addition. The additions which decrease and increase the solubility of a nonpolar solute, respectively, usually enhance and lower the thermal stability. This suggests that the enhanced or reduced hydrophobic effect is also a principal factor governing the stability change. However, urea decreases the solubility but lowers the stability

  17. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250-1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  18. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants.

    PubMed

    Oleszek, Sylwia; Grabda, Mariusz; Shibata, Etsuro; Nakamura, Takashi

    2013-09-01

    The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000°C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is resistant to HBr and remains unchanged in the residue.

  19. Review of current thermal ablation treatment for lung cancer and the potential of electrochemotherapy as a means for treatment of lung tumours.

    PubMed

    Jahangeer, Saleem; Forde, Patrick; Soden, Declan; Hinchion, John

    2013-12-01

    Lung cancer remains the most common cancer diagnosed worldwide and has one of the lowest survival rates of all cancers. Surgery remains the only curative treatment option but because most patients are either diagnosed at advanced stages or are unfit for surgery, less than a third of all lung cancer patients will undergo a surgical resection. Thermal ablation has emerged as an alternative option in patients who are unfit to undergo surgery. Thermal ablative therapies used in clinical practice to date include Radiofrequency Ablation (RFA), Microwave Ablation (MWA) and Cryoablation This article will focus on the advantages and limitations of thermal ablative therapy and investigates the potential of a relatively new treatment modality, Electrochemotherapy (ECT), as a novel treatment for lung cancer.

  20. EFFECT OF HEAT TREATMENT ON THERMAL PROPERTIES OF PITCH-BASED AND PAN-BASED CARBON-CARBON COMPOSITES

    SciTech Connect

    Iqbal, Sardar S.; Dinwiddie, Ralph Barton; Porter, Wallace D; Lance, Michael J; Fillip, Peter

    2011-01-01

    Thermal properties of two directional (2D) pitch-based carbon fiber with charred resin and three directional (3D) PAN-based carbon fiber with CVI carbon matrix C/C composite were investigated for non-heat treated (NHT) and heat treated (HT) materials through the thickness (z-direction). Heat treatment was performed at 1800, 2100 and 2400 oC for 1-hr in inert argon atmosphere. Thermal diffusivity, heat capacity and bulk density were measured to calculate thermal conductivity. Thermal diffusivity and conductivity was the highest for 3D C/C heat treated at maximum temperature with non-heat treated one exhibiting the lowest one. Similarly, 2D C/C heat treated at maximum temperature exhibited the highest thermal diffusivity and thermal conductivity. Polarized light microscopy (PLM) images of HTT C/C show a progressive improvement in microstructure when compared to NHT C/C. However, HTT 2D and 3D C/C composites exhibited extensive shrinkage of charred resin and CVI carbon matrix, respectively, from fibers resulting in intra and inter-bundles cracking when compared to NHT one. Raman spectroscopy and XRD results of NHT and HTT C/C indicated increased ordering of structure. A progressive improvement in thermal properties was observed with increased heat treatment temperatures.

  1. Application of thermal plasma technology for the treatment of solid wastes in China: An overview.

    PubMed

    Li, Jun; Liu, Kou; Yan, Shengjun; Li, Yaojian; Han, Dan

    2016-12-01

    With its enormous social and economical development, China is now experiencing a rapid increase in solid wastes generation and growing pressure for solid wastes management. Today solid wastes in China are mainly managed by a combination of landfill, incineration, and composting. Within different possible treatment routes, thermal plasma technology (TPT) offers the advantages of efficiently gasifying the organic contents of solid wastes into syngas that can be used for heat and power generation, and vitrifying the inorganics simultaneously into glassy slag with very low leachabilities. This process makes it feasible for near-zero emission into the environment while making use of all the useful components. Encouraged by the industrial operations of solid wastes treatment plants using TPT in some countries, several plasma demonstration projects have already been undertaken in China. This paper provides a preliminary overview of the current laboratory researches and industrial developments status of TPT for the treatment of solid wastes in China and analyzes the existing challenges. Furthermore, the future prospects for TPT in China are also discussed.

  2. Recycling potential of air pollution control residue from sewage sludge thermal treatment as artificial lightweight aggregates.

    PubMed

    Bialowiec, Andrzej; Janczukowicz, Wojciech; Gusiatin, Zygmunt M; Thornton, Arthur; Rodziewicz, Joanna; Zielinska, Magdalena

    2014-03-01

    Thermal treatment of sewage sludge produces fly ash, also known as the air pollution control residue (APCR), which may be recycled as a component of artificial lightweight aggregates (ALWA). Properties of APCR are typical: high content of Ca, Mg, P2O5, as well as potential to induce alkaline reactions. These properties indicate that ALWA prepared with a high content of APCR may remove heavy metals, phosphorus, and ammonium nitrogen from wastewater with high efficiency. The aim of this preliminary study was to determine the optimal composition of ALWA for potential use as a filter media in wastewater treatment systems. Five kinds of ALWA were produced, with different proportions of ash (shown as percentages in subscripts) in mixture with bentonite: ALWA0 (reference), ALWA12.5, ALWA25, ALWA50, and ALWA100. The following parameters of ALWA were determined: density, bulk density, compressive strength, hydraulic conductivity, and removal efficiency of ions Zn(2+), NH4 (+), and PO4 (3-). Tests showed that ALWA had good mechanical and hydraulic properties, and might be used in wastewater filtering systems. Phosphates and zinc ions were removed with high efficiency (80-96%) by ALWA25-100 in static (batch) conditions. The efficiency of ammonium nitrogen removal was low, <18%. Artificial wastewater treatment performance in dynamic conditions (through-flow), showed increasing removal efficiency of Zn(2+), PO4 (3-) with a decrease in flow rate.

  3. Surface Pre-treatment for Thermally Sprayed ZnAl15 Coatings

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.

    2017-02-01

    Pre-treatment of substrates is an important step in thermal spraying. It is widely accepted that mechanical interlocking is the dominant adhesion mechanism for most substrate-coating combinations. To prevent premature failure, minimum coating adhesion strength, surface preparation grades, and roughness parameters are often specified. For corrosion-protection coatings for offshore wind turbines, an adhesion strength ≥ 5 MPa is commonly assumed to ensure adhesion over service lifetime. In order to fulfill this requirement, Rz > 80 µm and a preparation grade of Sa3 are common specifications. In this study, the necessity of these requirements is investigated using the widely used combination of twin-wire arc-sprayed ZnAl15 on S355J2 + N as a test case. By using different blasting media and parameters, the correlation between coating adhesion and roughness parameters is analyzed. The adhesion strength of these systems is measured using a test method allowing measurements on real parts. The results are compared to DIN EN 582:1993, the European equivalent of ASTM-C633. In another series of experiments, the influence of surface pre-treatment grades Sa2.5 and Sa3 is considered. By combining the results of these three sets of experiments, a guideline for surface pre-treatment and adhesion testing on real parts is proposed for the considered system.

  4. Surface Pre-treatment for Thermally Sprayed ZnAl15 Coatings

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.

    2016-12-01

    Pre-treatment of substrates is an important step in thermal spraying. It is widely accepted that mechanical interlocking is the dominant adhesion mechanism for most substrate-coating combinations. To prevent premature failure, minimum coating adhesion strength, surface preparation grades, and roughness parameters are often specified. For corrosion-protection coatings for offshore wind turbines, an adhesion strength ≥ 5 MPa is commonly assumed to ensure adhesion over service lifetime. In order to fulfill this requirement, Rz > 80 µm and a preparation grade of Sa3 are common specifications. In this study, the necessity of these requirements is investigated using the widely used combination of twin-wire arc-sprayed ZnAl15 on S355J2 + N as a test case. By using different blasting media and parameters, the correlation between coating adhesion and roughness parameters is analyzed. The adhesion strength of these systems is measured using a test method allowing measurements on real parts. The results are compared to DIN EN 582:1993, the European equivalent of ASTM-C633. In another series of experiments, the influence of surface pre-treatment grades Sa2.5 and Sa3 is considered. By combining the results of these three sets of experiments, a guideline for surface pre-treatment and adhesion testing on real parts is proposed for the considered system.

  5. Effect of thermal annealing treatment with titanium chelate on buffer layer in inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyong; Wang, Ning; Fu, Yan

    2016-12-01

    The solution processable electron extraction layer (EEL) is crucial for polymer solar cells (PSCs). Here, we investigated titanium (diisopropoxide) bis(2,4-pentanedionate) (TIPD) as an EEL and fabricated inverted PSCs with a blend of poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) acting as the photoactive layer, with a structure of ITO/TIPD/P3HT:ICBA/MoO3/Ag. After thermal annealing treatment at 150 °C for 15 min, the PSC performances increased from 3.85% to 6.84% and they achieve stable power conversion efficiency (PCE), with a similar PCE compared with TiO2 as an EEL by the vacuum evaporated method. Fourier transform infrared spectroscopy (FTIR) and ultraviolet photoelectron spectroscopy (UPS) confirmed that the TIPD decomposed and formed the Tidbnd O bond, and the energy level of the lowest unoccupied molecular orbital and the highest occupied molecular orbital increased. The space charge limited current (SCLC) measurements further confirmed the improvement in electron collection and the transport ability using TIPD as the EEL and thermal annealing.

  6. Benefits and drawbacks of thermal pre-hydrolysis for operational performance of wastewater treatment plants.

    PubMed

    Phothilangka, P; Schoen, M A; Wett, B

    2008-01-01

    This paper presents benefits and potential drawbacks of thermal pre-hydrolysis of sewage sludge from an operator's prospective. The innovative continuous Thermo-Pressure-Hydrolysis Process (TDH) has been tested in full-scale at Zirl wastewater treatment plant (WWTP), Austria, and its influence on sludge digestion and dewatering has been evaluated. A mathematical plant-wide model with application of the IWA Activated Sludge Model No.1 (ASM1) and the Anaerobic Digestion Model No.1 (ADM1) has been used for a systematic comparison of both scenarios--operational plant performance with and without thermal pre-hydrolysis. The impacts of TDH pre-hydrolysis on biogas potential, dewatering performance and return load in terms of ammonia and inert organic compounds (Si) have been simulated by the calibrated model and are displayed by Sankey mass flow figures. Implementation of full scale TDH process provided higher anaerobic degradation efficiency with subsequent increased biogas production (+75-80%) from waste activated sludge (WAS). Both effects--enhanced degradation of organic matter and improved cake's solids content from 25.2 to 32.7% TSS--promise a reduction in sludge disposal costs of about 25%. However, increased ammonia release and generation of soluble inerts Si was observed when TDH process was introduced.

  7. Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium

    SciTech Connect

    Bieler, Thomas R. Kang, Di Baars, Derek C.; Chandrasekaran, Saravan; Mapar, Aboozar Wright, Neil T.; Ciovati, Gianluigi Myneni, Ganapati Rao; Pourboghrat, Farhang; Murphy, James E.; Compton, Chris C.

    2015-12-04

    The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of the large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.

  8. The resolution of thermal oedema at various temperatures under coumarin treatment.

    PubMed Central

    Piller, N. B.

    1975-01-01

    The treatment of thermal oedema with coumarin (a benzopyrone) has been found to be most effect when fast moving air of 20 degrees was blown over the burnt animals. Coumarin has two main effects: one is to cause vascular injury thus allowing extra protein and fluid into the tissues; the other is to stimulate phagocytosis, enzyme production and thus proteolysis and a subsequent removal of protein and fluid from the injured tissues. At lower temperatures the injurious nature of coumarin is prominent. At medium range temperatures the proteolytic actions of coumarin outweigh its injurious nature. Resolution thus proceeds much more rapidly. At high temperatures resolution is slowed. This is a consequence of the antioxidant effect of coumarin on adrenaline and ambient temperature on peripheral dilatation. The results obtained tie in well with those obtained by workers using water of equivalent temperature. PMID:1203170

  9. Potential of different mechanical and thermal treatments to control off-flavour generation in broccoli puree.

    PubMed

    Koutidou, Maria; Grauwet, Tara; Van Loey, Ann; Acharya, Parag

    2017-02-15

    The aim of this study was scientifically investigate the impact of the sequence of different thermo-mechanical treatments on the volatile profile of differently processed broccoli puree, and to investigate if any relationship persists between detected off-flavour changes and microstructural changes as a function of selected process conditions. Comparison of the headspace GC-MS fingerprinting of the differently processed broccoli purees revealed that an adequate combination of processing steps allows to reduce the level of off-flavour volatiles. Moreover, applying mechanical processing before or after the thermal processing at 90°C determines the pattern of broccoli tissue disruption, resulting into different microstructures and various enzymatic reactions inducing volatile generation. These results may aid the identification of optimal process conditions generating a reduced level of off-flavour in processed broccoli. In this way, broccoli can be incorporated as a food ingredient into mixed food products with limited implications on sensorial consumer acceptance.

  10. The resolution of thermal oedema at various temperatures under coumarin treatment.

    PubMed

    Piller, N B

    1975-02-01

    The treatment of thermal oedema with coumarin (a benzopyrone) has been found to be most effect when fast moving air of 20 degrees was blown over the burnt animals. Coumarin has two main effects: one is to cause vascular injury thus allowing extra protein and fluid into the tissues; the other is to stimulate phagocytosis, enzyme production and thus proteolysis and a subsequent removal of protein and fluid from the injured tissues. At lower temperatures the injurious nature of coumarin is prominent. At medium range temperatures the proteolytic actions of coumarin outweigh its injurious nature. Resolution thus proceeds much more rapidly. At high temperatures resolution is slowed. This is a consequence of the antioxidant effect of coumarin on adrenaline and ambient temperature on peripheral dilatation. The results obtained tie in well with those obtained by workers using water of equivalent temperature.

  11. Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium

    NASA Astrophysics Data System (ADS)

    Bieler, Thomas R.; Kang, Di; Baars, Derek C.; Chandrasekaran, Saravan; Mapar, Aboozar; Ciovati, Gianluigi; Wright, Neil T.; Pourboghrat, Farhang; Murphy, James E.; Compton, Chris C.; Myneni, Ganapati Rao

    2015-12-01

    The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of the large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.

  12. Alternatives to conventional thermal treatments in fruit-juice processing. Part 2: Effect on composition, phytochemical content, and physicochemical, rheological, and organoleptic properties of fruit juices.

    PubMed

    Jiménez-Sánchez, Cecilia; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2017-02-11

    Traditional thermal techniques may cause losses in nutritional quality and phytochemical contents, and also in physicochemical, rheological, and organoleptic properties of processed fruit juices. This paper provides an overview of the effect on these qualities by the use of alternatives to traditional thermal treatments in fruit-juice processing, for three key operations in fruit-juice production such as microbial inactivation, enzyme inactivation, and juice-yield improvement. These alternatives are UV light, high-intensity light pulses, γ-irradiation, pulsed electric fields, radiofrequency electric fields, Ohmic heating, microwave heating, ultrasound, high hydrostatic pressure, supercritical carbon dioxide, ozonation, and flash-vacuum expansion. Although alternatives to heat treatments seem to be less detrimental than the thermal treatment, there are many parameters and conditions that influence the output, as well as the nature of the juice itself, hampering comparisons between different studies. Additionally, future research should focus on understanding the mechanisms underlying the changes in the overall quality of fruit juices, and also on scaled-up processes, process design, and optimization that need to be deal with in detail to maximize their potential as alternative nonthermal technologies in fruit-juice processing while maintaining fruit-juice attributes to the maximum.

  13. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    SciTech Connect

    Liekhus, K.; Grandy, J.; Chambers, A.

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  14. A comparison of additional treatment processes to limit particle accumulation and microbial growth during drinking water distribution.

    PubMed

    Liu, G; Lut, M C; Verberk, J Q J C; Van Dijk, J C

    2013-05-15

    Water quality changes, particle accumulation and microbial growth occurring in pilot-scale water distribution systems fed with normally treated and additional treated groundwater were monitored over a period of almost one year. The treatment processes were ranked in the following order: nanofiltration (NF) > (better than) ultrafiltration (UF) > ion exchange (IEX) for limiting particle accumulation. A different order was found for limiting overall microbial growth: NF > IEX > UF. There were strong correlations between particle load and particle accumulation, and between nutrient load and microbial growth. It was concluded that particle accumulation can be controlled by reducing the particle load in water treatment plants; and the microbial growth can be better controlled by limiting organic nutrients rather than removing biomass in water treatment plants. The major focus of this study was on microbial growth. The results demonstrated that growth occurred in all types of treated water, including the phases of bulk water, biofilm and loose deposits. Considering the growth in different phases, similar growth in bulk water was observed for all treatments; NF strongly reduced growth both in loose deposits and in biofilm; UF promoted growth in biofilm, while strongly limiting growth in loose deposits. IEX had good efficiency in between UF and NF, limiting both growths in loose deposits and in biofilm. Significant growth was found in loose deposits, suggesting that loose deposit biomass should be taken into account for growth evaluation and/or prediction. Strong correlations were found between microbial growth and pressure drop in a membrane fouling simulator which proved that a membrane fouling simulator can be a fast growth predictor (within a week). Different results obtained by adenosine triphosphate and flow cytometry cell counts revealed that ATP can accurately describe both suspended and particle-associated biomass, and flow cytometry files of TCC measurements needs

  15. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium.

    PubMed

    Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium.

  16. Randomized clinical trial assessing whether additional massage treatments for chronic neck pain improve 12- and 26-week outcomes

    PubMed Central

    Cook, Andrea J.; Wellman, Robert D.; Cherkin, Daniel C.; Kahn, Janet R.; Sherman, Karen J.

    2015-01-01

    Background Context This is the first study to systematically evaluate the value of a longer treatment period for massage. We provide a framework of how to conceptualize an optimal dose in this challenging setting of non-pharmacological treatments. Purpose To determine the optimal dose of massage for neck pain. Study Design/Setting Two-phase randomized trial for persons with chronic non-specific neck pain. Primary randomization to one of 5 groups receiving 4 weeks of massage (30 minutes 2×/ or 3×/week or 60 minutes 1×, 2×, or 3×/week). Booster randomization of participants to receive an additional 6 massages, 60 minute 1×/week, or no additional massage. Patient Sample 179 participants from Group Health and the general population of Seattle, WA USA recruited between June 2010 and August 2011. Outcome Measures Primary outcomes self-reported neck-related dysfunction (Neck Disability Index) and pain (0–10 scale) were assessed at baseline, 12, and 26 weeks. Clinically meaningful improvement was defined as >5 point decrease in dysfunction and > 30% decrease in pain from baseline. Methods Clinically meaningful improvement for each primary outcome with both follow-up times was analyzed using adjusted modified Poisson generalized estimating equations. Secondary analyses for the continuous outcomes used linear generalized estimating equations. This study was funded the National Center for Complementary and Alternative Medicine, NIH, USA (R01 AT004411). The funders had no role in the interpretation or reporting of results. Results There were no observed differences by primary treatment group at 12 or 26 weeks. Those receiving booster dose had improvements in both dysfunction and pain at 12 weeks (dysfunction: RR=1.56(1.08–2.25), P=0.018; pain: RR=1.25(0.98–1.61); P=0.077), but those were non-significant at 26 weeks (dysfunction: RR=1.22(0.85–1.74); pain: RR=1.09(0.82–1.43)). Subgroup analysis by primary and booster treatments found the booster dose only

  17. Impact of thermal and organic acid treatment of feed on apparent ileal mineral absorption, tibial and liver mineral concentration, and tibia quality in broilers.

    PubMed

    Hafeez, A; Mader, A; Boroojeni, F Goodarzi; Ruhnke, I; Röhe, I; Männer, K; Zentek, J

    2014-07-01

    Minerals play an important role for growth and bone stability in broilers. Thermal treatment and inclusion of organic acids in feed may affect the mineral absorption and tibial quality in broilers. The study was conducted to investigate the effect of thermal processing of feed including pelleting (P), long-term conditioning at 85°C (L), and expanding at 130°C (E) without and with 1.5% of an acid mixture containing 64% formic and 25% propionic acid on the apparent ileal absorption (AIA) of calcium, phosphorus, magnesium, potassium, sodium, iron, copper, manganese, and zinc, their concentrations in liver and tibia, as well as various tibial quality parameters in broilers. In total, 480 one-day-old Cobb broiler chicks were assigned using a completely randomized design with a 3 × 2 factorial arrangement. The ileal digesta, liver, and tibia were collected at d 35. The AIA of calcium and sodium was improved in group E compared with L (P ≤ 0.02 and P ≤ 0.01). Group P and E showed higher AIA for potassium than L (P ≤ 0.01). Bone ash content was increased in group E compared with L (P ≤ 0.04). The BW to bone weight ratio was lower and tibial zinc content was higher in group P compared with E (P ≤ 0.05). Tibial iron content was higher in group L than E (P ≤ 0.03). Acid addition did not affect AIA, mineral content in tibia, or tibial quality parameters. Thermal and acid treatment did not affect mineral concentrations in the liver, except an inconsistent interaction effect for DM content and sodium (P ≤ 0.03 and P ≤ 0.04, respectively). In conclusion, long-term thermal treatment reduced AIA of some minerals compared with short-term thermal treatments, but had no impact on tibia composition. Acid inclusion had no effect on AIA of minerals and tibia quality. Thermal treatment and the use of organic acids can therefore be considered as safe with regard to their impact on bone development in broilers.

  18. Addition of Al and Fe salts during treatment of paper mill effluents to improve activated sludge settlement characteristics.

    PubMed

    Agridiotis, V; Forster, C F; Carliell-Marquet, C

    2007-11-01

    Metal salts, ferrous sulphate and aluminium chloride, were added to laboratory-scale activated sludge plant treating paper mill effluents to investigate the effect on settlement characteristics. Before treatment the sludge was filamentous, had stirred sludge volume index (SSVI) values in excess of 300 and was moderately hydrophobic. The use of FeSO4.7H2O took three weeks to reduce the SSVI to 90. Microscopic examination showed that Fe had converted the filamentous flocs into a compact structure. When the iron dosing was stopped, the sludge returned to its bulking state within four weeks. In a subsequent trial, the addition of AlCl3 initially resulted in an improvement of the settlement index but then caused deterioration of the sludge properties. It is possible that aluminium was overdosed and caused charge reversal, increasing the SSVI.

  19. Dissolved organic matter removal during coal slag additive soil aquifer treatment for secondary effluent recharging: Contribution of aerobic biodegradation.

    PubMed

    Wei, Liangliang; Li, Siliang; Noguera, Daniel R; Qin, Kena; Jiang, Junqiu; Zhao, Qingliang; Kong, Xiangjuan; Cui, Fuyi

    2015-06-01

    Recycling wastewater treatment plant (WWTP) effluent at low cost via the soil aquifer treatment (SAT), which has been considered as a renewable approach in regenerating potable and non-potable water, is welcome in arid and semi-arid regions throughout the world. In this study, the effect of a coal slag additive on the bulk removal of the dissolved organic matter (DOM) in WWTP effluent during SAT operation was explored via the matrix configurations of both coal slag layer and natural soil layer. Azide inhibition and XAD-resins fractionation experiments indicated that the appropriate configuration designing of an upper soil layer (25 cm) and a mixture of soil/coal slag underneath would enhance the removal efficiency of adsorption and anaerobic biodegradation to the same level as that of aerobic biodegradation (31.7% vs 32.2%), while it was only 29.4% compared with the aerobic biodegradation during traditional 50 cm soil column operation. The added coal slag would preferentially adsorb the hydrophobic DOM, and those adsorbed organics could be partially biodegraded by the biomass within the SAT systems. Compared with the relatively lower dissolved organic carbon (DOC), ultraviolet light adsorption at 254 nm (UV-254) and trihalomethane formation potential (THMFP) removal rate of the original soil column (42.0%, 32.9%, and 28.0%, respectively), SSL2 and SSL4 columns would enhance the bulk removal efficiency to more than 60%. Moreover, a coal slag additive in the SAT columns could decline the aromatic components (fulvic-like organics and tryptophan-like proteins) significantly.

  20. Growth kinetics of Salmonella spp. pre- and post-thermal treatment.

    PubMed

    Juneja, Vijay K; Marks, Harry M

    2006-05-25

    This paper reports estimated growth kinetic parameters for a cocktail of stationary phase Salmonella serotypes, pre- and post-thermal inactivation treatment. Cells were grown in brain-heart infusion broth at 25 or 37 degrees Celsius and then destruction of the cells was quantified at 55 degrees Celsius using a submerged coil heating apparatus. The surviving cells (about 1-2 log(10) cfu/ml) were subsequently grown at 25 or 37 degrees Celsius. The results indicated that lag phase duration times for the post- heat treated cells increased at 25 and 37 degrees Celsius by about 6.2 h and at least 3 to 4 h, respectively, and thus the increases appear to be truly different. However, when considering the ratios of the lag phase duration times for post-treated to pre-treated cells, a significant difference was not found, where estimated ratios could exceed 4. Estimated exponential growth rates, EGR, were not affected by the treatment, where for 37 degrees Celsius, EGR was estimated to be 0.9 log(10) (cfu/ml)/h, and at 25 degrees Celsius, the EGR was estimated at 0.45 log(10) (cfu/ml)/h.

  1. Effects of thermal treatment on chemical, mechanical and colour traits in Norway spruce wood.

    PubMed

    Kačíková, Danica; Kačík, František; Cabalová, Iveta; Durkovič, Jaroslav

    2013-09-01

    In several different branches of the wood industry heat treatment is a growing application as it changes the chemical, mechanical, physical and biological properties of wood. Investigations using wet chemical analyses, Fourier transform infrared spectroscopy, size exclusion chromatography, and CIELab colour system have been conducted to study the changes in Norway spruce wood subjected to temperature up to 270°C over a 30 min time period. The results showed that mass loss (ML), total crystallinity index (TCI) of cellulose, total colour difference (ΔE*), and the content of lignin and extractives increased with the temperature, whereas degree of polymerization (DP) of cellulose, modulus of rupture (MOR), modulus of elasticity (MOE), lightness difference (ΔL*), and the content of holocellulose, cellulose and hemicelluloses all decreased with the thermal treatment. Relationships between temperature and the examined wood traits were all fitted by exponential curves. Power law relationships were found to fit the trends for DP of cellulose with ΔE*, ΔL*, and TCI of cellulose. Also found were power law regressions for the content of hemicelluloses with MOE, MOR, ΔL*, and ML. Temperatures ranging from 20 to 187°C formed a compact cluster, clearly separated from the higher examined temperatures in the multivariate wood trait space.

  2. Changing the surface properties on naval steel as result of non-thermal plasma treatment

    NASA Astrophysics Data System (ADS)

    Hnatiuc, B.; Sabău, A.; Dumitrache, C. L.; Hnatiuc, M.; Crețu, M.; Astanei, D.

    2016-08-01

    The problem of corrosion, related to Biofouling formation, is an issue with very high importance in the maritime domain. According to new rules, the paints and all the technologies for the conditioning of naval materials must fulfil more restrictive environmental conditions. In order to solve this issue, different new clean technologies have been proposed. Among them, the use of non-thermal plasmas produced at atmospheric pressure plays a very important role. This study concerns the opportunity of plasma treatment for preparation or conditioning of naval steel OL36 type. The plasma reactors chosen for the experiments can operate at atmospheric pressure and are easy to use in industrial conditions. They are based on electrical discharges GlidArc and Spark, which already proved their efficiency for the surface activation or even for coatings of the surface. The non-thermal character of the plasma is ensured by a gas flow blown through the electrical discharges. One power supply has been used for reactors that provide a 5 kV voltage and a maximum current of 100 mA. The modifications of the surface properties and composition have been studied by XPS technique (X-ray Photoelectron Spectroscopy). There were taken into consideration 5 samples: 4 of them undergoing a Mini-torch plasma, a Gliding Spark, a GlidArc with dry air and a GlidArc with CO2, respectively the fifth sample which is the untreated witness. Before the plasma treatment, samples of naval steel were processed in order to obtain mechanical gloss. The time of treatment was chosen to 12 minutes. In the spectroscopic analysis, done on a ULVAC-PHI, Inc. PHI 5000 Versa Probe scanning XPS microprobe, a monocromated Al Kα X-ray source with a spot size of 100 μm2 was used to scan each sample while the photoelectrons were collected at a 45-degree take-off angle. Differences were found between atomic concentrations in each individual case, which proves that the active species produced by each type of plasma affects

  3. Combined thermal treatments of industrial wastes for the elimination of toxic elements and the concentration of valuable metals

    SciTech Connect

    Menad, N.; Djona, M.; Allain, E.; Gaballah, I. |||

    1995-12-31

    Thermal treatments of five different types of non-ferrous metallurgical wastes, under controlled atmosphere, were carried out at temperatures lower than 800 C. The aim of these treatments was to reduce the toxic elements content and to increase that of valuable metals in the residue. Best results were obtained by their treatments in air or hydrogen or successively both of them. Simple treatments using air or hydrogen of three samples allowed the elimination of more than 95% of their toxic elements and almost doubled their valuable metals` concentration. For the rest two samples, combined treatment was necessary for their efficient decontamination and the concentration of valuable metals, in the treatment`s residue, to a reasonable value. Most of the solids issued from these treatments can be recycled in the current non-ferrous metallurgical processes.

  4. Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone.

    PubMed

    Wang, Yongjing; Yu, Jianwei; Zhang, Dong; Yang, Min

    2014-03-01

    Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water.

  5. Effect of supplementary carbon addition in the treatment of low C/N high-technology industrial wastewater by MBR.

    PubMed

    Kumar, Mathava; Lee, Pei-Yun; Fukusihma, Toshikazu; Whang, Liang-Ming; Lin, Jih-Gaw

    2012-06-01

    The effect of supplementary carbon addition for the treatment of high-technology industrial wastewater in a membrane bioreactor (MBR) was investigated. The MBR was operated for 302 days under different C/N (BOD(L)/NH(4)(+)-N) ratios, i.e. 0.9-1 to 20 days, 1.6-21 to 42 days, 2.9-43 to 82 days, 3.6-83 to 141 days, 4.8-165 to 233 days and 9.3-240 to 302 days. Irrespective of the C/N ratios investigated, SS and BOD(5) removal efficiencies were above 95% and above 80% COD removal efficiency was observed. In addition, complete nitrification was observed throughout the investigation. However, denitrification and total nitrogen removal efficiencies reached their maximum values at the highest C/N ratio (9.3) investigated. Real-time PCR analysis revealed 10 times higher ammonia oxidizing bacteria to total bacteria ratio under the highest C/N ratio condition (9.3) compared to the low C/N ratio condition (1.6).

  6. Addition of Resection of Temporal Muscle and Fascia in Decompressive Craniectomy in the Treatment of Traumatic Brain Injury

    PubMed Central

    Yu, Seung Han; Kim, Byung Chul; Choi, Jae Young; Lee, Jae Il; Cho, Won Ho

    2016-01-01

    Objective Decompressive craniectomy (DC) is a widely used surgical procedure for control of severely increased intracranial pressure in various conditions. The goal of this study is to evaluate the effectiveness of the addition of resection of temporalis muscle and fascia in DC particularly in the treatment of traumatic brain injury. Methods Twenty patients underwent temporalis muscle and fascia resection in addition to conventional DC and duroplasty due to massive brain swelling in a single tertiary hospital from 2013 to 2015 were enrolled. Twenty other patients who received the standard techniques by other neurosurgeons in the same period were gathered for the control group. Postoperative computed tomography (CT) as well as functional outcome in both groups were analyzed retrospectively. Results CT volumetry showed a significant increase of 85.19 mL (p<0.001) of extracranial herniation volume in the research group compared with the control group. Using modified Rankin Scale and Glasgow Outcome Scale, there was no statistically significant difference in functional outcome between the two groups. Conclusion Although preliminary, the procedure appears to show a meaningful increase in extracranial herniation volume with minimal masticatory and cosmetic impairment. PMID:27857913

  7. The neuroprotective benefit from pioglitazone (PIO) addition on the alpha lipoic acid (ALA)-based treatment in experimental diabetic rats.

    PubMed

    Jin, Heung Yong; Lee, Kyung Ae; Wu, Jin Zu; Baek, Hong Sun; Park, Tae Sun

    2014-12-01

    In this study, we investigated the combined effect of pioglitazone (PIO) with alpha lipoic acid (ALA) on the peripheral nerves of diabetic rats. Animals were divided into 8 groups (N = 6-8) and designated according to ALA (100 mg/kg/day) and PIO (10 mg/kg/day) treatment: Normal, Normal + ALA, Normal + PIO, Normal + ALA + PIO, DM, DM + ALA, DM + PIO, and DM + ALA + PIO. After 24 weeks, current perception threshold, mechanical allodynia, oxidative stresses, intraepidermal nerve fiber density (IENFD), and axonal morphology in the sciatic nerve were compared among groups. IENFD in the DM + ALA + PIO group was significantly less reduced than in other DM groups (7.61 ± 0.52 vs. 5.62 ± 0.96, 5.56 ± 0.60, and 7.10 ± 0.70 for DM, DM + ALA, and DM + PIO, respectively P < 0.05). The mean myelinated axonal area in the sciatic nerves was significantly higher in the DM + ALA + PIO group compared with non-treated DM group (70.2 ± 3.46 vs. 61.1 ± 2.91, P < 0.05) although significant differences were not present between combination therapy and monotherapy independent of ALA or PIO. Our results demonstrated that combination therapy using PIO based on ALA can give an additional benefit in peripheral nerve preservation in diabetes. Moreover, PIO can be preferentially considered when additional glucose-lowering agent is required in DPN patients treated with ALA.

  8. Reduction of salt in pork sausages by the addition of carrot fibre or potato starch and high pressure treatment.

    PubMed

    Grossi, Alberto; Søltoft-Jensen, Jakob; Knudsen, Jes Christian; Christensen, Mette; Orlien, Vibeke

    2012-12-01

    The combined effect of high pressure processing (HPP) (400, 600 and 800 MPa) and carrot fibre (CF) and potato starch (PS) on low salt (1.2%) pork sausages was investigated and compared with high (1.8%) salt sausages. Sausages had a marked increase in whitening with increasing content of fibre or starch, pressure level, and process temperature. The degree of redness was mainly affected by pressure level and heat treatment. An important finding regarding salt reduction was that the use of starch or fibre had more impact on textural properties than the level of salt since Young's modulus and strain at fracture were mainly affected by formulation and HPP. Water binding capacity of low salt sausages was improved to the same level as high salt sausages with HPP and addition of CF or PS particularly by the addition of PS which produced sausages with better sensory properties than CF. The sensory analysis showed that this approach is promising for producing low salt sausages.

  9. MWIP: Surrogate formulations for thermal treatment of low-level mixed waste. Part 4, Wastewater treatment sludges

    SciTech Connect

    Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.; Richmond, A.A.; Bickford, D.F.

    1994-01-01

    The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludges that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.

  10. Influence of thermal treatment on the formation of zirconia nanostructured powder by thermal decomposition of different precursors

    NASA Astrophysics Data System (ADS)

    Stoia, Marcela; Barvinschi, Paul; Barbu-Tudoran, Lucian; Negrea, Adina; Barvinschi, Floricica

    2013-10-01

    The paper presents some results concerning the preparation of zirconia powders starting from ZrOCl2·8H2O by using two synthesis methods: (a) precipitation with NH3, at 90 °C, and (b) thermal decomposition of carboxylate precursors, obtained in the reaction of zirconium nitrate and two different alcohols, 1,3-propanediol (PD) and poly(vinyl alcohol) (PVA), at 150 °C. The precursors obtained at different temperatures have been characterized by thermal analysis (TG, DTA) and FT-IR spectroscopy. DTA analysis evidenced very clearly the transition temperatures between zirconia crystalline phases. The precursors have been annealed at different temperatures in order to obtain zirconia powders and the as obtained powders have been characterized by means of X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). In case of precipitation method the presence of the tetragonal phase was observed at 400 °C, while the monoclinic phase appears at temperatures higher than 400 °C, becoming major crystalline phase starting with 700 °C. In case of the powders prepared by thermal decomposition of carboxylate precursors, the tetragonal phase was formed at temperatures below 700 °C, when the monoclinic phase begin to crystallize as secondary phase, in a higher proportion for the samples synthesized with 1,3-propanediol. All powders annealed at 1200 °C are pure monoclinic zirconia. SEM images have evidenced for the zirconia powders annealed at 1000 °C particles with diameters up to 150 nm, agglomerated in micrometer-sized aggregates, more individualized and homogenous than that obtained in the case of zirconia powder synthesized with poly(vinyl alcohol).

  11. Thermal annealing treatment to achieve switchable and reversible oleophobicity on fabrics.

    PubMed

    Chhatre, Shreerang S; Tuteja, Anish; Choi, Wonjae; Revaux, Amélie; Smith, Derek; Mabry, Joseph M; McKinley, Gareth H; Cohen, Robert E

    2009-12-01

    Surfaces that are strongly nonwetting to oil and other low surface tension liquids can be realized by trapping microscopic pockets of air within the asperities of a re-entrant texture and generating a solid-liquid-vapor composite interface. For low surface tension liquids such as hexadecane (gamma(lv) = 27.5 mN/m), this composite interface is metastable as a result of the low value of the equilibrium contact angle. Consequently, pressure perturbations can result in an irreversible transition of the metastable composite interface to the fully wetted interface. In this work, we use a simple dip-coating and thermal annealing procedure to tune the liquid wettability of commercially available polyester fabrics. A mixture of 10% 1H,1H,2H,2H-heptadecafluorodecyl polyhedral oligomeric silsesquioxane (fluorodecyl POSS) and 90% polyethyl methacrylate (PEMA) is used to uniformly coat the fabric surface topography. Contact angle measurements show that a robust metastable composite interface with high apparent contact angles can be supported for hexadecane (gamma(lv) = 27.5 mN/m) and dodecane (gamma(lv) = 25.3 mN/m). To tune the solid surface energy of the coated surface, we also developed a reversible treatment using thermal annealing of the surface in contact with either dry air or water. The tunability of the solid surface energy along with the inherent re-entrant texture of the polyester fabric result in reversibly switchable oleophobicity between a highly nonwetting state and a fully wetted state for low surface tension liquids such as hexadecane and dodecane. This tunability can be explained within a design parameter framework, which provides a quantitative criterion for the transition between the two states, as well as accurate predictions of the measured values of the apparent contact angle (theta*) for the dip-coated polyester fabrics.

  12. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment.

    PubMed

    Ruffino, Barbara; Campo, Giuseppe; Genon, Giuseppe; Lorenzi, Eugenio; Novarino, Daniel; Scibilia, Gerardo; Zanetti, Mariachiara

    2015-01-01

    Performances of mechanical and low-temperature (<100°C) thermal pre-treatments were investigated to improve the present efficiency of anaerobic digestion (AD) carried out on waste activated sludge (WAS) in the largest Italian wastewater treatment plant (2,300,000p.e.). Thermal pre-treatments returned disintegration rates of one order of magnitude higher than mechanical ones (about 25% vs. 1.5%). The methane specific production increased by 21% and 31%, with respect to untreated samples, for treatment conditions of respectively 70 and 90°C, 3h. Thermal pre-treatments also decreased WAS viscosity. Preliminary energy and economic assessments demonstrated that a WAS final total solid content of 5% was enough to avoid the employment of auxiliary methane for the pre-treatment at 90°C and the subsequent AD process, provided that all the heat generated was transferred to WAS through heat exchangers. Moreover, the total revenues from sale of the electricity produced from biogas increased by 10% with respect to the present scenario.

  13. Magnetic property enhancement and characterization of nano-structured barium ferrite by mechano-thermal treatment

    SciTech Connect

    Molaei, M.J.; Ataie, A.; Raygan, S.; Rahimipour, M.R.; Picken, S.J.; Tichelaar, F.D.; Legarra, E.; Plazaola, F.

    2012-01-15

    In this research a mixture of barium ferrite and graphite powders was milled in a planetary ball mill and then heat treated in vacuum to produce BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} and Fe/Fe{sub 3}O{sub 4} magnetic nano-composites. The effects of milling time and heat treatment temperature on the characteristics of powder mixture were investigated by X-ray diffraction analysis, vibrating sample magnetometer, transmission electron microscopy and Moessbauer spectroscopy. Phase analysis results showed that Fe{sub 2}O{sub 3} in barium ferrite partially reduced to Fe{sub 3}O{sub 4} during milling; hence, the reduced phase and remaining barium ferrite formed a nano-composite of BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} after 20 h of milling. Heat treatment of the 40 h milled samples at 750-900 Degree-Sign C resulted in formation of Fe containing nano-composite. Magnetic measurements indicated that the coercivity of 267.92 Oe for 40 h milled sample decreased to 22.57 Oe by heat treatment at 900 Degree-Sign C, while its saturation magnetization increased from 31.56 to 169.43 emu/g due to the formation of Fe nano-crystallites. - Highlights: Black-Right-Pointing-Pointer Barium hexaferrite and graphite were treated mechano-thermally. Black-Right-Pointing-Pointer After 20 h milling, a nano-composite of BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} formed. Black-Right-Pointing-Pointer Heat treatment of milled sample resulted in formation of Fe/Fe{sub 3}O{sub 4} composite. Black-Right-Pointing-Pointer Increasing heat treatment temperature results in higher saturation magnetization. Black-Right-Pointing-Pointer The milled and heat treated samples were nano-crystalline.

  14. Effect of TeO2 addition on thermal stabilities and 2.7 μm emission properties of fluoroaluminate-tellurite glass

    NASA Astrophysics Data System (ADS)

    Wang, Fengchao; Tian, Ying; Jing, Xufeng; Cai, Muzhi; Zhang, Junjie; Xu, Shiqing

    2015-11-01

    2.7 μm Emission from Er3+ doped fluoroaluminate-tellurite glass is reported. The thermal stability, glass-forming ability, and crystallization kinetics of the fluoroaluminate-tellurite glass with different TeO2 contents are investigated. FTIR spectra and Raman spectra are measured, at the same time Judd-Ofelt intensity parameters are computed to estimate the structural changes due to the addition of TeO2. The 2.7 μm emission characteristics and energy transfer process upon excitation of a conventional 980 nm LD are studied. Based on the absorption spectra, the Judd-Ofelt parameters and radiative properties are calculated and compared with those of other glass hosts. The prepared glass possesses high predicted spontaneous transition probability and large calculated emission cross section. Besides, the energy transfer microscopic parameter of 4I11/2 level and 4I13/2 level was quantitatively analyzed. Hence, these results indicate that this Er3+ doped fluoroaluminate-tellurite glass has potential applications in 2.7 μm laser.

  15. Physicochemical and Thermal Properties of Extruded Instant Functional Rice Porridge Powder as Affected by the Addition of Soybean or Mung Bean.

    PubMed

    Mayachiew, Pornpimon; Charunuch, Chulaluck; Devahastin, Sakamon

    2015-12-01

    Legumes contain protein, micronutrients, and bioactive compounds, which provide various health benefits. In this study, soybean or mung bean was mixed in rice flour to produce by extrusion instant functional legume-rice porridge powder. The effects of the type and percentage (10%, 20%, or 30%, w/w) of legumes on the expansion ratio of the extrudates were first evaluated. Amino acid composition, color, and selected physicochemical (bulk density, water absorption index, and water solubility index), thermal (onset temperature, peak temperature, and transition enthalpy), and pasting (peak viscosity, trough viscosity, and final viscosity) properties of the powder were determined. The crystalline structure and formation of amylose-lipid complexes and the total phenolics content (TPC) and antioxidant activity of the powder were also measured. Soybean-blended porridge powder exhibited higher TPC, 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity, ferric reducing antioxidant power, amino acid, and fat contents than the mung bean-blended porridge powder. Incorporating either legume affected the product properties by decreasing the lightness and bulk density, while increasing the greenness and yellowness and the peak temperature and transition enthalpy. Expansion capacity of the extrudates increased with percentage of mung bean in the mixture but decreased as the percentage of soybean increased. Amylose-lipid complexes formation was confirmed by X-ray diffraction analysis results. Addition of soybean or mung bean resulted in significant pasting property changes of the porridge powder.

  16. Catalytic activity enhancement by thermal treatment and re-swelling process of natural containing iron-clay for Fenton oxidation.

    PubMed

    Ausavasukhi, Artit; Sooknoi, Tawan

    2014-12-15

    In this research, catalytic activity of the modified natural containing Fe-clay, Fenton-like catalyst, toward successful decolorization of methylene blue (MB) and degradation of phenol (PhOH) was demonstrated. Among the natural containing Fe-clay prepared only by thermal treatment, the sample treated at 500°C provides a high Fenton oxidation activity presumably due to high number of available Fe active sites. However, the efficient use of treated natural containing Fe-clay is restricted due to the loss in BET surface area during thermal treatment process. Interestingly, modification by the thermal treatment and subsequent re-swelling cannot only generate the active Fe species, but also enhance the basal space that facilitates diffusion of the reagents toward the active sites within the clay layers. It is expected that the active Fe species formed and retained by thermal treatment and re-swelling process which is on the surface of the catalyst reacts with hydrogen peroxide and leads to the formation of active oxidant that remove the MB and PhOH.

  17. The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment

    SciTech Connect

    Liu, Dandan; Dai, Fangna; Tang, Zhe; Liu, Yunqi; Liu, Chenguang

    2015-05-15

    Highlights: • We use Al-MOFs as precursor in the fabrication process of mesoporous alumina by thermal treatment. • The obtained mesoporous alumina has dual pore system and five-fold aluminum. • The aluminum building units in the precursor show structure-directed effect on the formation of alumina. - Abstract: In this work, the block-shaped Al-based metal–organic frameworks (Al-MOFs) MIL-53 have been synthesized by hydrothermal method. To detect the correlation between the structure of Al-MOFs and the formation of alumina, the ligands are eliminated by thermal treatment. MIL-53 and the calcination products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption and solid-state {sup 27}Al nuclear magnetic resonance ({sup 27}Al NMR). It was found that after calcination, the block-shaped Al-MOFs precursor turns into high-crystallinity mesoporous alumina nanosheets, and the thermal treatment product γ-alumina possesses a dual pore system and a large surface area (146 m{sup 2}/g), with five-fold aluminum. During the thermal treatment process, the structure of MIL-53 and its secondary building units have structure-directed effect in the formation of alumina.

  18. Treatment of uterine myomas by radiofrequency thermal ablation: a 10-year retrospective cohort study.

    PubMed

    Yin, Geping; Chen, Ming; Yang, Shujun; Li, Juan; Zhu, Tongyu; Zhao, Xiaoli

    2015-05-01

    Patients' selection criteria, effectiveness, and safety of radiofrequency thermal ablation (RFTA) therapy for uterine myomas (UM) were assessed using a 10-year retrospective cohort study. From July 2001 to July 2011, a total of 1216 patients treated for UM were divided into 2 groups. Group A consisted of 476 premenopause patients, average age 36.5 ± 8.5 years, average number of myomas 1.7 ± 0.9, and average diameter of myomas 4.5 ± 1.5 cm, and group B consisted of 740 menopause patients, average age 48.5 ± 3.5 years, average number of myomas 2.6 ± 1.3, and average diameter of myomas 5.0 ± 2.5 cm. Average follow-up period was 36.5 ± 11.5 months. At 1, 3, 6, 12, and 24 months after RFTA, average diameters of myomas in group A were 3.8, 3.0, 2.7, 2.4, and 2.2 cm, respectively, and 47.7% (227 of 476) of patients had tumor trace at 12 months after RFTA. In group B, the results were 4.7, 3.7, 3.3, 2.3, and 2.3 cm, respectively, and 58.8% (435 of 740) of patients had tumor trace at 12 months after RFTA. Three months after treatment, myoma volumes were significantly reduced in both the groups (P < .01), and group B had higher rate of tumor trace at 12 months after RFTA than group A (P < .05). Clinical symptoms and health-related quality-of-life outcome (HRQL) were significantly improved after RFTA in both groups and the postoperative recurrence rate of UM was significantly higher in group A at 10.7% (51 of 476) than group B at 2.4% (18 of 740; P < .05). Radiofrequency thermal ablation is an excellent minimally invasive treatment for UM smaller than 5.0 cm in diameter.

  19. Phonon scattering in the thermal conductivity of large-grain superconducting niobium as a function of heat treatment temperature

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Saravan Kumar; Bieler, Tom; Compton, Chris; Wright, Neil T.

    2012-06-01

    Production of niobium ingots and subsequent fabrication and processing of superconducting radio frequency (SRF) cavities affect the thermal conductivity of superconducting niobium in an as yet unknown way. Here, parameters of a theoretically-based model are used to relate thermal conductivity to the heat treatment temperature of niobium. Temperature and heat flux measurements on large grain niobium specimens with different heat treatment histories are used to estimate the parameters in the model. The parameter associated with the scattering of phonons by normal conducting electrons, β3, deviates from its theoretical value at cooler heat treatment temperatures, but converges to the theoretical value at hotter heat treatment temperatures. The parameter associated with the scattering of phonons by lattice defects and boundaries, β4, correlates well with the heat treatment temperature. The parameter associated with the condensation of electrons to form Cooper pairs, β5, is shown to be unaffected by the heat treatment temperature. These results show promise for relating thermal conductivity to the material processing of niobium.

  20. Study of chemical and thermal treatment of kaolinite and its influence on the removal of contaminants from mining effluents.

    PubMed

    de Sales, Priscila F; Magriotis, Zuy M; Rossi, Marco Aurélio de L S; Tartuci, Letícia G; Papini, Rísia M; Viana, Paulo R M

    2013-10-15

    The effects of chemical and thermal treatments on the structure of kaolinite were examined, as well as the influence of those changes upon the removal of etheramine, a cationic collector used in the processing of iron ore. The materials were characterized using XRD, XRF, specific surface area (SBET), FTIR, zeta potential and a test for determination of acid sites. The effects of the treatments on the structure of kaolinite were evaluated using chemometric tools developed from principal components analysis algorithms and hierarchical components analysis. The parameters evaluated in the kinetic study of adsorption were contact time, initial concentration of etheramine, quantity of adsorbent and pH. The adsorption of etheramine in the samples subjected to chemical treatments could be explained by a pseudo-second order model, whilst for the sample subjected to thermal treatment, better fit was with the pseudo-first order model. With regard to adsorption isotherms, it was shown that for the three adsorbents used, adsorption followed the Langmuir model. The maximum quantities adsorbed were 27 mg g(-1), 29 mg g(-1) and 59 mg g(-1), respectively, for the samples subjected to acid, thermal and peroxide treatments. The treatment with peroxide was found to be the most suitable for removal of etheramine.

  1. Early treatment with addition of low dose prednisolone to methotrexate improves therapeutic outcome in severe psoriatic arthritis.

    PubMed

    Mahajan, Vikram K; Sharma, Anju Lath; Chauhan, Pushpinder S; Mehta, Karaninder S; Sharma, Nand Lal

    2013-05-01

    Psoriatic arthritis (PsA) is increasingly being recognized to cause progressive joint damage and disability. PsA unresponsive to non-steroidal anti-inflammatory drugs (NSAIDs), the conventional first-line choice of treatment, is usually managed with disease-modifying antirheumatic drugs (DMARDs) especially methotrexate. An 18-year-old HIV-negative male had progressively severe PsA of 4-month duration that was nearly confining him to a wheel chair. He did not respond to multiple NSAIDs, alone or in combination with methotrexate (15 mg/week), given for 4 weeks. Addition of prednisolone (10 mg on alternate days) controlled his symptoms within a week. The NSAIDs could be withdrawn after 4 weeks as the treatment progressed. The doses were tapered for methotrexate (5 mg/week) and prednisolone (2.5 mg on alternate days) every 8 weekly subsequently during 15 months of follow-up without recurrence/deformities or drug toxicity. For years, the use of corticosteroids in psoriasis has been criticized for their propensity to exacerbate the skin disease on withdrawal. However, monitored use of corticosteroids, even in low doses, combined with DMARDs may be a good therapeutic option in early stage of the PsA rather than 'steroid rescue' later. This will help in early control of joint inflammation, prevent joint damage and maintain long-term good functional capacity and quality of life. This may be useful when the cost or availability of biologics precludes their use. However, we discourage the use of corticosteroids as monotherapy.

  2. Responses of plant growth rate to nitrogen supply: a comparison of relative addition and N interruption treatments.

    PubMed

    Walker, R L; Burns, I G; Moorby, J

    2001-02-01

    This paper investigates the effects of uptake of nitrate and the availability of internal N reserves on growth rate in times of restricted supply, and examines the extent to which the response is mediated by the different pools of N (nitrate N, organic N and total N) in the plant. Hydroponic experiments were carried out with young lettuce plants (Lactuca sativa L.) to compare responses to either an interruption in external N supply or the imposition of different relative N addition rate (RAR) treatments. The resulting relationships between whole plant relative growth rate (RGR) and N concentration varied between linear and curvilinear (or possibly bi-linear) forms depending on the treatment conditions. The relationship was curvilinear when the external N supply was interrupted, but linear when N was supplied by either RAR methods or as a supra-optimal external N supply. These differences resulted from the ability of the plant to use external sources of N more readily than their internal N reserves. These results show that when sub-optimal sources of external N were available, RGR was maintained at a rate which was dependent on the rate of nitrate uptake by the roots. Newly acquired N was channelled directly to the sites of highest demand, where it was assimilated rapidly. As a result, nitrate only tended to accumulate in plant tissues when its supply was essentially adequate. By comparison, plants forced to rely solely on their internal reserves were never able to mobilize and redistribute N between tissues quickly enough to prevent reductions in growth rate as their tissue N reserves declined. Evidence is presented to show that the rate of remobilization of N depends on the size and type of the N pools within the plant, and that changes in their rates of remobilization and/or transfer between pools are the main factors influencing the form of the relationship between RGR and N concentration.

  3. Dynamic immobilization of simulated radionuclide 133Cs in soil by thermal treatment/vitrification with nanometallic Ca/CaO composites.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Simion, Cristian; Lee, Byeong Kyu

    2015-01-01

    Although direct radiation induced health impacts were considered benign, soil contamination with (137)Cs, due to its long-term radiological impact (30 years half-life) and its high biological availability is of a major concern in Japan in the aftermath of the Fukushima nuclear power plant disaster. Therefore (137)Cs reduction and immobilization in contaminated soil are recognized as important problems to be solved using suitable and effective technologies. One such thermal treatment/vitrification with nanometallic Ca/CaO amendments is a promising treatment for the ultimate immobilization of simulated radionuclide (133)Cs in soil, showing low leachability and zero evaporation. Immobilization efficiencies were 88%, 95% and 96% when the (133)Cs soil was treated at 1200 °C with activated carbon, fly ash and nanometallic Ca/CaO additives. In addition, the combination of nanometallic Ca/CaO and fly ash (1:1) enhanced the immobilization efficiency to 99%, while no evaporation of (133)Cs was observed. At lower temperatures (800 °C) the leachable fraction of Cs was only 6% (94% immobilization). Through the SEM-EDS analysis, decrease in the amount of Cs mass percent detectable on soil particle surface was observed after soil vitrified with nCa/CaO + FA. The (133)Cs soil was subjected to vitrified with nCa/CaO + FA peaks related to Ca, crystalline phases (CaCO3/Ca(OH)2), wollastonite, pollucite and hematite appeared in addition to quartz, kaolinite and bentonite, which probably indicates that the main fraction of enclosed/bound materials includes Ca-associated complexes. Thus, the thermal treatment with the addition of nanometallic Ca/CaO and fly ash may be considered potentially applicable for the remediation of radioactive Cs contaminated soil at zero evaporation, relatively at low temperature.

  4. Liquid products from oxidative thermal treatment of oil sludge with different oxygen concentrations of air.

    PubMed

    Shie, J L; Chang, C Y; Lin, J P; Le, D J; Wu, C H

    2001-01-01

    Oxidative thermal treatment of oil sludge with different oxygen concentrations of air by using a dynamic thermogravimetric (TG) reaction system is investigated. The experimental conditions employed are: gas flow rate of 50 cm3/min (value at 298 K) for 300 mg dry waste, a constant heating rate of 5.2 K/min, the oxygen concentrations in air of 1.09, 8.62 and 20.95 vol. % O2, and the temperature (T) range of 378-873 K. From the experimental results, the residual mass fractions (M) are about 78.95, 28.49, 8.77 and 4.13 wt. % at the oxidative T of 563, 713, 763 and 873 K for the case with 20.95 vol. % O2, respectively. The values of M with 8.62 and 1.09 vol. % O2 at T of 873 K are 4.87 and 9.44 wt. %, respectively. The distillation characteristics of the oil portion of liquid products (condensates of gas at 298 K) from the oxidative thermal treatment of oil sludge with 20.95 vol. % O2 at T of 378-873 K is close to those of commercial gasoline. Nevertheless, the liquid product contains a large amount of water. The distillation characteristics of the oil portions of liquid products with 8.62 and 1.09 vol. % O2 at T of 378-873 K are close to those of diesel and fuel oils, respectively. The oil quality with 8.62 vol. % O2 is better than that with 1.09 vol. % O2. However, the liquid product with 8.62 vol. % O2 still contains a large amount of water; nonetheless, that with 1.09 vol. % O2 is with negligible water. Compared with the oil product of nitrogen pyrolysis, the oil quality with 1.09 vol. % O2 is better. Certainly, low oxygen conditions (i.e. 1.09 vol. % O2) not only accelerate the thermal reaction of oil sludge, but also at the same time avoid or reduce the production of water. Further, from the analysis of benzene (B), ethylbenzene (E), toluene (T) and iso-xylene (X) concentrations of the oil portion of liquid products, the BETX concentrations of oil with 20.95 vol. % O2 are higher than those with 8.62 and 1.09 vol. % O2. The yields of liquid products with 20.95, 8

  5. Comparison of two methods of treatment for intraluminal thermal ablation using an ultrasound cylindrical phased array.

    PubMed

    Melodelima, David; Prat, Frédéric; Birer, Alain; Theillère, Yves; Cathignol, Dominique

    2004-04-01

    Intraluminal (within the alimentary tract) thermal surgery has been shown to be a useful therapeutic option when extracorporeal focused ultrasound applicators cannot be used since their beam may not reach the target site. If plane transducers are used for the treatment of alimentary tract tumours, the applicator must be rotated in order to generate a cylindrical volume of necrosis. However, rotating these applicators and controlling their shooting direction presents technical difficulties. If tubular transducers are used it is difficult to treat arbitrary angles with a large therapeutic length. To solve these difficulties, the feasibility of an ultrasound phased array applicator has been evaluated using a cylindrical prototype (outer diameter 10.6 mm), which is composed of 16 elementary transducers working at 4.55 MHz and arranged on a quarter of the cylinder. Using this applicator it is possible to generate plane or cylindrical waves. Plane waves were generated by exciting eight successive elements of the array with appropriate delay times. The exposure direction was changed by exciting a different set of eight elements. In this way, the ultrasound beam was electronically rotated through the tissues. Cylindrical waves were generated by exciting several transducers without delay times. Imaging was provided using a miniature echographic probe. Ex vivo experiments were carried out in pig liver to compare two approaches of treatment. The first consisted of generating successive plane waves separated from each other by a 6 degrees angle. The second one consisted of exciting all the 16 elements without delay times. In the two cases, the lesions were well-defined and occupied a quarter of cylinder. In both sets of experiments, the sonication time and the intensity were 20 s and 17 W/cm(2), respectively. In the first case, the depth was up to 17 mm compared to 6 mm in the second case.

  6. Influence of thermal treatment on color, enzyme activities, and antioxidant capacity of innovative pastelike parsley products.

    PubMed

    Kaiser, Andrea; Brinkmann, Maike; Carle, Reinhold; Kammerer, Dietmar R

    2012-03-28

    Conventional spice powders are often characterized by low sensory quality and high microbial loads. Furthermore, genuine enzymes are only inhibited but not entirely inactivated upon drying, so that they may regain their activity upon rehydration of dried foods. To overcome these problems, initial heating was applied in the present study as the first process step for the production of innovative pastelike parsley products. For this purpose, fresh parsley was blanched (80, 90, and 100 °C for 1-10 min) and subsequently comminuted to form a paste. Alternatively, mincing was carried out prior to heat treatment. Regardless of temperature, the color of the latter product did not show any change after heating for 1 min. With progressing exposure time the green color turned to olive hues due to marked pheophytin formation. Inactivation of genuine peroxidase (POD) and polyphenol oxidase (PPO) was achieved at all temperature-time regimes applied. In contrast, the parsley products obtained after immediate water-blanching were characterized by brighter green colors and enhanced pigment retention. With the exception of the variants water-blanched at 80 °C, POD and PPO were completely inactivated at any of the thermal treatments. Furthermore, in water-blanched samples, antioxidant capacities as determined by the TEAC and FRAP assays were even enhanced compared to unheated parsley, whereas a decrease of phenolic contents could not be prevented. Consequently, the innovative process presented in this study allows the production of novel herb and spice products characterized by improved sensory quality as compared to conventional spice products.

  7. On the ASR and ASR thermal residues characterization of full scale treatment plant.

    PubMed

    Mancini, G; Viotti, P; Luciano, A; Fino, D

    2014-02-01

    In order to obtain 85% recycling, several procedures on Automotive Shredder Residue (ASR) could be implemented, such as advanced metal and polymer recovery, mechanical recycling, pyrolysis, the direct use of ASR in the cement industry, and/or the direct use of ASR as a secondary raw material. However, many of these recovery options appear to be limited, due to the possible low acceptability of ASR based products on the market. The recovery of bottom ash and slag after an ASR thermal treatment is an option that is not usually considered in most countries (e.g. Italy) due to the excessive amount of contaminants, especially metals. The purpose of this paper is to provide information on the characteristics of ASR and its full-scale incineration residues. Experiments have been carried out, in two different experimental campaigns, in a full-scale tyre incineration plant specifically modified to treat ASR waste. Detailed analysis of ASR samples and combustion residues were carried out and compared with literature data. On the basis of the analytical results, the slag and bottom ash from the combustion process have been classified as non-hazardous wastes, according to the EU waste acceptance criteria (WAC), and therefore after further tests could be used in future in the construction industry. It has also been concluded that ASR bottom ash (EWC - European Waste Catalogue - code 19 01 12) could be landfilled in SNRHW (stabilized non-reactive hazardous waste) cells or used as raw material for road construction, with or without further treatment for the removal of heavy metals. In the case of fly ash from boiler or Air Pollution Control (APC) residues, it has been found that the Cd, Pb and Zn concentrations exceeded regulatory leaching test limits therefore their removal, or a stabilization process, would be essential prior to landfilling the use of these residues as construction material.

  8. Properties of nylon 12 balloons after thermal and liquid carbon dioxide treatments.

    PubMed

    Ro, Andrew J; Davé, Vipul

    2013-03-01

    Critical design attributes of angioplasty balloons include the following: tear resistance, high burst pressures, controlled compliance, and high fatigue. Balloons must have tear resistance and high burst pressures because a calcified stenosis can be hard and nominal pressures of up to 16 atm can be used to expand the balloon. The inflated balloon diameter must be a function of the inflation pressure, thus compliance is predictable and controlled. Reliable compliance is necessary to prevent damage to vessel walls, which may be caused by over-inflation. Balloons are often inflated multiple times in a clinical setting and they must be highly resistant to fatigue. These design attributes are dependent on the mechanical properties and polymer morphology of the balloon. The effects of residual stresses on shrinkage, crystallite orientation, balloon compliance, and mechanical properties were studied for angioplasty nylon 12 balloons. Residual stresses of these balloons were relieved by oven heat treatment and liquid CO2 exposure. Residual stresses were measured by quantifying shrinkage at 80 °C of excised balloon samples using a dynamic mechanical analyzer. Shrinkage was lower after oven heat treatment and liquid CO2 exposure compared to the as-received balloons, in the axial and radial directions. As-received, oven heat treated, and liquid CO2-exposed balloon samples exhibited similar thermal properties (T(g), T(m), X(t)). Crystallite orientation was not observed in the balloon cylindrical body using X-ray scattering and polarized light microscopy, which may be due to balloon fabrication conditions. Significant differences were not observed between the stress-strain curves, balloon compliance, and average burst pressures of the as-received, oven heat treated, and liquid CO2-exposed balloons.

  9. Efficacy of irradiation vs thermal methods as quarantine treatments for tropical fruits

    NASA Astrophysics Data System (ADS)

    Moy, James H.

    1993-07-01

    Ionizing radiation can be effectively applied to fruits and vegetables for several purposes. The most feasible and potentially useful application is probably for disinfestation as a quarantine treatment. All stages of a fruit fly will become sterile upon being irradiated at a minimum dose of 0.15 kGy, the dose level approved by the USDA in January 1989 for treating Hawaiian papayas as a quarantine procedure. This is also well below the dose level approved in April, 1986 by the U.S. Food and Drug Administration for irradiating fresh foods for disinfestation and delaying maturation. Research on irradiation of several tropical fruits such as papayas, mangoes, lychees showed that the chemical, sensory and nutrient qualities of these fruits were well retained at 1.0 kGy, and the fruits would ripen normally or slightly delayed. Since September, 1984, thermal methods used by the papaya industry after ethylene dibromide was banned require treatment time of up to 7 hrs and have caused quality problems. Some of the fruits treated by the hot air or the double-dip hot water method lack flavor and had lumpy texture. The vapor heat method as now used is quite expensive. Irradiation studies have proved the efficacy of the process to disinfest tropical fruits of fruit files. Market test of irradiated Hawaiian papayas in 1987 showed that consumers preferred irradiated papayas over hot water treated papayas by 11 to 1. Thus the only hurdle to overcome in using irradiation for tropical fruits is to convince the consumers that irradiated fruits are wholesome and safe for human consumption, which has been amply proven with scientific data obtained during the past three decades, and further proven with the marketing of irradiated fruits in the U.S.A. since early 1992.

  10. Fracture Resistance of K3 Nickel-Titanium Files Made from Different Thermal Treatments.

    PubMed

    Choi, JinWook; Oh, Soram; Kim, Yu-Chan; Jee, Kwang-Koo; Kum, KeeYeon; Chang, SeokWoo

    2016-01-01

    The purpose of this study was to compare fracture resistances of K3 nickel-titanium files made from different thermal treatments. K3 (SybronEndo, Orange, CA), K3XF (SybronEndo), and experimentally heat treated K3 (K3H) were used. For the cyclic fatigue test, the samples were rotated with up-and-down motion in the artificial canal with the curvature of 60 degrees until the fracture occurred. The number of cycles to fracture (NCF) was measured. For the torsional fracture test, the samples were tightly bound and rotated until the fracture occurred. Elastic modulus (EM), ultimate torsional strength (UTS), and angle of rotation to fracture (ARF) were measured. The results were statistically analyzed by one-way ANOVA. The NCF of K3H was higher than those of K3 and K3XF (P < 0.05). The EM of K3XF and K3H was lower than that of K3 (P < 0.05). There was no significant difference in UTS. The ARF of K3XF was higher than that of K3 (P < 0.05). K3XF and K3H showed more flexibility than K3. The maximum torsional angle of K3XF was higher than that of K3, but there was no significant difference on the UTS in all three groups.

  11. Picrocrocin kinetics in aqueous saffron spice extracts (Crocus sativus L.) upon thermal treatment.

    PubMed

    Sánchez, Ana M; Carmona, Manuel; Jarén-Galán, Manuel; Mosquera, M Isabel Mínguez; Alonso, Gonzalo L

    2011-01-12

    The kinetics of picrocrocin degradation in aqueous extracts of saffron upon thermal treatment from 5 to 70 °C have been studied, together with the degradation of purified picrocrocin in water at 100 °C. The best fits to experimental data were found for a second-order kinetics model. Picrocrocin showed high stability with half-life periods (t(1/2)) ranging from >3400 h at 5 °C in saffron extracts to 9 h in the experiments with purified picrocrocin at 100 °C. In saffron extracts, the evolution of the rate constant (k) with temperature showed maximum values at 35 °C, and filtration of the extracts contributed to picrocrocin stability. In the case of purified picrocrocin, the generation of safranal in the first 5 h (yield up to 7.4%) was confirmed. Spectrometric parameters used in saffron quality control (E(1cm)(1%) 257 nm and ΔΕ(pic)) were not appropriate for documenting the evolution of picrocrocin.

  12. Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method

    NASA Astrophysics Data System (ADS)

    Naseri, Mahmoud Goodarz; Saion, Elias B.; Hashim, Mansor; Shaari, Abdul Halim; Ahangar, Hossein Abasstabar

    2011-07-01

    Crystalline zinc ferrite (ZnFe 2O 4) was prepared by the thermal treatment method, followed by calcination at various temperatures from 723 to 873 K. Poly (vinyl pyrrolidon) (PVP) was used as a capping agent to stabilize the particles and prevent them from agglomeration. The characterization studies were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The average particle sizes of 17-31 nm were obtained by TEM images, which were in good agreement with the XRD results. Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of metal oxide bands at all temperatures and the absence of organic bands at 873 K. The magnetic properties were demonstrated by a vibrating sample magnetometer (VSM), which displayed super paramagnetic behaviors for the calcined samples. The present study also substantiated that, in ferrites, the values of the quantities that were acquired by VSM, such as the saturation magnetization and coercivity field, are primarily dependent on the methods of preparation of the ferrites. Electron paramagnetic resonance (EPR) spectroscopy showed the existence of unpaired electrons and measured the peak-to-peak line width ( ΔH), the resonant magnetic field ( Hr), and the g-factor values.

  13. Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method

    NASA Astrophysics Data System (ADS)

    Goodarz Naseri, M.; Saion, E. Bin; Ahangar, H. Abbastabar; Hashim, M.; Shaari, A. H.

    2011-07-01

    Cubic structured manganese ferrite nanoparticles were synthesized by a thermal treatment method followed by calcination at various temperatures from 723 to 873 K. In this investigation, we used polyvinyl pyrrolidon (PVP) as a capping agent to control the agglomeration of the nanoparticles. The characterization studies were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The average particle sizes of manganese ferrite nanoparticles were determined by TEM, which increased with the calcination temperature from 12 to 22 nm and they had good agreement with XRD results. Fourier transform infrared spectroscopy confirmed the presence of metal oxide bands at all temperatures and the absence of organic bands at 873 K. Magnetic properties were demonstrated by a vibrating sample magnetometer, which showed a super-paramagnetic behavior for all samples and also saturation magnetization (Ms) increases from 3.06 to 15.78 emu/g by increasing the calcination temperature. The magnetic properties were also confirmed by the use of electron paramagnetic resonance spectroscopy, which revealed the existence of unpaired electrons and also measured peak-to-peak line width, resonant magnetic field and the g-factor.

  14. Magnetic properties of bimetallic Au/Co nanoparticles prepared by thermal laser treatment

    NASA Astrophysics Data System (ADS)

    Sosunov, A. V.; Spivak, L. V.

    2016-07-01

    The irradiation of metallic films by a nanosecond pulsed laser leads to a self-assembly of nanoparticle arrays. This method has been used to prepare bimetallic Au/Co nanoparticles on a SiO2 substrate. The microstructure and morphology of the bimetallic nanoparticles have been investigated using scanning electron microscopy and transmission electron microscopy. It has been shown that the bimetallic nanoparticles have a hemispherical shape with a single-crystal structure and an average size of ~50 nm. The magnetic properties of these nanoparticles have been examined using a vibrating-sample magnetometer in the transverse and longitudinal directions. It has been found that the direction of the magnetization of the bimetallic nanoparticles lies in the plane of the substrate, and the coercive forces in the transverse and longitudinal directions differ by 25%. The use of the vibrating-sample magnetometer method makes it possible to investigate the differences in the magnetic saturations and the coercive forces of an array of bimetallic nanoparticles on a large surface area. The performed investigations have demonstrated that the anisotropic nanomagnetic materials with the desired magnetic orientation can be easily and quickly prepared by means of thermal laser treatment.

  15. Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments

    NASA Astrophysics Data System (ADS)

    Ball, R.; McIntosh, A. C.; Brindley, J.

    2004-06-01

    A simple dynamical system that models the competitive thermokinetics and chemistry of cellulose decomposition is examined, with reference to evidence from experimental studies indicating that char formation is a low activation energy exothermal process and volatilization is a high activation energy endothermal process. The thermohydrolysis chemistry at the core of the primary competition is described. Essentially, the competition is between two nucleophiles, a molecule of water and an -OH group on C6 of an end glucosyl cation, to form either a reducing chain fragment with the propensity to undergo the bond-forming reactions that ultimately form char, or a levoglucosan end-fragment that depolymerizes to volatile products. The results of this analysis suggest that promotion of char formation under thermal stress can actually increase the production of flammable volatiles. Thus, we would like to convey an important safety message in this paper: in some situations where heat and mass transfer is restricted in cellulosic materials, such as furnishings, insulation, and stockpiles, the use of char-promoting treatments for fire retardation may have the effect of increasing the risk of flaming combustion.

  16. Fracture Resistance of K3 Nickel-Titanium Files Made from Different Thermal Treatments

    PubMed Central

    Choi, JinWook; Oh, Soram; Kim, Yu-Chan; Jee, Kwang-Koo

    2016-01-01

    The purpose of this study was to compare fracture resistances of K3 nickel-titanium files made from different thermal treatments. K3 (SybronEndo, Orange, CA), K3XF (SybronEndo), and experimentally heat treated K3 (K3H) were used. For the cyclic fatigue test, the samples were rotated with up-and-down motion in the artificial canal with the curvature of 60 degrees until the fracture occurred. The number of cycles to fracture (NCF) was measured. For the torsional fracture test, the samples were tightly bound and rotated until the fracture occurred. Elastic modulus (EM), ultimate torsional strength (UTS), and angle of rotation to fracture (ARF) were measured. The results were statistically analyzed by one-way ANOVA. The NCF of K3H was higher than those of K3 and K3XF (P < 0.05). The EM of K3XF and K3H was lower than that of K3 (P < 0.05). There was no significant difference in UTS. The ARF of K3XF was higher than that of K3 (P < 0.05). K3XF and K3H showed more flexibility than K3. The maximum torsional angle of K3XF was higher than that of K3, but there was no significant difference on the UTS in all three groups. PMID:27965526

  17. Membrane fluidity of halophilic ectoine-secreting bacteria related to osmotic and thermal treatment.

    PubMed

    Bergmann, Sven; David, Florian; Clark, Wiebke; Wittmann, Christoph; Krull, Rainer

    2013-12-01

    In response to sudden decrease in osmotic pressure, halophilic microorganisms secrete their accumulated osmolytes. This specific stress response, combined with physiochemical responses to the altered environment, influence the membrane properties and integrity of cells, with consequent effects on growth and yields in bioprocesses, such as bacterial milking. The aim of this study was to investigate changes in membrane fluidity and integrity induced by environmental stress in ectoine-secreting organisms. The halophilic ectoine-producing strains Alkalibacillus haloalkaliphilus and Chromohalobacter salexigens were treated hypo- and hyper-osmotically at several temperatures. The steady-state anisotropy of fluorescently labeled cells was measured, and membrane integrity assessed by flow cytometry and ectoine distribution. Strong osmotic downshocks slightly increased the fluidity of the bacterial membranes. As the temperature increased, the increasing membrane fluidity encouraged more ectoine release under the same osmotic shock conditions. On the other hand, combined shock treatments increased the number of disintegrated cells. From the ectoine release and membrane integrity measurements under coupled thermal and osmotic shock conditions, we could optimize the secretion conditions for both bacteria.

  18. Vaporization of zinc during thermal treatment of ZnO with tetrabromobisphenol A (TBBPA).

    PubMed

    Grabda, Mariusz; Oleszek-Kudlak, Sylwia; Shibata, Etsuro; Nakamura, Takashi

    2011-03-15

    In the present work we investigate the vaporization of zinc or its compounds during thermal treatment of ZnO with tetrabromobisphenol A. Samples of 2g of ZnO:TBBPA (3.34:1) were isothermally heated in a laboratory-scale furnace at temperatures from 490 °C to 950 °C, and the solid, condensed and gaseous products formed were analyzed by X-ray diffraction analysis, electron probe microanalysis, inductively coupled plasma analysis, ion chromatography, and gas chromatography coupled with mass spectrometry. The results obtained indicate that the vaporization of ZnBr(2) formed strongly depends on heating time and temperature, yet is restrained by char, if formed with sufficient yield (above 15 wt%). Starting from 850 °C, this char commences carbothermic reduction of any remaining ZnO, which from then begins to evaporate as zinc metal vapor. Volatilization of zinc is completed at 950 °C. The presence of 5 vol.% of oxygen has no significant effect on the vaporization of formed ZnBr(2), the carbothermic reduction or the volatilization of metallic zinc. Strongly oxidizing conditions (20 vol.% of oxygen), however, boost the oxidation of char and thus the vaporization of ZnBr(2), but prevent carbothermic reduction of any un-reacted ZnO by depleting this char.

  19. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor.

    PubMed

    Benetoli, Luís Otávio de Brito; Cadorin, Bruno Mena; Baldissarelli, Vanessa Zanon; Geremias, Reginaldo; de Souza, Ivan Gonçalvez; Debacher, Nito Angelo

    2012-10-30

    In this study, methylene blue (MB) removal from an aqueous phase by electrical discharge non-thermal plasma (NTP) over water was investigated using three different feed gases: N(2), Ar, and O(2). The results showed that the dye removal rate was not strongly dependent on the feed gas when the electrical current was kept the same for all gases. The hydrogen peroxide generation in the water varied according to the feed gas (N(2)treatment time increased, but in the presence of the pyrite catalyst the TOC removal increased substantially. The acute toxicity test using Artemia sp. microcrustaceans showed that the treated solution is not toxic when Ar, O(2) or O(2)-pyrite is employed. Electrospray ionization mass spectrometry analysis (ESI-MS) of the treated samples indicated that the dye degradation occurs via high energy electron impact as well as successive hydroxylation in the benzene rings of the dye molecules.

  20. Effect of thermal treatment on high temperature deformation of alloy Ep-823

    NASA Astrophysics Data System (ADS)

    Lewis, Martin Milburn

    The objective of this research topic is to determine mechanical properties of Alloy EP-823 and to provide a mechanistic understanding of its sensitivity to both thermal treatment and performance temperature. EP-823 is a leading target material for accelerator-driven waste transmutation applications. Overall, the tensile test results of Alloy EP-823 indicated a general trend of decreasing mechanical performance with an increase in tempering time. An increase in tempering time had a statistically significant inverse relationship with ultimate tensile strength (UTS) and yield strength (YS). An increase in tempering time did not have a significant effect on elongation and reduction in area. Performance temperature effects, however, were more noticeable, trending UTS and YS values downward with increasing temperature. Elongation values experience a slight reduction up to 300°C then ramped upwards for increasing temperatures. Reduction of area values appeared unaffected by an increase in temperature up to 400°C but did experience an increase with greater temperatures beyond 400°C. With increasing temperature the mechanical properties changed gradually and predictably up to 400°C, but at 500°C they changed drastically, implying that a critical temperature can be found between 400°C and 500°C. This temperature could be important to design integrity. At performance temperatures beyond this critical temperature the material experiences unstable deformation shortly after reaching the yield strength value, exhibiting severely truncated uniform plastic deformation characteristics.

  1. Effect of thermal treatment on meat proteins with special reference to heterocyclic aromatic amines (HAAs).

    PubMed

    Shabbir, Muhammad Asim; Raza, Ali; Anjum, Faqir Muhammad; Khan, Moazzam Rafiq; Suleria, Hafiz Ansar Rasul

    2015-01-01

    Meat is one of the most imperative protein sources available with respect to its production and consumption. It is the richest source of some valuable nutrients like proteins, essential amino acids, polyunsaturated fatty acids, vitamins, and minerals like iron, zinc, and selenium. Thermal treatment produces conformational changes in protein structure as well as flavor, texture, and appearance, and chemical properties of the ingredients are also changed. Heterocyclic aromatic amines (HAAs), potent mutagens/carcinogens, are formed during the cooking of meat at high temperature. The review paper highlights the effects of various cooking methods, i.e., pan-frying, deep-frying, charcoal grilling, and roasting, on the formation of HAAs. The levels of HAAs produced in cooked meats vary depending upon the cooking method, time of cooking, and the type of meat being cooked. Metabolic behavior of HAAs is very unique, they interfere in the activity of many enzymes, modify the metabolic pathways, and lead to the adduct formation of DNA. The application of black pepper and several other spices during processing may reduce the formation of these (HAAs) mutagenic compounds.

  2. Thermal treatment of electronic waste in a fluidised bed and chemical digestion of solid products.

    PubMed

    Woynarowska, Amelia; Żukowski, Witold; Żelazny, Sylwester

    2016-07-01

    The article presents the results of e-waste thermal treatment in a fluidised bed reactor and solid products digestion under acidic conditions. During the processes, measurements of carbon monoxide, carbon dioxide, volatile organic compounds, nitrogen oxides, sulphur dioxide, hydrogen chloride, hydrogen bromide, hydrogen cyanide, ammonia, phenol, aliphatic and aromatic hydrocarbons, hydrogen fluoride and phosgene were carried out. Several digestion tests of the solid residue in sulphuric acid (VI) at 25 °C-65 °C, for 55 min-24 h were conducted. In each case, the dilution method was used, i.e. preliminary digestion in concentrated sulphuric acid (VI) (95%) for 40 min, and then dilution to expected concentrations (30%-50%). Most preferred results were obtained using sulphuric acid (VI) with a target concentration of 40% at 65 °C, where the leaching degrees were 76.56% for copper, 71.67% for iron, 91.89% for zinc and 97.40% for tin. The time necessary to effectively carry out the digestion process was 220 min.

  3. Characteristics of materials and thermal treatments applied to gearwheels obtained by plastic deformation

    NASA Astrophysics Data System (ADS)

    Bostan, I.; Dulgheru, V.; Trifan, N.

    2016-08-01

    A variety of materials are used in the manufacture of gearwheels. These materials satisfy various working conditions for gears. Such gears are made of metallic materials - ferrous, non-ferrous and from plastic materials. Among ferrous materials the following are used: irons; cast, forged and rolled steels; among non-ferrous materials the following are used: bronze, aluminium alloys, brass, etc., and of plastics the following are used: textolite, polyamide, polyacetal. In the practice of exploitation and in the process of special research it was established that the permissible load, according to teeth contact resistance, is generally determined by the hardness of the material. The highest hardness and respectively, the smallest sizes and reduced mass of the transmission can be obtained in the manufacture of steel gears via thermal treatment. It is obvious that by plastic deformation at cold it cannot be obtained gearwheels with complicated configuration as deformed plastic metal will form cracks caused by low plasticity. To improve processability by plastic deformation the mouldings for gearwheels are heated. With increasing the heating temperature, plasticity increases and resistance to deformation decreases.

  4. Investigation on the eco-toxicity of lake sediments with the addition of drinking water treatment residuals.

    PubMed

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng

    2016-08-01

    Drinking water treatment residuals (WTRs) have a potential to realize eutrophication control objectives by reducing the internal phosphorus (P) load of lake sediments. Information regarding the ecological risk of dewatered WTR reuse in aquatic environments is generally lacking, however. In this study, we analyzed the eco-toxicity of leachates from sediments with or without dewatered WTRs toward algae Chlorella vulgaris via algal growth inhibition testing with algal cell density, chlorophyll content, malondialdehyde content, antioxidant enzyme superoxide dismutase activity, and subcellular structure indices. The results suggested that leachates from sediments unanimously inhibited algal growth, with or without the addition of different WTR doses (10% or 50% of the sediment in dry weight) at different pH values (8-9), as well as from sediments treated for different durations (10 or 180days). The inhibition was primarily the result of P deficiency in the leachates owing to WTR P adsorption, however, our results suggest that the dewatered WTRs were considered as a favorable potential material for internal P loading control in lake restoration projects, as it shows acceptably low risk toward aquatic plants.

  5. Effect of additional heat treatment of 2024-T3 on the growth of fatigue crack in air and in vacuum

    NASA Technical Reports Server (NTRS)

    Louwaard, E. P.

    1986-01-01

    In order to determine the influence of ductility on the fatigue crack growth rate of aluminum alloys, fatigue tests were carried out on central notched specimens of 2024-T3 and 2024-T8 sheet material. The 2024-T8 material was obtained by an additional heat treatment applied on 2024-T3 (18 hours at 192 C), which increased the static yield strength from 43.6 to 48.9 kgf/sq mm. A change in the ultimate strength was not observed. Fatigue tests were carried out on both materials in humid air and in high vacuum. According to a new crack propagation model, crack extension is supported to be caused by a slip-related process and debonding triggered by the environment. This model predicts an effect of the ductility on the crack growth rate which should be smaller in vacuum than in humid air; however, this was not confirmed. In humid air the crack-growth rate in 2024-T8 was about 2 times faster than in 2024-T3, while in vacuum the ratio was about 2.5. Crack closure measurements gave no indications that crack closure played a significant role in both materials. Some speculative explanations are briefly discussed.

  6. The effect of particle size and thermal pre-treatment on the methane yield of four agricultural by-products.

    PubMed

    Menardo, S; Airoldi, G; Balsari, P

    2012-01-01

    One way to optimize methane production in anaerobic digestion plants is to substitute ligno-cellulosic by-products for crops traditionally used as energy sources. However, using these by-products requires introduction of a pre-treatment system to minimize energy input and maximize energy output for an improved net energy equation. In this study, four agricultural byproducts (wheat, barley, rice straw and maize stalks) underwent various mechanical and thermal treatments prior to anaerobic digestion including particle size reduction to 5.0, 2.0, 0.5, and 0.2 cm and heat application to 90 °C and 120 °C. Mechanical pre-treatment increased byproduct methane yields more than 80%; thermal pre-treatment improved yields more than 60% for wheat and barley straw. Pre-treating wheat straw improved methane yields most, regardless of whether the method was thermal or mechanical. An electric net energy balance was also completed to analyze the feasibility of the pre-treatments according to input and output of energy.

  7. Volatile composition and aroma activity of guava puree before and after thermal and dense phase carbon dioxide treatments.

    PubMed

    Plaza, Maria Lourdes; Marshall, Maurice R; Rouseff, Russell Lee

    2015-02-01

    Volatiles from initially frozen, dense phase carbon dioxide (DPCD)- and thermally treated guava purees were isolated by solid phase microextraction (SPME), chromatographically separated and identified using a combination of gas chromatography-mass spectrometry (GC-MS), GC-olfactometry (GC-O), and GC-pulsed flame photometric detector (G