Science.gov

Sample records for additional trace elements

  1. Co-digestion of manure and industrial waste--The effects of trace element addition.

    PubMed

    Nordell, Erik; Nilsson, Britt; Nilsson Påledal, Sören; Karisalmi, Kaisa; Moestedt, Jan

    2016-01-01

    Manure is one of the most common substrates for biogas production. Manure from dairy- and swine animals are often considered to stabilize the biogas process by contributing nutrients and trace elements needed for the biogas process. In this study two lab-scale reactors were used to evaluate the effects of trace element addition during co-digestion of manure from swine- and dairy animals with industrial waste. The substrate used contained high background concentrations of both cobalt and nickel, which are considered to be the most important trace elements. In the reactor receiving additional trace elements, the volatile fatty acids (VFA) concentration was 89% lower than in the control reactor. The lower VFA concentration contributed to a more digested digestate, and thus lower methane emissions in the subsequent storage. Also, the biogas production rate increased with 24% and the biogas production yield with 10%, both as a result of the additional trace elements at high organic loading rates. All in all, even though 50% of the feedstock consisted of manure, trace element addition resulted in multiple positive effects and a more reliable process with stable and high yield.

  2. The effect of trace element addition to mono-digestion of grass silage at high organic loading rates.

    PubMed

    Wall, David M; Allen, Eoin; Straccialini, Barbara; O'Kiely, Padraig; Murphy, Jerry D

    2014-11-01

    This study investigated the effect of trace element addition to mono-digestion of grass silage at high organic loading rates. Two continuous reactors were compared. The first mono-digested grass silage whilst the second operated in co-digestion, 80% grass silage with 20% dairy slurry (VS basis). The reactors were run for 65weeks with a further 5weeks taken for trace element supplementation for the mono-digestion of grass silage. The co-digestion reactor reported a higher biomethane efficiency (1.01) than mono-digestion (0.90) at an OLR of 4.0kgVSm(-3)d(-1) prior to addition of trace elements. Addition of cobalt, iron and nickel, led to an increase in the SMY in mono-digestion of grass silage by 12% to 404LCH4kg(-1)VS and attained a biomethane efficiency of 1.01.

  3. Addition of organic amendments contributes to C sequestration in trace element contaminated soils.

    NASA Astrophysics Data System (ADS)

    del Mar Montiel Rozas, María; Panettier, Marco; Madejón Rodríguez, Paula; Madejón Rodríguez, Engracia

    2015-04-01

    ha ¯¹. Thus, results revealed the effect of amendments. Values of net balance show an increase in C sequestered in amended plots. The retention of carbon in soluble and total forms was reflected in the increase in time. According to the results, application of leonardite (a more stabilized amendment) seems to entail a greater retention of carbon in soil than in the case of biosolid compost. Restoration strategies have multiple benefits for the ecosystem. In our case, the use of organic amendments decreased trace element toxicity, improved soil structure and microbial communities, and contribute to retain C in terrestrial ecosystems.

  4. Trace Elements and Health

    ERIC Educational Resources Information Center

    Pettyjohn, Wayne A.

    1972-01-01

    Summarizes the effects of arsenic, lead, zinc, mercury, and cadmium on human health, indicates the sources of the elements in water, and considers the possibility of students in high schools analyzing water for trace amounts of the elements. (AL)

  5. Determination of rare earth elements and other trace elements (Y, Mn, Co, Cr) in seawater using Tm addition and Mg(OH)₂ co-precipitation.

    PubMed

    Freslon, Nicolas; Bayon, Germain; Birot, Dominique; Bollinger, Claire; Barrat, Jean Alix

    2011-07-15

    This paper reports on a novel procedure for determining trace element abundances (REE and Y, Cr, Mn, Co) in seawater by inductively coupled plasma sector field mass spectrometry (ICP-SFMS). The procedure uses a combination of pre-concentration using co-precipitation onto magnesium hydroxides and addition of thulium spike. The validity of the method was assessed onto 25 ml volumes of certified reference materials (NASS- and CASS-4) and in house seawater standard. Procedural blanks were determined by applying the same procedure to aliquots of seawater previously depleted in trace elements by successive Mg(OH)(2) co-precipitations, yielding estimated contributions to the studied samples better than 1.1% for all elements, with the exception of Cr (<3.3%) and Co (up to 8%). The reproducibility of the method over the six month duration of the study was smaller than 11% RSD for all the studied elements. Results obtained for NASS-5 and CASS-4 agree well with published working values for trace elements.

  6. Trace elements in dialysis.

    PubMed

    Filler, Guido; Felder, Sarah

    2014-08-01

    In end-stage chronic kidney disease (CKD), pediatric nephrologists must consider the homeostasis of the multiple water-soluble ions that are influenced by renal replacement therapy (RRT). While certain ions such as potassium and calcium are closely monitored, little is known about the handling of trace elements in pediatric dialysis. RRT may lead to accumulation of toxic trace elements, either due to insufficient elimination or due to contamination, or to excessive removal of essential trace elements. However, trace elements are not routinely monitored in dialysis patients and no mechanism for these deficits or toxicities has been established. This review summarizes the handling of trace elements, with particular attention to pediatric data. The best data describe lead and indicate that there is a higher prevalence of elevated lead (Pb, atomic number 82) levels in children on RRT when compared to adults. Lead is particularly toxic in neurodevelopment and lead levels should therefore be monitored. Monitoring of zinc (Zn, atomic number 30) and selenium (Se, atomic number 34) may be indicated in the monitoring of all pediatric dialysis patients to reduce morbidity from deficiency. Prospective studies evaluating the impact of abnormal trace elements and the possible therapeutic value of intervention are required.

  7. Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool

    DOEpatents

    Heiple, C.R.; Burgardt, P.

    1984-03-13

    An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

  8. Trace Elements in River Waters

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Viers, J.; Dupré, B.

    2003-12-01

    Trace elements are characterized by concentrations lower than 1 mg L-1 in natural waters. This means that trace elements are not considered when "total dissolved solids" are calculated in rivers, lakes, or groundwaters, because their combined mass is not significant compared to the sum of Na+, K+, Ca2+, Mg2+, H4SiO4, HCO3-, CO32-, SO42-, Cl-, and NO3-. Therefore, most of the elements, except about ten of them, occur at trace levels in natural waters. Being trace elements in natural waters does not necessarily qualify them as trace elements in rocks. For example, aluminum, iron, and titanium are major elements in rocks, but they occur as trace elements in waters, due to their low mobility at the Earth's surface. Conversely, trace elements in rocks such as chlorine and carbon are major elements in waters.The geochemistry of trace elements in river waters, like that of groundwater and seawater, is receiving increasing attention. This growing interest is clearly triggered by the technical advances made in the determination of concentrations at lower levels in water. In particular, the development of inductively coupled plasma mass spectrometry (ICP-MS) has considerably improved our knowledge of trace-element levels in waters since the early 1990s. ICP-MS provides the capability of determining trace elements having isotopes of interest for geochemical dating or tracing, even where their dissolved concentrations are extremely low.The determination of trace elements in natural waters is motivated by a number of issues. Although rare, trace elements in natural systems can play a major role in hydrosystems. This is particularly evident for toxic elements such as aluminum, whose concentrations are related to the abundance of fish in rivers. Many trace elements have been exploited from natural accumulation sites and used over thousands of years by human activities. Trace elements are therefore highly sensitive indexes of human impact from local to global scale. Pollution

  9. Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester.

    PubMed

    Karlsson, Anna; Einarsson, Peter; Schnürer, Anna; Sundberg, Carina; Ejlertsson, Jörgen; Svensson, Bo H

    2012-10-01

    The effect of trace element addition on anaerobic digestion of food industry- and household waste was studied using two semi-continuous lab-scale reactors, one (R30+) was supplied with Fe, Co and Ni, while the other (R30) acted as a control. Tracer analysis illustrated that methane production from acetate proceeded through syntrophic acetate oxidation (SAO) in both digesters. The effect of the trace elements was also evaluated in batch assays to determine the capacity of the microorganisms of the two digesters to degrade acetate, phenyl acetate, oleic acid or propionate, butyrate and valerate provided as a cocktail. The trace elements addition improved the performance of the process giving higher methane yields during start-up and early operation and lower levels of mainly acetate and propionate in the R30+ reactor. The batch assay showed that material from R30+ gave effects on methane production from all substrates tested. Phenyl acetate was observed to inhibit methane formation in the R30 but not in the R30+ assay. A real-time PCR analysis targeting methanogens on the order level as well as three SAO bacteria showed an increase in Methanosarcinales in the R30+ reactor over time, even though SAO continuously was the dominating pathway for methane production. Possibly, this increase explains the low VFA-levels and higher degradation rates observed in the R30+ batch incubations. These results show that the added trace elements affected the ability of the microflora to degrade VFAs as well as oleic acid and phenyl acetate in a community, where acetate utilization is dominated by SAO.

  10. How Certain Trace Elements Behave.

    ERIC Educational Resources Information Center

    Zingaro, Ralph A.

    1979-01-01

    Fluorine, selenium, tin, and arsenic are among the trace elements occurring in the environment which are considered. Emphasis is given to developing a qualitative survey of the extent and kinds of metal transformations and their resultant effects. (CS)

  11. Trace elements in coal ash

    USGS Publications Warehouse

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.

  12. Trace elements: implications for nursing.

    PubMed

    Hayter, J

    1980-01-01

    Although most were unknown a few years ago, present evidence indicates that at least 25 trace elements have some pertinence to health. Unlike vitamins, they cannot be synthesized. Some trace elements are now considered important only because of their harmful effects but traces of them may be essential. Zinc is especially important during puberty, pregnancy and menopause and is related to protein metabolism. Both fluoride and cadmium accumulate in the body year after year. Cadmium is positively correlated with several chronic diseases, especially hypertension. It is obtained from smoking and drinking soft water. Silicon, generally associated with silicosis, may be necessary for healthy bone and connective tissue. Chromium, believed to be the glucose tolerance factor, is obtained from brewer's yeast, spices, and whole wheat products. Copper deficiency may be implicated in a wide range of cardiovascular and blood related disorders. Either marginal deficiencies or slight excesses of most trace elements are harmful. Nurses should instruct patients to avoid highly refined foods, fad diets, or synthetic and fabricated foods. A well balanced and varied diet is the best safeguard against trace element excesses or deficiencies.

  13. [Trace elements deficiency in children receiving nutritional management].

    PubMed

    Masumoto, Kouji

    2016-07-01

    The trace elements is very important in growth of children, especially receiving nutritional management, including parenteral or enteral nutrition. Therefore, clinicians treating children should recognize regarding both the function and deficiency of trace elements. In this article, in nutritional management of children, the basic and recent knowledge was described regarding the function of some important trace elements, including zinc, copper, selenium, and iodine. In addition, the symptoms, diagnosis, and treatments in each trace element deficiency were also described.

  14. Infrared trace element detection system

    DOEpatents

    Bien, Fritz; Bernstein, Lawrence S.; Matthew, Michael W.

    1988-01-01

    An infrared trace element detection system including an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined.

  15. Infrared trace element detection system

    DOEpatents

    Bien, F.; Bernstein, L.S.; Matthew, M.W.

    1988-11-15

    An infrared trace element detection system includes an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined. 11 figs.

  16. Phytoremediation of Soil Trace Elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter summarizes research progress in development of phytoremediation technologies. Some soils have become contaminated by trace elements enough to kill plants, inhibit soil organisms, and/or threaten wildlife, humans or the environment. Traditional remediation by dig and haul methods are v...

  17. Biochemical methane potential from sewage sludge: Effect of an aerobic pretreatment and fly ash addition as source of trace elements.

    PubMed

    Huiliñir, César; Pinto-Villegas, Paula; Castillo, Alejandra; Montalvo, Silvio; Guerrero, Lorna

    2017-03-18

    The effect of aerobic pretreatment and fly ash addition on the production of methane from mixed sludge is studied. Three assays with pretreated and not pretreated mixed sludge in the presence of fly ash (concentrations of 0, 10, 25, 50, 250 and 500mg/L) were run at mesophilic condition. It was found that the combined use of aerobic pretreatment and fly ash addition increases methane production up to 70% when the fly ash concentrations were lower than 50mg/L, while concentrations higher than 250mg/L cause up to 11% decrease of methane production. For the anaerobic treatment of mixed sludge without pretreatment, the fly ash improved methane generation at all the concentrations studied, with a maximum of 56%. The removal of volatile solids does not show an improvement compared to the separate use of an aerobic pre-treatment and fly ash addition. Therefore, the combined use of the aerobic pre-treatment and fly ash addition improves only the production of methane.

  18. Brain trace elements and aging

    NASA Astrophysics Data System (ADS)

    Hebbrecht, Geert; Maenhaut, Willy; Reuck, Jacques De

    1999-04-01

    Degenerative mechanisms involved in the aging process of the brain are to a certain extent counteracted by repair mechanisms. In both degenerative and recovery processes, trace elements are involved. The present study focused on the role of two minor (i.e., K and Ca) and six trace elements (i.e., Mn, Fe, Cu, Zn, Se and Rb) in the aging process. The elements were determined by PIXE in cerebral cortex and white matter, basal ganglia, brainstem and cerebellar cortex of 18 postmortem human brains, from persons without a history of neurologic or psychiatric disease who deceased between the age of 7 and 79. This age range allowed us to study the relationship between elemental concentrations and age. The most prominent findings were a concentration decrease for K and Rb and a concentration increase for the elements Ca, Fe, Zn and Se. The study supports recent findings that Ca and Fe are involved in brain degenerative processes initiated by oxygen free radicals, whereas Zn and Se are involved in immunological reactions counteracting the aging process.

  19. Trace elements in hazardous mineral fibres.

    PubMed

    Bloise, Andrea; Barca, Donatella; Gualtieri, Alessandro Francesco; Pollastri, Simone; Belluso, Elena

    2016-09-01

    Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed. The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references.

  20. Recycling of trace elements required for humans in CELSS.

    PubMed

    Ashida, A

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a possibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  1. New Perspectives on the Essential Trace Elements.

    ERIC Educational Resources Information Center

    Frieden, Earl

    1985-01-01

    Provides a comprehensive overview of the 19 essential trace elements, examining: the concept of essentiality; evolution of these elements; possible future essential elements; the lanthanides and actinides; how essential trace elements work; the metalloenzymes; the nonmetals; iodine and the thyroid hormones; and antagonism among these elements. (JN)

  2. Trace Elements and Chemotherapy Sensitivity.

    PubMed

    Liu, Zhihui; Yang, Weiping; Long, Gang; Wei, Changyuan

    2016-10-01

    Trace elements might be associated with the development of hepatocellular carcinoma (HCC) and the efficacy of chemotherapy against HCC. Therefore, this study aimed to explore the association between trace elements and efficacy of chemotherapy in patients with HCC. Cancer, cancer-adjacent, and cancer-free tissues were collected intraoperatively from 55 patients with HCC between January 2001 and April 2004 at the Affiliated Tumor Hospital of Guangxi Medical University in Guangxi (China), a high HCC incidence area in the world. Trace element levels were analyzed by atomic absorption spectrophotometry. In vitro sensitivity of cancer cells to five chemotherapeutic drugs (5-fluorouracil, doxorubicin, cisplatin, carboplatin, and mitomycin) was tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in cancer cells from 32 patients. Zinc, copper, manganese, and selenium levels had the same gradient distribution in different liver tissues: cancer < cancer-adjacent < cancer-free tissues. Copper levels of cancer tissues were negatively correlated with body weight (r = -0.278, P = 0.027), while manganese and selenium levels were negatively correlated with age (r = -0.297, P = 0.015; r = -0.285, P = 0.018, respectively). Simple correlation analyses revealed that the carboplatin sensitivity was negatively correlated with selenium levels of cancer tissues, while doxorubicin sensitivity was negatively correlated with manganese levels (r = -0.497, P = 0.004). Partial correlation analyses showed that doxorubicin sensitivity only was negatively correlated with manganese levels (r = -0.450, P = 0.014). These results suggest that the selenium and manganese content in primary HCC tissues could influence the response of the HCC cells to carboplatin and doxorubicin. These preliminary results provide a basis for future studies.

  3. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  4. Trace elements in Jamaican tobacco.

    PubMed

    Grant, C N; Lalor, G C; Vutchkov, M K

    2004-03-01

    The concentrations of 28 elements, in hand-made cigars, "rope" tobacco and freshly picked tobacco leaves from the parish of Manchester in central Jamaica, were compared with locally packaged and imported cigarettes and cigars. Except for chromium and vanadium, which are lower in the imported products, the elemental concentrations of all the brands sold in Jamaica are rather similar. The means for aluminium, cadmium, caesium, cerium, chromium, iron, thorium, uranium, vanadium and zinc for the Manchester material exceed the maximum values of the other tobaccos. The significant concentrations of heavy metals, and especially cadmium, which is about 50 times that of commercial cigarettes, reflect the known high concentrations in the soils in the region. This tobacco is not filtered and the smoke contains 50% of the cadmium. This, and the concentrations of radioactive elements, may indicate an additional health risk compared with commercial cigarettes. A study of three samples of marijuana indicates a similar level of risk from heavy metals.

  5. A simplified soil extraction sequence to monitor the main and trace element speciation in soil after compost and mineral fertilizer additions upon the composition of wheat grains

    NASA Astrophysics Data System (ADS)

    Sager, Manfred; Erhart, Eva

    2016-04-01

    High quality biological waste treatment aims at producing compost in order to maintain a clean environment and to sustain soil organic carbon levels. Fertilization with compost as a source of organic carbon, nutrients, and accessory elements, as well as fertilization with mineral N- and PK fertilizer have been tested in a field experiment on a calcaric Fluvisol in the Danube wetlands, at 4 levels each. Yields of wheat were recorded, and grains and soils were sampled from each treatment, and analyzed for main and trace element composition. The corresponding soils were characterized by mobile phases, obtained by leaching with 0,16M acetic acid to cover exchangeables plus carbonates, and subsequently by 0,1M oxalate buffer pH 3 to dissolve the pedogenic oxides. Total amounts were obtained from digests with perchloric- nitric-hydrofluoric acid. For quasi-total amounts, aqua regia was replaced by pressure decomposition with KClO3 in dilute nitric acid. The proposed extraction sequence permits to analyze and interpret soil for main elements, trace elements, nutrients and anions simultaneously. Factor analyses of soil extracts obtained from dilute acetic acid revealed Ba-Be-Cd-Cu-Li-S (traces), Ca-Mg-Mn (main carbonates), Al-Fe-B, Y, and P-K (nutrients) as chemically feasible principal components. Subsequent soil extracts from oxalate contained Al-B-Co-K-Na-Pb-Si-V-S (maybe acid silicate weathering), Cr-Li-Ni-Sr-Ti (maybe basic silicate weathering), Be-Cu-Fe-P, Co-Mg-Mn-Zn (Mn-oxides) and Ba-Sc as principal components. Factor analyses of total element data distinguished the principal components Ce-La-Li-Sc-Y-P (rare earths), Al-Ca-Fe-K-Mg-Na-P (main elements), Cd-Co-Cr-Cu-Ni-Zn (trace elements), As-Pb (contaminants), Ba-Mn-Sr, and Ti, which looks chemically feasible also. Factor analyses of those soil fractions which presumably form the main fractions of exchangeables, carbonates, pedogenic oxides and silicates, showed no cross connections, except for P. Oxalate

  6. Trace Elements in Ovaries: Measurement and Physiology.

    PubMed

    Ceko, Melanie J; O'Leary, Sean; Harris, Hugh H; Hummitzsch, Katja; Rodgers, Raymond J

    2016-04-01

    Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary.

  7. Remediation using trace element humate surfactant

    SciTech Connect

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  8. Trace element inhibition of phytase activity.

    PubMed

    Santos, T; Connolly, C; Murphy, R

    2015-02-01

    Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p < 0.001 was verified. The proteinate sources of OTMs were consistently and significantly less inhibitory than the majority of the other sources, p < 0.05. This was verified for Escherichia coli and Peniophora lycii phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.

  9. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    SciTech Connect

    Beals, D; Charles Shick, C

    2008-06-09

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a series of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.

  10. Effect of surfactant addition on ultrasonic leaching of trace elements from plant samples in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Borkowska-Burnecka, Jolanta; Jankowiak, Urszula; Zyrnicki, Wieslaw; Anna Wilk, Kazimiera

    2004-04-01

    The applicability of surfactants in sample preparation of plant materials followed by analysis by inductively coupled plasma atomic emission spectrometry has been examined. Reference materials (INCT-MPH-2-Mixed Polish Herbs, INCT-TL-1 black tea leaves and CTA-VTL-2 -Virginia tobacco leaves) and commercially available tea leaves were analyzed. Effects of addition surfactants (Triton X-100, didodecyldimethylammonium bromide and cetyltrimethylammonium bromide) on efficiency of ultrasonic leaching of elements from the plant samples and on plasma parameters were investigated. Low concentrations of the surfactants in solutions did not affect, in practice, analytical line intensities and the nebulization process. Quantitative recovery of some elements could be obtained by ultrasonic diluted acid leaching with the aid of surfactants. However, the element recovery depended on type of surfactant, as well as element and sample material. Plasma parameters, i.e. the excitation temperatures of Ar I, Fe II and Ca II as well as the electron number density and the Mg II/Mg I intensity ratio did not vary significantly due to the surfactants in solutions.

  11. Precipitation of trace elements in parenteral nutrition mixtures.

    PubMed

    Allwood, M C; Martin, H; Greenwood, M; Maunder, M

    1998-10-01

    Trace elements are an essential additive to parenteral nutrition (PN) mixtures. Previous studies have indicated that certain trace elements, in particular copper and iron, may interact with complete PN mixtures leading to precipitate formation. The causes of these incompatibilities have not been fully elucidated. The purpose of this study was to determine factors responsible for common trace element incompatibilities, using X-ray energy dispersive spectroscopy to examine the elemental content of precipitates isolated from stored PN mixtures with added trace elements. Results indicated that copper sulphide precipitated most rapidly in PN mixtures containing Vamin 9 and in mixtures stored in multilayered bags. Copper sulphide precipitation was delayed in PN mixtures containing Vamin 14 and was not observed in PN mixtures stored in EVA bags. Iron phosphate precipitates were observed in Synthamin-containing PN mixtures after storage, but this was prevented in mixtures containing vitamins stored in multilayered bags.

  12. Trace Element Chemistry in Urban Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Farhana, B.; Husain, L.

    2006-12-01

    Unlike in the United States, the concentration of trace elements in urban air is still high enough in South Asian cities to study the impact of trace elements on climate and human health. Hence, continuous sampling of PM2.5 (particulate matter of <2.5 μm aerodynamic diameter)was carried out using low volume sampler in winter (2005-2006) in Lahore, the second largest city of Pakistan, which is highly impacted by urban and agricultural emissions and has remained unexplored in terms of atmospheric chemistry. Aerosols collected on this campaign are likely to carry the signatures of emissions from Afghanistan, North and Central Pakistan, North India in addition to the local pollution sources. During sampling from December 2005 to January 2006, it was possible to collect several samples during brief fog episodes. Samples were analyzed for 25 elements (Be, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Sr, Mo, Ag, Cd, Sn, Sb, Ba, Tl and Pb) using inductively coupled plasma mass spectrometry. High pollutant concentrations were observed throughout the study, for instance, Cr concentrations up to 1.4 μgm-3, As, 135 ngm-3, Cd, 93 ngm-3, Sn, 988 ngm-3 and Sb, 157 ngm-3. Pb and Zn concentrations respectively up to 12 and 48 μgm-3 were observed. Calculation of enrichment factor and crustal correction illustrate the attribution of Cr, Co, Ni, Zn, As, Se, Mo, Ag Cd, Sn, Sb, Tl and Pb to non-crustal sources. Air parcel back trajectories, interelemental relationships and meteorological observations have been used to explain the sources and the impacts of fog chemistry and mixing heights on atmospheric processing of trace elements in PM2.5. Atmospheric stagnation appeared to be one of factors causing episodic high concentrations. Crustal correction and interelemental relationships apparently suggest the emissions from coal and oil combustion, industrial processes, building construction sites and biomass burning as the prime role players in the atmospheric pollution in

  13. Biological trace element measurements using synchrotron radiation

    SciTech Connect

    Giauque, R.D.; Jaklevic, J.M.; Thompson, A.C.

    1985-07-01

    The feasibility of performing x-ray fluorescence trace element determinations at concentrations substantially below the ppM level for biological materials is demonstrated. Conditions for achieving optimum sensitivity were ascertained. Results achieved for five standard reference materials were, in most cases, in excellent agreement with listed values. Minimum detectable limits of 20 ppM were measured for most elements.

  14. Trace Element Analysis of Biological Samples.

    ERIC Educational Resources Information Center

    Veillon, Claude

    1986-01-01

    Reviews background of atomic absorption spectrometry techniques. Discusses problems encountered and precautions to be taken in determining trace elements in the parts-per-billion concentration range and below. Concentrates on determining chromium in biological samples by graphite furnace atomic absorption. Considers other elements, matrices, and…

  15. Major and trace elements of selected pedons in the USA.

    PubMed

    Burt, R; Wilson, M A; Mays, M D; Lee, C W

    2003-01-01

    Few studies of soil geochemistry over large geographic areas exist, especially studies encompassing data from major pedogenic horizons that evaluate both native concentrations of elements and anthropogenically contaminated soils. In this study, pedons (n = 486) were analyzed for trace (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn) and major (Al, Ca, Fe, K, Mg, Na, P, Si, Ti, Zr) elements, as well as other soil properties. The objectives were to (i) determine the concentration range of selected elements in a variety of U.S. soils with and without known anthropogenic additions, (ii) illustrate the association of elemental source and content by assessing trace elemental content for several selected pedons, and (iii) evaluate relationships among and between elements and other soil properties. Trace element concentrations in the non-anthropogenic dataset (NAD) were in the order Mn > (Zn, Cr, Ni, Cu) > (Pb, Co) > (Cd, Hg), with greatest mean total concentrations for the Andisol order. Geometric means by horizon indicate that trace elements are concentrated in surface and/or B horizons over C horizons. Median values for trace elements are significantly higher in surface horizons of the anthropogenic dataset (AD) over the NAD. Total Al, Fe, cation exchange capacity (CEC), organic C, pH, and clay exhibit significant correlations (0.56, 0.74, 0.50, 0.31, 0.16, and 0.30, respectively) with total trace element concentrations of all horizons of the NAD. Manganese shows the best inter-element correlation (0.33) with these associated total concentrations. Total Fe has one of the strongest relationships, explaining 55 and 30% of the variation in total trace element concentrations for all horizons in the NAD and AD, respectively.

  16. Minerals and trace elements in milk.

    PubMed

    Flynn, A

    1992-01-01

    The nutritional roles, requirements, and metabolism and the quantitative relationship between dietary intakes and health for a number of the minerals and trace elements have been more clearly defined in recent years, but there are still considerable deficiencies in our understanding of these issues, e.g., the significance of calcium in the etiology and treatment of osteoporosis and hypertension. Reliable information is now available on the content, and the principal factors affecting it, of most of the minerals and trace elements in human and cow's milks. However, for some of the trace elements, there is still a wide variation in reported values in the literature, which is due, at least in part, to analytical difficulties. The contribution of cow milk and milk products to the diet in Western countries is significant for sodium, potassium, chloride, calcium, phosphorus, zinc, and iodine. Iodine is the only trace element for which there has been any suggestion of excessive amounts in cow milk. However, there is evidence of a decline in milk iodine concentrations in the United States in recent years, although the situation in other countries less clear. Breast milk usually has adequate mineral and trace element contents for feeding full-term infants, with the exceptions of fluoride, for which supplementation of infants is recommended, and of selenium in some countries, such as Finland and New Zealand, where maternal intakes are low. However, breast milk selenium contents have increased in these countries in recent years due to increased maternal selenium intakes. The concentrations of minerals and trace elements in infant formulas for full-term infants are generally higher than in human milk, and all appear to be more than adequate, with the possible exception of selenium, which may need to be increased in some formulas. Considerable changes in the mineral and trace element contents of formulas have been instituted in recent years in the light of improved knowledge of

  17. [Trace elements maintaining the vital functions].

    PubMed

    Arakawa, Yasuaki

    2016-07-01

    In a healthy condition, trace elements constituting the living body are regulated and maintained their balance of each other and their range of physiological optimum concentration in order to maintain the normal vital functions. When the optimum conditions of their balance and their homeostasis, however, are broken down by deficiency or excess of certain trace element, an excess accumulation or deficiency of specified element is induced and it follows that peculiar disease is caused according to function of each specified element. Generally, the disturbance of major elements such as O, C, H, N, Ca, P will induce a nutrition lesion and electrolytic abnormality, and the disturbance of 10 trace elements such as Fe, F, Si, Zn, Sr, Rb, Br, Pb, Mn, Cu being at ppm order and 14 ultra-trace elements such as Al, Cd, Sn, Ba, Hg, Se, I, Mo, Ni, B, Cr, As, Co, V being at ppb order will give rise to functional disorder of enzyme and physiological active substance in living body.

  18. Geochemical environments, trace elements, and cardiovascular diseases

    PubMed Central

    Masironi, R.; Miesch, A. T.; Crawford, M. D.; Hamilton, E. I.

    1972-01-01

    Cardiovascular diseases are often found to be associated with certain physicochemical characteristics of the environment—namely, the hardness of the water and the types of rock and soil underlying the area. Areas supplied with soft water usually have higher cardiovascular death rates than do areas supplied with hard water. Evidence linking cardiovascular diseases with the geochemistry of rocks and soils is more limited. The nature of these associations is still speculative but it is possible that certain trace elements are involved, some being beneficial and others harmful. Further epidemiological studies to identify these various trace elements are desirable. PMID:4539410

  19. Influence of trace elements on dental enamel properties: A review.

    PubMed

    Qamar, Zeeshan; Haji Abdul Rahim, Zubaidah Binti; Chew, Hooi Pin; Fatima, Tayyaba

    2017-01-01

    Dental enamel, an avascular, irreparable, outermost and protective layer of the human clinical crown has a potential to withstand the physico-chemical effects and forces. These properties are being regulated by a unique association among elements occurring in the crystallites setup of human dental enamel. Calcium and phosphate are the major components (hydroxyapatite) in addition to some trace elements which have a profound effect on enamel. The current review was planned to determine the aptitude of various trace elements to substitute and their influence on human dental enamel in terms of physical and chemical properties.

  20. Trace elements in marine ostracodes

    NASA Astrophysics Data System (ADS)

    Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.

    Extending the work of Cadot, Kaesler, De Deckker, Chivas, and Corrège, we have measured the elemental chemistry of shells of marine ostracodes to evaluate the usefulness of ostracode shell chemistry as a paleoenvironmental proxy. Our work has focused primarily on Mg/Ca, Sr/Ca, and Na/Ca ratios of two common genera: deep-sea genus Krithe and shallow marine/estuarine genus Loxoconcha. We evaluated in vivo effects including genus, species, gender, ontogeny, shell size, intra-shell heterogeneity (Mg), water temperature, and salinity, and postmortem diagenetic effects including partial dissolution, recrystallization, and shell surface contamination. Analysis of modern (core-top), fossil, and laboratory-raised specimens across a wide range of temperature and salinity conditions confirms earlier work indicating that Krithe and Loxoconcha Mg/Ca ratios are dominantly controlled by water temperature. Sr/Ca and Na/Ca ratios co-vary with temperature in core-top Krithe, but not in cultured Loxoconcha suggesting that the Krithe Sr/Ca and Na/Ca correlation with temperature may be related to another variable that broadly co-varies with temperature. Phylogenetic and ontogenetic effects are also indicated, including different Mg-thermodependence and intra-shell Mg distribution between Krithe and Loxoconcha. Inter-specific effects are suggested for two species of Krithe. Magnesium uptake in eldest juvenile shells seems to be identical to that of adult shells, thus greatly increasing the amount of shell material available for paleoenvironmental studies. No salinity effects were observed. Shell Na/Ca ratios showed a dramatic decrease with increasing dissolution (natural and artificial) in waters that are undersaturated with respect to calcite, whereas Mg/Ca ratios displayed a minor decrease and Sr/Ca ratios showed no change. Of the ratios studied, Mg/Ca offers the most promise for Quaternary marine studies as a paleothermometer. Further calibration studies are needed to better

  1. Trace Elements: The Little Things that Count

    ERIC Educational Resources Information Center

    Evans, Gary W.

    1977-01-01

    Examines recent findings regarding the importance of trace elements to good health. Copper, chromium, and zinc are discussed. Described also are multi-disciplinary experiments in progress at the Human Nutrition Laboratory, a federal facility in Grand Forks, North Dakota. (CS)

  2. Phytomanagement of trace elements in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological trace elements (TEs) occur at minor concentrations (< 1000 mg/kg) in organisms, yet they may have a major effect on life, both as essential nutrients and environmental contaminants. Excess consumption of and exposure to TEs has a detrimental effect on humans. Human activities such as mini...

  3. Trace elements in human hair: an international comparison

    SciTech Connect

    Takagi, Y.; Matsuda, S.; Imai, S.; Ohmori, Y.; Masuda, T.; Vinson, J.A.; Mehra, M.C.; Puri, B.K.; Kaniewski, A.

    1986-06-01

    Hair as a biological tissue is unique in the sense that it serves as an accumulator for trace elements, and in addition, it is formed in relatively short period of time and remains isolated from the metabolic events in the human body. In view of the interest in the distribution of trace elements in human hair an international survey was conducted to study their distribution in populations of different origin. Hair samples drawn from North America (USA, Canada), Europe (Poland) and Asia (Japan and India) were analyzed for 21 trace elements. An attempt was also made to observe a correlation, if any, between elemental concentration, age, sex and living habits of the individuals in a particular country.

  4. Trace element distributions in primitive achondrites

    NASA Technical Reports Server (NTRS)

    Davis, Andrew M.; Prinz, Martin; Weisberg, Michael K.

    1993-01-01

    The primitive achondrites have approximately chondritic bulk chemical composition but achondritic textures. Clayton et al. show that nine of these meteorites, the acapulcoites and the lodranites, have similar oxygen isotopic compositions. The acapulcoites appear to be highly metamorphosed, but undifferentiated meteorites of chondritic composition; whereas, the lodranites appear to have lost a feldspathic partial melt. In order to learn more about metamorphic processes and partial melt removal, we have measured the trace element compositions of constituent phases of a number of primitive achondrites by ion microprobe. We have analyzed two acapulcoites, Acapulco and ALH81261 (paired with ALH77081), and three londranites, Lodran, LEW88280, and MAC88177. In addition, we analyzed LEW88663, which has the bulk composition, mineral chemistry, and oxygen isotopic composition of L-chondrites, but is metal-free and has an achondrite texture; and Divnoe, a plagioclase-poor, olivine-rich primitive achondrite with an oxygen isotopic composition similar to that of the group IAB iron meteorites. These meteorites show a variety of REE patterns in their constituent phases, and there are consistent differences between acapulcoites and lodranites that are consistent with removal of a LREE- and Eu-enriched melt that is apparently responsible for the low plagioclase content of lodranites.

  5. Toxic trace elements at gastrointestinal level.

    PubMed

    Vázquez, M; Calatayud, M; Jadán Piedra, C; Chiocchetti, G M; Vélez, D; Devesa, V

    2015-12-01

    Many trace elements are considered essential [iron (Fe), zinc (Zn), copper (Cu)], whereas others may be harmful [lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As)], depending on their concentration and chemical form. In most cases, the diet is the main pathway by which they enter our organism. The presence of toxic trace elements in food has been known for a long time, and many of the food matrices that carry them have been identified. This has led to the appearance of legislation and recommendations concerning consumption. Given that the main route of exposure is oral, passage through the gastrointestinal tract plays a fundamental role in their entry into the organism, where they exert their toxic effect. Although the digestive system can be considered to be of crucial importance in their toxicity, in most cases we do not know the events that occur during the passage of these elements through the gastrointestinal tract and of ascertaining whether they may have some kind of toxic effect on it. The aim of this review is to summarize available information on this subject, concentrating on the toxic trace elements that are of greatest interest for organizations concerned with food safety and health: Pb, Cd, Hg and As.

  6. Trace-Element Concentrations in Northwest Africa 032

    NASA Technical Reports Server (NTRS)

    Korotev, R. L.; Jolliff, B. L.; Wang, A.; Gillis, J. J.; Haskin, L. A.; Fagan, T. J.; Taylor, G. J.; Keil, K.

    2001-01-01

    Trace-element concentrations (INAA) are presented for four samples of the NWA 032 lunar meteorite. The mare basalt has a moderately high Th concentration (1.9 ppm) and a higher Th/REE ratio than any other known mare basalt. Additional information is contained in the original extended abstract.

  7. [Re-evaluation of the fundamentals of trace elements].

    PubMed

    Himeno, Seiichiro

    2012-01-01

    The roles of trace elements have been extensively studied for decades. However, recent advances in both molecular and epidemiological studies on trace elements have provided new information and concepts on the actions of trace elements. Some of our fundamental knowledge on the roles of trace elements based on classical data should be replaced by new concept based on new findings. This series of "Re-evaluation of the Fundamentals of Trace Elements" aims to provide new fundamentals on trace elements by reviewing rapidly advancing knowledge in this study area. The first article is a critical review on the role of chromium in human nutrition.

  8. Trace elements levels in centenarian 'dodgers'.

    PubMed

    Alis, Rafael; Santos-Lozano, Alejandro; Sanchis-Gomar, Fabian; Pareja-Galeano, Helios; Fiuza-Luces, Carmen; Garatachea, Nuria; Lucia, Alejandro; Emanuele, Enzo

    2016-05-01

    Trace element bioavailability can play a role in several metabolic and physiological pathways known to be altered during the aging process. We aimed to explore the association of trace elements with increased lifespan by analyzing the circulating levels of seven trace elements (Cr, Cu, Fe, Mn, Mo, Se and Zn) in a cohort of healthy centenarians or 'dodgers' (≥100 years, free of major age-related diseases) in comparison with sex-matched younger elderly controls. Centenarians showed significant lower Cu (783.7 (76.7, 1608.9) vs 962.5 (676.3, 2064.4)μg/mL, P<0.001), but higher Fe (1.3 (0.4, 4.7) vs 1.1 (0.5, 8.4)μg/mL, P=0.003) and Se (85.7 (43.0, 256.7) vs 77.8 (24.3, 143.8)ng/mL, P=0.002) values compared with elderly controls. The logistic regression analysis identified the combination of Cu and Se as significant predictor variables associated with successful aging (P=0.001), while receiver operating characteristic (ROC) analysis confirmed that Cu and Se (either alone or in combination) were independent variables associated with healthy aging. An 'improved' trace element profile (reduced Cu and elevated Se, which are involved in key physiological processes) could play a role in the resistance to disease showed by centenarian 'dodgers', and, therefore, at least partly, be involved in the healthy aging phenotype shown by these subjects. These results should be confirmed in larger cohorts of other geographic/ethnic origin and the potential cause-effect association tested in mechanistic experimental settings.

  9. The Role of Trace Elements in Tinnitus.

    PubMed

    Yaşar, Mehmet; Şahin, Mehmet İlhan; Karakükçü, Çiğdem; Güneri, Erhan; Doğan, Murat; Sağıt, Mustafa

    2017-03-01

    In this study, we aimed to investigate the role of three trace elements, namely, zinc, copper, and lead, in tinnitus by analyzing the serum level of copper and lead and both the serum and tissue level of zinc. Eighty patients, who applied to outpatient otolaryngology clinic with the complaints of having tinnitus, and 28 healthy volunteers were included. High-frequency audiometry was performed, and participants who had hearing loss according to the pure tone average were excluded; tinnitus frequency and loudness were determined and tinnitus reaction questionnaire scores were obtained from the patients. Of all the participants, serum zinc, copper, and lead values were measured; moreover, zinc levels were examined in hair samples. The levels of trace elements were compared between tinnitus and control groups. The level of copper was found to be significantly lower in the tinnitus group (p = 0.02), but there was no significant difference between the groups in terms of the levels of zinc, neither in serum nor in hair, and lead in serum (p > 0.05). The lack of trace elements, especially that of "zinc," have been doubted for the etiopathogenesis of tinnitus in the literature; however, we only found copper levels to be low in patients having tinnitus.

  10. Trace elements in termites by PIXE analysis

    NASA Astrophysics Data System (ADS)

    Yoshimura, T.; Kagemori, N.; Kawai, S.; Sera, K.; Futatsugawa, S.

    2002-04-01

    Trace elements in a Japanese subterranean xylophagous termite, Coptotermes formosanus Shiraki, were analyzed by the PIXE method. The total amount of the 14 predominant elements out of 27 detected in an intact termite was higher in a soldier termite (23 000 μg/g) than in a worker termite (10 000 μg/g). A block of wood ( Pinus densiflora Sieb. et Zucc.) for termite feed had a much lower concentration (3600 μg/g) compared with that in an intact termite. This probably relates the functional bio-condensation and/or bio-recycling of trace elements in C. formosanus. When a termite was separated into three anatomical parts, head, degutted body and gut, the worker gut contained the highest total amount of the 14 predominant measured elements (31 000 μg/g). This might be correlated with the higher activity of food digestion and energy production in the worker gut. Moreover, the mandible of the soldier head, with an exoskeleton that is intensely hardened, showed a preferential distribution of Mn and Fe. These results suggest that the characteristic localization of elements will be closely related to the functional role of the individual anatomical part of C. formosanus.

  11. Trace element concentration of central Appalachian coal beds

    SciTech Connect

    McClure, M.; Miller, M.S.

    1996-09-01

    As a result of more stringent environmental regulations, there is increasing demand for coal beds with lower sulfur and trace element concentrations. Unfortunately, due to technical difficulties associated with the detection of elemental composition in parts-per-million, reliable trace element is scarce. Examination of the U.S.G.S. COALQUAL database of Appalachian coals was conducted for the following metals: antimony, arsenic, chromium, lead, and mercury. Within an area of approximately 14,000 square miles, 1,500 raw (core, underground and surface mine) coal samples with geographic coordinates were examined, and more than 100 named coal seams from Tennessee, southern West Virginia, eastern Kentucky, and southwestern Virginia were investigated. Some samples were obtained from formerly active mines which have since been depleted. Researchers have identified approximately 80 coal-related minerals including clays, carbonates, phosphates, chlorides, silicates, sulfates, and sulfides and, of these, sulfides have been found in chemical association with some trace elements. Quality trends over a broad region provide insights into geochemical and depositional processes which may have influenced trace element content. Furthermore, recently published E.P.R.I. data from {open_quotes}as-shipped{close_quotes} coal samples (located by state only) demonstrate similar patterns at the state level. Analysis of these data generally indicates a geographic and stratigraphic preference for coal beds with lower levels of trace elements along the southern edge of the Appalachian coal fields. While these quality trends may be a reasonably good first approximation, additional sampling is needed in minable reserve areas to further identify coal seams which possess favorable trace metal concentrations.

  12. Predatory aquatic beetles, suitable trace elements bioindicators.

    PubMed

    Burghelea, Carmen I; Zaharescu, Dragos G; Hooda, Peter S; Palanca-Soler, Antonio

    2011-05-01

    Predatory aquatic beetles are common colonizers of natural and managed aquatic environments. While as important components of the aquatic food webs they are prone to accumulate trace elements, they have been largely neglected from metal uptake studies. We aim to test the suitability of three dytiscid species, i.e.Hydroglyphus pusillus, Laccophilus minutus and Rhantus suturalis, as trace elements (Al, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Se and Zn) bioindicators. The work was carried out in a case area representing rice paddies and control sites (reservoirs) from an arid region known for its land degradation (Monegros, NE Spain). Categorical principal component analysis (CATPCA) was tested as a nonlinear approach to identify significant relationships between metals, species and habitat conditions so as to examine the ability of these species to reflect differences in metal uptake. Except Se and As, the average concentrations of all other elements in the beetles were higher in the rice fields than in the control habitats. The CATPCA determined that H. pusillus had high capacity to accumulate Fe, Ni and Mn regardless of the habitat type, and hence may not be capable of distinguishing habitat conditions with regards to these metals. On the other hand, L. minutus was found less sensitive for Se in non-managed habitats (i.e. reservoirs), while R. suturalis was good in accumulating Al, Mo and Pb in rice fields. The latter seems to be a promising bioindicator of metal enrichment in rice fields. We conclude that predatory aquatic beetles are good candidates for trace elements bioindication in impacted and non-impacted environments and can be used in environmental monitoring studies. CATPCA proved to be a reliable approach to unveil trends in metal accumulation in aquatic invertebrates according to their habitat status.

  13. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz

    1988-01-01

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas.

  14. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, S.; Bernstein, L.S.; Bien, F.

    1988-08-23

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas. 12 figs.

  15. Trace elements in renal disease and hemodialysis

    NASA Astrophysics Data System (ADS)

    Miura, Yoshinori; Nakai, Keiko; Suwabe, Akira; Sera, Koichiro

    2002-04-01

    A number of considerations suggest that trace element disturbances might occur in patients with renal disease and in hemodialysis (HD) patients. Using particle induced X-ray emission, we demonstrated the relations between serum concentration, urinary excretion of the trace elements and creatinine clearance (Ccr) in randomized 50 patients. To estimate the effects of HD, we also observed the changes of these elements in serum and dialysis fluids during HD. Urinary silicon excretion decreased, and serum silicon concentration increased as Ccr decreased, with significant correlation ( r=0.702, p<0.001 and r=0.676, p<0.0001, respectively). We also observed the increase of serum silicon, and the decrease of silicon in dialysis fluids during HD. These results suggested that reduced renal function and also dialysis contributed to silicon accumulation. Although serum selenium decreased significantly according to Ccr decrease ( r=0.452, p<0.01), we could detect no change in urinary selenium excretion and no transfer during HD. Serum bromine and urinary excretion of bromine did not correlate to Ccr. However we observed a bromine transfer from the serum to the dialysis fluid that contributed to the serum bromine decrease in HD patients.

  16. Trace element content of northern Ontario peat

    SciTech Connect

    Glooschenko, W.A.; Capoblanco, J.A.

    1982-03-01

    Peat samples were collected at 0-20- and 20-40-cm depths from several peatland ecosystems located in northern Ontario, Canada. Analysis was made for the trace metals Zn, Pb, Cu, Cr, Cd, and Hg. Concentration values in general were in the low ppm range and did not significantly differ in terms of peatland type or depth except for Pb. This element was signficantly higher in surface peats in bogs and fens. Concentration of metals in peats found in the study were equivalent to those in US coals, suggesting caution during combustion in terms of potential atmospheric input of metals.

  17. Trace element distribution in the rat cerebellum

    SciTech Connect

    Kwiatek, W.M.; Long, G.J.; Pounds, J.G.; Reuhl, K.R.; Hanson, A.L.; Jones, K.W.

    1989-10-01

    Spatial distributions and concentrations of trace elements (TE) in the brain are important because TE perform catalytic structural functions in enzymes which regulate brain function and development. We have investigated the distributions of TE in rat cerebellum. Structures were sectioned and analyzed by the Synchrotron Radiation Induced X-ray Emission (SRIXE) method using the NSLS X-26 white-light microprobe facility. Advantages important for TE analysis of biological specimens with x-ray microscopy include short time of measurement, high brightness and flux, good spatial resolution, multielemental detection, good sensitivity, and non-destructive irradiation. Trace elements were measured in thin rat brain sections of 20-micrometers thickness. The analyses were performed on sample volumes as small as 0.2 nl with Minimum Detectable Limits (MDL) of 50 ppb wet weight for Fe, 100 ppb wet weight for Cu, and Zn, and 1 ppM wet weight for Pb. The distribution of TE in the molecular cell layer, granule cell layer and fiber tract of rat cerebella was investigated. Both point analyses and two-dimensional semi-quantitative mapping of the TE distribution in a section were used.

  18. Trace elements in obese Turkish children.

    PubMed

    Tascilar, Mehmet Emre; Ozgen, Ilker Tolga; Abaci, Ayhan; Serdar, Muhittin; Aykut, Osman

    2011-10-01

    The quality of the diet of obese children is poor. Eating habits may alter micronutrient status in obese patients. In this study, we determined the serum levels of selenium, zinc, vanadium, molybdenum, iron, copper, beryllium, boron, chromium, manganese, cobalt, silver, barium, aluminum, nickel, cadmium, mercury, and lead in obese Turkish children. Thirty-four obese and 33 healthy control subjects were enrolled in the study. Serum vanadium and cobalt levels of obese children were significantly lower than those of the control group (0.244 ± 0.0179 vs. 0.261 ± 0.012 μg/l, p < 0.001, and 0.14 ± 0.13 vs. 0.24 ± 0.15 μg/l, p = 0.011, respectively). There was no significant difference between groups regarding the other serum trace element levels. In conclusion, there may be alterations in the serum levels of trace elements in obese children and these alterations may have a role in the pathogenesis of obesity.

  19. Trace element accumulation in aquatic plants: a literature review

    SciTech Connect

    Ganje, T.J.; Elseewi, A.A.; Page, A.L.

    1988-01-01

    Trace elements in sediments and its overlying waters are important constituents of an aquatic plant ecosystem. This review was undertaken to evaluate trace element accumulation in aquatic plants and ascertain to what extent sediment and its overlying waters play in trace element accumulation by aquatic plant species. Aquatic vascular plants tend to accumulate trace elements in relation to the trace element concentration of the water body and sediment in which they are grown and the extent of exposure to the water body. Trace element composition of bryophytes and algae is also closely related to composition of their aquatic environment. It is increasingly apparent that sediments and overlying waters alter the bioavailability of trace elements to aquatic plants in both natural and artificial water bodies, particularly where industrial and agricultural waters are discharged into waterways.

  20. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review.

    PubMed

    Choong, Yee Yaw; Norli, Ismail; Abdullah, Ahmad Zuhairi; Yhaya, Mohd Firdaus

    2016-06-01

    This paper critically reviews the impacts of supplementing trace elements on the anaerobic digestion performance. The in-depth knowledge of trace elements as micronutrients and metalloenzyme components justifies trace element supplementation into the anaerobic digestion system. Most of the earlier studies reported that trace elements addition at (sub)optimum dosages had positive impacts mainly longer term on digester stability with greater organic matter degradation, low volatile fatty acids (VFA) concentration and higher biogas production. However, these positive impacts and element requirements are not fully understood, they are explained on a case to case basis because of the great variance of the anaerobic digestion operation. Iron (Fe), nickel (Ni) and cobalt (Co) are the most studied and desirable elements. The right combination of multi-elements supplementation can have greater positive impact. This measure is highly recommended, especially for the mono-digestion of micronutrient-deficient substrates. The future research should consider the aspect of trace element bioavailability.

  1. Trace element geochemistry of marine biogenic particulate matter

    SciTech Connect

    Collier, R.W.

    1981-02-01

    Plankton samples were investigated for physical and chemical leaching decomposition to identify the major and trace element composition of particulate carrier phases. The identification of trace element/major element ratios in the biogenic materials was emphasized. The majority of the trace elements in the samples were directly associated with the nonskeletal organic phases of the plankton. Calcium carbonate and opal were not significant carriers for any of the trace elements studied. A refractory phase containing Al and Fe in terrigenous ratios was present in all samples, even from the more remote marine locations.

  2. Occurrence and volatility of several trace elements in pulverized coal boiler.

    PubMed

    Huang, Ya-ji; Jin, Bao-sheng; Zhong, Zhao-ping; Xiao, Rui; Tang, Zhi-yong; Ren, Hui-feng

    2004-01-01

    The contents of eight trace elements(Mn, Cr, Pb, As, Se, Zn, Cd, Hg) in raw coal, bottom ash and fly ash were measured in a 220 t/h pulverized coal boiler. Factors affecting distribution of trace elements were investigated, including fly ash diameter, furnace temperature, oxygen content and trace elements' characters. One coefficient of Meij was also improved to more directly show element enrichment in combustion products. These elements may be classified into three groups according to their distribution: Group 1: Hg, which is very volatile. Group 2: Pb, Zn, Cd, which are partially volatile. Group 3: Mn, which is hardly volatile. Se may be located between groups 1 and 2. Cr has properties of both group 1 and 3. In addition, the smaller diameter of fly ash, the more relative enrichment of trace elements (except Mn). The fly ash showed different adsorption mechanisms of trace elements and the volatilization of trace elements rises with furnace temperature. Relative enrichments of trace elements(except Mn and Cr) in fly ash are larger than that in bottom ash. Low oxygen content can not always improve the volatilization of trace elements. Pb is easier to form chloride than Cd during coal combustion. Trace elements should be classified in accordance with factors.

  3. [Determination of trace elements in beans by ICP-AES].

    PubMed

    Wang, Ying; Xin, Shi-gang

    2004-02-01

    In this paper,the contents of trace elements in beans such as Ca, Mg, Mn, Sr, Fe, Co, Ni, Se and Ba were determined by ICP-AES uing nitrifying method of high pressure nitrifying pot, and compared with the results of wet method. The two methods showed no obvious differences. The method proves to be simple, rapid, highly sensitive, accurate and can be used to determine many elements at the same time. In addition, there was little environment pollution. Its recovery is 96.8%-102%, and relative standard deviation is 3.35%.

  4. Meteoritic trace element toxification and the terminal Mesozoic mass extinction

    SciTech Connect

    Dickson, S.M.; Erickson, D.J. III

    1985-01-01

    Calculations of trace element fluxes to the earth associated with 5 and 10 kilometer diameter Cl chondrites and iron meteorites are presented. The data indicate that the masses of certain trace elements contained in the bolide, such as Fe, Co, Ni, Cr, Pb, and Cu, are as large as or larger than the world ocean burden. The authors believe that this pulse of trace elements was of sufficient magnitude to perturb the biogeochemical cycles operative 65 million years ago, a probably time of meteorite impact. Geochemical anomalies in Cretaceous-Tertiary boundary sediments suggest that elevated concentrations of trace elements may have persisted for thousands of years in the ocean. Through direct exposure and bioaccumulation, many trophic levels of the global food chain, including that of the dinosaurs, would have been adversely affected by these meteoritic trace elements. The trace element toxification hypothesis may account for the selective extinction of both marine and terrestrial species in the enigmatic terminal Mesozoic event.

  5. Trace-Element Analyses of Carbonate Minerals in the Gunflint Banded Iron Formation

    NASA Technical Reports Server (NTRS)

    Pun, Aurora; Papike, James J.; Shearer, C. K.

    2002-01-01

    We report on the petrography, mineralogy and trace-element abundances of individual carbonate grains in the Early Proterozoic Gunflint BIF (Banded Iron Formation). Trace-element data may be used as environmental recorders of the fluid evolution from which the various carbonate phases precipitated. Additional information is contained in the original extended abstract.

  6. Cognitive impairment, genomic instability and trace elements.

    PubMed

    Meramat, A; Rajab, N F; Shahar, S; Sharif, R

    2015-01-01

    Cognitive impairments are often related to aging and micronutrient deficiencies. Various essential micronutrients in the diet are involved in age-altered biological functions such as, zinc, copper, iron, and selenium that play pivotal roles either in maintaining and reinforcing the antioxidant performances or in affecting the complex network of genes (nutrigenomic approach) involved in encoding proteins for biological functions. Genomic stability is one of the leading causes of cognitive decline and deficiencies or excess in trace elements are two of the factors relating to it. In this review, we report and discuss the role of micronutrients in cognitive impairment in relation to genomic stability in an aging population. Telomere integrity will also be discussed in relation to aging and cognitive impairment, as well as, the micronutrients related to these events. This review will provide an understanding on how these three aspects can relate with each other and why it is important to keep a homeostasis of micronutrients in relation to healthy aging. Micronutrient deficiencies and aging process can lead to genomic instability.

  7. Trace element fingerprinting of emeralds by PIXE/PIGE

    NASA Astrophysics Data System (ADS)

    Xin-Pei, Ma; MacArthur, J. D.; Roeder, P. L.; Mariano, A. N.

    1993-04-01

    Gemologists consider the mineral beryl, beryllium aluminium silicate, to be the gem, emerald, when it contains sufficient chromium, > 0.1%, to colour it a strong green. Emeralds usually contain other trace elements. To investigate the feasibility of distinguishing an emerald's country of origin through its trace content, the trace elements in emeralds and a few beryls from sixteen locations have been determined with a single nondestructive measurement using PIXE and PIGE. From the database established with this limited number of samples, distinguishing trace element patterns were found.

  8. Atmospheric transport of trace elements and nutrients to the oceans

    NASA Astrophysics Data System (ADS)

    Jickells, T. D.; Baker, A. R.; Chance, R.

    2016-11-01

    This paper reviews atmospheric inputs of trace elements and nutrients to the oceans in the context of the GEOTRACES programme and provides new data from two Atlantic GEOTRACES cruises. We consider the deposition of nitrogen to the oceans, which is now dominated by anthropogenic emissions, the deposition of mineral dust and related trace elements, and the deposition of other trace elements which have a mixture of anthropogenic and dust sources. We then consider the solubility (as a surrogate for bioavailability) of the various elements. We consider briefly the sources, atmospheric transport and transformations of these elements and how this results in strong spatial deposition gradients. Solubility of the trace elements also varies systematically between elements, reflecting their sources and cycling, and for some trace elements there are also systematic gradients in solubility related to dust loading. Together, these effects create strong spatial gradients in the inputs of bioavailable trace elements to the oceans, and we are only just beginning to understand how these affect ocean biogeochemistry. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  9. Trace elements by instrumental neutron activation analysis for pollution monitoring

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1975-01-01

    Methods and technology were developed to analyze 1000 samples/yr of coal and other pollution-related samples. The complete trace element analysis of 20-24 samples/wk averaged 3-3.5 man-hours/sample. The computerized data reduction scheme could identify and report data on as many as 56 elements. In addition to coal, samples of fly ash, bottom ash, crude oil, fuel oil, residual oil, gasoline, jet fuel, kerosene, filtered air particulates, ore, stack scrubber water, clam tissue, crab shells, river sediment and water, and corn were analyzed. Precision of the method was plus or minus 25% based on all elements reported in coal and other sample matrices. Overall accuracy was estimated at 50%.

  10. The EPA National Fuels Surveillance Network. I. Trace constituents in gasoline and commercial gasoline fuel additives.

    PubMed Central

    Jungers, R H; Lee, R E; von Lehmden, D J

    1975-01-01

    A National Fuels Surveillance Network has been established to collect gasoline and other fuels through the 10 regional offices of the Environmental Protection Agency. Physical, chemical, and trace element analytical determinations are made on the collected fuel samples to detect components which may present an air pollution hazard or poison exhaust catalytic control devices. A summary of trace elemental constituents in over 50 gasoline samples and 18 commercially marketed consumer purchased gasoline additives is presented. Quantities of Mn, Ni, Cr, Zn, Cu, Fe, Sb, B, Mg, Pb, and S were found in most regular and premium gasoline. Environmental implications of trace constituents in gasoline are discussed. PMID:1157783

  11. Trace element partitioning between ionic crystal and liquid

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Philpotts, J. A.; Yin, L.

    1978-01-01

    The partitioning of trace elements between ionic crystals and the melt has been correlated with lattice energy of the host. The solid-liquid partition coefficient has been expressed in terms of the difference in relative ionic radius of the trace element and the homogeneous and heterogeneous strain of the host lattice. Predictions based on this model appear to be in general agreement with data for alkali nitrates and for rare-earth elements in natural garnet phenocrysts.

  12. Trace elements in agroecosystems and impacts on the environment.

    PubMed

    He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J

    2005-01-01

    Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and

  13. What We Have Learned About the Existing Trace Element Partitioning data During the Population Phase of traceDs

    NASA Astrophysics Data System (ADS)

    Nielsen, R. L.; Ghiorso, M. S.; Trischman, T.

    2015-12-01

    The database traceDs is designed to provide a transparent and accessible resource of experimental partitioning data. It now includes ~ 90% of all the experimental trace element partitioning data (~4000 experiments) produced over the past 45 years, and is accessible through a web based interface (using the portal lepr.ofm-research.org). We set a minimum standard for inclusion, with the threshold criteria being the inclusion of: Experimental conditions (temperature, pressure, device, container, time, etc.) Major element composition of the phases Trace element analyses of the phases Data sources that did not report these minimum components were not included. The rationale for not including such data is that the degree of equilibration is unknown, and more important, no rigorous approach to modeling the behavior of trace elements is possible without knowledge of composition of the phases, and the temperature and pressure of formation/equilibration. The data are stored using a schema derived from that of the Library of Experimental Phase Relations (LEPR), modified to account for additional metadata, and restructured to permit multiple analytical entries for various element/technique/standard combinations. In the process of populating the database, we have learned a number of things about the existing published experimental partitioning data. Most important are: ~ 20% of the papers do not satisfy one or more of the threshold criteria. The standard format for presenting data is the average. This was developed as the standard during the time where there were space constraints for publication in spite of fact that all the information can now be published as electronic supplements. The uncertainties that are published with the compositional data are often not adequately explained (e.g. 1 or 2 sigma, standard deviation of the average, etc.). We propose a new set of publication standards for experimental data that include the minimum criteria described above, the publication

  14. Collection requirements for trace-element analyses of extraterrestrial samples

    NASA Technical Reports Server (NTRS)

    Flynn, George J.; Sutton, S. R.

    1994-01-01

    Trace-element abundances have proven important in understanding the evolution of and interrelationships between different meteorites. Preliminary investigations of the trace-element contents of interplanetary dust particles indicate that trace-element abundances will prove equally important in distinguishing between micrometeorites of different types, comparing the interplanetary dust to the meteorites, and assessing the degree of thermal alteration experienced either on the parent body or during the collection process. Sample collection, delivery, and curation must be accomplished in a manner to avoid contamination with even trace amounts of the elements to be analyzed. The present SXRF sensitivity for micrometeorite analysis is of order 1 femtogram, but anticipated improvements in sensitivity will require sample contamination substantially below this level. Sample collection and handling equipment should be constructed from materials selected for ultrahigh purity, and serious consideration should be given in selecting the particular set of elements from which the collection apparatus is composed so as not to compromise useful information.

  15. Trace element accumulation in lotic dragonfly nymphs: Genus matters

    PubMed Central

    Fletcher, Dean E.; Lindell, Angela H.; Stillings, Garrett K.; Blas, Susan A.; McArthur, J. Vaun

    2017-01-01

    Constituents of coal combustion waste (CCW) expose aquatic organisms to complex mixtures of potentially toxic metals and metalloids. Multi-element trace element analyses were used to distinguish patterns of accumulation among 8 genera of dragonfly nymphs collected from two sites on a CCW contaminated coastal plain stream. Dragonfly nymphs are exceptional for comparing trace element accumulation in syntopic macroinvertebrates that are all predators within the same order (Odonata) and suborder (Anisoptera), but differ vastly in habitat use and body form. Sixteen trace element (Be, V, Cr, Ni, Cu, Zn, As, Se, Sr, Cd, Sb, Cs, Ba, Hg, Tl, and Pb) were analyzed and trophic position and basal carbon sources assessed with stable isotope analyses (C and N). Trophic positions varied within relatively narrow ranges. Size did not appear to influence trophic position. Trophic position rarely influenced trace element accumulation within genera and did not consistently correlate with accumulation among genera. Patterns between δ13C and trace element accumulation were generally driven by differences between sites. An increase in trace element accumulation was associated with a divergence of carbon sources between sites in two genera. Higher trace element concentrations tended to accumulate in nymphs from the upstream site, closer to contaminant sources. Influences of factors such as body form and habitat use appeared more influential on trace element accumulation than phylogeny for several elements (Ni, Ba, Sr, V, Be, Cd, and Cr) as higher concentrations accumulated in sprawler and the climber-sprawler genera, irrespective of family. In contrast, As and Se accumulated variably higher in burrowers, but accumulation in sprawlers differed between sites. Greater variation between genera than within genera suggests genus as an acceptable unit of comparison in dragonfly nymphs. Overall, taxonomic differences in trace element accumulation can be substantial, often exceeding variation

  16. Trace element accumulation in lotic dragonfly nymphs: Genus matters.

    PubMed

    Fletcher, Dean E; Lindell, Angela H; Stillings, Garrett K; Blas, Susan A; McArthur, J Vaun

    2017-01-01

    Constituents of coal combustion waste (CCW) expose aquatic organisms to complex mixtures of potentially toxic metals and metalloids. Multi-element trace element analyses were used to distinguish patterns of accumulation among 8 genera of dragonfly nymphs collected from two sites on a CCW contaminated coastal plain stream. Dragonfly nymphs are exceptional for comparing trace element accumulation in syntopic macroinvertebrates that are all predators within the same order (Odonata) and suborder (Anisoptera), but differ vastly in habitat use and body form. Sixteen trace element (Be, V, Cr, Ni, Cu, Zn, As, Se, Sr, Cd, Sb, Cs, Ba, Hg, Tl, and Pb) were analyzed and trophic position and basal carbon sources assessed with stable isotope analyses (C and N). Trophic positions varied within relatively narrow ranges. Size did not appear to influence trophic position. Trophic position rarely influenced trace element accumulation within genera and did not consistently correlate with accumulation among genera. Patterns between δ13C and trace element accumulation were generally driven by differences between sites. An increase in trace element accumulation was associated with a divergence of carbon sources between sites in two genera. Higher trace element concentrations tended to accumulate in nymphs from the upstream site, closer to contaminant sources. Influences of factors such as body form and habitat use appeared more influential on trace element accumulation than phylogeny for several elements (Ni, Ba, Sr, V, Be, Cd, and Cr) as higher concentrations accumulated in sprawler and the climber-sprawler genera, irrespective of family. In contrast, As and Se accumulated variably higher in burrowers, but accumulation in sprawlers differed between sites. Greater variation between genera than within genera suggests genus as an acceptable unit of comparison in dragonfly nymphs. Overall, taxonomic differences in trace element accumulation can be substantial, often exceeding variation

  17. Mare basalt genesis - Modeling trace elements and isotopic ratios

    NASA Technical Reports Server (NTRS)

    Binder, A. B.

    1985-01-01

    Various types of mare basalt data have been synthesized, leading to the production of an internally consistent model of the mare basalt source region and mare basalt genesis. The model accounts for the mineralogical, major oxide, compatible siderophile trace element, incompatible trace element, and isotopic characteristics of most of the mare basalt units and of all the pyroclastic glass units for which reliable data are available. Initial tests of the model show that it also reproduces the mineralogy and incompatible trace element characteristics of the complementary highland anorthosite suite of rocks and, in a general way, those of the lunar granite suite of rocks.

  18. The partitioning of trace elements during pulverized coal combustion

    NASA Astrophysics Data System (ADS)

    Seames, Wayne Stewart

    The environmental impact resulting from the release of trace elements during coal combustion is an important issue for the coal-fired electric utility industry. Trace elements exit the combustor by partitioning between the flue gas and the fly ash particles. A comprehensive study has been conducted to investigate the mechanisms governing the partitioning of trace elements during pulverized coal combustion. The behavior of seven trace elements (arsenic, selenium, antimony, cobalt, cesium, thorium, and cerium) in six pulverized coals were studied under commercially relevant conditions in a well-described laboratory combustion environment. The partitioning of trace elements is governed by the extent of volatilization during combustion, the form of occurrence in the flue gas, and the mechanisms controlling vapor-to-solid phase transformation to fly ash particle surfaces. The most common vapor-to-solid phase partitioning mechanism for semi-volatile trace elements is reaction with active fly ash surfaces. Trace elements that form oxy-anions upon volatilization (e.g. arsenic, selenium, antimony) will react with active calcium and iron cation fly ash surface sites. Trace elements that form simple oxides upon volatilization (e.g. cobalt, cesium) will react with active aluminum oxy-anion fly ash surface sites. The maximum combustion temperature affects the availability of active calcium and iron surface sites but not aluminum sites. Sulfur inhibits the reactivity of oxy-anions with iron surface sites. For coals with high sulfur contents (>1 wt % as SO 2), volatilized trace elements that form oxy-anions will partition by reaction with calcium surface sites if sufficient sites are available. For coals with low sulfur contents, volatilized trace elements that form oxy-anions, will partition by reaction with iron surface sites. Volatilized trace elements that form oxy-anions will not partition by reaction if the coal sulfur content is high and the calcium content is low (<3 wt

  19. Progress of pharmacogenomic research related to minerals and trace elements.

    PubMed

    Zeng, Mei-Zi; Tang, Jie; Liu, Zhao-Qian; Zhou, Hong-Hao; Zhang, Wei

    2015-10-01

    Pharmacogenomics explores the variations in both the benefits and the adverse effects of a drug among patients in a target population by analyzing genomic profiles of individual patients. Minerals and trace elements, which can be found in human tissues and maintain normal physiological functions, are also in the focus of pharmacogenomic research. Single-nucleotide polymorphisms (SNPs) affect the metabolism, disposition and efficacy of minerals and trace elements in humans, resulting in changes of body function. This review describes some of the recent progress in pharmacogenomic research related to minerals and trace elements.

  20. Factors influencing trace element composition in human teeth

    SciTech Connect

    Tandon, L.; Iyengar, G.V.

    1997-12-01

    The authors recently compiled and reviewed the literature published in or after 1978 for 45 major, minor, and trace elements in human teeth as a part of an International Atomic Energy Agency (IAEA) study. The purpose of this paper is to discuss the various factors that influence the concentration levels of certain trace elements in human teeth. The sampling practices and analytical techniques that are applicable for trace element analysis are also discussed. It is also our intention to identify reference range of values, where data permit such conclusions. The scrutiny was designed to identify only the healthy permanent teeth, and values from teeth with fillings, caries, or periodontal diseases were eliminated.

  1. Trace elements in oil shale. Progress report, 1979-1980

    SciTech Connect

    Chappell, W R

    1980-01-01

    The purpose of this research program is to understand the potential impact of an oil shale industry on environmental levels of trace contaminants in the region. The program involves a comprehensive study of the sources, release mechanisms, transport, fate, and effects of toxic trace chemicals, principally the trace elements, in an oil shale industry. The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements by shale and oil production and use. The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. Leachate studies show that significant amounts of B, F, and Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements are not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. Many of the so-called standard methods for analyzing trace elements in oil shale-related materials are inadequate. A sampling manual is being written for the environmental scientist and practicing engineer. A new combination of methods is developed for separating the minerals in oil shale into different density fractions. Microbial investigations have tentatively identified the existence of thiobacilli in oil shale materials such as leachates. (DC)

  2. Chemistry of trace elements in soils and groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present information about sources of processes that affect trace elements in soils and groundwater; precipitation and dissolution, surface interactions and absorption and oxidation-reduction reactions. For each element or group of elements, we provide a review of mode of occurrence, sources and ...

  3. New essential trace elements for the life sciences.

    PubMed

    Nielsen, F H

    1990-01-01

    The possible importance of some new essential trace elements in nutrition is discussed. Most likely, insufficient intake of a specific trace element becomes obvious only when the body is stressed in some way that enhances the need for that element; this has been supported by recent findings with selenium. The trace elements boron and copper may be of nutritional significance in a manner similar to selenium. When the diets of animals and humans are manipulated to cause possible changes in cellular integrity or in hormone responsiveness, a large number of responses to dietary boron occur. The findings indicate that boron is important for optimal calcium and, thus, bone metabolism. High dietary cystine and fructose exacerbate the signs of copper deficiency in rats; this indicates that the response to copper deficiency by humans would vary with the amino acid and carbohydrate composition of the diet. There is some evidence that chromium, molybdenum, nickel, arsenic, and vanadium may also be of nutritional significance under stress conditions. In other words, an increasing number of studies have been performed that have examined the importance of trace element nutriture in various forms of nutritional, metabolic, hormonal, or physiologic stress in animals and humans. These studies indicate that situations will be found in which a trace element is of nutritional significance. It is likely that some of the trace elements are more important in human nutrition than is now generally acknowledged.

  4. Soluble trace elements and total mercury in Arctic Alaskan snow

    USGS Publications Warehouse

    Snyder-Conn, E.; Garbarino, J.R.; Hoffman, G.L.; Oelkers, A.

    1997-01-01

    Ultraclean field and laboratory procedures were used to examine trace element concentrations in northern Alaskan snow. Sixteen soluble trace elements and total mercury were determined in snow core samples representing the annual snowfall deposited during the 1993-94 season at two sites in the Prudhoe Bay oil field and nine sites in the Arctic National Wildlife Refuge (Arctic NWR). Results indicate there were two distinct point sources for trace elements in the Prudhoe Bay oil field - a source associated with oil and gas production and a source associated with municipal solid-waste incineration. Soluble trace element concentrations measured in snow from the Arctic NWR resembled concentrations of trace elements measured elsewhere in the Arctic using clean sample-collection and processing techniques and were consistent with deposition resulting from widespread arctic atmospheric contamination. With the exception of elements associated with sea salts, there were no orographic or east-west trends observed in the Arctic NWR data, nor were there any detectable influences from the Prudhoe Bay oil field, probably because of the predominant easterly and northeasterly winds on the North Slope of Alaska. However, regression analysis on latitude suggested significant south-to-north increases in selected trace element concentrations, many of which appear unrelated to the sea salt contribution.

  5. Trace elements in migrating high-temperature fluids: Effects of diffusive exchange with the adjoining solid

    NASA Technical Reports Server (NTRS)

    Kenyon, Patricia M.

    1993-01-01

    Trace element concentrations and isotopic ratios are frequently used to study the behavior of high-temperature fluids in both metamorphic and igneous systems. Many theoretical formulations of the effects of fluid migration on trace elements have assumed instantaneous reequilibration between the migrating fluid and the solid material through which it is passing. This paper investigates the additional effects which arise when equilibration is not instantaneous due to a limited rate of diffusion in the solid, using an analytical steady state solution to a set of partial differential equations describing the exchange of trace elements between the fluid and the solid during the migration of the fluid.

  6. Trace elements have limited utility for studying migratory connectivity in shorebirds that winter in Argentina

    USGS Publications Warehouse

    Torres-Dowdall, J.; Farmer, A.H.; Abril, M.; Bucher, E.H.; Ridley, I.

    2010-01-01

    Trace-element analysis has been suggested as a tool for the study of migratory connectivity because (1) trace-element abundance varies spatially in the environment, (2) trace elements are assimilated into animals' tissues through the diet, and (3) current technology permits the analysis of multiple trace elements in a small tissue sample, allowing the simultaneous exploration of several elements. We explored the potential of trace elements (B, Na, Mg, Al, Si, P, S, K, Ca, Ti, Cr, Mn, Ni, Cu, Zn, As, Sr, Cs, Hg, Tl, Pb, Bi, Th, and U) to clarify the migratory connectivity of shorebirds that breed in North America and winter in southern South America. We collected 66 recently replaced secondary feathers from Red Knots (Calidris canutus) at three sites in Patagonia and 76 from White-rumped Sandpipers (C. fuscicollis) at nine sites across Argentina. There were significant differences in trace-element abundance in shorebird feathers grown at different nonbreeding sites, and annual variability within a site was small compared to variability among sites. Across Argentina, there was no large-scale gradient in trace elements. The lack of such a gradient restricts the application of this technique to questions concerning the origin of shorebirds to a small number of discrete sites. Furthermore, our results including three additional species, the Pectoral Sandpiper (C. melanotos), Wilson's Phalarope (Phalaropus tricolor), and Collared Plover (Charadrius collaris), suggest that trace-element profiles change as feathers age. Temporal instability of trace-element values could undermine their application to the study of migratory connectivity in shorebirds. ?? The Cooper Ornithological Society 2010.

  7. Trace element concentrations in hair of healthy Chinese centenarians.

    PubMed

    Li, Yonghua; Yang, Linsheng; Wang, Wuyi; Li, Hairong; Lv, Jinmei; Zou, Xiaoyan

    2011-03-15

    Trace element concentrations, as indicators of micronutrient status of healthy centenarians, have not been widely analyzed. This study aimed to assess trace element concentrations in the hair of healthy centenarians. The effects of gender and age on element concentrations were also investigated. Eleven trace elements (Al, Ba, Cd, Cr, Cu, Fe, Mo, Pb, Se, Sr and Zn) in the scalp hair of 107 healthy Chinese centenarians were examined. The overall reference values (RVs) in mg/kg for the hair concentrations of trace elements in centenarians were as follows: Al, 14.95; Ba, 2.68; Cd, 0.06; Cr, 0.59; Cu, 6.21); Fe, 19.37; Mo, 0.50; Pb, 4.64; Se, 0.37; Sr, 4.84; and Zn, 154.37. Data analysis found that only Cu and Zn concentrations show a normal distribution, and there is no significant difference between males and females in any element except Zn. However, the levels of Al, Cd, Cr, Fe, Mo, Pb decrease and the levels of Ba, Cu, Se, Sr, Zn increase with age in the centenarian cohort. Results also revealed that sufficient Zn and Se concentrations as well as low exposure to heavy metals pollution contribute to the longevity of centenarians. The results imply the possibility of manipulating trace element concentrations, especially Zn and Se concentrations in tissues, as a means for therapeutic modality in geriatric disease.

  8. Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water.

    PubMed

    Unal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R(2) = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community.

  9. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID

  10. Trace Element Loss in Urine and Effluent Following Traumatic Injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Purpose: Few data are available to establish recommendations for trace element intake during critical illness. This study quantified loss of several elements and assessed the adequacy of manganese and selenium in total parenteral nutrition (TPN). Methods: Men receiving TPN after trau...

  11. Environmental influence on trace element levels in human hair

    SciTech Connect

    Limic, N.; Valkovic, V.

    1986-12-01

    Trace element content of human hair depends on many factors. It has been shown by a large number of investigators that environmental factors play an important role. Elements from air particulates, water, shampoo or other media get incorporated into the hair structure. Here a model is proposed in which different contributions to trace element levels in human hair are factorized and the environmental contribution to the radial and longitudinal concentration profiles can be calculated. With the proper understanding of environmental contamination, hair analysis has better chances of being used as a diagnostic tool.

  12. The distribution of trace elements in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Knab, H.-J.

    1981-09-01

    Twelve carbonaceous chondrites, among them representatives of nearly all known petrologic types, were analyzed for twenty trace elements by spark source mass spectrography combined with the isotope dilution method. Data on different element groups (refractory, moderately volatile and volatile) show that the distribution of the trace elements in the carbonaceous chondrites, with the exception of Renazzo, can be well explained by Anders' two-component model. This is also valid for the highly metamorphosed CV5 chondrite Karoonda. Furthermore, it is observed that the Zr/Hf-ratios in the carbonaceous chondrites increase with increasing petrologic type, which is interpreted as the result of mixing two components with different Zr/Hf-ratios.

  13. A simple two-reactor method for predicting distribution of trace elements in combustion systems

    SciTech Connect

    Sandelin, K.; Backman, R.

    1999-12-15

    Utilization of fossil fuels in energy production results in emissions of pollutants. Development in combustion technology has, however, during recent years focused on decreasing emissions of particulates, sulfur, and nitrogen oxides. In addition, combustion also includes a potential risk for emission of trace metals. Due to the fact that many trace elements have been identified as having a negative effect on human health and the natural environment, they have received special attention from a regulatory point of view. This paper describes a simple method for predicting the fate of eight trace elements (As, Cd, Hg, Ni, Pb, Se, V, and Zn) in combustion processes. Using the fuel composition and power plant operating conditions, the trace element concentrations in various ashes and the flue gas are determined. The method, which is based on a global equilibrium approach, describes the overall behavior of the eight trace elements successfully. Distribution/partitioning of the trace elements between the bottom ash, fly ash, and the flue gases is described and compared to measured data from a full-scale coal-fired power plant burning bituminous coal. The outcome from the prediction is actual concentrations of trace elements in main power plant streams.

  14. Trace elements in coal. Environmental and health significance

    USGS Publications Warehouse

    Finkelman, R.B.

    1999-01-01

    Trace elements can have profound adverse effects on the health of people burning coal in homes or living near coal deposits, coal mines, and coal- burning power plants. Trace elements such as arsenic emitted from coal- burning power plants in Europe and Asia have been shown to cause severe health problems. Perhaps the most widespread health problems are caused by domestic coal combustion in developing countries where millions of people suffer from fluorosis and thousands from arsenism. Better knowledge of coal quality characteristics may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals in coal may help to predict the behavior of the potentially toxic trace metals during coal cleaning, combustion, weathering, and leaching.

  15. Major and trace elements in igneous rocks from Apollo 15.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Blanchard, D. P.; Haskin, L. A.; Telander, K.; Weiss, C.; Jacobs, J. W.

    1973-01-01

    The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow.

  16. Trace element measurement in Saliva by NAA and PIXE techniques

    SciTech Connect

    Hamidian, M.R.; Vahid Golpayegani, M.; Shojai, S. )

    1993-01-01

    The activity of salivary glands and the chemical and physical properties of saliva, especially in some illnesses in which the activity of salivary glands and the chemical and physical properties alter, sometimes have severe effects on sedimentation and tooth decay. Long-standing investigations have shown the relationship between salivary gland activity and saliva composition in dental carries. Many modern techniques have been employed to measure important elements in saliva. The major elements in saliva include sodium, potassium, calcium, magnesium, chlorine, phosphorus, iodine, and fluorine. It should be pointed out that the amount of minerals changes when the diet changes. The major constituent of saliva is water with a density of 1.007 g/cm[sup 3] in which 0.6% is solid, 0.3% organic material and 0.3% inorganic material. In addition to other effects, the acidity (pH) of saliva has a strong effect on tooth sedimentation. Type of work, degree of stress, and mental condition affect salivary gland activity. When the acidity of salivary fluid in the mouth and consequently over the teeth drops, sedimentation increases. In this paper, the results of trace element measurement in saliva are presented.

  17. Trace element content of chondritic cosmic dust: Volatile enrichments, thermal alterations, and the possibility of contamination

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.; Bajt, S.

    1993-01-01

    Trace element abundances in 51 chondritic Interplanetary Dust Particles (IDP's) were measured by Synchrotron X-Ray Fluorescence (SXRF). The data allow us to determine an average composition of chondritic IDP's and to examine the questions of volatile loss during the heating pulse experienced on atmospheric entry and possible element addition due to contamination during atmospheric entry, stratospheric residence, and curation.

  18. Apollo 16: a trace element perspective

    SciTech Connect

    Jovanovic, S.; Reed, G.W. Jr.

    1980-01-01

    A brief summary of some inferences regarding the Apollo 16 site that can be arrived at from incompatible element-geochemical data is presented. We use a set of elements not exploited to address some of the questions about the geology of the Apollo 16 site and the evolution of the highlands crust. Others have recognized the great difficulty in disentangling the complex history of the highlands on the basis of petrographic and compositional data. We have previously attempted to reconcile a relatively few interelement relationships with information from many other sources. The Apollo 16 site and the significance of Apollo 16 samples have been examined from the perspectives of data on Cl, P, Ru and Os for the most part and also, in a few cases, data on the heavy metals Pb, Tl and Bi.

  19. Ureilites - Trace element clues to their origin

    NASA Technical Reports Server (NTRS)

    Janssens, Marie-Josee; Hertogen, Jan; Wolf, Rainer; Ebihara, Mitsuru; Anders, Edward

    1987-01-01

    The question of the origin of ureilites was reexamined using new data obtained by radiochemical NAA for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Pd, Os, Rb, Re, Sb, Se, Te, Tl, U, and Zn in two vein separates from Haveroe and Kenna and a bulk sample of Kenna. Vein material was found to be enriched in all elements analyzed, except Zn, and to account for most of the carbon, noble gases, and, presumably, siderophiles in the meteorite. The results support the earlier interpretation of Higuchi et al. (1976) on the composition of ureilite parent body (similar to C3V or H3, but not C3O chondrites).

  20. Plutonium oxalate precipitation for trace elemental determination in plutonium materials

    DOE PAGES

    Xu, Ning; Gallimore, David; Lujan, Elmer; ...

    2015-05-26

    In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.

  1. Concentration of trace elements on branded cigarette in Malaysia

    NASA Astrophysics Data System (ADS)

    Azman, Muhammad Azfar; Yasir, Muhamad Samudi; Rahman, Irman Abdul; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd

    2016-01-01

    Tobacco is a plant that is used as a recreational drug since the beginning of its use by the Native Americans. Now with the development of the tobacco industry, smoking has become a norm for the public in Malaysia. Trace elements in plants are mostly due to the uptake processes from the soils into the roots of the plants. The concentration of the elements may also be influenced by the elements contained in the water and also fertilizers. This paper aim to analyze the concentration of the trace elements contained in the branded cigarettes sold in Malaysia by utilizing the neutron activation analysis. The tobaccos were taken out from the cigarettes. The collected samples were air dried and passed through 2 mm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia Triga Mark II reactor with a neutron flux of 2.0 x 1012 n cm-2 s-1. The samples then were analyzed using ORTEC Gamma Spectrometer a co-axial n-type HPGe detector with resolution of 2.0 keV at 1332 keV and relative efficiency of 20%. The data obtained could help in assessing the concentration of the trace elements that complying with the standard limitation dose proposed by World Health Organization (WHO).

  2. Concentration of trace elements on branded cigarette in Malaysia

    SciTech Connect

    Azman, Muhammad Azfar Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Yasir, Muhamad Samudi; Rahman, Irman Abdul

    2016-01-22

    Tobacco is a plant that is used as a recreational drug since the beginning of its use by the Native Americans. Now with the development of the tobacco industry, smoking has become a norm for the public in Malaysia. Trace elements in plants are mostly due to the uptake processes from the soils into the roots of the plants. The concentration of the elements may also be influenced by the elements contained in the water and also fertilizers. This paper aim to analyze the concentration of the trace elements contained in the branded cigarettes sold in Malaysia by utilizing the neutron activation analysis. The tobaccos were taken out from the cigarettes. The collected samples were air dried and passed through 2 mm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia Triga Mark II reactor with a neutron flux of 2.0 x 10{sup 12} n cm{sup -2} s{sup -1}. The samples then were analyzed using ORTEC Gamma Spectrometer a co-axial n-type HPGe detector with resolution of 2.0 keV at 1332 keV and relative efficiency of 20%. The data obtained could help in assessing the concentration of the trace elements that complying with the standard limitation dose proposed by World Health Organization (WHO)

  3. Quality reference values of trace elements in Brazilian organosols.

    PubMed

    Lima, Erica Souto Abreu; do Amaral Sobrinho, Nelson Moura Brasil; de Paiva, Filipe Soares Diniz; Coutinho, Izabella Bezerra; Pereira, Marcos Gervasio; Zonta, Everaldo

    2016-07-01

    Determination of the natural background levels of trace elements in organosols and the proposal of quality reference values (QRVs) for these elements are essential for monitoring these soils because they are fragile and subject to change more intensely and rapidly than other soil classes. Given the above information, the objectives of this study were to determine the QRVs of trace elements for organosols and to correlate some soil properties with the occurrence of these elements. Forty organic soil horizon samples from different regions of Brazil were selected to determine the pseudo-total content of trace elements. The samples were separated into three groups according to a cluster analysis. The soil variable Fe and C contents had the strongest influence on the trace element contents in the organosols and were therefore used in the group classification functions. QRVs were proposed according to the 75th percentiles of the groups. The classification functions are a suitable tool for the allocation of new samples into previously established groups and may potentially be used to estimate the degree of organosol degradation.

  4. Identifying sources of groundwater pollution using trace element signatures.

    PubMed

    Olmez, I; Hayes, M J

    1990-01-01

    A simple receptor modeling approach has been applied to groundwater pollution studies and has shown that marker trace elements can be used effectively in source identification and apportionment. Groundwater and source materials from one coal-fired and five oil-fired power plants, and one coal-tar deposit site have been analyzed by instrumental neutron activation analysis for more than 20 minor and trace elements. In one of the oil-fired power plants, trace element patterns indicated a leak from the hazardous waste surface impoundments owing to the failure of a hypolon liner. Also, the extent and spatial distribution of groundwater contamination have been determined in a coal-tar deposit site.

  5. Trace element determination in vitamin E using ICP-MS.

    PubMed

    Ponce De León, Claudia A; Montes Bayón, Maria; Caruso, Joseph A

    2002-09-01

    Vitamin E supplements are either isolated from plants sources or prepared synthetically. Isolation from plants includes eight different tocopherol structures. Vitamin E synthesis includes seven different stereoisomers, which involves the use of several catalysts that may lead to trace element contamination in the vitamin. The use of ICP-MS is an ideal technique for detecting these trace elements. However, the oily nature of the samples requires the development of a sample preparation methodology. This study was done upon the request of synthetic vitamin E manufacturers to test the trace metal purity of their samples. In this work, the comparison of an acid microwave digestion and emulsion preparation is discussed. Cromium, nickel, tin and lead were found in the synthetic vitamin E analyzed and 200, 60, 9 and 45 ppb were the concentrations found respectively for these elements. Digesting the samples gives slightly lower detection limits compared to the emulsion preparation.

  6. Distribution and material balances of trace elements during coal cleaning

    SciTech Connect

    Lancet, M.S.

    1993-12-31

    A material balance was performed around a coal preparation plant as part of a trace element assessment program being conducted by CONSOL Inc. (CONSOL). The purpose of this program is to follow the fate of selected elements during mining, cleaning, combustion and waste disposal. The material balance reported here was performed at a time when the plant was operating entirely on freshly mined (as opposed to stockpiled) coal . All major inlet and outlet streams were sampled and analyzed. Using the design plant flows, closures of balances of the major components (ash, carbon, hydrogen, nitrogen and sulfur) were between 81 and 107%. Balance closures for the major coal ash elements (Na, K, Mg, Ca, Fe, Ti, P, Si, and Al) ranged from 73 to 82% based on the design flows, while balance closures for the trace elements (As, Be, Cd, Cr, F, Hg, Mn, Ni, Pb, Sb and Se) averaged 89 {+-} 20%, excluding Be, which was below the detection limits in three of the five streams. Most of the balance closures were significantly improved by adjusting the flow rates based on a least-squares fit of the ash, carbon, total sulfur, pyritic sulfur, Fe{sub 2}O{sub 3}, Al{sub 2}O{sub 3} and SiO{sub 2} data. Based on the adjusted flow rates, the major component balance closures were between 94 and 100%, the major inorganic element balance closures were 90 to 100%, and the trace element balance closures, excluding Be, averaged 103 {+-} 23%. Most of the trace elements are associated with the mineral components and are removed from the raw coal in approximately the same proportion as the ash. The only trace elements that are present in the waste water at concentrations more than double those in the feed water are As, Pb, and Sb, and these are discharged at levels 5--20 times lower than those allowed by Federal primary drinking water standards.

  7. Chemical studies of L chondrites. II - Shock-induced trace element mobilization

    NASA Technical Reports Server (NTRS)

    Walsh, T. M.; Lipschutz, M. E.

    1982-01-01

    Data for 13 trace elements in 14 L4-6 chondrites of established shock history are reported and discussed. These data are combined with data for an additional 13 L4-6 chondrites to delineate the full extent of losses by shock. Trace element contents vary with petrologic type, S/Fe subgroup, and shock history, the last dominating strongly. Absolute abundances and interelement relationships for the six or seven most mobile elements vary with degree of shock-loading established from mineralogic and petrologic study. Shock-heating, previously known to have affected radiogenic Ar-40 and/or He-4 in meteorites but not other elements, apparently was at least as effective as other open-system processes in establishing mobile trace element contents of L chondrites and probably others.

  8. [Determination of trace elements in ancient Cheshi human costa by ICP-AES].

    PubMed

    Jin, Hai-yan; Zhang, Quan-chao; Zhu, Hong

    2004-02-01

    In recent years, the study on palaeodiet is an important research in the international archaeological field. Trace elements in human bones can supply a lot of valuable information to reconstruct ancient diet. In this study, The trace elements in Bronze age Cheshi human costa from Chubeixi cemetery in shanshan, Xinjiang were determined by ICP-AES. The sample was dissolved by HNO3 and HCl. Under the optimum conditions, eight elements can be determined simultaneously. The recoveries of the method are in the range of 87.4%-106.6%, and RSDs are in the range of 0.5%-3.3%. The method is simple, rapid, precise and convenient to operate. The results would be helpful for research in archaeology. This analysis established Xinjiang' s consult system of trace elements analysis for ancient human bones. The effects of various concentrations of acid solution on analysis results, the interference of coexistent elements, standard addition recovery, and precision of the method were investigated.

  9. Covariance biplot analysis of trace element concentrations in urinary stones.

    PubMed

    Wandt, M A; Underhill, L G

    1988-06-01

    The covariance biplot, a relatively new technique for displaying multivariate data, was applied to trace element contents and compound concentrations of urinary stones. The biplot is demonstrated to give a compact graphical representation of the multivariate data with interpretations in terms of familiar statistical concepts such as correlations and standard deviations. It displays strong correlations between various trace elements like Zn and Sr, and Sr and Na. The biplot also suggests concentration relationships which could play a hitherto unknown role in the genesis of calculi. It is shown to help in the interpretation of analytical results as well as in exposing erroneous or incomplete analyses.

  10. [Trace elements in neoplasm tissues of the larynx].

    PubMed

    Niedzielska, G; Caruk, K; Pasternak, K

    2000-01-01

    Trace elements are essential for the proper functioning of the body. Changes in bioelements concentration were observed in numerous pathologic conditions. The aim of this study was evaluation of trace elements concentration in neoplasmatic tissues of the larynx. The study comprised 52 patients operated for cancer of the larynx. Levels of magnesium, zinc and copper in neoplasmatic tissues of the larynx were determined using atomic absorbtion spectrophotometry. The results were compared with the control group. Elevated levels of magnesium were observed in neoplasmatic tissues of the larynx. Zinc and copper levels were lowered in comparison with the control group. The results were statistically analysed.

  11. Mercury and trace elements in crayfish from northern California

    USGS Publications Warehouse

    Hothem, R.L.; Bergen, D.R.; Bauer, M.L.; Crayon, J.J.; Meckstroth, A.M.

    2007-01-01

    We collected two species of crayfish, Pacifastacus leniusculus and Procambarus clarkii, from Cache and Putah Creeks, California, and analyzed them for mercury and trace elements. Trace elements were higher in carcasses in 40 cases, higher in tails in 5 cases, and not different in 35 cases; no concentration exceeded levels considered harmful. Mercury concentrations were similar among sites, with no overall sex or species effect in tails. Mercury and methylmercury concentrations were higher in tails at all sites. Methylmercury concentrations in crayfish tails (0.156-0.256 ??g/g) exceeded concentrations reported in health advisories for consumption of fish and crayfish from these watersheds. ?? Springer Science+Business Media, LLC 2007.

  12. Mercury and trace elements in crayfish from northern california.

    PubMed

    Hothem, Roger L; Bergen, Darrin R; Bauer, Marissa L; Crayon, John J; Meckstroth, Anne M

    2007-12-01

    We collected two species of crayfish, Pacifastacus leniusculus and Procambarus clarkii, from Cache and Putah Creeks, California, and analyzed them for mercury and trace elements. Trace elements were higher in carcasses in 40 cases, higher in tails in 5 cases, and not different in 35 cases; no concentration exceeded levels considered harmful. Mercury concentrations were similar among sites, with no overall sex or species effect in tails. Mercury and methylmercury concentrations were higher in tails at all sites. Methylmercury concentrations in crayfish tails (0.156-0.256 microg/g) exceeded concentrations reported in health advisories for consumption of fish and crayfish from these watersheds.

  13. Trace element analysis in rheumatoid arthritis under chrysotheraphy

    NASA Astrophysics Data System (ADS)

    Lecomte, R.; Paradis, P.; Monaro, S.; Barrette, M.; Lamoureux, G.; Menard, H.-A.

    1981-03-01

    Proton induced X-ray emission (PIXE) analysis is used to measure trace element concentrations in blood serum from patients with rheumatoid arthritis. Initially trace element contaminations in blood-collecting and storing devices are determined. Then mean values and nyctemeral cycles are measured both in normal subjects and patients with rheumatoid arthritis and other similar pathologies. Abnormal concentrations of Cu and Zn and anomalies in the nyctemeral cycle are found in the patients. In the second phase of the project, the special case of chrysotherapeutically treated (gold salt treatment) rheumatoid arthritis patients is studied for extended periods of time (up to 53 weeks).

  14. Long-term anaerobic digestion of food waste stabilized by trace elements

    SciTech Connect

    Zhang Lei; Jahng, Deokjin

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.

  15. Interlaboratory variability in trace element analysis

    SciTech Connect

    Boyer, K.W.; Horwitz, W.; Albert, R.

    1985-02-01

    The precision characteristics of 18 analytical methods for metals and other elements subjected to interlaboratory collaborative studies over the last 10 years by the Association of Official Analytical Chemists (AOAC) were examined. Outlier removal and statistical calculations were standardized by the use of a computer program, FDACHEMIST. Most of the studies, representing a variety of analytes, matrices, and measurement techniques over a concentration (C) range of 100 g/kg to 10 ..mu..g/kg, were distributed about a curve defined by the equation, among-laboratories relative standard deviation, %RSD/sub x/ = 2/sup 1-0.5 log C/, where C is expressed as a decimal fraction, e.g., 1 ppm = 10/sup -6/, regardless of analyte, matrix, or measurement technique. The within-laboratory relative standard deviation, RSD/sub o/ is usually 1/2-2/3 of RSD/sub x/. Positive deviations from this curve with decreasing concentration are explainable by heterogeneity of the parent material, free choice of method of analysis, or a concentration below the limit of determination. The presence of greater than 20% outlying laboratory results or RSD/sub x/ degenerating at greater than the ''normal'' rate with decreasing concentration is taken to indicate that the method is not applicable at or below the level generating the imprecise data. 19 references, 10 figures, 2 tables.

  16. Trace element levels in the experimental peritonitis.

    PubMed

    Konukoglu, D; Ercan, M; Ziylan, E

    2001-01-01

    Electron transfer from iron or copper ions to oxygen is an important example of cellular free radical initiation. Oxygen derived free radicals have been implicated as mediators of cellular injury in several model systems. To evaluate the importance of iron, copper and zinc levels on lipid peroxidation in peritonitis, we measured peritoneum malondialdehyde (MDA) as a marker of lipid peroxidation, zinc, copper, and iron levels during an animal model of intraperitoneal sepsis. Additionally the effects of the free radical scavenger alpha-tocopherol administration was studied. The peritoneum MDA, iron, copper and zinc levels were increased after induction of peritonitis with Escherichia Coli. The treatment with alpha-tocopherol was decreased the peritoneum MDA, iron and copper levels significantly, except the zinc level (p < 0.001, p < 0.001, p < 0.001, respectively). Additionally the alpha-tocopherol treatment for three days prior to injection of E.Coli more decreased MDA, copper and iron levels than that of the treatment with alpha-tocopherol at the time of injection of E. Coli (p < 0.001, p < 0.001, p<0.001, respectively). Our results indicated that copper, iron and zinc had important effects on peroxidation events in E. Coli induced peritonitis, and alpha-tocopherol treatment can improve the oxidant status.

  17. Cryptic trace-element alteration of Anorthosite, Stillwater complex, Montana

    USGS Publications Warehouse

    Czamanske, G.K.; Loferski, P.J.

    1996-01-01

    Evidence of cryptic alteration and correlations among K, Ba, and LREE concentrations indicate that a post-cumulus, low-density aqueous fluid phase significantly modified the trace-element contents of samples from Anorthosite zones I and II of the Stillwater Complex, Montana. Concentrations of Ba, Ca, Co, Cr, Cu, Fe, Hf, K, Li, Mg, Mn, Na, Ni, Sc, Sr, Th, Zn, and the rare-earth elements (REE) were measured in whole rocks and plagioclase separates from five traverses across the two main plagioclase cumulate (anorthosite) zones and the contiguous cumulates of the Stillwater Complex in an attempt to better understand the origin and solidification of the anorthosites. However, nearly the entire observed compositional range for many trace elements can be duplicated at a single locality by discriminating between samples rich in oikocrystic pyroxene and those which are composed almost entirely of plagioclase and show anhedral-granular texture. Plagioclase separates with high trace-element contents were obtained from the pyroxene-poor samples, for which maps of K concentration show plagioclase grains to contain numerous fractures hosting a fine-grained, K-rich phase, presumed to be sericite. Secondary processes in layered intrusions have the potential to cause cryptic disturbance, and the utmost care must be taken to ensure that samples provide information about primary processes. Although plagioclase from Anorthosite zones I and II shows significant compositional variation, there are no systematic changes in the major- or trace-element compositions of plagioclase over as much as 630 m of anorthosite thickness or 18 km of strike length. Plagioclase in the two major anorthosite zones shows little distinction in trace-element concentrations from plagioclase in the cumulates immediately below, between, and above these zones.

  18. [Blood trace elements content in adolescents in an industrial town].

    PubMed

    Namazbaeva, Z I; Amanzhol, I A; Shibuchikova, Zh B; Sabirov, Zh B; Zhumabekova, S Zh

    2013-01-01

    A cohort blind study of blood trace elements content in children-adolescents aged 14-16 years old, residing in an industrial town, where large industrial enterprises of ferrous and non-ferrous metallurgy have been functioning for long periods, has been performed There was established a lack of vital important element selenium in the blood, that causes the accumulation of toxic metals, cadmium and mercury.

  19. Relative trace-element concern indexes for eastern Kentucky coals

    SciTech Connect

    Collins, S.L. )

    1993-08-01

    Coal trace elements that could affect environmental quality were studied in 372 samples (collected and analyzed by the Kentucky Geological Survey and the United States Geological Survey) from 36 coal beds in eastern Kentucky. Relative trace-element concern indexes are defined as the weighted sum of standarized (substract mean; divide by standard deviation) concentrations. Index R is calculated from uranium and thorium, index 1 from elements of minor concern (antimony, barium, bromine, chloride, cobalt, lithium, manganese, sodium, and strontium), index 2 from elements of moderate concern (chromium, copper, fluorine, nickel, vanadium, and zinc), and index 4 from elements of greatest concern (arsenic, boron, cadmium, lead, mercury, molybdenum, and selenium). Numericals indicate weights, except that index R is weighted by 1, and index 124 is the unweighted sum of indexes 1, 2, and 4. Contour mapping indexes is valid because all indexes have nonnugget effect variograms. Index 124 is low west of Lee and Bell counties, and in Pike County. Index 124 is high in the area bounded by Boyd, Menifee, Knott, and Martin counties and in Owsley, Clay, and Leslie counties. Coal from some areas of eastern Kentucky is less likely to cause environmental problems than that from other areas. Positive correlations of all indexes with the centered log ratios of ash, and negative correlations with centered log ratios of carbon, hydrogen, nitrogen, oxygen, and sulfur indicate that trace elements of concern are predominantly associated with ash. Beneficiation probably would reduce indexes significantly.

  20. Toxic Trace Elements in the Hair of Children with Autism

    ERIC Educational Resources Information Center

    Fido, Abdullahi; Al-Saad, Samira

    2005-01-01

    Excess or deficiency of natural trace elements has been implicated in the etiology of autism. This study explores whether concentration levels of toxic metals in the hair of children with autism significantly differ from those of age- and sex-matched healthy controls. In-hair concentration levels of antimony, uranium, arsenic, beryllium, mercury,…

  1. Rare earths and other trace elements in Luna 16 soil.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Haskin, L. A.

    1972-01-01

    An analysis has been made of four small samples of material brought to earth by the Luna 16 mission, with the aim to determine rare earths and other trace elements in these samples. The analytical results are tabulated, and the rare earth abundances are compared with the average for chondrites. A comparison is also made with the results of similar analyses of Apollo samples.

  2. Transformation of substances containing trace elements in coal combustion

    NASA Astrophysics Data System (ADS)

    Samuilov, E. V.; Lebedeva, L. N.; Faminskaya, M. V.; Pokrovskaya, L. S.

    2010-12-01

    A new complex approach to simulation of phase and chemical transformation of substances containing trace elements in coal burning units is proposed; this approach unites capabilities of geochemistry, chemical thermodynamics, and physical-chemical kinetics. Processes of transformation of these substances in the flow of combustion products of Moscow basin coals along the flow path of the P-59 boiler are studied.

  3. An inventory of trace elements inputs to French agricultural soils.

    PubMed

    Belon, E; Boisson, M; Deportes, I Z; Eglin, T K; Feix, I; Bispo, A O; Galsomies, L; Leblond, S; Guellier, C R

    2012-11-15

    The inputs of ten trace elements (As, Cd, Cu, Cr, Hg, Mo, Ni, Pb, Se, Zn) to French agricultural soils have been assessed. The six main sources considered were: pesticides, mineral fertilizers, animal manure, liming materials, sludge and composts and atmospheric deposition. Data were collected to compute inputs at both national and regional (departmental) scales. The inventory methodology is based on two principles: data are traceable and easy to update. At a national scale, the inventory showed that trace elements inputs can be ranked: Zn≫Cu≫Cr>Pb>Ni>As=Mo>Se>Cd>Hg. Animal manure, mineral fertilizers and pesticides are the predominant sources of TEs. These results are globally in agreement with literature data though atmospheric deposition is shown to be lower than in more industrial countries such as China and United Kingdom where similar surveys were conducted. The inputs of trace elements vary strongly between regions in relation with agricultural activities. This inventory (and the related database) provides basis for developing and monitoring policies to control and reduce trace elements contamination of agricultural soils at both national and regional (departmental) scales.

  4. Improved electron probe microanalysis of trace elements in quartz

    USGS Publications Warehouse

    Donovan, John J.; Lowers, Heather; Rusk, Brian G.

    2011-01-01

    Quartz occurs in a wide range of geologic environments throughout the Earth's crust. The concentration and distribution of trace elements in quartz provide information such as temperature and other physical conditions of formation. Trace element analyses with modern electron-probe microanalysis (EPMA) instruments can achieve 99% confidence detection of ~100 ppm with fairly minimal effort for many elements in samples of low to moderate average atomic number such as many common oxides and silicates. However, trace element measurements below 100 ppm in many materials are limited, not only by the precision of the background measurement, but also by the accuracy with which background levels are determined. A new "blank" correction algorithm has been developed and tested on both Cameca and JEOL instruments, which applies a quantitative correction to the emitted X-ray intensities during the iteration of the sample matrix correction based on a zero level (or known trace) abundance calibration standard. This iterated blank correction, when combined with improved background fit models, and an "aggregate" intensity calculation utilizing multiple spectrometer intensities in software for greater geometric efficiency, yields a detection limit of 2 to 3 ppm for Ti and 6 to 7 ppm for Al in quartz at 99% t-test confidence with similar levels for absolute accuracy.

  5. Trace elements removal from water using modified activated carbon.

    PubMed

    Campos, V; Buchler, P M

    2008-02-01

    This paper present the possible alternative options for the remove of trace elements from drinking water supplies in the trace. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causing various adverse effects on living bodies. The performance of three filter bed methods was evaluated in the laboratory. Experiments were conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe3C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon, powder carbon steel and ceramic spheres in the ion-sorption columns as a cleaning process. The modified powdered block carbon is a satisfactory and economical sorbent for trace elements (arsenite and chromate) dissolved in water due to its low unit cost of about $23 and compatibility with the traditional household filtration system.

  6. Trace Element Abundances in Extraterrestrial Apatite and Merrillite

    NASA Astrophysics Data System (ADS)

    Ward, D.; Bischoff, A.; Roszjar, J.; Berndt, J.; Whitehouse, M. J.

    2016-08-01

    The trace element abundances (Sc, Ti, V, Cr, Mn, Co, As, Rb, Sr, Y, Zr, Nb, Ba, Hf, Ta, Pb, Th, U, as well as the REE) of 133 apatite and 163 merrillite grains from 24 meteorites, covering 9 different classes were analyzed by LA-ICP-MS and SIMS.

  7. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    SciTech Connect

    Qian, J.H.; Zayed, A.; Zhu, Y.L.; Yu, M.; Terry, N.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of the various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.

  8. Association of trace elements with iron oxides during rock weathering

    SciTech Connect

    Koons, R.D.; Helmke, P.A.; Jackson, M.L.

    1980-01-01

    The association of trace elements with Fe oxides during the early stages of rock weathering was determined by analysis of fresh diabase and granite rocks, their associated whole and size-separated saprolites, and goethite by neutron activation and X-ray fluorescence. The same elements are found to be associated with Fe oxides when the results are interpreted by analysis of correlation, by the distribution of elements in the various size fractions by the effects of removing free Fe oxides, and by direct analysis of geothite from the saprolite. The elements Co, Cr, Mn, Sc, Th, U, Zn, and the heavy rare-earth elements during the weathering of diabase, and As, Co, Cr, Sc, Th, U, Zn, and the heavy rare-earth elements during the weathering of granite are associated with Fe oxides. The concentrations of Mn are too low in this system to separate the effects of Mn oxides from those of Fe oxides.

  9. Toxic and trace elements in tobacco and tobacco smoke.

    PubMed Central

    Chiba, M.; Masironi, R.

    1992-01-01

    While the harmful health effects of carbon monoxide, nicotine, tar, irritants and other noxious gases that are present in tobacco smoke are well known, those due to heavy metals and other toxic mineral elements in tobacco smoke are not sufficiently emphasized. Tobacco smoking influences the concentrations of several elements in some organs. This review summarizes the known effects of some trace elements and other biochemically important elements (Al, As, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Po-210, Se, and Zn) which are linked with smoking. Cigarette smoking may be a substantial source of intake of these hazardous elements not only to the smoker but also, through passive smoking, to nonsmokers. The adverse health effects of these toxic elements on the fetus through maternal smoking, and on infants through parental smoking, are of special concern. PMID:1600587

  10. Trace and minor elements in sphalerite from metamorphosed sulphide deposits

    NASA Astrophysics Data System (ADS)

    Lockington, Julian A.; Cook, Nigel J.; Ciobanu, Cristiana L.

    2014-12-01

    Sphalerite is a common sulphide and is the dominant ore mineral in Zn-Pb sulphide deposits. Precise determination of minor and trace element concentrations in sulphides, including sphalerite, by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry (LA-ICP-MS) is a potentially valuable petrogenetic tool. In this study, LA-ICP-MS is used to analyse 19 sphalerite samples from metamorphosed, sphalerite-bearing volcanic-associated and sedimentary exhalative massive sulphide deposits in Norway and Australia. The distributions of Mn, Fe, Co, Cu, Ga, Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi are addressed with emphasis on how concentrations of these elements vary with metamorphic grade of the deposit and the extent of sulphide recrystallization. Results show that the concentrations of a group of trace elements which are believed to be present in sphalerite as micro- to nano-scale inclusions (Pb, Bi, and to some degree Cu and Ag) diminish with increasing metamorphic grade. This is interpreted as due to release of these elements during sphalerite recrystallization and subsequent remobilization to form discrete minerals elsewhere. The concentrations of lattice-bound elements (Mn, Fe, Cd, In and Hg) show no correlation with metamorphic grade. Primary metal sources, physico-chemical conditions during initial deposition, and element partitioning between sphalerite and co-existing sulphides are dominant in defining the concentrations of these elements and they appear to be readily re-incorporated into recrystallized sphalerite, offering potential insights into ore genesis. Given that sphalerite accommodates a variety of trace elements that can be precisely determined by contemporary microanalytical techniques, the mineral has considerable potential as a geothermometer, providing that element partitioning between sphalerite and coexisting minerals (galena, chalcopyrite etc.) can be quantified in samples for which the crystallization temperature can be independently

  11. Correlation of trace elements in hair with colon cancer

    SciTech Connect

    Kwiatek, W.M.; Cholewa, M.; Kajfosz, J.; Jones, K.W.; Shore, R.E.; Redrick, A.L.

    1986-01-01

    The trace element content of 116 hair samples from patients with colon cancer and from referent series of patients who had a variety of other diseases were measured using proton-induced x-ray emission (PIXE). The patients had been on largely uncontrolled diets, and the interest was whether there were differences in trace element concentrations attributable to the effects of colon cancer. The concentrations of K, Ca, Mn, Fe, Cu, Zn, Se, Br, and Rb were determined using a beam of 2.5-MeV protons. Minimum detectable limits (MDL) of 0.3 ppM were obtained for Zn and Se. Cluster analysis of the data set did not reveal any significant differences between the cancer and control groups. Mean values and ranges obtained for the elemental concentrations show good agreement with other published determinations. 20 refs., 3 figs., 3 tabs.

  12. Trace element load in cancer and normal lung tissue

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś , A.; Braziewicz, J.; Banaś , D.; Majewska, U.; Góź Dź , S.; Urbaniak, A.

    1999-04-01

    Samples of malignant and benign human lung tissues were analysed by two complementary methods, i.e., particle induced X-ray emission (PIXE) and total reflection X-ray fluorescence (TRXRF). The concentration of trace elements of P, S, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Se, Sr, Hg and Pb was determined in squamous cancer of lung tissue from 65 people and in the benign lung tumour tissue from 5 people. Several elements shows enhancement in cancerous lung tissue of women in comparison to men, i.e., titanium show maximum enhancement by 48% followed by Cr (20%) and Mn (36%). At the same time trace element concentration of Sr and Pb are declaimed by 30% and 20% in women population. Physical basis of used analytical methods, experimental set-up and the procedure of sample preparation are described.

  13. Trace element analysis by PIXE in several biomedical fields

    NASA Astrophysics Data System (ADS)

    Weber, G.; Robaye, G.; Bartsch, P.; Collignon, A.; Beguin, Y.; Roelandts, I.; Delbrouck, J. M.

    1984-04-01

    Since 1980 in the University of Liége trace element analysis by PIXE has been developed in several directions, among these: the elemental composition of lung parenchyma, hilar lymph nodes, blood content in hematological disorders and renal insufficiency. The content in trace elements of lung tumor and surrounding tissue is measured and compared to similar content previously obtained on unselected patients of comparable ages. The normalization of the bromine deficiency observed in hemodialized patients is achieved by using a dialyzing bath doped with NaBr in order to obtain a normal bromine level of 5.7 μg/ml. The content of Cu, Zn, Br and Se in blood serum from more than 100 patients suffering from malignant hemopathy has been measured. The results are compared with a reference group. These oligoelements have also been measured sequentially for patients under intensive chemotherapy in acute myeloid leukemia.

  14. A review of radiologically important trace elements in human bones.

    PubMed

    Tandon, L; Iyengar, G V; Parr, R M

    1998-08-01

    The authors recently compiled and reviewed the literature for minor and trace elements in human bones and teeth as a part of an International Atomic Energy Agency (IAEA) study. Various aspects of elemental composition, analytical methodologies, quality assurance and quality control methods for hard tissue analysis were evaluated. Important data on selected radiologically important elements (Cs, Pu, Ra, Sr, Th, and U) in calcified tissue from various countries are discussed. The results of this compilation study suggest a need for new reference materials with matrix properties similar to bones including one with separated cortical and trabecular segments.

  15. Trace element analysis of coal by neutron activation

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  16. Trace element analysis of coal by neutron activation.

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  17. Trace-element abundances in several new ureilites

    NASA Technical Reports Server (NTRS)

    Boynton, William V.; Hill, Dolores H.

    1993-01-01

    Four new ureilites are analyzed for trace-element abundances. Frontier Mountain (FRO) 90054 is an augite-rich ureilite and has high rare earth element (REE) abundances with a pattern expected of augite. FRO 90036 and Acfer 277 have REE patterns similar to the V-shape pattern of other ureilites. Nuevo Mercurio (b) has very high REE abundances, but they look like they are due to terrestrial alteration. The siderophile-element pattern of these ureilites are similar to those of known ureilites.

  18. PIXE measurement applied to trace elemental analysis of human tissues

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Matsugi, E.; Miyasaki, K.; Yamagata, T.; Inoue, M.; Ogata, H.; Shimoura, S.

    1987-03-01

    PIXE measurement was applied for trace elemental analyses of 40 autoptic human kidneys. To investigate the reproducibility of the PIXE data, 9 targets obtained from one human liver were examined. The targets were prepared by wet-digestion using nitric and sulfuric acid. Yttrium was used as an internal standard. The extracted elemental concentrations for K, Fe, Cu, Zn, and Cd were in reasonable agreement with those obtained by atomic absorption spectrometry (AAS) and flame photometry (FP). Various correlations among the elements K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Rb, and Cd were examined individually for the renal cortex and renal medulla.

  19. Preconcentration and Speciation of Trace Elements and Trace-Element Analogues of Radionuclides by Neutron Activation Analysis

    SciTech Connect

    Chatt, A.

    1999-11-14

    We have developed a number of preconcentration neutron activation analysis (PNAA) methods in our laboratory for the determination of trace elements in a variety of complex sample matrices. We developed a number of cocrystallization and coprecipitation methods for the determination of trace elements in water samples. We developed several methods for the determination of I in foods and diets. We have developed a number of PNAA methods in our laboratory We determined As and Sb in geological materials and natural waters by coprecipitation with Se and Au in silicate rocks and ores by coprecipitation with Te followed by NAA. We developed an indirect NAA method for the determination of B in leachates of borosilicate glass. We have been interested in studying the speciation of Am, Tc, and Np in simulated vitrified groundwater leachates of high-level wastes under oxid and anoxic conditions using a number of techniques. We then used PNAA methods to study speciation of trace-element analogues of radionuclides. We have been able to apply biochemical techniques and NAA for the separation, preconcentration, and characterization of metalloprotein and protein-bound trace-element species in subcellular fractions of bovine kidneys. Lately, we have concentrated our efforts to develop chemical and biochemical methods in conjunction with NAA, NMR, and MS for the separation and identification of extractable organohalogens (EOX) in tissues of beluga whales, cod, and northern pink shrimp

  20. Imaging trace element distributions in single organelles and subcellular features

    SciTech Connect

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek

    2016-02-25

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators.We find it could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.

  1. Imaging trace element distributions in single organelles and subcellular features

    PubMed Central

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek

    2016-01-01

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies. PMID:26911251

  2. Trace elements in 59 mostly highland moon rocks

    NASA Technical Reports Server (NTRS)

    Ebihara, Mitsuru; Wolf, Rainer; Warren, Paul H.; Anders, Edward

    1992-01-01

    New chemical analyses for up to 26 trace elements, including seldom-determined highly siderophile elements Ir, Os, Re, Au, Pd, and Ge, for 59 lunar samples are reported. Most of these samples are polymict breccias from Apollo 16. Remarkably few have Group 7 (extremely low Au/Ir) meteoritic components. Several samples have uncommonly high Au/(Ir + Re) ratios, even higher than group 1L. Volatile-element enrichments are found in several fragments from rusty rock 66095. A matrix sample from fragmental breccia 60639 shows Cd and In enrichments, also observed previously in samples of anorthosite and mare basalt from the same breccia. Evidently, for these highly labile elements, chemical exchange has affected clasts that for most other elements are pristine.

  3. Imaging trace element distributions in single organelles and subcellular features

    NASA Astrophysics Data System (ADS)

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek

    2016-02-01

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.

  4. [Analysis study of trace elements in abalone and sea cucumber].

    PubMed

    Wang, Ying; Kang, Wan-Li; Xin, Shi-Gang; Xing, Wan-Quan

    2009-02-01

    Abalone and sea cucumbers are useful, which is related with trace elements in them. In the present paper, using high-pressure sealed nitrifying pots for digestion of samples, Orthogonal test was applied to the determination of 15 kinds of trace elements in abalone and sea cucumber such as Fe, Ca, Mg, Zn, Sr, Se, Hg, Cd etc by ICP-AES. The orthogonal table of L16 (4(4)) and experiment programs were designed. More information could be obtained with a small number of experimental times by combining chemistry with mathematical statistics, and the best experimental operation conditions could be chosen by square-error analysis. The method was simple, rapid, highly sensitive and accurate, but also features multi-element determination at the same time, with little environment pollution. The recovery rate of the method is in the range of 91.0%-110.0%, and relative standard deviations is less than 3.55%. The experimental results showed that both abalone and sea cucumber are of nutritional value of seafood, and are rich in Fe, Ca, Mg, Zn, Sr and other kinds of trace elements helpful to the human body. At the same time, because of severe environment pollution, seawater pollution should not be neglected. When seawater was polluted, hazardous substances were deposited in abalone or sea cucumber body with high levels of harmful heavy metals. Therefore, it should be a reminder that people must be careful to eat them.

  5. Trace element distribution and oil yield data from the parachute creek member of the green river formation, colorado

    NASA Astrophysics Data System (ADS)

    Sullivan, Patrick J.; Donovan, Robert C.

    1987-02-01

    The determination of trace element concentrations in oil shale before mining and retorting is required for proper solid-waste management planning. Using routine Fischer assay oil yield data collected during resource characterization as indicators of potential trace element concentrations could lead to a standard method of identifying strata containing high trace element levels. In order to determine a correlation between trace element concentrations and oil yield, shale samples were selected from four statigraphic zones of the Parachute Creek Member of the Green River Formation for analysis. All samples were analyzed for total elemental concentrations, mineralogy, and Fischer assay oil yield. The results of these analyses demonstrated that the Mahogany zone shales contain significantly greater trace element concentrations (antimony, arsenic, cadmium, chromium, copper, lead, lithium, mercury, molybdenum, nickel, selenium, silver, and vanadium) than the other three shale zones. These high trace element concentrations have been identified within well-defined interbedded tuff deposits in the Mahogany zone. In addition, all trace elements evaluated, except boron, show either increasing or decreasing concentrations as oil yield increases within all oil shale zones. With an increased number of analyses of existing oil shale cores, oil yield data will be correlated to specific stratigraphic units containing high trace element concentrations.

  6. Bloodletting therapy in hemochromatosis: Does it affect trace element homeostasis?

    PubMed

    Bolann, Bjørn J; Distante, Sonia; Mørkrid, Lars; Ulvik, Rune J

    2015-01-01

    Hemochromatosis is the most common hereditary disorder in the Nordic population, if left untreated it can result in severe parenchymal iron accumulation. Bloodletting is mainstay treatment. Iron and trace elements partially share cellular uptake and transport mechanisms, and the aim of the present study was to see if bloodletting for hemochromatosis affects trace elements homeostasis. We recruited patients referred for diagnosis and treatment of hemochromatosis, four women and 22 men 23-68 years of age. Thirteen were C282Y homozygote, one was C282Y heterozygote, three were H63D homozygote, seven were compound heterozygote and two had none of the mutations above. Iron and liver function tests were performed; serum levels of trace elements were measured using inductively coupled plasma mass spectrometry. Results before the start of treatment and after normalization of iron parameters were compared. On completion of the bloodlettings the following average serum concentrations increased: Co from 5.6 to 11.5 nmol/L, serum Cu 16.2-17.6 μmol/L, Ni increased from 50.0 to 52.6 nmol/L and Sb from 13.2 to 16.3 nmol/L. Average serum Mn concentration declined from 30.2 to 28.3 nmol/L. All changes were statistically significant (by paired t-test). B, Ba, Cs, Mo, Se, Sr and Zn were not significantly changed. We conclude that bloodlettings in hemochromatosis lead to changes in trace element metabolism, including increased absorption of potentially toxic elements.

  7. Movement of Trace Elements During Residence in the Antarctic Ice: a Laboratory Simulation

    NASA Technical Reports Server (NTRS)

    Strait, Melissa M.

    1991-01-01

    Recent work has determined that differences in the trace element distribution between Antarctic eucrites and non-Antarctic eucrites may be due to weathering during residence in the ice, and samples that demonstrate trace element disturbances do not necessarily correspond to eucrites that appear badly weathered to the naked eye. This study constitutes a preliminary test of the idea that long-term residence in the ice is the cause of the trace element disturbances observed in the eucrites. Samples of a non-Antarctic eucrite were leached in water at room temperature conditions. Liquid samples were analyzed for rare earth element abundances using ion chromatography. The results for the short-term study showed little or no evidence that leaching had occurred. However, there were tantalizing hints that something may be happening. The residual solid samples are currently being analyzed for the unleached trace metals using instrumental neutron activation analysis and should show evidence of disturbance if the chromatography clues were real. In addition, another set of samples continues to be intermittently sampled for later analysis. The results should give us information about the movement of trace elements under our conditions and allow us to make some tentative extrapolations to what we observe in actual Antarctic eucrite samples.

  8. Spinel from Apollo 12 Olivine Mare Basalts: Chemical Systematics of Selected Major, Minor, and Trace Elements

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Karner, J. M.; Shearer, C. K.; Spilde, M. N.

    2002-01-01

    Spinels from Apollo 12 Olivine basalts have been studied by Electron and Ion microprobe techniques. The zoning trends of major, minor and trace elements provide new insights into the conditions under which planetary basalts form. Additional information is contained in the original extended abstract.

  9. Exposure assessment for trace elements from consumption of marine fish in Southeast Asia.

    PubMed

    Agusa, Tetsuro; Kunito, Takashi; Sudaryanto, Agus; Monirith, In; Kan-Atireklap, Supawat; Iwata, Hisato; Ismail, Ahmad; Sanguansin, Joompol; Muchtar, Muswerry; Tana, Touch Seang; Tanabe, Shinsuke

    2007-02-01

    Concentrations of 20 trace elements were determined in muscle and liver of 34 species of marine fish collected from coastal areas of Cambodia, Indonesia, Malaysia and Thailand. Large regional difference was observed in the levels of trace elements in liver of one fish family (Carangidae): the highest mean concentration was observed in fish from the Malaysian coastal waters for V, Cr, Zn, Pb and Bi and those from the Java Sea side of Indonesia for Sn and Hg. To assess the health risk to the Southeast Asian populations from consumption of fish, intake rates of trace elements were estimated. Some marine fish showed Hg levels higher than the guideline values by U.S. Environmental Protection Agency and Joint FAO/WHO Expert Committee on Food Additives (JECFA). This suggests that consumption of these fish may be hazardous to the people.

  10. Trace element analysis of human hair by PIXE

    NASA Astrophysics Data System (ADS)

    Jian-xin, Chen; Yuan-zhuang, Guo; Hong-kou, Li; Chi-gang, Ren; Guo-hun, Tang; Xi-de, Wang; Fu-chia, Yang; Hui-ying, Yao

    1981-03-01

    PIXE was used to analyze trace elements in human hair. Using an external beam, hair from workers exposed to GaAs was examined. The results are in fairly good agreement with those obtained by atomic absorption spectroscopy. Using the PIXE technique in vacuum hair from mentally defective children was analyzed and compared with the hair of normal children. In a similar way, hair from a 3200 year old preserved mummy was studied.

  11. Labile trace elements in carbonaceous chondrites - A survey

    NASA Technical Reports Server (NTRS)

    Xiao, Xiaoyue; Lipschutz, Michael E.

    1992-01-01

    Data are presented on 14 trace elements, including Co, Au, Ga, Rb, Sb, Ag, Se, Cs, Te, Zn, Cd, Bi, Tl, and In (nearly all of which are moderately or highly labile in meteorites), obtained by radiochemical neutron activation analyses of 42 C2-C6 chondrites, all but three from Antarctica. The data indicate that carbonaceous chondrites of petrographic types 2-6 define compositional continua. It is suggested that carbonaceous C2-C6 chondrites may reflect a mixture of material that formed at low temperatures and that contained cosmic levels of highly labile elements, with material that was devoid of them.

  12. Coarse atmospheric aerosol: size distributions of trace elements

    NASA Astrophysics Data System (ADS)

    Eleftheriadis, K.; Colbeck, I.

    A sampler, employing nine single stage impactors placed in parallel within a portable wind tunnel, has been used to determine the metal content of coarse atmospheric aerosol. The wind tunnel maintains a constant flow environment for the collectors housed inside it, so that representative sampling conditions are achieved compared to the varied ambient wind conditions. At a flow rate of 8 m s -1 the 50% cut-off diameters of the impactors ranged from 7.8 to 38.8 μm. Measurements were conducted at a rural and urban site near Colchester in south east England. The samplers were analysed by PIXE for P, K, Ca, Fe, Ti, Mn, Cu, V, Co, Cr, Br, Zn, Ni, Sc and Pb. It is found that the sampler can be employed to quantitatively characterise the elemental mass size distribution for aerosol larger than 10 μm. The results indicate that a small fraction of the above earth and trace elements' metal mass is present in particles greater than 10 μm. This fraction for earth metals (Ca, K, Ti) is comparatively greater in the rural site than the urban site, while for trace metals (Mn, V, Cu, Cr) this fraction constitutes a more significant part of the coarse mass at the urban site. Trace element concentrations were of a similar order of magnitude to earlier literature reports. Although the number of measurements was limited it can be concluded that the size distributions obtained were characteristic of an unpolluted area.

  13. Trace elements in cocoa solids and chocolate: an ICPMS study.

    PubMed

    Yanus, Rinat Levi; Sela, Hagit; Borojovich, Eitan J C; Zakon, Yevgeni; Saphier, Magal; Nikolski, Andrey; Gutflais, Efi; Lorber, Avraham; Karpas, Zeev

    2014-02-01

    The concentrations of eight trace elements: lead (Pb), cadmium (Cd), chromium (Cr), manganese (Mn), cobalt (Co), arsenic (As), bismuth (Bi) and molybdenum (Mo), in chocolate, cocoa beans and products were studied by ICPMS. The study examined chocolate samples from different brands and countries with different concentrations of cocoa solids from each brand. The samples were digested and filtered to remove lipids and indium was used as an internal standard to correct matrix effects. A linear correlation was found between the level of several trace elements in chocolate and the cocoa solids content. Significant levels of Bi and As were found in the cocoa bean shells but not in the cocoa bean and chocolate. This may be attributed to environmental contamination. The presence of other elements was attributed to the manufacturing processes of cocoa and chocolate products. Children, who are big consumers of chocolates, may be at risk of exceeding the daily limit of lead; whereas one 10 g cube of dark chocolate may contain as much as 20% of the daily lead oral limit. Moreover chocolate may not be the only source of lead in their nutrition. For adults there is almost no risk of exceeding daily limits for trace metals ingestion because their digestive absorption of metals is very poor.

  14. The effect of social stress on salivary trace elements.

    PubMed

    Sheibaninia, Ahmad

    2014-12-01

    Social stress can alter the saliva in favor of metabolism of trace elements. This study aimed to assess the effect of social stress on salivary copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) contents in dental students before and after a comprehensive English test. Twelve students with an average age of 27 years were selected from three dental schools. The students were carries-free, and salivary samples were collected 1 week before the test day and right before the comprehensive English test. Unstimulated saliva was collected from the participants. The pH of the saliva samples was measured using a portable pH meter, and the salivary trace element contents were determined using an atomic absorption spectrophotometer. After checking data to be normally distributed, Student's paired t test was used for statistical analysis. Salivary pH significantly increased right before the English test. Salivary Cu concentration decreased in students after the test (P > 0.05). The level of Zn, Mn, and Fe increased, while only Mn change was statistically significant (P < 0.001). Under the limitations of this study, induction of social stress led to a significant increase in Mn concentration in the saliva. The salivary Cu, Zn, and Fe contents, however, did not exhibit significant changes. Changes in salivary inorganic trace element content, as a result of physiological stress, might influence health of teeth, enamel, and oral mucosal tissues.

  15. Trace elements in little egrets and flamingos of Camargue, France

    SciTech Connect

    Cosson, R.P.; Amiard, J.C.; Amiard-Triquet, C.

    1988-02-01

    Trace elements (Cd, Cu, Hg, Pb, Se, Zn) were measured in nine organs (liver, kidney, breast muscle, lungs, breastbone, stomach, gizzard, spleen, feathers) of several specimens of Greater Flamingos (Phaenicopterus ruber (Pallas) and Little Egrets (Egretta garzetta (L.) from the Camargue, in the Rhone river delta. In both species, individual fluctuations of Cd, Hg, Pb, and Se levels were important in all organs, whereas Zn and Cu, essential metals, exhibited only moderate variations. The organotropism of trace elements supports the hypothesis that major routes of contamination would be both nutritional and aerial for flamingos, and prevailingly alimentary for egrets. In both species we found the highest levels in liver and kidney, with the exception of lead, the highest levels of which were found in breastbone and feathers. Our study indicates that trace element concentrations in flamingos and egrets are higher than or equivalent to those reported in the literature for birds living in polluted areas. Because the Camargue is a unique area in western Europe it would be of interest to develop more studies to evaluate the impact of surrounding human activities on this Biosphere Reserve.

  16. Trace elements in little egrets and flamingos of Camargue, France.

    PubMed

    Cosson, R P; Amiard, J C; Amiard-Triquet, C

    1988-02-01

    Trace elements (Cd, Cu, Hg, Pb, Se, Zn) were measured in nine organs (liver, kidney, breast muscle, lungs, breastbone, stomach, gizzard, spleen, feathers) of several specimens of Greater Flamingos (Phaenicopterus ruber (Pallas] and Little Egrets (Egretta garzetta (L.] from the Camargue, in the Rhône river delta. In both species, individual fluctuations of Cd, Hg, Pb, and Se levels were important in all organs, whereas Zn and Cu, essential metals, exhibited only moderate variations. The organotropism of trace elements supports the hypothesis that major routes of contamination would be both nutritional and aerial for flamingos, and prevailingly alimentary for egrets. In both species we found the highest levels in liver and kidney, with the exception of lead, the highest levels of which were found in breastbone and feathers. Our study indicates that trace element concentrations in flamingos and egrets are higher than or equivalent to those reported in the literature for birds living in polluted areas. Because the Camargue is a unique area in western Europe it would be of interest to develop more studies to evaluate the impact of surrounding human activities on this Biosphere Reserve.

  17. Concentrations of trace elements in Great Lakes fishes

    USGS Publications Warehouse

    Lucas, Henry F.; Edgington, David N.; Colby, Peter J.

    1970-01-01

    The concentration of 15 trace elements was determined by activation analysis of samples of whole fish and fish livers from three of the Great Lakes: Michigan, Superior, and Erie. The average concentrations of 7 elements in 19 whole fish from 3 species were as follows: uranium, 3 ppb (parts per billion); thorium, 6 ppb; cobalt, 28 ppb; cadmium, 94 ppb; arsenic, 16 ppb; chromium, 1 ppm; and copper, 1.3 ppm. The average concentrations of 8 elements in 40 liver samples from 10 species of fish were as follows: uranium, ~ 2 ppb; thorium, a?? 2 ppb; cobalt, 40 ppb; copper, 9 ppm; zinc, 30 ppm; bromine, 0.4 ppm; arsenic, 30 ppb; and cadmium, 0.4 ppm. Other elements observed in most of the samples were: antimony, 5-100 ppb; gold, 2-5 ppb; lanthanum, 1-20 ppb; rhenium, 0.5-5 ppb; rubidium, 0.06-4 ppm; and selenium, 0.1-2 ppb. Trace element concentrations varied with species and lake. Uranium and thorium varied with species, but not for the same species from different lakes. The levels of copper, cobalt, zinc, and bromine varied little between species and lakes. The concentration of cadmium, arsenic, and chromium varied between species and with species between lakes.

  18. Topical index and bibliography of U.S. Geological Survey Trace Elements and related reports

    USGS Publications Warehouse

    Curtis, Diane; Houser, Shirley S.

    1952-01-01

    Part 1, the topical index, lists the titles of reports prepared from 1941 to December 1952, in conjunction with the Geological Survey's program of uranium and other elements of related interest. It includes not only completed Trace Elements reports and those now in preparation, but also Survey publications, publications by Survey personnel in scientific journals, and open-fie releases. The titles are grouped topically under the headings listed in the table of contents. Entries in each category are listed alphabetically, by author, and numbered consecutively. Many of the reports have been cross-indexed, where appropriate. The classification of the Trace Elements reports, insofar as it is known, has been indicated after the title of the report. The classification of some of the earlier Trace Elements reports is uncertain. The Geological Survey does not have additional copies of most of the reports listed, but copies of some of the completed reports can be loaned on request to organizations officially cooperating with the Atomic Energy Commission. Many Trace Elements reports have been made available to the public, either by open-file release, reproduction by Technical Information Service, Oak Ridge (referred to as TIS), by publication as a Geological Survey circular or bulletin or by a publication in a scientific journal. This information is given, following the title of the report. If the abstract of a Trace Element report has been published in Nuclear Science Abstracts, it is noted by the initials NSA following the title of the report. Part 2 is a reference guide to information on the Trace Elements program that is available to the public. This information is categorized according to the type of publication or release.

  19. Concentrations and health risk assessment of trace elements in animal-derived food in southern China.

    PubMed

    Wu, Yaketon; Zhang, Huimin; Liu, Guihua; Zhang, Jianqing; Wang, Jizhong; Yu, Yingxin; Lu, Shaoyou

    2016-02-01

    This study aimed to investigate the levels of trace elements in animal-derived food in Shenzhen, Southern China. The concentrations of 14 trace elements (Cd, Hg, Pb, As, Cr, Cu, Fe, Zn, Mn, Mo, Ni, Co, Se and Ti) in a total of 220 meat samples, collected from the local markets of Shenzhen were determined. Cu, Fe and Zn were the major elements, with concentrations approximately 2-3 orders of magnitude higher than those of other elements. However, the daily intakes of Cu, Fe and Zn merely via the consumption of the meat products were lower than the recommended nutrient intake values provided by the 2013 Chinese Dietary Guide. Among the non-essential trace elements, Cd was accumulated in animal viscera, and the concentration ratios of chicken gizzard/chicken, chicken liver/chicken, pig kidney/pork and pig liver/pork were 41.6, 55.2, 863 and 177, respectively. In addition, high concentrations of As were found in aquatic products, especially in marine fish. The concentration of As in marine fish was slightly higher than the limits recommended by China, USA and Croatia. The health risk assessment of trace elements through the consumption of meat products by adult residents in Shenzhen was evaluated by using the target hazard quotient (THQ) method. The total THQ was greater than 1, implying a potential health risk. Approximately 66% of total THQ values, mainly from As, were from the consumption of aquatic products.

  20. A Synopsis of Technical Issues of Concern for Monitoring Trace Elements in Highway and Urban Runoff

    USGS Publications Warehouse

    Breault, Robert F.; Granato, Gregory E.

    2000-01-01

    Trace elements, which are regulated for aquatic life protection, are a primary concern in highway- and urban-runoff studies because stormwater runoff may transport these constituents from the land surface to receiving waters. Many of these trace elements are essential for biological activity and become detrimental only when geologic or anthropogenic sources exceed concentrations beyond ranges typical of the natural environment. The Federal Highway Administration and State Transportation Agencies are concerned about the potential effects of highway runoff on the watershed scale and for the management and protection of watersheds. Transportation agencies need information that is documented as valid, current, and scientifically defensible to support planning and management decisions. There are many technical issues of concern for monitoring trace elements; therefore, trace-element data commonly are considered suspect, and the responsibility to provide data-quality information to support the validity of reported results rests with the data-collection agency. Paved surfaces are fundamentally different physically, hydraulically, and chemically from the natural surfaces typical of most freshwater systems that have been the focus of many traceelement- monitoring studies. Existing scientific conceptions of the behavior of trace elements in the environment are based largely upon research on natural systems, rather than on systems typical of pavement runoff. Additionally, the logistics of stormwater sampling are difficult because of the great uncertainty in the occurrence and magnitude of storm events. Therefore, trace-element monitoring programs may be enhanced if monitoring and sampling programs are automated. Automation would standardize the process and provide a continuous record of the variations in flow and water-quality characteristics. Great care is required to collect and process samples in a manner that will minimize potential contamination or attenuation of trace

  1. Trace Elements in Diatom Frustules as a Paleochemical Proxy

    NASA Astrophysics Data System (ADS)

    Jaccard, T.; Ariztegui, D.

    2003-12-01

    The calibration in modern environments of the different proxies used in any paleoenvironmental study is a critical aspect leading to more realistic reconstructions of past conditions. Diatoms are among the main contributors to phytoplankton blooms in both lakes and oceans. They have been widely used as ecological and biogeochemical indicators of present and former environmental conditions. During the formation of highly ornamented cell walls or frustules, these algae take up dissolved silicic acid from the water to precipitate it as opaline silica that is further preserved in the sediments. Recent investigations have shown that diatoms can also incorporate trace elements in the opal. The causes and mechanisms of this incorporation, however, remain elusive. Thus, understanding the processes leading and regulating the uptake of different trace elements by diatoms will potentially furnish a new proxy for past water conditions. This indicator would be independent of the mobility of the elements and/or of diagenetic effects within the sediments. We tested the potential of this approach by determining the elemental composition of recent diatom frustules from Lake Geneva (Switzerland). The studied samples were further placed in a well defined chronological framework and compared with the most recent environmental history of the lake. Our preliminary results imply that the incorporation of different trace elements into the frustule has substantially changed throughout the studied time interval. A similar trend characterize most of the analyzed metals (Al, Ca, Ti, V, Cr, Mn, Fe, Ga, Rb, Sr, Ba, Pb) with comparatively higher concentrations for the last half of the twentieth century. Some other elements such as Sc seems to follow a rather opposite trend whereas Zn concentrations show a more scatter distribution. The calibration of these results with the well-known environmental history of Lake Geneva and its catchment area will allow us to evaluate the use of this technique

  2. Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Weisend, R.; Morton, P. L.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.

    2014-12-01

    Phytoplankton in oligotrophic marine deserts depend on remote sources to supply trace nutrients. To examine these sources, marine particulate matter samples from the central North Pacific (Station ALOHA) were collected during the July-August 2012 HOE-DYLAN cruises and analyzed for a suite of trace (e.g., Fe, Mn) and major (e.g. Al, P) elements. Daily surface SPM samples were examined for evidence of atmospheric deposition and biological uptake, while five vertical profiles were examined for evidence of surface vertical export and subsurface horizontal transport from nearby sources (e.g., margin sediments, hydrothermal plumes). Maxima in surface particulate P (a biological tracer) corresponded with a diatom bloom, and surprisingly also coincided with maxima in particulate Al (typically a tracer for lithogenic inputs). The surface particulate Al distributions likely result from the adsorption of dissolved Al onto diatom silica frustules, not from atmospheric dust deposition. In addition, a subsurface maximum in particulate Al and P was observed four days later at 75m, possibly resulting from vertical export of the surface diatom bloom. The distributions of other bioactive trace elements (e.g. Cd, Co, Cu) will be presented in the context of the diatom bloom and other biological, chemical and physical features. A second, complementary poster is also being presented which examines the cycling of trace elements in lithogenic particles (Morton et al., "Trace Element Cycling in Lithogenic Particles at Station ALOHA").

  3. Trace element distribution coefficients in alkaline series. [Titanites; bitite

    SciTech Connect

    Lemarchand, F.; Villemant, B.; Calas, G.

    1987-05-01

    Mineral/groundmass partition coefficients for U, Th, Zr, Hf, Ta, Rb, REE, Co and Sc have been systematically measured in olivine, clinopyroxene, amphibole, biotite, Ti-magnetites, titanite, zircon and feldspars, in basaltic to trachytic lavas from alkaline series (Velay, Chaine des Puys: Massif Central, France and Fayal: Azores). Average partition coefficients are defined within the experimental uncertainty for limited compositional ranges (basalt-hawaiite, mugearites, benmoreite-trachyte), and are useful for trace element modelling. The new results for U, Th, Ta, Zr and Hf partition coefficients show contrasting behaviour. They can thus be used as ''key elements'' for identifying fractionating mineral phases in differentiation processes (e.g. Ta and Th for amphibole and mica). Partition coefficient may be calculated using the two-lattice model suggested by NIELSEN (1985). Such values show a considerably reduced chemical dependence in natural systems, relative to weight per cent D values. The residual variations may be accounted for by temperature or volatile influence. This calculation greatly enhances modelling possibilities using trace elements for comparing differentiation series as well as for predicting the behaviour of elements during magmatic differentiation.

  4. Enhanced analgesic effects of tramadol and common trace element coadministration in mice.

    PubMed

    Alexa, Teodora; Marza, Aurelia; Voloseniuc, Tudor; Tamba, Bogdan

    2015-10-01

    Chronic pain is managed mostly by the daily administration of analgesics. Tramadol is one of the most commonly used drugs, marketed in combination with coanalgesics for enhanced effect. Trace elements are frequent ingredients in dietary supplements and may enhance tramadol's analgesic effect either through synergic mechanisms or through analgesic effects of their own. Swiss Weber male mice were divided into nine groups and were treated with a combination of the trace elements Mg, Mn, and Zn in three different doses and a fixed dose of tramadol. Two groups served as positive (tramadol alone) and negative (saline) controls. Nociceptive assessment by tail-flick (TF) and hot-plate (HP) tests was performed at baseline and at 15, 30, 45, and 60 min after intraperitoneal administration. Response latencies were recorded and compared with the aid of ANOVA testing. All three trace elements enhanced tramadol's analgesic effect, as assessed by TF and HP test latencies. Coadministration of these trace elements led to an increase of approximately 30% in the average pain inhibition compared with the tramadol-alone group. The most effective doses were 0.6 mg/kg b.w. for Zn, 75 mg/kg b.w. for Mg, and 7.2 mg/kg b.w. for Mn. Associating trace elements such as Zn, Mg, and Mn with the standard administration of tramadol increases the drug's analgesic effect, most likely a consequence of their synergic action. These findings impact current analgesic treatment because the addition of these trace elements may reduce the tramadol dose required to obtain analgesia.

  5. Spatial and temporal variability of trace element concentrations in an urban subtropical watershed, Honolulu, Hawaii

    USGS Publications Warehouse

    Heinen, De Carlo E.; Anthony, S.S.

    2002-01-01

    Trace metal concentrations in soils and in stream and estuarine sediments from a subtropical urban watershed in Hawaii are presented. The results are placed in the context of historical studies of environmental quality (water, soils, and sediment) in Hawaii to elucidate sources of trace elements and the processes responsible for their distribution. This work builds on earlier studies on sediments of Ala Wai Canal of urban Honolulu by examining spatial and temporal variations in the trace elements throughout the watershed. Natural processes and anthropogenic activity in urban Honolulu contribute to spatial and temporal variations of trace element concentrations throughout the watershed. Enrichment of trace elements in watershed soils result, in some cases, from contributions attributed to the weathering of volcanic rocks, as well as to a more variable anthropogenic input that reflects changes in land use in Honolulu. Varying concentrations of As, Cd, Cu, Pb and Zn in sediments reflect about 60 a of anthropogenic activity in Honolulu. Land use has a strong impact on the spatial distribution and abundance of selected trace elements in soils and stream sediments. As noted in continental US settings, the phasing out of Pb-alkyl fuel additives has decreased Pb inputs to recently deposited estuarine sediments. Yet, a substantial historical anthropogenic Pb inventory remains in soils of the watershed and erosion of surface soils continues to contribute to its enrichment in estuarine sediments. Concentrations of other elements (e.g., Cu, Zn, Cd), however, have not decreased with time, suggesting continued active inputs. Concentrations of Ba, Co, Cr, Ni, V and U, although elevated in some cases, typically reflect greater proportions attributed to natural sources rather than anthropogenic input. ?? 2002 Elsevier Science Ltd. All rights reserved.

  6. Zinc is an essential trace element for spermatogenesis.

    PubMed

    Yamaguchi, Sonoko; Miura, Chiemi; Kikuchi, Kazuya; Celino, Fritzie T; Agusa, Tetsuro; Tanabe, Shinsuke; Miura, Takeshi

    2009-06-30

    Zinc (Zn) plays important roles in various biological activities but there is little available information regarding its functions in spermatogenesis. In our current study, we further examined the role of Zn during spermatogenesis in the Japanese eel (Anguilla japonica). Human CG (hCG) was injected into the animals to induce spermatogenesis, after which the concentration of Zn in the testis increased in tandem with the progression of spermatogenesis. Staining of testicular cells with a Zn-specific fluorescent probe revealed that Zn accumulates in germ cells, particularly in the mitochondria of spermatogonia and spermatozoa. Using an in vitro testicular organ culture system for the Japanese eel, production of a Zn deficiency by chelation with N,N,N',N'-tetrakis (2-pyridylemethyl)ethylenediamine (TPEN) caused apoptosis of the germ cells. However, this cell death was rescued by the addition of Zn to the cultures. Furthermore, an induced deficiency of Zn by TPEN chelation was found to inhibit the germ cell proliferation induced by 11-ketotestosterone (KT), a fish specific androgen, 17alpha,20beta-dihydroxy-4-pregnen-3-one (DHP), the initiator of meiosis in fish, and estradiol-17beta (E2), an inducer of spermatogonial stem-cell renewal. We also investigated the effects of Zn deficiency on sperm motility and observed that TPEN treatment of eel sperm suppressed the rate and duration of their motility but that co-treatment with Zn blocked the effects of TPEN. Our present results thus suggest that Zn is an essential trace element for the maintenance of germ cells, the progression spermatogenesis, and the regulation of sperm motility.

  7. Geochemical Peculiarities of the Distribution of Trace Elements in Caustobioliths

    NASA Astrophysics Data System (ADS)

    Punanova, Svetlana

    2016-04-01

    This research covers the latest data on the quantitative and qualitative contents of trace elements (TE) in naphtides. This work is based on the analysis and generalization of the large volume of scientific literature as well as on the author's analytical research covering oils and organic matter of rocks of different fascial composition and thermal maturity, collected from the wide range of depths in the fields of Volgo-Ural, Western Siberia, Timan-Pechiora, South Caspian, North Caucasian-Mangyshlak, and other oil and gas-bearing basins (OGB). Analysis of TE contents of oils, coals, oil-and-black shales - caustobioliths of the single genetic series - has been undertaken. The scientific and practical interest in the information on shale formations is connected with the prospects that they offer for extraction and industrial utilization of the trace elements. It is shown that the ontogenesis of naphtides is accompanied by the functional transformation of both the organic components (hydrocarbons) and non-organic components (various metal and non-metal compositions). Possible origins of accumulation of trace elements in oils were evaluated. Classification of oils of oil-and-gas bearing basins of different tectonic structure based on their physical and chemical properties as well as the contents and ratios of their "biogenesis" elements (V, Ni, Fe) were performed. It was shown that the differentiation of naphtides is due to lithophascial conditions of deposition of the original organic matter and also due to diagenic, cathagenic and hypergenic processes of the evolution of the hydrocarbons. The most significant redistribution in the concentrations of some of the metals occur during the hypergenic transformations of oils. Existence of oils with different metallogeny is related to the contents of the original organic matter and the processes of the transformation of hydrocarbon fluids during the course of geological development of the OGB.

  8. Behavior of trace and companion elements of ULC-IF steel grades during RH-treatment

    SciTech Connect

    Jungreithmeier, A.; Viertauer, A.; Presslinger, H.

    1996-12-31

    A large number of metallurgical reactions are caused by lowering the partial pressure during vacuum treatment. One of these reactions is the volatilization of elements with high vapor pressure. The concentration of trace and companion elements during RH-treatment mostly changes because of cooling scrap, deoxidation agents and ferro-alloy additions, slag/metal reactions, vaporization and also because of reactions with the RH-vessel lining. These changes in the concentration of trace and companion elements during RH-treatment are exemplified for ULC-IF (ultra low carbon--interstitial free) steel grades. The elements which are considered are chromium, nickel, molybdenum, copper, vanadium, tin, zinc, lead, phosphorus, sulfur and nitrogen. Calculations of the theoretical equilibrium solubility using thermodynamic data--in dependence of pressure and temperature--correspond well with the values obtained during steel production operations. 67 refs.

  9. [Determination of trace elements of Gentiana macrophlla and Gentiana straminea by microwave digestion-FAAS].

    PubMed

    Zhou, Yu-Shan; Zhang, Xi-Ling; Wang, Rong-Bin; Xia, Qi; An, Xia

    2008-05-01

    An acid-assisted microwave digestion procedure is optimized for the determination of trace elements in traditional Chinese medicine by the use of flame atomic absorption spectrometric (FAAS) techniques. Microwave-assisted digestion has the advantages of reduced time for sample dissolution, fewer possibilities for technical errors caused by spilling of hot digestion solutions, use of less chemicals, and lower losses of volatile metals. In addition, modern microwave ovens are safer and simpler and provide more controlled and reproducible conditions than hot plate or block digesters. Flame atomic absorption spectrometry (FAAS) is more commonly applied techniques in the de termination of trace elements. The accurate measurement of trace elements concentrations in samples of traditional Chinese medicine is an important goal in research for medical effects of traditional Chinese medicine. The purpose of this study was to determine the contents of the trace elements in Gentiana macrophlla and Gentiana straminea. In order to identify the accuracy of the procedure, the operating conditions was selected before the determination of trace elements. In order to gauge the effectiveness of digestion, the selection of digestion conditions of the technique was undertaken. The results showed HNO3-H2O2 (5 : 1) as a microwave digestion agent with suitable temperature and time was optimum choice in the digestion procedure. Analysis limits were also selected according to the low detection limits and the good precision. They were Fe(248.3 nm), Mn (279.5 nm), Ni (232.0 nm), Cu(324. 8 nm), Zn (2.139 nm), Ca (422.7 nm), Mg (285.2 nm) and Cr (357.9 nm), respectively. The working curves were obtained by using multi-elemental standard solutions and line relation was good. Under the selected conditions, the contents of trace elements Fe, Mn, Ni, Cu, Zn, Ca, Mg and Cr in Gentiana macrophlla and Gentiana straminea were directly determined using working curve methods. The relative standard

  10. Trace-element and phase relations in fly ash

    SciTech Connect

    Hulett, L.D.; Weinberger, A.J.; Ferguson, N.M.; Northcutt, K.J.; Lyon, W.S.

    1981-05-01

    Chemical forms of elements have been studied in fly ash specimens collected from four Tennessee Valley Authority steam plants. Matrix components have been isolated and individually analyzed to determine trace element distributions. After particle sizing and extraction of magnetic components, the aluminosilicate phases were etched in 1% HF to remove glasses comingled with mullite and quartz. Neutron activation and atomic absorption analyses showed that most of the +1- and +2-valent elements, rare earths, and certain transition metals were concentrated in the glass phases. Cr, V, Ti, Fe, Ga, and Zr, which are trivalent and tetravalent, were concentrated in the crystal phases. X-ray diffraction and elemental analyses show that the main components of the magnetic phase are ferrite compounds with compositions of approximately Fe/sub 2/ /sub 3/Al/sub 0/ /sub 7/O/sub 4/. First-row transition elements, V, Cr, Mn, Co, Cu, Ni, and Zn are concentrated by factors as high as 50 in the magnetic phases. This infers that they occur as isomorphic substitutions in the magnetic spinel lattice since such compounds are well known. Because the spinel is magnetic, a magnetic separation could be used to remove spinel, along with its associated transition metals. Scanning electron microscopy studies of mullite phases remaining after 1% etching suggest that they have resource value. As mullite and quartz crystallize during the solidification of fly ash particles, they purify themselves of trace elements by freezing them out into interstitial glass phases. An analytic scheme for routine chemical specification and pollution hazard assessment of fly ash is suggested. Studies of fly ash exposed to sluice pond waters show tht iron in the magnetic spinel phases is oxidized and subsequently adsorbed on alumino-silicate and other particles. Arsenic and molybdenum are translocated and concentrated into these iron-rich surface phases.

  11. Organic amendments increase phylogenetic diversity of arbuscular mycorrhizal fungi in acid soil contaminated by trace elements.

    PubMed

    Montiel-Rozas, María Del Mar; López-García, Álvaro; Kjøller, Rasmus; Madejón, Engracia; Rosendahl, Søren

    2016-08-01

    In 1998, a toxic mine spill polluted a 55-km(2) area in a basin southward to Doñana National Park (Spain). Subsequent attempts to restore those trace element-contaminated soils have involved physical, chemical, or biological methodologies. In this study, the restoration approach included application of different types and doses of organic amendments: biosolid compost (BC) and leonardite (LEO). Twelve years after the last addition, molecular analyses of arbuscular mycorrhizal (AM) fungal communities associated with target plants (Lamarckia aurea and Chrysanthemum coronarium) as well as analyses of trace element concentrations both in soil and in plants were performed. The results showed an improved soil quality reflected by an increase in soil pH and a decrease in trace element availability as a result of the amendments and dosages. Additionally, the phylogenetic diversity of the AM fungal community increased, reaching the maximum diversity at the highest dose of BC. Trace element concentration was considered the predominant soil factor determining the AM fungal community composition. Thereby, the studied AM fungal community reflects a community adapted to different levels of contamination as a result of the amendments. The study highlights the long-term effect of the amendments in stabilizing the soil system.

  12. Trace elemental analysis of bituminuos coals using the Heidelberg proton microprobe

    USGS Publications Warehouse

    Chen, J.R.; Kneis, H.; Martin, B.; Nobiling, R.; Traxel, K.; Chao, E.C.T.; Minkin, J.A.

    1981-01-01

    Trace elements in coal can occur as components of either the organic constituents (macerals) or the inorganic constituents (minerals). Studies of the concentrations and distribution of the trace elements are vital to understanding the geochemical millieu in which the coal was formed and in evaluating the attempts to recover rare but technologically valuable metals. In addition, information on the trace element concentrations is important in predicting the environmental impact of burning particular coals, as many countries move toward greater utilization of coal reserves for energy production. Traditionally, the optical and the electron microscopes and more recently the electron microprobe have been used in studying the components of coal. The proton-induced X-ray emission (PIXE) microprobe offers a new complementary approach with an order of magnitude or more better minimum detection limit. We present the first measurements with a PIXE microprobe of the trace element concentrations of bituminous coal samples. Elemental analyses of the coal macerals-vitrinite, exinite, and inertinite-are discussed for three coal samples from the Eastern U.S.A., three samples from the Western U.S.A., and one sample from the Peoples Republic of China. ?? 1981.

  13. Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation.

    PubMed

    Madejón, P; Xiong, J; Cabrera, F; Madejón, E

    2014-11-01

    The use of fast growing trees could be an alternative in trace element contaminated soils to stabilize these elements and improve soil quality. In this study we investigate the effect of Paulownia fortunei growth on trace element contaminated soils amended with two organic composts under semi-field conditions for a period of 18 months. The experiment was carried out in containers filled with tree different soils, two contaminated soils (neutral AZ and acid V) and a non contaminated soil, NC. Three treatments per soil were established: two organic amendments (alperujo compost, AC, and biosolid compost, BC) and a control without amendment addition. We study parameters related with fertility and contamination in soils and plants. Paulownia growth and amendments increased pH in acid soils whereas no effect of these factors was observed in neutral soils. The plant and the amendments also increased organic matter and consequently, soil fertility. Positive results were also found in soils that were only affected by plant growth (without amendment). A general improvement of "soil biochemical quality" was detected over time and treatments, confirming the positive effect of amendments plus paulownia. Even in contaminated soils, except for Cu and Zn, trace element concentrations in leaves were in the normal range for plants. Results of this mid-term study showed that Paulownia fortunei is a promising species for phytoremediation of trace element polluted soils.

  14. Toxicity of trace element and salinity mixtures to striped bass (Morone saxatilis) and Daphnia magna

    USGS Publications Warehouse

    Dwyer, F.J.; Burch, S.A.; Ingersoll, C.G.; Hunn, J.B.

    1992-01-01

    Acute toxicity tests with reconstituted water were conducted to investigate the relationship between water hardness, salinity, and a mixture of trace elements found in irrigation drain waters entering Stillwater Wildlife Management Area (SWMA), near Fallon, Nevada. The SWMA has been the site of many fish kills in recent years, and previous toxicity studies indicated that one drain water, Pintail Bay, was acutely toxic to organisms acclimated or cultured in fresh water or salt water. This toxicity could reflect both the ionic composition of this saline water and the presence of trace elements. The lowest water salinity tested with Daphnia magna was near the upper salinity tolerance of these organisms; therefore, we were unable to differentiate between the toxic effects of ion composition and those of trace elements. In toxicity tests conducted with striped bass (Morone saxatilis), we found that the extent to which salinity was lethal to striped bass depended on the ion composition of that salinity. Survival of striped bass increased as hardness increased. In addition, a trace element mixture was toxic to striped bass, even though the concentrations of individual elements were below expected acutely lethal concentrations. Although salinity is an important water quality characteristic, the ionic composition of the water must be considered when one assesses the hazard of irrigation drain waters to aquatic organisms.

  15. Trace element characteristics of lithospheric and asthenospheric mantle in the Rio Grande rift region

    SciTech Connect

    Perry, F.V.

    1994-06-01

    Trace element analyses of 10 mafic volcanic rocks from the Colorado Plateau transition zone, Colorado Plateau, Rio Grande rift, and Great Plains were obtained to characterize the trace element characteristics of asthenospheric and lithospheric mantle beneath these regions. Characterization of these mantle reservoirs using the trace element contents of basalts allows one to track the response of the lithosphere to continental rifting and extension.

  16. How are trace elements mobilized during the postweaning fast in Northern elephant seals?

    PubMed

    Habran, Sarah; Crocker, Daniel E; Debier, Cathy; Das, Krishna

    2012-10-01

    Northern elephant seal (Mirounga angustirostris) pups undergo a substantial intertissue reorganization of protein, minerals, and other cellular components during their postweaning development, which might entail the mobilization of associated contaminants. The authors investigated the changes in concentrations of 11 elements (Ca, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, V, and Zn) in a longitudinal study on 22 northern elephant seal pups during the postweaning fast. Slight changes in most element concentrations were observed in blood throughout the fast. Circulating levels of Hg, Se, and Cu appeared less altered during the postweaning fast than measured during suckling. Despite the considerable fat utilization, element concentrations, except Fe, in blubber remained stable throughout the fast, which suggests that elements are mobilized from blubber as efficiently as lipids. As indicators of the placental transfer, concentrations in lanugo hair revealed the existence of maternal transfer and accumulation of all assayed trace elements during fetal development. In addition, the new pelage, rapidly produced after weaning, appeared to be an important elimination route for toxic metals such as Hg, Cd, and Pb. The high mineral content detected in pup hair suggests that this species would be more exposed to trace elements than other phocids (except Cd and Pb). Nevertheless, this statement needs further monitoring and toxicological studies to determine better the exposition to trace elements and its potential impact on the health of the northern elephant seal.

  17. Trace Elements in High-Ca Pyroxene and Plagioclase in the Bilanga Diogenite: Implications for the Magmatic Evolution of Diogenites

    NASA Technical Reports Server (NTRS)

    Domanik, K. J.; Shearer, C. K.; Hagerty, J.; Kolar, S. E.; Drake, M. J.

    2003-01-01

    High-Ca pyroxene and plagioclase are typically present as minor phases in diogenites. However, although the trace element content of diogenite orthopyroxene has been measured in a number of studies; almost no trace element data is available for the high-Ca pyroxene and plagioclase with which it routinely coexists in these meteorites. These data could provide insights into the nature and evolution of the melts from which diogenites crystallized in the HED parent body. In this study we have obtained initial measurements of several REEs in high-Ca pyroxene, plagioclase, and orthopyroxene in the Bilanga. Measurement of additional incompatible trace element concentrations in these phases is currently in progress.

  18. Prospecting for hyperaccumulators of trace elements: a review.

    PubMed

    Krzciuk, Karina; Gałuszka, Agnieszka

    2015-01-01

    Specific plant species that can take up and accumulate abnormally high concentrations of elements in their aboveground tissues are referred to as "hyperaccumulators". The use of this term is justified in the case of enormous element-binding capacity of plants growing in their natural habitats and showing no toxicity symptoms. An increasing interest in the study of hyperaccumulators results from their potential applications in environmental biotechnology (phytoremediation, phytomining) and their emerging role in nanotechnology. The highest number of plant species with confirmed hyperaccumulative properties has been reported for hyperaccumulators of nickel, cadmium, zinc, manganese, arsenic and selenium. More limited data exist for plants accumulating other elements, including common pollutants (chromium, lead and boron) or elements of commercial value, such as copper, gold and rare earth elements. Different approaches have been used for the study of hyperaccumulators - geobotanical, chemical, biochemical and genetic. The chemical approach is the most important in screening for new hyperaccumulators. This article presents and critically reviews current trends in new hyperaccumulator research, emphasizing analytical methodology that is applied in identification of new hyperaccumulators of trace elements and its future perspectives.

  19. Lunar ferroan anorthosite petrogenesis: clues from trace element distributions in FAN subgroups

    USGS Publications Warehouse

    Floss, C.; James, O.B.; McGee, J.J.; Crozaz, G.

    1998-01-01

    The rare earth elements (REE) and selected other trace elements were measured in plagioclase and pyroxene from nine samples of the lunar ferroan anorthosite (FAN) suite of rocks. Samples were selected from each of four FAN subgroups previously defined by James et al. (1989). Plagioclase compositions are homogeneous within each sample, but high- and low-Ca pyroxenes from lithic clasts typically have different REE abundances from their counterparts in the surrounding granulated matrices. Measured plagioclase/low-Ca pyroxene concentration ratios for the REE have steeper patterns than experimentally determined plagioclase/low-Ca pyroxene partition coefficients in most samples. Textural and trace element evidence suggest that, although subsolidus equilibration may be responsible for some of the discrepancy, plagioclase compositions in most samples have been largely unaffected by intermineral redistribution of the REE. The REE systematics of plagioclase from the four subgroups are broadly consistent with their deviation through crystallization from a single evolving magma. However, samples from some of the subgroups exhibit a decoupling of plagioclase and pyroxene compositions that probably reflects the complexities inherent in crystallization from a large-scale magmatic system. For example, two anorthosites with very magnesian mafic minerals have highly evolved trace element compositions; major element compositions in plagioclase also do not reflect the evolutionary sequence recorded by their REE compositions. Finally, a noritic anorthosite breccia with relatively ferroan mafic minerals contains several clasts with high and variable REE and other trace element abundances. Although plagioclase REE compositions are consistent with their derivation from a magma with a KREEPy trace element signature, very shallow REE patterns in the pyroxenes suggest the addition of a component enriched in the light REE.

  20. In situ measurements of the compressibility of pure and trace element doped synthetic zircon

    NASA Astrophysics Data System (ADS)

    van Westrenen, W.; Frank, M. R.; Fei, Y.; Hanchar, J. M.; Finch, R. J.; Zha, C.-S.

    2003-04-01

    The ability of zircon to incorporate and retain trace elements and isotopic information makes it an indispensable tool for geochemists and geochronologists. In recent years, it has become apparent that trace element uptake is often limited mainly by mineral structure and compressibility (e.g. Blundy and Wood, Nature 1994). Understanding the uptake of trace elements into zircon therefore requires accurate knowledge of crystal-structural changes as a function of pressure, temperature, and trace element doping levels (e.g. Finch et al., Am Min 2001). We have determined the room temperature compressibility of pure, synthetic zircon (ZrSiO_4) and zircon doped with around 10 wt% of (REE + P) impurities. Samples were grown from a Li-Mo flux (Hanchar et al., Am Min 2001). Room temperature unit cell volumes of powdered samples were measured in situ in a diamond anvil cell at pressures up to 30 GPa, using angle-dispersive synchrotron X-ray diffraction techniques at CHESS. A third order Birch-Murnaghan equation of state was fitted to our data. The best fit room temperature bulk modulus for pure zircon K = 201 ± 1 GPa, with K' = 4.0 ± 0.2 and room pressure unit cell volume V_0 = 260.76 ± 0.04 Å^3. This bulk modulus is over 11% lower than suggested by earlier studies on natural (Hf-bearing) zircon samples (e.g. Hazen and Finger, Am Min 1979), which only covered pressures up to 4.8 GPa. In addition, we observe the start of the transformation of zircon to reidite (scheelite-structured ZrSiO_4) at a pressure of 19.7 GPa, over 3 GPa lower than previously measured for natural (impure) zircon (Knittle and Williams, Am Min 1993). Results for trace element doped zircon are significantly different, with K = 184 ± 1 GPa, K' = 4.8 ± 0.2, and V_0 = 263.94 ± 0.08 Å^3. In this case the reidite structure does not appear until P exceeds 22.5 GPa. Our results suggest that trace element concentration levels may have a significant effect on the compressibility and phase transition

  1. Trace elements in a dated ice core from Antarctica

    SciTech Connect

    Keshin, S.S.; Xudong Huang; Olmez, I. ); Langway, C.C. Jr. )

    1992-01-01

    Aerosol particles from both natural and anthropogenic sources are emitted into the atmosphere and transported by wind systems by various mechanisms. Once airborne, the particles, which contain various trace elements, accumulate on the earth's surface as either condensation nuclei or by dry fallout processes. In the polar regions, these particles are incorporated and deposited in snow layers in sequential time-unit increments. The trace analysis of elements contained in dated annual snow layers provides a measure of the elemental chemistry content of the atmosphere for the same time interval. A 164-m-deep, 10-cm-diam ice core was obtained at Byrd Station, Antarctica, in November 1989. Other physical and chemistry studies on this ice core have identified its detailed chronology in annual increments for the past 1360 yr. This study presents the results of the instrumental neutron activation analysis (INAA) measurements made on 26 individually dated samples of this core, selected between the 6.43- and 118.15-m depths.

  2. Trace Elements Status in Sera of Patients with Allergic Asthma

    PubMed Central

    Nazila, Ariaee; Reza, Farid; Fahimeh, Shabestari; Mohamad, Shabestari; Farahzad, Jabbari Azad

    2016-01-01

    Background: Asthma is a multifactorial disease and its severity varies with the inflammatory grade. There are conflicting reports about the roles of trace elements in asthma. This study examined the effects of zinc (Zn), copper (Cu), and selenium (Se) concentrations in sera of patients with allergic asthma attending Ghaem Hospital, Mashhad, Iran. Methods: Forty-nine patients, aged 10 to 50 years, with asthma in moderate or severe stages, and 24 healthy controls, were enrolled in this study. After demographic data collection and clinical evaluations, the subjects’ serum concentrations of Zn, Cu, and Se were measured via atomic absorbency. Results: Mean serum levels of Zn and Se in patients with allergic asthma were lower than in the healthy control group, but the Cu concentration in sera of patients with allergic asthma was slightly higher than healthy controls. Conclusion: Low levels of trace elements, specifically Zn, may have a role in the pathogenesis of allergic asthma; replacement of these elements may be an effective treatment. PMID:28070530

  3. Orthopyroxenes as recorders of diogenite petrogenesis: Trace element systematics

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Papike, J. J.; Layne, G. D.

    1993-01-01

    Eucrite, howardite, and diogenite members of the achondrites are considered, by many, to be genetically related. Therefore, each provide a piece of the puzzle for reconstructing magmatic processes on the eucrite parent body (EPB). The relationship between eucrites and diogenites can be viewed within the context of two distinctly different models: (1) fractional crystallization; and (2) partial melting. In fractional crystallization models, eucrites and diogenites represent a complementary continuum of planetary fractional crystallization products in which the diogenites represent crystal accumulations during the crystallization of eucritic magmas at shallow to deep levels in the EPB. Alternatively, experimental studies may be interpreted as indicating eucrites represent peritectic partial melts of a primitive, chondritic EPB mantle. Within this type of model, the diogenites are also generally considered to be cumulates; however, their petrogenetic relationship to the eucrites is less clear. Sack et al. proposed that the olivine diogenites represent residua from the partial melting events that produced eucritic liquids. Initial trace element studies of orthopyroxene (OPX) are consistent with this model. However, this trace element modeling of the olivine diogenites is nonunique. As a further test of these models, we did the following three things: (1) analyzed OPX from cumulate diogenites to compare with the olibine diogenite data; (2) improved ion microprobe analytical techniques for the analysis of elements critical to our interpretations; and (3) selected more relevant Kd's for OPX-eucritic melt.

  4. Antioxidant Vitamins and Trace Elements in Critical Illness.

    PubMed

    Koekkoek, W A C Kristine; van Zanten, Arthur R H

    2016-08-01

    This comprehensive narrative review summarizes relevant antioxidant mechanisms, the antioxidant status, and effects of supplementation in critically ill patients for the most studied antioxidant vitamins A, C, and E and the enzyme cofactor trace elements selenium and zinc. Over the past 15 years, oxidative stress-mediated cell damage has been recognized to be fundamental to the pathophysiology of various critical illnesses such as acute respiratory distress syndrome, ischemia-reperfusion injury, and multiorgan dysfunction in sepsis. Related to these conditions, low plasma levels of antioxidant enzymes, vitamins, and trace elements have been frequently reported, and thus supplementation seems logical. However, low antioxidant plasma levels per se may not indicate low total body stores as critical illness may induce redistribution of antioxidants. Furthermore, low antioxidant levels may even be beneficial as pro-oxidants are essential in bacterial killing. The reviewed studies in critically ill patients show conflicting results. This may be due to different patient populations, study designs, timing, dosing regimens, and duration of the intervention and outcome measures evaluated. Therefore, at present, it remains unclear whether supplementation of antioxidant micronutrients has any clinical benefit in critically ill patients as some studies show clear benefits, whereas others demonstrate neutral outcomes and even harm. Combination therapy of antioxidants seems logical as they work in synergy and function as elements of the human antioxidant network. Further research should focus on defining the normal antioxidant status for critically ill patients and to study optimal supplement combinations either by nutrition enrichment or by enteral or parenteral pharmacological interventions.

  5. Insights into Igneous Geochemistry from Trace Element Partitioning

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Hanson, B. Z.

    2001-01-01

    Partitioning of trivalent elements into olivine are used to explore basic issues relevant to igneous geochemistry, such as Henry's law. Additional information is contained in the original extended abstract.

  6. Comparison of sample preservation methods for clinical trace element analysis by inductively coupled plasma mass spectrometry.

    PubMed

    Bornhorst, Joshua A; Hunt, John W; Urry, Francis M; McMillin, Gwen A

    2005-04-01

    The effects of chemical additives and storage temperatures on measurement of 16 trace elements in urine by inductively coupled plasma mass spectrometry (ICP-MS) were evaluated. A 24-hour urine specimen was supplemented with concentrations of the elements. Aliquots containing 1 of 4 chemical additives were stored at 3 different temperatures in sealed polypropylene containers. Elemental concentrations were determined by ICP-MS for the resulting samples after 1, 2, 8, and 65 days of storage. Initial element concentrations measured within 8 hours of specimen preparation were consistent with expected concentrations (except for aluminum). For most elements, preservation and storage conditions yielded consistent measured concentrations throughout the experiment. Notable exceptions were for aluminum (general rise over time) and mercury (general decrease over time). Adding boric acid and potassium pyrosulfate resulted in sample contamination; elemental contamination was concentration-dependent for both. Although little microbial contamination was observed during the experiment, refrigeration of samples is recommended to curtail bacterial growth in nonsterile specimens. In light of these results, refrigerated urine storage without the use of chemical additives is an effective preservation method for ICP-MS analysis of many trace elements.

  7. Quantitative Modelling of Trace Elements in Hard Coal

    PubMed Central

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross–validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment. PMID:27438794

  8. Pancreatic cancer risk and levels of trace elements

    PubMed Central

    Amaral, André F. S.; Porta, Miquel; Silverman, Debra T.; Milne, Roger L.; Kogevinas, Manolis; Rothman, Nathaniel; Cantor, Kenneth P.; Jackson, Brian P.; Pumarega, José A.; López, Tomàs; Carrato, Alfredo; Guarner, Luisa; Real, Francisco X.; Malats, Núria

    2011-01-01

    Background and aims Knowledge on the etiology of exocrine pancreatic cancer (EPC) is scant. The best established risk factor for EPC is tobacco smoking. Among other carcinogens, tobacco contains cadmium, a metal previously associated with an increased risk of EPC. We evaluated the association between concentrations of trace elements in toenails and EPC risk. Methods The study included 118 EPC cases and 399 hospital controls from Eastern Spain. Levels of twelve trace elements were determined in toenail samples by inductively coupled plasma - mass spectrometry. Odds ratios (ORs) and 95% confidence intervals (CIs), adjusted for potential confounders, were calculated using logistic regression. Results Significantly increased risks of EPC were observed among subjects whose concentrations of cadmium (OR=3.58, 95%CI 1.86–6·88; Ptrend=5×10−6), arsenic (OR=2.02, 95%CI 1.08–3.78; Ptrend=0.009), and lead (OR=6.26, 95%CI 2.71–14.47; Ptrend=3×10−5) were in the highest quartile. High concentrations of selenium (OR=0.05, 95%CI 0.02–0.15; Ptrend=8×10−11) and nickel (OR=0.27, 95%CI 0.12–0.59; Ptrend=2×10−4) were inversely associated with risk of EPC. Conclusion We report novel associations of lead, nickel, and selenium toenail concentrations with pancreas cancer risk. Furthermore, results confirm previous associations with cadmium and arsenic. These novel findings, if replicated in independent studies, would point to an important role of trace elements in pancreatic carcinogenesis. PMID:22184070

  9. Quantitative Modelling of Trace Elements in Hard Coal.

    PubMed

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.

  10. [Routine comparison of trace element deficiencies during parenteral alimentation].

    PubMed

    du Cailar, J; Mathieu-Daudé, J C; Kienlen, J; Béssou, D; Griffe, O; Bélé-Binda

    1977-01-01

    In 50 patients aged between 3 and 84 years treated in a multidisciplinary Intensive Care Unit and receiving parenteral alimentation, deficiency in certain trace elements or electrolytes (Cu++, Zn++, Mn++, Co++, PO-4, Mg++) was prevented or treated by the administration of a glucose solution (MB 147 G) enriched in trace elements. The aim of the present study was to demonstrate, on the basis of assay of serum levels of the trace elements involved, with the exception of Mn and Co, the effectiveness of treatment. Reference values were determined on the one hand in healthy individuals for normal figures and secondly on subjects included in the study, already on parenteral alimentation for several days, before treatment with MB 147 G, in order to demonstrate the existence of a deficiency (patient control values). In the case of PO--4, however, the patient control values concerned at one and the same time subjects in the study before treatment with MB 147 G and other patients receiving parenteral alimentation who were not part of the trial. MB 147 G solution was presented in units of 500 ml associated with glucose of varying concentrations (15 p. 100, 30 p. 100, 50 p. 100). The average daily amount administered, over a period of 236 days, was 3 unites per 24 hours, corresponding to an intake of copper of 3.78 mg, 3.90 mg of zinc, 0.20 mg of manganese, 0.24 mg of cobalt, 363 mg of magnesium, 240 mg of calcium and 15 mEz of phosphates. The results show that levels of copper, zinc, magnesium and phosphates were low during parenteral alimentation. The administration of MB 147 G resulted in a significant increase in these values, without there being any evidence of accumulation.

  11. Trace elements in PM 2.5 in Gothenburg, Sweden

    NASA Astrophysics Data System (ADS)

    Boman, Johan; Wagner, Annemarie; Gatari, Michael J.

    2010-06-01

    Ambient aerosol particles smaller than 2.5 µm (PM 2.5) are getting more and more attention worldwide. While legal focus is mainly on sample mass, the composition of the particles is an important research field gaining increased interest. The interest is not only connected to possible health effects of the elemental content of the particles, but the elemental determination can also add valuable information for source apportionment. Samples were collected during 20 days in November 2007 at the campus of the Chemistry Department, University of Gothenburg, Gothenburg, Sweden. The particles were collected using a cyclone that separates the PM 2.5 particles from the air stream and impacts them on polycarbonate filters. Filters were changed at early afternoon. The samples were analyzed for particulate mass, black carbon (BC) and the elements S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, As, Br, Cd and Pb. Several of the elements were above detection limit in only a few of the samples. Total reflection X-ray fluorescence (TXRF) spectrometer based on the Wobi TXRF module supplied by the International Atom Energy Agency (IAEA) has been used for the determination of most trace elements in the samples. A Graphite Furnace Atomic Absorption Spectrometer (GF-AAS) was used for complementary trace element analysis and a reflectometer was used to analyze black carbon. Before elemental analysis the filters were digested using a microwave digestion system with temperature and pressure control. The results showed a large variation in sample mass, BC and analyzed elemental concentrations. The variation of the different constituents did not show the same pattern. This added to the picture of different sources for different pollutants. The highest S concentration was noted on a day when the air masses were determined to come from the southeast, i.e. Poland and some other Eastern European countries. From the results it can be concluded that more work is needed on the TXRF spectrometer to optimize

  12. AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER CONFERENCE

    SciTech Connect

    John H. Pavlish; Steven A. Benson

    1999-07-01

    This final report summarizes the planning/preparation, facilitation, and outcome of the conference entitled ''Air Quality: Mercury, Trace Elements, and Particulate Matter'' that was held December 1-4, 1998, in McLean, Virginia (on the outskirts of Washington, DC). The goal of the conference was to bring together industry, government, and the research community to discuss the critical issue of how air quality can impact human health and the ecosystem, specifically hazardous air pollutants and fine airborne particles; available and developing control technologies; strategies and research needs; and an update on federal and state policy and regulations, related implementation issues, and the framework of the future.

  13. Trace element fingerprinting of jewellery rubies by external beam PIXE

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Poirot, J.-P.; Querré, G.

    1999-04-01

    External beam PIXE analysis allows the non-destructive in situ characterisation of gemstones mounted on jewellery pieces. This technique was used for the determination of the geographical origin of 64 rubies set on a high-valued necklace. The trace element content of these gemstones was measured and compared to that of a set of rubies of known sources. Multivariate statistical processing of the results allowed us to infer the provenance of rubies : one comes from Thailand/Cambodia deposit while the remaining are attributed to Burma. This highlights the complementary capabilities of PIXE and conventional gemological observations.

  14. Trace Elements Induce Predominance among Methanogenic Activity in Anaerobic Digestion.

    PubMed

    Wintsche, Babett; Glaser, Karin; Sträuber, Heike; Centler, Florian; Liebetrau, Jan; Harms, Hauke; Kleinsteuber, Sabine

    2016-01-01

    Trace elements (TE) play an essential role in all organisms due to their functions in enzyme complexes. In anaerobic digesters, control, and supplementation of TEs lead to stable and more efficient methane production processes while TE deficits cause process imbalances. However, the underlying metabolic mechanisms and the adaptation of the affected microbial communities to such deficits are not yet fully understood. Here, we investigated the microbial community dynamics and resulting process changes induced by TE deprivation. Two identical lab-scale continuous stirred tank reactors fed with distiller's grains and supplemented with TEs (cobalt, molybdenum, nickel, tungsten) and a commercial iron additive were operated in parallel. After 72 weeks of identical operation, the feeding regime of one reactor was changed by omitting TE supplements and reducing the amount of iron additive. Both reactors were operated for further 21 weeks. Various process parameters (biogas production and composition, total solids and volatile solids, TE concentration, volatile fatty acids, total ammonium nitrogen, total organic acids/alkalinity ratio, and pH) and the composition and activity of the microbial communities were monitored over the total experimental time. While the methane yield remained stable, the concentrations of hydrogen sulfide, total ammonia nitrogen, and acetate increased in the TE-depleted reactor compared to the well-supplied control reactor. Methanosarcina and Methanoculleus dominated the methanogenic communities in both reactors. However, the activity ratio of these two genera was shown to depend on TE supplementation explainable by different TE requirements of their energy conservation systems. Methanosarcina dominated the well-supplied anaerobic digester, pointing to acetoclastic methanogenesis as the dominant methanogenic pathway. Under TE deprivation, Methanoculleus and thus hydrogenotrophic methanogenesis was favored although Methanosarcina was not overgrown by

  15. Trace Elements Induce Predominance among Methanogenic Activity in Anaerobic Digestion

    PubMed Central

    Wintsche, Babett; Glaser, Karin; Sträuber, Heike; Centler, Florian; Liebetrau, Jan; Harms, Hauke; Kleinsteuber, Sabine

    2016-01-01

    Trace elements (TE) play an essential role in all organisms due to their functions in enzyme complexes. In anaerobic digesters, control, and supplementation of TEs lead to stable and more efficient methane production processes while TE deficits cause process imbalances. However, the underlying metabolic mechanisms and the adaptation of the affected microbial communities to such deficits are not yet fully understood. Here, we investigated the microbial community dynamics and resulting process changes induced by TE deprivation. Two identical lab-scale continuous stirred tank reactors fed with distiller’s grains and supplemented with TEs (cobalt, molybdenum, nickel, tungsten) and a commercial iron additive were operated in parallel. After 72 weeks of identical operation, the feeding regime of one reactor was changed by omitting TE supplements and reducing the amount of iron additive. Both reactors were operated for further 21 weeks. Various process parameters (biogas production and composition, total solids and volatile solids, TE concentration, volatile fatty acids, total ammonium nitrogen, total organic acids/alkalinity ratio, and pH) and the composition and activity of the microbial communities were monitored over the total experimental time. While the methane yield remained stable, the concentrations of hydrogen sulfide, total ammonia nitrogen, and acetate increased in the TE-depleted reactor compared to the well-supplied control reactor. Methanosarcina and Methanoculleus dominated the methanogenic communities in both reactors. However, the activity ratio of these two genera was shown to depend on TE supplementation explainable by different TE requirements of their energy conservation systems. Methanosarcina dominated the well-supplied anaerobic digester, pointing to acetoclastic methanogenesis as the dominant methanogenic pathway. Under TE deprivation, Methanoculleus and thus hydrogenotrophic methanogenesis was favored although Methanosarcina was not overgrown

  16. Accuracy of trace element determinations in alternate fuels

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. A.

    1980-01-01

    NASA-Lewis Research Center's work on accurate measurement of trace level of metals in various fuels is presented. The differences between laboratories and between analytical techniques especially for concentrations below 10 ppm, are discussed, detailing the Atomic Absorption Spectrometry (AAS) and DC Arc Emission Spectrometry (dc arc) techniques used by NASA-Lewis. Also presented is the design of an Interlaboratory Study which is considering the following factors: laboratory, analytical technique, fuel type, concentration and ashing additive.

  17. Trace Element Geochemistry of Martian Iddingsite in the Lafayette Meteorite

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Lindstrom, David J.

    1997-01-01

    The Lafayette meteorite contains abundant iddingsite, a fine-grained intergrowth of smectite clay, ferrihydrite, and ionic salt minerals. Both the meteorite and iddingsite formed on Mars. Samples of iddingsite, olivine, and augite pyroxene were extracted from Lafayette and analyzed for trace elements by instrumental neutron activation. Our results are comparable to independent analyses by electron and ion microbeam methods. Abundances of most elements in the iddingsite do not covary significantly. The iddingsite is extremely rich in Hg, which is probably terrestrial contamination. For the elements Si, Al, Fe, Mn, Ni, Co, and Zn, the composition of the iddingsite is close to a mixture of approximately 50% Lafayette olivine + approximately 40% Lafayette siliceous glass + approximately 1O% water. Concordant behavior among these elements is not compatible with element fractionations between smectite and water, but the hydrous nature and petrographic setting of the iddingsite clearly suggest an aqueous origin. These inferences are both consistent, however, with deposition of the iddingsite originally as a silicate gel, which then crystallized (neoformed) nearly isochemically. The iddingsite contains significantly more magnesium than implied by the model, which may suggest that the altering solutions were rich in Mg(2+).

  18. Imaging trace element distributions in single organelles and subcellular features

    DOE PAGES

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; ...

    2016-02-25

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cdmore » (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators.We find it could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.« less

  19. Mobility of major and trace elements in the eclogite-fluid system and element fluxes upon slab dehydration

    NASA Astrophysics Data System (ADS)

    Tsay, Alexandra; Zajacz, Zoltan; Ulmer, Peter; Sanchez-Valle, Carmen

    2017-02-01

    The equilibrium between aqueous fluids and allanite-bearing eclogite has been investigated to constrain the effect of temperature (T) and fluid composition on the stability of allanite and on the mobility of major and trace elements during the dehydration of eclogites. The experiments were performed at 590-800 °C and 2.4-2.6 GPa, and fluids were sampled as synthetic fluid inclusions in quartz using an improved entrapment technique. The concentrations and bulk partition coefficients were determined for a range of major (Mg, Ca, Na, Fe, Al, Ti) and 16 trace elements as a function of T and fluid composition. The results reveal a significant effect of T on element partitioning between the fluids and the solid mineral assemblage. The partition coefficients increase by more than an order of magnitude for most of the major and trace elements, and several orders of magnitude for light rare-earth elements (LREE) from 590 to 800 °C. The addition of various ligand species into the fluid at 700 °C results in distinctive trends on element partitioning. The concentrations and corresponding partition coefficients of most of the elements are enhanced upon addition of NaF to the fluid. In contrast, NaCl displays a nearly opposite effect by suppressing the solubilities of major elements and consequently affecting the mobility of trace elements that form stable complexes with alkali-(alumino)-silicate clusters in the fluid, e.g. high field strength elements (HFSE). The results further suggest that fluids in equilibrium with orthopyroxene and/or diopsidic clinopyroxene are peralkaline (ASI ∼0.1-0.7), whereas fluids in equilibrium with omphacitic pyroxene are more peraluminous (ASI ∼1.15). Therefore, natural aqueous fluids in equilibrium with eclogite at about 90 km depth will be slightly peraluminous in composition. Another important finding of this study is the relatively high capacity of aqueous fluids to mobilize LREE, which may be even higher than that of hydrous melts.

  20. Trace elements in seminal plasma of men from infertile couples

    PubMed Central

    Szynkowska, Małgorzata I.; Motak-Pochrzęst, Hanna; Pawlaczyk, Aleksandra; Sypniewski, Stanisław

    2015-01-01

    Introduction An analysis of lead, zinc, cadmium and other trace elements in semen of men from infertile couples was performed to determine the association between abnormal semen parameters and enviromental or occupational exposure to some trace metals. Material and methods Presence of manganese, cobalt, nickel, copper, zinc, molybdenum, cadmium, tin and lead was measured in seminal plasma of 34 men from infertile couples using spectrometry with time-of-flight analysis. Correlations among sperm parameters and trace metals were determined using cluster analysis and Pearson's correlation coefficient. Results Abnormally high concentrations of lead, cadmium, zinc and cobalt were found in 23 seminal plasma of men from infertile couples. The most consistent evidence was determined for an association between high cadmium concentration in seminal plasma and sperm count, motility and morphology below reference limits (p < 0.01). A correlation of significantly increased tin level and reduced sperm count in semen of men with limited fertility potential was observed (p = 0.04). Conclusions In our study we observed a correlation of tin level with sperm count in semen of men with limited fertility potential. PMID:26170853

  1. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  2. Trace element measurement for assessment of dog food safety.

    PubMed

    De Nadai Fernandes, Elisabete A; Elias, Camila; Bacchi, Márcio Arruda; Bode, Peter

    2017-02-12

    The quality of dog diets depends on adequate ingredients capable of providing optimal nutrition and free of contaminants, for promoting long-term health. Trace elements in 95 samples of dry food for dog puppies (n = 32) and adults (n = 63) of various brands were measured using instrumental neutron activation analysis (INAA). The mass fractions of most elements were within the permissible limits for dogs. Aluminum, antimony, and uranium presented fairly high levels in some samples, which may imply health risks. Aluminum mass fractions ranged from <21 to 11,900 mg/kg, in same brand, super-premium dog food. Antimony mass fractions ranged up to 5.14 mg/kg, with the highest values measured in six samples of dog food from the same producer. The mass fractions of uranium was found up to 4 mg/kg in commercial brands from five different producers.

  3. The effect of membrane filtration on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.

    1996-01-01

    The almost universally accepted operational definition for dissolved constituents is based on processing whole-water samples through a 0.45-??m membrane filter. Results from field and laboratory experiments indicate that a number of factors associated with filtration, other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample), can produce substantial variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. These variations result from the inclusion/exclusion of colloidally- associated trace elements. Thus, 'dissolved' concentrations quantitated by analyzing filtrates generated by processing whole-water through similar pore- sized membrane filters may not be equal/comparable. As such, simple filtration through a 0.45-??m membrane filter may no longer represent an acceptable operational definition for dissolved chemical constituents. This conclusion may have important implications for environmental studies and regulatory agencies.

  4. Trace elements distributions at Datoko-Shega artisanal mining site, northern Ghana.

    PubMed

    Arhin, Emmanuel; Boansi, Apea Ohene; Zango, M S

    2016-02-01

    Environmental geochemistry classifies elements into essential, non-essential and toxic elements in relationship to human health. To assess the environmental impact of mining at Datoko-Shega area, the distributions and concentrations of trace elements in stream sediments and soil samples were carried out. X-ray fluorescence analytical technique was used to measure the major and trace element concentrations in sediments and modified fire assay absorption spectrometry in soils. The results showed general depletion of major elements except titanium oxide (TiO2) compared to the average crustal concentrations. The retention of TiO2 at the near surface environment probably was due to the intense tropical weathering accompanied by the removal of fine sediments and soil fractions during the harmattan season by the dry north-east trade winds and sheet wash deposits formed after flash floods. The results also showed extreme contamination of selenium (Se), cadmium (Cd) and mercury (Hg), plus strong contaminations of arsenic (As) and chromium (Cr) in addition to moderate contamination of lead (Pb) in the trace element samples relative to crustal averages in the upper continental crust. However Hg, Pb and Cd concentrations tend to be high around the artisanal workings. It was recognised from the analysis of the results that the artisanal mining activity harnessed and introduces some potentially toxic elements such as Hg, Cd and Pb mostly in the artisan mine sites. But the interpretation of the trace element data thus invalidates the elevation of As concentrations to be from the mine operations. It consequently noticed As values in the mine-impacted areas to be similar or sometimes lower than As values in areas outside the mine sites from the stream sediment results.

  5. Composition of the earth's upper mantle. I - Siderophile trace elements in ultramafic nodules

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Wandless, G. A.; Petrie, R. K.; Irving, A. J.

    1981-01-01

    The considered investigation is concerned with a reexamination of the question of the distribution of siderophile elements in the earth's upper mantle, taking into account a more unified data base which is now available. A comprehensive suite of ultramafic inclusions was collected as part of the Basaltic Volcanism Study Project and has been analyzed by instrument neutron activation analysis for major, minor, and some lithophile trace elements. In addition, 18 of these rocks and the important sheared garnet lherzolite PHN 1611 have been analyzed by means of radiochemical neutron activation analysis for 7 siderophile elements (Au, Ge, Ir, Ni, Os, Pd, and Re) and 9 volatile elements (Ag, Bi, Cd, In, Sb, Se, Te, Tl, and Zn). The siderophile element data reveal interesting inter-element correlations, which were not apparent from the compiled abundance tables of Ringwood and Kesson (1976) and Chou (1978).

  6. Trace element analysis on speleothems using micro-XRF scanning

    NASA Astrophysics Data System (ADS)

    Plessen, Birgit; Tjallingii, Rik; Dudashvilli, Alexey; Cheng, Hai; Wolff, Christian; Breitenbach, Sebastian F. M.

    2015-04-01

    Non-destructive micro-XRF scanning is a well-established, accurate and efficient method for high-resolution geochemical analyses on finely laminated sediments, e.g. for distinguishing detrital and authigenic layers in lake sediments. To test this method's applicability on speleothems, micro-XRF scanning analyses were performed on finely polished speleothems using the EAGLE-III-XL micro-XRF scanner at GFZ Potsdam. This scanner can perform multi-element analyses over a predefined sampling profile at sampling rates between 20 and 250 micro m trace of samples no larger than 30 x 30 cm. We measured profiles on two late to mid Holocene stalagmites from caves of the Keklik and Uluu Too mountains near Osh (Kyrgyzstan, Central Asia) with a spot size of 53 micro m. We ran each profile at least twice to obtain replicate measurements of the elements Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, and Sr. The caves are situated in Upper Devonian to Lower Carboniferous limestone formations at the SE rim of the Fergana Basin. Both speleothems are characterized by distinct alternating light and darker colored laminae that also reveal strong variations of trace elements and potentially provide information concerning variations in dust load, soil development, vegetation, precipitation and infiltration. One speleothem shows elevated Cl and S contents during relatively dry periods associated with salt dust input, probably derived from the Aral Sea region. Identification of the dry periods is further supported by stable oxygen and carbon isotope data. The multi-proxy chemical analyses suggest that Holocene humidity variations in this region are linked to variable strength of the North Atlantic westerlies regime. However, further validation of element variations in speleothems based on host rock and soil chemistry, monitored drip water composition and local climatic variations are needed to improve climatic and of environmental interpretations.

  7. Major and trace elements in organically or conventionally produced milk.

    PubMed

    Hermansen, John E; Badsberg, Jens H; Kristensen, Troels; Gundersen, Vagn

    2005-08-01

    A total of 480 samples of milk from 10 organically and 10 conventionally producing dairy farms in Denmark and covering 8 sampling periods over 1 year (triplicate samplings) were analysed for 45 trace elements and 6 major elements by high-resolution inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. Sampling, sample preparation, and analysis of the samples were performed under carefully controlled contamination-free conditions. The dairy cattle breeds were Danish-Holstein or Jersey. Sources of variance were quantified, and differences between production systems and breeds were tested. The major source of variation for most elements was week of sampling. Concentrations of Al, Cu, Fe, Mo, Rb, Se, and Zn were within published ranges. Concentrations of As, Cd, Cr, Mn and Pb were lower, and concentrations of Co and Sr were higher than published ranges. Compared with Holsteins, Jerseys produced milk with higher concentrations of Ba, Ca, Cu, Fe, Mg, Mn, Mo, P, Rh, and Zn and with a lower concentration of Bi. The organically produced milk, compared with conventionally produced milk, contained a significantly higher concentration of Mo (48 v. 37 ng/g) and a lower concentration of Ba (43 v. 62 ng/g), Eu (4 v. 7 ng/g), Mn (16 v. 20 ng/g) and Zn (4400 v. 5150 ng/g respectively). The investigation yielded typical concentrations for the following trace elements in milk, for which no or very few data are available: Ba, Bi, Ce, Cs, Eu, Ga, Gd, In, La, Nb, Nd, Pd, Pr, Rh, Sb, Sm, Tb, Te, Th, Ti, Tl, U, V, Y, and Zr.

  8. Microstructural evolution and trace element mobility in Witwatersrand pyrite

    NASA Astrophysics Data System (ADS)

    Reddy, Steven M.; Hough, Robert M.

    2013-11-01

    Microstructural analysis of pyrite from a single sample of Witwatersrand conglomerate indicates a complex deformation history involving components of both plastic and brittle deformation. Internal deformation associated with dislocation creep is heterogeneously developed within grains, shows no systematic relationship to bulk rock strain or the location of grain boundaries and is interpreted to represent an episode of pyrite deformation that predates the incorporation of detrital pyrite grains into the Central Rand conglomerates. In contrast, brittle deformation, manifest by grain fragmentation that transects dislocation-related microstructures, is spatially related to grain contacts and is interpreted to represent post-depositional deformation of the Central Rand conglomerates. Analysis of the low-angle boundaries associated with the early dislocation creep phase of deformation indicates the operation of <010>{100} slip systems. However, some orientation boundaries have geometrical characteristics that are not consistent with simple <010>{100} deformation. These boundaries may represent the combination of multiple slip systems or the operation of the previously unrecognized <001>{120} slip system. These boundaries are associated with order of magnitude enrichments in As, Ni and Co that indicate a deformation control on the remobilization of trace elements within pyrite and a potential slip system control on the effectiveness of fast-diffusion pathways. The results confirm the importance of grain-scale elemental remobilization within pyrite prior to their incorporation into the Witwatersrand gold-bearing conglomerates. Since the relationship between gold and pyrite is intimately related to the trace element geochemistry of pyrite, the results have implications for the application of minor element geochemistry to ore deposit formation, suggest a reason for heterogeneous conductivity and localized gold precipitation in natural pyrite and provide a framework for

  9. New trace element determinations in the fingernails of ALS patients

    SciTech Connect

    Van Dalsem, D.J.; Ehmann, W.D.; Robinson, L.

    1996-12-31

    Amyotrophic lateral sclerosis (ALS) afflicts 2 of every 100,000 people in the United States each year. A well-known example of ALS today is Stephen Hawking. He is a theoretical physicist, the author of A Brief History of Time, and is virtually immobilized by ALS. Diseases that cause progressive paralysis because of motor neuron degeneration in the central nervous system are termed motor neuron disorders (MND). Amyotrophic lateral sclerosis is a common form of MND. Pain-free, progressive muscular weakness is the most common clinical symptom. There is chronic weakness with atrophy of the affected muscles by the time the disease is diagnosed. Atrophy eventually results in wheelchair confinement and then only bed without the ability to speak or swallow. Death often occurs as a result of respiratory problems. Unlike other neurodegenerative diseases, in ALS the patient`s bladder and bowel control, eye movement, and mental faculties are preserved. The question today is whether or not certain trace elements are involved in the etiology or pathogenesis of ALS. A collaborative study was undertaken by the University of Kentucky and Oak Ridge National Laboratory (ORNL) using neutron activation analysis (NAA) to study trace element concentrations in ALS patients fingernails to determine if there existed statistically significant imbalances.

  10. PIXE analysis of caries related trace elements in tooth enamel

    NASA Astrophysics Data System (ADS)

    Annegarn, H. J.; Jodaikin, A.; Cleaton-Jones, P. E.; Sellschop, J. P. F.; Madiba, C. C. P.; Bibby, D.

    1981-03-01

    PIXE analysis has been applied to a set of twenty human teeth to determine trace element concentration in enamel from areas susceptible to dental caries (mesial and distal contact points) and in areas less susceptible to the disease (buccal surfaces), with the aim of determining the possible roles of trace elements in the curious process. The samples were caries-free anterior incisors extracted for periodontal reasons from subjects 10-30 years of age. Prior to extraction of the sample teeth, a detailed dental history and examination was carried out in each individual. PIXE analysis, using a 3 MeV proton beam of 1 mm diameter, allowed the determination of Ca, Mn, Fe, Cu, Zn, Sr and Pb above detection limits. As demonstrated in this work, the enhanced sensitivity of PIXE analysis over electron microprobe analysis, and the capability of localised surface analysis compared with the pooled samples required for neutron activation analysis, makes it a powerful and useful technique in dental analysis.

  11. Trace elements in sera from patients with renal disease

    NASA Astrophysics Data System (ADS)

    Miura, Yoshinori; Nakai, Keiko; Sera, Kouichiro; Sato, Michirou

    1999-04-01

    In hemodialysis (HD) patients, an accumulation of trace elements such as aluminum, copper, silicon and vanadium has been reported. Aluminum-caused encephalopathy and aluminum-related bone diseases are important trace element-related complications. Using particle induced X-ray emission (PIXE) we determined concentrations of aluminum, silicon, copper, zinc, selenium and bromine in sera of 29 patients with HD, 14 nondialysis patients with renal disease (RD) and 27 normal controls. The concentration of serum silicon of the patients with HD was 107.4 ± 61.3 μmol/l, which is markedly higher than that of normal controls (48.3 ± 25.8 μmol/l, p < 0.0001). The serum concentrations of zinc and bromine in patients with HD were 11.9 ± 1.7 and 21.3 ± 3.0 μmol/l, respectively. Both were markedly lower than those of normal controls (15.6 ± 2.6, 69.2 ± 8.3 μmol/l, p < 0.0001). The concentrations of aluminium and bromine in the serum of patients with RD were 171.9 ± 64.3 and 81.9 ± 11.6 μmol/l, which were markedly higher than those of normal controls ( p < 0.0001, p < 0.001). No significant differences were observed in the concentration of copper and selenium among three groups.

  12. Effect of membrane filtration artifacts on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, Arthur J.; Elrick, Kent A.; Colberg, Mark R.

    1992-01-01

    Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one; only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

  13. The role of trace elements in juvenile diabetes mellitus.

    PubMed

    Tuvemo, T; Gebre-Medhin, M

    There is accumulating evidence that the metabolism of several trace elements is altered in insulin-dependent diabetes mellitus and that these nutrients might have specific roles in the pathogenesis and progress of this disease. Magnesium deficiency is the most evident disturbance of metal metabolism in diabetes mellitus. Hypomagnesemia might increase the risk of ischemic heart disease and severe retinopathy. Increased urinary loss of zinc is a commonly encountered feature of diabetes. High-dose oral zinc might enhance wound healing, although data regarding diabetes are lacking. Chromium increases tissue sensitivity to insulin and tends to raise high-density lipoprotein (HDL) cholesterol and the HDL:low-density lipoprotein ratio. Selenium is involved in processes which protect the cell against oxidative damage by peroxides produced from lipid metabolism. There is one report of elevated serum selenium in diabetic children although the clinical significance of this finding is still unclear. An insulin-like effect has recently been attributed to vanadium in experimental animals, a finding of potential interest to man. Current knowledge does not implicate iron, iodine, manganese, cobalt, nickel, silicone, fluoride, molybdenum or tin in the pathophysiology of diabetes. Appropriate trace element supplementation might prove beneficial in ameliorating some physiological deficiencies associated with diabetes and prevent or retard secondary complications. However, properly designed and well-documented trials, especially on magnesium supplementation, need to be performed before rationales for such supplementation are developed. The potential roles of vanadium, chromium and selenium in diabetes constitute challenging areas for further experimental and clinical research.

  14. Trace Elements in Hair from Tanzanian Children: Effect of Dietary Factor

    SciTech Connect

    Mohammed, Najat K.; Spyrou, Nicholas M.

    2009-04-19

    Trace elements in certain amounts are essential for childrens' health, because they are present in tissues participating in metabolic reactions of organisms. Deficiency of the essential elements may result in malnutrition, impaired body immunity, and poor resistance to disease. These conditions might be enhanced against a background of additional adverse environmental factors such as toxic elements. The analysis of elements in childrens' hair will give information on the deficiency of essential elements and excess of toxic elements in relation to their diet. In this study, 141 hair samples from children (girls and boys) living in two regions of Tanzanian mainland (Dar es Salaam and Moshi) and the island of Zanzibar have been analysed for trace elements in relation to food consumption habits. The analysis was carried out using long and short irradiation instrumental neutron activation analysis (INAA) of the Nuclear Physics Institute at Rez, Czech Republic. Arithmetic and geometric means with their respective standard deviations are presented for 19 elements. Subgroups were formed according to age, gender, and geographic regions from which the samples were collected. Differences in concentrations for the groups and with other childhood populations were explored and discussed.

  15. Trace Elements in Hair from Tanzanian Children: Effect of Dietary Factor (abstract)

    NASA Astrophysics Data System (ADS)

    Mohammed, Najat K.; Spyrou, Nicholas M.

    2009-04-01

    Trace elements in certain amounts are essential for childrens' health, because they are present in tissues participating in metabolic reactions of organisms. Deficiency of the essential elements may result in malnutrition, impaired body immunity, and poor resistance to disease. These conditions might be enhanced against a background of additional adverse environmental factors such as toxic elements. The analysis of elements in childrens' hair will give information on the deficiency of essential elements and excess of toxic elements in relation to their diet. In this study, 141 hair samples from children (girls and boys) living in two regions of Tanzanian mainland (Dar es Salaam and Moshi) and the island of Zanzibar have been analysed for trace elements in relation to food consumption habits. The analysis was carried out using long and short irradiation instrumental neutron activation analysis (INAA) of the Nuclear Physics Institute at Rez, Czech Republic. Arithmetic and geometric means with their respective standard deviations are presented for 19 elements. Subgroups were formed according to age, gender, and geographic regions from which the samples were collected. Differences in concentrations for the groups and with other childhood populations were explored and discussed.

  16. Biogeochemistry of Hot Spring Biofilms: Major and Trace Element Behavior

    NASA Astrophysics Data System (ADS)

    Havig, J. R.; Prapaipong, P.; Zolotova, N.; Moore, G.; Shock, E. L.

    2008-12-01

    Hot spring biofilms are of obvious biological origin, but of surprising composition. Organic carbon makes up a minor percentage of the total mass of chemotrophic and phototrophic biofilms. We have found that the majority of biofilm mass is inorganic material, largely silica, with measurable quantities of dozens of other elements, and that the distribution of major elements mimics that of surrounding rock and soil far more closely than the hot spring fluids. Comparisons of biofilms with the compositions of their geochemical surroundings help identify trace elements that are anomalously enriched or depleted. These anomalies provide insight into the processes of active or passive elemental accumulation by biofilms, which could be used to understand microbial processes of element uptake or to identify evidence for life in hydrothermal deposits in the rock record. Five separate hydrothermal systems in Yellowstone National Park were incorporated into this study: 'Bison Pool' and its outflow (siliceous-sinter depositing, temp. = 93.2 to 56.2 C, pH = 7.4 to 8.3), Flatcone Geyser and its outflow (siliceous-sinter depositing, temp. = 94.3 to 44.3 C, pH = 7.9 to 8.8, Boulder Spring and its outflow (siliceous-sinter depositing, temp. = 92.1 to 64.9 C, pH = 8.2 to 8.7), Octopus Spring and its outflow (siliceous-sinter depositing, temp. = 91.4 to 62.8 C, pH = 7.7 to 8.2), and two unnamed locations in the Obsidian Pool area we have dubbed 'Green Cheese' (temp. = 64.5 to 54.9 C, pH = 5.9 to 6.2) and 'Happy Harfer Pool' (temp. = 59.9 to 48.3 C, pH = 5.5 to 6.3). Analysis of water, biofilm, and contextual samples collected from and around these hot springs offer intriguing patterns of elemental behavior, both similar and dissimilar, among the varying systems. Examples of these patterns include elements that behave the same across all hot spring systems (B, C, Ni, Cu, Ge, Sb, and W), elements with behavior that was consistent throughout most (four of five) of the hot spring systems

  17. Technical and clinical aspects of spectrometric analysis of trace elements in clinical samples.

    PubMed

    Chan, S; Gerson, B; Reitz, R E; Sadjadi, S A

    1998-12-01

    The capabilities of ICP-MS far exceed the slow, single-element analysis of GFAAS for determination of multiple trace elements. Additionally, its sensitivity is superior to that of DCP, ICP, and FAAS. The analytic procedure for ICP-MS is relatively straightforward and bypasses the need for digestion in many cases. It enables the physician to identify the target trace element(s) in intoxication cases, nutritional deficiency, or disease, thus eliminating the treatment delays experienced with sequential testing methods. This technology has its limitations as well. The ICP-MS cannot be used in the positive ion mode to analyze with sufficient sensitivity highly electronegative elements such as fluorine, because F+ is unstable and forms only by very high ionization energy. The ICP mass spectrometers used in most commercial laboratories utilize the quadrupole mass selector, which is limited by low resolution and, thus, by the various interferences previously discussed. For example, when an argon plasma is used, selenium (m/e 80) and chromium (m/e 52) in serum, plasma, and blood specimens are subject to polyatomic and molecular ion interferences. Low-resolution ICP mass spectrometers can therefore be used to analyze many trace elements, but they are not universal analyzers. High-resolution ICP-MS can resolve these interferences, but with greater expense. With the advent of more research and development of new techniques, some of these difficulties may be overcome, making this technique even more versatile. Contamination during sample collection and analysis causes falsely elevated results. Attention and care must be given to avoid contamination. Proper collection devices containing negligible amounts of trace elements should be used. Labware, preferably plastic and not glass, must be decontaminated prior to use by acid-washing and rinsed with [table: see text] de-ionized water. A complete description of sample collection and contamination has been written by Aitio and

  18. Hydrothermal impacts on trace element and isotope ocean biogeochemistry

    NASA Astrophysics Data System (ADS)

    German, C. R.; Casciotti, K. A.; Dutay, J.-C.; Heimbürger, L. E.; Jenkins, W. J.; Measures, C. I.; Mills, R. A.; Obata, H.; Schlitzer, R.; Tagliabue, A.; Turner, D. R.; Whitby, H.

    2016-11-01

    Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  19. [Supplementation of trace elements in the general medicine].

    PubMed

    Miyata, Satoru

    2016-07-01

    Trace elements are the essential nutrients. Now, 9 elements, Fe, Zn, Cu, Se, I, Go, Cr, Mn, Mo, are recognized as essential trace elements. Serum concentration of Fe, Zn and Cu are about 100 μg/dL, and have important physiological roles. Zinc needs special care because over 300 enzymes contain Zn, and zin deficiency cause various disorders. In advancing age serum Zn concentration decrease. Although the daily requirement of zinc is 10-15 mg in adults, it is necessary to supply much more zinc than adult, by the reason of low intake and low absorption in the elderly. In the geriatric ward of the hospital, many zinc deficient patients suffered from decubitus ulcers, dermatitis, alopecia, taste disorders etc. A 86 y.o. female with deep sacral decubitus ulcer was shown in this report. Her decubitus ulcer was completely recovered after daily administration of polaprezinc containing 34 mg Zn for 18 months, A 76 y.o. female brought about severe hypocupuremia. Serum Cu concentration decreased from 112 μg/dL to 7 μg/dL after 5 months daily administration of 34 mg Zn. Serum Zn concentration elevated from 47 μg/dL to 117 μg/dL, and Cu/Zn ratio decreased 2.38 to 0.06. After stopped zinc supplementation, serum Cu rapidly increased in a 2 month period. At the same time, serum Zn decreased quickly. It was the interesting fact that anemia improved associated with the increase of serum Cu. In the geriatric ward of the hospital, it is necessary to supply zinc in order to prevent respiratory infections such as pneumonia.

  20. Hydrothermal impacts on trace element and isotope ocean biogeochemistry

    PubMed Central

    Dutay, J.-C.; Heimbürger, L. E.; Jenkins, W. J.; Measures, C. I.; Mills, R. A.; Obata, H.; Turner, D. R.; Whitby, H.

    2016-01-01

    Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’.

  1. Signatures of Evolutionary Adaptation in Quantitative Trait Loci Influencing Trace Element Homeostasis in Liver

    PubMed Central

    Sabidó, Eduard; Bosch, Elena

    2016-01-01

    Essential trace elements possess vital functions at molecular, cellular, and physiological levels in health and disease, and they are tightly regulated in the human body. In order to assess variability and potential adaptive evolution of trace element homeostasis, we quantified 18 trace elements in 150 liver samples, together with the expression levels of 90 genes and abundances of 40 proteins involved in their homeostasis. Additionally, we genotyped 169 single nucleotide polymorphism (SNPs) in the same sample set. We detected significant associations for 8 protein quantitative trait loci (pQTL), 10 expression quantitative trait loci (eQTLs), and 15 micronutrient quantitative trait loci (nutriQTL). Six of these exceeded the false discovery rate cutoff and were related to essential trace elements: 1) one pQTL for GPX2 (rs10133290); 2) two previously described eQTLs for HFE (rs12346) and SELO (rs4838862) expression; and 3) three nutriQTLs: The pathogenic C282Y mutation at HFE affecting iron (rs1800562), and two SNPs within several clustered metallothionein genes determining selenium concentration (rs1811322 and rs904773). Within the complete set of significant QTLs (which involved 30 SNPs and 20 gene regions), we identified 12 SNPs with extreme patterns of population differentiation (FST values in the top 5% percentile in at least one HapMap population pair) and significant evidence for selective sweeps involving QTLs at GPX1, SELENBP1, GPX3, SLC30A9, and SLC39A8. Overall, this detailed study of various molecular phenotypes illustrates the role of regulatory variants in explaining differences in trace element homeostasis among populations and in the human adaptive response to environmental pressures related to micronutrients. PMID:26582562

  2. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications.

    PubMed

    Cabral, Lucélia; Soares, Claúdio Roberto Fonsêca Sousa; Giachini, Admir José; Siqueira, José Oswaldo

    2015-11-01

    In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.

  3. Sources and Contents of Heavy Metals and Other Trace Elements in Animal Manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trace elements are natural and added components of livestock and poultry feeds. Appropriate amounts of these trace elements in the diet of livestock and poultry ensures both health and reproduction. Unfortunately, many times trace metals that are added to livestock diets by producers or feed compani...

  4. Changes in trace elements of cerebrospinal fluid after subarachnoid hemorrhage, and effects of trace elements on vasospasm

    NASA Astrophysics Data System (ADS)

    Sato, N.; Kuroda, K.; Suzuki, M.; Ogawa, A.; Sera, K.

    1999-04-01

    Various causal factors have been proposed for cerebral vasospasm after subarachnoid hemorrhage (SAH), such as serotonin, acetylcholine, angiotensin, thrombin and thromboxane A2. However, none of them explain the whole pathomechanism of vasospasm. To evaluate the role of trace elements on vasospasm, we have examined these sequential changes in the cerebrospinal fluid (CSF) after SAH by PIXE, and have investigated the relation between trace elements and vasospasm. We obtained the CSF samples from cisternal drainage in patients with SAH who underwent radical surgery within 48 h from the onset. The drainage was placed into basal cisterns at the end of the operation. Three sampling times (3-5, 7-9 and 12-14 days from the onset) has been scheduled because vasospasm is likely to occur from day 4 to day 14 after the onset. In this study, we focused on the levels of Mg, Ca, Mn, Al, Zn, P, Pb, Sr, Br, Co, Cu, Si, Ti, Mn,Co, Cu, Zn, Br, Sr, Mo and Pb, and we found a significantly lower level of Mg in the CSF of patients with vasospasm on days 7-9 after the onset. These results suggest that Mg in the CSF may ameliorate vasoconstriction due to Ca in the pathomechanism of vasospasm.

  5. [Essential trace elements distribution in food micro algae Spirulina platensis biomass fractions].

    PubMed

    Zaretskaia, E S; Gmoshinskiĭ, I V; Mazo, V K; Zorin, S N; Aleshko-Ozhevskiĭ, Iu P

    2004-01-01

    Distribution of some trace elements elements (zinc, selenium, iron, manganese, chromium) was characterized in enriched biomass of food micro algae Spirulina platensis by means of water-methanol fractionation. The majority of said trace elements was shown to be incorporated in intercellular hydrophylic fraction, e.g. could be connected to cellular proteins. This result enable the conclusion, that Spirulina is a suitable matrix for biotechnological incorporation of new food trace elements preparations.

  6. Accumulation of elements by edible mushroom species: part I. Problem of trace element toxicity in mushrooms.

    PubMed

    Mleczek, Mirosław; Siwulski, Marek; Stuper-Szablewska, Kinga; Rissmann, Iwona; Sobieralski, Krzysztof; Goliński, Piotr

    2013-01-01

    The aim of this study was to evaluate Cd, Co, Cu, Hg, Ni, Pb, Sr and Zn accumulation in six edible mushroom species and to assess their risk and benefits to human consumers. Mushrooms (Leccinium aurantiacum, Xerocomus badius, Lactarius deliciosus, Boletus edulis, Cantharellus cibarius and Suillus luteus) were collected from selected regions of Poland during 1990-2010. The highest diversity between studied mushroom species was observed in terms of Cu and Zn accumulation. Significant differences in the accumulation efficiency were found among the six mushroom species examined. The most efficient were Boletus edulis (Cd and Hg), Suillus luteus (Cu and Sr), and Lactarius deliciosus (Pb and Zn). In the case of Co and Ni, the most effective were Xerocomus badius and Leccinium aurantiacum, respectively. The calculated bioconcentration factor (BCF) values of Cd, Cu, Hg, Sr and Zn were > 1 for all species in this study while Co, Ni and Pb usually were bioexcluded (BCF < 1). Additionally, based on the calculated daily intake rates of trace elements determined it can be concluded that occasional consumption of fruiting bodies of L. aurantiacum, X. badius, L. deliciosus, B. edulis, C. cibarius and S. luteus collected in Poland is safe and this finding largely agrees with results from recent studies by other authors.

  7. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  8. [Determination of trace elements in Lophatherum gracile brongn from different habitat by microwave digestion-atomic absorption spectroscopy].

    PubMed

    Yuan, Ke; Xue, Yue-Qin; Gui, Ren-Yi; Sun, Su-Qin; Yin, Ming-Wen

    2010-03-01

    A method of microwave digestion technique was proposed to determine the content of Zn, Fe, Cu, Mn, K, Ca, Mg, Ni, Cd, Pb, Cr, Co, Al, Se and As in Lophatherum gracile brongn of different habitat by atomic absorption spectroscopy. The RSD of the method was between 1.23% and 3.32%, and the recovery rates obtained by standard addition method were between 95.8% and 104.20%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of metal elements in Lophatherum gracile brongn. The experimental results also indicated that different areas' Lophantherum gracile brongn had different trace elements content. The content of trace elements K, Mg, Ca, Fe and Mn beneficial to the human body was rich. The content of the heavy metal trace element Pb in Lophantherum gracile brongn of Hunan province was slightly high. The content of the heavy metal trace element Cu in Lophantherum gracile brongn of Guangdong province and Anhui province is also slightly higher. Beside, the contents of harmful trace heavy metal elements Cd, Cu, Cr, Pb and As in Lophatherum gracile brongn of different habitat are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation and National Food Sanitation Standard. These determination results provided the scientific data for further discussing the relationship between the content of trace elements in Lophantherum gracile brongn and the medicine efficacy.

  9. Inorganic arsenic and trace elements in Ghanaian grain staples.

    PubMed

    Adomako, Eureka E; Williams, Paul N; Deacon, Claire; Meharg, Andrew A

    2011-10-01

    A total of 549 samples of rice, maize, wheat, sorghum and millet were obtained from markets in Ghana, the EU, US and Asia. Analysis of the samples, originating from 21 countries in 5 continents, helped to establish global mean trace element concentrations in grains; thus placing the Ghanaian data within a global context. Ghanaian rice was generally low in potentially toxic elements, but high in essential nutrient elements. Arsenic concentrations in rice from US (0.22 mg/kg) and Thailand (0.15 mg/kg) were higher than in Ghanaian rice (0.11 mg/kg). Percentage inorganic arsenic content of the latter (83%) was, however, higher than for US (42%) and Thai rice (67%). Total arsenic concentration in Ghanaian maize, sorghum and millet samples (0.01 mg/kg) was an order of magnitude lower than in Ghanaian rice, indicating that a shift from rice-centric to multigrain diets could help reduce health risks posed by dietary exposure to inorganic As.

  10. Surface-water-quality assessment of the Yakima River basin in Washington; spatial and temporal distribution of trace elements in water, sediment, and aquatic biota, 1987-91; with a section on geology

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Cain, Daniel J.; McKenzie, Stuart W.; Rinella, Joseph F.; Crawford, J. Kent; Skach, Kenneth A.; Hornberger, Michelle I.; Gannett, Marshall W.

    1999-01-01

    The report describes the distribution of trace elements in sediment, water, and aquatic biota in the Yakima River basin, Washington. Trace elements were determined from streambed sediment, suspended sediment, filtered and unfiltered water samples, aquatic insects, clams, fish livers, and fish fillets between 1987 and 1991. The distribution of trace elements in these media was related to local geology and anthropogenic sources. Additionally, annual and instantaneous loads were estimated for trace elements associated with suspended sediment and trace elements in filtered water samples. Trace elements also were screened against U.S. Environmental Protection Agency guidelines established for the protection of human health and aquatic life.

  11. Spatial distribution and source identification of trace elements in topsoil from heavily industrialized region, Aliaga, Turkey.

    PubMed

    Kara, Melik; Dumanoğlu, Yetkin; Altıok, Hasan; Elbir, Tolga; Odabası, Mustafa; Bayram, Abdurrahman

    2014-10-01

    Topsoil samples (n = 40) were collected from a heavily industrialized region in Turkey. The region includes several scrap processing iron-steel plants with electric arc furnaces (EAFs), a petroleum refinery, a petrochemical complex, steel rolling mills, a natural gas-fired power plant, ship-breaking yards and very dense transportation activities. The region has undergone a rapid transition from an agricultural region to a heavily industrialized region in the last three decades. Collected soil samples were analyzed for 48 trace elements using inductively coupled plasma-mass spectrometry (ICP-MS). The elemental distribution pattern in the region indicated that Nemrut area with dense iron-steel production activities was a hotspot for elemental pollution. In addition to crustal elements, concentrations of anthropogenic trace elements (i.e., Fe, Zn, Pb, Mn, Cu, Cd, Cr and Mo) were very high in the area influencing many parts of the region. Elemental compositions of fugitive sources polluting the soil (i.e., paved and unpaved roads, slag piles, EAFs filter dust piles and coal piles) were also determined. The methods (enrichment factors [EFs] and the index of geoaccumulation [Igeo]) used for determination of pollution status of soil showed that Cr, Ag, Zn, As and Pb were the strongly contaminating elements for the region. Principal component analysis (PCA) clearly indicated that anthropogenic sources (steel production, refinery and petrochemical processes and traffic) were important sources in this region.

  12. Accuracy of trace element determinations in alternate fuels

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. A.

    1980-01-01

    A review of the techniques used at Lewis Research Center (LeRC) in trace metals analysis is presented, including the results of Atomic Absorption Spectrometry and DC Arc Emission Spectrometry of blank levels and recovery experiments for several metals. The design of an Interlaboratory Study conducted by LeRC is presented. Several factors were investigated, including: laboratory, analytical technique, fuel type, concentration, and ashing additive. Conclusions drawn from the statistical analysis will help direct research efforts toward those areas most responsible for the poor interlaboratory analytical results.

  13. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-07-01

    The aim of this study was to investigate the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in different compartments of P. oceanica (leaves, rhizomes, roots and epiphytes) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epiphytes were the compartment, which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. Trace element translocation in P. oceanica seemed to be low and acropetal in most cases. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi showed the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  14. Assessment of trace element contents of chicken products from Turkey.

    PubMed

    Uluozlu, Ozgur Dogan; Tuzen, Mustafa; Mendil, Durali; Soylak, Mustafa

    2009-04-30

    Due to the consumption of chicken and chicken products in Turkey at high ratio, trace metal content of chicken and chicken products from Turkey were determined by atomic absorption spectrometry after microwave digestion. The accuracy of the method was confirmed by analysis of standard reference material (NIST SRM 1577b Bovine liver). Trace element content in various parts of chicken samples and chicken products were to be in the range of 0.10-114 microg/g for copper, 0.25-6.09 microg/kg for cadmium, 0.01-0.40 microg/g for lead, 0.10-0.91 microg/g for selenium, 0.05-3.91 microg/g for manganese, 0.06-0.10 microg/g for arsenic, 0.01-0.72 microg/g for chromium, 0.01-2.08 microg/g for nickel, 0.01-0.02 microg/g for cobalt, 0.10-1.90 microg/g for aluminium, 1.21-24.3 microg/g for zinc, 2.91-155 microg/g for iron. The levels of lead in some analyzed chicken products were higher than the recommended legal limits for human consumption.

  15. Composition and trace element content of coal in Taiwan

    USGS Publications Warehouse

    Tsai, L.-Y.; Chen, C.-F.; Finkelman, R.B.

    2005-01-01

    To investigate the trace element contents of local coal, four coal samples were collected from operating mines in NW Taiwan. Detailed petrographic and chemical characterization analyses were then conducted. Analytical results indicate that (1) the samples were high volatile bituminous coal in rank with ash content ranging from 4.2 to 14.4% and with moisture content ranging from 2.7 to 4.6%; (2) the macerals were mostly composed of vitrinite with vitrinite reflectance less than 0.8%; (3) the sample of Wukeng mine has the highest Fe2O3 (29.5%), TI (54.8 ppm), Zn (140 ppm), and As (697 ppm) contents in ash and Hg (2.3 ppm) in the coal. If used properly, these coals should not present health hazards.

  16. Trace elements in human physiology and pathology. Copper.

    PubMed

    Tapiero, H; Townsend, D M; Tew, K D

    2003-11-01

    Copper is a trace element, important for the function of many cellular enzymes. Copper ions can adopt distinct redox states oxidized Cu(II) or reduced (I), allowing the metal to play a pivotal role in cell physiology as a catalytic cofactor in the redox chemistry of enzymes, mitochondrial respiration, iron absorption, free radical scavenging and elastin cross-linking. If present in excess, free copper ions can cause damage to cellular components and a delicate balance between the uptake and efflux of copper ions determines the amount of cellular copper. In biological systems, copper homeostasis has been characterized at the molecular level. It is coordinated by several proteins such as glutathione, metallothionein, Cu-transporting P-type ATPases, Menkes and Wilson proteins and by cytoplasmic transport proteins called copper chaperones to ensure that it is delivered to specific subcellular compartments and thereby to copper-requiring proteins.

  17. Micro-PIXE Analysis of Trace Elements in Sulfides

    SciTech Connect

    Hickmott, D.D.; Wetteland, C.; Stimac, J.; Larocque, A.C.L.; Brearley, A.

    2003-08-26

    Micro-scale Proton-induced X-ray Emission (PIXE) of trace elements (TE) in sulfides provides insights into geologic processes including magmatic system evolution, ore forming events, and fluid-flow processes. The Los Alamos nuclear microprobe was used to determine TE concentrations and ratios in sulfides from diverse geologic environments including hydrothermal ore deposits, coal seams, and metamorphic rocks. Pyrrhotite (Po) from silicic volcanics contains high Cu and Ni; Po from the Clear Lake volcanic field has higher Mo than does Po from other volcanic fields. Coal pyrites contain high Cu, As, Se, Mo and Pb, and show high As/Se and Mo/Se in marine influenced sulfides from the Lower Kittanning coal, but not in other marine-influenced coals. Sulfides are amenable to micro-PIXE studies because of the difficulties in obtaining the homogeneous standards required for many other TE microanalytical techniques.

  18. Zinc: an essential trace element with potential benefits to soldiers.

    PubMed

    McClung, James P; Scrimgeour, Angus G

    2005-12-01

    Zinc is a trace element known to be an essential nutrient for life. It functions as a cofactor for numerous enzymes, including those involved in DNA and RNA replication and protein synthesis. Soldiers represent a unique population faced with intense metabolic and mental demands, as well as exposure to various immune challenges. Some of these factors may affect their dietary zinc requirements. Although severe zinc deficiency is unlikely to occur, some soldiers may experience less than optimal zinc status because of diminished intake coupled with increased requirements. For those soldiers, supplemental dietary zinc may serve a protective function in numerous disease states affecting modern warfighters. This review highlights the importance of adequate zinc nutriture to soldiers and discusses the potential benefits of supplemental zinc in a number of diseases currently affecting soldiers, including diarrhea, respiratory diseases, malaria, and leishmaniasis.

  19. Engineering development of selective agglomeration: Trace element removal study

    SciTech Connect

    Not Available

    1993-09-01

    Southern Company Services, Inc., (SCS) was contracted in 1989 by the US Department of Energy (DOE) to develop a commercially acceptable selective agglomeration technology to enhance the use of high-sulfur coals by 1993. The project scope involved development of a bench-scale process and components, as well as the design, testing, and evaluation of a proof-of-concept (POC) facility. To that end, a two-ton-per-hour facility was constructed and tested near Wilsonville, Alabama. Although it was not the primary focus of the test program, SCS also measured the ability of selective agglomeration to remove trace elements from coal. This document describes the results of that program.

  20. Global multiplicity of dietary standards for trace elements.

    PubMed

    Freeland-Graves, Jeanne H; Lee, Jane J

    2012-06-01

    Consistent guidelines across the world for dietary standards of trace elements remain elusive. Harmonization of dietary standards has been suggested by international agencies to facilitate consistency in food and nutrition policies and international trade. Yet significant barriers exist to standardize recommendations on a global basis, such as vast differences in geography, food availability and transport; cultural, social and economic constraints, and biological diversity. Simple commonality is precluded further by the variety of terminologies among countries and regions related to diet. Certain unions have created numerous nutritional descriptive categories for standards, while other large countries are limited to only a few. This paper will explore the global multiplicity of dietary standards and efforts for harmonization.

  1. Trace elements and pesticides in Salton Sea area, California

    USGS Publications Warehouse

    Schroeder, Roy A.; Setmire, James G.; Wolfe, John C.

    1988-01-01

    Concentrations of numerous potentially toxic trace elements and pesticides were determined in water, sediment, and biota from the Salton Sea area in southestern California. Comparison of results with data from other studies in this area and from other areas, and with various water-quality standards or criteria, indicate that selenium probably is the principal contaminant of concern in the Salton Sea basin and that it probably is related to agricultural practices. Selenium is mobilized in the subsurface drainwater produced by agricultural irrigation and transported in ditches and rivers, some of which pass through or near the Salton Sea National Wildlife Refuge before entering the Salton Sea. Some selenium apparently is incorporated into the food chain. In response to the finding of elevated selenium residues in fish from the area by State agencies, the Imperial County Health Department has issued a health advisory restricting or prohibiting human consumption of fish from the Salton Sea and drains.

  2. Ordinary chondrites - Multivariate statistical analysis of trace element contents

    NASA Technical Reports Server (NTRS)

    Lipschutz, Michael E.; Samuels, Stephen M.

    1991-01-01

    The contents of mobile trace elements (Co, Au, Sb, Ga, Se, Rb, Cs, Te, Bi, Ag, In, Tl, Zn, and Cd) in Antarctic and non-Antarctic populations of H4-6 and L4-6 chondrites, were compared using standard multivariate discriminant functions borrowed from linear discriminant analysis and logistic regression. A nonstandard randomization-simulation method was developed, making it possible to carry out probability assignments on a distribution-free basis. Compositional differences were found both between the Antarctic and non-Antarctic H4-6 chondrite populations and between two L4-6 chondrite populations. It is shown that, for various types of meteorites (in particular, for the H4-6 chondrites), the Antarctic/non-Antarctic compositional difference is due to preterrestrial differences in the genesis of their parent materials.

  3. Volatile/mobile trace elements in Bholghati howardite

    NASA Technical Reports Server (NTRS)

    Wang, Ming-Sheng; Paul, Rick L.; Lipschutz, Michael E.

    1990-01-01

    Ag, Au, Bi, Cd, Co, Cs, Ga, In, Rb, Sb, Se, Te, Tl, U, and Zn by RNAA are determined in two kinds of material from the Bholghati howardite: a carbonaceous chondrite clast (BH-4) that originated by primary nebular condensation/accretion processes; whole-rock samples and clasts resulting from parent-body processes, especially igneous differentiation. Trace element contents in Bholghati whole-rock (matrix) samples and/or white eucritic clasts in it are high for an achondrite, and variable. These characteristics are indicative of random condensation of volcanic emanations admixed with preexisting eucrite, diogenite, and howardite layers in the HED parent body. Other HED samples show similar patterns, and the conclusion that these reflect extensive volcanism in an asteroidal-sized object is supported by other Consortium noble gas and cosmochronologic measurements.

  4. H-chondrites - Trace element clues to their origin

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Janssens, M.-J.; Anders, E.; Takahashi, H.; Hertogen, J.

    1985-01-01

    RNAA is used to determine the abundances of 20 trace elements in four H4, two H3, two H5, and two H6 chondrites from the British Museum, as a contribution to a multiple-method study of these objects. The results are presented in tables and graphs and analyzed in terms of the inhomogeneity of the parent bodies and the depletion of volatiles in the higher petrologic types. Features observed include siderophile depletion in H3 chondrites; systematic variation of siderophile abundance pattern with petrologic type; volatile depletion as a primary feature; mineralogy consistent with accretion at 420-500 K; and the factor-analysis groupings siderophiles (Os, Re, Ir, Ni, Pd, Au, and Ge), volatiles (Ag, Br, In, Cd, Bi, and Tl), and alkalis (Rb and Cs).

  5. Potential sources of analytical bias and error in selected trace element data-quality analyses

    USGS Publications Warehouse

    Paul, Angela P.; Garbarino, John R.; Olsen, Lisa D.; Rosen, Michael R.; Mebane, Christopher A.; Struzeski, Tedmund M.

    2016-09-28

    Potential sources of analytical bias and error associated with laboratory analyses for selected trace elements where concentrations were greater in filtered samples than in paired unfiltered samples were evaluated by U.S. Geological Survey (USGS) Water Quality Specialists in collaboration with the USGS National Water Quality Laboratory (NWQL) and the Branch of Quality Systems (BQS).Causes for trace-element concentrations in filtered samples to exceed those in associated unfiltered samples have been attributed to variability in analytical measurements, analytical bias, sample contamination either in the field or laboratory, and (or) sample-matrix chemistry. These issues have not only been attributed to data generated by the USGS NWQL but have been observed in data generated by other laboratories. This study continues the evaluation of potential analytical bias and error resulting from matrix chemistry and instrument variability by evaluating the performance of seven selected trace elements in paired filtered and unfiltered surface-water and groundwater samples collected from 23 sampling sites of varying chemistries from six States, matrix spike recoveries, and standard reference materials.Filtered and unfiltered samples have been routinely analyzed on separate inductively coupled plasma-mass spectrometry instruments. Unfiltered samples are treated with hydrochloric acid (HCl) during an in-bottle digestion procedure; filtered samples are not routinely treated with HCl as part of the laboratory analytical procedure. To evaluate the influence of HCl on different sample matrices, an aliquot of the filtered samples was treated with HCl. The addition of HCl did little to differentiate the analytical results between filtered samples treated with HCl from those samples left untreated; however, there was a small, but noticeable, decrease in the number of instances where a particular trace-element concentration was greater in a filtered sample than in the associated

  6. Cellular Trace Element Changes in Type 1 Diabetes Patients

    PubMed Central

    Uğurlu, Vahap; Binay, Çiğdem; Şimşek, Enver; Bal, Cengiz

    2016-01-01

    Objective: Type 1 diabetes mellitus (T1DM) may lead to deficiencies in trace elements that have substantial functions in the human organism. Changes in serum magnesium (Mg), copper (Cu), and zinc (Zn) levels are correlated with metabolic control and diabetes complications. The aim of this study was to evaluate the intra-erythrocyte levels of trace elements and urinary Mg excretion following intravenous (iv) Mg tolerance testing in children with T1DM. Methods: A total of 43 children aged 2-18 years with T1DM and age/gender-matched 25 healthy children were included in the study. The iv Mg tolerance test was performed following the measurement of intra-erythrocyte Mg (eMg1), Cu (eCu1), and Zn (eZn1) levels using the atomic absorption spectrophotometer method. The Mg retention ratio was estimated from measurements in 24 h urine samples. Results: No statistically significant difference was found for eMg1, eCu1, and eZn1 levels between the patient and control groups (p>0.05). In the patient group, the eMg1, eCu1, and eZn1 levels measured after the iv Mg tolerance test significantly increased compared with the baseline levels (p<0.05), and the Mg excretion ratio measured from the urine collected after the iv MgSO4 infusion was >50%. Conclusion: The increased retention value following the iv Mg tolerance testing indicates intracellular Mg deficiency in children with T1DM. PMID:27086726

  7. Trace elements as quantitative probes of differentiation processes in planetary interiors

    NASA Astrophysics Data System (ADS)

    Drake, M. J.

    1980-02-01

    The characteristic trace element signature that each mineral in the source region imparts on the magma constitutes the conceptual basis for trace element modeling. It is shown that abundances of trace elements in extrusive igneous rocks may be used as petrological and geochemical probes of the source regions of the rocks if differentiation processes, partition coefficients, phase equilibria, and initial concentrations in the source region are known. Although compatible and incompatible trace elements are useful in modeling, the present review focuses primarily on examples involving the rare-earth elements.

  8. Trace element-rich cassiterite ('wood tin') from Central Saxony, Germany

    NASA Astrophysics Data System (ADS)

    Petermann, Tobias; Seifert, Thomas

    2014-05-01

    The mineral cassiterite occasionally occurs as radial-fibrous aggregates that are referred to as 'wood tin' due to their resemblance of the inner structure of wood. Typical material is known from Cornwall (granite-related) and Mexico (associated with rhyolites) but is only of minor economic importance. In the course of heavy mineral-investigations of stream sediments in Central Saxony, the extensive distribution of cassiterite as accessory heavy mineral in the form of 'wood tin' was established. The material was exclusively found as rounded grains (up to 5 mm across) in fluvial sediments. The obtained wood tin was studied by optical microscopy, cathodoluminescence-microscopy (CL), REM-EDX and bulk geochemistry. Microscopical studies revealed significant structural similarities to wood tin from Taylor Creek (New Mexico, USA), which is referred to the rhyolite-hosted Mexican type of tin deposits. The trace element contents are similar as well. In addition, it was possible to link the currently studied cassiterite with a rhyolite of Upper Carboniferous age (Westphalian C) by geochemical analyses and geological considerations. Bulk-geochemical analyses of material from the two most important occurrences revealed significant contents in trace elements. The concentrations of Fe and Si reach up to several wt%. Other remarkable trace elements are As (2000-4000 ppm), In (700 ppm), Sb (500-1500 ppm), Y (up to 150 ppm), Zn (700-1500 ppm) and REE (Ce: up to 200 ppm, La: up to 175 ppm). The elements Fe and Si are generally typical for wood tin and can be - at least in parts - assigned to inclusions of hematite and SiO2-phases (chalcedony?), respectively. The additional presence of diadochically incorporated Fe in the cassiterite lattice is indicated by very weak luminescence phenomena in CL. The high contents of the other elements (e. g., As, In, Zn and REE) suggest the presence of further inclusions. In microscopical studies of several wood tin samples in reflected and

  9. Speciation analysis and bioaccessibility evaluation of trace elements in goji berries (Lycium Barbarum, L.).

    PubMed

    Wojcieszek, Justyna; Kwiatkowski, Piotr; Ruzik, Lena

    2017-04-07

    Goji berries (Lycium Barbarum, L.) are known for their nutritional potential as a great source of trace metals (e.g., copper, zinc and manganese) which are present in the form of highly bioaccessible compounds. In order to assess the bioaccessibility of trace elements and to identify compounds responsible for better bioaccessibility of copper and zinc, an in vitro simulation of gastrointestinal digestion was used in this study. The total content of trace metals was evaluated using sample digestion followed by inductively coupled plasma mass spectrometry. Bioaccessibility of trace elements was estimated by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry. These analytical methods were used to analyse samples of goji berries to determine the highest amount of elements. For total trace metal content in goji berries, Zn had the highest level of the three studied (10.6μgg(-1)), while the total content of manganese and copper was 9.9μgg(-1) and 6.1μgg(-1), respectively. Additionally, the analysed metals were found to be highly bioaccessible to the human body (about 56% for Mn, 72% for Cu and 64% for Zn in the gastric extract and approximately 35% for Mn, 23% for Cu and 31% for Zn in the case of gastrointestinal extract). To obtain information about metal complexes present in goji berries, extraction treatment using different solutions (ionic liquid, HEPES, SDS, Tris-HCl, ammonium acetate, water) was performed. Enzymatic treatment using pectinase and hemicellulase was also checked. Extracts of berries were analysed by SEC-ICP-MS and μHPLC-ESI-MS/MS techniques. The ionic liquid and pectinase extraction helped efficiently extract copper (seven compounds) and zinc (four compounds) complexes. Compounds identified in goji berries are most likely to be responsible for better bioaccessibility of those elements to the human organism.

  10. Development and certification of the new SRM 695 trace elements in multi-nutrient fertilizer

    USGS Publications Warehouse

    MacKey, E.A.; Cronise, M.P.; Fales, C.N.; Greenberg, R.R.; Leigh, S.D.; Long, S.E.; Marlow, A.F.; Murphy, K.E.; Oflaz, R.; Sieber, J.R.; Rearick, M.S.; Wood, L.J.; Yu, L.L.; Wilson, S.A.; Briggs, P.H.; Brown, Z.A.; Budahn, J.; Kane, P.F.; Hall, W.L.

    2007-01-01

    During the past seven years, several states within the US have enacted regulations that limit the amounts of selected non-nutritive elements in fertilizers. Internationally, several countries, including Japan, China, and Australia, and the European Union also limit the amount of selected elements in fertilizers. The elements of interest include As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, and Zn. Fertilizer manufacturers and state regulatory authorities, faced with meeting and verifying these limits, need to develop analytical methods for determination of the elements of concern and to validate results obtained using these methods. Until now, there were no certified reference materials available with certified mass fraction values for all elements of interest in a blended, multi-nutrient fertilizer matrix. A new standard reference material (SRM) 695 trace elements in multi-nutrient fertilizer, has been developed to help meet these needs. SRM 695 has recently been issued with certified mass fraction values for seventeen elements, reference values for an additional five elements, and information values for two elements. The certificate of analysis includes an addendum listing percentage recovery for eight of these elements, determined using an acid-extraction inductively-coupled plasma optical-emission spectrometry (ICP-OES) method recently developed and tested by members of the Association of American Plant Food Control Officials. ?? Springer-Verlag 2007.

  11. Development and certification of the new SRM 695 trace elements in multi-nutrient fertilizer.

    PubMed

    Mackey, E A; Cronise, M P; Fales, C N; Greenberg, R R; Leigh, S D; Long, S E; Marlow, A F; Murphy, K E; Oflaz, R; Sieber, J R; Rearick, M S; Wood, L J; Yu, L L; Wilson, S A; Briggs, P H; Brown, Z A; Budahn, J; Kane, P F; Hall, W L

    2007-04-01

    During the past seven years, several states within the US have enacted regulations that limit the amounts of selected non-nutritive elements in fertilizers. Internationally, several countries, including Japan, China, and Australia, and the European Union also limit the amount of selected elements in fertilizers. The elements of interest include As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, and Zn. Fertilizer manufacturers and state regulatory authorities, faced with meeting and verifying these limits, need to develop analytical methods for determination of the elements of concern and to validate results obtained using these methods. Until now, there were no certified reference materials available with certified mass fraction values for all elements of interest in a blended, multi-nutrient fertilizer matrix. A new standard reference material (SRM) 695 trace elements in multi-nutrient fertilizer, has been developed to help meet these needs. SRM 695 has recently been issued with certified mass fraction values for seventeen elements, reference values for an additional five elements, and information values for two elements. The certificate of analysis includes an addendum listing percentage recovery for eight of these elements, determined using an acid-extraction inductively-coupled plasma optical-emission spectrometry (ICP-OES) method recently developed and tested by members of the Association of American Plant Food Control Officials.

  12. Investigation on thermal and trace element characteristics during co-combustion biomass with coal gangue.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Fang, Ting; Lam, Paul Kwan Sing

    2015-01-01

    The thermochemical behaviors during co-combustion of coal gangue (CG), soybean stalk (SS), sawdust (SD) and their blends prepared at different ratios have been determined via thermogravimetric analysis. The simulate experiments in a fixed bed reactor were performed to investigate the partition behaviors of trace elements during co-combustion. The combustion profiles of biomass was more complicated than that of coal gangue. Ignition property and thermal reactivity of coal gangue could be enhanced by the addition of biomass. No interactions were observed between coal gangue and biomass during co-combustion. The volatilization ratios of trace elements decrease with the increasing proportions of biomass in the blends during co-combustion. Based on the results of heating value, activation energy, base/acid ratio and gaseous pollutant emissions, the blending ratio of 20-30% biomass content is regarded as optimum composition for blending and could be applied directly at current combustion application with few modifications.

  13. Methods for detecting the mobility of trace elements during medium-temperature pyrolysis

    USGS Publications Warehouse

    Shiley, R.H.; Konopka, K.L.; Cahill, R.A.; Hinckley, C.C.; Smith, Gerard V.; Twardowska, H.; Saporoschenko, Mykola

    1983-01-01

    The mobility (volatility) of trace elements in coal during pyrolysis has been studied for distances of up to 40 cm between the coal and the trace element collector, which was graphite or a baffled solvent trap. Nineteen elements not previously recorded as mobile were detected. ?? 1983.

  14. Identifying the origin of atmospheric inputs of trace elements in the Prades Mountains (Catalonia) with bryophytes, lichens, and soil monitoring.

    PubMed

    Achotegui-Castells, Ander; Sardans, Jordi; Ribas, Àngela; Peñuelas, Josep

    2013-01-01

    The biomonitors Hypnum cupressiforme and Xanthoria parietina were used to assess the deposition of trace elements and their possible origin in the Prades Mountains, a protected Mediterranean forest area of NE Spain with several pollution sources nearby. Al, As, Cd, Co, Cu, Cr, Ni, Pb, Sb, Ti, V, and Zn were determined in 16 locations within this protected area. Soil trace element concentrations were also ascertained to calculate enrichment factors (EF) and use them to distinguish airborne from soilborne trace element inputs. In addition, lichen richness was measured to further assess atmospheric pollution. EF demonstrated to be useful not only for the moss but also for the lichen. Cd, Cr, Cu, Ni, and Zn presented values higher than three in both biomonitors. These trace elements were also the main ones emitted by the potential sources of pollutants. The distance between sampling locations and potential pollution sources was correlated with the concentrations of Cu, Sb, and Zn in the moss and with Cr, Ni, and Sb in the lichen. Lichen richness was negatively correlated with lichen Cu, Pb, and V concentrations on dry weight basis. The study reflected the remarkable influence that the pollution sources have on the presence of trace elements and on lichen species community composition in this natural area. The study highlights the value of combining the use of biomonitors, enrichment factors, and lichen diversity for pollution assessment to reach a better overview of both trace elements' impact and the localization of their sources.

  15. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation.

    PubMed

    Wang, Guanxing; Zeng, Chen; Zhang, Fan; Zhang, Yili; Scott, Christopher A; Yan, Xuedong

    2017-03-01

    The accumulation of traffic-related trace elements in soil as the result of anthropogenic activities raises serious concerns about environmental pollution and public health. Traffic is the main source of trace elements in roadside soil on the Tibetan Plateau, an area otherwise devoid of industrial emissions. Indeed, the rapid development of tourism and transportation in this region means it is becoming increasingly important to identify the accumulation levels, influence distance, spatial distribution, and other relevant factors influencing trace elements. In this study, 229 soil samples along six segments of the major transportation routes on the Tibetan Plateau (highways G214, S308, and G109), were collected for analysis of eight trace elements (Cr, Co, Ni, As, Cu, Zn, Cd, and Pb). The results of statistical analyses showed that of the eight trace elements in soils, Cu, Zn, Cd, and Pb were primarily derived from traffic. The relationship between the trace element accumulation levels and the distance from the roadside followed an exponential decline, with the exception of Segment 3, the only unpaved gravel road studied. In addition, the distance of influence from the roadside varied by trace element and segment, ranging from 16m to 144m. Background values for each segment were different because of soil heterogeneity, while a number of other potential influencing factors (including traffic volume, road surface material, roadside distance, land cover, terrain, and altitude) all had significant effects on trace-element concentrations. Overall, however, concentrations along most of the road segments investigated were at, or below, levels defined as low on the Nemero Synthesis index.

  16. Breccias 73215 and 73255 - Siderophile and volatile trace elements

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Petrie, R. K.

    1979-01-01

    Fifteen siderophile and volatile trace elements (Os, Re, Ir, Pd, Ni, Au, Sb, Ge, Se, Ag, In, Zn, Cd, Bi, Tl) and U were determined by radiochemical neutron activation analysis in a spheroidal aphanitic clast and a clast of coarse-grained anorthositic gabbro from breccia 73215 and in three types of aphanite and two clasts of fine-grained anorthositic gabbro from breccia 73255. In common with most Apollo 17 fragment-laden melt rocks, the aphanites from 73215 and 73255 predominantly contain a Group 2 meteoritic component, which is apparently derived from the Serenitatis impact. All aphanitic lithologies contain the same meteoritic component, and are probably cogenetic. The clasts of fine-grained anorthositic gabbro contain substantial amounts (2% to 6% Cl equivalent based on Au) of a pre-Serenitatis Group 3 component. The clast of coarse-grained anorthositic gabbro is low in siderophile elements (0.4% Cl equivalent), and the meteoritic component (Group 5) is not well-defined. A strong correlation exists between Ir and Au in both the aphanites and the anorthositic gabbro clasts, which argues against the breccias 73215 and 73255 being open systems for Au

  17. Rare earths and other trace elements in Apollo 14 samples.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Haskin, L. A.; Korotev, R. L.; Ziege, K. E.

    1972-01-01

    REE and other trace elements have been determined in igneous rocks 14053, 14072, and 14310, in breccias 14063 and 14313, and in fines 14163. All materials analyzed have typical depletions of Eu except for feldspar fragments from the breccias and igneous fragments from 14063. Igneous rocks 14072 and 14053 have REE concentrations very similar to Apollo 12 basalts; 14310 has the highest REE concentrations yet observed for a large fragment of lunar basalt. The effects of crystallization of a basaltic liquid as a closed system on the concentrations of Sm and Eu in feldspar are considered. Small anorthositic fragments may have originated by simple crystallization from very highly differentiated basalt (KREEP) or by closed-system crystallization in a less differentiated starting material. Application of independent models of igneous differentiation to Sm and Eu in massive anorthosite 15415 and to Sm and Eu in lunar basalts suggests a common starting material with a ratio of concentrations of Sm and Eu about the same as that in chondrites and with concentrations of those elements about 15 times enriched over chondrites.

  18. Zinc: A precious trace element for oral health care?

    PubMed

    Fatima, Tayyaba; Haji Abdul Rahim, Zubaidah Binti; Lin, Chai Wen; Qamar, Zeeshan

    2016-08-01

    This review will discuss the importance of Zinc in the maintenance of oral health. Zinc (Zn) is a trace element of valuable importance. In the oral cavity, it is naturally present at various sites such as dental plaque, dental hard tissues and saliva. It is proven to be effective against common prevalent oral health problems such as dental caries, gingivitis, periodontitis and malodour. It is being used in various oral health care products to control the formation of dental plaque and inhibiting the formation of dental calculus. It has the potential to sustain and maintain its elevated concentrations for a longer time particularly in the dental plaque and saliva on delivery from the mouth rinses and toothpastes. It has been reported that low concentrations of zinc have the capability to reduce dissolution and promote remineralization under caries simulating conditions. Most importantly low Zn2+ levels in the serum are useful as a tumour marker. Thus taking a note of its potentials, it can be concluded that zinc is a precious element for the maintenance of oral health.

  19. Fate of trace elements during the combustion of phytoremediation wood.

    PubMed

    Chalot, Michel; Blaudez, Damien; Rogaume, Yann; Provent, Anne-Sonia; Pascual, Christophe

    2012-12-18

    We investigated the fate of trace elements (TE) in poplar wood on the conversion of biomass to heat in a 0.2 MW combustion unit equipped with a fabric filter. The phytoremediation wood was harvested from a TE-contaminated agricultural site planted with a high-density poplar stand. The combustion technology used in the present experiment allows for an efficient separation of the various ash fractions. The combustion process concentrates Cu, Cr, and Ni in the bottom ash, heat exchanger ash, and cyclone ash fractions. Therefore, the impact of the fabric filter is negligible for these elements. Conversely, Cd, Pb, and Zn are significantly recovered in the emission fraction in the absence of the fabric filter above the emission limits. The use of a fabric filter will allow the concentration of these three TEs in the ashes collected below the filter, thus complying with all regulatory thresholds, i.e., those from the large combustion plant EU directive. Because the TE concentrations in the different fractions differed significantly, it is recommended that these fractions be treated separately, especially when recycling of ashes from phytoremediation wood through application in agriculture is envisaged.

  20. Comparative bioaccumulation kinetics of trace elements in Mediterranean marine sponges.

    PubMed

    Genta-Jouve, Grégory; Cachet, Nadja; Oberhänsli, François; Noyer, Charlotte; Teyssié, Jean-Louis; Thomas, Olivier P; Lacoue-Labarthe, Thomas

    2012-09-01

    While marine organisms such as bivalves, seagrasses and macroalgae are commonly used as biomonitors for the environment pollution assessment, widely distributed sponges received little attention as potential helpful species for monitoring programmes. In this study, the trace element and radionuclide bioaccumulation and retention capacities of some marine sponges were estimated in a species-comparative study using radiotracers technique. Six Mediterranean species were exposed to background dissolved concentrations of (110m)Ag, (241)Am, (109)Cd, (60)Co, (134)Cs, (54)Mn, (75)Se and (65)Zn allowing the assessment of the uptake and depuration kinetics for selected elements. Globally, massive demosponges Agelas oroides, Chondrosia reniformis and Ircinia variabilis displayed higher concentration factor (CF) than the erectile ones (Acanthella acuta, Cymbaxinella damicornis, Cymbaxinella verrucosa) at the end of exposure, suggesting that the morphology is a key factor in the metal bioaccumulation efficiency. Considering this observation, two exceptions were noted: (1) A. acuta reached the highest CF for (110m)Ag and strongly retained the accumulated metal without significant Ag loss when placed in depuration conditions and (2) C. reniformis did not accumulate Se as much as A. oroides and I. variabilis. These results suggest that peculiar metal uptake properties in sponges could be driven by specific metabolites or contrasting biosilification processes between species, respectively. This study demonstrated that sponges could be considered as valuable candidate for biomonitoring metal contamination but also that there is a need to experimentally highlight metal-dependant characteristic among species.

  1. The One Health Perspective in Trace Elements Biomonitoring.

    PubMed

    Frazzoli, Chiara; Bocca, Beatrice; Mantovani, Alberto

    2015-01-01

    Health risks in both animals and humans are associated with chronic exposures to levels of trace elements (TE) eliciting toxic and/or antinutritional effects, including excess exposures to some essential elements. Interferences with essential TE may also lead to secondary nutritional deficiencies and/or imbalances. Although research is still required, biomarkers of exposure, including bioavailability, for TE are established tools for human biomonitoring that can also be applied to animal surveillance. Biomarkers of effect as well as, where available, of susceptibility and bioavailability are necessary to understand whether an ongoing exposure may pose a current or future health concern. In the field of animal health the use of biomarkers is less developed and less widespread than in human health; however, under a One Health perspective, animal biomonitoring can provide important information on the interfaces among humans, animals, and the environment, supporting the prevention and management of health risks. Therefore, a transfer of knowledge from human biomonitoring to farm or free-ranging animals is critical in a risk assessment framework from farm to humans. Advantages and critical aspects in designing and conducting integrative biomonitoring activities in humans and animals were critically reviewed focusing on biomarkers of exposure, effect, susceptibility, and bioavailability for toxic and essential TE. Highlighted aspects include TE metabolism, bioaccessibility, and interactions. Farm or free-ranging animals may provide noninvasive matrices suitable for evaluating animal welfare, environmental stressors, food safety, and potential risks for human health, as proposed by the interdisciplinary concept of One Health.

  2. Trace Elemental Geochemistry of Pacific Margin Seep and Non-seep Benthic Foraminifera

    NASA Astrophysics Data System (ADS)

    Burkett, A. M.; Rathburn, A. E.; De Deckker, P.; Perez, M. E.

    2015-12-01

    As part of a continued effort to evaluate factors that influence carbonate biogeochemistry of living foraminifera, stable isotopic and trace elemental analyses of epibenthic and infaunal species of benthic foraminifera collected from the Pacific margin revealed clues for assessment of the presence, history and origin of cold and hydrothermal methane seepage sites. Hydrothermal seeps have only recently been discovered, prioritizing their recognition and assessments of the origins/sources of these anomalously warm environments. Trace elements were analyzed with a laser ablation ICP-MS at the Australian National University, avoiding contamination and allowing measurements of recently generated chambers. Living Cibicidoides wuellerstorfi and Uvigerina peregrina collected from active methane seeps on the east Pacific margin (Costa Rica, Alaska and Hydrate Ridge) have a wider range in both stable isotopic signals and some trace elemental values (e.g., Mg/Ca) compared to nearby inactive areas. Comparisons of additional trace elemental values (e.g., Li/Ca, Cd/Ca, B/Ca, and Ba/Ca) from living Cibicidoides wuellerstorfi and Uvigerina peregrina from these unique seafloor environments provide additional information in the geochemical influences of cold and hydrothermal seepage on foraminiferal calcite geochemistry. Seep environments are often the result of complex tectonic processes, have implications in past rapid climatic shifts and in future climate change predictions and models, and can influence modern ecosystems and biogeochemical cycles in ways which are not fully understood. Benthic foraminiferal geochemistry provides a potential means to identify seep fluid origins, elucidate seep fluid records and recognize hydrothermal seeps and their spatial and temporal history.

  3. Relationship Between the Trace Elements and Graphite Growth Morphologies in Cast Iron

    NASA Astrophysics Data System (ADS)

    Muhmond, Haji Muhammad; Fredriksson, Hasse

    2014-12-01

    The graphite morphology transition was studied using various techniques and additives in ultra-pure binary and ternary alloys with hypo- and hypereutectic compositions. Some of the trace elements were observed to stabilize the flake growth morphology of graphite, while others did not. The distance between the graphite basal planes of spheroidal, flake, and undercooled fine graphite was measured and the lattice fringes were studied using high resolution transmission electron microscope, after preparing a thin lamella of graphite using focused ion beam. Latent heat measurement was performed using differential scanning calorimeter on the pure binary alloy with and without sulfur and oxygen additions. The substitution of various elements under study in a monolayer of graphene was analyzed by considering the binding energies of the elements with C and their bonding nature. Simulations were performed using a molecule editor program and visualizer (Avogadro software), which considers various types of interatomic forces to optimize a monolayer of graphene to a minimum energy. The effect of the type of cyclic C-ring structure and energy of the basal plane of graphite with a connection to the addition of trace elements individually in the monolayer of graphene was studied and simulated to understand the resulting bulk graphite growth morphology.

  4. Nutrient and trace-element enrichment of Coeur d'Alene Lake, Idaho

    USGS Publications Warehouse

    Woods, Paul F.; Beckwith, Michael A.

    1997-01-01

    The limnological characteristics and geochemistry of lakebed sediments in Coeur d'Alene Lake were assessed during 1991-92 because of the possible interaction of nutrient enrichment with the highly enriched trace-element concentrations stored in the lakebed. The scope included characterization of physical, chemical, and biological variables; quantification of hydrologic, nutrient, and trace-element budgets; development of an empirical nutrient load/lake response model; and characterization of trace elements in surficial and subsurface lakebed sediments.

  5. Trace Element Condensation in Circumstellar Envelopes of Carbon Stars

    NASA Astrophysics Data System (ADS)

    Lodders, K.; Fegley, B., Jr.

    1992-07-01

    It is now well established that meteorites contain reduced presolar grains, such as graphite and silicon carbide (SiC), which are probably formed by condensation of dust in the circumstellar envelopes of carbon-rich AGB stars. Here we model condensation in envelopes of carbon stars, with an emphasis on trace elements. Since absolute elemental abundances in stellar atmospheres are generally not known, we assume solar abundances (Anders and Grevesse 1989), except for carbon. A C/O ratio of 2, consistent with the mean and median values of 2.1 and 1.8 respectively, for 61 carbon stars (Gow 1977) was used. The C/O ratio was increased by adding carbon because astrophysicists believe that carbon produced in helium-burning zones may be mixed to the surfaces of C stars (e.g. Lucy 1976). We used physical parameters for the circumstellar shell of the high mass-loss rate, prototypical carbon star IRC +10216 (e.g. Keady et al. 1988, Dominik et al. 1990) and theoretical considerations by Salpeter (1974a,b) to construct a P-T-model of the envelope (see Fig. 1). Thermodynamic equilibrium condensation calculations for a reduced gas include ~600 gaseous and solid compounds of the elements H, C, N, O, S, P, F, Cl, Fe, Mg, Al, Ti, Si, Ca, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and REE. Refractory oxides, sulfides, nitrides, and carbides were considered as condensates. The calculations were done from T = 800 to 2500 K, and P= 10^-5 to 10^-13 bars. The effects of nucleation on condensation temperatures were calculated using the nucleation model discussed by Salpeter (1974a,b) and Cameron and Fegley (1982). The temperature drop required for condensation depends on (P,T, density) in the expanding envelope and also on the abundance, density, and surface energy (Es) of the nucleating compound. The range of E(sub)s values for NaCl-type carbides are about 800-1700 erg/cm^2 (Livey & Murray 1956); however, these data are generally poorly known. Another important variable is the sticking coefficient (s

  6. Trace element effects on precipitation processes and mechanical properties in an Al-Cu-Li alloy

    SciTech Connect

    Gilmore, D.L.; Starke, E.A. Jr.

    1997-07-01

    A study has been made of how impurities (Na and K) and trace additions of indium, magnesium, and silicon affect the microstructure and related mechanical properties of an Al-Cu-Li alloy. Transmission electron microscopy (TEM) was used to determine the size and distribution of particles in four alloys. Indium and magnesium are both seen to stimulate T{sub 1} precipitation. Indium also modifies {theta}{double_prime} morphology, and magnesium greatly increases the number density of {theta}{double_prime} precipitates. Strain localization was observed in underaged Al-Cu-Li-In tensile samples, consistent with observed changes in precipitate structure. No superposition of the effects of indium and magnesium was seen. High-resolution analytical microscopy was used to inspect precipitates for segregation of trace elements during early stages of aging, but no segregation was found within the detection limits of the system. Variations in heat treatment were made in order to study nucleation kinetics and trace element interactions with vacancies. Indium, with a binding energy less than that of lithium, was not seen to interact with quenched-in vacancies, while magnesium, with a binding energy greater than that of lithium, had a strong interaction. Yield anisotropies and fracture toughnesses were measured. Removal of trace impurities of sodium and potassium correlated with improved fracture properties. Magnesium was observed to increase anisotropy, especially in the T8 temper. A model was used to explain the anisotropy data in terms of texture and precipitate distribution.

  7. Trace elements in sulfide inclusions from Yakutian diamonds

    NASA Astrophysics Data System (ADS)

    Bulanova, G. P.; Griffin, W. L.; Ryan, C. G.; Shestakova, O. Y.; Barnes, S.-J.

    1996-07-01

    Sulfide inclusions in diamonds may provide the only pristine samples of mantle sulfides, and they carry important information on the distribution and abundances of chalcophile elements in the deep lithosphere. Trace-element abundances were measured by proton microprobe in >50 sulfide inclusions (SDI) from Yakutian diamonds; about half of these were measured in situ in polished plates of diamonds, providing information on the spatial distribution of compositional variations. Many of the diamonds were identified as peridotitic or eclogitic from the nature of coexisting silicate or oxide inclusions. Known peridotitic diamonds contain SDIs with Ni contents of 22 36%, consistent with equilibration between olivine, monosulfide solid solution (MSS) and sulfide melt, whereas SDIs in eclogitic diamonds contain 0 12% Ni. A group of diamonds without silicate or oxide inclusions has SDIs with 11 18% Ni, and may be derived from pyroxenitic parageneses. Eclogitic SDIs have lower Ni, Cu and Te than peridotitic SDIs; the ranges of the two parageneses overlap for Se, As and Mo. The Mo and Se contents range up to 700 and 300 ppm, respectively; the highest levels are found in peridotitic diamonds. Among the in-situ SDIs, significant Zn and Pb levels are found in those connected by cracks to diamond surfaces, and these elements reflect interaction with kimberlitic melt. Significant levels of Ru (30 1300 ppm) and Rh (10 170 ppm) are found in many peridotitic SDIs; SDIs in one diamond with wustite and olivine inclusions and complex internal structures have high levels of other platinum-group elements (PGEs) as well, and high chondrite-normalized Ir/Pd. Comparison with experimental data on element partitioning between crystals of monosulfide solid solution (MSS) and sulfide melts suggests that most of the inclusions in both parageneses were trapped as MSS, while some high-Cu SDIs with high Pd±Rh may represent fractionated sulfide melts. Spatial variations of SDI composition within

  8. Fractionation of fluorine, chlorine and other trace elements during differentiation of a tholeiitic magma.

    NASA Technical Reports Server (NTRS)

    Greenland, L.; Lovering, J. F.

    1966-01-01

    Fluorine, chlorine and other trace elements determined through differentiated tholeiitic dolerite sill from Tasmania using statistical techniques, showing hydroxyl lattice sites by chlorine and fluorine

  9. Trace Elements and Carbon and Nitrogen Stable Isotopes in Organisms from a Tropical Coastal Lagoon

    PubMed Central

    van Hattum, B.; de Boer, J.; van Bodegom, P. M.; Rezende, C. E.; Salomons, W.

    2010-01-01

    Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (δ13C and δ15N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by 15N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between δ15N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption. PMID:20217062

  10. Trace element trophic transfer in aquatic organisms: A critique of the kinetic model approach

    USGS Publications Warehouse

    Reinfelder, J.R.; Fisher, N.S.; Luoma, S. N.; Nichols, J.W.; Wang, W.-X.

    1998-01-01

    The bioaccumulation of trace elements in aquatic organisms can be described with a kinetic model that includes linear expressions for uptake and elimination from dissolved and dietary sources. Within this model, trace element trophic transfer is described by four parameters: the weight-specific ingestion rate (IR); the assimilation efficiency (AE); the physiological loss rate constant (ke); and the weight-specific growth rate (g). These four parameters define the trace element trophic transfer potential (TTP=IR·AE/[ke+g]) which is equal to the ratio of the steady-state trace element concentration in a consumer due to trophic accumulation to that in its prey. Recent work devoted to the quantification of AE and ke for a variety of trace elements in aquatic invertebrates has provided the data needed for comparative studies of trace element trophic transfer among different species and trophic levels and, in at least one group of aquatic consumers (marine bivalves), sensitivity analyses and field tests of kinetic bioaccumulation models. Analysis of the trophic transfer potentials of trace elements for which data are available in zooplankton, bivalves, and fish, suggests that slight variations in assimilation efficiency or elimination rate constant may determine whether or not some trace elements (Cd, Se, and Zn) are biomagnified. A linear, single-compartment model may not be appropriate for fish which, unlike many aquatic invertebrates, have a large mass of tissue in which the concentrations of most trace elements are subject to feedback regulation.

  11. Trace Element Abundances in Refractory Inclusions from Antarctic Micrometeorites

    NASA Astrophysics Data System (ADS)

    Greshake, A.; Hoppe, P.; Bischoff, A.

    1995-09-01

    Refractory inclusions are charcteristic components in carbonaceous chondrites. Therefore, refractory inclusions found in micrometeorites can give important hints about the relationship between micrometeorites and carbonaceous chondrites. So far, only a few inclusions were found in micrometeorites [1-4]. In this study we report the first trace element analysis of perovskite and fassaite found in micrometeorites. We studied two Antarctic micrometeorites by ASEM, EMP, and SIMS. The first particle is 120 micrometers in size mainly consisting of a fine-grained matrix of dehydrated former phyllosilikates that enclose a 5 micrometers sized perovskite [5]. The perovskite is surrounded by a 1 micrometers thick rim of ilmenite and contains up to 1.3 wt% FeO as determined by EMP. The trace element abundances were determined by SIMS following the procedure described by [6]. The REE pattern of the perovskite is shown in Fig. 1. The pattern is closely related to the Group II pattern with its typical depletion of the more refractory REEs [7]. It is also very similar to the REE abundances of perovskite from Murchison (CM) [8] and CH-chondrites [9]. This may indicate a relationship between this micrometeorite and components in carbonaceous chondrites. The second micrometeorite is 100 micrometers in size consisting of a fine-grained (20 micrometers across) and a coarse-grained (80 micrometers across) area. Both areas contain fassaite with different chemical compositions. The particle was previously analyzed by Lindstrom and Kloeck [1] without knowing the mineralogy. We carried out SIMS analysis of each area of the micrometeorite separately. The TEE patterns of these two areas are similar and show in general a Group III pattern (20-30x CI) in which the more refractory REEs are not fractionated. The negative Eu anomaly is much more apparent in the coarse-grained area and no Yb anomaly is apparent in one of the areas. This is the first CAI of a micrometeorite showing a Group III REE

  12. Trace-element record in zircons during exhumation from UHP conditions, North-East Greenland Caledonides

    USGS Publications Warehouse

    McClelland, W.C.; Gilotti, J.A.; Mazdab, F.K.; Wooden, J.L.

    2009-01-01

    Coesite-bearing zircon formed at ultrahigh-pressure (UHP) conditions share general characteristics of eclogite-facies zircon with trace-element signatures characterized by depleted heavy rare earth elements (HREE), lack of an Eu anomaly, and low Th/ U ratios. Trace-element signatures of zircons from the Caledonian UHP terrane in North-East Greenland were used to examine the possible changes in signature with age during exhumation. Collection and interpretation of age and trace-element analyses of zircon from three samples of quartzofeldspathic gneiss and two leucocratic intrusions were guided by core vs. rim zoning patterns as imaged by cathodoluminesence. Change from igneous to eclogite-facies metamorphic trace-element signature in protolith zircon is characterized by gradual depletion of HREE, whereas newly formed metamorphic rims have flat HREE patterns and REE concentrations that are distinct from the recrystallized inherited cores. The signature associated with eclogite-facies metamorphic zircon is observed in coesite-bearing zircon formed at 358 ?? 4 Ma, metamorphic rims formed at 348 ?? 5 Ma during the initial stages of exhumation, and metamorphic rims formed at 337 ?? 5 Ma. Zircons from a garnet-bearing granite emplaced in the neck of an eclogite boudin and a leucocratic dike that cross-cuts amphibolite-facies structural fabrics have steeply sloping HREE patterns, variably developed negative Eu anomalies, and low Th/U ratios. The granite records initial decompression melting and exhumation at 347 ?? 2 Ma and later zircon rim growth at 329 ?? 5. The leucocratic dike was likely emplaced at amphibolite-facies conditions at 330 ?? 2 Ma, but records additional growth of compositionally similar zircon at 321 ??2 Ma. The difference between the trace-element signature of metamorphic zircon in the gneisses and in part coeval leucocratic intrusions indicates that the zircon signature varies as a function of lithology and context, thus enhancing its ability to aid in

  13. Fractionation of trace elements in agricultural soils using ultrasound assisted sequential extraction prior to inductively coupled plasma mass spectrometric determination.

    PubMed

    Matong, Joseph M; Nyaba, Luthando; Nomngongo, Philiswa N

    2016-07-01

    The main objectives of this study were to determine the concentration of fourteen trace elements and to investigate their distribution as well as a contamination levels in selected agricultural soils. An ultrasonic assisted sequential extraction procedure derived from three-step BCR method was used for fractionation of trace elements. The total concentration of trace elements in soil samples was obtained by total digestion method in soil samples with aqua regia. The results of the extractable fractions revealed that most of the target trace elements can be transferred to the human being through the food chain, thus leading to serious human health. Enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), risk assessment code (RAC) and individual contamination factors (ICF) were used to assess the environmental impacts of trace metals in soil samples. The EF revealed that Cd was enriched by 3.1-7.2 (except in Soil 1). The Igeo results showed that the soils in the study area was moderately contaminated with Fe, and heavily to extremely polluted with Cd. The soil samples from the unplanted field was found to have highest contamination factor for Cd and lowest for Pb. Soil 3 showed a high risk for Tl and Cd with RAC values of greater than or equal to 50%. In addition, Fe, Ni, Cu, V, As, Mo (except Soil 2), Sb and Pb posed low environmental risk. The modified BCR sequential extraction method provided more information about mobility and environmental implication of studied trace elements in the study area.

  14. Bioaccumulation of trace elements in trophic levels of wetland plants and waterfowl birds.

    PubMed

    Alhashemi, Azam Sadat Hosseini; Karbassi, Abdolreza R; Kiabi, Bahram Hassanzadeh; Monavari, Seyed Masoud; Nabavi, Seyed Mohammad Bagher; Sekhavatjou, Mohammad Sadegh

    2011-09-01

    Present study investigates relationships between total and bioaccessibility of trace elements (Cd, Co, Cr, Cu, Mn, NI, Pb, V, and Zn) concentrations in sediment and their bioaccumulation in species in Shadegan wetland in southwest of Iran. Bioavailability factor (BAF) and translocation factor (TF) were calculated in plants and trophic transfer factor (TTF) was determined in bird species. For this purpose, sampling of sediments, aquatic plants including Phragmites australis, Typha australis, Scripus maritimus and two bird species encircling Porphyrio porphyrio and globally threatened Marmaronetta angustirostris were carried out during winter 2009. Result of chemical analysis show that bioaccessibility concentrations of Mn (8.31 mg/kg), V (1.33 mg/kg), and Pb (1.03 mg/kg) are higher than other metals. The uptake trend of trace elements in plant decreases as root > stem > leaf. Accumulation levels of trace elements in different tissues of P. porphyrio and M. angustirostris are almost identical and considerable. Accumulation and toxicity of Cd in birds is more than plants. In addition, BAF of V, Pb, and Cr indicates high accumulation by plants and great pollution rate in the area of study. In S. maritimus TF for Mn, Cu, Pb, and V are high whereas in T. australis, Cu and Pb posses the highest TF. Also Cr, Co, Mn, Ni, and Zn have higher TF from stem to leaf than root to stem in P. australis. Finally, TTFs were compared in various bird species.

  15. The Influence of Database Configuration on the Derivation of Trace Element Partitioning Expressions for Clinopyroxene

    NASA Astrophysics Data System (ADS)

    Cunningham, J. L.; Nielsen, R. L.; Koppers, A. A.; Ghiorso, M. S.; Hirschmann, M. M.

    2009-05-01

    Clinopyroxene has a large role in controlling the trace element budget in the crust and upper mantle due to its moderate level of compatibility with respect to many trace elements (e.g. REE, HFSE) and its role in melting and crystallization processes. Decades of experimental work has illustrated the high degree to which the partitioning of most elements is dependent on phase composition, temperature and pressure. In order to quantitatively describe clinopyroxene partitioning it is required to derive expressions using theoretical constraints that are calibrated with experimental data [1-6]. The experimental database available for such an analysis has grown considerably in the past decade, both in number of experiments and the range of composition and experimental conditions. Our research is focused on the compilation and evaluation of this newly available experimental clinopyroxene data. This compilation was conducted as part of the ongoing update of the GERM partition coefficient (Kd) database (http://earthref.org/databases/KDD). Previous versions of the partitioning database provided a summary of partitioning information from the literature, however without data on phase compositions. In this current update, data on phase compositional and experimental conditions are being added on an investigation by investigation basis. One of the areas of initial concentration has been information on clinopyroxene, due to the relatively large size of the available data and the significance of the dataset as a whole. As an example of the utility of the database, we have compiled the available clinopyroxene trace element experimental data on natural, doped natural and synthetic materials, focusing on the data for the rare earth and high field strength elements. Our initial analysis documents the significant difference in the numbers of experiments between different elements and groups of elements. In addition, the distribution of pyroxene composition, melt composition, and

  16. Metals and trace elements in feathers: A geochemical approach to avoid misinterpretation of analytical responses.

    PubMed

    Borghesi, Fabrizio; Migani, Francesca; Andreotti, Alessandro; Baccetti, Nicola; Bianchi, Nicola; Birke, Manfred; Dinelli, Enrico

    2016-02-15

    Assessing trace metal pollution using feathers has long attracted the attention of ecotoxicologists as a cost-effective and non-invasive biomonitoring method. In order to interpret the concentrations in feathers considering the external contamination due to lithic residue particles, we adopted a novel geochemical approach. We analysed 58 element concentrations in feathers of wild Eurasian Greater Flamingo Phoenicopterus roseus fledglings, from 4 colonies in Western Europe (Spain, France, Sardinia, and North-eastern Italy) and one group of adults from zoo. In addition, 53 elements were assessed in soil collected close to the nesting islets. This enabled to compare a wide selection of metals among the colonies, highlighting environmental anomalies and tackling possible causes of misinterpretation of feather results. Most trace elements in feathers (Al, Ce, Co, Cs, Fe, Ga, Li, Mn, Nb, Pb, Rb, Ti, V, Zr, and REEs) were of external origin. Some elements could be constitutive (Cu, Zn) or significantly bioaccumulated (Hg, Se) in flamingos. For As, Cr, and to a lesser extent Pb, it seems that bioaccumulation potentially could be revealed by highly exposed birds, provided feathers are well cleaned. This comprehensive study provides a new dataset and confirms that Hg has been accumulated in feathers in all sites to some extent, with particular concern for the Sardinian colony, which should be studied further including Cr. The Spanish colony appears critical for As pollution and should be urgently investigated in depth. Feathers collected from North-eastern Italy were the hardest to clean, but our methods allowed biological interpretation of Cr and Pb. Our study highlights the importance of external contamination when analysing trace elements in feathers and advances methodological recommendations in order to reduce the presence of residual particles carrying elements of external origin. Geochemical data, when available, can represent a valuable tool for a correct

  17. Microbially Induced Reductive Dissolution of Trace Element-Rich Lacustrine Iron-Oxides

    NASA Astrophysics Data System (ADS)

    Crowe, S. A.; Kulczykci, E.; O'Neill, A. H.; Roberts, J. A.; Fowle, D. A.

    2004-12-01

    Iron (oxy)hydroxides are ubiquitous components of surfacial materials and are often the dominant redox buffering solid phases in soils and sediments. As a result, the geochemical behavior of these minerals has a profound influence on the global biogeochemical cycling of trace elements, including heavy metals and arsenic (As), in addition to nutrients such as, sulfur (S), carbon (C), nitrogen (N), and phosphorus (P). Understanding the behavior of trace elements and nutrients during biological and abiotic processes that effect iron (Fe) mineral phase transformations is paramount for predicting their distribution, mobility, and bioavailability in the environment. To evaluate the impact of dissimilatory Fe-reduction (DIR) on trace element mobility we have conducted batch incubations of Fe-rich lateritic lacustrine sediments. In contrast to mid-latitude lakes where Fe (oxy)hydroxides constitute only a small fraction of the total sediment, tropical lake sediments have been known to comprise up to 40-60 wt. % Fe-oxides. Under suboxic and nonsulphidogenic conditions it is likely that DIR plays a prominent role in early diagenesis and therefore may exert control on the fate and distribution of many trace elements in this environment (e.g. Crowe et al. 2004). In batch incubations conducted in a minimal media of similar composition to typical freshwater the lacustrine Fe-oxides were reductively dissolved at a rate very similar to pure synthetic goethite of similar surface area (measured by N2-BET). This is in contrast to the slower rates previously observed for trace element substituted Fe-oxides. These slower rates have been attributed to surface passivation by secondary Al and Cr mineral precipitation. We propose that these passivation effects may be offset in minimal media incubations by enhanced microbial metabolism due the presence of nutrients (P, Co and other metals) in the lacustrine Fe-oxides. These nutrients became available with progressive reduction as the

  18. Evaluating cleansing effects on trace elements and stable isotope values in feathers of oiled birds.

    PubMed

    Valladares, Sonia; Moreno, Roćio; Jover, Lluis; Sanpera, Carola

    2010-01-01

    Feathers of seabirds are widely used as a nondestructive tissue for pollution monitoring of trace elements, as well as convenient samples for trophic ecology studies by means of stable isotope analysis (SIA). Nevertheless, feathers can be occasionally impregnated with oil from deliberate ship discharges and from massive oil spill accidents. The feather structure makes them effective traps for particles and are subject to external contamination. It is unknown to what extent the oil adhered to feathers can change trace element concentrations or stable isotope signatures. This study has two primary objectives: (1) to assess if there are differences between trace element concentrations and stable isotope signatures of oiled and clean feathers, and (2) to determine if the cleansing of oiled feathers using commonly applied techniques such as sodium hydroxide (NaOH) washes in combination with an organic solvent (hexane) is more effective than using NaOH alone. In order to do this, we analysed trace elements (Se, Hg, Pb, Cu and Zn) and stable isotopes (delta(13)C and delta(15)N) of individual feathers of yellow-legged gulls (Larus michahellis) which were affected by the 2002 Prestige oil spill in Galicia (NW Spain). Two sets of feathers were analysed, one group were oil-free (Control group) and the other had oil adhered to its surface (Oiled group). We expected to find differences between control and oiled feathers when cleaning exclusively with NaOH and no differences when using hexane. Our results did not show significant differences between Control and Oiled groups as a consequence of the cleansing method used. Unexpectedly, the additional cleansing with hexane resulted in decreasing selenium concentrations and increasing zinc and delta(15)N values in all groups of feathers.

  19. Trace elements, anxiety and immune parameters in patients affected by cancer.

    PubMed

    Bargellini, Annalisa; Piccinini, Lino; De Palma, Marisa; Giacobazzi, Pierluigi; Scaltriti, Stefania; Mariano, Maria; Roncaglia, Roberto; Borella, Paola

    2003-01-01

    The aim of this case-control study was to investigate the relationship between trace elements, immune parameters, and human cancer, taking into account some personality traits, such as anxiety, implicated in the modulation of both immune responses and pathology. Thirty patients affected by the most frequent cancer types were recruited at the onset of disease together with 30 healthy controls. Se, Zn and Cu were measured in plasma together with glutathione peroxidase (GSH-Px) activity, and lipid peroxidation (thiobarbituric acid-reactive substances--TBARS). Furthermore, Zn and GSH-Px activity were measured in red blood cells. A complete blood profile with the main lymphocytes subsets was obtained and the State-Trait Anxiety Inventory was applied to evaluate anxiety. The only differences found between trace element levels in cases and controls were significantly higher erythrocyte Zn in cancer patients and higher plasma Cu levels in male patients. In addition, subjects affected by cancer exhibited a significant reduction in TBARS levels, were more anxious, had lower total B cells percentage and T helper/T suppressor ratio, and had a higher percentage of natural killer cells. Interestingly, in patients only, GSH-Px in plasma was positively related to trait anxiety scores (p < 0.02) and Cu to state anxiety scores (p < 0.05). In conclusion, we could not confirm the existence of trace element deficiency in relation to cancer and no links between trace element levels and lymphocyte subsets were documented. However, interesting associations between state anxiety and Cu, and between trait anxiety and GSH-Px were observed thus deserving further investigations.

  20. Thorium and other trace elements in soils from Catalonia (Spain)

    NASA Astrophysics Data System (ADS)

    Bech, J.; Tume, P.; Roca, N.; Tobias, F. J.; Reverter, F.; Sanchez, P.; Rustullet, J.

    2012-04-01

    A study was conducted to determine the total contents (XRF) of Th and Ba, Ce,Cu, Ga, Ni, Pb, Rb, Sn, Sr, V, Y, Zn and Zr in soils from Catalonia, NE Spain, and to establish relationships between heavy metals and some soil properties. A total of 94 samples (47 soil plots) were collected from topsoils and subsurface soils in the main soil types. The median concentrations (mg kg-1) obtained were Th 7 (range 3-15.5 mg kg-1), Ba 412 (range 113-954 mg kg-1), Ce 55 (13-107 mg kg-1 ), Cu 19.4 (5-91 mg kg-1), Ga 12.5 (5-21.7 mg kg-1 ), Ni 24 (7-56.5 mg kg-1 ), Pb 25 (9-100 mg kg-1), Rb 79 (34-140 mg kg-1 ), Sn 2 (1-8 mg kg-1 ), Sr 102 (43-401 mg kg-1 ), V 68.5 (22-170 mg kg-1 ), Y 20 (7-41.5 mg kg-1 ), Zn 66 (20-137 mg kg-1 ), and Zr 156 (40-417 mg kg-1 ). The concentrations of Th were similar to those given by other authors from different countries of the Mediterranean regions. In terms of soil properties, the results of this study suggest that, in these soils, Th and trace element adsorption and retention are influenced by several properties such as clay minerals and pH. Almost all element concentrations were positively correlated with clay content and negatively correlated with carbonates. The very strong positive correlations between Th, Y, V, Ni, V, Ga and Ce point to their natural origin.

  1. [Analysis of trace elements in limestone for archeological functions

    SciTech Connect

    Blanc, A.; Holmes, L.; Harbottle, G.

    1998-12-31

    Numerous quarries in the Lutetian limestone formations of the Paris Basin provided stone for the building and the decoration of monuments from antiquity to the present. To determine the origin of stone used for masonry and sculptures in these monuments, a team of geologists and archaeologists has investigated 300 quarries and collected 2,300 samples. Petrographic and paleontologic examination of thin sections allows geologists to distinguish Lutetian limestones from Jurassic and Cretaceous limestones. Geologists also seek to formulate hypotheses regarding the origin of Lutetian limestones used for building and sculpture in the Paris region. In the search for the sources of building and sculptural stone, the analytical methods of geologists are limited because often several quarries produce the same lithofacies. A new tool is now available, however, to attack questions of provenance raised by art historians. Because limestones from different sources have distinctive patterns of trace-element concentrations, compositional analysis by neutron activation allows one to compare building or sculptural stone from one monument with stone from quarries or other monuments. This analytical method subjects a powdered limestone sample to standard neutron activation analysis procedures at Brookhaven National Laboratory. With the help of computer programs, the compositional fingerprints of Lutetian limestones can be determined and stored in a database. The limestone database contains data for approximately 2,100 samples from monuments, sculptures and quarries. It is particularly rich in samples from the Paris Basin.

  2. Macrominerals and Trace Element Requirements for Beef Cattle

    PubMed Central

    Costa e Silva, Luiz Fernando; de Campos Valadares Filho, Sebastião; Engle, Terry Eugene; Rotta, Polyana Pizzi; Marcondes, Marcos Inácio; Silva, Flávia Adriane Sales; Martins, Edilane Costa; Tokunaga, Arnaldo Taishi

    2015-01-01

    Eighty-seven Nellore animals were utilized in this study to estimate net requirements for the maintenance and growth of beef cattle as well as the retention coefficients of 13 minerals: macrominerals (Ca, P, Mg, K, Na, and S) and trace elements (Cu, Fe, Mn, Se, Zn, Co, and Cr). The net requirements for maintenance and the true retention coefficient were estimated by using the regression between apparent retention and intake for each mineral. The net requirement for maintenance (μg/kg BW) and retention coefficients (%) were 163 and 85 for Cu, 2,097 and 53 for Fe, 32.3 and 24 for Mn, 3.72 and 48 for Se, 669 and 0.80 for Zn, 18.4 and 86 for Co, and 22.9 and 78 for Cr. The dietary requirements of macrominerals (g/kg DMI) were 5.12 for Ca, 2.38 for P, 0.96 for Mg, 2.40 for K, 0.79 for Na, and 1.47 for S. This is the first study using Nellore cattle to estimate mineral requirements; considering that Nellore cattle are the most common breed in Brazil and that Brazil is a major beef producer globally, this knowledge can help producers to improve animal performance by supplying the correct amount of minerals. PMID:26657049

  3. Macrominerals and Trace Element Requirements for Beef Cattle.

    PubMed

    Costa e Silva, Luiz Fernando; Valadares Filho, Sebastião de Campos; Engle, Terry Eugene; Rotta, Polyana Pizzi; Marcondes, Marcos Inácio; Silva, Flávia Adriane Sales; Martins, Edilane Costa; Tokunaga, Arnaldo Taishi

    2015-01-01

    Eighty-seven Nellore animals were utilized in this study to estimate net requirements for the maintenance and growth of beef cattle as well as the retention coefficients of 13 minerals: macrominerals (Ca, P, Mg, K, Na, and S) and trace elements (Cu, Fe, Mn, Se, Zn, Co, and Cr). The net requirements for maintenance and the true retention coefficient were estimated by using the regression between apparent retention and intake for each mineral. The net requirement for maintenance (μg/kg BW) and retention coefficients (%) were 163 and 85 for Cu, 2,097 and 53 for Fe, 32.3 and 24 for Mn, 3.72 and 48 for Se, 669 and 0.80 for Zn, 18.4 and 86 for Co, and 22.9 and 78 for Cr. The dietary requirements of macrominerals (g/kg DMI) were 5.12 for Ca, 2.38 for P, 0.96 for Mg, 2.40 for K, 0.79 for Na, and 1.47 for S. This is the first study using Nellore cattle to estimate mineral requirements; considering that Nellore cattle are the most common breed in Brazil and that Brazil is a major beef producer globally, this knowledge can help producers to improve animal performance by supplying the correct amount of minerals.

  4. Nuclear microscopy in trace-element biology — from cellular studies to the clinic

    NASA Astrophysics Data System (ADS)

    Lindh, Ulf

    1993-05-01

    The concentration and distribution of trace and major elements in cells are of great interest in cell biology. PIXE can provide elemental concentrations in the bulk of cells or organelles as other bulk techniques such as atomic absorption spectrophotometry and nuclear activation analysis. Supplementary information, perhaps more exciting, on the intracellular distributions of trace elements can be provided using nuclear microscopy. Intracellular distributions of trace elements in normal and malignant cells are presented. The toxicity of mercury and cadmium can be prevented by supplementation of the essential trace element selenium. Some results from an experimental animal model are discussed. The intercellular distribution of major and trace elements in isolated blood cells, as revealed by nuclear microscopy, provides useful clinical information. Examples are given concerning inflammatory connective-tissue diseases and the chronic fatigue syndrome.

  5. Geochemical behavior of rare earth elements and other trace elements in the Amazon River

    NASA Astrophysics Data System (ADS)

    Merschel, Gila; Bau, Michael; Dantas, Elton Luiz

    2014-05-01

    Rivers transport large amounts of dissolved and suspended particulate material from the catchment area to the oceans and are a major source of trace metals to seawater. The Amazon River is the world's largest river and supplies approximately 20% of the oceans' freshwater (Molinier et al., 1997). However, the behavior of trace elements, especially particle-reactive elements such as the rare earth elements (REE), within the river as well as in the estuary is not well constrained and rather little is known about their transport mechanisms. This study aims at understanding the transport properties of particle-reactive elements in the Amazon River and some of its major tributaries, including the Rio Solimões, Rio Negro, Tapajos, Xingu and Jari Rivers. Samples were taken at 12 stations, seven of which were located in the Amazon mainstream, while the other five stations sampled its tributaries. To account for the effects of variable discharge, the samples were collected during periods of high and low discharge. We present data for major and trace elements, including REE, of the dissolved and suspended load of these samples. First results indicate that the shale-normalized REE pattern of the dissolved load (filtered through 0.2 µm membranes) of the Amazon mainstream and the Rio Solimões confirm earlier studies (Elderfield et al., 1990; Gerard et al., 2003) and show an enrichment of the middle REE relative to the light and heavy REE (LaSN/GdSN: 0.25 - 0.32; GdSN/YbSN: 1.54 - 1.78). In contrast to the Amazon mainstream and the Rio Solimões, which are considered to be whitewater rivers, blackwater rivers, such as the Rio Negro, have a flat REE pattern with higher REE concentrations than whitewater rivers. The third water-type found in the Amazon Basin is clearwater, e.g. Rio Tapajos, with REE patterns in between those of the other two types, i.e. LaSN/GdSN: 0.55 - 0.70; GdSN/YbSN: 1.26 - 1.55. A similar behavior can be identified for other major and trace elements. While

  6. An experimental study of trace element partitioning between perovskite, hibonite and melt: Equilibrium values

    NASA Technical Reports Server (NTRS)

    Kennedy, A. K.; Lofgren, G. E.; Wasserburg, G. J.

    1993-01-01

    The presence of perovskite (CATiO3) and hibonite (Ca Al12O19) within different regions of Calcium-, Aluminum-rich Inclusions (CAI) and the trace element concentrations of these minerals in each circumstance, constrain models of precursor formation, nebular condensation, the thermal history of inclusions with relict perovskite and hibonite, and the formation of the Wark-Lovering rim. At present mineral/melt partition coefficient data for hibonite are limited to a few elements in simple experimental systems, or to those derived from hibonite-glass pairs in hibonite/glass microspherules. Similarly, there is only limited data on perovskite D that are applicable to meteorite compositions. Apart from the importance of partitioning studies to meteorite research, D values also are invaluable in the development of thermodynamic models, especially when data is available for a large number of elements that have different ionic charge and radii. In addition, study of the effect of rapid cooling on partitioning is crucial to our understanding of meteorite inclusions. To expand our knowledge of mineral/melt D for perovskite and hibonite, a study was instituted where D values are obtained in both equilibrium and dynamic cooling experiments. As an initial phase of this study mineral/melt D was measured for major elements (Ca, Mg, Al, Ti, and Si), 15 rare earth elements (La-Lu) and 8 other elements (Ba, Sr, U, Th, Nb, Zr, Hf, and Ge) in perovskite and hibonite grown under equilibrium conditions, in bulk compositions that are respectively similar to Compact Type A (CTA) CAI and to a hibonite/glass microspherule. Experimental mixes were doped with REE at 20-50x chondritic (ch) abundances, Ba at 50 ppm, Sr, Hf, Nb, and Zr at 100 ppm and, U and Th at 200 ppm. Trace element abundances were measured with the PANURGE ion microprobe. Major element compositions were obtained by electron microprobe analysis.

  7. Concentrations and solubility of trace elements in fine particles at a mountain site, southern China: regional sources and cloud processing

    NASA Astrophysics Data System (ADS)

    Li, T.; Wang, Y.; Li, W. J.; Chen, J. M.; Wang, T.; Wang, W. X.

    2015-05-01

    The concentrations and solubility of twelve trace elements in PM2.5 at Mt. Lushan, southern China, were investigated during the summer of 2011 and the spring of 2012. The average PM2.5 mass was 55.2 ± 20.1 μg m-3 during the observation period. Temporal variations of all trace elements including total and water-soluble fractions with several dust storm spikes for total fraction Al and Fe were observed. The enrichment factor (EF) values were one order of magnitude higher for the water-soluble fractions vs. the total fractions of trace elements. Four major emission sources were classified by principal component analysis (PCA), namely nonferrous metal mining and smelting (for Cr, As, Ba and parts of Zn), coal combustion (for Pb, Zn, Se, Cu and Mn), crustal materials (for Al and Fe) and municipal solid waste incineration (for Cd and Mo). Trajectory cluster analysis and the potential source contribution function (PSCF) consistently identified the Yangtze River Delta (YRD), the Pearl River Delta (PRD) and parts of Hunan and Jiangxi as the major source regions and pathways for anthropogenic elements, while northern China was identified for crustal elements. In contrast, the local Jiangxi area has become the most significant contributor to the solubility of most trace elements, apart from the YRD with severe air pollution. In addition, the solubility alteration of trace elements in cloud events was investigated and transmission electron microscopy (TEM) analysis indicated that the irreversible alteration of particle morphology by cloud processing was highly responsible for the enhancement of element solubility. Our work implies an important role of regional anthropogenic pollution and cloud processing in the evolution of trace element solubility during transport.

  8. Interspecific differences in egg production affect egg trace element concentrations after a coal fly ash spill.

    PubMed

    Van Dyke, James U; Beck, Michelle L; Jackson, Brian P; Hopkins, William A

    2013-12-03

    In oviparous vertebrates, trace elements transfer from mother to offspring during egg production. For animals that produce eggs slowly, like turtles, the trace element concentration of each egg reflects an integration of dietary and stored accumulation over the duration of vitellogenesis. Because turtles also produce eggs synchronously, all eggs within a clutch should exhibit uniform trace element concentrations. In contrast, for animals that produce eggs in sequence and primarily from current dietary resources, like many birds, the trace element concentrations of eggs should be less uniform within a clutch, and likely reflect short-term changes in dietary exposure. We tested the hypothesis that stinkpot turtle (Sternotherus odoratus) clutches exhibit lower variability and higher repeatability in barium, selenium, strontium, and thallium concentrations than those of tree swallows (Tachycineta bicolor) from a site impacted by a recent coal ash spill. All four trace elements exhibited significantly lower variability and significantly higher repeatability in stinkpot clutches than in swallow clutches. Mean trace element concentrations of stinkpot eggs were also significantly higher than those of swallow eggs although both species feed primarily on aquatic invertebrates. Variability in swallow egg trace element concentrations was partially due to significant laying order effects. Our results support the hypothesis that interspecific variation in the source of resources and in the synchronicity and rate of egg production can lead to interspecific differences in the variability of egg trace element concentrations.

  9. Sources and contents of heavy metals and other trace elements in animal manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trace elements take part in various physiological functions including enzyme formation, vitamin formation, metabolism, and electron transport in animals. Thus, trace elements are added to livestock and poultry diets to prevent diseases, improve weight gains and feed conversion, and increase egg prod...

  10. Assessment of serum trace elements and electrolytes in children with childhood and atypical autism.

    PubMed

    Skalny, Anatoly V; Simashkova, Natalia V; Klyushnik, Tatiana P; Grabeklis, Andrei R; Radysh, Ivan V; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A

    2016-09-29

    The existing data demonstrate a significant interrelation between ASD and essential and toxic trace elements status of the organism. However, data on trace element homeostasis in particular ASD forms are insufficient. Therefore, the objective of the present study was to assess the level of trace elements and electrolytes in serum of children with childhood and atypical autism. A total of 48 children with ASD (24 with childhood and 24 with atypical autism) and age- and sex-adjusted controls were examined. Serum trace elements and electrolytes were assessed using inductively-coupled plasma mass spectrometry. The obtained data demonstrate that children with ASD unspecified are characterized by significantly lower Ni, Cr, and Se levels as compared to the age- and sex-matched controls. At the same time, significantly decreased serum Ni and Se concentrations were detected in patients with childhood autism. In turn, children with atypical autism were characterized by more variable serum trace element spectrum. In particular, atypical autism is associated with lower serum Al, As, Ni, Cr, Mn, and Se levels in comparison to the control values. Moreover, Al and Mn concentration in this group was also lower than that in childhood autism patients. Generally, the obtained data demonstrate lower levels of both essential and toxic trace elements in atypical autism group, being indicative of profound alteration of trace elements metabolism. However, further detailed metabolic studies are required to reveal critical differences in metabolic pathways being responsible for difference in trace element status and clinical course of the disease.

  11. Measurement of Trace Elements During the Development and Immune Response of Heliothis virescens Larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While many studies have examined the effect of microbial infections on the status of trace elements in mammalian tissues, similar studies have not been performed in insects. We used inductively coupled plasma-mass spectrometry (ICP-MS) to quantify changes in trace elements of Mg, Mn, Fe, Cu, Zn and ...

  12. Constraints on the bioavailability of trace elements to terrestrial fauna at mining and smelting sites

    SciTech Connect

    Pastorok, R.; Schoof, R.; LaTier, A.; Mellott, R.; Shields, W.; Ruby, M.

    1995-12-31

    At mining and smelting sites, the bioavailability of waste-related trace elements to terrestrial wildlife is limited by mineralogy of the waste material and the geochemistry of the waste-soil mixture. For example, encapsulation of trace elements in inert mineral matrices limits the assimilation of particle-associated trace elements that are ingested by wildlife. The bioavailability of arsenic, cadmium, copper, lead, silver, and zinc at mining and smelting sites in Oklahoma and Montana was evaluated based on analysis of waste material, soil chemistry, and concentrations of trace elements in whole-body samples of key food web species. Concentrations of trace elements were generally elevated relative to reference area values for selected species of vegetation, insects, spiders, and small mammals. Soil-to-tissue bioconcentration factors derived from field data at these sites were generally low (< 1), with the exception of cadmium in vegetation. For all of the trace elements evaluated, wildlife exposure models indicate that the potential for transfer of contaminants to wildlife species of public concern and high trophic-level predators is limited. Moreover, laboratory feeding experiments conducted with cadmium and lead indicate that the assimilation of waste-related trace elements by mammals is relatively low (24--47 percent for lead in blood and bone; 22--44 percent for cadmium in kidney). The relatively low bioavailability of trace elements at mining and smelting sites should be considered when estimating exposure of ecological receptors and when deriving soil cleanup criteria based on measured or modeled ecological risk.

  13. Trace Elements in Aerosol over the Grand Canyon and Canyonlands National Parks

    NASA Astrophysics Data System (ADS)

    Huang, S.; Popp, C. J.; Martin, R. M.; Arimoto, R.; Wingenter, O.

    2002-12-01

    Daily samples of total suspended particulates were collected from two national parks, Grand Canyon National Park, AZ, and Canyonlands National Park, UT, in the summer (July) and winter (December-January) of 2001. Trace element and major ion concentrations were determined for source attribution studies. The concentrations of most elements agreed within a factor of two for the two sites. However, for the summer samples, preliminary results indicate that some pollution-derived elements such as Cu, Ag, Hg, Zn, and Pb had higher concentrations and enrichment factors at the Grand Canyon, suggesting impacts from nonferrous combustion source(s) in the area. Additional information, including meteorological data, will be used to help identify these sources.

  14. [Determination of trace elements in radix ophiopogonis by HG-ICP-AES].

    PubMed

    Lou, Qi-Zheng; Xu, Run-Sheng

    2007-06-01

    In this paper, a method of microwave digestion technique for the contents determination of trace elements Ni, Zn, Mn, Cu, Mg, Fe, Ca and Pb in radix ophiopogonis by hydride generation inductively coupled plasma atomic emition spectrometry (HG-ICP-AES) was reported. Its recovery ratio obtained by standard addition method ranged between 97.8% and 102.5%, and its RSD was lower than 4.0%. The results of the determination show that radix ophiopogonis is rich in the inorganic elements such as Fe, and the content of Zn in radix ophiopogonis of Zhejiang is much higher in radix ophiopogonis of Sichun. The result will provide scientific data for the study on the elements in radix ophiopogonis and on their relativity of medicine efficacy.

  15. [Determination of eight trace elements in the flowers of Hylocereus undatus by FAAS].

    PubMed

    Wang, Xin-ping

    2005-02-01

    The effects of different sample digestives for the flowers of Hylocereus undatus are compared. Eight trace elements in the flowers of Hylocereus undatus were determined by flame atomic absorption spectrophotometer. The result shows that the RSD and recovery are better if the flowers of Hylocereus undatus was digested with HNO3-HClO4 (5:1) mixed acid, and the flowers of Hylocereus undatus contains many essential elements among which the contents of Fe, Mn and Zn are higher than those of Ni and Cu. Co and Cd were not determined, but Pb was determined. The experimental results showed that the detection limits were all smaller than 0.086 microg x mL(-1), the RSDs (n = 8) all smaller than 8.37%, and the addition standard recovery (ASR) (n = 8) was 79.69%-118.6% for all elements.

  16. Trace-element accumulation by Hygrohypnum ochraceum in the upper Rio Grande Basin, Colorado and New Mexico, USA

    SciTech Connect

    Carter, L.F.; Porter, S.D.

    1997-12-01

    Accumulation of 12 trace elements by transplanted aquatic bryophytes (Hygrohypnum ochraceum) was determined at 13 sites in the Rio Grande and tributary streams in southern Colorado and northern New Mexico as part of the US Geological Survey`s National Water-Quality Assessment Program. The purposes of the study were to determine the spatial distribution of trace elements in relation to land-use practices in the upper Rio Grande Basin, compare accumulation rates of metals in bryophytes at sites contaminated by trace elements, and evaluate transplanted aquatic bryophytes as a tool for examining the bioavailability of trace elements in relation to concentrations in water and bed sediment. Concentrations of Cd, Cu, Pb, and Zn in bryophytes, water, and bed sediment were significantly higher at sites that receive drainage from mining areas than at sites near agricultural or urban activities. Concentrations of most trace elements were lower in a tributary stream below an urban source than at sites near mining or agricultural use. Concentrations of Cu and Zn in bryophytes correlated with concentrations in water and bed sediment. In addition, bryophyte concentrations of As, Cd, and Pb correlated with concentrations in bed sediment. Transplanted bryophytes can provide an indication of bioavailability. Rates of accumulation were related to the magnitude of ambient trace-element concentrations; maximal uptake occurred during the first 10 d of exposure. Trace-element concentrations in transplanted bryophytes could potentially be used to predict water and sediment concentrations that represent an integration of conditions over short to intermediate lengths of time, rather than instantaneous conditions as measured using water samples.

  17. Trace-element accumulation by Hygrohypnum ochraceum in the upper Rio Grande Basin, Colorado and New Mexico, Usa

    USGS Publications Warehouse

    Carter, L.F.; Porter, S.D.

    1997-01-01

    Accumulation of 12 trace elements by transplanted aquatic bryophytes (Hygrohypnum ochraceum) was determined at 13 sites in the Rio Grande and tributary streams in southern Colorado and northern New Mexico as part of the U.S. Geological Survey's National Water-Quality Assessment Program. The purposes of the study were to determine the spatial distribution of trace elements in relation to land-use practices in the upper Rio Grande Basin, compare accumulation rates of metals in bryophytes at sites contaminated by trace elements, and evaluate transplanted aquatic bryophytes as a tool for examining the bioavailability of trace elements in relation to concentrations in water and bed sediment. Concentrations of Cd, Cu, Pb, and Zn in bryophytes, water, and bed sediment were significantly higher at sites that receive drainage from mining areas than at sites near agricultural or urban activities. Concentrations of most trace elements were lower in a tributary stream below an urban source than at sites near mining or agricultural use. Concentrations of Cu and Zn in bryophytes correlated with concentrations in water and bed sediment. In addition, bryophyte concentrations of As, Cd, and Pb correlated with concentrations in bed sediment. Transplanted bryophytes can provide an indication of bioavailability. Rates of accumulation were related to the magnitude of ambient trace-element concentrations; maximal uptake occurred during the first 10 d of exposure. Trace-element concentrations in transplanted bryophytes could potentially be used to predict water and sediment concentrations that represent an integration of conditions over short to intermediate lengths of time, rather than instantaneous conditions as measured using water samples.

  18. Temperature and Gravity Dependence of Trace Element Abundances in Hot DA White Dwarfs (94-EUVE-094)

    NASA Technical Reports Server (NTRS)

    Finley, David S.

    1998-01-01

    EUV spectroscopy has shown that DA white dwarfs hotter than about 45,000 K may contain trace heavy elements, while those hotter than about 50,000 K almost always have significant abundances of trace heavy elements. One of our continuing challenges is to identify and determine the abundances of these trace constituents, and then to relate the observed abundance patterns to the present conditions and previous evolutionary histories of the hot DA white dwarfs.

  19. Trace Element Compositions of Pallasite Olivine Grains and Pallasite Origin

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Herrin, J. S.

    2010-01-01

    Pallasites are mixtures of metal with magnesian olivine. Most have similar metal compositions and olivine oxygen isotopic compositions; these are the main-group pallasites (PMG). The Eagle Station grouplet of pallasites (PES) have distinctive metal and olivine compositions and oxygen isotopic compositions. Pallasites are thought to have formed at the core-mantle boundary of their parent asteroids by mixing molten metal with solid olivine of either cumulatic or restitic origin. We have continued our investigation of pallasite olivines by doing in situ trace element analyses in order to further constrain their origin. We determined Al, P, Ca, Ga and first row transition element contents of olivine grains from suite of PMG and PES by LA-ICP-MS at JSC. Included in the PMG suite are some that have anomalous metal compositions (PMG-am) and atypically ferroan olivines (PMG-as). Our EMPA work has shown that there are unanticipated variations in olivine Fe/Mn, even within those PMG that have uni-form Fe/Mg. Manganese is homologous with Fe2+, and thus can be used the same way to investigate magmatic fractionation processes. It has an advantage for pallasite studies in that it is unaffected by redox exchange with the metal. PMG can be divided into three clusters on the basis of Mn/Mg; low, medium and high that can be thought of as less, typically and more fractionated in an igneous sense. The majority of PMG have medium Mn/Mg ratios. PMG-am occur in all three clusters; there does not seem to be any relationship between putative olivine igneous fractionation and metal composition. The PMG-as and one PMG-am make up the high Mn/Mg cluster; no PMG are in this cluster. The high Mn/Mg cluster ought to be the most fractionated (equivalent to the most Fe-rich in igneous suites), yet they have among the lowest contents of incompatible lithophile elements Al and Ti and the two PMG-as in this cluster also have low Ca and Sc contents. This is inconsistent with simple igneous

  20. Trace Element Abundance Measurements on Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Flynn, George

    1996-01-01

    The X-Ray Microprobe on beamline X-26A at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was used to determine the abundances of elements from Cr through Sr in individual interplanetary dust particles (IDPs) collected from the Earth's stratosphere and the Scanning Transmission X-ray Microscope (STXM) on beamline X-1A at the NSLS was used to determine the carbon abundances and spatial distributions in IDPs. In addition, modeling was performed in an attempt to associate particular types of IDPs with specific types of parent bodies, and thus to infer the chemistry, mineralogy, and structural properties of those parent bodies.

  1. Variation in macro and trace elements in progression of type 2 diabetes.

    PubMed

    Siddiqui, Khalid; Bawazeer, Nahla; Joy, Salini Scaria

    2014-01-01

    Macro elements are the minerals of which the body needs more amounts and are more important than any other elements. Trace elements constitute a minute part of the living tissues and have various metabolic characteristics and functions. Trace elements participate in tissue and cellular and subcellular functions; these include immune regulation by humoral and cellular mechanisms, nerve conduction, muscle contractions, membrane potential regulations, and mitochondrial activity and enzyme reactions. The status of micronutrients such as iron and vanadium is higher in type 2 diabetes. The calcium, magnesium, sodium, chromium, cobalt, iodine, iron, selenium, manganese, and zinc seem to be low in type 2 diabetes while elements such as potassium and copper have no effect. In this review, we emphasized the status of macro and trace elements in type 2 diabetes and its advantages or disadvantages; this helps to understand the mechanism, progression, and prevention of type 2 diabetes due to the lack and deficiency of different macro and trace elements.

  2. Variation in Macro and Trace Elements in Progression of Type 2 Diabetes

    PubMed Central

    2014-01-01

    Macro elements are the minerals of which the body needs more amounts and are more important than any other elements. Trace elements constitute a minute part of the living tissues and have various metabolic characteristics and functions. Trace elements participate in tissue and cellular and subcellular functions; these include immune regulation by humoral and cellular mechanisms, nerve conduction, muscle contractions, membrane potential regulations, and mitochondrial activity and enzyme reactions. The status of micronutrients such as iron and vanadium is higher in type 2 diabetes. The calcium, magnesium, sodium, chromium, cobalt, iodine, iron, selenium, manganese, and zinc seem to be low in type 2 diabetes while elements such as potassium and copper have no effect. In this review, we emphasized the status of macro and trace elements in type 2 diabetes and its advantages or disadvantages; this helps to understand the mechanism, progression, and prevention of type 2 diabetes due to the lack and deficiency of different macro and trace elements. PMID:25162051

  3. Trace elements in fish from the Arabian Gulf and the Shatt al-Arab river, Iraq

    SciTech Connect

    Abaychi, J.; Al-Saad, H.T.

    1988-02-01

    In the Arabian Gulf region, recently, vast industrial, agricultural, economic and social developments have taken place, in addition to an increase in population. This may enhance the magnitude of environmental pollution year by year. No detailed study has been undertaken to assess the concentrations of trace elements in commercial species of fish from the Arabian Gulf and the Shatt al-Arab River, despite the fact that fish are considered an essential part of the diet in the region. Therefore, an investigation was carried out on the concentration of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn in the following fish species from the Arabian Gulf: Tylosurus strongylurus, Eleutheoronema tetradactum, Pomadasys arel, Platycephalus indicus, Ilisha elongata, Thryssa hamiltonii, Arius thalassinus, Acanthophagrus luteus, Johnieops sina, Liza dussumeiri, Hilsa ilisha, Nematolosa nasus and Otoliths argenteus, and on species from the Shatt al-Arab River: Mesopotamichthys sharpeyi, Barbus xanthopterus, Barbus scheich, Aspius vorax, Cyprinus carpio, and Barbus grypus. Trace element levels in sediment samples from the area were also determined since sediments can accumulate different elements and may reflect the extent of pollution by these elements.

  4. Relationships between myocardial macrominerals and trace elements and luminal narrowing of coronary arteries in Finnish children.

    PubMed

    Alfthan, G; Pesonen, E; Neuvonen, P J; Hirvonen, J; Karkola, K; Laaksonen, H; Räsänen, L; Akerblom, H K

    1992-03-01

    In addition to the traditional risk factors for cardiovascular diseases it has been hypothesized that a suboptimal intake of macrominerals and trace elements plays a role in the etiology of such diseases. We studied the possible correlation between preatherosclerotic changes in the coronary arteries and the myocardial concentration of K, Ca, Mg, Fe, Zn, Cu and Se in an autopsy series of children who had died mainly from accidental causes (n = 58). The concentrations of myocardial elements were comparable to values published elsewhere except for a slightly higher Cu concentration. The myocardial Se concentration indicated an adequate Se status. Narrowing of the coronary artery lumen was not correlated with myocardial element concentration except in the case of Se, for which a positive correlation was found (r = 0.23, p less than 0.04). Myocardial K was positively correlated with myocardial Mg (r = 0.65, p less than 0.001) and inversely correlated with Ca (r = -0.50, p less than 0.001). The intake of saturated vs. unsaturated fats was associated with myocardial Cu and Ca concentrations. Our results suggest that myocardial macrominerals and trace elements do not play a role in juvenile preatherosclerotic changes of the arteries.

  5. The protective effects of trace elements against side effects induced by ionizing radiation

    PubMed Central

    2015-01-01

    Trace elements play crucial role in the maintenance of genome stability in the cells. Many endogenous defense enzymes are containing trace elements such as superoxide dismutase and metalloproteins. These enzymes are contributing in the detoxification of reactive oxidative species (ROS) induced by ionizing radiation in the cells. Zinc, copper, manganese, and selenium are main trace elements that have protective roles against radiation-induced DNA damages. Trace elements in the free salt forms have protective effect against cell toxicity induced by oxidative stress, metal-complex are more active in the attenuation of ROS particularly through superoxide dismutase mimetic activity. Manganese-complexes in protection of normal cell against radiation without any protective effect on cancer cells are more interesting compounds in this topic. The aim of this paper to review the role of trace elements in protection cells against genotoxicity and side effects induced by ionizing radiation. PMID:26157675

  6. Some aspects of statistical distribution of trace element concentrations in biomedical samples

    NASA Astrophysics Data System (ADS)

    Majewska, U.; Braziewicz, J.; Banaś , D.; Kubala-Kukuś , A.; Góź Dź , S.; Pajek, M.; Zadrozsolarna, M.; Jaskóla, M.; Czyzsolarewski, T.

    1999-04-01

    Concentrations of trace elements in biomedical samples were studied using X-ray fluorescence (XRF), total reflection X-ray fluorescence (TRXRF) and particle-induced X-ray emission (PIXE) methods. Used analytical methods were compared in terms of their detection limits and applicability for studying the trace elements in large populations of biomedical samples. In a result, the XRF and TRXRF methods were selected to be used for the trace element concentration measurements in the urine and woman full-term placenta samples. The measured trace element concentration distributions were found to be strongly asymmetric and described by the logarithmic-normal distribution. Such a distribution is expected for the random sequential process, which realistically models a level of trace elements in studied biomedical samples. The importance and consequences of this finding are discussed, especially in the context of comparison of the concentration measurements in different populations of biomedical samples.

  7. Trace Element Inputs to the Upper West Pacific from Nd Isotopes and Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Behrens, M. K.; Pahnke, K.; Schnetger, B.; Brumsack, H. J.

    2015-12-01

    Neodymium isotopes (143Nd/144Nd, expressed as ɛNd) and rare earth element (REE) concentrations in the ocean trace water mass transport and margin-seawater exchange processes. The distinct ɛNd and REE signatures of the lithogenic components of margin sediments of the West Pacific allow characterization of trace element inputs to the Pacific Ocean. We present dissolved ɛNdand REE concentrations from twelve vertical profiles of a transect from South Korea to Fiji. Near South Korea, surface waters are marked by unradiogenic ɛNd (as low as -7.3), high REE concentrations (e.g., Nd = 15.3 pmol/kg) and low salinity. Towards the open ocean, these parameters gradually change towards typical Pacific open ocean values (ɛNd = -3.3, [Nd] = 5.55 pmol/kg). Subsurface waters show REE depletions, followed by the typical REE increase with increasing water depth. These distributions indicate trace element input near South Korea and enhanced subsurface scavenging, as indicated by strong heavy REE to light REE fractionation. In the tropical West Pacific (10°N-15°S), high surface and subsurface water ɛNd values (+0.7) and positive Eu anomalies trace the influence of volcanic islands. Yet, absolute REE concentrations are extremely low at these depths (e.g., Nd = 2.77 pmol/kg). Using shale-normalized Nd/Er and Ho/Dy ratios, that show a much stronger surface to subsurface decrease in coastal waters compared to the open ocean, we suggest enhanced scavenging in this area. Eastward flowing intermediate waters (NPIW, AAIW) have ɛNd values up to +1.9 (NPIW) and +3.7 (AAIW) higher than those entering the tropical West Pacific from north and south, respectively. Modified ɛNd at intermediate depths and no change in REE patterns suggest that boundary exchange along volcanic island margins modifies the seawater ɛNd without changing the REE budget.

  8. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography

    PubMed Central

    Piazolo, Sandra; La Fontaine, Alexandre; Trimby, Patrick; Harley, Simon; Yang, Limei; Armstrong, Richard; Cairney, Julie M.

    2016-01-01

    Trace elements diffuse negligible distances through the pristine crystal lattice in minerals: this is a fundamental assumption when using them to decipher geological processes. For example, the reliable use of the mineral zircon (ZrSiO4) as a U-Th-Pb geochronometer and trace element monitor requires minimal radiogenic isotope and trace element mobility. Here, using atom probe tomography, we document the effects of crystal–plastic deformation on atomic-scale elemental distributions in zircon revealing sub-micrometre-scale mechanisms of trace element mobility. Dislocations that move through the lattice accumulate U and other trace elements. Pipe diffusion along dislocation arrays connected to a chemical or structural sink results in continuous removal of selected elements (for example, Pb), even after deformation has ceased. However, in disconnected dislocations, trace elements remain locked. Our findings have important implications for the use of zircon as a geochronometer, and highlight the importance of deformation on trace element redistribution in minerals and engineering materials. PMID:26868040

  9. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography.

    PubMed

    Piazolo, Sandra; La Fontaine, Alexandre; Trimby, Patrick; Harley, Simon; Yang, Limei; Armstrong, Richard; Cairney, Julie M

    2016-02-12

    Trace elements diffuse negligible distances through the pristine crystal lattice in minerals: this is a fundamental assumption when using them to decipher geological processes. For example, the reliable use of the mineral zircon (ZrSiO4) as a U-Th-Pb geochronometer and trace element monitor requires minimal radiogenic isotope and trace element mobility. Here, using atom probe tomography, we document the effects of crystal-plastic deformation on atomic-scale elemental distributions in zircon revealing sub-micrometre-scale mechanisms of trace element mobility. Dislocations that move through the lattice accumulate U and other trace elements. Pipe diffusion along dislocation arrays connected to a chemical or structural sink results in continuous removal of selected elements (for example, Pb), even after deformation has ceased. However, in disconnected dislocations, trace elements remain locked. Our findings have important implications for the use of zircon as a geochronometer, and highlight the importance of deformation on trace element redistribution in minerals and engineering materials.

  10. Transmission of atmospherically deposited trace elements through an undeveloped, forested Maryland watershed

    USGS Publications Warehouse

    Church, T.M.; Scudlark, J.R.; Conko, Kathryn M.; Bricker, Owen P.; Rice, Karen C.

    1998-01-01

    Retention and transmission of atmospherically-derived major (H+, Na+, K+, Ca2+, Mg2+, HCO3-, NO3-, SO4-2, Cl-, SiO2) and trace (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) species were evaluated in an undeveloped forested watershed underlain by a rather inert quartzite lithology (Bear Branch, Catoctin State Forest, Thrumont, Maryland). These comparisons were based on atmospheric input to stream export over a period of 16 months. Both wet (precipitation) and total (bulk, including vegetative throughfall) atmospheric loading to the catchment were determined. Stream export was gauged based on systematic sampling of the stream under varied flow regimes. Additionally, watershed export of both dissolved and particulate trace element phases was examined during three high run-off intensives associated with summer storms.

  11. Transmission of atmospherically deposited trace elements through an undeveloped, forested Maryland watershed. Final report

    SciTech Connect

    Church, T.M.; Scudlark, J.R.; Conko, K.M.; Bricker, O.P.; Rice, K.C.

    1997-12-31

    Retention and transmission of atmospherically-derived major (H(sup +), Na(sup +), K(sup +), Ca(sup 2+), Mg(sup 2+), HCO(sub 3, sup -), NO(sub 3, sup -), SO(sub 4, sup -2), Cl(sup -), SiO(sub 2)) and trace (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) species were evaluated in an undeveloped forested watershed underlain by a rather inert quartzite lithology (Bear Branch, Catoctin State Forest, Thrumont, Maryland). These comparisons were based on atmospheric input to stream export over a period of 16 months. Both wet (precipitation) and total (bulk, including vegetative throughfall) atmospheric loading to the catchment were determined. Stream export was gauged based on systematic sampling of the stream under varied flow regimes. Additionally, watershed export of both dissolved and particulate trace element phases was examined during three high run-off intensives associated with summer storms.

  12. Trace elements in surface sediments of Navarino Bay, Greece

    SciTech Connect

    Varnavas, S.P. ); Panagos, A.G.; Laios, G. )

    1987-01-01

    The distribution of a number of trace elements in the Navarino Bay surface sediments is examined and their source and association with the major phases is determined. Cobalt follows Al in its distribution, having its highest values towards the center and deeper parts of the bay; Zn and Cu have their highest values at the effluent outfalls of a distillery and an olive oil and olive kernel factory being decreased away. The highest concentration of Ni is found near the town Pylos, while the highest concentrations of Rb and Y are observed at the mouths of rivers Yalovas and Xerias. Organic matter has its highest content at the port of Pylos, while no significant variations have been observed in the distribution of Sn and Ga. It is demonstrated that there is an anthropogenic input of Zn, Cu, and Corg in the bay. Zn and Cu are discharged by a distillery and an olive oil and olive kernel factory, at Yalova. Organic matter is mainly derived from domestic sewage. Ni enters the bay from its southern coasts and might be derived from weathering of bauxite deposits present in the adjacent limestones. Rb and Y are transported by the rivers Yalovas and Xerias from the northeastern adjacent land area: Ni, Co, and Cu show positive correlation with Al, suggesting their incorporation in clay minerals, while Rb show positive correlation with Si, suggesting its incorporation is silicate detrital minerals. The following areas in the bay are considered to be heavily polluted: (1) the port and a large zone near Pylos (domestic sewage); (2) the port and a small area near Yalova (domestic sewage and industrial effluents); and (3) the eastern coast of the island Sphaktiria (oil). The domestic sewage pollution in Navarino Bay is of the same level as that in other Greek bays.

  13. Trace elements in surface sediments of Navarino Bay, Greece

    NASA Astrophysics Data System (ADS)

    Varnavas, S. P.; Panagos, A. G.; Laios, G.

    1987-10-01

    The distribution of a number of trace elements in the Navarino Bay surface sediments is examined and their source and association with the major phases is determined. Cobalt follows Al in its distribution, having its highest vaues towards the center and deeper parts of the bay; Zn and Cu have their highest values at the effluent outfalls of a distillery and an olive oil and olive kernel factory (at the port of Yalova), being decreased away. The highest concentration of Ni is found near the town Pylos, while the highest concentrations of Rb and Y are observed at the mouths of rivers Yalovas and Xerias. Organic matter has its highest content at the port of Pylos, while no significant variations have been observed in the distribution of Sn and Ga. It is demonstrated that there is an anthropogenic input of Zn, Cu, and Corg in the bay. Zn and Cu are discharged by a distillery and an olive oil and olive kernel factory, at Yalova. Organic matter is mainly derived from domestic sewage. Ni enters the bay from its southern coasts and might be derived from weathering of bauxite deposits present in the adjacent limestones. Rb and Y are transported by the rivers Yalovas and Xerias from the northeastern adjacent land area; Ni, Co, and Cu show positive correlation with Al, suggesting their incorporation in clay minerals, while Rb shows positive correlation with Si, suggesting its incorporation in silicate detrital minerals. The following areas in the bay are considered to be heavily polluted: (1) the port and a large zone near Pylos (domestic sewage); (2) the port and a small area near Yalova (domestic sewage and industrial effluents); and (3) the eastern coast of the island Sphaktiria (oil). The domestic sewage pollution in Navarino Bay is of the same level as that in other Greek bays.

  14. Distribution of trace elements in coal from the Powhatan No. 6 mine, Ohio

    USGS Publications Warehouse

    Palmer, C.A.; Filby, R.H.

    1984-01-01

    Size and density separates of low-temperature-ashed coal from the Powhatan No. 6 mine, Ohio, have been used to determine the mode of occurrence of 28 minor and trace elements in coal. The size distribution of the major minerals has been determined, and correlations of trace elements with major minerals have been made. The role of minor minerals in the mode of occurrence of trace elements is also discussed. Instrumental-neutron-activation analysis was used to determine elemental concentrations, and X-ray diffraction and scanning electron microscopy were used for mineral identification. ?? 1984.

  15. [Determination of trace heavy metal elements in cortex Phellodendron chinense by ICP-MS after microwave-assisted digestion].

    PubMed

    Kou, Xing-Ming; Xu, Min; Gu, Yong-Zuo

    2007-06-01

    An inductively coupled plasma mass spectrometry (ICP-MS) for determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense after microwave-assisted digestion of the sample has been developed. The accuracy of the method was evaluated by the analysis of corresponding trace heavy metal elements in standard reference materials (GBW 07604 and GBW 07605). By applying the proposed method, the contents of 8 trace heavy metal elements in cortex Phellodendron chinense cultivated in different areas (in Bazhong, Yibin and Yingjing, respectively) of Sichuan and different growth period (6, 8 and 10 years of samples from Yingjing) were determined. The relative standard deviation (RSD) is in the range of 3.2%-17.8% and the recoveries of standard addition are in the range of 70%-120%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense. The results also show that the concentrations of 4 harmful trace heavy metal elements As, Cd, Hg and Pb in cortex Phellodendron chinense are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation. Therefore, the cortex Phellodendron chinense is fit for use as medicine and export.

  16. Official Methods for the Determination of Minerals and Trace Elements in Infant Formula and Milk Products: A Review.

    PubMed

    Poitevin, Eric

    2016-01-01

    The minerals and trace elements that account for about 4% of total human body mass serve as materials and regulators in numerous biological activities in body structure building. Infant formula and milk products are important sources of endogenic and added minerals and trace elements and hence, must comply with regulatory as well as nutritional and safety requirements. In addition, reliable analytical data are necessary to support product content and innovation, health claims, or declaration and specific safety issues. Adequate analytical platforms and methods must be implemented to demonstrate both the compliance and safety assessment of all declared and regulated minerals and trace elements, especially trace-element contaminant surveillance. The first part of this paper presents general information on the mineral composition of infant formula and milk products and their regulatory status. In the second part, a survey describes the main techniques and related current official methods determining minerals and trace elements in infant formula and milk products applied for by various international organizations (AOAC INTERNATIONAL, the International Organization for Standardization, the International Dairy Federation, and the European Committe for Standardization). The third part summarizes method officialization activities by Stakeholder Panels on Infant Formula and Adult Nutritionals and Stakeholder Panel on Strategic Food Analytical Methods. The final part covers a general discussion focusing on analytical gaps and future trends in inorganic analysis that have been applied for in infant formula and milk-based products.

  17. Microbial acidification and pH effects on trace element release from sewage sludge.

    PubMed

    Qureshi, Shabnam; Richards, Brian K; Steenhuis, Tammo S; McBride, Murray B; Baveye, Philippe; Dousset, Sylvie

    2004-11-01

    Leaching of sludge-borne trace elements has been observed in experimental and field studies. The role of microbial processes in the mobilization of trace elements from wastewater sludge is poorly defined. Our objectives were to determine trace element mobilization from sludge subjected to treatments representing microbial acidification, direct chemical acidification and no acidification, and to determine the readsorption potential of mobilized elements using calcareous sand. Triplicate columns (10-cm diameter) for incubation and leaching of sludge had a top layer of digested dewatered sludge (either untreated, acidified with H2SO4, or limed with CaCO3; all mixed with glass beads to prevent ponding) and a lower glass bead support bed. Glass beads in the sludge layer, support layer or both were replaced by calcareous sand in four treatments used for testing the readsorption potential of mobilized elements. Eight sequential 8-day incubation and leaching cycles were operated, each consisting of 7.6 d of incubation at 28 degrees C followed by 8 h of leaching with synthetic acid rain applied at 0.25 cm/h. Leachates were analyzed for trace elements, nitrate and pH, and sludge layer microbial respiration was measured. The largest trace element, nitrate and S losses occurred in treatments with the greatest pH depression and greatest microbial respiration rates. Cumulative leaching losses from both microbial acidification and direct acidification treatments were > 90% of Zn and 64-80% of Cu and Ni. Preventing acidification with sludge layer lime or sand restricted leaching for all trace elements except Mo. Results suggested that the primary microbial role in the rapid leaching of trace elements was acidification, with results from direct acidification being nearly identical to microbial acidification. Microbial activity in the presence of materials that prevented acidification mobilized far lower concentrations of trace elements, with the exception of Mo. Trace elements

  18. Responses of trace elements to aerobic maximal exercise in elite sportsmen.

    PubMed

    Otag, Aynur; Hazar, Muhsin; Otag, Ilhan; Gürkan, Alper Cenk; Okan, Ilyas

    2014-02-21

    Trace elements are chemical elements needed in minute quantities for the proper growth, development, and physiology of the organism. In biochemistry, a trace element is also referred to as a micronutrient. Trace elements, such as nickel, cadmium, aluminum, silver, chromium, molybdenum, germanium, tin, titanium, tungsten, scandium, are found naturally in the environment and human exposure derives from a variety of sources, including air, drinking water and food. The Purpose of this study was investigated the effect of aerobic maximal intensity endurance exercise on serum trace elements as well-trained individuals of 28 wrestlers (age (year) 19.64±1.13, weight (Kg) 70.07 ± 15.69, height (cm) 176.97 ± 6.69) during and after a 2000 meter Ergometer test protocol was used to perform aerobic (75 %) maximal endurance exercise. Trace element serum levels were analyzed from blood samples taken before, immediately after and one hour after the exercise. While an increase was detected in Chromium (Cr), Nickel (Ni), Molybdenum (Mo) and Titanium (Ti) serum levels immediately after the exercise, a decrease was detected in Aluminum (Al), Scandium (Sc) and Tungsten (W) serum levels. Except for aluminum, the trace elements we worked on showed statistically meaningful responses (P < 0.05 and P < 0.001). According to the responses of trace elements to the exercise showed us the selection and application of the convenient sport is important not only in terms of sportsman performance but also in terms of future healthy life plans and clinically.

  19. Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry.

    PubMed

    Yang, Chunxia; Chen, Yongheng; Peng, Ping'an; Li, Chao; Chang, Xiangyang; Wu, Yingjuan

    2009-08-15

    Total concentrations combined with chemical partitioning of trace elements (Cd, Co, Cr, Mn, Ni, Pb, Tl, and Zn) in raw pyrite ore and solid roasting wastes were investigated in order to elucidate their transformations and partitioning during the roasting of raw pyrite ores in sulfuric acid production. In order to better understand the behavior of these elements during roasting, mineral transformations accompanying roasting were also investigated by using microscopy. Results indicated that the mode of occurrence of trace elements in raw pyrite ore and the thermostability of trace element-bearing species formed during roasting played major roles in the transformations of the selected trace elements. Silicate- and amorphous iron (hydr)oxide-bound elements (Cr and Pb) were stable and mainly retained in their original phases. However, acid-exchangeable and sulfide-bound elements tended to transform into other forms via different pathways: elements that tend to form low thermostable species (Cd, Pb and Tl) were significantly vaporized, whereas elements that tend to form high thermostable species (Co, Mn and Ni) mainly reacted with iron oxides or silicates, which then remained in the solid residues. The volatility of trace elements during the roasting has a significant effect on their subsequent partitioning in roasting wastes. Nonvolatile element (Co, Cr, Mn, and Ni) partitioning was determined by settling of the particulate in which they are bound, whereas the partitioning of (semi)volatile elements (Cd, Pb, Tl, and Zn) was controlled by the adsorption of their gaseous species on the particulate.

  20. Trace element profiles of the sea anemone Anemonia viridis living nearby a natural CO2 vent

    PubMed Central

    Borell, Esther M.; Fine, Maoz; Shaked, Yeala

    2014-01-01

    Ocean acidification (OA) is not an isolated threat, but acts in concert with other impacts on ecosystems and species. Coastal marine invertebrates will have to face the synergistic interactions of OA with other global and local stressors. One local factor, common in coastal environments, is trace element contamination. CO2 vent sites are extensively studied in the context of OA and are often considered analogous to the oceans in the next few decades. The CO2 vent found at Levante Bay (Vulcano, NE Sicily, Italy) also releases high concentrations of trace elements to its surrounding seawater, and is therefore a unique site to examine the effects of long-term exposure of nearby organisms to high pCO2 and trace element enrichment in situ. The sea anemone Anemonia viridis is prevalent next to the Vulcano vent and does not show signs of trace element poisoning/stress. The aim of our study was to compare A. viridis trace element profiles and compartmentalization between high pCO2 and control environments. Rather than examining whole anemone tissue, we analyzed two different body compartments—the pedal disc and the tentacles, and also examined the distribution of trace elements in the tentacles between the animal and the symbiotic algae. We found dramatic changes in trace element tissue concentrations between the high pCO2/high trace element and control sites, with strong accumulation of iron, lead, copper and cobalt, but decreased concentrations of cadmium, zinc and arsenic proximate to the vent. The pedal disc contained substantially more trace elements than the anemone’s tentacles, suggesting the pedal disc may serve as a detoxification/storage site for excess trace elements. Within the tentacles, the various trace elements displayed different partitioning patterns between animal tissue and algal symbionts. At both sites iron was found primarily in the algae, whereas cadmium, zinc and arsenic were primarily found in the animal tissue. Our data suggests that A

  1. Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones

    NASA Astrophysics Data System (ADS)

    You, C.-F.; Castillo, P. R.; Gieskes, J. M.; Chan, L. H.; Spivack, A. J.

    1996-05-01

    Chemical evaluation of fluids affected during progressive water-sediment interactions provides critical information regarding the role of slab dehydration and/or crustal recycling in subduction zones. To place some constraints on geochemical processes during sediment subduction, reactions between décollement sediments and synthetic NaCl-CaCl 2 solutions at 25-350°C and 800 bar were monitored in laboratory hydrothermal experiments using an autoclave apparatus. This is the first attempt in a single set of experiments to investigate the relative mobilities of many subduction zone volatiles and trace elements but, because of difficulties in conducting hydrothermal experiments on sediments at high P-T conditions, the experiments could only be designed for a shallow (˜ 10 km) depth. The experimental results demonstrate mobilization of volatiles (B and NH 4) and incompatible elements (As, Be, Cs, Li, Pb, Rb) in hydrothermal fluids at relatively low temperatures (˜ 300°C). In addition, a limited fractionation of light from heavy rare earth elements (REEs) occurs under hydrothermal conditions. On the other hand, the high field strength elements (HFSEs) Cr, Hf, Nb, Ta, Ti, and Zr are not mobile in the reacted fluids. The observed behavior of volatiles and trace elements in hydrothermal fluids is similar to the observed enrichment in As, B, Cs, Li, Pb, Rb, and light REEs and depletion in HFSEs in arc magmas relative to magmas derived directly from the upper mantle. Thus, our work suggests a link between relative mobilities of trace elements in hydrothermal fluids and deep arc magma generation in subduction zones. The experimental results are highly consistent with the proposal that the addition of subduction zone hydrous fluids to the subarc mantle, which has been depleted by previous melting events, can produce the unique characteristics of arc magmas. Moreover, the results suggest that deeply subducted sediments may no longer have the composition necessary to generate

  2. ENHANCED FORMATION OF DIOXINS AND FURANS FROM COMBUSTION DEVICES BY ADDITION OF TRACE QUANTITIES OF BROMINE

    EPA Science Inventory

    Past pilot-scale experimental studies have shown a dramatic increase in the formation of certain chlorinated products of incomplete combustion (PICs) caused by the addition of trace amounts of bromine (Br). Emissions of trichloroethylene and tetrachloorethylene, generated as PICs...

  3. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.

    PubMed

    Saqib, Naeem; Bäckström, Mattias

    2015-10-01

    Impact of waste fuels (virgin/waste wood, mixed biofuel (peat, bark, wood chips) industrial, household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been investigated. Study included 4 grate fired and 9 fluidized boilers. Results showed that mixed waste incineration mostly caused increased transfer of trace elements to fly ash; particularly Pb/Zn. Waste wood incineration showed higher transfer of Cr, As and Zn to fly ash as compared to virgin wood. The possible reasons could be high input of trace element in waste fuel/change in volatilization behavior due to addition of certain waste fractions. The concentration of Cd and Zn increased in fly ash with incineration temperature. Total concentration in ashes decreased in order of Zn>Cu>Pb>Cr>Sb>As>Mo. The concentration levels of trace elements were mostly higher in fluidized boilers fly ashes as compared to grate boilers (especially for biofuel incineration). It might be attributed to high combustion efficiency due to pre-treatment of waste in fluidized boilers. Leaching results indicated that water soluble forms of elements in ashes were low with few exceptions. Concentration levels in ash and ash matrix properties (association of elements on ash particles) are crucial parameters affecting leaching. Leached amounts of Pb, Zn and Cr in >50% of fly ashes exceeded regulatory limit for disposal. 87% of chlorine in fly ashes washed out with water at the liquid to solid ratio 10 indicating excessive presence of alkali metal chlorides/alkaline earths.

  4. Trophodynamics of mercury and other trace elements in a pelagic food chain from the Baltic Sea.

    PubMed

    Nfon, Erick; Cousins, Ian T; Järvinen, Olli; Mukherjee, Arun B; Verta, Matti; Broman, Dag

    2009-12-01

    Mercury (Hg) and 13 other trace elements (Al, Ti, V, Cr, Fe, Mn, Co, Ni, Cu, Zn, As, Cd, and Pb) were measured in phytoplankton, zooplankton, mysis and herring in order to examine the trophodynamics in a well-studied pelagic food chain in the Baltic Sea. The fractionation of nitrogen isotopes (delta(15)N) was used to evaluate food web structure and to estimate the extent of trophic biomagnification of the various trace elements. Trophic magnification factors (TMFs) for each trace element were determined from the slope of the regression between trace element concentrations and delta(15)N. Calculated TMFs showed fundamental differences in the trophodynamics of the trace elements in the pelagic food chain studied. Concentrations of Al, Fe, Ni, Zn, Pb and Cd showed statistically significant decreases (TMF<1) with increasing trophic levels and thus these trace elements tropically dilute or biodilute in this Baltic food chain. Cu, As, Cr, Mn, V, Ti and Co showed no significant relationships with trophic levels. Hg was unique among the trace elements studied in demonstrating a statistically significant increase (TMF>1) in concentration with trophic level i.e. Hg biomagnifies in this Baltic food chain. The estimated TMF for Hg in this food chain was comparable to TMFs observed elsewhere for diverse food chains and locations.

  5. Geochemical Assessment of Trace Element Pollution in Surface Sediments from the Georges River, Southern Sydney, Australia.

    PubMed

    Alyazichi, Yasir M; Jones, Brian G; McLean, Errol; Pease, Joel; Brown, Heidi

    2017-02-01

    Measurement of elevated trace elements is an important component of environmental assessment and management of estuarine marine sediments in systems adjacent to concentrated human activity. The present study surveys the estuarine sediments in selected tributary bays, creeks, and the upper segments of the Georges River system, NSW, Australia, which flows into the Tasman Sea through Botany Bay. A total of 146 surface sediment samples were analysed by X-ray fluorescence. Potential pollution of sediments was evaluated using potential load index, modified degree of contamination, and potential ecological risk index. The spatial distribution of trace elements varies between sites. Variable sources of contamination, including runoff from catchment areas, and emissions from watercraft and boatyards are contributing sources. Bay morphologies and their interactions with catchment and tidal flows play significant roles in the distribution of trace elements. The greatest concentration of trace elements occurs around discharge points and in the inner parts of bays that have high percentages of mud particles and organic matter. The lowest contamination by trace elements was found in sandy sediments along the shoreline and edges of the bays. Trace element distributions decline in concentration in residential-free areas and reach background levels in deeper sediment cores. The concentrations of trace elements were controlled by discharge points from the catchment area, marine boat activities, bay morphology, and sediment types (sand, silt, and clay). The highest pollutant concentrations are the result of past legal, but uncontrolled, discharge of waste from manufacturing into Salt Pan Creek.

  6. Comparative assessment of the trace-element composition of coals, crude oils, and oil shales

    SciTech Connect

    M.Y. Shpirt; S.A. Punanova

    2007-10-15

    A comparative analysis of the amounts of 42 trace elements in coals, crude oils, and oil and black shales was performed. The degree of concentration of trace elements by caustobioliths and their ashes relative to their abundance in argillaceous rocks and the Earth's crust was calculated. Typomorphic trace elements were distinguished, of which many turned out to be common for the different kinds of caustobioliths in question. The trace elements were classified according to their concentration factors in different caustobioliths. The ash of crude oils is enriched in trace elements (Cs, V, Mo, Cu, Ag, Au, Zn, Hg, Se, Cr, Co, Ni, U) to the greatest extent (concentration factor above 3.5) and that of oil shales is enriched to the least extent (Re, Cs, Hg, Se). The ratios between typomorphic trace elements in general strongly differ from those in the Earth's crust and argillaceous rocks and are not identical in different caustobioliths. Quantitative parameters that make it possible to calculate a change in these ratios on passing from one caustobiolith type to another were proposed and the relative trace-element affinity of different caustobioliths was estimated.

  7. Serum Concentrations of Trace Elements in Patients with Tuberculosis and Its Association with Treatment Outcome.

    PubMed

    Choi, Rihwa; Kim, Hyoung-Tae; Lim, Yaeji; Kim, Min-Ji; Kwon, O Jung; Jeon, Kyeongman; Park, Hye Yun; Jeong, Byeong-Ho; Koh, Won-Jung; Lee, Soo-Youn

    2015-07-21

    Deficiencies in essential trace elements are associated with impaired immunity in tuberculosis infection. However, the trace element concentrations in the serum of Korean patients with tuberculosis have not yet been investigated. This study aimed to compare the serum trace element concentrations of Korean adult patients with tuberculosis with noninfected controls and to assess the impact of serum trace element concentration on clinical outcome after antituberculosis treatment. The serum concentrations of four trace elements in 141 consecutively recruited patients with tuberculosis and 79 controls were analyzed by inductively coupled plasma-mass spectrometry. Demographic characteristics were also analyzed. Serum cobalt and copper concentrations were significantly higher in patients with tuberculosis compared with controls, while zinc and selenium concentrations were significantly lower (p < 0.01). Moreover, serum selenium and zinc concentrations were positively correlated (ρ = 0.41, p < 0.05). A high serum copper concentration was associated with a worse clinical outcome, as assessed after one month of antituberculosis therapy. Specifically, culture-positive patients had higher serum copper concentrations than culture-negative patients (p < 0.05). Patients with tuberculosis had altered serum trace element concentrations. Further research is needed to elucidate the roles of individual trace elements and to determine their clinical impact on patients with tuberculosis.

  8. [Determination of the contents of trace elements in chinese herbal medicines for treating respiratory system diseases].

    PubMed

    Han, Li-Qin; Dong, Shun-Fu; Liu, Jian-Hua

    2008-02-01

    There is an intimate connection between trace elements and body healthiness, trace elements and organism depend on each other, and each trace element exists with certain proportion, which preserve physio-function. If the balance is of maladjustment, diseases may occur or develop. The trace elements were determined in 16 kinds of Chinese herbal medicines by atomic absorption spectrometry. The medicines include lilium brownii, herba houttuyniae, licorice root, radices isatidis seu baphicacanthi, Sehizandra sinensis Bail, Scutellaria baicalensis Georgi, Beimu, Polygonum multiflorum Thunb, Lithospermum officinalel, Rhizoma acori gramjnoi, Pinellia ternate Breit, Salisburia adiantifolia, Lonicera japonica, Radices puerarire, Bupleurum falcatum and Ligusticum wallichii, all of which could be bought on the market. Sixteen kinds of Chinese herbal medicines commonly used to treat respiratroy system diseases in clinic were selected, dried and powdered, completely mixed, 1.000 0 g was weighed accurately with analytical balance, and 3 portions were used for each kind of sample. The atomic absorption spectrometry was used to determine the contents of trace elements (Cu, Zn, Fe, Cr, Ni and Mn), and the content discrepancy of the trace elements in different medicines was observed the results shows that the contents of the trace elements were rich in the 16 kinds of Chinese herbal medicines, there were more contents of Fe, Zn and Mn, but they were different in different medicines. And there were more trace elements in Salisburia adiantifolia, Polygonum multiflorum Thunb, Bupleurum falcatum, Sehizandra sinensis Bail, Pinellia ternate Breit and Lithospermum officinalel, and lower trace elements in Radices puerarire, Rhizoma acori gramjnoi and Radices isatidis seu baphicacanthi. The analytic results provided useful data for using Chinese herbal medicines and provided theoretical basis for studying Chinese herbal medicines theory.

  9. Catalog of Mount St. Helens 2004 - 2005 Tephra Samples with Major- and Trace-Element Geochemistry

    USGS Publications Warehouse

    Rowe, Michael C.; Thornber, Carl R.; Gooding, Daniel J.; Pallister, John S.

    2008-01-01

    This open-file report presents a catalog of information about 135 ash samples along with geochemical analyses of bulk ash, glass and individual mineral grains from tephra deposited as a result of volcanic activity at Mount St. Helens, Washington, from October 1, 2004 until August 15, 2005. This data, in conjunction with that in a companion report on 2004?2007 Mount St. Helens dome samples by Thornber and others (2008a) are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, ed., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data presented here. All ash samples reported herein are currently archived at the David A. Johnston Cascades Volcano Observatory in Vancouver, Washington. The Mount St. Helens 2004?2005 Tephra Sample Catalogue along with bulk, glass and mineral geochemistry are tabulated in 6 worksheets of the accompanying Microsoft Excel file, of2008-1131.xls. Samples in all tables are organized by collection date. Table 1 is a detailed catalog of sample information for tephra deposited downwind of Mount St. Helens between October 1, 2004 and August 18, 2005. Table 2 provides major- and trace-element analyses of 8 bulk tephra samples collected throughout that interval. Major-element compositions of 82 groundmass glass fragments, 420 feldspar grains, and 213 mafic (clinopyroxene, amphibole, hypersthene, and olivine) mineral grains from 12 ash samples collected between October 1, 2004 and March 8, 2005 are presented in tables 3 through 5. In addition, trace-element abundances of 198 feldspars from 11 ash samples (same samples as major-element analyses) are provided in table 6. Additional mineral and bulk ash analyses from 2004 and 2005 ash samples are published in chapters 30 (oxide thermometry; Pallister and others, 2008), 32

  10. Role of nuclear analytical probe techniques in biological trace element research

    SciTech Connect

    Jones, K.W.; Pounds, J.G.

    1985-01-01

    Many biomedical experiments require the qualitative and quantitative localization of trace elements with high sensitivity and good spatial resolution. The feasibility of measuring the chemical form of the elements, the time course of trace elements metabolism, and of conducting experiments in living biological systems are also important requirements for biological trace element research. Nuclear analytical techniques that employ ion or photon beams have grown in importance in the past decade and have led to several new experimental approaches. Some of the important features of these methods are reviewed here along with their role in trace element research, and examples of their use are given to illustrate potential for new research directions. It is emphasized that the effective application of these methods necessitates a closely integrated multidisciplinary scientific team. 21 refs., 4 figs., 1 tab.

  11. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China

    USGS Publications Warehouse

    Zhang, Jiahua; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J.

    2002-01-01

    Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The

  12. The prediction of aquatic sediment-associated trace element concentration using selected geochemical factors

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Hooper, R.P.

    1989-01-01

    Multiple linear regression models calculated from readily obtainable chemical and physical parameters can explain a high percentage (70 per cent or greater) of observed sediment-trace element variance for Cu, Zn, Pb, Cr, Ni, Co, As, Sb, Se, and Hg in a widely divergent suite of 60 sediment samples. The geochemical parameters included in the models were of physical (e.g. grain size, surface area) and a chemical (e.g. organic matter, amorphous iron oxides) nature. Comparison between actual and predicted trace element concentrations obtained from the models may provide a means of defining "average' sediment trace element concentrations. -from Authors

  13. Trace element content of leaves of desert shrubs in south-central Washington

    SciTech Connect

    Rickard, W.H.; Garland, T.R.

    1983-01-01

    Analyses of leaves of desert shrubs showed strong differences in macroelements according to species and location on the Arid Lands Ecology (ALE) site in south-central Washington. Halophytes were characterized by high levels of K, Cl, Br, Mn, and Na, and glycophytes by high levels of Ca and Mg. However, trace element content was not significantly different. Big sagebrush (Artemisia tridentata) leaves from Wyoming and the ALE site were not greatly different in trace element content. Natural leaf fall collections can be used to monitor changing levels of trace element content induced by coal combustion steam-electric plants.

  14. (Relative mobilities and transport mechanisms of trace elements during contact metamorphism of carbonate rocks). Progress report

    SciTech Connect

    1980-01-01

    The main objective of this study is to investigate the relative mobilities and transport mechanisms of major, minor, and trace elements during the contact metamorphism of carbonate rocks. The large contrasts in chemical potentials of SiO/sub 2/, Al/sub 2/O/sub 3/, and CaO across a granitic pluton-limestone contact may induce metasomatism. In addition, rare earth and transition metal elements may act as tracers, and their redistribution during metamorphism may record convective cooling processes. The results of this study may have an application toward the problem of radioactive waste disposal and the degree to which radioactive nuclides may be expected to migrate during geologically significant periods of time.

  15. Trace elements in Thunnus thynnus from Mediterranean Sea and benefit-risk assessment for consumers.

    PubMed

    Di Bella, Giuseppa; Potortì, Angela Giorgia; Lo Turco, Vincenzo; Bua, Daniel; Licata, Patrizia; Cicero, Nicola; Dugo, Giacomo

    2015-01-01

    Trace elemental levels were determined by inductively coupled plasma-mass spectrometry in muscle, eggs and sperm of 23 Thunnus thynnus fishes collected from May to August 2013 in the Mediterranean Sea. Zn, Mn, Fe, Cu, Cr, Ni and Se content was compared with Recommended Daily Allowances. Cd, Hg and Pb concentrations were below the maximum limits fixed by the European Legislation. Tuna food safety was evaluated considering Tolerable Weekly Intake (TWI) or Provisional Tolerable Weekly Intake for As, Hg, Cd and Pb. Only BMDL01 data for As and Pb were calculated as established by the Joint FAO/WHO Expert Committed on Food Additives. The daily consumption of fresh tuna ensures a good intake of these elements. None of the tested samples surpassed the European maximum limits. Cd, Hg and Pb remained within safety margins, while As is slightly higher than the provisional TWI.

  16. Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China

    USGS Publications Warehouse

    Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.

    2011-01-01

    To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.

  17. New insights into trace element wet deposition in the Himalayas: amounts, seasonal patterns, and implications.

    PubMed

    Cong, Zhiyuan; Kang, Shichang; Zhang, Yulan; Gao, Shaopeng; Wang, Zhongyan; Liu, Bin; Wan, Xin

    2015-02-01

    Our research provides the first complete year-long dataset of wet deposition of trace elements in the high Himalayas based on a total of 42 wet deposition events on the northern slope of Mt. Qomolangma (Everest). Except for typical crustal elements (Al, Fe, and Mn), the concentration level of most trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Cs, Pb, Bi, and U) are generally comparable to those preserved in snow pits and ice cores from the nearby East Rongbuk Glacier. Cadmium was the element most affected by anthropogenic emissions. No pronounced seasonal variations are observed for most trace elements despite different transport pathways. In our study, the composition of wet precipitation reflects a regional background condition and is not clearly related to specific source regions. For the trace element record from ice cores and snow pits in the Himalayas, it could be deduced that the pronounced seasonal patterns were caused by the dry deposition of trace elements (aerosols) during their long exposure to the atmosphere after precipitation events. Our findings are of value for the understanding of the trace element deposition mechanisms in the Himalayas.

  18. Maternal transfer of trace elements in the Atlantic horseshoe crab (Limulus polyphemus).

    PubMed

    Bakker, Aaron K; Dutton, Jessica; Sclafani, Matthew; Santangelo, Nicholas

    2017-01-01

    The maternal transfer of trace elements is a process by which offspring may accumulate trace elements from their maternal parent. Although maternal transfer has been assessed in many vertebrates, there is little understanding of this process in invertebrate species. This study investigated the maternal transfer of 13 trace elements (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) in Atlantic horseshoe crab (Limulus polyphemus) eggs and compared concentrations to those in adult leg and gill tissue. For the majority of individuals, all trace elements were transferred, with the exception of Cr, from the female to the eggs. The greatest concentrations on average transferred to egg tissue were Zn (140 µg/g), Cu (47.8 µg/g), and Fe (38.6 µg/g) for essential elements and As (10.9 µg/g) and Ag (1.23 µg/g) for nonessential elements. For elements that were maternally transferred, correlation analyses were run to assess if the concentration in the eggs were similar to that of adult tissue that is completely internalized (leg) or a boundary to the external environment (gill). Positive correlations between egg and leg tissue were found for As, Hg, Se, Mn, Pb, and Ni. Mercury, Mn, Ni, and Se were the only elements correlated between egg and gill tissue. Although, many trace elements were in low concentration in the eggs, we speculate that the higher transfer of essential elements is related to their potential benefit during early development versus nonessential trace elements, which are known to be toxic. We conclude that maternal transfer as a source of trace elements to horseshoe crabs should not be overlooked and warrants further investigation.

  19. Major and trace element partitioning between dissolved and particulate phases in Antarctic surface snow.

    PubMed

    Grotti, M; Soggia, F; Ardini, F; Magi, E

    2011-09-01

    In order to provide a new insight into the Antarctic snow chemistry, partitioning of major and trace elements between dissolved and particulate (i.e. insoluble particles, >0.45 μm) phases have been investigated in a number of coastal and inland snow samples, along with their total and acid-dissolvable (0.5% nitric acid) concentrations. Alkaline and alkaline-earth elements (Na, K, Ca, Mg, Sr) were mainly present in the dissolved phase, while Fe and Al were predominantly associated with the particulate matter, without any significant difference between inland and coastal samples. On the other hand, partitioning of trace elements depended on the sampling site position, showing a general decrease of the particulate fraction by moving from the coast to the plateau. Cd, Cu, Pb and Zn were for the most part in the dissolved phase, while Cr was mainly associated with the particulate fraction. Co, Mn and V were equally distributed between dissolved and particulate phases in the samples collected from the plateau and preferentially associated with the particulate in the coastal samples. The correlation between the elements and the inter-sample variability of their concentration significantly decreased for the plateau samples compared to the coastal ones, according to a change in the relative contribution of the metal sources and in good agreement with the estimated marine and crustal enrichment factors. In addition, samples from the plateau were characterised by higher enrichment factors of anthropogenic elements (Cd, Cr, Cu, Pb and Zn), compared to the coastal area. Finally, it was observed that the acid-dissolvable metal concentrations were generally lower than the total concentration values, showing that the acid treatment can dissolve only a given fraction of the metal associated with the particulate (<20% for iron and aluminium).

  20. [Spectrometric determination of trace elements in anticancer new medicine Fagopyrum dibotrys].

    PubMed

    Wang, Ji-Yong; Wang, Yuan-Zhong; Zeng, Yan; Li, Jin-Tong

    2011-01-01

    The golden buckwheat Fagopyrum dibotrys produced in Yunnan has a unique anti-cancer effects. It is a main raw material of "Wei Mai ning" capsules which is the national second-class anti-cancer drug. The present paper used (5 : 1) mixed acid as digestive juice to process the sample, and determine the twelve elements including K, Ca, Cu, Na, Mg, Mn, Fe, Zn, Pb, Cr, Cd and Co in the Fagopyrum dibotrys by inductively coupled plasma atomic emission spectrometry(ICP-AES). The detection limits of this method were 0.017-0.084 microg x mL(-1), the RSDs (n = 8) were all 0.09%-1.87%, and the addition standard recoveries(ASR) (n = 8) were 98.2%-107.4% for all elements. The research results showed that there is rich K(1 477.3 microg x g(-1)) in the Fagopyrum dibotrys, there are not harmful elements Cd and Pb, and this result is mainly related to the geochemistry background where the sample lived. The contents of seven remaining kinds of elements ranked as Na (826.1) > Ca (765.2 > Mg (493.4) > Zn (112.7) > Fe (56.5) > Cu (11.4) > Mn (4.49 microg x g(-1)). This result provides some theoretical basis for the study of internal relations between trace elements in Fagopyrum dibotrys and efficacy. It' s also useful for better development and utilization of the resource.

  1. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama

    USGS Publications Warehouse

    Diehl, S.F.; Goldhaber, M.B.; Hatch, J.R.

    2004-01-01

    The mineralogic residence and abundance of trace metals is an important environmental issue. Data from the USGS coal quality database show that potentially toxic elements, including Hg, As, Mo, Se, Cu, and Tl are enriched in a subset of coal samples in the Black Warrior Basin of Alabama, USA. Although the coal as-mined typically is low in these elements, localized enrichments occur in high-pyrite coals and near faults. Microscopic analyses demonstrate that the residence of these elements is dominantly in a late-stage pyrite associated with structurally disrupted coal. Further, our data suggest addition of Hg to the coal matrix as well. The source of these trace elements was hydrothermal fluids driven into the Black Warrior Basin by Alleghanian age tectonism. ?? 2004 Published by Elsevier B.V.

  2. Influence of trace elements in human tissue in low-energy photon brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    White, Shane A.; Landry, Guillaume; van Gils, Francis; Verhaegen, Frank; Reniers, Brigitte

    2012-06-01

    The aim of this paper is to determine the dosimetric impact of trace elements in human tissues for low-energy photon sources used in brachytherapy. Monte Carlo dose calculations were used to investigate the dosimetric effect of trace elements present in normal or cancerous human tissues. The effect of individual traces (atomic number Z = 11-30) was studied in soft tissue irradiated by low-energy brachytherapy sources. Three other tissue types (prostate, adipose and mammary gland) were also simulated with varying trace concentrations to quantify the contribution of each trace to the dose distribution. The dose differences between cancerous and healthy prostate tissues were calculated in single- and multi-source geometries. The presence of traces in a tissue produces a difference in the dose distribution that is dependent on Z and the concentration of the trace. Low-Z traces (Na) have a negligible effect (<0.3%) in all tissues, while higher Z (K) had a larger effect (>3%). There is a potentially significant difference in the dose distribution between cancerous and healthy prostate tissues (4%) and even larger if compared to the trace-free composition (15%) in both single- and multi-sourced geometries. Trace elements have a non-negligible (up to 8% in prostate D90) effect on the dose in tissues irradiated with low-energy photon sources. This study underlines the need for further investigation into accurate determination of the trace composition of tissues associated with low-energy brachytherapy. Alternatively, trace elements could be incorporated as a source of uncertainty in dose calculations. This work was part of an invited presentation at the ‘International Workshop on Recent Advances in Monte Carlo Techniques for Radiation Therapy’, held in Montreal, June 8-10, 2011.

  3. Bermudagrass management in the southern Piedmont, USA: IX. Trace elements in soil with broiler litter application.

    PubMed

    Franzluebbers, A J; Wilkinson, S R; Stuedemann, J A

    2004-01-01

    An understanding of the long-term cycling of trace elements in soil with broiler litter fertilization under various forage utilization strategies is needed to develop sustainable agricultural production systems. We evaluated differences in Cu, Mn, Zn, and six other trace elements in response to 5 yr of bermudagrass [Cynodon dactylon (L.) Pers.] management varying in fertilization and harvest strategies on a Typic Kanhapludult in Georgia. Chicken (Gallus gallus) broiler litter was a significant source of trace elements that led to 3.4 +/- 0.5 times higher Cu, 2.0 +/- 0.3 times higher Mn, and 2.1 +/- 0.2 times higher Zn in the surface 3 cm of soil than when forage was fertilized inorganically. There were variable effects of broiler litter fertilization on other trace elements, depending upon element, depth of sampling, and forage utilization strategy. Concentrations of all trace elements in soil were below levels considered toxic to plants. Soil at a depth of 0 to 3 cm under grazed paddocks had 33 +/- 5% greater Cd, 18 +/- 1% greater Cr, 53 +/- 24% greater Cu, and 24 +/- 7% greater Zn compared with unharvested and hayed management. Trace elements in soil were unaffected whether forage was unharvested or removed as hay. These results suggest that broiler litter is a significant source of several trace elements and that ruminant processing of forage and subsequent deposition of excreta on the paddock allow these trace elements to accumulate more at the soil surface where they might interact with the high concentration of organic matter.

  4. [Determination of Trace Elements in Marine Cetaceans by ICP-MS and Health Risk Assessment].

    PubMed

    Ding, Yu-long; Ning, Xi; Gui, Duan; Mo, Hui; Li, Yu-sen; Wu, Yu-ping

    2015-09-01

    The liver, kidney and muscle samples from seven cetaceans were digested by microwave digestion, and trace elements amounts of V, Cd, Cu, Zn, As, Cr, Ni, Mn, Se, Hg and Pb were determined by inductively coupled plasma mass spectrometry (ICP-MS), and the health risk assessment for Zn, Cu, Cd, Hg, Se in the liver was conducted. The results of international lobster hepatopancreas standard (TORT-2) showed acceptable agreement with the certified values, and the relative standard deviation (RSD) of eleven kinds of trace elements were less than 3.54%, showing that the method is suitable for the determination of trace elements in cetaceans. The experimental results indicated that different tissues and organs of the dolphins had different trace elements, presenting the tissue specificity. There is a certain inter-species difference among different dolphins about the bioaccumulation ability of the trace elements. The distribution of trace elements in whales presented a certain regularity: the contents of most elements in liver, kidney were much higher than the contents of muscle tissues, Cu, Mn, Hg, Se, and Zn exhibit the higher concentrations in liver, while Cd was mainly accumulated in kidney. And according to the health risk assessment in liver, the exceeding standardrate of selenium and copper in seven kinds of whales was 100%, suggesting that these whales were suffering the contamination of trace elements. The experimental results is instructive to the study of trace elements in cetaceans, while this is the first report for the concentrations in organs of Striped dolphin, Bottlenose dolphin, Fraser's Dolphin and Risso's dolphin in China, it may provide us valuable data for the conservation of cetaceans.

  5. Determination of trace elements in triglycine sulfate solutions

    NASA Technical Reports Server (NTRS)

    Tadros, Shawky H.

    1993-01-01

    Ten elements were divided into 2 groups. The elements in the first group included iron, nickel, chromium, manganese, copper, and gold. The elements in the second group included zinc, cobalt, lead, cadmium, and gold. Five ppm of each element in each group was spiked in a 1 percent triglycine sulfate (TGS) solution. Glycine was removed with 1-naphthyl isocyanate in ether medium. The glycine derivative 1-naphthyl isocyanate glycine was removed by filtration, and the filtrates were analyzed for the different elements. Analysis of these elements was performed by using the 5100 Perkin-Elmer Atomic Absorption Spectrophotometer. The result of these experiments was the observation that there was a decrease in the concentration of chromium and gold, which was interpreted to be due to the chelation of these elements by the derivative 1-naphthyl isocyanate glycine. Further research is needed to determine the concentration of other elements in triglycine sulfate (TGS) solutions. These elements will include lithium, sodium, rubidium, magnesium, calcium, strontium, barium, aluminum, and silicon. These are the most likely elements to be found in the sulfuric acid used in manufacturing the TGS crystal. Moreover, we will extend our research to investigate the structural formula of the violet colored chelated compounds, which had been formed by interaction of the derivative 1-naphthyl isocyanate glycine with the different elements, such as gold, chromium.

  6. [Determination of trace elements in different parts of grapefruit by ICP-AES].

    PubMed

    Wan, Yi-qun; Xiao, Li-feng; Liu, Ying-xia; Huang, Zi-juan

    2008-09-01

    In the present paper, a method of simultaneous determination of trace elements in grapefruit was developed by using inductively coupled plasma-atomic emission spectrometry together with HNO3-HClO4 digestion. The contents of fifteen elements, including B, Ba, Ca, Cu, Zn, Mg, Sr, Mn, Fe, Na, Be, Pb, Bi, Cd and As, were determined in four parts, namely flesh, scarfskin, endodermis and seed collected from Guangdong, Guangxi and Ganzhou, respectively. The relative standard deviations for all these elements in this method were between 0.22% and 5.54%, and the recovery rates were between 87.0% and 115.0%. The measuring method was proved to be simple, rapid, reliable, and highly sensitive. In addition, the determination of these fifteen elements can be carried out at the same time, which can meet the requests of actual sample analysis. The experimental results showed that some beneficial elements to human such as Ca, Mg, Fe, Zn, Mn, Cu and Na in grapefruit were abundant, while some comparatively harmful elements (Be, Pb, Bi, Cd and As) were not detected. Regional differences and partial differences obviously existed in the concentrations of one or more trace elements in grapefruit. As a whole, the concentrations of most elements in flesh were much lower than in other parts of grapefruit. The concentrations of B, Ba, Ca, Sr and Mn were comparatively higher in the seed capsule than in other parts. Cu, Zn and Mg had the highest concentrations in seed compared to other parts. There was little difference between scarfskin and endodermis. And as for the regional differences, the contents of Mn, Zn and Na in Gannan pomelo in all its parts were higher than those in other regions, and the contents of Ba in Guangdong pomelo in all its parts were higher than those in others, while Guangxi pomelo had the highest Fe content. These differences might resulted from the natural environmental conditions such as temperature, humidity, soil types with different pH, the mineral composition or

  7. [Analysis of a disturbance of trace element balance in patients with ischemic stroke with arterial hypertension].

    PubMed

    Kuramshina, D B; Novikova, L B; Nikonov, A A; Torshin, I Iu; Gromova, O A

    2012-01-01

    Disturbance of trace element balance increases the risk of cerebrovascular disease and, above all, ischemic stroke (IS). A comparative analysis of clinical and demographic parameters and trace element composition of hair was performed in the group of 30 ischemic stroke patients with arterial hypertension (AH) and 30 stroke patients without hypertension (mean age 55±7 years). The stroke patients with hypertension were characterized by the elevated body mass index (28.5±4.1 kg/m2, AI, 26.0±2.9 kg/m2, p=0.006), higher incidence of coronary heart disease (p=0.04). Alcohol consumption more than 3 drinks a week was associated with a 5-fold increase of the risk of stroke with hypertension (95% CI 1.0-27, p=0.035). The results revealed a number of statistically significant differences in trace element profile in the studied groups of patients: deficits of essential magnesium, manganese, cobalt, copper, zinc, a statistically significant increase in sodium levels, toxic and conditionally toxic trace elements (cadmium, mercury, bismuth, barium, etc.). One of the probable factors that lead to the accumulation of toxic trace elements in stroke patients is the increased consumption of alcohol including that of substandard quality. The data obtained also show the feasibility of implementing screening programs to assess micronutrient status (including trace elements) for early detection of pathological abnormalities in the elemental homeostasis that might lead to an increased risk of ischemic stroke and hypertension.

  8. The role of high-energy synchrotron radiation in biomedical trace element research

    SciTech Connect

    Pounds, J.G.; Long, G.J.; Kwiatek, W.M.; Jones, K.W.; Gordon, B.M.; Hanson, A.L.

    1987-01-01

    This paper will present the results of an investigation of the distribution of essential elements in the normal hepatic lobule. the liver is the organ responsible for metabolism and storage of most trace elements. Although parenchymal hepatocytes are rather uniform histologically, morphometry, histochemistry, immunohistochemistry, and microdissection with microchemical investigations have revealed marked heterogeneity on a functional and biochemical level. Hepatocytes from the periportal and perivenous zones of the liver parrenchyma differ in oxidative energy metabolism, glucose uptake and output, unreagenesis, biotransformation, bile acid secretion, and palsma protein synthesis and secretion. Although trace elements are intimately involved in the regulation and maintenance of these functions, little is known regarding the heterogeneity of trace element localization of the liver parenchyma. Histochemical techniques for trace elements generally give high spatial resolution, but lack specificity and stoichiometry. Microdissection has been of marginal usefulness for trace element analyses due to the very small size of the dissected parenchyma. The characteristics of the high-energy x-ray microscope provide an effective approach for elucidating the trace element content of these small biological structures or regions. 5 refs., 1 fig., 1 tab.

  9. Validity of ray trace based performance predictions of optical systems with diffractive optical elements (DOE)

    NASA Astrophysics Data System (ADS)

    Seesselberg, Markus; Kleemann, Bernd H.; Ruoff, Johannes

    2016-09-01

    Color aberrations in broadband imaging optics can be effectively corrected for by use of diffractive optical elements (DOE) such as kinoforms. Typically, the DOE groove width increases with wavelength range and is in the range of several ten to several hundreds of micrometers. Since the footprint diameter of a light bundle originating from a single object point at the diffractive surface is often in the range of millimeters, the number of grooves crossed by this light bundle can be small. In addition, the groove width varies and the grooves are curved. For DOE optimization and prediction of optical performance, optical design software is widely used being based on the ray trace formula, i. e. the law of refraction including DOEs. This ray trace formula relies on two assumptions. First, the footprint diameter of a light beam at the diffractive surface is assumed to be large compared to the groove width. Second, the local grating approximation is used saying that at the footprint area the groove width is constant and the grooves are straight lines. In realistic optical systems, these assumptions are often violated. Thus, the reliability of optical performance predictions such as MTF is in question. In the present paper, the authors re-examine the limits of the ray trace equation. The effect of a finite footprint diameter at the diffractive surface is investigated as well as variations of the groove width. Also, the Fraunhofer diffraction pattern of a light bundle after crossing a grating with a finite number of grooves is calculated.

  10. Physiological Effects of Trace Elements and Chemicals in Water

    ERIC Educational Resources Information Center

    Varma, M. M.; And Others

    1976-01-01

    The physiological effects on humans and animals of trace amounts of organic and unorganic pollutants in natural and waste waters are examined. The sensitivity of particular organs and species is emphasized. Substances reviewed include mercury, arsenic, cadmium, lead, chromium, fluorides, nitrates and organics, including polychlounated biphenyls.…

  11. Analytical Aspects of EPMA for Trace Element Analysis in Complex Accessory Minerals

    NASA Astrophysics Data System (ADS)

    Jercinovic, M. J.; Williams, M. L.; Lane, E.

    2007-12-01

    High-resolution microanalysis of complex REE-bearing accessory phases is becoming increasingly necessary for insight into the chronology of phase growth and tectonic histories, and in understanding the mechanisms and manifestations of growth and dissolution reactions. The in-situ analysis of very small grains, inclusions, and sub-domains is revolutionizing our understanding of the evolution of complexly deformed, multiply metamorphosed, rocks. Great progress has been made in refining analytical protocols, and improvements in instrumentation have yielded unprecedented analytical precision and spatial resolution. As signal/noise improves, complexity is revealed, illustrating the level of care that must go into obtaining meaningful results, and in adopting an appropriate approach to minimize error. Background measurement is most critical for low concentration elements. Errors on net intensity values resulting from improper background measurement alone can exceed 50% relative. Regression and modeling of the background spectrum is essential, and must be carried out independently for each spectrometer, regardless of instrument. In complex materials such as REE- bearing phosphates, high concentrations of REEs and actinides create difficult analytical challenges as numerous emission lines and absorption edges cause great spectral complexity. In addition, trace concentrations of "unexpected" emission lines such as those from sulfur, or fluoresced from nearby phases (Ti, K), cause interferences on both measured peaks and background regions which can result in very large errors on target elements (U, Pb, etc.), on the order of 10s to 100s of ppm. Characteristic X-ray emission involving electron transitions from the valence shell are subject to measureable peak shifts, in some cases significantly affecting the accuracy of results if not accounted for. Geochronology by EPMA involves careful measurement of all constituent elements, with the calculated date dependant on the

  12. The abundance and relative volatility of refractory trace elements in Allende Ca,Al-rich inclusions - Implications for chemical and physical processes in the solar nebula

    NASA Technical Reports Server (NTRS)

    Kornacki, Alan S.; Fegley, Bruce, Jr.

    1986-01-01

    The relative volatilities of lithophile refractory trace elements (LRTE) were determined using calculated 50-percent condensation temperatures. Then, the refractory trace-element abundances were measured in about 100 Allende inclusions. The abundance patterns found in Allende Ca,Al-rich inclusions (CAIs) and ultrarefractory inclusions were used to empirically modify the calculated LRTE volatility sequence. In addition, the importance of crystal-chemical effects, diffusion constraints, and grain transport for the origin of the trace-element chemistry of Allende CAIs (which have important implications for chemical and physical processes in the solar nebula) is discussed.

  13. Trace Element Composition of Metal and Sulphides in Iron Meteorites Determined Using ICP-MS

    NASA Astrophysics Data System (ADS)

    Giscard, M. D.; Hammond, S. J.; Bland, P. A.; Benedix, G. K.; Rogers, N. W.; Russell, S. S.; Genge, M. J.; Rehkamper, M.

    2012-09-01

    We measured trace element concentrations in Nantan, Toluca, Cape York, Carthage, Gibeon and Dronino. Poikiloblastic daubreelite in Gibeon indicates shock metamorphism. There is a volatile depletion in metal and sulphides.

  14. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    EPA Science Inventory

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  15. Trace element geochemistry of soils and plants in Kenyan conservation areas and implications for wildlife nutrition.

    PubMed

    Maskall, J; Thornton, I

    1991-06-01

    Trace element concentrations in soils, plants and animals in National Parks and Wildlife Reserves in Kenya are assessed using geochemical mapping techniques. Soil trace element concentrations are shown to be related to soil parent material and possibly to pedological and hydrological factors. At Lake Nakuru National Park, plant trace element concentrations vary with plant species and the geochemical conditions that influence uptake are discussed. Impala at Lake Nakuru National Park and black rhino at Solio Wildlife Reserve are shown to have a lower blood copper status than animals from other areas. The trace element status of wildlife is assessed also with respect to critical concentrations used for domestic ruminants. It is suggested that at Lake Nakuru National Park, the low soil copper content and high molybdenum content of some plants contributes to the low copper status of impala and may also influence the nutrition of other species.

  16. Aerosol emissions by tropical forest and savanna biomass burning: Characteristic trace elements and fluxes

    SciTech Connect

    Echalar, F.; Gaudichet, A.; Cachier, H.

    1995-11-15

    This report characterizes and compares trace element emissions from fires of three different types of savannas and from the southwestern amazonian rain forest. This study tries to verify a fingerprint that may characterize savanna fires or tropical biomass burning.

  17. Diel cycling of trace elements in streams draining mineralized areas: a review

    USGS Publications Warehouse

    Gammons, Christopher H.; Nimick, David A.; Parker, Stephen R.

    2015-01-01

    Many trace elements exhibit persistent diel, or 24-h, concentration cycles in streams draining mineralized areas. These cycles can be caused by various physical and biogeochemical mechanisms including streamflow variation, photosynthesis and respiration, as well as reactions involving photochemistry, adsorption and desorption, mineral precipitation and dissolution, and plant assimilation. Iron is the primary trace element that exhibits diel cycling in acidic streams. In contrast, many cationic and anionic trace elements exhibit diel cycling in near-neutral and alkaline streams. Maximum reported changes in concentration for these diel cycles have been as much as a factor of 10 (988% change in Zn concentration over a 24-h period). Thus, monitoring and scientific studies must account for diel trace-element cycling to ensure that water-quality data collected in streams appropriately represent the conditions intended to be studied.

  18. Understanding Biogeochemical Transformations Of Trace Elements In Multi Metal-Rich Geomaterials Under Stimulated Redox Conditions

    EPA Science Inventory

    Natural and anthropogenic influences on hydrological conditions can induce periodic or long-term reduced conditions in geologic materials. Such conditions can cause significant impacts on biogeochemical processes of trace elements in subsurface or near surface environments. The...

  19. Long-term anaerobic digestion of food waste stabilized by trace elements.

    PubMed

    Zhang, Lei; Jahng, Deokjin

    2012-08-01

    The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH(4)/g VS(added)) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.

  20. Trace elements in parenteral nutrition: a practical guide for dosage and monitoring for adult patients.

    PubMed

    Fessler, Theresa A

    2013-12-01

    Parenteral nutrition (PN) is a life-sustaining therapy for hundreds of thousands of people who have severe impairment of gastrointestinal function. Trace elements are a small but very important part of PN that can be overlooked during busy practice. Serious complications can result from trace element deficiencies and toxicities, and this is especially problematic during times of product shortages. Practical information on parenteral trace element use can be gleaned from case reports, some retrospective studies, and very few randomized controlled trials. A general knowledge of trace element metabolism and excretion, deficiency and toxicity symptoms, products, optimal dosages, and strategies for supplementation, restriction, and monitoring will equip practitioners to provide optimal care for their patients who depend on PN.

  1. A comparative study between the fluxes of trace elements in bulk atmospheric deposition at industrial, urban, traffic, and rural sites.

    PubMed

    Fernández-Olmo, I; Puente, M; Irabien, A

    2015-09-01

    The input of trace elements via atmospheric deposition towards industrial, urban, traffic, and rural areas is quite different and depends on the intensity of the anthropogenic activity. A comparative study between the element deposition fluxes in four sampling sites (industrial, urban, traffic, and rural) of the Cantabria region (northern Spain) has been performed. Sampling was carried out monthly using a bulk (funnel bottle) sampler. The trace elements, As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Ti, Zn, and V, were determined in the water soluble and insoluble fractions of bulk deposition samples. The element deposition fluxes at the rural, urban, and traffic sites followed a similar order (Zn > Mn> > Cu ≈ Ti > Pb > V ≈ Cr > Ni> > As ≈ Mo > Cd). The most enriched elements were Cd, Zn, and Cu, while V, Ni, and Cr were less enriched. An extremely high deposition of Mn was found at the industrial site, leading to high enrichment factor values, resulting from the presence of a ferro-manganese/silico-manganese production plant in the vicinity of the sampling site. Important differences were found in the element solubilities in the studied sites; the element solubilities were higher at the traffic and rural sites, and lower at the urban and industrial sites. For all sites, Zn and Cd were the most soluble elements, whereas Cr and Ti were less soluble. The inter-site correlation coefficients for each element were calculated to assess the differences between the sites. The rural and traffic sites showed some similarities in the sources of trace elements; however, the sources of these elements at the industrial and rural sites were quite different. Additionally, the element fluxes measured in the insoluble fraction of the bulk atmospheric deposition exhibited a good correlation with the daily traffic volume at the traffic site.

  2. Simple approach to sediment provenance tracing using element analysis and fundamental principles

    NASA Astrophysics Data System (ADS)

    Matys Grygar, Tomas; Elznicova, Jitka; Popelka, Jan

    2016-04-01

    Common sediment fingerprinting techniques use either (1) extensive analytical datasets, sometimes nearly complete with respect to accessible characterization techniques; they are processed by multidimensional statistics based on certain statistical assumptions on distribution functions of analytical results and conservativeness/additivity of some components, or (2) analytically demanding characteristics such as isotope ratios assumed to be unequivocal "labels" on the parent material unaltered by any catchment process. The inherent problem of the approach ad (1) is that interpretation of statistical components ("sources") is done ex post and remains purely formal. The problem of the approach ad (2) is that catchment processes (weathering, transport, deposition) can modify most geochemical parameters of soils and sediments, in other words, that the idea that some geochemistry parameters are "conservative" may be idealistic. Grain-size effects and sediment provenance have a joint influence on chemical composition of fluvial sediments that is indeed not easy to distinguish. Attempts to separate those two main components using only statistics seem risky and equivocal, because grain-size dependence of element composition is nearly individual for each element and reflects sediment maturity and catchment-specific formation transport processes. We suppose that the use of less extensive datasets of analytical results and their interpretation respecting fundamental principles should be more robust than only statistic tools applied to overwhelming datasets. We examined sediment composition, both published by other researchers and gathered by us, and we found some general principles, which are in our opinion relevant for fingerprinting: (1) Concentrations of all elements are grain-size sensitive, i.e. there are no "conservative" elements in conventional sense of provenance- or transport-pathways tracing, (2) fractionation by catchment processes and fluvial transport changes

  3. Change in field turbidity and trace element concentrations during well purging

    USGS Publications Warehouse

    Gibs, J.; Szabo, Z.; Ivahnenko, T.; Wilde, F.D.

    2000-01-01

    Various physical and chemical properties were monitored sequentially in the field during well purging as indicators of stabilization of the composition of the water in the well. Turbidity was monitored on site during purging of oxic water from three wells with screened intervals open to an unconfined aquifer system in the Coastal Plain of southern New Jersey to determine if stabilization of turbidity is a reliable indicator of the optimum purge time required to collect unbiased trace element samples. Concurrent split (one filtered, one unfiltered) samples collected during purging of the wells were analyzed for concentrations of trace elements so that the relationships between trace element concentrations and turbidity could be compared. Turbidity correlated with the whole water recoverable (WWR) concentration of trace element species, such as iron (Fe), aluminum (Al), and manganese (Mn) in the oxic ground water. Turbidity appeared to be independent of other field-measured characteristics of water such as conductivity, pH, temperature, and dissolved oxygen. The WWR concentrations of lead and copper, considered to be hydrophobic, correlated significantly with the sum of the WWR concentration of Fe, Al, and Mn. High values of field-measured turbidity were a key indicator of an overestimate of ambient hydrophobic trace element WWR concentrations. Stabilization of turbidity was a better indicator of stable, unfiltered trace element concentrations than were the other commonly measured field characteristics. At one well, turbidity was a better indicator of stable, filtered trace element concentrations than the other commonly measured field characteristics. As analytical methods for trace elements improve resulting in smaller MRLs (method reporting levels) and better precision, turbidity of ground water at values of less than 10 NTU (nepheiometric turbidity units) will become important in interpreting the significance of both unfiltered and filtered sample results.

  4. Co-occurrence profiles of trace elements in potable water systems: a case study.

    PubMed

    Andra, Syam S; Makris, Konstantinos C; Charisiadis, Pantelis; Costa, Costas N

    2014-11-01

    Potable water samples (N = 74) from 19 zip code locations in a region of Greece were profiled for 13 trace elements composition using inductively coupled plasma mass spectrometry. The primary objective was to monitor the drinking water quality, while the primary focus was to find novel associations in trace elements occurrence that may further shed light on common links in their occurrence and fate in the pipe scales and corrosion products observed in urban drinking water distribution systems. Except for arsenic at two locations and in six samples, rest of the analyzed elements was below maximum contaminant levels, for which regulatory values are available. Further, we attempted to hierarchically cluster trace elements based on their covariances resulting in two groups; one with arsenic, antimony, zinc, cadmium, and copper and the second with the rest of the elements. The grouping trends were partially explained by elements' similar chemical activities in water, underscoring their potential for co-accumulation and co-mobilization phenomena from pipe scales into finished water. Profiling patterns of trace elements in finished water could be indicative of their load on pipe scales and corrosion products, with a corresponding risk of episodic contaminant release. Speculation was made on the role of disinfectants and disinfection byproducts in mobilizing chemically similar trace elements of human health interest from pipe scales to tap water. It is warranted that further studies may eventually prove useful to water regulators from incorporating the acquired knowledge in the drinking water safety plans.

  5. Harvest locations of goose barnacles can be successfully discriminated using trace elemental signatures

    NASA Astrophysics Data System (ADS)

    Albuquerque, Rui; Queiroga, Henrique; Swearer, Stephen E.; Calado, Ricardo; Leandro, Sérgio M.

    2016-06-01

    European Union regulations state that consumers must be rightfully informed about the provenance of fishery products to prevent fraudulent practices. However, mislabeling of the geographical origin is a common practice. It is therefore paramount to develop forensic methods that allow all players involved in the supply chain to accurately trace the origin of seafood. In this study, trace elemental signatures (TES) of the goose barnacle Pollicipes pollicipes, collected from ten sites along the Portuguese coast, were employed to discriminate individual’s origin. Barium (Ba), boron (B), cadmium (Cd), chromium (Cr), lithium (Li), magnesium (Mg), manganese (Mn), phosphorous (P), lead (Pb), strontium (Sr) and zinc (Zn) - were quantified using Inductively Coupled Plasma‑Mass Spectrometry (ICP-MS). Significant differences were recorded among locations for all elements. A regularized discriminant analysis (RDA) revealed that 83% of all individuals were correctly assigned. This study shows TES can be a reliable tool to confirm the geographic origin of goose barnacles at fine spatial resolution. Although additional studies are required to ascertain the reliability of TES on cooked specimens and the temporal stability of the signature, the approach holds great promise for the management of goose barnacles fisheries, enforcement of conservation policies and assurance in accurate labeling.

  6. Trace-element modelling of mare basalt parental melts: Implications for a heterogeneous lunar mantle

    NASA Astrophysics Data System (ADS)

    Hallis, L. J.; Anand, M.; Strekopytov, S.

    2014-06-01

    The heterogeneous-source model of mare basalt formation indicates that Lunar Magma Ocean (LMO) overturn produced an uneven mixture of early-formed olivine and pyroxene, and late-formed, ilmenite-rich cumulates, which subsequently partially melted to give rise to mare magmas. These heterogeneous cumulate source regions would not only have been characterised by different mineral modal abundances, but also by different trace element compositions. The aim of this work was to investigate the petrology and geochemistry of a diverse suite of Apollo mare basalts, and utilise trace-element modelling in order to understand their petrogenetic history. Chemical modelling confirms that the mare basalts were produced by relatively small degrees of partial melting (<10%) of the LMO cumulates, and that the dominant melting type (batch vs. fractional) varies among different basalt groups. Similarly, single-source mineralogy cannot be applied to all mare basalt types, confirming that the lunar mantle was heterogeneous at the time of generation of mare magmas. Plagioclase is not required in the source of most mare basalts, with the notable exception of the Apollo 14 high-Al basalts. Addition of more than 1% plagioclase to the source of other basalts produces weaker negative Eu anomalies than those observed in the samples. AFC calculations demonstrate the compositional differences between materials assimilated into the Apollo 14 high-Al and Apollo 11 high-K mare basalt partial melts, highlighting the complexities of mare basalt petrogenesis.

  7. Trace element and isotopic effects arising from magma migration beneath mid-ocean ridges

    NASA Technical Reports Server (NTRS)

    Kenyon, Patricia M.

    1990-01-01

    The trace element concentrations and isotopic ratios in the magma erupted on mid-ocean ridges may differ from those in the source material due to physical effects such as porous flow dispersion, exchange of trace elements between the fluid and solid phases during magma migration, and convective mixing in magma chambers. These differences are in addition to those produced by better known processes such as fractional crystallization and partial melting. The effects of the three former processes are described. It is predicted that magma typically reaches the subridge magma chambers with a spatial heterogeneity only slightly reduced from that of the source material, but with a subdued variation in time. Convective mixing then further reduces the spatial heterogeneity. Application of the results for convective mixing to a recent Fourier analysis of Sr-87/Sr-86 variations along the Mid-Atlantic Ridge suggests that the falloff in amplitude of variation observed with decreasing wavelength in the Mid-Atlantic Ridge data cannot be explained by convective mixing in magma chambers. Instead, it is postulated that this falloff is due to the mechanics of the production and/or the solid-state convective mixing of chemical and isotopic heterogeneities in the solid mantle.

  8. Harvest locations of goose barnacles can be successfully discriminated using trace elemental signatures.

    PubMed

    Albuquerque, Rui; Queiroga, Henrique; Swearer, Stephen E; Calado, Ricardo; Leandro, Sérgio M

    2016-06-13

    European Union regulations state that consumers must be rightfully informed about the provenance of fishery products to prevent fraudulent practices. However, mislabeling of the geographical origin is a common practice. It is therefore paramount to develop forensic methods that allow all players involved in the supply chain to accurately trace the origin of seafood. In this study, trace elemental signatures (TES) of the goose barnacle Pollicipes pollicipes, collected from ten sites along the Portuguese coast, were employed to discriminate individual's origin. Barium (Ba), boron (B), cadmium (Cd), chromium (Cr), lithium (Li), magnesium (Mg), manganese (Mn), phosphorous (P), lead (Pb), strontium (Sr) and zinc (Zn) - were quantified using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Significant differences were recorded among locations for all elements. A regularized discriminant analysis (RDA) revealed that 83% of all individuals were correctly assigned. This study shows TES can be a reliable tool to confirm the geographic origin of goose barnacles at fine spatial resolution. Although additional studies are required to ascertain the reliability of TES on cooked specimens and the temporal stability of the signature, the approach holds great promise for the management of goose barnacles fisheries, enforcement of conservation policies and assurance in accurate labeling.

  9. Aortic ascorbic acid, trace elements, and superoxide dismutase activity in human aneurysmal and occlusive disease.

    PubMed

    Dubick, M A; Hunter, G C; Casey, S M; Keen, C L

    1987-02-01

    Altered trace elements and ascorbic acid metabolism have been implicated in the pathogenesis of atherosclerotic cardiovascular disease. However, their role in the disease process, or the effect of atherosclerosis on their tissue levels within plaque, is poorly understood. The present study analyzes the concentrations of Fe, Cu, Zn, and Mn, and ascorbic acid and superoxide dismutase (SOD) activity in tissue samples from 29 patients with abdominal aortic aneurysms (AAA) and 14 patients with atherosclerotic occlusive disease (AOD). It was observed that the Fe and Mn concentrations in AAA and AOD tissue were higher than the levels in nondiseased control aorta, whereas Cu and Zn levels in AAA and AOD tissue were similar to the levels in controls. The Zn:Cu ratio was significantly lower in the AAA tissue in comparison to both AOD and control tissue. In addition, AAA and AOD tissue had low ascorbic acid levels and low Cu,Zn-SOD activity with Cu,Zn-SOD:Mn-SOD ratios of 0.27 and 0.19, respectively, compared to a ratio of 3.20 in control aorta. These data indicate that aorta affected by aneurysms and occlusive disease have altered trace element and ascorbic acid concentrations, as well as low Cu,Zn-SOD activity. Although these observations do not directly support the hypothesis that AAA is associated with aortic Cu deficiency they do suggest a role for oxygen radicals or increased lipid peroxidation in occlusive and aneurysmal disease of the aorta.

  10. Aortic ascorbic acid, trace elements, and superoxide dismutase activity in human aneurysmal and occlusive disease

    SciTech Connect

    Dubick, M.A.; Hunter, G.C.; Casey, S.M.; Keen, C.L.

    1987-02-01

    Altered trace elements and ascorbic acid metabolism have been implicated in the pathogenesis of atherosclerotic cardiovascular disease. However, their role in the disease process, or the effect of atherosclerosis on their tissue levels within plaque, is poorly understood. The presence study analyzes the concentrations of Fe, Cu, Zn, and Mn, and ascorbic acid and superoxide dismutase (SOD) activity in tissue samples from 29 patients with abdominal aortic aneurysms (AAA) and 14 patients with atherosclerotic occlusive disease (AOD). It was observed that the Fe and Mn concentrations in AAA and AOD tissue were higher than the levels in nondiseased control aorta, whereas Cu and Zn levels in AAA and AOD tissue were similar to the levels in controls. The Zn:Cu ratio was significantly lower in the AAA tissue in comparison to both AOD and control tissue. In addition, AAA and AOD tissue had low ascorbic acid levels and low Cu, Zn-SOD activity with Cu,Zn-SOD:Mn-SOD ratios of 0.27 and 0.19, respectively, compared to a ratio of 3.20 in control aorta. These data indicate that aorta affected by aneurysms and occlusive disease have altered trace element and ascorbic acid concentrations, as well as low Cu,Zn-SOD activity. Although these observations do not directly support the hypothesis that AAA is associated with aortic Cu deficiency they do suggest a role for oxygen radicals or increased lipid peroxidation in occlusive and aneurysmal disease of the aorta.

  11. Harvest locations of goose barnacles can be successfully discriminated using trace elemental signatures

    PubMed Central

    Albuquerque, Rui; Queiroga, Henrique; Swearer, Stephen E.; Calado, Ricardo; Leandro, Sérgio M.

    2016-01-01

    European Union regulations state that consumers must be rightfully informed about the provenance of fishery products to prevent fraudulent practices. However, mislabeling of the geographical origin is a common practice. It is therefore paramount to develop forensic methods that allow all players involved in the supply chain to accurately trace the origin of seafood. In this study, trace elemental signatures (TES) of the goose barnacle Pollicipes pollicipes, collected from ten sites along the Portuguese coast, were employed to discriminate individual’s origin. Barium (Ba), boron (B), cadmium (Cd), chromium (Cr), lithium (Li), magnesium (Mg), manganese (Mn), phosphorous (P), lead (Pb), strontium (Sr) and zinc (Zn) - were quantified using Inductively Coupled Plasma−Mass Spectrometry (ICP-MS). Significant differences were recorded among locations for all elements. A regularized discriminant analysis (RDA) revealed that 83% of all individuals were correctly assigned. This study shows TES can be a reliable tool to confirm the geographic origin of goose barnacles at fine spatial resolution. Although additional studies are required to ascertain the reliability of TES on cooked specimens and the temporal stability of the signature, the approach holds great promise for the management of goose barnacles fisheries, enforcement of conservation policies and assurance in accurate labeling. PMID:27292413

  12. Trace Element Analysis of Prostate Cancer Patient Blood Plasma using PIXE

    NASA Astrophysics Data System (ADS)

    Fogle, M. R.; Toburen, L. H.; Shinpaugh, J. L.; Justiniano, E. L. B.; Kovacs, C. J.; Daly, B.

    1999-11-01

    It is suggested in various sources of literature that neoplastic disorders induce a shift in the essential trace elements in the blood. A method employing proton induced x-ray emission (PIXE) was used to measure the essential trace elements Cu, Zn, Br, Fe, and Se in the plasma of prostate cancer patients of various stages. The concentration levels of each element and the Cu/Zn ratios were then tracked through the treatment period. Results indicate that early stage prostate cancer patients show little variation in concentration of the individual elements as well as Cu/Zn ratio, while advanced stages show a significant increase in the Cu/Zn ratio.

  13. Stoichiometry and kinetics of the anaerobic ammonium oxidation (Anammox) with trace hydrazine addition.

    PubMed

    Yao, Zongbao; Lu, Peili; Zhang, Daijun; Wan, Xinyu; Li, Yulian; Peng, Shuchan

    2015-12-01

    Purpose of this study is to investigate the stoichiometry and kinetics of anaerobic ammonium oxidation (Anammox) with trace hydrazine addition. The stoichiometry was established based on the electron balance of Anammox process with trace N2H4 addition. The stoichiometric coefficients were determined by the proton consumption and the changes in substrates and products. It was found that trace N2H4 addition can increase the yield of Anammox bacteria (AnAOB) and reduce NO3(-) yield, which enhances the Anammox. Subsequently, kinetic model of Anammox with trace N2H4 addition was developed, and the parameters of the anaerobic degradation model of N2H4 were obtained for the first time. The maximum specific substrate utilization rate, half-saturation constant and inhibition constant of N2H4 were 25.09mgN/g VSS/d, 10.42mgN/L and 1393.88mgN/L, respectively. These kinetic parameters might provide important information for the engineering applications of Anammox with trace N2H4 addition.

  14. Benthic foraminiferal assemblages and trace element contents from the lagoons of Orbetello and Lesina.

    PubMed

    Frontalini, Fabrizio; Coccioni, Rodolfo; Bucci, Carla

    2010-11-01

    The Italian marginal areas of Orbetello and Lesina lagoons have been investigated in order to assess the response of benthic foraminifera to the trace element contents in the sediments. The investigated lagoons are deeply affected by high values of trace elements. The lagoon of Orbetello shows the highest values of Cd, Cu, Ni, Pb, Zn, and Hg, whereas the lagoon of Lesina exhibits the highest values of As. On the basis of the trace element contents, both lagoons can be considered from moderately to strongly polluted. Biotic and abiotic factors have been investigated with multivariate technique of statistical analysis. On the basis of the trace element content, the cluster analysis reveals the occurrence of three main clusters. These natural groupings are also confirmed by the principal component analysis. The comparison of trace element concentration patterns with the Foraminiferal Abnormality Index shows a possible influence of these pollutants on the benthic foraminiferal assemblages. Generally, the highest concentrations of trace elements in the investigated areas are remarkably mirrored by the highest percentages of deformed specimens.

  15. Trace-element concentrations in streambed sediment across the conterminous United States

    USGS Publications Warehouse

    Rice, Karen C.

    1999-01-01

    Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the <63-μm fraction was retained for determination of total concentrations of trace elements. Aluminum, iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined:  arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/baseline concentrations were examined; however, normalization was not required because field sieving removed most of the background differences between samples. The sum of concentrations of trace elements characteristic of urban settings - copper, mercury, lead, and zinc - was well correlated with population density, nationwide. Median concentrations of seven trace elements (all nine examined except arsenic and selenium) were enriched in samples collected from urban settings relative to agricultural or forested settings. Forty-nine percent of the sites sampled in urban settings had concentrations of one or more trace elements that exceeded levels at which adverse biological effects could occur in aquatic biota.

  16. Occurrence, transport, and fate of trace elements, Blue River Basin, Summit County, Colorado: an integrated approach

    USGS Publications Warehouse

    Apodaca, L.E.; Driver, N.E.; Bails, J.B.

    2000-01-01

    Mining activities in the Blue River Basin, Summit County, Colorado, have affected the trace-element chemistry and biota along French Gulch and the Blue River. Elevated concentrations of As, Cd, Cu, Pb, and Zn were present in the bed and suspended sediments. Bed sediment trace-element concentrations were high in the streams in and near mining activities in the basin and remained high as water flowed into Dillon Reservoir about 3.5 km downstream. Bed-sediment (< 63 μm) data were useful in assessing the distribution of trace elements in the basin. Suspended-sediment measurements provided information as to the transport of the trace elements. Filtered (< 0.45 μm) water-column trace-element concentrations were orders of magnitude less than the sediment concentrations. Concentrations of Cd and Zn in the water column at some sites exceeded stream water-quality standards. Elevated trace-element concentrations in the sediment and water column are a source of contamination and must be considered in water-quality management of the Blue River Basin.

  17. Trace-element concentrations in streambed sediment across the conterminous United States

    SciTech Connect

    Rice, K.C. )

    1999-08-01

    Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the < 63-[micro]m fraction was retained for determination of total concentrations of trace elements. Aluminum, iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined: arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/baseline concentrations were examined; however, normalization was not required because field sieving removed most of the background differences between samples. The sum of concentrations of trace elements characteristic of urban settings -- copper, mercury, lead, and zinc -- was well correlated with population density, nationwide. Median concentrations of seven trace elements (all nine examined except arsenic and selenium) were enriched in samples collected from urban settings relative to agricultural of forested settings. Forty-nine percent of the sites sampled in urban setting had concentrations of one or more trace elements that exceeded levels at which adverse biological effects could occur in aquatic biota.

  18. Toxic effects of trace elements on newborns and their birth outcomes.

    PubMed

    Tang, Mengling; Xu, Chenye; Lin, Nan; Yin, Shanshan; Zhang, Yongli; Yu, Xinwei; Liu, Weiping

    2016-04-15

    Some trace elements are essential for newborns, their deficiency may cause abnormal biological functions, whereas excessive intakes due to environmental contamination may create adverse health effects. This study was conducted to measure the levels of selected trace elements in Chinese fish consumers by assessing their essentiality and toxicity via colostrum intake in newborns, and evaluated the effects of these trace elements on birth outcomes. Trace elements in umbilical cord serum and colostrum of the studied population were relatively high compared with other populations. The geometric means (GM) of estimated daily intake (EDI, mgday(-1)) of the trace elements were in the safe ranges for infant Dietary Reference Intakes (DRIs) recommended by the United States Food and Drug Administration (FDA). When using total dietary intake (TDI, mgkg(-1)bwday(-1)), zinc (Zn) (0.880mgkg(-1)bwday(-1)) and selenium (Se) (6.39×10(-3)mgkg(-1)bwday(-1)) were above the Reference Doses (RfD), set by the United States Environmental Protection Agency (EPA). Multivariable linear regression analyses showed that Se was negatively correlated with birth outcomes. Our findings suggested that overloading of trace elements due to environmental contamination may contribute to negative birth outcomes.

  19. Determination of trace elements and their concentrations in clay balls: problem of geophagia practice in Ghana.

    PubMed

    Arhin, Emmanuel; Zango, Musah S

    2017-02-01

    Ten samples of 100 g weight were subsampled from 1400 g of the clay balls from which the contained trace element levels were determined by X-ray fluorescence technique. The results of trace elements in the clay balls were calibrated using certified reference materials "MAJMON" and "BH-1." The results showed elevated concentrations but with different concentration levels in the regions, particularly with arsenic, chromium, cobalt, Cs, Zr and La. These trace elements contained in the clay balls are known to be hazardous to human health. Thence the relatively high concentrations of these listed trace elements in clay balls in the three regions, namely Ashanti, Upper East and Volta, which are widely sold in markets in Ghana, could present negative health impact on consumers if consumed at 70 g per day or more and on regular basis. On the basis of these, the study concludes an investigation to establish breakeven range for trace element concentrations in the clay balls as it has been able to demonstrate the uneven and elevated values in them. The standardized safe ranges of trace elements will make the practice safer for the people that ingest clay balls in Ghana.

  20. The origin of trachyte and pantellerite from Pantelleria, Italy: Insights from major element, trace element, and thermodynamic modelling

    NASA Astrophysics Data System (ADS)

    White, John Charles; Parker, Don F.; Ren, Minghua

    2009-01-01

    Trachyte and peralkaline rhyolite (pantellerite and comendite) frequently comprise the felsic end-member in bimodal suites in continental rift and oceanic island settings. In these settings, the relationship between the mafic (mildly alkaline, or transitional, basalt) and felsic lavas is ambiguous; major- and trace-element models and isotopic data are often consistent with an origin for felsic lavas from either fractional crystallization of transitional basalt or partial melting of alkali gabbro followed by fractional crystallization. In this paper, we present representative mineral analyses and whole-rock analyses from forty samples of a basalt-trachyte-pantellerite suite collected at Pantelleria, Italy, in the Strait of Sicily Rift Zone, and compare the results of major- and trace-element modelling with the results of thermodynamic (MELTS) modelling. From these results we conclude that metaluminous trachyte formed as a result of 70 to 75% low-pressure (0.1 GPa) fractional crystallization of an assemblage of plagioclase, clinopyroxene, olivine, magnetite, and apatite from a hydrous (1.0-1.5 wt.% H 2O) transitional basalt magma at relative oxygen fugacities approximately one log unit below the fayalite-magnetite-quartz buffer (FMQ-1). The "Daly gap"-a lack of intermediate (~ 49-62 wt.% SiO 2) volcanic rocks-at Pantelleria is concluded to be primarily the result of rapid differentiation through that interval. Relatively rapid crystallization at low pressure may have effected the partial degassing of water-saturated (~ 4 wt.% H 2O) metaluminous trachyte magma. Some metaluminous trachyte lavas have positive Eu anomalies, high K/Rb ratios, high concentrations of Ba, and low concentrations of incompatible trace elements; these are interpreted to be the result of up to 40% accumulation of alkali feldspar. Comenditic trachyte, pantelleritic trachyte, and pantellerite formed after an additional 20 to 80% fractional crystallization of an assemblage dominated by alkali

  1. Methanogenesis from wastewater stimulated by addition of elemental manganese

    PubMed Central

    Qiao, Sen; Tian, Tian; Qi, Benyu; Zhou, Jiti

    2015-01-01

    This study presents a novel procedure for accelerating methanogenesis from wastewater by adding elemental manganese into the anaerobic digestion system. The results indicated that elemental manganese effectively enhanced both the methane yield and the production rate. Compared to the control test without elemental manganese, the total methane yield and production rate with 4 g/L manganese addition increased 3.4-fold (from 0.89 ± 0.03 to 2.99 ± 0.37 M/gVSS within 120 h) and 4.4-fold (from 6.2 ± 0.1 to 27.2 ± 2.2 mM/gVSS/h), respectively. Besides, more acetate consumption and less propionate generation were observed during the methanogenesis with manganese. Further studies demonstrated that the elemental manganese served as electron donors for the methanogenesis from carbon dioxide, and the final proportion of methane in the total generated gas with 4 g/L manganese addition reached 96.9%, which was 2.1-fold than that of the control (46.6%). PMID:26244609

  2. Trace elemental characteristics of aerosols emitted from municipal incinerators

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    As part of a continuing investigation of high temperature combustion aerosols, elemental composition of size differentiated aerosols emitted from a local municipal incinerator was studied. Aerosols were aerodynamically separated into eight diameter groups ranging from 0.43 mm to 20 mm, collected, and analyzed by charged particle induced X-ray emission technique. On line data collection and reduction codes generated aerial densities for elements from Na to U with sensitivities in the ng/cu m range for most elements. From the total weights of aerosols collected per stage, their size distribution was determined to be bimodal, with one group centered at a diameter of 0.54 mm and the other at a diameter of 5.6 mm. Measured elemental concentrations in various size ranges indicate that K and S show a strong tendency to concentrate on aerosol surfaces. A weaker trend for surface preference was also observed for Mn and Ni, but other elements show no such trend.

  3. Seawater-derived rare earth element addition to abyssal peridotites during serpentinization

    NASA Astrophysics Data System (ADS)

    Frisby, Carl; Bizimis, Michael; Mallick, Soumen

    2016-04-01

    Serpentinized abyssal peridotites are evidence for active communication between the Earth's hydrosphere and the upper mantle, where exchange and retention of both major and trace elements occur. Bulk rock Nd isotopes in serpentinized abyssal peridotites imply interaction of seawater with the peridotite. In contrast, the Nd isotopes of clinopyroxenes from serpentinized abyssal peridotites retain their primary magmatic signature. It is currently unclear if, how and where seawater-derived Nd and other REE are being added or exchanged with the mantle peridotite minerals during serpentinization. To remedy this knowledge gap, we present in situ trace and major element concentrations, bulk rock and sequential leaching experiment trace element concentrations as well as Nd, Sr isotope data on refertilized and depleted serpentinized abyssal peridotites from the Southwest Indian Ridge. The secondary serpentine matrix and magnetite veins in these peridotites have elevated LREE concentrations, with variable negative Ce anomalies and large Rb, Sr, Pb and U enrichments that resemble seawater trace element patterns. The LREE concentrations in the serpentine phase are higher than those expected for the primary mantle mineralogy (olivine, orthopyroxene) based on data from relic clinopyroxenes and equilibrium partition coefficients. These data are consistent with seawater-derived REE addition to the peridotite during serpentinization. The bulk rocks have more radiogenic Sr and more unradiogenic Nd isotopes than their clinopyroxene (up to 8 εNd units lower than clinopyroxene). Sequential leaching experiments designed to mobilize secondary carbonates and Fe-oxides show even more unradiogenic Nd isotope ratios in the leachates than the bulk rock and clinopyroxene, approaching seawater compositions (up to 15 εNd units lower than clinopyroxene). Mass balance calculations using trace elements or Nd isotopes suggest that up to 30% of the bulk peridotite Nd budget is of seawater origin and

  4. Assessment of trace elements levels in patients with Type 2 diabetes using multivariate statistical analysis.

    PubMed

    Badran, M; Morsy, R; Soliman, H; Elnimr, T

    2016-01-01

    The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus.

  5. EH3 matrix mineralogy with major and trace element composition compared to chondrules

    NASA Astrophysics Data System (ADS)

    Lehner, S. W.; McDonough, W. F.; NéMeth, P.

    2014-12-01

    We investigated the matrix mineralogy in primitive EH3 chondrites Sahara 97072, ALH 84170, and LAR 06252 with transmission electron microscopy; measured the trace and major element compositions of Sahara 97072 matrix and ferromagnesian chondrules with laser-ablation, inductively coupled, plasma mass spectrometry (LA-ICPMS); and analyzed the bulk composition of Sahara 97072 with LA-ICPMS, solution ICPMS, and inductively coupled plasma atomic emission spectroscopy. The fine-grained matrix of EH3 chondrites is unlike that in other chondrite groups, consisting primarily of enstatite, cristobalite, troilite, and kamacite with a notable absence of olivine. Matrix and pyroxene-rich chondrule compositions differ from one another and are distinct from the bulk meteorite. Refractory lithophile elements are enriched by a factor of 1.5-3 in chondrules relative to matrix, whereas the matrix is enriched in moderately volatile elements. The compositional relation between the chondrules and matrix is reminiscent of the difference between EH3 pyroxene-rich chondrules and EH3 Si-rich, highly sulfidized chondrules. Similar refractory element ratios between the matrix and the pyroxene-rich chondrules suggest the fine-grained material primarily consists of the shattered, sulfidized remains of the formerly pyroxene-rich chondrules with the minor addition of metal clasts. The matrix, chondrule, and metal-sulfide nodule compositions are probably complementary, suggesting all the components of the EH3 chondrites came from the same nebular reservoir.

  6. Multielement extraction system for the determination of 18 trace elements in geochemical samples

    USGS Publications Warehouse

    Clark, J.R.; Viets, J.G.

    1981-01-01

    A Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system has been developed for use in geochemical exploration which separates a maximum number of trace elements from interfering matrices. Extraction curves for 18 of these trace elements are presented: Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Ga, In, Tl, Sa, Pb, As, Sb, Bi, Se, and Te. The acid normality of the aqueous phase controls the extraction into the organic phase, and each of these 18 elements has a broad range of HCl normality over which H is quantitatively extracted, making H possible to determine all 18 trace elements from a single sample digestion or leach solution. The extract can be analyzed directly by flame atomic absorption or inductively coupled plasma emission spectroscopy. Most of these 18 elements can be determined by Nameless atomic absorption after special treatment of the organic extract.

  7. Trace element partitioning during the retorting of Julia Creek oil shale

    SciTech Connect

    Patterson, J.H.; Dale, L.S.; Chapman, J.f.

    1987-05-01

    A bulk sample of oil shale from the Julia Creek deposit in Queensland was retorted under Fischer assay conditions at temperatures ranging from 250 to 550 /sup 0/C. The distributions of the trace elements detected in the shale oil and retort water were determined at each temperature. Oil distillation commenced at 300 /sup 0/C and was essentially complete at 500 /sup 0/C. A number of trace elements were progressively mobilized with increasing retort temperature up to 450 /sup 0/C. The following trace elements partitioned mainly to the oil: vanadium, arsenic, selenium, iron, nickel, titanium, copper, cobalt, and aluminum. Elements that also partitioned to the retort waters included arsenic, selenium, chlorine, and bromine. Element mobilization is considered to be caused by the volatilization of organometallic compounds, sulfide minerals, and sodium halides present in the oil shale. The results have important implications for shale oil refining and for the disposal of retort waters. 22 references, 5 tables.

  8. Trace elements of soil samples from mining area

    NASA Astrophysics Data System (ADS)

    Oswal, Mumtaz; Bedi, Harneet; Hajivaliei, M.; Kumar, Ashok; Singh, K. P.

    2010-06-01

    The affect of mining activity on the environment has been long of public concern. The present paper deals with the elemental analysis of soil samples from a mine and the area around it, located in E 48°59' and N 34°11' in Hamadan province of Iran. Elemental analysis was done using Proton Induced X-ray Emission (PIXE) technique. Spectra analysis and quantification was done using GUPIX software. Besides the major elements Si, P, K, Ca, Mn and Fe the other elements, namely Cl, Ti, V, Cr, Co, Ni, Cu, Zn, Rb, Sr and Pb were also present. Arsenic could be detected in some samples only. The presence of Ba and Ce needs more investigations by other techniques due to overlap of the L X-rays of these elements with the K X-rays of the major elements Mn and Fe, etc. Many elements V, Cr, As and Pb are known to be toxic and needs further understanding and proper handling in the mining process.

  9. Trace element analysis of soil type collected from the Manjung and central Perak

    SciTech Connect

    Azman, Muhammad Azfar Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-29

    Trace elements in soils primarily originated from their parent materials. Parents’ material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  10. Attenuation of trace elements in coal fly ash leachates by surfactant-modified zeolite.

    PubMed

    Neupane, Ghanashyam; Donahoe, Rona J

    2012-08-30

    Potential leaching of trace elements from older, unlined fly ash disposal facilities is a serious threat to groundwater and surface water contamination. Therefore, effective methods for containing the pollutant elements within the unlined coal combustion products (CCPs) disposal facilities are required to minimize any potential impact of leachate emanating from such facilities into the nearby environment. Because surfactant-modified zeolite (SMZ) has the potential to sequester both cationic and anionic trace elements from aqueous solutions, bench-scale batch and column experiments were performed to test its ability to remediate trace elements in leachates generated from both alkaline and acidic fly ash samples. Fly ash leachate treatment results showed the potential application of SMZ as an effective permeable reactive barrier (PRB) material to control the dispersion of heavy metals and metalloids from ash disposal sites. Quantitative comparison of the elemental composition of SMZ-treated and untreated leachates indicated that SMZ was effective in decreasing the concentrations of trace elements in fly ash leachates. Similarly, SMZ treatment column experiments showed the delayed peak leaching events and overall reductions in leachate concentrations of trace elements. The effectiveness of SMZ column treatments, however, decreased with time potentially due to the saturation of sorption sites.

  11. Multi-element method for determination of trace elements in sunscreens by ICP-AES.

    PubMed

    Zachariadis, G A; Sahanidou, E

    2009-10-15

    An inductively coupled plasma atomic emission spectrometric (ICP-AES) method was developed for multi-element analysis of sunscreen creams and lotions. The objective was the simultaneous determination of Ti (TiO(2) being is the only authorized inorganic UV filter in the European Union) and several minor, trace or toxic elements (Al, Zn, Mg, Fe, Mn, Cu, Cr, Pb and B) in the final products. Two alternative pretreatment procedures were examined: (i) total acid digestion in closed pressurized vessels prior to sample introduction into the plasma and (ii) direct introduction of sample in the form of emulsified slurry. The latter was proved inefficient for several types of creamy samples due to their high viscosity and insolubility. Several acid mixtures were examined for wet digestion because of the complex and fatty matrix of creams and lotions. Plasma parameters like nebulizer argon gas flow rate and radiofrequency incident power were optimized in order to improve the atomization. The recovery of the proposed acid digestion method was evaluated using spiked samples. The calculated recoveries were 95.0% for Ti, 98.2% for Zn and 101.3% for Fe, and the detection limits were 0.2 microg g(-1) for Ti, 0.2 microg g(-1) for Zn and 0.5 microg g(-1) for Fe, respectively. Possible interference from the presence of Ti on the sensitivity of each analyte was examined. Finally the method was applied successfully to several commercial sun protection products and the results were compared with those obtained by atomic absorption spectrometry as reference method.

  12. Responses of Trace Elements to Aerobic Maximal Exercise in Elite Sportsmen

    PubMed Central

    OTAĞ, Aynur; HAZAR, Muhsin; OTAĞ, İlhan; Gürkan, Alper Cenk; Okan, İlyas

    2014-01-01

    Trace elements are chemical elements needed in minute quantities for the proper growth, development, and physiology of the organism. In biochemistry, a trace element is also referred to as a micronutrient. Trace elements, such as nickel, cadmium, aluminum, silver, chromium, molybdenum, germanium, tin, titanium, tungsten, scandium, are found naturally in the environment and human exposure derives from a variety of sources, including air, drinking water and food. The Purpose of this study was investigated the effect of aerobic maximal intensity endurance exercise on serum trace elements as well-trained individuals of 28 wrestlers (age (year) 19.64±1.13, weight (Kg) 70.07 ± 15.69, height (cm) 176.97 ± 6.69) during and after a 2000 meter Ergometer test protocol was used to perform aerobic (75 %) maximal endurance exercise. Trace element serum levels were analyzed from blood samples taken before, immediately after and one hour after the exercise. While an increase was detected in Chromium (Cr), Nickel (Ni), Molybdenum (Mo) and Titanium (Ti) serum levels immediately after the exercise, a decrease was detected in Aluminum (Al), Scandium (Sc) and Tungsten (W) serum levels. Except for aluminum, the trace elements we worked on showed statistically meaningful responses (P<0.05 and P<0.001). According to the responses of trace elements to the exercise showed us the selection and application of the convenient sport is important not only in terms of sportsman performance but also in terms of future healthy life plans and clinically. PMID:24762350

  13. Characteristics of trace elements in aerosols collected in Northern Tunisia

    NASA Astrophysics Data System (ADS)

    Ellouz, F.; Masmoudi, M.; Quisefit, J. P.; Medhioub, K.

    In order to investigate the chemical characteristics of atmospheric aerosols, the sources and variability of atmospheric inputs, aerosols samples were collected during April 2006 and June 2007 in the coastal area of Boumhel, Tunisia. The samples were analysed for thirteen elements including Ca, Fe, Al, Si, Ti, Mg, Mn, K, Na, Cl, S, Zn and Pb using a wavelength dispersive X-ray fluorescence spectrometry. All elements measured in the aerosols of Boumhel revealed differences between the two seasons: the concentrations of all elements were the highest in June and the lowest in April due to the importance of meteorological conditions. The cascade impactor provided mass distributions indicate that Al, Fe, Si, Ti, Na, Cl and S are concentrated in coarse particles. The enrichment factors (EFs) of all elements indicate that Al, Fe, Si, Ca and Ti are mainly derived from soil sources. Na, S and Cl are mostly due to sea salts.

  14. Trace Elements in Scalp Hair Samples from Patients with Relapsing-Remitting Multiple Sclerosis

    PubMed Central

    Tamburo, Elisa; Varrica, Daniela; Dongarrà, Gaetano; Grimaldi, Luigi Maria Edoardo

    2015-01-01

    Background Epidemiological studies have suggested a possible role of trace elements (TE) in the etiology of several neurological diseases including Multiple Sclerosis (MS). Hair analysis provides an easy tool to quantify TE in human subjects, including patients with neurodegenerative diseases. Objective To compare TE levels in scalp hair from patients with MS and healthy controls from the same geographic area (Sicily). Methods ICP-MS was used to determine the concentrations of 21 elements (Ag, Al, As, Ba, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sr, U, V and Zn) in scalp hair of 48 patients with relapsing–remitting Multiple Sclerosis compared with 51 healthy controls. Results MS patients showed a significantly lower hair concentration of aluminum and rubidium (median values: Al = 3.76 μg/g vs. 4.49 μg/g and Rb = 0.007 μg/g vs. 0.01 μg/g;) and higher hair concentration of U (median values U: 0.014 μg/g vs. 0.007 μg/g) compared to healthy controls. The percentages of MS patients showing hair elemental concentrations greater than the 95th percentile of controls were 20% for Ni, 19% for Ba and U, and 15% for Ag, Mo and Se. Conversely, the percentages of MS patients showing hair elemental concentrations lower than the 5th percentile of healthy controls were 27% for Al, 25% for Rb, 22% for Ag, 19% for Fe, and 16% for Pb. No significant association was found between levels of each TE and age, disease duration or Expanded Disability Status Scale (EDSS) score. After stratification by gender, healthy subjects did not show any significant difference in trace element levels, while MS patients showed significant differences (p<0.01) for the concentrations of Ag, Cr, Fe, Ni and Sr. No significant differences were also found, at p<0.01, in relation to the use of cigarettes, consume of water, vegetables and place of living. Conclusion The different distributions of TE in hair of MS patients compared to controls provides an additional indirect evidence of

  15. Solid-phase extraction microfluidic devices for matrix removal in trace element assay of actinide materials.

    PubMed

    Gao, Jun; Manard, Benjamin T; Castro, Alonso; Montoya, Dennis P; Xu, Ning; Chamberlin, Rebecca M

    2017-05-15

    Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of nine materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. The microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.

  16. Potential health and environmental effects of trace elements and radionuclides from increased coal utilization.

    PubMed Central

    Van Hook, R I

    1979-01-01

    This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619

  17. Total reflection X-ray spectrometry (TXRF) for trace elements assessment in edible clams.

    PubMed

    Marguí, Eva; de Fátima Marques, Alexandra; de Lurdes Prisal, Maria; Hidalgo, Manuela; Queralt, Ignasi; Carvalho, Maria Luisa

    2014-01-01

    The present contribution presents a preliminary investigation of the chemical composition with respect to major, minor, trace, and ultratrace elements in several clam species that are frequently used for human consumption in Portuguese markets and worldwide. In order to use a simple and rapid analytical methodology for clam analysis, energy dispersive X-ray fluorescence (EDXRF) spectrometry and total reflection X-ray fluorescence (TXRF) spectrometry were selected as analytical techniques. The analytical capabilities of TXRF spectrometry were evaluated for the determination of minor and trace elements in commercial edible clams. We compared the direct analysis of powdered suspensions (using different sample amounts and dispersant agents) with the analysis of the digested samples for trace element determination. Inductively coupled plasma mass spectrometry analysis of clam digests was also performed to evaluate the analytical possibilities of TXRF spectrometry for trace and ultratrace analysis.

  18. Trace element mineral transformations associated with hydration and recarbonation of retorted oil shale

    NASA Astrophysics Data System (ADS)

    Essington, M. E.

    1989-01-01

    A laboratory study was conducted to evaluate the influence of hydration and recarbonation on the solidphase distribution of trace elements in retorted oil shale. The oil shale samples were retorted by the Paraho direct heating process and equilibrated with deionized—distilled water under controlled carbon dioxide conditions. A sequential extraction technique was then used to fractionate trace elements into soluble, KNO3-extractable (easily exchangeable), H2O-extractable (easily adsorbed), NaOh-extractable (organic), EDTA-extractable (carbonate), HNO3-extractable (sulfide), and residual (nonextractable silicate) phases. The chemical fractions present in retorted oil shale and hydrated and recarbonated retorted oil shale were compared to identify trace element mineralogical changes that may occur in retorted oil shale disposal environments. Trace elements examined in this study were found to reside predominantly in the HNO3-extractable and residual fractions. Hydration of retorted oil shale resulted in a shift in the majority of trace elements from residual to extractable forms. Cobalt, nickel, and zinc extractabilities were not significantly influenced by hydration, whereas antimony increased in the residual fraction. Subjecting retorted oil shale to atmospheric (0.033%) and 10% CO2(g) levels over a nine-month equilibration period resulted in partial and full recarbonation, respectively. As the influence of recarbonation increased, trace elements reverted to residual forms. Vanadium, choromium, copper, zinc, antimony, and molybdenum in the 10% CO2(g) recarbonated material were more resistant to sequential extraction than in retorted oil shale, whereas strontium, barium, and manganese were less resistant to sequential extraction. The extractabilities of cobalt, nickel, and lead were not affected by recarbonation. Recarbonation did not result in a predicted increase in EDTA-extractable trace elements. In general, the amounts of trace elements extracted by EDTA (and

  19. Feasibility of the detection of trace elements in particulate matter using online High-Resolution Aerosol Mass Spectrometry

    SciTech Connect

    Salcedo, D.; Laskin, Alexander; Shutthanandan, V.; Jimenez, Jose L.

    2012-08-10

    The feasibility of using an online thermal-desorption electron-ionization high-resolution aerosol mass spectrometer (AMS) for the detection of particulate trace elements was investigated analyzing data from Mexico City obtained during the MILAGRO 2006 field campaign, where relatively high concentrations of trace elements have been reported. This potential application is of interest due to the real-time data provided by the AMS, its high sensitivity and time resolution, and the widespread availability and use of this instrument. High resolution mass spectral analysis, isotopic ratios, and ratios of different ions containing the same elements are used to constrain the chemical identity of the measured ions. The detection of Cu, Zn, As, Se, Sn, and Sb is reported. There was no convincing evidence for the detection of other trace elements commonly reported in PM. The elements detected tend to be those with lower melting and boiling points, as expected given the use of a vaporizer at 600oC in this instrument. Operation of the AMS vaporizer at higher temperatures is likely to improve trace element detection. The detection limit is estimated at approximately 0.3 ng m-3 for 5-min of data averaging. Concentration time series obtained from the AMS data were compared to concentration records determined from offline analysis of particle samples from the same times and locations by ICP (PM2.5) and PIXE (PM1.1 and PM0.3). The degree of correlation and agreement between the three instruments (AMS, ICP, and PIXE) varied depending on the element. The AMS shows promise for real-time detection of some trace elements, although additional work including laboratory calibrations with different chemical forms of these elements are needed to further develop this technique and to understand the differences with the ambient data from the other techniques. The trace elements peaked in the morning as expected for primary sources, and the many detected plumes suggest the presence of multiple

  20. Trace elements in Zn Pb Ag deposits and related stream sediments, Brooks Range Alaska, with implications for Tl as a pathfinder element

    USGS Publications Warehouse

    Graham, G.E.; Kelley, K.D.; Slack, J.F.; Koenig, A.E.

    2009-01-01

    The Zn-Pb-Ag metallogenic province of the western and central Brooks Range, Alaska, contains two distinct but mineralogically similar deposit types: shale-hosted massive sulphide (SHMS) and smaller vein-breccia occurrences. Recent investigations of the Red Dog and Anarraaq SHMS deposits demonstrated that these deposits are characterized by high trace-element concentrations of As, Ge, Sb and Tl. This paper examines geochemistry of additional SHMS deposits (Drenchwater and Su-Lik) to determine which trace elements are ubiquitously elevated in all SHMS deposits. Data from several vein-breccia occurrences are also presented to see if trace-element concentrations can distinguish SHMS deposits from vein-breccia occurrences. Whole-rock geochemical data indicate that Tl is the most consistently and highly concentrated characteristic trace element in SHMS deposits relative to regional unmineralized rock samples. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and sphalerite indicate that Tl is concentrated in pyrite in SHMS. Stream sediment data from the Drenchwater and Su-Lik SHMS show that high Tl concentrations are more broadly distributed proximal to known or suspected mineralization than As, Sb, Zn and Pb anomalies. This broader distribution of Tl in whole-rock and particularly stream sediment samples increases the footprint of exposed and shallowly buried SHMS mineralization. High Tl concentrations also distinguish SHMS mineralization from the vein-breccia deposits, as the latter lack high concentrations of Tl but can otherwise have similar trace-element signatures to SHMS deposits. ?? 2009 AAG/Geological Society of London.

  1. Quantitative spectral trace element analysis of pathogenic biominerals from residents of the Omsk region

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Bel'Skaya, L. V.; Berezina, N. Yu.

    2006-11-01

    We have used x-ray fluorescence elemental analysis to analyze a collection of 170 kidney stones, 89 dental calculi (tartar), and 120 gallstones from patients in the Omsk region. According to the experimental results, we observed 36 elements in the kidney stones, 14 elements in the tartar, and 13 elements in the gallstones. We used inductively coupled plasma atomic emission spectroscopy to establish the elemental composition of saliva and bile samples. Comparison of the compositions of the saliva and tartar and also comparison of the compositions of the bile and gallstones showed that biological fluids (saliva and bile) are the likely source of trace elements for pathogenic mineralizations.

  2. Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities

    NASA Astrophysics Data System (ADS)

    Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel

    2014-05-01

    Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which

  3. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review

    PubMed Central

    Hussain, Mohsina

    2016-01-01

    Human body requires certain essential elements in small quantities and their absence or excess may result in severe malfunctioning of the body and even death in extreme cases because these essential trace elements directly influence the metabolic and physiologic processes of the organism. Rapid urbanization and economic development have resulted in drastic changes in diets with developing preference towards refined diet and nutritionally deprived junk food. Poor nutrition can lead to reduced immunity, augmented vulnerability to various oral and systemic diseases, impaired physical and mental growth, and reduced efficiency. Diet and nutrition affect oral health in a variety of ways with influence on craniofacial development and growth and maintenance of dental and oral soft tissues. Oral potentially malignant disorders (OPMD) are treated with antioxidants containing essential trace elements like selenium but even increased dietary intake of trace elements like copper could lead to oral submucous fibrosis. The deficiency or excess of other trace elements like iodine, iron, zinc, and so forth has a profound effect on the body and such conditions are often diagnosed through their early oral manifestations. This review appraises the biological functions of significant trace elements and their role in preservation of oral health and progression of various oral diseases. PMID:27433374

  4. The role of sample preparation in interpretation of trace element concentration variability in moss bioindication studies

    USGS Publications Warehouse

    Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.

    2011-01-01

    Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.

  5. A chemist's view of the analysis of human hair for trace elements.

    PubMed

    Chittleborough, G

    1980-01-01

    With the comparatively recent development of analytical techniques of great power and sensitivity, the significance of the levels of trace elements in human hair has attracted the attention of many disciplines including the environmental sciences. This paper presents the view that an agreed basis for the chemical analysis of trace elements in hair has not been established by the many workers in the field; a chemical basis is proposed here. Levels of 37 trace elements found in human hair are tabulated. Endogenous and exogenous sources of such trace elements are described and discussed. An extended review of the many pre-analysis treatments of hair (for the removal of exogenous elements) is presented. Twenty-four representative treatments are tabulated. Some of these treatments clearly removed significant fractions of endogenous elements along with exogenous elements. It is clear that method of cleaning have frequently been chosen without knowing enough about the basic chemistry and behaviour of the hair shaft. The significance of the results obtained cannot therefore be reliably assessed. A collation of recent literature reports leads to the tentative conclusion that disulphide bonds in the cuticular proteins of hair are major sites both for the deposition of metals during formation of hair and for interaction with exogenous elements. The feasibility of a holistic, no-wash policy for hair analysis is outlined and supported.

  6. Attempts to improve PIXE quantitative trace element analysis of biomedical materials

    NASA Astrophysics Data System (ADS)

    Robaye, G.; Weber, G.; Delbrouck, J. M.; Roelandts, I.; Bartsch, P.; Collignon, A.

    1981-03-01

    PIXE is used to study a possible modification of blood oligo-element composition during hemodialysis and trace element distribution in lungs and interbronchial lymph nodes. Methodological details concerning sample preparation and choice of backing materials are discussed. NBS reference materials are analysed in order to assess the accuracy of the present method. Special attention is paid to quantitative measurements.

  7. Size-dependent penetration of trace elements through a utility baghouse

    NASA Astrophysics Data System (ADS)

    Shendrikar, A. D.; Ensor, D. S.; Cowen, S. J.; Woffinden, G. J.; McElroy, M. W.

    Particle size-dependent concentrations of 35 major and minor trace elements were measured at the inlet and outlet of a fabric filter baghouse installed on a western pulverized coal-fired power plant. Size-segregated particulate samples were collected using University of Washington impactors with Kapton collection disks coated with Apiezon-L grease. The impactor samples were analyzed for trace elements using neutron activation analysis. The inlet particle size distribution for most elements was bimodal, with the larger mode having a geometric mean diameter of approximately 4-10 μm and the smaller mode having a geometric mean diameter of 0.08 μm or less. In general, individual trace elements exhibited size distributions similar to total mass. However, several elements, including As, Se, Sb, Hg, Cl, Zn and Ni, showed noticeably 'flatter' size distributions with proportionally higher concentrations in submicrometer particles compared to total mass. The elemental penetrations through the baghouse generally agreed well with the mass penetration. An exception is Se, which shows penetration an order of magnitude higher than that of total mass and other elements. Most trace elements were removed by the baghouse with greater than 95 % collection efficiency over the entire particle size range.

  8. Determination of Trace Elements in Nickel Base Gas Turbine Parts by Atomic Absorption Spectrophotometry.

    DTIC Science & Technology

    elements such as silver (Ag), bismuth (Bi), cadmium (Cd), and lead (Pb) in nickel base alloys such as IN100, B1900 and 713C , without interference from...the constituent elements. Failed and nonfailed gas turbine parts made of the above alloys were tested to ascertain whether trace amounts of these

  9. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China.

    PubMed

    Lu, Shao-You; Zhang, Hui-Min; Sojinu, Samuel O; Liu, Gui-Hua; Zhang, Jian-Qing; Ni, Hong-Gang

    2015-01-01

    The levels of seven essential trace elements (Mn, Co, Ni, Cu, Zn, Se, and Mo) and six non-essential trace elements (Cr, As, Cd, Sb, Hg, and Pb) in a total of 89 drinking water samples collected in Shenzhen, China were determined using inductively coupled plasma mass spectrometry (ICP-MS) in the present study. Both the essential and non-essential trace elements were frequently detectable in the different kinds of drinking waters assessed. Remarkable temporal and spatial variations were observed among most of the trace elements in the tap water collected from two tap water treatment plants. Meanwhile, potential human health risk from these non-essential trace elements in the drinking water for local residents was also assessed. The median values of cancer risks associated with exposure to carcinogenic metals via drinking water consumption were estimated to be 6.1 × 10(-7), 2.1 × 10(-8), and 2.5 × 10(-7) for As, Cd, and Cr, respectively; the median values of incremental lifetime for non-cancer risks were estimated to be 6.1 × 10(-6), 4.4 × 10(-5), and 2.2 × 10(-5) for Hg, Pb, and Sb, respectively. The median value of total incremental lifetime health risk induced by the six non-essential trace elements for the population was 3.5 × 10(-5), indicating that the potential health risks from non-carcinogenic trace elements in drinking water also require some attention. Sensitivity analysis indicates that the most important factor for health risk assessment should be the levels of heavy metal in drinking water.

  10. Trace Elements in Stormflow, Ash, and Burned Soil following the 2009 Station Fire in Southern California

    PubMed Central

    Burton, Carmen A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.

    2016-01-01

    Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life. PMID:27144270

  11. Trace elements in stormflow, ash, and burned soil following the 2009 station fire in southern California

    USGS Publications Warehouse

    Burton, Carmen; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.

    2016-01-01

    Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life.

  12. A plankton-residue model to explain trace-element enrichments in oil-source rocks

    SciTech Connect

    Piper, D.Z.; Isaacs, C.M. )

    1996-01-01

    Sedimentary deposits enriched in organic matter commonly have high concentrations of many trace elements. In the past, trace-element enrichment was attributed to accumulation by precipitation/adsorption reactions under conditions of bottom-water sulfate reduction, or from a seawater that itself had an unusually high concentration of trace elements. Examination of the ancient and modern sediment record shows, however, that many trace elements in these deposits accumulated within an organic fraction whose composition closely approached that of modem plankton; their accumulation further required only a moderate rate of primary productivity. Specific examples are represented by the accumulation of Cu, Cd, Mo, Ni, and Zn in the California Borderland today and by their abundance in Quaternary sediment from the Japan Sea, Cretaceous sediment from the Atlantic Ocean, the Miocene Monterey Formation, and the Permian Phosphoria Formation. Accordingly, we propose that the elevated trace-element concentration of many oil-source rocks, above that contributed by the detrital fraction, is a residue from the diagenetic degradation of marine plankton. Recent studies have shown that the burial rate (accumulation rate) of organic matter can rep- resent less than 5% of its rain rate (depositional rate) onto the sea floor and as little as 1 % of primary productivity. By contrast, several of the trace elements, once deposited on the sea floor, can be largely retained. In the Japan Sea sediment, for example, Cu: and Zn: organic-matter ratios in the marine fraction of 9 sediment alone average 10 times their ratios in plankton, suggesting a 90% loss of the organic matter that rained onto the sea floor, but Zn: Cu ratios and other trace-element: Cu ratios in this and other deposits closely approach modern plankton values.

  13. A plankton-residue model to explain trace-element enrichments in oil-source rocks

    SciTech Connect

    Piper, D.Z.; Isaacs, C.M.

    1996-12-31

    Sedimentary deposits enriched in organic matter commonly have high concentrations of many trace elements. In the past, trace-element enrichment was attributed to accumulation by precipitation/adsorption reactions under conditions of bottom-water sulfate reduction, or from a seawater that itself had an unusually high concentration of trace elements. Examination of the ancient and modern sediment record shows, however, that many trace elements in these deposits accumulated within an organic fraction whose composition closely approached that of modem plankton; their accumulation further required only a moderate rate of primary productivity. Specific examples are represented by the accumulation of Cu, Cd, Mo, Ni, and Zn in the California Borderland today and by their abundance in Quaternary sediment from the Japan Sea, Cretaceous sediment from the Atlantic Ocean, the Miocene Monterey Formation, and the Permian Phosphoria Formation. Accordingly, we propose that the elevated trace-element concentration of many oil-source rocks, above that contributed by the detrital fraction, is a residue from the diagenetic degradation of marine plankton. Recent studies have shown that the burial rate (accumulation rate) of organic matter can rep- resent less than 5% of its rain rate (depositional rate) onto the sea floor and as little as 1 % of primary productivity. By contrast, several of the trace elements, once deposited on the sea floor, can be largely retained. In the Japan Sea sediment, for example, Cu: and Zn: organic-matter ratios in the marine fraction of 9 sediment alone average 10 times their ratios in plankton, suggesting a 90% loss of the organic matter that rained onto the sea floor, but Zn: Cu ratios and other trace-element: Cu ratios in this and other deposits closely approach modern plankton values.

  14. Growth of Populus alba and its influence on soil trace element availability.

    PubMed

    Ciadamidaro, L; Madejón, E; Puschenreiter, M; Madejón, P

    2013-06-01

    The use of fast growing trees is a common practice for phytoremediation of contaminated soils. Plant roots can change trace element bioavailability in soils. We studied the effect of Populus alba on trace element bioavailability on two contaminated soils (one with neutral pH and other with acid pH) comparing two methods (0.01 M CaCl2-extractable in soil and concentration in soil pore water SPW), trace element accumulation in leaves and plant development over 36 months. Results were compared to those obtained with a non-contaminated soil. The experiment was carried out in containers (95 L of volume and 1m height). Half of the containers for each soil were planted with P. alba saplings and the others remained without plant. In neutral soils plant growth did not influence soil pH; the greatest effect due to plant growth was found in acid soil. Values of pH obtained by SPW showed a similar trend compared to those obtained after soil KCl extraction. Bioavailability of trace elements determined by both methods followed the same behavior in the three studied soils. Both methods for determining trace element bioavailability in soil were accurate to predict plant uptake. In non-contaminated soil, plants tended to increase micronutrients (Cu, Mn and Zn) availability. However, in case of contaminated soil, the growth of P. alba did not increase trace element availability. Moreover, results on height and diameter of the trunk of the trees, during 36 months, demonstrated that the presence of total trace elements in soil did not affect plant development.

  15. The geographic distribution of trace elements in the environment: the REGARDS study.

    PubMed

    Rembert, Nicole; He, Ka; Judd, Suzanne E; McClure, Leslie A

    2017-02-01

    Research on trace elements and the effects of their ingestion on human health is often seen in scientific literature. However, little research has been done on the distribution of trace elements in the environment and their impact on health. This paper examines what characteristics among participants in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study are associated with levels of environmental exposure to arsenic, magnesium, mercury, and selenium. Demographic information from REGARDS participants was combined with trace element concentration data from the US Geochemical Survey (USGS). Each trace element was characterized as either low (magnesium and selenium) or high (arsenic and mercury) exposure. Associations between demographic characteristics and trace element concentrations were analyzed with unadjusted and adjusted logistic regression models. Individuals who reside in the Stroke Belt have lower odds of high exposure (4th quartile) to arsenic (OR 0.33, CI 0.31, 0.35) and increased exposure to mercury (OR 0.65, CI 0.62, 0.70) than those living outside of these areas, while the odds of low exposure to trace element concentrations were increased for magnesium (OR 5.48, CI 5.05, 5.95) and selenium (OR 2.37, CI 2.22, 2.54). We found an association between levels of trace elements in the environment and geographic region of residence, among other factors. Future studies are needed to further examine this association and determine whether or not these differences may be related to geographic variation in disease.

  16. Trace Elements in Stormflow, Ash, and Burned Soil following the 2009 Station Fire in Southern California.

    PubMed

    Burton, Carmen A; Hoefen, Todd M; Plumlee, Geoffrey S; Baumberger, Katherine L; Backlin, Adam R; Gallegos, Elizabeth; Fisher, Robert N

    2016-01-01

    Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life.

  17. Temporal variation of trace elements in waters polluted by municipal solid waste landfill leachate.

    PubMed

    Ettler, Vojtech; Mihaljevic, Martin; Matura, Marek; Skalová, Markéta; Sebek, Ondrej; Bezdicka, Petr

    2008-03-01

    Landfill leachate-polluted stream waters were monitored in three sampling campaigns (November 2001 to June 2006), with emphasis on trace elements. The data were evaluated by means of statistics and speciation modelling. Two statistically different groups of trace elements were distinguished: (1) Ba, Sr, Al, Fe, Mn, Cr, Co, Ni, V, As, Se, Sb, U, Li, Rb and Cs decrease during the rain event due to dilution; (2) Pb, Zn, Cu and Cd increase during the rain event due to the dissolution of hydrous ferric oxides and calcite, on whose surfaces these elements are bound, mainly in the stream sediments downgradient to the landfill.

  18. Coverage intervals for trace elements in human scalp hair are site specific.

    PubMed

    Tamburo, E; Varrica, D; Dongarrà, G

    2015-01-01

    Coverage intervals for trace elements in human scalp hair commonly provide the basis for interpreting laboratory results and also in comparative decision-making processes regarding exposure risk assessment. This short communication documents, by some examples, that those computed for human hair are to be considered site specific, as they reflect local environmental conditions; also each geographic area has a typical profile of hair elemental composition of its inhabitants. Therefore, the levels of trace elements in hair are not strictly comparable between different areas of the world. This issue is particularly relevant when identification of anomalous environmental exposures are requested or even in detecting physiological disorders.

  19. Trace elements biomonitoring in a historical mining district (les Malines, France).

    PubMed

    Saunier, Jean-Baptiste; Losfeld, Guillaume; Freydier, Rémi; Grison, Claude

    2013-11-01

    The aim of this study is to investigate the trace elements (TE) contents of potential biomonitors in a historical Zn-Pb mining district: apiary products (honey, royal-jelly and beeswax) lichen and moss were sampled and analysed. In spite of high TE concentrations in mining waste and soil, apiary products are free of TE contamination originating from historical mining. Lichen/moss show high TE levels, which suggest atmospheric input of local dust. Pb isotopes analysis proved the origin of TE found in lichen/moss to be mainly mining waste. These results help discuss the choice of relevant organisms for monitoring TE in the environment and bring additional data on the potential impacts of brownfields left after mining, especially on food products from apiaries.

  20. Minor and trace-elements in apiary products from a historical mining district (Les Malines, France).

    PubMed

    Losfeld, Guillaume; Saunier, Jean-Baptiste; Grison, Claude

    2014-03-01

    The trace-elements (TE) contents of honey, royal-jelly and beeswax from a historical Zn-Pb mining district have been investigated to assess potential contamination. In spite of high levels of heavy metal (As, Cd, Tl, Pb) in wastes left after mining stopped, apiary products appear to be relatively free of TE contamination. For honey, the following average levels (±standard error) were observed: Zn 571±440μgkg(-1), Pb 26±20μgkg(-1), Tl 13±10μgkg(-1), Cd 7±6μgkg(-1) and As 3±4μg.kg(-1). These results bring additional data to the potential impact of brownfields left after mining on apiary products. They also bring new data to assess potential risks linked with honey consumption and discuss legal TE contents in honey and other food products from apiaries.

  1. Petrogenesis of Challis volcanics from central and southwestern Idaho - Trace element and Pb isotopic evidence

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.; Mertzman, Stanley A.

    1991-01-01

    An analysis of the lava flows and ash-flow tuffs in Idaho is conducted to determine the composition of the volcanics in terms of major and trace elements and Pb isotopic substances. Al2O3 is found to be low, MgO content is high, and the concentration of K2O is higher or equal to that of Na2O with respect to the lavas of mafic to intermediate composition. Trace elements and element ratios are compatible with the crustal component, and the Pb isotopic compositions suggest a lack of assimilation during crystallization. The evidence does not support the notion of a magma system related to subduction, and the data regarding Pb isotopes and trace elements point to a connection with the lithosphere. A model is proposed for the Challis volcanics in which they resulted from completely melting within the lithosphere and then extending during the late Mesozoic and early Cenozoic compression.

  2. Do the trace element compositions of detrital zircons require Hadean continental crust?

    NASA Astrophysics Data System (ADS)

    Coogan, Laurence A.; Hinton, Richard W.

    2006-08-01

    The trace element compositions of Hadean zircons have been used in two ways to argue for the existence of Hadean continental crust. One argument is based on low crystallization temperatures of Hadean zircons that have been determined using a novel geothermometer based on the Ti content of zircons in equilibrium with rutile. The second argument is based on using the trace element abundances in zircons to calculate their parental melt compositions, especially the rare earth elements. Here we demonstrate that zircons that grow from a melt formed by basalt differentiation at modern mid-ocean ridges cannot be unambiguously distinguished from Hadean zircons on either of these grounds. Thus, we conclude that the trace element compositions of Hadean zircons are permissive of models that do not include the generation of continental crust in the Hadean.

  3. Microscopic distribution of trace elements in minerals (chlorites, sulfides, sulfates) in submarine hydrothermal systems

    SciTech Connect

    Janecky, D.R.; Benjamin, T.M.; Rogers, P.S.Z.; Bayhurst, G.K.; Haymon, R.M.

    1989-01-01

    We have analyzed trace elements in two types of hydrothermal precipitates using the Los Alamos Nuclear Microprobe. Chlorites and epidotes in basalt were analyzed from the Samail Ophiolite of Oman. Sulfide and sulfate minerals were analyzed from samples of active chimney walls from 21/degree/N. East Pacific Rise. These samples are ideal for our study because of the extensive background information available on processes and component characteristics. Initial results indicate significant differences in mobile trace elements between chlorites associated with and those distinctly separate from major stockwork flow zones, consistent with greater water-rock reaction within stockworks. Trace element concentrations across chimney walls also exhibit distinctive patterns which can be correlated with mineral/chemical zonation and possible also with variations in elemental source. 9 refs., 2 figs., 1 tab.

  4. The Potential Impacts on Aquatic Ecosystems from the Release of Trace Elements in Geothermal Fluids

    SciTech Connect

    Cushman, R.M.

    2000-03-14

    Geothermal energy will likely constitute an increasing percentage of our nation's future energy ''mix,'' both for electrical and nonelectrical uses. Associated with the exploitation of geothermal resources is the handling and disposal of fluids which contain a wide variety of potentially toxic trace elements. We present analyses of 14 trace elements found in hydrothermal fluids from various geothermal reservoirs in the western United States. The concentrations of these elements vary over orders of magnitude between reservoirs. Potential impacts are conservatively assessed on the basis of (1) toxicity to freshwater biota, and (2) bioaccumulation in food fish to the point where consumption might be hazardous to human health. Trace element concentrations generally range from benign levels to levels which might prove toxic to freshwater biota and contaminate food fisheries. We stress the need for site-specific analyses and careful handling of geothermal fluids in order to minimize potential impacts.

  5. The formation of pyrite nodules in carbonaceous sediments as determined by in situ S isotope and trace element analyses

    NASA Astrophysics Data System (ADS)

    Gregory, D. D.; Mukherjee, I.; Large, R. R.; Lyons, T. W.; Sack, P.; Avila, J.; Ireland, T. R.; Olin, P. H.; Danyushevsky, L. V.

    2015-12-01

    Pyrite nodules have been identified in many sedimentary rocks and their formation has attracted much interest. Recently, however, the mode and timing of nodule formation have become increasingly important as in situ pyrite compositions are now used frequently as proxies for trace element abundance in the oceans through time. For this method to be effective, the pyrite must form in pore waters that are in contact with the overlying water column. In this study we have taken steps toward a refined understanding of pyrite nodule formation by using SHRIMP-SI and LA-ICPMS to examine the in situ S isotope signature and trace element content of 27 pyrite nodules that range from the Archean to the Phanerozoic in age. This study has revealed that there are three different ways in which pyrite nodules form. The first is a rapid precipitation of the entire nodule as indicated by an absence of significant δ34S or trace element zoning in the nodule. The lack of zonation suggests that it formed early during sedimentation when the pore waters were still connected with the overlying water column. The second way results in a clear zoning of δ34S and trace element compositions. This zonation indicates that the nodule formed deeper in the sediments, where the pore waters were not well enough connected to the overlying water column to avoid evolution of the pore fluid composition. The third is a combination of the first two modes of formation. These nodules initiated with rapid formation, as indicated by an initial lack of trace element and δ34S zonation, followed by addition of later pyrite as revealed by the presence of zonation in the rims of the nodule. The identification of these different formation mechanisms may also have paleoceanographic utility as traditional nodule formation models suggest that pyrite nodules form relatively late as a product of diagenesis. Determining by which mechanism a nodule forms could give insight into the diagenetic history of pyritic black shale.

  6. New trace element determinations in the fingernails of ALS patients

    SciTech Connect

    Van Dalsem, D.J.; Robinson, L.; Ehmann, W.D.

    1996-02-01

    ORNL`s High Flux Isotope Reactor was used in a neutron activation analysis experiment to determine selected elemental composition of fingernails from patients afflicted with amyotrophic lateral sclerosis (AL). While no statistical difference were found in aluminium a suggestive difference was observed for copper concentrations.

  7. Trace element emissions. Semi-annual report, October 1994--February 1995

    SciTech Connect

    Pigeaud, A.; Maru, H.; Wilemski, G.; Helble, J.

    1995-02-01

    Many trace elements can exist in raw coal gas either in the form of metallic vapors or gaseous compounds which, besides their action on potentially ``very clean`` advanced power generating systems such as fuel cells and gas turbines, can also be detrimental to plant and animal life when released into the atmosphere. Therefore, volatile trace contaminants from coal which can also be toxic must be removed before they become detrimental to both power plant performance/endurance and the environment. Five trace elements were selected in this project based on: abundance in solid coal, volatility during gasification, effects on downstream systems and toxicity to plant and animal life. An understanding was sought in this investigation of the interactions of these five trace elements (and their high temperature species) with the different components in integrated cleanup and power generating systems, as well as the ultimate effects with respect to atmospheric emissions. Utilizing thermodynamic calculations and various experimental techniques, it was determined that a number of trace contaminants that exist in coal may be substantially removed by flyash, and after that by different sorbent systems. High temperature cleanup of contaminants by sorbents such as zinc titanate, primarily to remove sulfur, can also absorb some metallic contaminants such as cadmium and antimony. Further polishing will be required, however, to eliminate trace contaminant species incorporating the elements arsenic, selemium, lead, and mercury.

  8. Trace elements and rare earth elements in wet deposition of Lijiang, Mt. Yulong region, southeastern edge of the Tibetan Plateau.

    PubMed

    Guo, Junming; Kang, Shichang; Huang, Jie; Sillanpää, Mika; Niu, Hewen; Sun, Xuejun; He, Yuanqing; Wang, Shijing; Tripathee, Lekhendra

    2017-02-01

    In order to investigate the compositions and wet deposition fluxes of trace elements and rare earth elements (REEs) in the precipitation of the southeastern edge of the Tibetan Plateau, 38 precipitation samples were collected from March to August in 2012 in an urban site of Lijiang city in the Mt. Yulong region. The concentrations of most trace elements and REEs were higher during the non-monsoon season than during the monsoon season, indicating that the lower concentrations of trace elements and REEs observed during monsoon had been influenced by the dilution effect of increased precipitation. The concentrations of trace elements in the precipitation of Lijiang city were slightly higher than those observed in remote sites of the Tibetan Plateau but much lower than those observed in the metropolises of China, indicating that the atmospheric environment of Lijiang city was less influenced by anthropogenic emissions, and, as a consequence, the air quality was still relatively good. However, the results of enrichment factor and principal component analysis revealed that some anthropogenic activities (e.g., the increasing traffic emissions from the rapid development of tourism) were most likely important contributors to trace elements, while the regional/local crustal sources rather than anthropogenic activities were the predominant contributors to the REEs in the wet deposition of Lijiang city. Our study was relevant not only for assessing the current status of the atmospheric environment in the Mt. Yulong region, but also for specific management actions to be implemented for the control of atmospheric inputs and the health of the environment for the future.

  9. Baseline concentrations of 15 trace elements in Florida surface soils

    SciTech Connect

    Chen, M.; Ma, L.Q.; Harris, W.G.

    1999-08-01

    The objective of this study was to establish baseline concentrations for 15 potentially toxic elements (Ag, As, Ba, Be, Cd, Cr, cu, Hg, Ma, Mo, Ni, Pb, Sb, Se, and Zn) based on 448 representative Florida surface soils using microwave assisted HNO{sub 3}-HCl-HF digestion. Baseline concentrations of those elements were (mg kg{sup {minus}1}): Ag 0.07-2.50, As 0.02-7.01, Ba 1.67-112, Be 0.04-4.15, Cd 0-0.33, Cr 0.89-80.7, Cu 0.22-21.9, Hg 0.00075-0.0396, Mo 0.13-6.76, Ni 1.70-48.5, Pb 0.69-42.0, Sb 0.06-0.79, Se 0.01-1.11, and Zn 0.89-29.6, respectively. Upper baseline values for most elements corresponded with these reported in literature, except Ba, Hg, Mn, Sb, and Zn, which were 3 to 23 times lower. Soil properties, including pH, organic carbon (OC), particle size, cation-exchange capacity (CEC), available water, extractable base, extractable acidity, total Ca, Mg, P, K, Fe, and Al concentrations, were related to metal concentrations using factorial analysis. Eight factors were identified (total Fe and Al, CEC, pH, clay, OC, total Ni and Mo, total Sb and Pb, and total Hg) and accounted for 87% of the total variance, suggesting that metal concentrations were primarily controlled by soil compositions. Multiple regression of elemental concentrations against total Fe, total Al, clay, OC, CEC, and pH was significant for all elements. Partial correlation coefficients indicated that total Fe and/or Al explained most of the variance for Mn, Ni, Ba, Be, Hg, As, Cd, Cr, Cu, Mo, Pb, and Zn concentrations. Most of the variance in Se was related to clay, whereas those of Ag and Sb related to clay and total Al.

  10. Trace and Major Elements in Food Articles in Latvia: Root Vegetables

    NASA Astrophysics Data System (ADS)

    Vincevica-Gaile, Zane; Klavins, Maris; Rudovica, Vita; Viksna, Arturs

    2011-01-01

    It is known that the content of trace and major elements in plants is dependent on several factors, such as type of species, soil properties, climate conditions, agricultural and agrichemical factors, pollution. The aim of the study was to quantify element content of root vegetables grown in farmlands and allotment gardens in Latvia. Samples of onion bulbs and carrot roots were analyzed by atomic absorption spectrometry and inductively coupled plasma mass spectrometry. Quantitative amounts of 17 trace elements (Ag, As, Ba, Cd, Ce, Co, Cr, Cu, La, Mn, Ni, Pb, Rb, Se, Sr, V, Zn) and 5 major elements (Ca, Fe, K, Mg, Na) were determined. It was detected that carrot roots contained higher amounts of several elements than onion bulbs. Differences in element content of vegetables were also detected between the subgroups of samples grown in farmlands versus samples grown in allotment gardens. Data revealed that onions grown in farmlands were more affected by contaminants.

  11. Natural trace element enrichment in fishes from a volcanic and tectonically active region (Azores archipelago)

    NASA Astrophysics Data System (ADS)

    Raimundo, Joana; Vale, Carlos; Caetano, Miguel; Giacomello, Eva; Anes, Bárbara; Menezes, Gui M.

    2013-12-01

    Seamounts, in general, are thought to support high biodiversity and special biological communities. They have been targeted by commercial fishing for demersal and pelagic fish species due to the occurrence of large aggregations in mid- and deep-water. Specimens of Phycis phycis, Helicolenus dactylopterus, Pontinus kuhlii, Beryx splendens, Beryx decadactylus, Etmopterus pusillus, Mora moro, Pagellus bogaraveo, Deania profundorum, Scomber colias and Trachurus picturatus were collected at the Condor seamount and on the slopes of Faial and Pico islands of Azores archipelago. Concentrations of V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Cd and Pb were determined in muscle and liver of each individual. Values of the 11 trace elements in the two tissues of the benthopelagic and benthic specimens, from the two surveyed areas, presented a significant inter-specific variation. In general, levels were lower in muscle than in liver, and negative relations between weight and Co, Mn, Zn, As, Cd and Pb concentrations in muscle and liver of three species were found. Pagellus bogaraveo, S. colias and T. picturatus presented enhanced elemental concentrations in liver, particularly of Cd. The extremely high storage of this potentially toxic element suggests a response to high uptake of Cd and the existence of an additional natural source of Cd to the environment.

  12. Trace elements transport in western Siberia rivers across a permafrost gradient

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Manasypov, R. M.; Loiko, S.; Krickov, I. A.; Kopysov, S. G.; Kolesnichenko, L. G.; Vorobyev, S. N.; Kirpotin, S. N.

    2015-11-01

    Towards a better understanding of trace element transport in permafrost-affected Earth surface environments, we sampled ∼ 60 large and small rivers (< 100 to ≤ 150 000 km2 watershed area) of Western Siberia Lowland (WSL) during spring flood and summer and winter base-flow across a 1500 km latitudinal gradient covering continuous, discontinuous, sporadic and permafrost-free zones. Analysis of ∼ 40 major and trace elements in dissolved (< 0.45 μm) fraction allowed establishing main environmental factors controlling the transport of metals and trace elements in rivers of this environmentally important region. No statistically significant effect of the basin size on most TE concentration was evidenced. Three category of trace elements were distinguished according to their concentration - latitude pattern: (i) increasing northward in spring and winter (Fe, Al, Ga (only winter), Ti (only winter), REEs, Pb, Zr, Hf, Th (only winter)), linked to leaching from peat and/or redox processes and transport in the form of Fe-rich colloids, (ii) decreasing northward during all seasons (Sr, Mo, U, As, Sb) marking the underground water influence of river feeding and (iii) elements without distinct trend from S to N whose variations within each latitude range were higher than the difference between latitudinal ranges (B, Li, Ti (except summer), Cr, V, Mn, Zn, Cd, Cs, Hf, Th). In addition to these general features, specific, northward increase during spring period was mostly pronounced for Fe, Mn, Co, Zn and Ba and may stem from a combination of enhanced leaching from the topsoil and vegetation and bottom waters of the lakes (spring overturn). A spring time northward decrease was observed for Ni, Cu, Zr, Rb. The southward increase in summer was strongly visible for Fe, Ni, Ba, Rb and V, probably due to peat/moss release (Ni, Ba, Rb) or groundwater feeding (Fe, V). The Principal Component Analysis demonstrated two main factors potentially controlling the ensemble of TE

  13. Atmospheric dry deposition fluxes of trace elements measured in Queretaro City, Mexico

    NASA Astrophysics Data System (ADS)

    Garcia, R.; Hernandez, R.; Solis, S.; Perez, R.; Hernandez, G.; Morton, O.; Hernandez, E.; Torres, M. C.; Baez, A.

    2012-04-01

    Sampling was made in the southern section of downtown Mexico City. Samples were collected with an Mini-Vol PM10 . Eight different sources were identified for PM10 aerosols: secondary sulfate, wood combustion, fireworks, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The ions SO42-, NO3-, Cl-, Na+, K+, Ca2+, Mg2+ and NH4+,were analyzed by ion chromatography and the trace metals using an atomic absorption spectrometer. The result indicated that SO42- was the most abundant ion and with respect to trace metal. All the trace elements except Mn and V show statistically significant differences between monitoring sites. The Pearson's correlation applied to all data, showed a high correlation among SO42-, NO3- and NH4+, indicating a common anthropogenic origin. In addition the correlation found between Ca2+ and Al indicated a crustal origin. On the other hand, in considering the total sampling period for particles as well as for all the metals, it is appreciable the significant differences between sites and meteorological seasons. The cluster analysis of air back-trajectories employed in the paper is a technique widely used to identify transport patterns and potential sources of both anthropogenic pollution and natural constituents of the atmosphere, including atmospheric aerosols. It is also used to determine how aerosol optical properties observed over the station differ depending on source region and transport pathways In order to gain a better insight into the origin of trace metal and major inorganic ions, a Principal Component Analysis was applied to the results for 6 elements and 8 ions, from the years 2009 and 2010. Further, the statistical analysis demonstrated the adequate selection of the monitoring areas, confirming that main emission source of these atmospheric pollutants is anthropogenic origin. Evidence suggests that the organic and inorganic species are not always internally mixed, especially in the small modes. The

  14. Trace Additives to Inhibit the Caking of Purple K for 3-D Firefighting

    DTIC Science & Technology

    2004-09-01

    quantity of sample produced was insufficient to conduct drop tests . A follow-up effort focused on producing salt cakes with six additives. Cakes were made by...prevented due to caking . The most common method to reduce/prevent the caking of Purple K is to blend in trace amounts of silicon-based oils and water

  15. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  16. An assessment of selected trace elements in intertidal surface sediments collected from the Peninsular Malaysia.

    PubMed

    Zulkifli, Syaizwan Zahmir; Mohamat-Yusuff, Ferdaus; Arai, Takaomi; Ismail, Ahmad; Miyazaki, Nobuyuki

    2010-10-01

    Concentrations of 11 trace elements (V, Cr, Co, Ni, Cu, Zn, As, Ag, Cd, Pb, and U) were determined in the intertidal surface sediments of Peninsular Malaysia. The average trace element concentrations are ranked as follows: Zn>V>As>Cr>Pb>Cu>Ni>Co>U>g>Cd. Interim Sediment Quality Guidelines (ISQGs) employed in present study are the Australia and New Zealand joint guideline (ANZECC/ARMCANZ), and the Hong Kong authorities. From the pooled data, none of these trace elements have the average concentration above the ISQG-high values. However, As and Ag average concentrations were over the ISQG-low values. Some elements were found to have the average concentration above the ISQG-high and/or ISQG-low in certain locations, including Kampung Pasir Putih (JPP), Lumut Port (ALP), Kuala Perai (PKP), Port Dickson (NPD), and others. The lowest and highest concentrations in a specific sampling location and maritime area varied among the elements, variations that were greatly affected by natural and anthropogenic activities in a given area. For each trace element, there were various levels of concentration among the sampling locations and maritime areas. These patterns indicated pollutant sources of an element for each area perhaps derived from nearby areas and did not widely distributed to other locations. It is necessary for Malaysia to develop an ISQG for effective quick screening and evaluation of the coastal environment of Peninsular Malaysia.

  17. Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa

    NASA Astrophysics Data System (ADS)

    Guo, Junming; Kang, Shichang; Huang, Jie; Zhang, Qianggong; Tripathee, Lekhendra; Sillanpää, Mika

    2015-02-01

    Precipitation samples were collected from March 2010 to August 2012 at an urban site in Lhasa, the capital and largest city of Tibet. The volume weighted mean (VWM) concentrations of 17 trace elements in precipitation were higher during the non-monsoon season than in the monsoon season, but inverse seasonal variations occurred for wet deposition fluxes of most of the trace elements. Concentrations for most of trace elements were negatively correlated with precipitation amount, indicating that below-cloud scavenging of trace elements was an important mechanism contributing to wet deposition of these elements. The elements Al, Sc, V, Cr, Mn, Fe, Mn, Ni, and U displayed low crustal enrichment factors (EFs), whereas Co, Cu, Zn, As, Cd Sn, Pb, and Bi showed high EF values in precipitation, suggesting that anthropogenic activities might be important contributors of these elements at Lhasa. However, this present work indicates a much lower anthropogenic emission at Lhasa than in seriously polluted regions. Our study will not only provide insights for assessing the current status of the atmospheric environment in Lhasa but also enhance our understanding for updating the baseline for environmental protection over the Tibetan Plateau.

  18. Seasonal Cyclicity in Trace Elements and Stable Isotopes of Modern Horse Enamel

    PubMed Central

    Snoeck, Christophe; Claeys, Philippe

    2016-01-01

    The study of stable isotopes in fossil bioapatite has yielded useful results and has shown that bioapatites are able to faithfully record paleo-environmental and paleo-climatic parameters from archeological to geological timescales. In an effort to establish new proxies for the study of bioapatites, intra-tooth records of enamel carbonate stable isotope ratios from a modern horse are compared with trace element profiles measured using laboratory micro X-Ray Fluorescence scanning. Using known patterns of tooth eruption and the relationship between stable oxygen isotopes and local temperature seasonality, an age model is constructed that links records from six cheek upper right teeth from the second premolar to the third molar. When plotted on this age model, the trace element ratios from horse tooth enamel show a seasonal pattern with a small shift in phase compared to stable oxygen isotope ratios. While stable oxygen and carbon isotopes in tooth enamel are forced respectively by the state of the hydrological cycle and the animal’s diet, we argue that the seasonal signal in trace elements reflects seasonal changes in dust intake and diet of the animal. The latter explanation is in agreement with seasonal changes observed in carbon isotopes of the same teeth. This external forcing of trace element composition in mammal tooth enamel implies that trace element ratios may be used as proxies for seasonal changes in paleo-environment and paleo-diet. PMID:27875538

  19. Seedling emergence, growth and trace elements tolerance and accumulation by Lamiaceae species in a mine soil.

    PubMed

    Parra, A; Zornoza, R; Conesa, E; Gómez-López, M D; Faz, A

    2014-10-01

    The potential use of three Laminaceae species (Lavandula dentata, Rosmarinus officinalis and Thymus vulgaris) for the phytostabilisation of a trace elements contaminated (acid) soil has been evaluated. These species were grown in mine tailing soil unamended (TS) and amended with calcium carbonate and pig manure (ATS), and unpolluted substrate for control (CT); plant growth, root characterisation, soil trace elements contents and their accumulation in plants were measured. Results indicated that seed emergence was independent from substrate characteristics, but seedlings died in TS with 40% survival in ATS. The biomass of L. dentata and T. vulgaris and root development in R. officinalis were negatively affected when grown in TS but without differences between ATS and CT. Applicating amendments reduced soil exchangeable and extractable fractions concentrations of trace elements in ATS compared with TS. The establishment of L. dentata and R. officinalis were related to trace elements immobilisation. Trace element concentrations in plants grown in tailing soils were similar to those reported for control, although applicating amendments reduced Zn accumulation in all species, and favoured increased absorption and aerial translocation of As and Pb by L. dentata and T. vulgaris; nonetheless, levels were below toxicity thresholds. Thus, these species fulfill the criteria for phytostabilisation purposes, aided by employing amendments.

  20. Trace-element geochemistry of coal resource development related to environmental quality and health

    SciTech Connect

    Not Available

    1980-01-01

    This report assesses for decision makers and those involved in coal resource development the environmental and health impacts of trace-element effects arising from significant increases in the use of coal, unless unusual precautions are invoked. Increasing demands for energy and the pressing need for decreased dependence of the United States on imported oil require greater use of coal to meet the nation's energy needs during the next decade. If coal production and consumption are increased at a greatly accelerated rate, concern arises over the release, mobilization, transportation, distribution, and assimilation of certain trace elements, with possible adverse effects on the environment and human health. It is, therefore, important to understand their geochemical pathways from coal and rocks via air, water, and soil to plants, animals, and ultimately humans, and their relation to health and disease. To address this problem, the Panel on Trace Element Geochemistry of Coal Resource Development Related to Health (PECH) was established. Certain assumptions were made by the Panel to highlight the central issues of trace elements and health and to avoid unwarranted duplication of other studies. Based on the charge to the Panel and these assumptions, this report describes the amounts and distribution of trace elements related to the coal source; the various methods of coal extraction, preparation, transportation, and use; and the disposal or recycling of the remaining residues or wastes. The known or projected health effects are discussed at the end of each section.

  1. Liquid phase microextraction for the analysis of trace elements and their speciation

    NASA Astrophysics Data System (ADS)

    Hu, Bin; He, Man; Chen, Beibei; Xia, Linbo

    2013-08-01

    Trace/ultra-trace elements and their speciation analysis in complex matrices usually require sample preparation procedures to achieve sample clean-up and analyte preconcentration. Sample preparation is often the bottleneck in trace elements and their speciation analysis which has a direct impact on accuracy, precision and limits of detection and is often the rate-determining step of the analytical process. Recent trends in sample preparation include miniaturization, automation, high-throughput performance and reduction in solvent/sample consumption and operation time. Liquid-phase microextraction (LPME) technique as a novel and promising alternative in sample preparation can meet these requirements and has become a very efficient sample preparation technique. This review updates the state of art of LPME for trace elements and their speciation analysis and discusses its promising prospects. The major thrust of the article highlights the applications of LPME including single-drop microextraction (SDME), hollow fiber-liquid phase microextraction (HF-LPME), dispersive liquid liquid microextraction (DLLME) and solidified floating organic drop microextraction (SFODME) to the fields of elemental and their speciation analysis by atomic spectrometry-based methods, especially inductively coupled plasma mass spectrometry. General and specific concepts, different extraction formats and characteristics of LPME are described and compared, along with examples of recent innovations and applications presented to demonstrate its potential for trace elements and their speciation analysis in biological and environmental fields. Moreover, the application potential and an outlook on the combination of LPME and atomic spectrometry-based techniques for inorganic analysis are commentated.

  2. Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes

    USGS Publications Warehouse

    Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.

    2008-01-01

    Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.

  3. Seasonal Cyclicity in Trace Elements and Stable Isotopes of Modern Horse Enamel.

    PubMed

    de Winter, Niels J; Snoeck, Christophe; Claeys, Philippe

    2016-01-01

    The study of stable isotopes in fossil bioapatite has yielded useful results and has shown that bioapatites are able to faithfully record paleo-environmental and paleo-climatic parameters from archeological to geological timescales. In an effort to establish new proxies for the study of bioapatites, intra-tooth records of enamel carbonate stable isotope ratios from a modern horse are compared with trace element profiles measured using laboratory micro X-Ray Fluorescence scanning. Using known patterns of tooth eruption and the relationship between stable oxygen isotopes and local temperature seasonality, an age model is constructed that links records from six cheek upper right teeth from the second premolar to the third molar. When plotted on this age model, the trace element ratios from horse tooth enamel show a seasonal pattern with a small shift in phase compared to stable oxygen isotope ratios. While stable oxygen and carbon isotopes in tooth enamel are forced respectively by the state of the hydrological cycle and the animal's diet, we argue that the seasonal signal in trace elements reflects seasonal changes in dust intake and diet of the animal. The latter explanation is in agreement with seasonal changes observed in carbon isotopes of the same teeth. This external forcing of trace element composition in mammal tooth enamel implies that trace element ratios may be used as proxies for seasonal changes in paleo-environment and paleo-diet.

  4. Comparative Analysis of the Trace Element Content of the Leaves and Roots of Three Plantago Species.

    PubMed

    Tinkov, Alexey A; Nemereshina, Olga N; Suliburska, Joanna; Gatiatulina, Evgenia R; Regula, Julita; Nikonorov, Alexandr A; Skalny, Anatoly V

    2016-09-01

    The primary objective of this study is to perform a comparative analysis of the trace element content of the leaves and roots of three Plantago species (P. maxima Juss. ex Jacq., P. major L., and P. lanceolata L.). Trace element levels were assessed by inductively coupled plasma mass spectrometry. The data indicate that the leaves of P. lanceolata are characterized by the highest Co, Cr, and Se content, whereas P. maxima leaves contained the greatest levels of Si and Zn. In contrast, the highest concentrations of Co, Cr, Fe, I, Mn, Si, and V were detected in the roots of P. major. Zn content was also higher in P. maxima roots than in the other species analyzed. The toxic trace elements were differentially distributed across the studied species. In particular, P. lanceolata leaves contained significantly higher Al, As, Li, Ni, Pb, and Sr levels, whereas the B and Cd content was elevated in P. major as compared to the other species. Surprisingly, the leaf Hg level was the lowest in P. major, whose levels of Al, As, B, Cd, Ni, Li, and Sr were significantly higher than the other two species. The data indicate that the concentration of most of the essential trace elements was higher in the leaves and roots of P. major and P. lanceolata than in P. maxima, while P. maxima had less toxic metals. The obtained data on trace elements content in Plantago tissues may be taken into account while using plant preparations in practical medicine.

  5. Biomonitoring of trace elements in the leaves and fruits of wild olive and holm oak trees.

    PubMed

    Madejón, Paula; Marañón, Teodoro; M Murillo, José

    2006-02-15

    Biomonitoring of trace elements is essential to assess ecosystem health, in particular in landscapes influenced by human activity. The Guadiamar Valley (SW Spain) was polluted in 1998 by a spill from an open-pit pyrite mine affecting about 55 km2. In this paper, we used two common species of tree, namely wild olive and holm oak, to biomonitor the concentration of nine trace elements-As, Cd, Cu, Fe, Mn, Ni, Pb, Tl and Zn-in this spill-affected area over the 3-year period 1999-2001. We analysed the leaves and fruits of trees growing in the spill-affected terraces, and compared them with adjacent trees in the non-affected upper terraces. The main trace elements polluting the soil were Zn, As, Pb and Cu. In general, the oak leaves were richer in trace elements than the olive leaves, reaching phytotoxic levels for As and Pb, while the olive fruits (pulp) were more polluted than the oak seeds (protected inside a hard pericarp), reaching toxic values for Cd and Pb. The concentration of trace elements in the leaves and fruits decreased with time and, in consequence, the toxicity risk to the food web diminished.

  6. A Prospective Study of Serum Trace Elements in Healthy Korean Pregnant Women.

    PubMed

    Choi, Rihwa; Sun, Jiyu; Yoo, Heejin; Kim, Seonwoo; Cho, Yoon Young; Kim, Hye Jeong; Kim, Sun Wook; Chung, Jae Hoon; Oh, Soo-Young; Lee, Soo-Youn

    2016-11-23

    This prospective study sought to investigate serum levels of trace elements (cobalt, copper, zinc, and selenium) and to assess their effects on pregnancy and neonatal outcomes. Serum levels of trace elements in 245 Korean pregnant women (median gestational age at delivery was 39 + 4 weeks and interquartile range was 38 + 4-40 + 1 weeks) were compared with those of 527 general adults and those of previous studies in other ethnic groups. Pregnancy and neonatal outcomes including gestational diabetes, preeclampsia, neonatal birth weight, and congenital abnormalities were assessed. The median serum trace element concentrations of all pregnant women were: cobalt: 0.39 μg/L (interquartile range, IQR 0.29-0.53), copper: 165.0 μg/dL (IQR 144.0-187.0), zinc: 57.0 μg/dL (IQR 50.0-64.0), and selenium: 94.0 μg/L (IQR 87.0-101.0). Serum cobalt and copper concentrations were higher in pregnant women than in the general population, whereas zinc and selenium levels were lower (p < 0.01). Concentrations of all four trace elements varied significantly during the three trimesters (p < 0.05), and seasonal variation was found in copper, zinc, and selenium, but was not observed for cobalt. The prevalence of preeclampsia was significantly lower with high copper (p = 0.03). Trace element levels varied by pregnancy trimester and season, and alteration in copper status during pregnancy might influence pregnancy outcomes such as preeclampsia.

  7. Chemiluminescence determination of trace amounts of elemental and sulfide sulfur

    SciTech Connect

    Bikkulova, A.T.; Antipin, V.A.; Kazakov, V.P.; Tankovenko, V.V.; Zagidullin, S.N.

    1986-09-01

    This paper presents a method for the chemiluminescence determination of 10/sup -10/ to 10/sup -2/ M elemental and sulfide sulfur in concentrated H/sub 2/O/sub 4/ and H/sub 3/PO/sub 4/ with a standard deviation no greater than 0.2.10/sup -10/ to 0.3.10/sup -10/ M. The factors influencing the correctness and reproducibility of the results of the determination of sulfur have been analyzed, and recommendations on the use of the method under industrial conditions and for monitoring the environment are given. The sample that was analyzed in this work contained elemental or sulfide sulfur introduced into a solution of uranyl in 98-100% H/sub 2/SO/sub 4/ saturated with ozone. In this reaction uranyl was a sensitizer, which enhanced the intensity by the luminescence by 10-100 fold.

  8. Trace element analysis of Cretan wines and wine products.

    PubMed

    Galani-Nikolakaki, S; Kallithrakas-Kontos, N; Katsanos, A A

    2002-02-21

    The object of this research is to investigate the ways and the degree of contamination of Cretan grapes from the area of Chania and their alcoholic products, with the elements aluminium, arsenic, cadmium, copper, chromium, iron, lead, manganese, nickel and zinc. Fifteen samples of grapes were collected and used for the production of experimental wines from rinsed and unrinsed grapes. A microwave furnace was used for the digestion and dissolution of the experimental wines, the precipitates that originated in these wines, as well as the wines of the corresponding producers. The analyses of all mentioned samples as well as 34 local alcoholic distillates were performed using total reflection X-ray fluorescence and graphite furnace atomic absorption spectrometry. The concentrations for all the elements that were determined were almost in all cases, well below the maximum permissible levels by the Greek and the European Union legislation.

  9. Trace element concentration distributions in breast, lung and colon tissues

    NASA Astrophysics Data System (ADS)

    Majewska, Urszula; Banas, Dariusz; Braziewicz, Janusz; Gózdz, Stanislaw; Kubala-Kukus, Aldona; Kucharzewski, Marek

    2007-07-01

    The concentrations of Fe, Cu, Zn and Se in cancerous and benign tissues of breast, lung and intestine (colon) have been determined. In the cases when the element concentration has not been determined in all samples the Kaplan-Meier method has been used for the reconstruction of the original concentration distributions and estimation of the true mean concentrations and medians. Finally, the log-rank test has been applied to compare the elemental concentration distributions between cancerous and benign tissues of the same organ, between cancerous tissues and between benign tissues taken from different organs. Comparing benign and malignant neoplastic tissues, statistically significant differences have been found between Fe and Se concentration distributions of breast as well as for Cu and Zn in the case of lung tissues and in the case of colon tissues for Zn. The concentrations of all elements have been found to be statistically different in cancer tissues as well as in benign ones when comparing the different organs, i.e. groups 'breast-colon' and 'breast-lung'. Concentrations of Fe and Cu have been found to be statistically different in lung and colon cancerous tissues. For benign tissues of lung and colon a statistically significant difference has been found only for Zn.

  10. Electrostatic precipitator performance and trace element emissions from two Kraft recovery boilers.

    PubMed

    Lind, Terttaliisa; Hokkinen, Jouni; Jokiniemi, Jorma K; Hillamo, Risto; Makkonen, Ulla; Raukola, Antti; Rintanen, Jaakko; Saviharju, Kari

    2006-01-15

    Fine particle emissions from combustion sources have gained attention recently due to their adverse effects on human health. The emission depends on the combustion process, fuel, and particulate removal technology. Particle concentrations at Kraft recovery boiler exits are very high, and the boilers are typically equipped with electrostatic precipitators (ESP). However, little data are available on the ESP performance in recovery boilers. Particle concentrations and size distributions were determined at two modern, operating recovery boilers. In addition, we determined the fractional collection efficiency of the ESPs by simultaneous measurements at the ESP inlet and outlet and the particulate emissions of trace metals. The particle mass concentration atthe ESP inlet was 11-24 g/Nm3 at the two boilers. Particle emissions were 30-40 mg/ Nm3 at boiler A and 12-15 mg/Nm3 at boiler B. The particle size distributions had a major particle mode at around 1 microm. These fume particles contained most of the particle mass. The main components in the particles were sodium and sulfate with minor amounts of chloride, potassium, and presumably some carbonate. The ESP collection efficiency was 99.6-99.8% at boiler A and 99.9% at boiler B. The particle penetration through the ESP was below 0.6% in the entire fume particle size range of 0.3-3 microm. Trace element emissions from both boilers were well below the limit values set by EU directive for waste incineration.

  11. Is removal of copper by electrolysis from copper minerals an appropriate method for determination of trace elements?

    NASA Astrophysics Data System (ADS)

    Taseska, M.; Jaćimović, R.; Stibilj, V.; Stafilov, T.; Makreski, P.; Jovanovski, G.

    2010-10-01

    The trace elements content in the copper mineral chalcanthite (CuSO 4·5H 2O) was determined using k0-INAA before and after quantitative removal of copper. To avoid the interference of the matrix element, a method for electrolytic separation of copper was used. The distribution of 47 elements (with intermediate/medium and long-lived radionuclides) present in the studied mineral was investigated. The main advantage of the proposed method is the possibility to determine the content of several elements (Al, Dy, K, Mg, Mn, Pt, Re and V) via their short-lived nuclides after the electrolysis of Cu as a result of the elimination of interferences from the matrix element. In addition, the limit of detection for some elements (Ga, K and W) is lower in the electrolyzed solution compared to their corresponding values determined by k0-INAA. However, the results showed that electrolysis was not an appropriate method for determination of some trace elements (As, Na, Sb, Pt and Zn) at low concentration level due to contamination from the Pt-electrode or inadequate purification of the glassware used, adsorption/desorption on glassware (e.g. Na, Sb, Se), or losses during evaporation of the solution (heated to about 80 °C) to ˜2 mL (e.g. Se).

  12. Laser ablation inductively coupled plasma mass spectrometry: a new tool for trace element analysis in ice cores.

    PubMed

    Reinhardt, H; Kriews, M; Miller, H; Schrems, O; Lüdke, C; Hoffmann, E; Skole, J

    2001-07-01

    A new method for the detection of trace elements in polar ice cores using laser ablation with subsequent inductively coupled plasma mass spectrometry analysis is described. To enable direct analysis of frozen ice samples a special laser ablation chamber was constructed. Direct analysis reduces the risk of contamination. The defined removal of material from the ice surface by means of a laser beam leads to higher spatial resolution (300-1000 microm) in comparison to investigations with molten ice samples. This is helpful for the detection of element signatures in annual layers of ice cores. The method was applied to the successful determination of traces for the elements Mg, Al, Fe, Zn, Cd, Pb, some rare-earth elements (REE) and minor constituents such as Ca and Na in ice cores. These selected elements serve as tracer elements for certain sources and their element signatures detected in polar ice cores can give hints to climate changes in the past. We report results from measurements of frozen ice samples, the achievable signal intensities, standard deviations and calibration graphs as well as the first signal progression of 205Pb in an 8,000-year-old ice core sample from Greenland. In addition, the first picture of a crater on an ice surface burnt by an IR laser made by cryogenic scanning electron microscopy is presented.

  13. Zebra mussels (Dreissena polymorpha) as a biomonitor of trace elements along the southern shoreline of Lake Michigan.

    PubMed

    Shoults-Wilson, W Aaron; Elsayed, Norhan; Leckrone, Kristen; Unrine, Jason

    2015-02-01

    The invasive zebra mussel (Dreissena polymorpha) has become an accepted biomonitor organism for trace elements, but it has yet to be studied along the Lake Michigan shoreline. Likewise, the relationships between tissue concentrations of elements, organism size, and sediment concentrations of elements have not been fully explained. The present study found that a variety of allometric variables such as length, dry tissue mass, shell mass, organism condition indices, and shell thickness index were useful in explaining intrasite variability in elemental concentrations. The flesh condition index (grams of tissue dry mass per gram of shell mass) explained variability at the most sites for most elements. Once allometric intrasite variability was taken into account, additional significant differences were found between sites, although the net effect was small. Significant positive relationships between sediment and tissue concentrations were found for Pb and Zn, with a significant negative relationship for Cd. It was also found that Cu and Zn concentrations in tissues increased significantly along the shoreline in the southeasterly direction, whereas Hg increased in a northwesterly direction. Opportunistic sampling found that zebra mussels accumulate significantly higher concentrations of nearly all elements analyzed compared to Asian clams (Corbicula fluminea) at the same site. The present study demonstrates the need to fully explain natural sources of variability before using biomonitors to explain spatial distributions of trace elements.

  14. Modulatory role of vanadium on trace element profile in diethylnitrosamine-induced rat hepatocarcinogenesis

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Selvaraj, S.; Sudarshan, M.; Dutta, R. K.; Ghugre, S. S.; Chintalapudi, S. N.

    2000-09-01

    Particle-induced X-ray emission (PIXE) analysis was employed in the present study to investigate the chemopreventive potential of vanadium in influencing trace elemental profile and antioxidant status in chemical carcinogenesis. The elements with Z=15-40 were studied. Data reveal remarkable alterations in elemental composition in the hepatic tissue of diethylnitrosamine (DENA)-induced Sprague-Dawley male rats (intraperitoneal (ip) dose: 200 mg/kg body weight) after four weeks of induction. Several elements like Mn, Cu, Zn, Rb showed large depletion while other elements like Fe, Ca, K, Br showed large enhancement in comparison to that of the normal control animals. These elements compete for binding sites in the cell, change its enzymatic activity and exert direct or indirect action on the carcinogenic process. Supplementary vanadium (0.5 ppm ad libitum in drinking water) has shown effective modulation by alteration in the concentration of trace elements in the tumorigenic tissue ( P<0.001-0.005). Data reflect a definite correlation between elemental composition, antioxidant status in the initiation phase of carcinogenesis and the period of exposure to vanadium. The possibility of selecting vanadium as a therapeutic agent for chemoprevention is discussed in the light of its influence in maintaining trace elemental homeostasis, a parameter of importance in cancer prevention research.

  15. Transmission of atmospherically derived trace elements through an undeveloped, forested Maryland watershed

    USGS Publications Warehouse

    Scudlark, J.R.; Rice, Karen C.; Conko, Kathryn M.; Bricker, Owen P.; Church, T.M.

    2005-01-01

    The transmission of atmospherically derived trace elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) was evaluated in a small, undeveloped, forested watershed located in north-central Maryland. Atmospheric input was determined for wet-only and vegetative throughfall components. Annual throughfall fluxes were significantly enriched over incident precipitation for most elements, although some elements exhibited evidence of canopy release (Mn) or preferential uptake (As, Cr, and Se). Stream export was gauged based on systematic sampling under varied flow regimes. Particle loading appears to contribute significantly to watershed export (> 10%) for only As, Pb, and Fe, and then only during large precipitation/runoff events. The degree of watershed transmission for each trace element was evaluated based on a comparison of total, net atmospheric input (throughfall) to stream export over an annual hydrologic cycle. This comparison indicates that the atmospheric input of some elements (Al, Cd, Ni, Zn) is effectively transmitted through the watershed, but other elements (Pb, As, Se, Fe, Cr, Cu) appear to be strongly sequestered, in the respective orders noted. Results suggest that precipitation and subsequent soil pH are the primary factors that determine the mobility of sequestered trace element phases.To further resolve primary atmospheric and secondary weathering components, the geochemical model NETPATH was applied. Results indicate that minerals dissolved include chlorite, plagioclase feldspar, epidote, and potassium feldspar; phases formed were kaolinite, pyrite, and silica. The model also indicates that weathering processes contribute negligible amounts of trace elements to stream export, indicative of the unreactive orthoquartzite bedrock lithology underlying the watershed. Thus, the stream export of trace elements primarily reflects atmospheric deposition to the local watershed.

  16. [Distribution Characteristics and Source Analysis of Dustfall Trace Elements During Winter in Beijing].

    PubMed

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Chen, Fan-tao; Shu, Tong-tong; Zheng, Xiao-xia; Zhao, Wen-hui

    2015-08-01

    The dustfall content is one of the evaluation indexes of atmospheric pollution. Trace elements especially heavy metals in dustfall can lead to risks to ecological environment and human health. In order to study the distribution characteristics of trace elements, heavy metals pollution and their sources in winter atmospheric dust, 49 dustfall samples were collected in Beijing City and nearby during November 2013 to March 2014. Then the contents (mass percentages) of 40 trace elements were measured by Elan DRC It type inductively coupled plasma mass (ICP-MS). Test results showed that more than half of the trace elements in the dust were less than 10 mg x kg(-1); about a quarter were between 10-100 mg x kg-1); while 7 elements (Pb, Zr, Cr, Cu, Zn, Sr and Ba) were more than 100 mg x kg(-1). The contents of Pb, Cu, Zn, Bi, Cd and Mo of winter dustfall in Beijing city.were respectively 4.18, 4.66, 5.35, 6.31, 6.62, and 8.62 times as high as those of corresponding elements in the surface soil in the same period, which went beyond the soil background values by more than 300% . The contribution of human activities to dustfall trace heavy metals content in Beijing city was larger than that in the surrounding region. Then sources analysis of dustfall and its 20 main trace elements (Cd, Mo, Nb, Ga, Co, Y, Nd, Li, La, Ni, Rb, V, Ce, Pb, Zr, Cr, Cu, Zn, Sr, Ba) was conducted through a multi-method analysis, including Pearson correlation analysis, Kendall correlation coefficient analysis and principal component analysis. Research results indicated that sources of winter dustfall in Beijing city were mainly composed of the earth's crust sources (including road dust, construction dust and remote transmission of dust) and the burning of fossil fuels (vehicle emissions, coal combustion, biomass combustion and industrial processes).

  17. Petrology and trace element geochemistry of Tissint, the newest shergottite fall

    NASA Astrophysics Data System (ADS)

    Balta, J. Brian; Sanborn, Matthew E.; Udry, Arya; Wadhwa, Meenakshi; McSween, Harry Y.

    2015-01-01

    AbstractThe fall and recovery of the Tissint meteorite in 2011 created a rare opportunity to examine a Martian sample with a known, short residence time on Earth. Tissint is an olivine-phyric shergottite that accumulated olivine antecrysts within a single magmatic system. Coarse olivine grains with nearly homogeneous cores of Mg# >80 suggest slow re-equilibration. Many macroscopic features of this sample resemble those of LAR 06319, including the olivine crystal size distribution and the presence of evolved oxide and olivine compositions. Unlike LAR 06319, however, no magmatic hydrous phases were found in the analyzed samples of Tissint. Minor and <span class="hlt">trace</span> <span class="hlt">element</span> compositions indicate that the meteorite is the product of closed-system crystallization from a parent melt derived from a depleted source, with no obvious <span class="hlt">addition</span> of a LREE-rich (crustal?) component prior to or during crystallization. The whole-rock REE pattern is similar to that of intermediate olivine-phyric shergottite EETA 79001 lithology A, and could also be approximated by a more olivine-rich version of depleted basaltic shergottite QUE 94201. Magmatic oxygen fugacities are at the low end of the shergottite range, with log fO2 of QFM-3.5 to -4.0 estimated based on early-crystallized minerals and QFM-2.4 estimated based on the Eu in pyroxene oxybarometer. These values are similarly comparable to other depleted shergottites, including SaU 005 and QUE 94201. Tissint occupies a previously unsampled niche in shergottite chemistry: containing olivines with Mg# >80, resembling the enriched olivine-phyric shergottite LAR 06319 in its crystallization path, and comparable to intermediate olivine-phyric shergottite EETA 79001A, depleted olivine-phyric shergottite DaG 476, and depleted basaltic shergottite QUE 94201 in its <span class="hlt">trace</span> <span class="hlt">element</span> abundances and oxygen fugacity. The apparent absence of evidence for terrestrial alteration in Tissint</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CoMP..171...70M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CoMP..171...70M"><span><span class="hlt">Trace</span> <span class="hlt">element</span> composition and cathodoluminescence of kyanite and its petrogenetic implications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Müller, Axel; van den Kerkhof, Alfons M.; Selbekk, Rune S.; Broekmans, Maarten A. T. M.</p> <p>2016-09-01</p> <p>Kyanite crystals from fourteen localities worldwide were analysed for their abundances of the <span class="hlt">trace</span> <span class="hlt">elements</span> Na, Mg, K, Ca, Ti, V, Cr, Mn, and Fe and cathodoluminescence (CL) properties. Based on protolith type, metamorphic setting, and distinctive <span class="hlt">trace</span> <span class="hlt">element</span> fingerprints, a genetic classification of kyanite-bearing rocks is suggested: (A) Al-rich metasediments which commonly contain coarse-grained quartz-kyanite segregations; (B) metamorphosed granitic rocks, specifically granulites; (C) metamorphosed argillic alteration zones hosted originally in felsic igneous rocks; (D) metamorphosed argillic alteration zones hosted originally in mafic igneous rocks; and (E) metamorphosed mafic to ultramafic rocks, specifically eclogites. Vanadium and Cr concentrations reflect both protolith and host rock compositions and therefore may provide a geochemical fingerprint for the nature of the protolith. The incorporation of Fe into kyanite is largely controlled by oxygen fugacity during kyanite formation, and therefore, in most cases, its concentration cannot be related to that of the protolith. From our results, Ti concentration appears to be related to metamorphic grade, particularly formation temperature. If proven by further studies, Ti-in-kyanite may provide a useful geothermometer. Correlation of <span class="hlt">trace</span> <span class="hlt">element</span> abundances with CL spectra confirms that common red CL, which is composed of the spectral bands centred at 1.69 eV (734 nm), 1.75 eV (708 nm), and 1.80 eV (689 nm), is related to Cr3+ defects. CL spectra of most kyanites show in <span class="hlt">addition</span> a low-intensity blue emission centred at 2.56 eV (485 nm). Correlation of the intensity of the blue emission with Ti suggests that it is related to or sensitized by Ti4+ or Ti3+ defects. Kyanites with >3200 µgg-1 Fe show generally no detectable CL due to the CL-quenching effect of Fe2+. Our findings provide new criteria in the exploration for and quality assessment of new kyanite deposits. The Ti content, one of the critical</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMPP41A1734N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMPP41A1734N"><span>Reconstructing Paleoclimate from Oxygen Isotopes and <span class="hlt">Trace</span> <span class="hlt">Element</span> Ratios in Olivella biplicata shells</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nye, J. W.; Ferguson, J. E.; Johnson, K. R.; Kennett, D. J.</p> <p>2011-12-01</p> <p>High resolution records of past sea surface temperature (SST) are not as common in mid to high latitudes as they are in tropical areas. In higher latitude regions, proxy data preserved in marine mollusk shells, often found in archaeological shell middens, could potentially provide these critical records. One promising candidate is the Purple Olive Snail Olivella biplicata, a marine mollusk with an aragonite shell that occurs in subtidal to shallow intertidal zones along the eastern Pacific coast in large quantities. The ubiquity of the snail spatially (from Baja California to British Colombia) and temporally makes it an ideal candidate for study. Previous studies have shown seasonal changes in isotopic signatures from O. biplicata (Eerkens et al 2005, 2007, 2010), however high resolution <span class="hlt">trace</span> <span class="hlt">elemental</span> analysis has not been conducted. We measured stable isotope (δ18O and δ13C) and <span class="hlt">trace</span> <span class="hlt">element</span> (Sr/Ca, Mg/Ca) composition in two modern shells collected in La Jolla, California and two archaeological shells from ~AD1410 to AD1500 excavated on San Miguel Island (Channel Islands, California). The shells were micromilled along growth lines at 100-150 μm intervals. The resulting powder was analyzed for stable isotopes and <span class="hlt">trace</span> <span class="hlt">elements</span> by IRMS and HR-ICPMS respectively. The modern shell data was compared to instrumental SST records from the Scripps Pier. δ18O data from modern O. biplicata follows monthly trends in SST, though fractionation due to biological effects leads to an offset from isotopic equilibrium values. Mg/Ca and Sr/Ca measurements on modern shells allow us to test the viability of these as <span class="hlt">additional</span> proxies that could help us deconvolve SST from salinity effects. Archaeological sample measurements are utilized to assess the possible effects of early diagenesis on shell geochemistry. Given that a single shell can record nearly a decade of SSTs at monthly resolution and that the species can be found in archaeological sites dating back 10,000 years B</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28027472','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28027472"><span>Assessment of major and <span class="hlt">trace</span> <span class="hlt">element</span> bioavailability in vineyard soil applying different single extraction procedures and pseudo-total digestion.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Milićević, Tijana; Relić, Dubravka; Škrivanj, Sandra; Tešić, Živoslav; Popović, Aleksandar</p> <p>2017-03-01</p> <p>A different single extraction procedures (CH3COOH, Na2EDTA, CaCl2, NH4NO3, deionized water), and pseudo-total digestion (aqua regia) were applied to determine major (Al, Fe, K, Mn, Na, P, S, and Si) and <span class="hlt">trace</span> (Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn) <span class="hlt">element</span> bioavailability in a topsoil from the experimental vineyard ("Radmilovac", Belgrade, Serbia). For the first time, the extraction with deionized water during 16 h was tested as an alternative method for isolating bioavailable major and <span class="hlt">trace</span> <span class="hlt">elements</span> from the soil. Concentrations of the <span class="hlt">elements</span> were determined by inductively coupled plasma - optical emission spectroscopy (ICP-OES). The extraction of Cu and S from the soil by deionized water during 16 h extracting, NH4NO3, and CaCl2 indicated that these <span class="hlt">elements</span> could originate from the anthropogenic sources, such as fungicide. In <span class="hlt">addition</span> according to the soil - plant experiment, performed as a preliminary experiment for future studies in vineyards, deionized water was recommended for isolation of bioavailable <span class="hlt">elements</span> from grape seed and grape pulp; CH3COOH, Na2EDTA, CaCl2 and NH4NO3 for grape skin, while for assessment of leaf bioavailable <span class="hlt">elements</span> from soil fraction, aqua regia was recommended. In <span class="hlt">addition</span>, identification of similarities between the plant parts and the plant species were performed. Applying environmental risk assessment formulas, the most polluted vineyard parcel in the vineyard region "Radmilovac" was determined. The leaves of some grapevine species showed the high ability for accumulation some of the potentially toxic <span class="hlt">trace</span> <span class="hlt">elements</span> from the soil.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS33D1503S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS33D1503S"><span>Dissolved and Colloidal <span class="hlt">Trace</span> <span class="hlt">Elements</span> in the Mississippi River Delta Outflow after Hurricanes Katrina and Rita</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shim, M.; Swarzenski, P. W.; Shiller, A. M.</p> <p>2010-12-01</p> <p>The Mississippi River (MR) plays an important role as a major fluvial source of dissolved and particulate materials for the Gulf of Mexico (GOM). This region is periodically disturbed by tropical weather systems including major hurricanes. Such storms have the potential to stir up the normally stratified water column of the Louisiana Shelf and thus can serve as a mechanism for the abrupt termination of seasonal bottom water hypoxia. <span class="hlt">Additionally</span>, strong tropical systems can cause the resuspension of shelf bottom sediments which could result in the injection of <span class="hlt">trace</span> <span class="hlt">elements</span> into the water column. In the summer of 2005, two major hurricanes, Katrina and Rita, passed over the Louisiana Shelf within a month of each other. Three weeks after Rita, we participated in a survey of the waters of the Mississippi River delta outflow, examining the distributions of <span class="hlt">trace</span> <span class="hlt">elements</span> (including Ba, Co, Cr, Cs, Cu, Fe, Mn, Ni, Re, U, V, and Zn) in a comparison with previous results in this area. We indeed observed that there was limited stratification on the shelf and that bottom waters were no longer hypoxic. This resulted, for instance, in bottom water dissolved Mn being lower than is typically observed during hypoxia, but with concentrations still compatible with Mn-O2 trends previously reported. Interestingly, for no <span class="hlt">element</span> were we able to identify an obvious effect of sediment resuspension on its distribution. In general, <span class="hlt">elemental</span> distributions were compatible with previous observations in the Mississippi outflow system. Co and Re, which have not been reported for this system previously, showed behavior consistent with other systems: input for Co likely from desorption and conservative mixing for Re. For Cs, an <span class="hlt">element</span> for which there is little information regarding its estuarine behavior, conservative mixing was also observed. Our filtration method, which allowed us to distinguish the dissolved (<0.02 µm) from colloidal (0.02 - 0.45 µm) phase, revealed significant</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1257639','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1257639"><span>Optimizing detector geometry for <span class="hlt">trace</span> <span class="hlt">element</span> mapping by X-ray fluorescence</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan</p> <p>2015-01-01</p> <p>We report that <span class="hlt">trace</span> metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of <span class="hlt">trace</span> metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit <span class="hlt">trace</span> <span class="hlt">element</span> detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a <span class="hlt">trace</span> <span class="hlt">element</span> is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain <span class="hlt">elemental</span> concentration. We apply this model to the detection of <span class="hlt">trace</span> amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for <span class="hlt">trace</span> <span class="hlt">element</span> detection in thick samples, while the larger detector in 180° geometry is better suited to <span class="hlt">trace</span> <span class="hlt">element</span> detection in thin samples.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4793152','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4793152"><span>Optimizing detector geometry for <span class="hlt">trace</span> <span class="hlt">element</span> mapping by X-ray fluorescence</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan</p> <p>2016-01-01</p> <p><span class="hlt">Trace</span> metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of <span class="hlt">trace</span> metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit <span class="hlt">trace</span> <span class="hlt">element</span> detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a <span class="hlt">trace</span> <span class="hlt">element</span> is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain <span class="hlt">elemental</span> concentration. We apply this model to the detection of <span class="hlt">trace</span> amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for <span class="hlt">trace</span> <span class="hlt">element</span> detection in thick samples, while the larger detector in 180° geometry is better suited to <span class="hlt">trace</span> <span class="hlt">element</span> detection in thin samples. PMID:25600825</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1257639-optimizing-detector-geometry-trace-element-mapping-ray-fluorescence','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1257639-optimizing-detector-geometry-trace-element-mapping-ray-fluorescence"><span>Optimizing detector geometry for <span class="hlt">trace</span> <span class="hlt">element</span> mapping by X-ray fluorescence</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; ...</p> <p>2015-01-01</p> <p>We report that <span class="hlt">trace</span> metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of <span class="hlt">trace</span> metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit <span class="hlt">trace</span> <span class="hlt">element</span> detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimat