Sample records for additional trace gas

  1. Linking genes to ecosystem trace gas fluxes in a large-scale model system

    NASA Astrophysics Data System (ADS)

    Meredith, L. K.; Cueva, A.; Volkmann, T. H. M.; Sengupta, A.; Troch, P. A.

    2017-12-01

    Soil microorganisms mediate biogeochemical cycles through biosphere-atmosphere gas exchange with significant impact on atmospheric trace gas composition. Improving process-based understanding of these microbial populations and linking their genomic potential to the ecosystem-scale is a challenge, particularly in soil systems, which are heterogeneous in biodiversity, chemistry, and structure. In oligotrophic systems, such as the Landscape Evolution Observatory (LEO) at Biosphere 2, atmospheric trace gas scavenging may supply critical metabolic needs to microbial communities, thereby promoting tight linkages between microbial genomics and trace gas utilization. This large-scale model system of three initially homogenous and highly instrumented hillslopes facilitates high temporal resolution characterization of subsurface trace gas fluxes at hundreds of sampling points, making LEO an ideal location to study microbe-mediated trace gas fluxes from the gene to ecosystem scales. Specifically, we focus on the metabolism of ubiquitous atmospheric reduced trace gases hydrogen (H2), carbon monoxide (CO), and methane (CH4), which may have wide-reaching impacts on microbial community establishment, survival, and function. Additionally, microbial activity on LEO may facilitate weathering of the basalt matrix, which can be studied with trace gas measurements of carbonyl sulfide (COS/OCS) and carbon dioxide (O-isotopes in CO2), and presents an additional opportunity for gene to ecosystem study. This work will present initial measurements of this suite of trace gases to characterize soil microbial metabolic activity, as well as links between spatial and temporal variability of microbe-mediated trace gas fluxes in LEO and their relation to genomic-based characterization of microbial community structure (phylogenetic amplicons) and genetic potential (metagenomics). Results from the LEO model system will help build understanding of the importance of atmospheric inputs to

  2. The Reanalysis for Stratospheric Trace-gas Studies

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Li, Shuhua

    2002-01-01

    In order to re-examine trace gas transport in the middle atmosphere for the period May 1991 until April 1995, a "reanalysis" is being performed using an up-to-date version of the DAO's "GEOS" assimilation system. The Reanalysis for Stratospheric Trace-gas Studies (ReSTS) is intended to provide state-of-the-art estimates of the atmosphere during a period when the Upper Atmospheric Research Satellite provided a high density of trace-gas observations, and when the aerosol loading from the eruption of Mount Pinatubo contaminated the lower stratosphere, at the same time performing a natural tracer transport experiment. This study will present the first results from ReSTS, focussing on the improvements over the meteorological analyses produced by the then-operational GEOS-1 data assimilation system; emphasis will be placed on the improved representations of physical processes between GEOS-1 and the current GEOS-4 systems, highlighting the transport properties of the datasets. Alongside the production of a comprehensive atmospheric dataset, important components of ReSTS include performing sensitivity studies to the formulation of the assimilation system (including the representation of physical processes in the GCM, such as feedbacks between ozone/aerosols and meteorology) and to the inclusion of additional data types (including limb-sounding temperature data alongside the TOVS observations). Impacts of some of these factors on the analyzed meteorology and transport will be discussed. Of particular interest are attempts to determine the relative importance of various steps in the assimilation process to the quality of the final analyses.

  3. Trace Gas Analyzer (TGA) program

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design, fabrication, and test of a breadboard trace gas analyzer (TGA) is documented. The TGA is a gas chromatograph/mass spectrometer system. The gas chromatograph subsystem employs a recirculating hydrogen carrier gas. The recirculation feature minimizes the requirement for transport and storage of large volumes of carrier gas during a mission. The silver-palladium hydrogen separator which permits the removal of the carrier gas and its reuse also decreases vacuum requirements for the mass spectrometer since the mass spectrometer vacuum system need handle only the very low sample pressure, not sample plus carrier. System performance was evaluated with a representative group of compounds.

  4. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  5. Sampling and analysis of natural gas trace constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attari, A.; Chao, S.

    1993-09-01

    Major and minor components of natural gas are routinely analyzed by gas chromatography (GC), using a thermal conductivity (TC). The best results obtained by these methods can report no better than 0.01 mole percent of each measured component. Even the extended method of analysis by flame ionization detector (FID) can only improve on the detection limit of hydrocarbons. The gas industry needs better information on all trace constituents of natural gas, whether native or inadvertently added during gas processing that may adversely influence the operation of equipment or the safety of the consumer. The presence of arsenic and mercury inmore » some gas deposits have now been documented in international literature as causing not only human toxicity but also damaging to the field equipment. Yet, no standard methods of sampling and analysis exist to provide this much needed information. In this paper the authors report the results of a three-year program to develop an extensive array of sampling and analysis methods for speciation and measurement of trace constituents of natural gas. A cryogenic sampler operating at near 200 K ({minus}99 F) and at pipeline pressures up to 12.4 {times} 10{sup 6}Pa (1800 psig) has been developed to preconcentrate and recover all trace constituents with boiling points above butanes. Specific analytical methods have been developed for speciating and measurement of many trace components (corresponding to US EPA air toxics) by GC-AED and GC-MS, and for determining various target compounds by other techniques. Moisture, oxygen and sulfur contents are measured on site using dedicated field instruments. Arsenic, mercury and radon are sampled by specific solid sorbents for subsequent laboratory analysis.« less

  6. Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection

    PubMed Central

    Elia, Angela; Di Franco, Cinzia; Lugarà, Pietro Mario; Scamarcio, Gaetano

    2006-01-01

    Various applications, such as pollution monitoring, toxic-gas detection, non invasive medical diagnostics and industrial process control, require sensitive and selective detection of gas traces with concentrations in the parts in 109 (ppb) and sub-ppb range. The recent development of quantum-cascade lasers (QCLs) has given a new aspect to infrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLs are attractive spectroscopic sources because of their excellent properties in terms of narrow linewidth, average power and room temperature operation. In combination with these laser sources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity, compact sensor platform, fast time-response and user friendly operation. This paper reports recent developments on quantum cascade laser-based photoacoustic spectroscopy for trace gas detection. In particular, different applications of a photoacoustic trace gas sensor employing a longitudinal resonant cell with a detection limit on the order of hundred ppb of ozone and ammonia are discussed. We also report two QC laser-based photoacoustic sensors for the detection of nitric oxide, for environmental pollution monitoring and medical diagnostics, and hexamethyldisilazane, for applications in semiconductor manufacturing process.

  7. Online Continuous Trace Process Analytics Using Multiplexing Gas Chromatography.

    PubMed

    Wunsch, Marco R; Lehnig, Rudolf; Trapp, Oliver

    2017-04-04

    The analysis of impurities at a trace level in chemical products, nutrition additives, and drugs is highly important to guarantee safe products suitable for consumption. However, trace analysis in the presence of a dominating component can be a challenging task because of noncompatible linear detection ranges or strong signal overlap that suppresses the signal of interest. Here, we developed a technique for quantitative analysis using multiplexing gas chromatography (mpGC) for continuous and completely automated process trace analytics exemplified for the analysis of a CO 2 stream in a production plant for detection of benzene, toluene, ethylbenzene, and the three structural isomers of xylene (BTEX) in the concentration range of 0-10 ppb. Additional minor components are methane and methanol with concentrations up to 100 ppm. The sample is injected up to 512 times according to a pseudorandom binary sequence (PRBS) with a mean frequency of 0.1 Hz into a gas chromatograph equipped with a flame ionization detector (FID). A superimposed chromatogram is recorded which is deconvoluted into an averaged chromatogram with Hadamard transformation. Novel algorithms to maintain the data acquisition rate of the detector by application of Hadamard transformation and to suppress correlation noise induced by components with much higher concentrations than the target substances are shown. Compared to conventional GC-FID, the signal-to-noise ratio has been increased by a factor of 10 with mpGC-FID. Correspondingly, the detection limits for BTEX in CO 2 have been lowered from 10 to 1 ppb each. This has been achieved despite the presence of detectable components (methane and methanol) with a concentration about 1000 times higher than the target substances. The robustness and reliability of mpGC has been proven in a two-month field test in a chemical production plant.

  8. Impact of trace element additives on anaerobic digestion of sewage sludge with in-situ carbon dioxide sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linville, Jessica L.; Shen, Yanwen; Schoene, Robin P.

    Anaerobic digestion (AD) of sludge at wastewater treatment plants can benefit from addition of essential trace metals such as iron, nickel and cobalt to increase biogas production for utilization in combined heat and power systems, fed into natural gas pipelines or as a vehicle fuel. This study evaluated the impact and benefits of Ni/Co and olivine addition to the digester at mesophilic temperatures. These additions supplement previously reported research in which iron-rich olivine (MgSiO4) was added to sequester CO2 in-situ during batch AD of sludge. Trace element addition has been shown to stimulate and stabilize biogas production and have amore » synergistic effect on the mineral carbonation process. AD with 5% w/v olivine and 1.5 mg/L Ni/Co addition had a 17.3% increase in methane volume, a 6% increase in initial exponential methane production rate and a 56% increase in methane yield (mL CH4/g CODdegraded) compared to the control due to synergistic trace element and olivine addition while maintaining 17.7% CO2 sequestration from olivine addition. Both first-order kinetic modeling and response surface methodology modeling confirmed the combined benefit of the trace elements and olivine addition. These results were significantly higher than previously reported results with olivine addition alone [1].« less

  9. Trace gas emissions from nursery crop production using different fertilizer methods

    USDA-ARS?s Scientific Manuscript database

    Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...

  10. Hollow Waveguide Gas Sensor for Mid-Infrared Trace Gas Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Young, C; Chan, J

    2007-07-12

    A hollow waveguide mid-infrared gas sensor operating from 1000 cm{sup -1} to 4000 cm{sup -1} has been developed, optimized, and its performance characterized by combining a FT-IR spectrometer with Ag/Ag-halide hollow core optical fibers. The hollow core waveguide simultaneously serves as a light guide and miniature gas cell. CH{sub 4} was used as test analyte during exponential dilution experiments for accurate determination of the achievable limit of detection (LOD). It is shown that the optimized integration of an optical gas sensor module with FT-IR spectroscopy provides trace sensitivity at the few hundreds of parts-per-billion concentration range (ppb, v/v) for CH{submore » 4}.« less

  11. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    NASA Technical Reports Server (NTRS)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  12. DISCOVER-AQ Aircraft insitu TraceGas Data (ICT)

    Atmospheric Science Data Center

    2018-03-28

    DISCOVER-AQ Aircraft insitu TraceGas Data (ICT) Project Title:  N/A Platform:  NASA ... Relevant Documents:  DISCOVER-AQ - Airborne Science Data for Atmospheric Composition DISCOVER-AQ - NASA Earth ...

  13. Operational trace gas column observations from GOME-2 on MetOp

    NASA Astrophysics Data System (ADS)

    Valks, Pieter; Hao, Nan; Pinardi, Gaia; Hedelt, Pascal; Liu, Song; Van Roozendael, Michel; De Smedt, Isabelle; Theys, Nicolas; Koukouli, MariLiza; Balis, Dimitris

    2017-04-01

    This contribution focuses on the operational GOME-2 trace gas column products developed in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Composition Monitoring (AC-SAF). We present an overview of the retrieval algorithms for ozone, OClO, NO2, SO2 and formaldehyde, and we show examples of various applications such as air quality and climate monitoring, using observations from the GOME-2 instruments on MetOp-A and MetOp-B. Total ozone and the minor trace gas columns from GOME-2 are retrieved with the latest version 4.8 of the GOME Data Processor (GDP), which uses an optimized Differential Optical Absorption Spectroscopy (DOAS) algorithm, with air mass factor conversions based on the LIDORT model. Improved total and tropospheric NO2 columns are retrieved in the visible wavelength region between 425 and 497 nm. SO2 emissions from volcanic and anthropogenic sources can be measured by GOME-2 using the UV wavelength region around 320 nm. For formaldehyde, an optimal DOAS fitting window around 335 nm has been determined for GOME-2. The GOME-2 trace gas columns have reached the operational EUMETSAT product status, and are available to the users in near real time (within two hours after sensing by GOME-2). The use of trace gas observations from the GOME-2 instruments on MetOp-A and MetOp-B for air quality purposed will be illustrated, e.g. for South-East Asia and Europe. Furthermore, comparisons of the GOME-2 satellite observations with ground-based measurements will be shown. Finally, the use of GOME-2 trace-gas column data in the Copernicus Atmosphere Monitoring Service (CAMS) will be presented.

  14. Effects of fertilizer placement on trace gas emissions from nursery container production

    USDA-ARS?s Scientific Manuscript database

    Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...

  15. Methane Trace-Gas Sensing Enabled by Silicon Photonic Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, William

    Fugitive methane leaks occurring during extraction at typical natural gas wells have an adverse environmental impact due to the methane’s large radiative forcing, in addition to reducing the producer’s overall efficiency and cost. Mitigation of these concerns can benefit from cost-effective sensor nodes, performing reliable, rapid and continuous tracking of methane emissions. The efficacy of laser spectroscopy has been widely demonstrated in both environmental and medical applications due to its sensitivity and specificity to the target analyte. However, the present cost and lack of manufacturing scalability of traditional free-space optical systems can limit their viability for deployment in economical wide-areamore » sensor networks. This presentation will review the development and performance of a cost-effective silicon photonic trace gas sensing platform that leverages silicon photonic waveguide and packaging technologies to perform on-chip evanescent field spectroscopy of methane.« less

  16. Effects of fertilizer placement on trace gas emissions from container-grown plant production

    USDA-ARS?s Scientific Manuscript database

    Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...

  17. Trace gas detection in hyperspectral imagery using the wavelet packet subspace

    NASA Astrophysics Data System (ADS)

    Salvador, Mark A. Z.

    This dissertation describes research into a new remote sensing method to detect trace gases in hyperspectral and ultra-spectral data. This new method is based on the wavelet packet transform. It attempts to improve both the computational tractability and the detection of trace gases in airborne and spaceborne spectral imagery. Atmospheric trace gas research supports various Earth science disciplines to include climatology, vulcanology, pollution monitoring, natural disasters, and intelligence and military applications. Hyperspectral and ultra-spectral data significantly increases the data glut of existing Earth science data sets. Spaceborne spectral data in particular significantly increases spectral resolution while performing daily global collections of the earth. Application of the wavelet packet transform to the spectral space of hyperspectral and ultra-spectral imagery data potentially improves remote sensing detection algorithms. It also facilities the parallelization of these methods for high performance computing. This research seeks two science goals, (1) developing a new spectral imagery detection algorithm, and (2) facilitating the parallelization of trace gas detection in spectral imagery data.

  18. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring

    PubMed Central

    Wu, Hongpeng; Dong, Lei; Zheng, Huadan; Yu, Yajun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang; Tittel, Frank K.

    2017-01-01

    Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a sensitive gas detection technique which requires frequent calibration and has a long response time. Here we report beat frequency (BF) QEPAS that can be used for ultra-sensitive calibration-free trace-gas detection and fast spectral scan applications. The resonance frequency and Q-factor of the quartz tuning fork (QTF) as well as the trace-gas concentration can be obtained simultaneously by detecting the beat frequency signal generated when the transient response signal of the QTF is demodulated at its non-resonance frequency. Hence, BF-QEPAS avoids a calibration process and permits continuous monitoring of a targeted trace gas. Three semiconductor lasers were selected as the excitation source to verify the performance of the BF-QEPAS technique. The BF-QEPAS method is capable of measuring lower trace-gas concentration levels with shorter averaging times as compared to conventional PAS and QEPAS techniques and determines the electrical QTF parameters precisely. PMID:28561065

  19. Nanofiber-net-binary structured membranes for highly sensitive detection of trace HCl gas

    NASA Astrophysics Data System (ADS)

    Wang, Xianfeng; Wang, Jialin; Si, Yang; Ding, Bin; Yu, Jianyong; Sun, Gang; Luo, Wenjing; Zheng, Gang

    2012-11-01

    This work describes the detection of trace hydrogen chloride (HCl) gas through analyses of the resonance frequency signal from quartz crystal microbalance (QCM) sensors coated with polyaniline (PANI) functionalized polyamide 6 (PA 6) (PANI-PA 6) nanofiber-net-binary (NNB) structured membranes. The PA 6 NNB substrate comprising nanofibers and spider-web-like nano-nets fabricated by a versatile electro-spinning/netting (ESN) process offered an ideal interface for the uniform PANI functionalization and enhanced sensing performance. Benefiting from the large specific surface area, high porosity, and strong adhesive force to the QCM electrode of the PANI-PA 6 NNB membranes, the developed HCl-selective sensors exhibited a rapid response, good reproducibility and stability, and low detection limit (7 ppb) at room temperature. Additionally, the PANI-PA 6 NNB sensing membranes presented visible color changes upon cycled exposure to HCl and ammonia, suggesting their potential application in the development of colorimetric sensors. The PANI-PA 6 NNB coated QCM sensors are considered to be a promising candidate for trace HCl gas detection in practical applications.

  20. Trace Gas Retrievals from the GeoTASO Aircraft Instrument

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.

  1. Scaling up in the face of uncertainty - controls on trace gas fluxes in heterogeneous landscapes (Invited)

    NASA Astrophysics Data System (ADS)

    Bernhardt, E. S.; Helton, A. M.; Morse, J. L.; Poole, G. C.

    2013-12-01

    Wetlands are the dominant natural source of methane to the global atmosphere and can be important sites of either N2O emission or consumption. Changes in the spatial extent or inundation frequency and duration may lead to substantial shifts in the contribution of wetland ecosystems to global CH4 and N2O emissions. Trace gases are produced at the scale of individual microbes, each of which respond dynamically to the local availability of electron donors and acceptors. Within landscape patches, substrate supply and redox conditions are strongly controlled by variation in water table elevation and vertical hydrologic exchange. At the landscape scale, lateral exchange between patches and the extent and duration of inundation. Accurate estimates of trace gas emissions from wetlands are hard to estimate given the dynamic patterns of redox potential within the soil column and across the landscape that redistribute electron donors and acceptors both vertically and laterally. In five years of trace gas flux measurement and modeling at TOWER, a 440 ha restored wetland in coastal NC, we have developed both simulation and statistical models to estimate landscape level trace gas fluxes. Yet, because trace gas emissions are highly variable in both time and space, our qualitative and quantitative attempts at upscaling trace gas emissions typically generate estimates with extremely high uncertainty. In this talk we will explore the challenges inherent to the estimation of landscape scale trace gas fluxes at the scale of our individual ecosystem as well as the difficulties in extrapolating across multiple ecosystem studies.

  2. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species

    NASA Astrophysics Data System (ADS)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-08-01

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH4 and also identify fugitive urban CH4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  3. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace-gas and criteria pollutant species

    NASA Astrophysics Data System (ADS)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-01-01

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the surface 50 m has the greatest direct impacts on human health as well as ecosystem processes, hence data at this level is necessary for addressing carbon cycle and public health related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We identify fugitive urban CH4 emissions and assess the magnitude of CH4 emissions from known point sources. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  4. Stoichiometry and kinetics of the anaerobic ammonium oxidation (Anammox) with trace hydrazine addition.

    PubMed

    Yao, Zongbao; Lu, Peili; Zhang, Daijun; Wan, Xinyu; Li, Yulian; Peng, Shuchan

    2015-12-01

    Purpose of this study is to investigate the stoichiometry and kinetics of anaerobic ammonium oxidation (Anammox) with trace hydrazine addition. The stoichiometry was established based on the electron balance of Anammox process with trace N2H4 addition. The stoichiometric coefficients were determined by the proton consumption and the changes in substrates and products. It was found that trace N2H4 addition can increase the yield of Anammox bacteria (AnAOB) and reduce NO3(-) yield, which enhances the Anammox. Subsequently, kinetic model of Anammox with trace N2H4 addition was developed, and the parameters of the anaerobic degradation model of N2H4 were obtained for the first time. The maximum specific substrate utilization rate, half-saturation constant and inhibition constant of N2H4 were 25.09mgN/g VSS/d, 10.42mgN/L and 1393.88mgN/L, respectively. These kinetic parameters might provide important information for the engineering applications of Anammox with trace N2H4 addition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Chirped Laser Dispersion Spectroscopy for Remote Open-Path Trace-Gas Sensing

    PubMed Central

    Nikodem, Michal; Wysocki, Gerard

    2012-01-01

    In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented. PMID:23443389

  6. Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.

    PubMed

    Nikodem, Michal; Wysocki, Gerard

    2012-11-28

    In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented.

  7. Determining trace gas flux from container-grown woody ornamentals

    USDA-ARS?s Scientific Manuscript database

    In recent years, anthropogenic climate change and its effects on the global environment has garnered significant attention from the scientific community. Increased trace gas emissions (CO2, CH4, and N2O) are widely believed to be the driving force behind global warming. Agriculture is a large contri...

  8. Trace gas emissions from the marine biosphere.

    PubMed

    Liss, Peter S

    2007-07-15

    A wide variety of trace gases (e.g. dimethyl sulphide, organohalogens, ammonia, non-methane and oxygenated hydrocarbons, volatile oxygenated organics and nitrous oxide) are formed in marine waters by biological and photochemical processes. This leads in many, but not all, cases to supersaturation of the water relative to marine air concentrations and a net flux of trace gas to the atmosphere. Since the gases are often in their reduced forms in the water, once in the atmosphere they are subject to oxidation by photolysis or radical attack to form chemically reactive species that can affect the oxidizing capacity of the air. They can also lead to the formation of new particles or the growth of existing ones that can then contribute to both direct and indirect (via the formation of cloud condensation nuclei) aerosol effects on climate. These cycles are discussed with respect to their impacts on the chemistry of the atmosphere, climate and human health. This whole topic was the subject of an extensive review (Nightingale & Liss 2003 In Treatise in geochemistry (eds H. D. Holland & K. K. Turekian), pp. 49-81) and what will be attempted here is a brief update of the earlier paper. There is no attempt to be comprehensive either in terms of gases covered or to give a complete review of all the recent literature. It is a personal view of recent advances both from my own research group as well as significant work from others. Questions raised at the meeting 'Trace gas biogeochemistry and global change' are dealt with at appropriate places in the text (rather than at the end of the piece). Discussion of each of the gases or group of gases is given in the following separate sections.

  9. Co-digestion of manure and industrial waste--The effects of trace element addition.

    PubMed

    Nordell, Erik; Nilsson, Britt; Nilsson Påledal, Sören; Karisalmi, Kaisa; Moestedt, Jan

    2016-01-01

    Manure is one of the most common substrates for biogas production. Manure from dairy- and swine animals are often considered to stabilize the biogas process by contributing nutrients and trace elements needed for the biogas process. In this study two lab-scale reactors were used to evaluate the effects of trace element addition during co-digestion of manure from swine- and dairy animals with industrial waste. The substrate used contained high background concentrations of both cobalt and nickel, which are considered to be the most important trace elements. In the reactor receiving additional trace elements, the volatile fatty acids (VFA) concentration was 89% lower than in the control reactor. The lower VFA concentration contributed to a more digested digestate, and thus lower methane emissions in the subsequent storage. Also, the biogas production rate increased with 24% and the biogas production yield with 10%, both as a result of the additional trace elements at high organic loading rates. All in all, even though 50% of the feedstock consisted of manure, trace element addition resulted in multiple positive effects and a more reliable process with stable and high yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Applications of Kalman filtering to real-time trace gas concentration measurements

    NASA Technical Reports Server (NTRS)

    Leleux, D. P.; Claps, R.; Chen, W.; Tittel, F. K.; Harman, T. L.

    2002-01-01

    A Kalman filtering technique is applied to the simultaneous detection of NH3 and CO2 with a diode-laser-based sensor operating at 1.53 micrometers. This technique is developed for improving the sensitivity and precision of trace gas concentration levels based on direct overtone laser absorption spectroscopy in the presence of various sensor noise sources. Filter performance is demonstrated to be adaptive to real-time noise and data statistics. Additionally, filter operation is successfully performed with dynamic ranges differing by three orders of magnitude. Details of Kalman filter theory applied to the acquired spectroscopic data are discussed. The effectiveness of this technique is evaluated by performing NH3 and CO2 concentration measurements and utilizing it to monitor varying ammonia and carbon dioxide levels in a bioreactor for water reprocessing, located at the NASA-Johnson Space Center. Results indicate a sensitivity enhancement of six times, in terms of improved minimum detectable absorption by the gas sensor.

  11. Understanding Biogenic and Anthropogenic Trace Gas Variations Measured Near Cool, CA in June 2010

    NASA Astrophysics Data System (ADS)

    Klein, B. Z.; Flowers, B. A.; Gorkowski, K.; Dubey, M. K.; Knighton, W. B.; Floerchinger, C.; Herndon, S. C.; Fast, J. D.; Zaveri, R. A.

    2011-12-01

    Trace gas signatures produced by forested and urban areas differ greatly. Forested areas are dominated by gases produced during photosynthesis and respiration: CO2 and volatile organic compounds (VOCs) including terpenes and isoprene. Urban areas are heavily influenced by vehicle exhaust emissions and have elevated levels of CO, NOx and aromatic hydrocarbons such as benzene. Ozone is produced as a byproduct of both of these sources; it is produced when NOx from urban areas reacts with either anthropogenic or biogenic hydrocarbons. The Carbonaceous Aerosol and Radiative Effects Study (CARES) campaign was conducted during June 2010, in part to observe the evolution of urban air masses as they mix into rural locations and to better understand anthropogenic-biogenic photochemical interactions. The campaign included two ground-based sampling sites, one in Sacramento, CA (T0) and one downwind, approximately 70km NE, rurally located near Cool, CA (T1). In situ measurements of CO2, CO, O3, NO and multiple different VOCs were performed at the T1 site during the study, and are analyzed here to gain insights into the chemistry and transport of these trace gases. Comparisons between these trace gases coupled with transport modeling is used to delineate biogenic and anthropogenic sources. Additionally, comparisons between trace gases produced predominately by biogenic sources provide valuable information on how meteorology affects their production. Two atmospheric models (HYSPLIT back-trajectories and WRF forecasts) are used to predict transport episodes, where polluted air masses from the Sacramento or more distant San Francisco areas are transported to Cool. The two models display significant overlap for eleven different transport episodes during the study period. Both models also agree on two transport-free multiple-day periods. By examining the periods during which the models are in agreement, we are able to characterize with high certainty the trace gas signatures of local

  12. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    PubMed

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-03

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species

    DOE PAGES

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; ...

    2015-08-26

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous,more » on-road synchronous measurements of CO 2, CO, CH 4, H 2O, NO x, O 3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH 4 and also identify fugitive urban CH 4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.« less

  14. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous,more » on-road synchronous measurements of CO 2, CO, CH 4, H 2O, NO x, O 3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH 4 and also identify fugitive urban CH 4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.« less

  15. Dual-wavelength quantum cascade laser for trace gas spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jágerská, J.; Tuzson, B.; Mangold, M.

    2014-10-20

    We demonstrate a sequentially operating dual-wavelength quantum cascade laser with electrically separated laser sections, emitting single-mode at 5.25 and 6.25 μm. Based on a single waveguide ridge, this laser represents a considerable asset to optical sensing and trace gas spectroscopy, as it allows probing multiple gas species with spectrally distant absorption features using conventional optical setups without any beam combining optics. The laser capability was demonstrated in simultaneous NO and NO{sub 2} detection, reaching sub-ppb detection limits and selectivity comparable to conventional high-end spectroscopic systems.

  16. A photoacoustic spectrometer for trace gas detection

    NASA Astrophysics Data System (ADS)

    Telles, E. M.; Bezerra, E.; Scalabrin, A.

    2005-06-01

    A high-resolution external laser photoacoustic spectrometer has been developed for trace gas detection with absorption transitions in coincidence with CO2 laser emission lines (9,2-10,9 μm: 920-1086 cm-1). The CO2 laser operates in 90 CW lines with power of up to 15 W. A PC-controlled step motor can tune the laser lines. The resonance frequency of first longitudinal mode of the photoacoustic cell is at 1600 Hz. The cell Q-factor and cell constant are measured close to 50 and 28 mVcmW-1, respectively. The spectrometer has been tested in preliminary studies to analyze the absorption transitions of ozone (O_3). The ethylene (C_2H_4) from papaya fruit is also investigated using N2 as carrier gas at a constant flow rate.

  17. Chamber measurement of surface-atmosphere trace gas exchange: Numerical evaluation of dependence on soil, interfacial layer, and source/sink properties

    NASA Astrophysics Data System (ADS)

    Hutchinson, G. L.; Livingston, G. P.; Healy, R. W.; Striegl, R. G.

    2000-04-01

    We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere trace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulations showed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steady-state chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.

  18. Trace gas emissions from chaparral and boreal forest fires

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggan, Philip J.; Stocks, Brian J.; Brass, James A.; Ambrosia, Vincent G.

    1989-01-01

    Using smoke samples collected during low-level helicopter flights, the mixing ratios of CO2, CO, CH4, total nonmethane hydrocarbons, H2, and N2O over burning chaparral in southern California and over a burning boreal forest site in northern Ontario, Canada, were determined. Carbon dioxide-normalized emission ratios were determined for each trace gas for conditions of flaming, mixed, and smoldering combustion. The emission ratios for these trace gases were found to be highest for the smoldering combustion, generally thought to be the least efficient combustion stage. However, high emission ratios for these gases could be also produced during very vigorous flaming combustion.

  19. Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector

    PubMed Central

    Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  20. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-07-25

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.

  1. [Remote sensing of atmospheric trace gas by airborne passive FTIR].

    PubMed

    Gao, Min-quang; Liu, Wen-qing; Zhang, Tian-shu; Liu, Jian-guo; Lu, Yi-huai; Wang, Ya-ping; Xu, Liang; Zhu, Jun; Chen, Jun

    2006-12-01

    The present article describes the details of aviatic measurement for remote sensing trace gases in atmosphere under various surface backgrounds with airborne passive FTIR. The passive down viewing and remote sensing technique used in the experiment is discussed. The method of acquiring atmospheric trace gases infrared characteristic spectra in complicated background and the algorithm of concentration retrieval are discussed. The concentrations of CO and N2O of boundary-layer atmosphere in experimental region below 1000 m are analyzed quantitatively. This measurement technique and the data analysis method, which does not require a previously measured background spectrum, allow fast and mobile remote detection and identification of atmosphere trace gas in large area, and also can be used for urgent monitoring of pollution accidental breakout.

  2. Miniature Tunable Laser Spectrometer for Detection of a Trace Gas

    NASA Technical Reports Server (NTRS)

    Christensen, Lance E. (Inventor)

    2017-01-01

    An open-path laser spectrometer (OPLS) for measuring a concentration of a trace gas, the OPLS including an open-path multi-pass analysis region including a first mirror, a second mirror at a distance and orientation from the first mirror, and a support structure for locating the mirrors, a laser coupled to the analysis region and configured to emit light of a wavelength range and to enable a plurality of reflections of the emitted light between the mirrors, a detector coupled to the analysis region and configured to detect a portion of the emitted light impinging on the detector and to generate a corresponding signal, and an electronic system coupled to the laser and the detector, and configured to adjust the wavelength range of the emitted light from the laser based on the generated signal, and to measure the concentration of the trace gas based on the generated signal.

  3. Miniature Trace Gas Detector Based on Microfabricated Optical Resonators

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Yu, Nan; Thompson, Robert J.; Strekalov, Dmitry V.

    2013-01-01

    While a variety of techniques exist to monitor trace gases, methods relying on absorption of laser light are the most commonly used in terrestrial applications. Cavity-enhanced absorption techniques typically use high-reflectivity mirrors to form a resonant cavity, inside of which a sample gas can be analyzed. The effective absorption length is augmented by the cavity's high quality factor, or Q, because the light reflects many times between the mirrors. The sensitivity of such mirror-based sensors scales with size, generally making them somewhat bulky in volume. Also, specialized coatings for the high-reflectivity mirrors have limited bandwidth (typically just a few nanometers), and the delicate mirror surfaces can easily be degraded by dust or chemical films. As a highly sensitive and compact alternative, JPL is developing a novel trace gas sensor based on a monolithic optical resonator structure that has been modified such that a gas sample can be directly injected into the cavity. This device concept combines ultra-high Q optical whispering gallery mode resonators (WGMR) with microfabrication technology used in the semiconductor industry. For direct access to the optical mode inside a resonator, material can be precisely milled from its perimeter, creating an open gap within the WGMR. Within this open notch, the full optical mode of the resonator can be accessed. While this modification may limit the obtainable Q, calculations show that the reduction is not significant enough to outweigh its utility for trace gas detection. The notch can be milled from the high- Q crystalline WGMR with a focused ion beam (FIB) instrument with resolution much finer than an optical wavelength, thereby minimizing scattering losses and preserving the optical quality. Initial experimental demonstrations have shown that these opened cavities still support high-Q whispering gallery modes. This technology could provide ultrasensitive detection of a variety of molecular species in an

  4. Trace Gas Retrievals from the GeoTASO Aircraft Instrument During the DISCOVER-AQ Campaigns

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Kaptchen, P. F.; Loughner, C.; Follette-Cook, M. B.; Pickering, K. E.

    2014-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a recently-developed passive remote sensing instrument capable of making 2-D measurements of trace gases from aircraft. GeoTASO was developed under NASA's Instrument Incubator program and is a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey and the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite missions. The instrument collects spectra of backscattered UV-visible radiation for the detection of tropospheric trace gases such as NO2, ozone, formaldehyde and SO2. GeoTASO flew on the NASA HU-25C Falcon aircraft during the 2013 (Texas) and 2014 (Colorado) DISCOVER-AQ field campaigns, making satellite-analog measurements of trace gases at a spatial resolution of approximately 500x500 m over urban areas, power plants and other industrial sources of pollution. We present the GeoTASO retrieval algorithms, trace gas measurement results, and validation comparisons with ground-based observations and other aircraft instruments during these campaigns.

  5. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  6. Chamber measurement of surface-atmosphere trace gas exchange--Numerical evaluation of dependence on soil interfacial layer, and source/sink products

    USGS Publications Warehouse

    Hutchinson, G.L.; Livingston, G.P.; Healy, R.W.; Striegl, Robert G.

    2000-01-01

    We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere tace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulationshowed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steadystate chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.

  7. Enabling chip-scale trace gas sensing systems with silicon photonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, William

    Tunable laser trace-gas spectroscopy has been effectively used in both environmental and medical applications, for its sensitivity and specificity. We’ll describe how contemporary silicon photonics manufacturing and assembly are leveraged for a cost-effective miniaturized spectroscopic sensor platform, and outline uses in fugitive methane emissions monitoring.

  8. Irrigation and fertilizer placement effects on trace gas emissions from an ornamental crop

    USDA-ARS?s Scientific Manuscript database

    Agriculture is a large contributor of trace gas emissions and much of the work on reducing greenhouse gas (GHG) emissions has focused on row crops, pastures, forestry, and animal production systems; however, little emphasis has been placed on specialty crop industries such as horticulture. A horticu...

  9. An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.

    1991-01-01

    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.

  10. Seasonal Trace Gas Dynamics on Minerotrophic Fen Peatlands in NE-Germany

    NASA Astrophysics Data System (ADS)

    Giebels, Michael; Beyer, Madlen; Augustin, Jürgen; Minke, Merten; Juszczak, Radoszlav; Serba, Tomasz

    2010-05-01

    In Germany more than 99 % of fens have lost their carbon and nutrient sink function due to heavy drainage and agricultural land use especially during the last decades and thus resulted in compression and heavy peat loss (CHARMAN 2002; JOOSTEN & CLARKE 2002; SUCCOW & JOOSTEN 2001; AUGUSTIN et al. 1996; KUNTZE 1993). Therefore fen peatlands play an important part (4-5 %) in the national anthropogenic trace gas budget. But only a small part of drained and agricultural used fens in NE Germany can be restored. Knowledge of the influence of land use to trace gas exchange is important for mitigation of the climate impact of the anthropogenic peatland use. We study carbon exchanges of several fen peatland use areas between soil and atmosphere at different sites in NE-Germany. Our research covers peatlands of supposed strongly climate forcing land use (cornfield and intensive pasture) and of probably less forcing, alternative types (meadow and extensive pasture) as well as rewetted (formerly drained) areas and near-natural sites like a low-degraded fen and a wetted alder woodland. We measured trace gas fluxes with manual and automatic chambers in periodic routines since spring 2007. The used chamber technique bases on DROESLER (2005). In total we now do research at 22 sites situated in 5 different locations covering agricultural, varying states of rewetted and near-natural treatments. We present results of at least 2 years of measurements and show significant differences in their annual trace gas balances depending on the genesis of the observed sites and the seasonal dynamics. Crosswise comparison of different site treatments combined with the seasonal environmental observations give good hints for the identification of main flux driving parameters. That is that a reduced intensity in land use as a supposed mitigating treatment did not show the expected effect, though a normal meadow treatment surprisingly resulted in the lowest balances in both years. For implementing a

  11. Formaldehyde in Absorption: Tracing Molecular Gas in Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Dollhopf, Niklaus M.; Donovan Meyer, Jennifer

    2016-01-01

    Early-Type Galaxies (ETGs) have been long-classified as the red, ellipsoidal branch of the classic Hubble tuning fork diagram of galactic structure. In part with this classification, ETGs are thought to be molecular and atomic gas-poor with little to no recent star formation. However, recent efforts have questioned this ingrained classification. Most notably, the ATLAS3D survey of 260 ETGs within ~40 Mpc found 22% contain CO, a common tracer for molecular gas. The presence of cold molecular gas also implies the possibility for current star formation within these galaxies. Simulations do not accurately predict the recent observations and further studies are necessary to understand the mechanisms of ETGs.CO traces molecular gas starting at densities of ~102 cm-3, which makes it a good tracer of bulk molecular gas, but does little to constrain the possible locations of star formation within the cores of dense molecular gas clouds. Formaldehyde (H2CO) traces molecular gas on the order of ~104 cm-3, providing a further constraint on the location of star-forming gas, while being simple enough to possibly be abundant in gas-poor ETGs. In cold molecular clouds at or above ~104 cm-3 densities, the structure of formaldehyde enables a phenomenon in which rotational transitions have excitation temperatures driven below the temperature of the cosmic microwave background (CMB), ~2.7 K. Because the CMB radiates isotropically, formaldehyde can be observed in absorption, independent of distance, as a tracer of moderately-dense molecular clouds and star formation.This novel observation technique of formaldehyde was incorporated for observations of twelve CO-detected ETGs from the ATLAS3D sample, including NGC 4710 and PGC 8815, to investigate the presence of cold molecular gas, and possible star formation, in ETGs. We present images from the Very Large Array, used in its C-array configuration, of the J = 11,0 - 11,1 transition of formaldehyde towards these sources. We report our

  12. Trace gas emissions from biomass burning in tropical Australian savannas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurst, D.F.; Griffith, D.W.T.; Cook, G.D.

    1994-08-20

    The trace gas emissions of biomass burning was measured during the 1991 and 1992 dry seasons (April through October) at the Kapalga Research Station in Kakadu National Park, Northern Territory, Australia. Over 100 smoke samples from savannah fires were collected, from the ground and from aircraft flying at 50 to 700 meters above the fires. The samples were analyzed for carbon dioxide, carbon monoxide, nitrous oxides, and other carbon and nitrogen compounds using gas phase Fourier transform infrared (FTIR) spectroscopy, matrix isolation FTIR spectroscopy, and chemiluminescence techniques. This paper describes the results of the gas analyses and discusses the potentialmore » impacts of these gases on regional atmospheric chemistry.49 refs., 4 figs., 7 tabs.« less

  13. Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis.

    PubMed

    Chen, Bing; Sun, Yu R; Zhou, Ze-Yi; Chen, Jian; Liu, An-Wen; Hu, Shui-Ming

    2014-11-10

    A cavity ring-down spectrometer is built for trace gas detection using telecom distributed feedback (DFB) diode lasers. The longitudinal modes of the ring-down cavity are used as frequency markers without active-locking either the laser or the high-finesse cavity. A control scheme is applied to scan the DFB laser frequency, matching the cavity modes one by one in sequence and resulting in a correct index at each recorded spectral data point, which allows us to calibrate the spectrum with a relative frequency precision of 0.06 MHz. Besides the frequency precision of the spectrometer, a sensitivity (noise-equivalent absorption) of 4×10-11  cm-1  Hz-1/2 has also been demonstrated. A minimum detectable absorption coefficient of 5×10-12  cm-1 has been obtained by averaging about 100 spectra recorded in 2  h. The quantitative accuracy is tested by measuring the CO2 concentrations in N2 samples prepared by the gravimetric method, and the relative deviation is less than 0.3%. The trace detection capability is demonstrated by detecting CO2 of ppbv-level concentrations in a high-purity nitrogen gas sample. Simple structure, high sensitivity, and good accuracy make the instrument very suitable for quantitative trace gas analysis.

  14. Variations in soil N cycling and trace gas emissions in wet tropical forests.

    PubMed

    Holtgrieve, Gordon W; Jewett, Peter K; Matson, Pamela A

    2006-01-01

    We used a previously described precipitation gradient in a tropical montane ecosystem of Hawai'i to evaluate how changes in mean annual precipitation (MAP) affect the processes resulting in the loss of N via trace gases. We evaluated three Hawaiian forests ranging from 2200 to 4050 mm year-1 MAP with constant temperature, parent material, ecosystem age, and vegetation. In situ fluxes of N2O and NO, soil inorganic nitrogen pools (NH4+ and NO3-), net nitrification, and net mineralization were quantified four times over 2 years. In addition, we performed 15N-labeling experiments to partition sources of N2O between nitrification and denitrification, along with assays of nitrification potential and denitrification enzyme activity (DEA). Mean NO and N2O emissions were highest at the mesic end of the gradient (8.7+/-4.6 and 1.1+/-0.3 ng N cm-2 h-1, respectively) and total oxidized N emitted decreased with increased MAP. At the wettest site, mean trace gas fluxes were at or below detection limit (trace gas flux from soil through soil redox conditions and the supply of electron donors and acceptors.

  15. Airborne mapping of Seoul's atmosphere: Trace gas measurements from GeoTASO during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Al-Saadi, J. A.; Castellanos, P.; Chance, K.; Gonzalez Abad, G.; Janz, S. J.; Judd, L.; Kowalewski, M. G.; Liu, X.

    2017-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a pushbroom airborne remote sensing instrument capable of making measurements of air quality and ocean color using backscattered UV and visible light. GeoTASO is an airborne test-bed for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, which will measure air quality over North America and Asia, respectively. GeoTASO also acts as a satellite analogue during field campaigns. GeoTASO flew on the NASA Langley Research Center UC-12 aircraft during the Korea-United States Air Quality Study in May-June 2016, collecting spectra over South Korea during 30 flights over 19 flight days. These observations can be used to derive 2-D maps of tropospheric trace gases including ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, nitrous acid and glyoxal below the aircraft at spatial resolutions between 250 m x 250 m and 1 km x 1 km, depending on the gas. We present spatially resolved trace gas retrievals over Seoul and its surrounding industrial regions, and comparisons with correlative satellite and campaign data.

  16. Determining trace gas efflux from container production of woody nursery crops

    USDA-ARS?s Scientific Manuscript database

    In recent years, climate change and its effects on the global environment has garnered significant attention from the scientific community. Increased trace gas emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are widely believed to be the driving force behind global warming. ...

  17. Development of new method of δ13C measurement for trace hydrocarbons in natural gas using solid phase micro-extraction coupled to gas chromatography isotope ratio mass spectrometry.

    PubMed

    Li, Zhongping; Wang, Xibin; Li, Liwu; Zhang, Mingjie; Tao, Mingxin; Xing, Lantian; Cao, Chunhui; Xia, Yanqing

    2014-11-01

    Compound specific isotope analysis (CSIA) of normal-level hydrocarbons (C 1 -C 4 ) in natural gas is often successfully used in natural gas origin identification and classification, but little progress so far has been made for trace level hydrocarbons (C 5 -C 14 ) in natural gas. In this study, we developed a method for rapid analysis of carbon isotopic ratios for trace hydrocarbons in natural gas samples. This method can be described as a combined approach characterized by solid phase micro-extraction (SPME) technique coupled to gas chromatography isotope ratio mass spectrometry (GC/IRMS). In this study, the CAR-PDMS fiber was chosen as the SPME adsorptive material after comparative experiments with other four fibers, and the parameters, including equilibration time, extraction temperature and desorption time, for efficient extraction of trace hydrocarbons were systematically optimized. The results showed the carbon isotopic fractionation was not observed as a function of equilibration time and extraction temperature. And the δ 13 C signatures determined by SPME-GC/IRMS were in good agreement with the known δ 13 C values of C 5 -C 14 measured by GC-IRMS, and the accuracy is generally within ±0.5‰. Five natural gas samples were analyzed using this method, and the δ 13 C values for C 5 -C 14 components were obtained with satisfied repeatability. The SPME-GC/IRMS approach fitted with CAR-PDMS fiber is well suited for the preconcentration of trace hydrocarbons and provides so far the most reliable carbon isotopic analysis for trace compounds in natural gas. Published by Elsevier B.V.

  18. Nitrogen trace gas emissions from a riparian ecosystem in southern Appalachia

    Treesearch

    John T. Walker; Christopher D. Geron; James M. Vose; Wayne T. Swank

    2002-01-01

    In this paper, we present two years of seasonal nitric oxide (NO), ammonia (NH3), and nitrous oxide (N2O) trace gas fluxes measured in a recovering riparian zone with cattle excluded and adjacent riparian zone grazed by cattle. In the recovering riparian zone, average NO, NH3, and N

  19. Improvement and validation of trace gas retrieval from ACAM aircraft observation

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, X.; Kowalewski, M. G.; Janz, S. J.; Gonzalez Abad, G.; Pickering, K. E.; Chance, K.; Lamsal, L. N.

    2014-12-01

    The ACAM (Airborne Compact Atmospheric Mapper) instrument, flown on board the NASA UC-12 aircraft during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaigns, was designed to provide remote sensing observations of tropospheric and boundary layer pollutants and help understand some of the most important pollutants that directly affect the health of the population. In this study, slant column densities (SCD) of trace gases (O3, NO2, HCHO) are retrieved from ACAM measurements during the Baltimore-Washington D.C. 2011 campaign by the Basic Optical Absorption Spectroscopy (BOAS) trace gas fitting algorithm using a nonlinear least-squares (NLLS) inversion technique, and then are converted to vertical column densities (VCDs) using the Air Mass Factors (AMF) calculated with the VLIDORT (Vector Linearized Discrete Ordinate Radiative Transfer) model and CMAQ (Community Multi-scale Air Quality) model simulations of trace gas profiles. For surface treatment in the AMF, we use high-resolution MODIS climatological BRDF product (Bidirectional Reflectance Distribution Function) at 470 nm for NO2, and use high-resolution surface albedo derived by combining MODIS and OMI albedo databases for HCHO and O3. We validate ACAM results with coincident ground-based PANDORA, aircraft (P3B) spiral and satellite (OMI) measurements and find out generally good agreement especially for NO2 and O3

  20. Strong spatial variability in trace gas dynamics following experimental drought in a humid tropical forest

    Treesearch

    Tana Wood; W. L. Silver

    2012-01-01

    [1] Soil moisture is a key driver of biogeochemical processes in terrestrial ecosystems, strongly affecting carbon (C) and nutrient availability as well as trace gas production and consumption in soils. Models predict increasing drought frequency in tropical forest ecosystems, which could feed back on future climate change directly via effects on trace gasdynamics and...

  1. Critical issues in trace gas biogeochemistry and global change.

    PubMed

    Beerling, David J; Nicholas Hewitt, C; Pyle, John A; Raven, John A

    2007-07-15

    The atmospheric composition of trace gases and aerosols is determined by the emission of compounds from the marine and terrestrial biospheres, anthropogenic sources and their chemistry and deposition processes. Biogenic emissions depend upon physiological processes and climate, and the atmospheric chemistry is governed by climate and feedbacks involving greenhouse gases themselves. Understanding and predicting the biogeochemistry of trace gases in past, present and future climates therefore demands an interdisciplinary approach integrating across physiology, atmospheric chemistry, physics and meteorology. Here, we highlight critical issues raised by recent findings in all of these key areas to provide a framework for better understanding the past and possible future evolution of the atmosphere. Incorporating recent experimental and observational findings, especially the influence of CO2 on trace gas emissions from marine algae and terrestrial plants, into earth system models remains a major research priority. As we move towards this goal, archives of the concentration and isotopes of N2O and CH4 from polar ice cores extending back over 650,000 years will provide a valuable benchmark for evaluating such models. In the Pre-Quaternary, synthesis of theoretical modelling with geochemical and palaeontological evidence is also uncovering the roles played by trace gases in episodes of abrupt climatic warming and ozone depletion. Finally, observations and palaeorecords across a range of timescales allow assessment of the Earth's climate sensitivity, a metric influencing our ability to decide what constitutes 'dangerous' climate change.

  2. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  3. Effect of persistent trace compounds in landfill gas on engine performance during energy recovery: a case study.

    PubMed

    Sevimoğlu, Orhan; Tansel, Berrin

    2013-01-01

    Performances of gas engines operated with landfill gas (LFG) are affected by the impurities in the LFG, reducing the economic viability of energy recovery. The purpose of this study was to characterize the trace compounds in the LFG at the Odayeri Landfill, Istanbul, Turkey which is used for energy recovery. Composite gas samples were collected and analyzed for trace compounds (hydrocarbons, siloxanes, and volatile halogenated hydrocarbons) over a 3-year period. Trace compounds entering the gas engines, their impact on the engine performance were evaluated. The operational problems included deposit formation in the combustion chamber, turbocharger, and intercooler of engine before the scheduled maintenance times. High levels of hydrogen sulfide, as well as chlorinated and fluorinated compounds cause corrosion of the engine parts and decrease life of the engine oils. Persistence of siloxanes results in deposit formation, increasing engine maintenance costs. Pretreatment of LFG is necessary to protect the engines at the waste-to-energy facilities with persistence levels of siloxanes and volatile halogenated hydrocarbons. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Trace gas emissions from burning Florida wetlands

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Levine, Joel S.; Winstead, Edward L.; Lebel, Peter J.; Koller, Albert M.; Hinkle, C. Ross

    1990-02-01

    Measurements of biomass burn-produced trace gases are presented that were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide (CO2) normalized emission ratios (ΔX/ΔCO2; V/V; where X is trace gas) for carbon monoxide (CO), hydrogen (H2), methane (CH4), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N2O) were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak (Quercus spp) and saw palmetto (Screnoa repens) were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. We believe that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes (both small-size fuels) burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly diminished.

  5. Gas chromatographic analysis of trace impurities in chlorine trifluoride.

    PubMed

    Laurens, J B; Swinley, J M; de Coning, J P

    2000-03-24

    The gas chromatographic determination of trace gaseous impurities in highly reactive fluorinated gaseous matrices presents unique requirements to both equipment and techniques. Especially problematic are the gases normally present in ambient air namely oxygen and nitrogen. Analysing these gases at the low microl/l (ppm) level requires special equipment and this publication describes a custom-designed system utilising backflush column switching to protect the columns and detectors. A thermal conductivity detector with nickel filaments was used to determine ppm levels of impurities in ClF3.

  6. Trace gas fluxes from a northern mixed-grass prairie interseeded with alfalfa

    USDA-ARS?s Scientific Manuscript database

    The role of legumes in improving soil fertility, forage quantity and quality is well established, however what is less clear is the extent that the nitrogen fixed by legumes may drive increased trace gas emissions. A chronosequence study in native prairie that had been interseed with the legume alfa...

  7. From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere

    NASA Astrophysics Data System (ADS)

    Arneth, A.; Sitch, S.; Bondeau, A.; Butterbach-Bahl, K.; Foster, P.; Gedney, N.; de Noblet-Ducoudré, N.; Prentice, I. C.; Sanderson, M.; Thonicke, K.; Wania, R.; Zaehle, S.

    2010-01-01

    Exchange of non-CO2 trace gases between the land surface and the atmosphere plays an important role in atmospheric chemistry and climate. Recent studies have highlighted its importance for interpretation of glacial-interglacial ice-core records, the simulation of the pre-industrial and present atmosphere, and the potential for large climate-chemistry and climate-aerosol feedbacks in the coming century. However, spatial and temporal variations in trace gas emissions and the magnitude of future feedbacks are a major source of uncertainty in atmospheric chemistry, air quality and climate science. To reduce such uncertainties Dynamic Global Vegetation Models (DGVMs) are currently being expanded to mechanistically represent processes relevant to non-CO2 trace gas exchange between land biota and the atmosphere. In this paper we present a review of important non-CO2 trace gas emissions, the state-of-the-art in DGVM modelling of processes regulating these emissions, identify key uncertainties for global scale model applications, and discuss a methodology for model integration and evaluation.

  8. From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere

    NASA Astrophysics Data System (ADS)

    Arneth, A.; Sitch, S.; Bondeau, A.; Butterbach-Bahl, K.; Foster, P.; Gedney, N.; de Noblet-Ducoudré, N.; Prentice, I. C.; Sanderson, M.; Thonicke, K.; Wania, R.; Zaehle, S.

    2009-07-01

    Exchange of non-CO2 trace gases between the land surface and the atmosphere plays an important role in atmospheric chemistry and climate. Recent studies have highlighted its importance for interpretation of glacial-interglacial ice-core records, the simulation of the pre-industrial and present atmosphere, and the potential for large climate-chemistry and climate-aerosol feedbacks in the coming century. However, spatial and temporal variations in trace gas emissions and the magnitude of future feedbacks are a major source of uncertainty in atmospheric chemistry, air quality and climate science. To reduce such uncertainties Dynamic Global Vegetation Models (DGVMs) are currently being expanded to mechanistically represent processes relevant to non-CO2 trace gas exchange between land biota and the atmosphere. In this paper we present a review of important non-CO2 trace gas emissions, the state-of-the-art in DGVM modelling of processes regulating these emissions, identify key uncertainties for global scale model applications, and discuss a methodology for model integration and evaluation.

  9. Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction

    DOEpatents

    Rosocha, Louis A.

    2006-06-20

    A device for processing gases includes a cylindrical housing in which an electrically grounded, metal injection/extraction gas supply tube is disposed. A dielectric tube surrounds the injection/extraction gas supply tube to establish a gas modification passage therearound. Additionally, a metal high voltage electrode circumscribes the dielectric tube. The high voltage electrode is energizable to create nonthermal electrical microdischarges between the high voltage electrode and the injection/extraction gas supply tube across the dielectric tube within the gas modification passage. An injection/extraction gas and a process gas flow through the nonthermal electrical microdischarges within the gas modification passage and a modified process gas results. Using the device contaminants that are entrained in the process gas can be destroyed to yield a cleaner, modified process gas.

  10. Trace gas retrieval for limb DOAS under changing atmospheric conditions: The X-gas scaling method vs optimal estimation

    NASA Astrophysics Data System (ADS)

    Hueneke, Tilman; Grossmann, Katja; Knecht, Matthias; Raecke, Rasmus; Stutz, Jochen; Werner, Bodo; Pfeilsticker, Klaus

    2016-04-01

    Changing atmospheric conditions during DOAS measurements from fast moving aircraft platforms pose a challenge for trace gas retrievals. Traditional inversion techniques to retrieve trace gas concentrations from limb scattered UV/vis spectroscopy, like optimal estimation, require a-priori information on Mie extinction (e.g., aerosol concentration and cloud cover) and albedo, which determine the atmospheric radiative transfer. In contrast to satellite applications, cloud filters can not be applied because they would strongly reduce the usable amount of expensively gathered measurement data. In contrast to ground-based MAX-DOAS applications, an aerosol retrieval based on O4 is not able to constrain the radiative transfer in air-borne applications due to the rapidly decreasing amount of O4 with altitude. Furthermore, the assumption of a constant cloud cover is not valid for fast moving aircrafts, thus requiring 2D or even 3D treatment of the radiative transfer. Therefore, traditional techniques are not applicable for most of the data gathered by fast moving aircraft platforms. In order to circumvent these limitations, we have been developing the so-called X-gas scaling method. By utilising a proxy gas X (e.g. O3, O4, …), whose concentration is either a priori known or simultaneously in-situ measured as well as remotely measured, an effective absorption length for the target gas is inferred. In this presentation, we discuss the strengths and weaknesses of the novel approach along with some sample cases. A particular strength of the X-gas scaling method is its insensitivity towards the aerosol abundance and cloud cover as well as wavelength dependent effects, whereas its sensitivity towards the profiles of both gases requires a priori information on their shapes.

  11. Retrieval of trace gas concentrations over Summit Station, Greenland using moderate-resolution spectral infrared radiances

    NASA Astrophysics Data System (ADS)

    Bahramvash Shams, S.; Walden, V. P.; Turner, D. D.

    2017-12-01

    Measurements of trace gases at high temporal resolution are important for understanding variations and trends at high latitudes. Trace gases over Greenland can be influenced by both long-range transport from pollution sources as well as local chemical processes. Satellite retrievals are an important data source in the polar regions, but accurate ground-based measurements are needed for proper validation, especially in data sparse regions. A moderate-resolution (0.5 cm-1) Fourier transform infrared spectrometer (FTIR), the Polar Atmospheric Emitted Radiance Interferometer (P-AERI), has been operated at Summit Station, Greenland as part of the ICECAPS project since 2010. In this study, trace gas concentrations, including ozone, nitrous oxide, and methane are retrieved using different optimal estimation retrieval codes. We first present results of retrieved gases using synthetic spectra (from a radiative transfer model) that mimic P-AERI measurements to evaluate systematic errors in the inverse models. We also retrieve time series of trace gas concentrations during periods of clear skies over Summit. We investigate the amount of vertical information that can be obtained with moderate resolution spectra for each of the trace gases, and also the impact of the seasonal variation of atmospheric water vapor on the retrievals. Data from surface observations and ozonesondes obtained by the NOAA Global Monitoring Division are used to improve the retrievals and as validation.

  12. Analysis of trace impurities in neon by a customized gas chromatography.

    PubMed

    Yin, Min Kyo; Lim, Jeong Sik; Moon, Dong Min; Lee, Gae Ho; Lee, Jeongsoon

    2016-09-09

    Excimer lasers, widely used in the semiconductor industry, are crucial for analyzing the purity of premix laser gases for the purpose of controlling stable laser output power. In this study, we designed a system for analyzing impurities in pure neon (Ne) base gas by customized GC. Impurities in pure neon (H2 and He), which cannot be analyzed at the sub-μmol/mol level using commercial GC detectors, were analyzed by a customized pulsed-discharge Ne ionization detector (PDNeD) and a pressurized injection thermal conductivity detector using Ne as the carrier gas (Pres. Inj. Ne-TCD). From the results, trace species in Ne were identified with the following detection limits: H2, 0.378μmol/mol; O2, 0.119μmol/mol; CH4, 0.880μmol/mol; CO, 0.263μmol/mol; CO2, 0.162μmol/mol (PDNeD); and He, 0.190μmol/mol (Pres. Inj. Ne-TCD). This PDNeD and pressurized injection Ne-TCD technique thus developed permit the quantification of trace impurities present in high-purity Ne. Copyright © 2016. Published by Elsevier B.V.

  13. Concerning the measurement of atmospheric trace gas fluxes with open- and closed-path eddy covariance systems: The density terms and spectral attenuation [Chapter 7

    Treesearch

    W. J. Massman

    2004-01-01

    Atmospheric trace gas fluxes measured with an eddy covariance sensor that detects a constituent's density fluctuations within the in situ air need to include terms resulting from concurrent heat and moisture fluxes, the so called 'density' or 'WPL corrections' (Webb et al. 1980). The theory behind these additional terms is well established. But...

  14. Mercury in the Arctic tundra snowpack: temporal and spatial concentration patterns and trace gas exchanges

    NASA Astrophysics Data System (ADS)

    Agnan, Yannick; Douglas, Thomas A.; Helmig, Detlev; Hueber, Jacques; Obrist, Daniel

    2018-06-01

    In the Arctic, the snowpack forms the major interface between atmospheric and terrestrial cycling of mercury (Hg), a global pollutant. We investigated Hg dynamics in an interior Arctic tundra snowpack in northern Alaska during two winter seasons. Using a snow tower system to monitor Hg trace gas exchange, we observed consistent concentration declines of gaseous elemental Hg (Hg0gas) from the atmosphere to the snowpack to soils. The snowpack itself was unlikely a direct sink for atmospheric Hg0gas. In addition, there was no evidence of photochemical reduction of HgII to Hg0gas in the tundra snowpack, with the exception of short periods during late winter in the uppermost snow layer. The patterns in this interior Arctic snowpack thus differ substantially from observations in Arctic coastal and temperate snowpacks. We consistently measured low concentrations of both total and dissolved Hg in snowpack throughout the two seasons. Chemical tracers showed that Hg was mainly associated with local mineral dust and regional marine sea spray inputs. Mass balance calculations show that the snowpack represents a small reservoir of Hg, resulting in low inputs during snowmelt. Taken together, the results from this study suggest that interior Arctic snowpacks are negligible sources of Hg to the Arctic.

  15. Gas adsorption and desorption effects on high pressure small volume cylinders and their relevance to atmospheric trace gas analysis

    NASA Astrophysics Data System (ADS)

    Satar, Ece; Nyfeler, Peter; Pascale, Céline; Niederhauser, Bernhard; Leuenberger, Markus

    2017-04-01

    Long term atmospheric monitoring of trace gases requires great attention to precision and accuracy of the measurement setups. For globally integrated and well established greenhouse gas observation networks, the World Meteorological Organization (WMO) has set recommended compatibility goals within the framework of its Global Atmosphere Watch (GAW) Programme [1]. To achieve these challenging limits, the measurement systems are regularly calibrated with standard gases of known composition. Therefore, the stability of the primary and secondary gas standards over time is an essential issue. Past studies have explained the small instabilities in high pressure standard gas cylinders through leakage, diffusion, regulator effects, gravimetric fractionation and surface processes [2, 3]. The latter include adsorption/desorption, which are functions of temperature, pressure and surface properties. For high pressure standard gas mixtures used in atmospheric trace gas analysis, there exists only a limited amount of data and few attempts to quantify the surface processes [4, 5]. Specifically, we have designed a high pressure measurement chamber to investigate trace gases and their affinity for adsorption on different surfaces over various temperature and pressure ranges. Here, we focus on measurements of CO2, CH4 and CO using a cavity ring down spectroscopy analyzer and quantify the concentration changes due to adsorption/desorption. In this study, the first results from these prototype cylinders of steel and aluminum will be presented. References [1] World Meteorological Organization (WMO), Global Atmosphere Watch.(GAW): Report No. 229, 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), 2016. [2] Keeling, R. F., Manning, A. C., Paplawsky, W. J., and Cox, A. C.: On the long-term stability of reference gases for atmospheric O2 /N2 and CO2 measurements, Tellus B, 59, 10.3402/tellusb.v59i1.16964, 2007. [3

  16. Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu

    2018-01-01

    We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.

  17. Analysis of volatile organic compounds. [trace amounts of organic volatiles in gas samples

    NASA Technical Reports Server (NTRS)

    Zlatkis, A. (Inventor)

    1977-01-01

    An apparatus and method are described for reproducibly analyzing trace amounts of a large number of organic volatiles existing in a gas sample. Direct injection of the trapped volatiles into a cryogenic percolum provides a sharply defined plug. Applications of the method include: (1) analyzing the headspace gas of body fluids and comparing a profile of the organic volatiles with standard profiles for the detection and monitoring of disease; (2) analyzing the headspace gas of foods and beverages and comparing the profile with standard profiles to monitor and control flavor and aroma; and (3) analyses for determining the organic pollutants in air or water samples.

  18. Tracing gas and magnetic field with dust : lessons from Planck & Herschel

    NASA Astrophysics Data System (ADS)

    Guillet, Vincent

    2015-08-01

    Dust emission is a powerful tool to measure the gas mass. Its polarization also traces the magnetic field structure. With the Planck and Herschel multi-wavelength observations, we are now able to trace the gas and magnetic field over the full sky, with a large spectrum of scales, and up to high optical depths. But a question arises : is dust a reliable tracer ?I will present the statistical properties of the dust polarized emission as observed by Planck HFI over the full sky, and show how this compares to ancillary measures of starlight polarization in the optical, and to MHD simulations. I will distinguish between what is related to the 3D structure of the magnetic field, and what is related to dust (alignement efficiency, grain shape). I will show that the main features of dust polarization observed by Planck can be explained by the magnetic field structure on the line of sight, without any need for a variation of dust alignment efficiency up to an Av of 5 to 10. Dust polarization is therefore a good and reliable tracer of the magnetic field, at least at moderate extinction.I will also discuss the caveats in deriving the gas mass or dust extinction from a fit to the dust spectral energy distribution : 1) the dust far-infrared opacity is not uniform but varies accross the diffuse ISM, and increases inside star-forming regions; 2) Radiation transfer effects must be taken into account at high optical depths. I will present estimates for the systematic errors that are made when these effects are ignored.

  19. Film Cooling Flow Effects on Post-Combustor Trace Chemistry

    NASA Technical Reports Server (NTRS)

    Wey, Thomas; Liu, Nan-Suey

    2003-01-01

    Film cooling injection is widely applied in the thermal design of turbomachinery, as it contributes to achieve higher operating temperature conditions of modern gas turbines, and to meet the requirements for reliability and life cycles. It is a significant part of the high-pressure turbine system. The film cooling injection, however, interacts with the main flow and is susceptible to have an influence on the aerodynamic performance of the cooled components, and through that may cause a penalty on the overall efficiency of the gas turbine. The main reasons are the loss of total pressure resulting from mixing the cooling air with mainstream and the reduction of the gas stagnation temperature at the exit of the combustion chamber to a lower value at the exit of nozzle guide vane. In addition, the impact of the injected air on the evolution of the trace species of the hot gas is not yet quite clear. This work computationally investigates the film cooling influence on post-combustor trace chemistry, as trace species in aircraft exhaust affect climate and ozone.

  20. Trace gas composition in the Asian summer monsoon anticyclone: a case study based on aircraft observations and model simulations

    NASA Astrophysics Data System (ADS)

    Gottschaldt, Klaus-D.; Schlager, Hans; Baumann, Robert; Bozem, Heiko; Eyring, Veronika; Hoor, Peter; Jöckel, Patrick; Jurkat, Tina; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut

    2017-05-01

    We present in situ measurements of the trace gas composition of the upper tropospheric (UT) Asian summer monsoon anticyclone (ASMA) performed with the High Altitude and Long Range Research Aircraft (HALO) in the frame of the Earth System Model Validation (ESMVal) campaign. Air masses with enhanced O3 mixing ratios were encountered after entering the ASMA at its southern edge at about 150 hPa on 18 September 2012. This is in contrast to the presumption that the anticyclone's interior is dominated by recently uplifted air with low O3 in the monsoon season. We also observed enhanced CO and HCl in the ASMA, which are tracers for boundary layer pollution and tropopause layer (TL) air or stratospheric in-mixing respectively. In addition, reactive nitrogen was enhanced in the ASMA. Along the HALO flight track across the ASMA boundary, strong gradients of these tracers separate anticyclonic from outside air. Lagrangian trajectory calculations using HYSPLIT show that HALO sampled a filament of UT air three times, which included air masses uplifted from the lower or mid-troposphere north of the Bay of Bengal. The trace gas gradients between UT and uplifted air masses were preserved during transport within a belt of streamlines fringing the central part of the anticyclone (fringe), but are smaller than the gradients across the ASMA boundary. Our data represent the first in situ observations across the southern part and downstream of the eastern ASMA flank. Back-trajectories starting at the flight track furthermore indicate that HALO transected the ASMA where it was just splitting into a Tibetan and an Iranian part. The O3-rich filament is diverted from the fringe towards the interior of the original anticyclone, and is at least partially bound to become part of the new Iranian eddy. A simulation with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model is found to reproduce the observations reasonably well. It shows that O3-rich air is entrained by the outer streamlines of the

  1. Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    López-Valverde, Miguel A.; Gerard, Jean-Claude; González-Galindo, Francisco; Vandaele, Ann-Carine; Thomas, Ian; Korablev, Oleg; Ignatiev, Nikolai; Fedorova, Anna; Montmessin, Franck; Määttänen, Anni; Guilbon, Sabrina; Lefevre, Franck; Patel, Manish R.; Jiménez-Monferrer, Sergio; García-Comas, Maya; Cardesin, Alejandro; Wilson, Colin F.; Clancy, R. T.; Kleinböhl, Armin; McCleese, Daniel J.; Kass, David M.; Schneider, Nick M.; Chaffin, Michael S.; López-Moreno, José Juan; Rodríguez, Julio

    2018-02-01

    The Martian mesosphere and thermosphere, the region above about 60 km, is not the primary target of the ExoMars 2016 mission but its Trace Gas Orbiter (TGO) can explore it and address many interesting issues, either in-situ during the aerobraking period or remotely during the regular mission. In the aerobraking phase TGO peeks into thermospheric densities and temperatures, in a broad range of latitudes and during a long continuous period. TGO carries two instruments designed for the detection of trace species, NOMAD and ACS, which will use the solar occultation technique. Their regular sounding at the terminator up to very high altitudes in many different molecular bands will represent the first time that an extensive and precise dataset of densities and hopefully temperatures are obtained at those altitudes and local times on Mars. But there are additional capabilities in TGO for studying the upper atmosphere of Mars, and we review them briefly. Our simulations suggest that airglow emissions from the UV to the IR might be observed outside the terminator. If eventually confirmed from orbit, they would supply new information about atmospheric dynamics and variability. However, their optimal exploitation requires a special spacecraft pointing, currently not considered in the regular operations but feasible in our opinion. We discuss the synergy between the TGO instruments, specially the wide spectral range achieved by combining them. We also encourage coordinated operations with other Mars-observing missions capable of supplying simultaneous measurements of its upper atmosphere.

  2. Trace gas and particulate emissions from biomass burning in temperate ecosystems

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.

    1991-01-01

    Emissions measured from fires in graminoid wetlands, Mediterranean chaparrals, and boreal forests, suggest that such ecosystemic parameters as fuel size influence combustion emissions in ways that are broadly predictable. The degree of predictability is most noticeable when wetland fire-related results are compared with boreal forest emissions; the inorganic fraction of the particulate emissions is close in composition irrespective of the ecosystem. It is found that both aerosol and trace gas emissions are influenced by the phase of combustion.

  3. External cavity tunable quantum cascade lasers and their applications to trace gas monitoring.

    PubMed

    Rao, Gottipaty N; Karpf, Andreas

    2011-02-01

    Since the first quantum cascade laser (QCL) was demonstrated approximately 16 years ago, we have witnessed an explosion of interesting developments in QCL technology and QCL-based trace gas sensors. QCLs operate in the mid-IR region (3-24 μm) and can directly access the rotational vibrational bands of most molecular species and, therefore, are ideally suited for trace gas detection with high specificity and sensitivity. These sensors have applications in a wide range of fields, including environmental monitoring, atmospheric chemistry, medical diagnostics, homeland security, detection of explosive compounds, and industrial process control, to name a few. Tunable external cavity (EC)-QCLs in particular offer narrow linewidths, wide ranges of tunability, and stable power outputs, which open up new possibilities for sensor development. These features allow for the simultaneous detection of multiple species and the study of large molecules, free radicals, ions, and reaction kinetics. In this article, we review the current status of EC-QCLs and sensor developments based on them and speculate on possible future developments.

  4. Status of GeoTASO Trace Gas Data Analysis for the KORUS-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Janz, S. J.; Nowlan, C. R.; Lamsal, L. N.; Kowalewski, M. G.; Judd, L. M.; Wang, J.

    2017-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument measures spectrally resolved backscattered solar radiation at high spatial resolution. The instrument completed 30 sorties on board the NASA LaRC UC-12 aircraft during the KORUS-AQ deployment in May-June of 2016. GeoTASO collects spatially resolved spectra with sufficient sensitivity to retrieve column amounts of the trace gas molecules NO2, SO2, H2CO, O3, and C2H2O2 as well as aerosol products. Typical product retrievals are done in 250 m2 bins with multiple overpasses of key ground sites, allowing for detailed spatio-temporal analysis. Flight patterns consisted of both contiguous overlapping grid patterns to simulate satellite observational strategies in support of future geostationary satellite algorithm development, and "race-track" sampling to perform calibration and validation with the in-situ DC-8 platform as well as ground based assets. We will summarize the status of the radiance data set as well as ongoing analysis from our co-Investigators.

  5. [A trace methane gas sensor using mid-infrared quantum cascaded laser at 7.5 microm].

    PubMed

    Chen, Chen; Dang, Jing-Min; Huang, Jian-Qiang; Yang, Yue; Wang, Yi-Ding

    2012-11-01

    Presented is a compact instrument developed for in situ high-stable and sensitive continuous measurement of trace gases in air, with results shown for ambient methane (CH4) concentration accurate, real-time and in-situ. This instrument takes advantage of recent technology in thermoelectrically cooling (TEC) pulsed Fabry-Perot (FP) quantum cascaded laser (QCL) driving in a pulse mode operating at 7.5 microm ambient temperature to cover a fundamental spectral absorption band near v4 of CH4. A high quality Liquid Nitrogen (LN) cooled Mercury Cadmium Telluride (HgCdTe) mid-infrared (MIR) detector is used along with a total reflection coated gold ellipsoid mirror offering 20 cm single pass optical absorption in an open-path cell to achieve stability of 5.2 x 10(-3) under experimental condition of 200 micromol x mol(-1) measured ambient CH4. The instrument integrated software via time discriminating electronics technology to control QCL provides continuous quantitative trace gas measurements without calibration. The results show that the instrument can be applied to field measurements of gases of environmental concern. Additional, operator could substitute a QCL operating at a different wavelength to measure other gases.

  6. Infrared laser spectroscopic trace gas sensing

    NASA Astrophysics Data System (ADS)

    Sigrist, Markus

    2016-04-01

    -lived species like nitrous acid (HONO) with a QCL-based QEPAS system where the small gas sampling volume and hence short gas residence time are of particular importance [3]. A true analysis of gas mixtures has been performed with a widely tunable DFG system in a medical application that could also be adapted to atmospheric species [4]. It is demonstrated that a laser-based narrowband system with broad tunability combined with an appropriate detection scheme is feasible for the chemical analysis of multi-component gas mixtures even with an a priori unknown composition. Most recent examples will further confirm the great potential of infrared laser-based devices for trace species sensing. References 1. D. Marinov and M.W. Sigrist: "Monitoring of road-traffic emission with mobile photoacoustic system", Photochem. and Photobiol. Sciences 2, 774-778 (2003) 2. J.M. Rey, M. Fill, F. Felder and M.W. Sigrist: "Broadly tunable mid-infrared VECSEL for multiple components hydrocarbons gas sensing", Appl. Phys. B 117, 935-939 (2014) 3. H. Yi, R. Maamary, X. Gao, M.W. Sigrist, E. Fertein, and W. Chen: "Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy", Appl. Phys. Lett. 106, 101109 (2015) 4. M. Gianella and M.W. Sigrist: "Chemical Analysis of Surgical Smoke by Infrared Laser Spectroscopy", Appl. Phys. B 109, 485-496 (2012)

  7. Atmospheric trace gas analysis using matrix isolation-Fourier Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Griffith, David W. T.; Schuster, Gerhard

    1987-03-01

    A novel cryogenic sampling method combining the matrix isolation technique with FTIR spectroscopy has been developed for atmospheric trace gas analysis. It is applicable to a wide range of molecules with detection limits typically in the 10-50 ppt range. The method is described along with some measurements of N2O, CFCl3, CF2Cl2, OCS, CS2, SO2 and PAN from samples collected at ground level and from an aircraft between 9 and 14 km.

  8. Effect of trace element addition and increasing organic loading rates on the anaerobic digestion of cattle slaughterhouse wastewater.

    PubMed

    Schmidt, Thomas; McCabe, Bernadette K; Harris, Peter W; Lee, Seonmi

    2018-05-18

    In this study, anaerobic digestion of slaughterhouse wastewater with the addition of trace elements was monitored for biogas quantity, quality and process stability using CSTR digesters operated at mesophilic temperature. The determination of trace element concentrations was shown to be deficient in Fe, Ni, Co, Mn and Mo compared to recommendations given in the literature. Addition of these trace elements resulted in enhanced degradation efficiency, higher biogas production and improved process stability. Higher organic loading rates and lower hydraulic retention times were achieved in comparison to the control digesters. A critical accumulation of volatile fatty acids was observed at an organic loading rate of 1.82 g L -1  d -1 in the control compared to 2.36 g L -1  d -1 in the digesters with trace element addition. The improved process stability was evident in the final weeks of experimentation, in which control reactors produced 84% less biogas per day compared to the reactors containing trace elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    NASA Astrophysics Data System (ADS)

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason

    2015-01-01

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 μm) at a 10 Hz repetition rate. The sensor was designed for operation in multiple modes, including gas sensing within a multi-pass Heriott cell and intracavity absorption sensing using the ECQCL compliance voltage. In addition, the ECQCL compliance voltage was used to reduce effects of long-term drifts in the ECQCL output power. The sensor was characterized for noise, drift, and detection of chemicals including ammonia, methanol, ethanol, isopropanol, Freon- 134a, Freon-152a, and diisopropyl methylphosphonate (DIMP). We also present use of the sensor for mobile detection of ammonia downwind of cattle facilities, in which concentrations were recorded at 1-s intervals.

  10. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.

    PubMed

    Wang, Qiang; Wang, Zhen; Chang, Jun; Ren, Wei

    2017-06-01

    We demonstrated a novel trace gas sensing method based on fiber-ring laser intracavity photoacoustic spectroscopy. This spectroscopic technique is a merging of photoacoustic spectroscopy (PAS) with a fiber-ring cavity for sensitive and all-fiber gas detection. A transmission-type PAS gas cell (resonant frequency f0=2.68  kHz) was placed inside the fiber-ring laser to fully utilize the intracavity laser power. The PAS signal was excited by modulating the laser wavelength at f0/2 using a custom-made fiber Bragg grating-based modulator. We used this spectroscopic technique to detect acetylene (C2H2) at 1531.6 nm as a proof of principle. With a low Q-factor (4.9) of the PAS cell, our sensor achieved a good linear response (R2=0.996) to C2H2 concentration and a minimum detection limit of 390 ppbv at 2-s response time.

  11. Constraining Gas Diffusivity-Soil Water Content Relationships in Forest Soils Using Surface Chamber Fluxes and Depth Profiles of Multiple Trace Gases

    NASA Astrophysics Data System (ADS)

    Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.

    2012-12-01

    Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.

  12. ANALYSIS OF TRACE-LEVEL ORGANIC COMBUSTION PROCESS EMISSIONS USING NOVEL MULTIDIMENSIONAL GAS CHROMATOGRAPHY-MASS SPECTROMETRY PROCEDURES

    EPA Science Inventory

    The paper discusses the analysis of trace-level organic combustion process emissions using novel multidimensional gas chromatography-mass spectrometry (MDGC-MS) procedures. It outlines the application of the technique through the analyses of various incinerator effluent and produ...

  13. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    PubMed

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  14. Trace gas retrievals from Airborne Compact Atmospheric Mapper (ACAM) observations during the 2011 DISCOVER-AQ flight campaign

    NASA Astrophysics Data System (ADS)

    Liu, X.; Kowalewski, M. G.; Janz, S. J.; Bhartia, P. K.; Chance, K.; Krotkov, N. A.; Pickering, K. E.; Crawford, J. H.

    2011-12-01

    The DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) mission has just finished its first flight campaign in the Baltimore-Washington D.C. area in July 2011. The ACAM, flown on board the NASA UC-12 aircraft, includes two spectrographs covering the spectral region 304-900 nm and a high-definition video camera, and is expected to provide column measurements of several important air quality trace gases and aerosols for the DISCOVER-AQ mission. The quick look results for NO2 have been shown to very useful in capturing the strong spatiotemporal variability of NO2. Preliminary fitting of UV/Visible spectra has shown that ACAM measurements have adequate signal to noise ratio to measure the trace gases O2, NO2, HCHO, and maybe SO2 and CHOCHO, at individual pixel resolution, although a great deal of effort is needed to improve the instrument calibration and derive proper reference spectrum for retrieving absolute trace gas column densities. In this study, we present analysis of ACAM instrument calibration including slit function, wavelength registration, and radiometric calibration for both nadir-viewing and zenith-sky measurements. Based on this analysis, an irradiance reference spectrum at ACAM resolution will be derived from a high-resolution reference spectrum with additional correction to account for instrument calibration. Using the derived reference spectrum and/or the measured zenith sky measurements, we will perform non-linear least squares fitting to investigate the retrievals of slant column densities of these trace gases from ACAM measurements, and also use an optimal estimation based algorithm including full radiative transfer calculations to derive the vertical column densities of these trace gases. The initial results will be compared with available in-situ and ground-based measurements taken during the DISCOVER-AQ campaign.

  15. Towards the interaction between calcium carbide and water during gas-chromatographic determination of trace moisture in ultra-high purity ammonia.

    PubMed

    Trubyanov, Maxim M; Mochalov, Georgy M; Suvorov, Sergey S; Puzanov, Egor S; Petukhov, Anton N; Vorotyntsev, Ilya V; Vorotyntsev, Vladimir M

    2018-07-27

    The current study focuses on the processes involved during the flow conversion of water into acetylene in a calcium carbide reaction cell for the trace moisture analysis of ammonia by reaction gas chromatography. The factors negatively affecting the reproducibility and the accuracy of the measurements are suggested and discussed. The intramolecular reaction of the HOCaCCH intermediate was found to be a side reaction producing background acetylene during the contact of wet ammonia gas with calcium carbide. The presence of the HOCaCCH intermediate among the reaction products is confirmed by an FTIR spectral study of calcium carbide powder exposed to wet gas. The side reaction kinetics is evaluated experimentally and its influence on the results of the gas chromatographic measurements is discussed in relation to the determination of the optimal operating parameters for ammonia analysis. The reaction gas chromatography method for the trace moisture measurements in an ammonia matrix was experimentally compared to an FTIR long-path length gas cell technique to evaluate the accuracy limitations and the resource intensity. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Application of a broadly tunable SG-DBR QCL for multi-species trace gas spectroscopy.

    PubMed

    Diba, Abdou S; Xie, Feng; Gross, Barry; Hughes, Lawrence C; Zah, Chung-en; Moshary, Fred

    2015-10-19

    Feasibility of using a mid-Infrared tunable sampled-grating distributed Bragg reflectors quantum cascade laser for high resolution multicomponent trace gas spectroscopy is demonstrated. By controlling the driving currents to the front and back sections of the laser, we were able to tune a pulsed 4.55 µm laser over a frequency range a of 30 cm(-1) with high resolution, accuracy and repeatability. The laser was applied to absorption spectroscopy of ambient and reduced pressure (150 Torr) air in a 205 meters multi-pass Herriott cell, and by using standard LSQ fitting to a spectral database of these trace gases (HITRAN), the concentrations of nitrous oxide, carbon monoxide, and water vapor were retrieved.

  17. Modeling impacts of management on carbon sequestration and trace gas emissions in forested wetland ecosystems

    Treesearch

    Changsheng Li; Jianbo Cui

    2004-01-01

    A process- based model, Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration in and trace gas emissions from forested wetland ecosystems. The modifications included parameterization of management practices fe.g., forest harvest, chopping, burning, water management, fertilization, and tree planting),...

  18. The effect of trace element addition to mono-digestion of grass silage at high organic loading rates.

    PubMed

    Wall, David M; Allen, Eoin; Straccialini, Barbara; O'Kiely, Padraig; Murphy, Jerry D

    2014-11-01

    This study investigated the effect of trace element addition to mono-digestion of grass silage at high organic loading rates. Two continuous reactors were compared. The first mono-digested grass silage whilst the second operated in co-digestion, 80% grass silage with 20% dairy slurry (VS basis). The reactors were run for 65weeks with a further 5weeks taken for trace element supplementation for the mono-digestion of grass silage. The co-digestion reactor reported a higher biomethane efficiency (1.01) than mono-digestion (0.90) at an OLR of 4.0kgVSm(-3)d(-1) prior to addition of trace elements. Addition of cobalt, iron and nickel, led to an increase in the SMY in mono-digestion of grass silage by 12% to 404LCH4kg(-1)VS and attained a biomethane efficiency of 1.01. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Method of introducing additive into a reaction gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelfelder, S.; Chughtai, M.Y.

    1984-04-03

    A method of continuously introducing additive, which is conveyed by gaseous and/or liquid carriers, into a turbulent reaction gas flow in the combustion chamber of a steam generator having dry ash withdrawal for selective removal, in a dry manner, of environmentally harmful gaseous noxious materials, such as sulfur, chlorine, and chlorine compounds, which are contained in a hot reaction gas flow which results after a complete or incomplete flame combustion of solid, liquid, or gaseous fuels. Depending upon the additive introduced, heat is stored and/or used for decomposition reactions. The additive, is first introduced at one or more input locations,more » due to locally different pressure conditions in the combustion chamber, into one or more recirculation flows which are within the system and are closed. The additive is subsequently withdrawn from these recirculation flows and is introduced into the reaction gas flow.« less

  20. Application of copper sulfate pentahydrate as an ammonia removal reagent for the determination of trace impurities in ammonia by gas chromatography.

    PubMed

    Aomura, Yoko; Kobayashi, Yoshihiko; Miyazawa, Yuzuru; Shimizu, Hideharu

    2010-03-12

    Rapid analysis of trace permanent gas impurities in high purity ammonia gas for the microelectronics industry is described, using a gas chromatograph equipped with a phtoionization detector. Our system incorporates a reactive precolumn in combination with the analytical column to remove the ammonia matrix peak that otherwise would complicate the measurements due to baseline fluctuations and loss of analytes. The performance of 21 precolumn candidate materials was evaluated. Copper sulfate pentahydrate (CuSO(4).5H(2)O) was shown to selectively react with ammonia at room temperature and atmospheric column pressures, without affecting the hydrogen, oxygen, nitrogen, methane or carbon monoxide peak areas. To prevent loss of trace carbon dioxide, an additional boron trioxide reactant layer was inserted above the copper sulfate pentahydrate bed in the reactive precolumn. Using the combined materials, calibration curves for carbon dioxide proved to be equivalent in both ammonia and helium matrix gases. These curves were equivalent in both matrix gases. The quantitative performance of the system was also evaluated. Peak repeatabilities, based on eight injections, were in the range of 4.1-8.2% relative standard deviation; and detection limits were 6.9 ppb for H(2), 1.8 ppb for O(2), 1.6 ppb for N(2), 6.4 ppb for CH(4), 13 ppb for CO, and 5.4 ppb for CO(2). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. LBA-ECO TG-07 Soil Trace Gas Flux and Root Mortality, Tapajos National Forest

    Treesearch

    R.K. Varner; M.M. Keller

    2009-01-01

    This data set reports the results of an experiment that tested the short-term effects of root mortality on the soil-atmosphere fluxes of nitrous oxide, nitric oxide, methane, and carbon dioxide in a tropical evergreen forest. Weekly trace gas fluxes are provided for treatment and control plots on sand and clay tropical forest soils in two comma separated ASCII files....

  2. Trace analysis in the food and beverage industry by capillary gas chromatography: system performance and maintenance.

    PubMed

    Hayes, M A

    1988-04-01

    Gas chromatography (GC) is the most widely used analytical technique in the food and beverage industry. This paper addresses the problems of sample preparation and system maintenance to ensure the most sensitive, durable, and efficient results for trace analysis by GC in this industry.

  3. Stratospheric Trace Gas Composition Studies Utilizing in situ Cryogenic, Whole-Air Sampling Methods.

    DTIC Science & Technology

    1981-03-10

    C A FORSBERG, R V PIERI UNCLASSIFIED AFGL-TR-81-0071 NLEEEE..EEEEEEllllllu *Inaggol/numln ElhElhEEEEEEEI lllllllhhl , O \\ Stratospheric Trace Gas...GRANT NUJMBERr4; Charles A. Forsberg Robert V. Pieri , Capt., USAF Gerard A. Faucher B PERFORMING ORGANIZATION NAME AND ADDRESS IS. PROGRAM ELEMENT...launch site. 1 (Received for publication 10 March 1981) 1. Gallagher, C.(C., and Pieri , R. V. (1976) Cryogenic, Whole-Air Sampl1r and Program for

  4. Elevated gas flux and trace metal degassing from the 2014-2015 fissure eruption at the Bárðarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Gauthier, Pierre-Jean; Sigmarsson, Olgeir; Gouhier, Mathieu; Haddadi, Baptiste; Moune, Séverine

    2016-03-01

    The 2014 Bárðarbunga rifting event in Iceland resulted in a 6-month long eruption at Holuhraun. This eruption was characterized by high lava discharge rate and significant gas emission. The SO2 flux for the first 3 months was measured with satellite sensors and the petrologic method. High-resolution time series of the satellite data give 1200 kg/s that concurs with 1050 kg/s obtained from melt inclusion minus degassed lava sulfur contents scaled to the mass of magma produced. A high-purity gas sample, with elevated S/Cl due to limited chlorine degassing, reveals a similar degassing pattern of trace metals as observed at Kīlauea (Hawai'i) and Erta Ale (Ethiopia). This suggests a common degassing mechanism at mantle plume-related volcanoes. The trace metal fluxes, calculated from trace element to sulfur ratios in the gas sample and scaled to the sulfur dioxide flux, are 1-2 orders of magnitude stronger at Holuhraun than Kīlauea and Erta Ale. In contrast, volcanoes at convergent margins (Etna and Stromboli, Italy) have 1-2 orders of magnitude higher trace element fluxes, most likely caused by abundant chlorine degassing. This emphasizes the importance of metal degassing as chlorine species. Short-lived disequilibria between radon daughters, 210Pb-210Bi-210Po measured in the gas, suggest degassing of a continuously replenished magma batch beneath the eruption site. Earlier and deep degassing phase of carbon dioxide and polonium is inferred from low (210Po/210Pb) in the gas, consistent with magma transfer rate of 0.75 m/s.

  5. Trace Gas Trends in the Stratosphere: 1991-2005

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Moore, F. L.; Dutton, G. S.; Hurst, D. F.; Ray, E. A.; Montzka, S. A.; Butler, J. H.; Fahey, D. W.; Hall, B. H.; Atlas, E.; Wofsy, S. C.; Romashkin, P. A.

    2005-05-01

    The first NOAA airborne gas chromatograph measured chlorofluorocarbon-11 (CFC-11) and CFC-113 during the Arctic Airborne Stratospheric Experiment in 1991-1992. In 1994, we added nitrous oxide (N2O), sulfur hexafluoride (SF6), CFC-12, halon-1211, methyl chloroform, carbon tetrachloride, methane, and hydrogen. NOAA scientists have since operated five airborne gas chromatographs on NASA airborne platforms, including the NASA Jet Propulsion Laboratory (JPL) balloon gondola and ER-2, WB-57F, DC-8, and NASA Altair Unmanned Air Vehicle (UAV) aircraft. Using these in situ measurements and tracer-tracer correlations from flask observations for the unmeasured halogen species (HCFCs and methyl halides including methyl chloride and bromide), we have estimated trends of total chlorine and bromine in the stratosphere. The determination of inorganic equivalent chlorine (Cl + 45*Br) requires the trend of tropospheric equivalent chlorine and the mean age of the parcel of stratospheric air. In general, there is good agreement between the mean age of the air mass calculations using carbon dioxide and SF6, except for regions of extreme down welling of mesospheric air where SF6 is consumed. Tropospheric trends of the methyl halides have been compiled against stable standards. We operated a airborne gas chromatograph on the Sage 3 Ozone Loss Validation Experiment (SOLVE-II) mission from Kiruna, Sweden during 2002. It measured the major HCFCs and methyl halides, so that these compounds do not have to be estimated from tracer-tracer correlations in the future. In 2005, we have added a new lightweight airborne instrument (<25 kg) that can measure CFC-11, CFC-12, halon-1211, SF6, N2O, and ozone. This instrument can operate on small or UAV aircraft and will be used for Aura satellite validation. This presentation will show trends for selected trace gases and our estimates of total equivalent chlorine stratospheric trends since 1991.

  6. LBA-ECO TG-07 Trace Gas Fluxes, Undisturbed and Logged Sites, Para, Brazil: 2000-2002

    Treesearch

    M.M. Keller; R.K. Varner; J.D. Dias; H.S. Silva; P.M. Crill; Jr. de Oliveira; G.P. Asner

    2009-01-01

    Trace gas fluxes of carbon dioxide, methane, nitrous oxide, and nitric oxide were measured manually at undisturbed and logged forest sites in the Tapajos National Forest, near Santarem, Para, Brazil. Manual measurements were made approximately weekly at both the undisturbed and logged sites. Fluxes from clay and sand soils were completed at the undisturbed sites....

  7. Herschel Galactic plane survey of ionized gas traced by [NII

    NASA Astrophysics Data System (ADS)

    Yildiz, Umut; Goldsmith, Paul; Pineda, Jorge; Langer, William

    2015-01-01

    Far infrared and sub-/millimeter atomic & ionic fine structure and molecular rotational lines are powerful tracers of star formation on both Galactic and extragalactic scales. Although CO lines trace cool to moderately warm molecular gas, ionized carbon [CII] produces the strongest lines, which arise from almost all reasonably warm (T>50 K) parts of the ISM. However, [CII] alone cannot distinguish highly ionized gas from weakly ionized gas. [NII] plays a significant role in star formation as it is produced only in ionized regions; in [HII] regions as well as diffuse ionized gas. The ionization potential of nitrogen (14.5 eV) is greater than that of hydrogen (13.6 eV), therefore the ionized nitrogen [NII] lines reflect the effects of massive stars, with possible enhancement from X-ray and shock heating from the surroundings. Two far-infrared 122 um and 205 um [NII] fine structure spectral lines are targeted via Photodetector Array Camera and Spectrometer (PACS) onboard Herschel Space Observatory. The sample consists of 149 line-of-sight (LOS) positions in the Galactic plane. These positions overlap with the [CII] 158 um observations obtained with the GOT C+ survey. With a reasonable assumption that the emission from both 122 um and 205 um lines originate in the same gas; [NII] 122/205 um line ratio indicates the a good measure of the electron density of each of the LOS positions. [NII] detections are mainly toward the Galactic center direction and the [NII] electron densities are found between 7-50 cm^-3, which is enhanced WIM (Warm Ionized Medium). WIM densities are expected to be much lower (~1 cm-3), therefore non-detections toward the opposite side of the Galactic Center shows abundant of this gas. The pixel to pixel variation of the emission within a single Herschel pointing is relatively small, which is interpreted as the [NII] emission comes from an extended gas. It is important to quantify what fraction of [CII] emission arises in the ionized gas. Thus, with

  8. Long-term Operation of an External Cavity Quantum Cascade Laser-based Trace-gas Sensor for Building Air Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Craig, Ian M.

    2013-11-03

    We analyze the long-term performance and stability of a trace-gas sensor based on an external cavity quantum cascade laser using data collected over a one-year period in a building air monitoring application.

  9. Large and small UAS for trace gas measurements in climate change studies

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Moore, F. L.; Hintsa, E. J.; D'Amore, P.; Dutton, G. S.; Nance, J. D.; Hall, B. D.; Gao, R. S.

    2014-12-01

    NOAA and CIRES scientists have used Unmanned Aircraft Systems (UAS) for the measurement of trace gases involved in climate change since 2005, including both high altitude-long endurance (HALE UAS: NASA Altair & Global Hawk) and 1-m wingspan, small UAS (sUAS: SkyWisp, Aero). These gases include nitrous oxide (N2O), sulfur hexafluoride (SF6), methane (CH4), ozone (O3), carbon monoxide (CO), hydrogen (H2), and water vapor (H2O). In particular, atmospheric N2O is the third strongest greenhouse gas (326 parts-per-billion, ppb) and is the largest increasing stratospheric ozone depleting gas in terms of future emissions (~4 Tg N2O-N yr-1), primarily from fertilizer use. Atmospheric SF6, another potent greenhouse gas, is present globally at 8.2 parts-per-trillion (ppt) and growing at a rate of 0.25 ppt yr-1, and is used primarily in electrical power distribution. It is an excellent indicator of transport timescales (e.g., mean age) in the troposphere and stratosphere, because of its source distribution (~95% emitted in NH), long atmospheric lifetime (~600-3200 yr), and large relative atmospheric growth rate (~3%). We have developed atmospheric instrumentation for HALE platforms using a two-channel gas chromatograph with an ozone photometer and a water vapor tunable diode laser spectrometer. We are currently investigating a sUAS glider (SkyWisp) for balloon-assisted high altitude flights (30 km) and propeller driven sUAS (Aero) as a test bed for a new autopilot (Pixhawk, 3DRobotics). Our motivation for utilizing this autopilot is a low cost, open source autopilot alternative that can be used to return AirCore samples from high altitude balloons for quick laboratory analysis. The goal is a monitoring program to understand transport changes as a result of climate change during different seasons at many locations from a balloon-borne package (Moore et al., BAMS, pp. 147-155, Jan. 2014). The glider version of our open source autopilot system is also being considered for a

  10. The EPA National Fuels Surveillance Network. I. Trace constituents in gasoline and commercial gasoline fuel additives.

    PubMed Central

    Jungers, R H; Lee, R E; von Lehmden, D J

    1975-01-01

    A National Fuels Surveillance Network has been established to collect gasoline and other fuels through the 10 regional offices of the Environmental Protection Agency. Physical, chemical, and trace element analytical determinations are made on the collected fuel samples to detect components which may present an air pollution hazard or poison exhaust catalytic control devices. A summary of trace elemental constituents in over 50 gasoline samples and 18 commercially marketed consumer purchased gasoline additives is presented. Quantities of Mn, Ni, Cr, Zn, Cu, Fe, Sb, B, Mg, Pb, and S were found in most regular and premium gasoline. Environmental implications of trace constituents in gasoline are discussed. PMID:1157783

  11. Application of acoustic micro-resonators in quartz-enhanced photoacoustic spectroscopy for trace gas analysis

    NASA Astrophysics Data System (ADS)

    Zheng, Huadan; Dong, Lei; Wu, Hongpeng; Yin, Xukun; Xiao, Liantuan; Jia, Suotang; Curl, Robert F.; Tittel, Frank K.

    2018-01-01

    During the past 15 years since the first report of quartz enhanced photoacoustic spectroscopy (QEPAS), QEPAS has become one of the leading optical techniques for trace chemical gas sensing. This paper is a review of the current state-of-the art of QEPAS. QEPAS based spectrophones with different acoustic micro-resonators (AmR) configurations employing both standard quartz tuning forks (QTFs) and custom-made QTFs are summarized and discussed in detail.

  12. Satellite Observations of Trace Gases and Their Application for Studying Air Quality Near Oil and Gas Operations

    NASA Astrophysics Data System (ADS)

    Kollonige, D. E.; Thompson, A. M.; Nichols, M.; Fasnacht, Z.; Martins, D. K.; Dickerson, R. R.

    2014-12-01

    The increase in the natural gas component of the energy sector has led many state and local municipalities to begin regulation of emissions from the oil and natural gas operators with air quality (AQ) as a concern. "Top-down" measurements of trace gases in the air above wells complement "bottom-up" inventories, used by EPA and AQ stakeholders, through a more accurate depiction of regional variability of methane and other species near and downwind of oil and gas operations. Satellite observations of methane, nitrogen dioxide, formaldehyde, ozone, and other carbon gases enhance the spatial and temporal coverage of the data needed to demonstrate any long-term impacts from shale gas development. As part of a NASA AQAST (Air Quality Applied Sciences Team) project, we are evaluating satellite measurements of trace gases in regions with oil and gas operations for their application as a "top-down" constraint. For validation of the satellite instruments' sensitivities to emitted gases, we focus on regions where the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaign deployed with ground and aircraft measurements, including, Maryland (2011), California and Texas (2013), and Colorado (2014). We compare vertical distributions of methane and volatile organic compounds (VOCs) nearby and downwind of oil and gas wells to locate any regional differences during the campaign time periods. This allows for better characterization of the satellite observations and their limitations for application in air quality studies in similar environments. Taking advantage of current EOS-era satellites' data records, we also analyze methane anomalies and gas correlations in the free troposphere from 2005 to present to identify trends for basins with oil and gas extraction sites and their influence on background concentrations downwind of wells. In most regions with oil and gas activity, we see continually

  13. Carbohydrate profiling of bacteria by gas chromatography-mass spectrometry and their trace detection in complex matrices by gas chromatography-tandem mass spectrometry.

    PubMed

    Fox, A

    1999-05-28

    Bacterial cellular polysaccharides are composed of a variety of sugar monomers. These sugars serve as chemical markers to identify specific species or genera or to determine their physiological status. Some of these markers can also be used for trace detection of bacteria or their constituents in complex clinical or environmental matrices. Analyses are performed, in our hands, employing hydrolysis followed by the alditol acetate derivatization procedure. Substantial improvements have been made to sample preparation including simplification and computer-controlled automation. For characterization of whole cell bacterial hydrolysates, sugars are analyzed by gas chromatography-mass spectrometry (GC-MS). Simple chromatograms are generated using selected ion monitoring (SIM). Using total ion GC-MS, sugars can be readily identified. In more complex clinical and environmental samples, markers for bacteria are present at sufficiently low concentrations that more advanced instrumentation, gas chromatography-tandem mass spectrometry (GC-MS-MS), is preferred for optimal analysis. Using multiple reaction monitoring, MS-MS is used (replacing more conventional SIM) to ignore extraneous chromatographic peaks. Triple quadrupole and ion trap GC-MS-MS instruments have both been used successfully. Absolute chemical identification of sugar markers at trace levels is achieved, using MS-MS, by the product spectrum.

  14. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste.

    PubMed

    Capson-Tojo, Gabriel; Moscoviz, Roman; Ruiz, Diane; Santa-Catalina, Gaëlle; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-07-01

    The effect of supplementing granular activated carbon and trace elements on the anaerobic digestion performance of consecutive batch reactors treating food waste was investigated. The results from the first batch suggest that addition of activated carbon favored biomass acclimation, improving acetic acid consumption and enhancing methane production. Adding trace elements allowed a faster consumption of propionic acid. A second batch proved that a synergy existed when activated carbon and trace elements were supplemented simultaneously. The degradation kinetics of propionate oxidation were particularly improved, reducing significantly the batch duration and improving the average methane productivities. Addition of activated carbon favored the growth of archaea and syntrophic bacteria, suggesting that interactions between these microorganisms were enhanced. Interestingly, microbial analyses showed that hydrogenotrophic methanogens were predominant. This study shows for the first time that addition of granular activated carbon and trace elements may be a feasible solution to stabilize food waste anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The Impact of ENSO on Trace Gas Composition in the Upper Troposphere to Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Oman, Luke; Douglass, Anne; Ziemke, Jerry; Waugh, Darryn Warwick

    2016-01-01

    The El Nino-Southern Oscillation (ENSO) is the dominant mode of interannual variability in the tropical troposphere and its effects extend well into the stratosphere. Its impact on atmospheric dynamics and chemistry cause important changes to trace gas constituent distributions. A comprehensive suite of satellite observations, reanalyses, and chemistry climate model simulations are illuminating our understanding of processes like ENSO. Analyses of more than a decade of observations from NASAs Aura and Aqua satellites, combined with simulations from the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) and other Chemistry Climate Modeling Initiative (CCMI) models, and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis have provided key insights into the response of atmospheric composition to ENSO. While we will primarily focus on ozone and water vapor responses in the upper troposphere to lower stratosphere, the effects of ENSO ripple through many important trace gas species throughout the atmosphere. The very large 2015-2016 El Nino event provides an opportunity to closely examine these impacts with unprecedented observational breadth. An improved quantification of natural climate variations, like those from ENSO, is needed to detect and quantify anthropogenic climate changes.

  16. The analysis of tire rubber traces collected after braking incidents using Pyrolysis-GasChromatography/Mass Spectrometry.

    PubMed

    Sarkissian, Garry

    2007-09-01

    Automobile tire marks can routinely be found at the scenes of crime, particularly hit-and-run accidents and are left on road surfaces because of sudden braking or the wheels spinning. The tire marks are left due to the friction between the tire rubber and the solid road surface, and do not always demonstrate the tire tread pattern. However, the tire mark will contain traces of the tire. In this study, Pyrolysis Gas Chromatography/Mass Spectrometry was used to analyze 12 tires from different manufacturer's and their traces collected after braking incidents. Tire marks were left on a conglomerate road surface with sudden braking. The samples were pyrolysed without removal of contaminant in a micro-furnace type pyrolyser. Quantitative and qualitative analysis were performed on all the samples. All 12 samples were distinguished from each other. Each of the tire traces were identified as coming from there original source.

  17. Changes in Trace Gas Nitrogen Emissions as a Response to Ecosystem Type Conversion in a Semi-Arid Climate.

    NASA Astrophysics Data System (ADS)

    Andrews, H.; Eberwein, J. R.; Jenerette, D.

    2016-12-01

    (unconverted soils with CSS litter). Additionally, soils with no litter peaked in N2O emissions earlier than those with litter (12 hours after wetting compared to 24 hours after wetting). Following preliminary results, we suggest that differences in plant traits, such as litter, play a significant role in the magnitude and timing of trace gas nitrogen emissions.

  18. Cloud draft structure and trace gas transport

    NASA Technical Reports Server (NTRS)

    Scala, John R.; Tao, Wei-Kuo; Thompson, Anne M.; Simpson, Joanne; Garstang, Michael; Pickering, Kenneth E.; Browell, Edward V.; Sachse, Glen W.; Gregory, Gerald L.; Torres, Arnold L.

    1990-01-01

    During the second Amazon Boundary Layer Experiment (ABLE 2B), meteorological observations, chemical measurements, and model simulations are utilized in order to interpret convective cloud draft structure and to analyze its role in transport and vertical distribution of trace gases. One-dimensional photochemical model results suggest that the observed poststorm changes in ozone concentration can be attributed to convective transports rather than photochemical production and the results of a two-dimensional time-dependent cloud model simulation are presented for the May 6, 1987 squall system. The mesoscale convective system exhibited evidence of significant midlevel detrainment in addition to transports to anvil heights. Chemical measurements of O3 and CO obtained in the convective environment are used to predict photochemical production within the troposphere and to corroborate the cloud model results.

  19. Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires

    Treesearch

    Patrick H. Freeborn; Martin J. Wooster; Wei Min Hao; Cecily A. Nordgren Ryan; Stephen P. Baker; Charles Ichoku

    2008-01-01

    Forty-four small-scale experimental fires were conducted in a combustion chamber to examine the relationship between biomass consumption, smoke production, convective energy release, and middle infrared (MIR) measurements of fire radiative energy (FRE). Fuel bed weights, trace gas and aerosol particle concentrations, stack flow rate and temperature, and concurrent...

  20. Investigation of mesoscale trace gas distributions across an Arctic tropopause fold affected by gravity wave activity

    NASA Astrophysics Data System (ADS)

    Woiwode, Wolfgang; Oelhaf, Hermann; Dörnbrack, Andreas; Bramberger, Martina; Diekmann, Christopher; Friedl-Vallon, Felix; Höpfner, Michael; Hoor, Peter; Johansson, Sören; Krause, Jens; Kunkel, Daniel; Orphal, Johannes; Preusse, Peter; Ruhnke, Roland; Schlage, Romy; Schröter, Jennifer; Sinnhuber, Björn-Martin; Ungermann, Jörn; Zahn, Andreas

    2017-04-01

    Tropopause folds are known of enabling efficient exchange of trace constituents between the stratosphere and troposphere. In particular, the modification of the vertical distributions of radiatively important H2O and other reactive trace gases associated with tropopause folds is relevant for accurate model simulations of the upper troposphere and lower stratosphere composition. During the POLSTRACC/GW-LCYCLE/SALSA flight on 12 January 2016, the HALO (High Altitude LOng range) aircraft crossed twice an extended tropopause fold in the vicinity of the Arctic polar vortex. At the same time, the ECMWF operational analysis shows that the meteorological scenario probed above Italy was accompanied by wide-spread gravity wave activity induced by north-westerly winds. Using high spectral resolution limb-observations by the GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) spectrometer aboard HALO and associated observations, we investigate the vertical distributions of H2O, O3, temperature, and associated parameters across the tropopause fold. In combination with a high-resolution simulation by the ICON-ART (ICOsahedral Nonhydrostatic- Aerosol and Reactive Trace gases) model, we search for indications for irreversible trace gas exchange between the stratosphere and troposphere and the potential influence of gravity waves.

  1. Trace gas transport out of the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Tomsche, Laura; Pozzer, Andrea; Zimmermann, Peter; Parchatka, Uwe; Fischer, Horst

    2016-04-01

    The trace gas transport out of the Indian summer monsoon was investigated during the aircraft campaign OMO (Oxidation Mechanism Observations) with the German research aircraft HALO (High Altitude and Long Range Research Aircraft) in July/August 2015. HALO was based at Paphos/Cyprus and also on Gan/Maledives. Flights took place over the Mediterranean Sea, the Arabian Peninsula and the Arabian Sea. In this work the focus is on the distribution of carbon monoxide (CO) and methane (CH4) in the upper troposphere. They were measured with the laser absorption spectrometer TRISTAR on board of HALO. During the Indian summer monsoon strong convection takes place over India and the Bay of Bengal. In this area the population is high accompanied by many emission sources e.g. wetlands and cultivation of rice. Consequently the boundary layer is polluted containing high concentrations of trace gases like methane and carbon monoxide. Due to vertical transport these polluted air masses are lifted to the upper troposphere. Here they circulate with the so called Asian monsoon anticyclone. In the upper troposphere polluted air masses lead to a change in the chemical composition thus influence the chemical processes. Furthermore the anticyclone spreads the polluted air masses over a larger area. Thus the outflow of the anticyclone in the upper troposphere leads to higher concentrations of trace gases over the Arabian Sea, the Arabian Peninsula and also over the eastern part of North Africa and the eastern part of the Mediterranean Sea. During OMO higher concentrations of methane and carbon monoxide were detected at altitudes between 11km and 15km. The highest measured concentrations of carbon monoxide and methane were observed over Oman. The CO concentration in the outflow of the monsoon exceeds background levels by 10-15ppb. However the enhancement in the concentration is not obviously connected to the monsoon due to the natural variability in the troposphere. The enhancement in the

  2. Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Podolske, James; Loewenstein, Max

    1993-01-01

    This paper describes the airborne tunable laser absorption spectrometer, a tunable diode laser instrument designed for in situ trace-gas measurement in the lower stratosphere from an ER-2 high-altitude research aircraft. Laser-wavelength modulation and second-harmonic detection are employed to achieve the required constituent detection sensitivity. The airborne tunable laser absorption spectrometer was used in two polar ozone campaigns, the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition, and measured nitrous oxide with a response time of 1 s and an accuracy not greater than 10 percent.

  3. ExoMars 2016 Trace Gas Orbiter and Mars Express Coordinated Science Operations Planning

    NASA Astrophysics Data System (ADS)

    Cardesin Moinelo, Alejandro; Geiger, Bernhard; Costa, Marc; Breitfellner, Michel; Castillo, Manuel; Marin Yaseli de la Parra, Julia; Martin, Patrick; Merritt, Donald R.; Grotheer, Emmanuel; Aberasturi Vega, Miriam; Ashman, Mike; Frew, David; Garcia Beteta, Juan Jose; Metcalfe, Leo; Muñoz, Claudio; Muñoz, Michela; Titov, Dimitri; Svedhem, Hakan

    2018-05-01

    In this contribution we focus on the science opportunity analysis between the Mars Express and the ExoMars 2016 Trace Gas Orbiter missions and the observations that can be combined to improve the scientific outcome of both missions. In particular we will describe the long term analysis of geometrical conditions that allow for coordinated science observations for solar occultation and nadir pointing. We will provide details on the calculations and results for simultaneous and quasi-simultaneous opportunities, taking into account the observation requirements of the instruments and the operational requirements for feasibility checks.

  4. Multi-species trace gas sensing with dual-wavelength QCLs

    NASA Astrophysics Data System (ADS)

    Hundt, P. Morten; Tuzson, Béla; Aseev, Oleg; Liu, Chang; Scheidegger, Philipp; Looser, Herbert; Kapsalidis, Filippos; Shahmohammadi, Mehran; Faist, Jérôme; Emmenegger, Lukas

    2018-06-01

    Instrumentation for environmental monitoring of gaseous pollutants and greenhouse gases tends to be complex, expensive, and energy demanding, because every compound measured relies on a specific analytical technique. This work demonstrates an alternative approach based on mid-infrared laser absorption spectroscopy with dual-wavelength quantum cascade lasers (QCLs). The combination of two dual- and one single-DFB QCL yields high-precision measurements of CO (0.08 ppb), CO2 (100 ppb), NH3 (0.02 ppb), NO (0.4 ppb), NO2 (0.1 ppb), N2O (0.045 ppb), and O3 (0.11 ppb) simultaneously in a compact setup (45 × 45 cm2). The lasers are driven time-multiplexed in intermittent continuous wave mode with a repetition rate of 1 kHz. The individual spectra are real-time averaged (1 s) by an FPGA-based data acquisition system. The instrument was assessed for environmental monitoring and benchmarked with reference instrumentation to demonstrate its potential for compact multi-species trace gas sensing.

  5. Expected trace gas and aerosol retrieval accuracy of the Geostationary Environment Monitoring Spectrometer

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Liu, X.; Lee, K. H.; Chance, K.; Song, C. H.

    2015-12-01

    The predicted accuracy of the trace gases and aerosol retrievals from the geostationary environment monitoring spectrometer (GEMS) was investigated. The GEMS is one of the first sensors to monitor NO2, SO2, HCHO, O3, and aerosols onboard geostationary earth orbit (GEO) over Asia. Since the GEMS is not launched yet, the simulated measurements and its precision were used in this study. The random and systematic component of the measurement error was estimated based on the instrument design. The atmospheric profiles were obtained from Model for Ozone And Related chemical Tracers (MOZART) simulations and surface reflectances were obtained from climatology of OMI Lambertian equivalent reflectance. The uncertainties of the GEMS trace gas and aerosol products were estimated based on the OE method using the atmospheric profile and surface reflectance. Most of the estimated uncertainties of NO2, HCHO, stratospheric and total O3 products satisfied the user's requirements with sufficient margin. However, about 26% of the estimated uncertainties of SO2 and about 30% of the estimated uncertainties of tropospheric O3 do not meet the required precision. Particularly the estimated uncertainty of SO2 is high in winter, when the emission is strong in East Asia. Further efforts are necessary in order to improve the retrieval accuracy of SO2 and tropospheric O3 in order to reach the scientific goal of GEMS. Random measurement error of GEMS was important for the NO2, SO2, and HCHO retrieval, while both the random and systematic measurement errors were important for the O3 retrievals. The degree of freedom for signal of tropospheric O3 was 0.8 ± 0.2 and that for stratospheric O3 was 2.9 ± 0.5. The estimated uncertainties of the aerosol retrieval from GEMS measurements were predicted to be lower than the required precision for the SZA range of the trace gas retrievals.

  6. Interaction of nickel-based SOFC anodes with trace contaminants from coal-derived synthesis gas

    NASA Astrophysics Data System (ADS)

    Hackett, Gregory Allen

    New and efficient methods of producing electrical energy from natural resources have become an important topic for researchers. Integrated gasification and fuel cell (IGFC) systems offer a fuel-flexible, high-efficiency method of energy generation. Specifically, in coal gasification processes, coal can be changed into a high-quality gaseous fuel suitable for feeding solid oxide fuel cells (SOFCs). However, trace species found in coal synthesis gas (syngas) may have a deleterious effect on the performance of nickel-based SOFC anodes. Generally, the cost of removing these species down to parts per million (ppm) levels is high. The purpose of this research is to determine the highest amount of contaminant that results in a low rate (˜1% per 1000 h) of cell performance degradation, allowing the SOFC to produce usable power for 40,000 hours. The cell performance degradation rate was determined for benzene, naphthalene, and mercury-doped syngas based on species concentration. Experimental data are fitted with degradation models to predict cell lifetime behavior. From these results, the minimum coal syngas cleanup required for these trace materials is determined. It is found that for a final cell voltage of 0.6 V, naphthalene and benzene must be cleaned to 360 ppm and less than 150 ppm, respectively. No additional cleaning is required for mercury beyond established environmental standards. Additionally, a detailed attack and recovery mechanism is proposed for the hydrocarbon species and their interaction with the fuel cell. This mechanism is proposed by considering the type of degradation models predicted and how carbon would interact with the Ni-YSZ anode to justify those models. The mechanism postulates that carbon is diffusing into the nickel structure, creating a metal solution. Once the nickel is saturated, the carbon begins to deposit on the nickel surface, reducing the electrode active area. The formation of metal solutions and the deposition of carbon results in

  7. Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level

    NASA Astrophysics Data System (ADS)

    Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W.

    1995-11-01

    A system for trace gas analysis using proton transfer reaction mass spectrometry (PTR-MS) has been developed which allows for on-line measurements of components with concentrations as low as 1 ppb. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of analysis of breath taken from smokers and non-smokers as well as from patients suffering from cirrhosis of the liver, and of air in buildings as well as of ambient air taken at a road crossing demonstrate the wide range of applicability of this method. An enhanced level of acetonitrile in the breath is a most suitable indicator that a person is a smoker. Enhanced levels of propanol strongly indicate that a person has a severe liver deficiency.

  8. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.

    2015-02-08

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.

  9. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; hide

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new

  10. Trace Gas Measurements on Mars and Earth Using Optical Parametric Generation

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Haris, Riris; Li, Steve; Sun, Xiaoli; Abshire, James Brice

    2010-01-01

    Trace gases and their isotopic ratios in planetary atmospheres offer important but subtle clues as to the origins of a planet's atmosphere, hydrology, geology, and potential for biology. An orbiting laser remote sensing instrument is capable of measuring trace gases on a global scale with unprecedented accuracy, and higher spatial resolution that can be obtained by passive instruments. We have developed an active sensing instrument for the remote measurement of trace gases in planetary atmospheres (including Earth). The technique uses widely tunable, seeded optical parametric generation (OPG) to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planets. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but recent observations indicate that methane levels may be on the rise. Increasing methane concentrations may trigger a positive feedback loop and a subsequent runaway greenhouse effect, where increasing temperatures result in increasing methane levels. The NRC Decadal Survey recognized the importance of global observations of greenhouse gases and called for simultaneous CH4, CO, and CO2 measurements but also underlined the technological limitations for these observations. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can identify and localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. It can identify the dynamics of methane generation over time and latitude and identify future lander mission sites

  11. 30 CFR 250.1629 - Additional production and fuel gas system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed in all enclosed classified areas. Gas sensors shall be installed in all inadequately ventilated, enclosed... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Additional production and fuel gas system...

  12. 30 CFR 250.1629 - Additional production and fuel gas system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed in all enclosed classified areas. Gas sensors shall be installed in all inadequately ventilated... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Additional production and fuel gas system...

  13. A Lagrangian View of Stratospheric Trace Gas Distributions

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Sparling, L.; Dessler, A.; Jackman, C. H.; Fleming, E. L.

    1998-01-01

    As a result of photochemistry, some relationship between the stratospheric age-of-air and the amount of tracer contained within an air sample is expected. The existence of such a relationship allows inferences about transport history to be made from observations of chemical tracers. This paper lays down the conceptual foundations for the relationship between age and tracer amount, developed within a Lagrangian framework. In general, the photochemical loss depends not only on the age of the parcel but also on its path. We show that under the "average path approximation" that the path variations are less important than parcel age. The average path approximation then allows us to develop a formal relationship between the age spectrum and the tracer spectrum. Using the relation between the tracer and age spectra, tracer-tracer correlations can be interpreted as resulting from mixing which connects parts of the single path photochemistry curve, which is formed purely from the action of photochemistry on an irreducible parcel. This geometric interpretation of mixing gives rise to constraints on trace gas correlations, and explains why some observations are do not fall on rapid mixing curves. This effect is seen in the ATMOS observations.

  14. Nitrogen trace gas fluxes from a semiarid subtropical savanna under woody legume encroachment

    NASA Astrophysics Data System (ADS)

    Soper, Fiona M.; Boutton, Thomas W.; Groffman, Peter M.; Sparks, Jed P.

    2016-05-01

    Savanna ecosystems are a major source of nitrogen (N) trace gases that influence air quality and climate. These systems are experiencing widespread encroachment by woody plants, frequently associated with large increases in soil N, with no consensus on implications for trace gas emissions. We investigated the impact of encroachment by N-fixing tree Prosopis glandulosa on total reactive N gas flux (Nt = NO + N2O + NOy + NH3) from south Texas savanna soils over 2 years. Contrary to expectations, upland Prosopis groves did not have greater Nt fluxes than adjacent unencroached grasslands. However, abiotic conditions (temperature, rainfall, and topography) were strong drivers. Emissions from moist, low-lying Prosopis playas were up to 3 times higher than from Prosopis uplands. Though NO dominated emissions, NH3 and NOy (non-NO oxidized N) comprised 12-16% of the total summer N flux (up to 7.9 µg N m-2 h-1). Flux responses to soil wetting were temperature dependent for NO, NH3, and NOy: a 15 mm rainfall event increased flux 3-fold to 22-fold after 24 h in summer but had no effect in winter. Repeated soil wetting reduced N flux responses, indicating substrate depletion as a likely control. Rapid (<1 min) increases in NO emissions following wetting of dry soils suggested that abiotic chemodenitrification contributes to pulse emissions. We conclude that temperature and wetting dynamics, rather than encroachment, are primary drivers of N flux from these upland savannas, with implications for future emission patterns under altered precipitation regimes.

  15. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  16. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  17. Derivatization in gas chromatographic determination of phenol and aniline traces in aqueous media

    NASA Astrophysics Data System (ADS)

    Gruzdev, I. V.; Zenkevich, I. G.; Kondratenok, B. M.

    2015-06-01

    Substituted anilines and phenols are the most common hydrophilic organic environmental toxicants. The principles of gas chromatographic determination of trace amounts of these compounds in aqueous media at concentrations <=0.1 μg litre-1 based on synthesis of their derivatives (derivatization) directly in the aqueous phase are considered. Conversion of relatively hydrophilic analytes into more hydrophobic derivatives makes it possible to achieve such low detection limits and optimize the protocols of extractive preconcentration and selective chromatographic detection. Among the known reactions, this condition is best met by electrophilic halogenation of compounds at the aromatic moiety. The bibliography includes 177 references.

  18. ENHANCED FORMATION OF DIOXINS AND FURANS FROM COMBUSTION DEVICES BY ADDITION OF TRACE QUANTITIES OF BROMINE

    EPA Science Inventory

    Past pilot-scale experimental studies have shown a dramatic increase in the formation of certain chlorinated products of incomplete combustion (PICs) caused by the addition of trace amounts of bromine (Br). Emissions of trichloroethylene and tetrachloorethylene, generated as PICs...

  19. Moisture and substrate availability constrain soil trace gas fluxes in an eastern Amazonian regrowth forest

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Steel S.; Zarin, Daniel J.; Capanu, Marinela; Littell, Ramon; Davidson, Eric A.; Ishida, Francoise Y.; Santos, Elisana B.; Araújo, Maristela M.; AragãO, DéBora V.; Rangel-Vasconcelos, LíVia G. T.; de Assis Oliveira, Francisco; McDowell, William H.; de Carvalho, Claudio José R.

    2004-06-01

    Changes in land-use and climate are likely to alter moisture and substrate availability in tropical forest soils, but quantitative assessment of the role of resource constraints as regulators of soil trace gas fluxes is rather limited. The primary objective of this study was to quantify the effects of moisture and substrate availability on soil trace gas fluxes in an Amazonian regrowth forest. We measured the efflux of carbon dioxide (CO2), nitric oxide (NO), nitrous oxide (N2O), and methane (CH4) from soil in response to two experimental manipulations. In the first, we increased soil moisture availability during the dry season by irrigation; in the second, we decreased substrate availability by continuous removal of aboveground litter. In the absence of irrigation, soil CO2 efflux decreased during the dry season while irrigation maintained soil CO2 efflux levels similar to the wet season. Large variations in soil CO2 efflux consistent with a significant moisture constraint on respiration were observed in response to soil wet-up and dry-down events. Annual soil C efflux for irrigated plots was 27 and 13% higher than for control plots in 2001 and 2002, respectively. Litter removal significantly reduced soil CO2 efflux; annual soil C efflux in 2002 was 28% lower for litter removal plots compared to control plots. The annual soil C efflux:litterfall C ratio for the control treatment (4.0-5.2) was consistent with previously reported values for regrowth forests that indicate a relatively large belowground C allocation. In general, fluxes of N2O and CH4 were higher during the wet season and both fluxes increased during dry-season irrigation. There was no seasonal effect on NO fluxes. Litter removal had no significant impact on N oxide or CH4 emissions. Net soil nitrification did not respond to dry-season irrigation, but was somewhat reduced by litter removal. Overall, these results demonstrate significant soil moisture and substrate constraints on soil trace gas

  20. ExoMars Trace Gas Orbiter (TGO) Science Ground Segment (SGS)

    NASA Astrophysics Data System (ADS)

    Metcalfe, L.; Aberasturi, M.; Alonso, E.; Álvarez, R.; Ashman, M.; Barbarisi, I.; Brumfitt, J.; Cardesín, A.; Coia, D.; Costa, M.; Fernández, R.; Frew, D.; Gallegos, J.; García Beteta, J. J.; Geiger, B.; Heather, D.; Lim, T.; Martin, P.; Muñoz Crego, C.; Muñoz Fernandez, M.; Villacorta, A.; Svedhem, H.

    2018-06-01

    The ExoMars Trace Gas Orbiter (TGO) Science Ground Segment (SGS), comprised of payload Instrument Team, ESA and Russian operational centres, is responsible for planning the science operations of the TGO mission and for the generation and archiving of the scientific data products to levels meeting the scientific aims and criteria specified by the ESA Project Scientist as advised by the Science Working Team (SWT). The ExoMars SGS builds extensively upon tools and experience acquired through earlier ESA planetary missions like Mars and Venus Express, and Rosetta, but also is breaking ground in various respects toward the science operations of future missions like BepiColombo or JUICE. A productive interaction with the Russian partners in the mission facilitates broad and effective collaboration. This paper describes the global organisation and operation of the SGS, with reference to its principal systems, interfaces and operational processes.

  1. The Environmental Measurements Laboratory's Stratospheric Radionuclide (RANDAB) and Trace Gas (TRACDAB) Databases

    DOE Data Explorer

    Leifer, Robert [Environmental Measurements Lab. (EML), New York, NY (United States); Chan, Nita [Environmental Measurements Lab. (EML), New York, NY (United States)

    1997-01-01

    RANDAB represents the worlds largest collection of stratospheric and upper tropospheric radionuclide data. The database contains results of measurements made from 1957 to 1983 during the ASHCAN, STARDUST, AIRSTREAM, and High Altitude Sampling Program (HASP) projects. More than 20,000 filters were collected during this period and analyzed for approximately 40 different radionuclides. All of the available data characterizing each filter are included in RANDAB. RANDAB offers gas samples characterizing the tritium, radon and 14CO2 concentration in stratospheric air. Only a limited amount of data is available for radon because of analytical and sampling problems. The tritium data were provided graciously by Dr. Allen Mason of Los Alamos Laboratory and Dr. H. G. Oslund of the Tritium Laboratory, University of Miami. The second database, TRACDAB, contains more than 1000 stratospheric trace gas measurements for the period 1974 to 1983. These samples were collected during Project AIRSTREAM. During the years 1974 to 1976, the samples were analyzed at EML. Subsequently, Washington State University (1976-1979) and the Oregon Graduate Institute for Science & Technology (formerly the Oregon Graduate Center 1980-1983) were under contract to EML to analyze AIRSTREAM gas samples. During the period 1974-1983, 980 gas samples were analyzed for one or more of the following gases CCl3F, CCl2F2, CCl4, CH3CCl3, SF6, N20, CO2, CH4, and carbonyl sulfide (COS). To learn more about the naming of halocarbons (CFCs, HFCs, HCFCs, and halons), go to http://cdiac.ess-dive.lbl.gov/pns/cfcinfo.html.

  2. Trace Gas Measurements from the GeoTASO and GCAS Airborne Instruments: An Instrument and Algorithm Test-Bed for Air Quality Observations from Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.

    2016-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.

  3. The Atmosphere of Crystal Cave: Understanding Sources and Sinks of Trace Gases

    NASA Astrophysics Data System (ADS)

    Jarnot, A. W.; Hughes, S.; Blake, D. R.

    2016-12-01

    The atmospheric chemistry of cave systems has not been previously studied in depth; however, cave systems are prime locations to study potential sources and sinks for trace gas pollutants. Relatively constant temperatures, humidity, minimal air flow, and lack of sunlight create a stable environment that allows for biogeochemical processes to go on uninterrupted for extended periods of time. Carbonyl sulfide (OCS) is one of the main contributors to air pollution globally, but many OCS sinks are not fully understood. A preliminary analysis of cave air from Crystal Cave in Sequoia National Park yielded OCS concentrations of 35.2 ± 0.7 pptv, approximately 16 times lower than the average concentration of 568 ± 8 pptv measured outside of the cave. In addition, the concentrations of several other trace gases such as alpha-pinene and methyl bromide were found to be abnormally low (10.5 ± 0.3 pptv inside and 387 ± 8 pptv for alpha-pinene, and 387 ± 8 pptv inside and 11.1 ± 0.4 pptv outside for methyl bromide). The cave air was found to be well-mixed as the concentrations of long lived halocarbons such as CFC-12 were similar inside and outside of the cave (545 ± 5 pptv and 538 ± 4 pptv, respectively). This indicates that there may be one or more factors causing the cave to act a sink for several trace gas species. Further sampling and analysis of the atmosphere in the cave is required to draw any concrete conclusions about the unique environment presented here. The information gathered will help elucidate mechanisms for trace gas degradation, which could yield information about global trace gas budgets and their effect on global air quality.

  4. Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors

    NASA Astrophysics Data System (ADS)

    Ryan, Niall J.; Kinnison, Douglas E.; Garcia, Rolando R.; Hoffmann, Christoph G.; Palm, Mathias; Raffalski, Uwe; Notholt, Justus

    2018-02-01

    We investigate the reliability of using trace gas measurements from remote sensing instruments to infer polar atmospheric descent rates during winter within 46-86 km altitude. Using output from the Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) between 2008 and 2014, tendencies of carbon monoxide (CO) volume mixing ratios (VMRs) are used to assess a common assumption of dominant vertical advection of tracers during polar winter. The results show that dynamical processes other than vertical advection are not negligible, meaning that the transport rates derived from trace gas measurements do not represent the mean descent of the atmosphere. The relative importance of vertical advection is lessened, and exceeded by other processes, during periods directly before and after a sudden stratospheric warming, mainly due to an increase in eddy transport. It was also found that CO chemistry cannot be ignored in the mesosphere due to the night-time layer of OH at approximately 80 km altitude. CO VMR profiles from the Kiruna Microwave Radiometer and the Microwave Limb Sounder were compared to SD-WACCM output, and show good agreement on daily and seasonal timescales. SD-WACCM CO profiles are combined with the CO tendencies to estimate errors involved in calculating the mean descent of the atmosphere from remote sensing measurements. The results indicate errors on the same scale as the calculated descent rates, and that the method is prone to a misinterpretation of the direction of air motion. The true rate of atmospheric descent is seen to be masked by processes, other than vertical advection, that affect CO. We suggest an alternative definition of the rate calculated using remote sensing measurements: not as the mean descent of the atmosphere, but as an effective rate of vertical transport for the trace gas under observation.

  5. The value and limitations of global air-sampling networks for improving our understanding trace gas behavior

    NASA Astrophysics Data System (ADS)

    Montzka, S. A.

    2016-12-01

    Measurements from global surface-based air sampling networks provide a fundamental understanding of how and why concentrations of long-lived trace gases are changing over time. Results from these networks are used to quantify trace-gas concentrations and their time-dependent changes on global and smaller scales, and thus provide a means to quantify emission rates, loss frequencies, and mixing processes. Substantial advances in measurement and sampling technologies and the ability of these programs to create and maintain reliable gas standards mean that spatial concentration gradients and time-dependent changes are often very reliably measured. The presence of multiple independent networks allows an assessment of this reliability. Furthermore, recent global `snap-shot' surveys (e.g., HIPPO and ATom) and ongoing atmospheric profiling programs help us assess the ability of surface-based data to describe concentration distributions throughout most of the atmosphere ( 80% of its mass). In this overview talk, I'll explore the usefulness and limitations of existing long-term, ongoing sampling network programs and their advantages and disadvantages for characterizing concentrations on global and regional scales, and how recent advances (and short-term sampling programs) help us assess the accuracy of the surface networks to provide estimates of source and sink magnitudes, and inter-annual variability in both.

  6. Study of solvent sublation for concentration of trace phthalate esters in plastic beverage packaging and analysis by gas chromatography-mass spectrometry.

    PubMed

    Chang, Lin; Bi, Pengyu; Li, Xiaochen; Wei, Yun

    2015-06-15

    A novel trace analytical method based on solvent sublation (SS) and gas chromatography-mass spectrometry (GC-MS) was developed for the trace determination of twenty-two phthalate esters (PAEs) from plastic beverage packaging. In the solvent sublation section, the effects of solution pH, NaCl concentration, nitrogen flow rate, and sublation time on the sublation efficiency were investigated in detail, and the optimal conditions were obtained. The trace PAEs migrated from plastic beverage packaging to food simulants were separated and concentrated by solvent sublation, and then the trace target compounds in the concentrated solution were analyzed by GC-MS. According to the European Union Regulation, the food simulants including distilled water for the normal beverages and acetic acid solution (3%) for the acetic beverage of yogurt were prepared for migration tests. The trace analysis method showed good linearity, low limits of detection (LODs) of 1.6-183.5 ng/L, and satisfied recoveries (67.3-113.7%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Study of the Effect of Trace Mg Additions on Carbides in Die Steel H13

    NASA Astrophysics Data System (ADS)

    Li, Ji; Li, Jing; Wang, Liang-liang; Zhu, Qin-tian

    2016-09-01

    Carbides in annealed steel H13 without magnesium and with a micro-addition of magnesium (0.0010%) are studied. Trace amounts of magnesium strengthen carbide segregation and reduce their size. Carbides phases M7C3, M6 C, and M(C, N) are detected in steel H13, and this agrees with results of thermodynamic calculations.

  8. Gas trace detection with cavity enhanced absorption spectroscopy: a review of its process in the field

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Luo, Zhifu; Tan, Zhongqi; Long, Xingwu

    2016-11-01

    Cavity-enhanced absorption spectroscopy (CEAS) is a technology in which the intracavity absorption is deduced from the intensity of light transmitted by the high finesse optical cavity. Then the samples' parameters, such as their species, concentration and absorption cross section, would be detection. It was first proposed and demonstrated by Engeln R. [1] and O'Keefe[2] in 1998. This technology has extraordinary detection sensitivity, high resolution and good practicability, so it is used in many fields , such as clinical medicine, gas detection and basic physics research. In this paper, we focus on the use of gas trace detection, including the advance of CEAS over the past twenty years, the newest research progresses, and the prediction of this technology's development direction in the future.

  9. Latest developments for low-power infrared laser-based trace gas sensors for sensor networks

    NASA Astrophysics Data System (ADS)

    So, Stephen; Thomazy, David; Wang, Wen; Marchat, Oscar; Wysocki, Gerard

    2011-09-01

    Academic and industrial researchers require ultra-low power, compact laser based trace-gas sensor systems for the most demanding environmental and space-borne applications. Here the latest results from research projects addressing these applications will be discussed: 1) an ultra-compact CO2 sensor based on a continuous wave quantum cascade laser, 2) an ultra-sensitive Faraday rotation spectrometer for O2 detection, 3) a fully ruggedized compact and low-power laser spectrometer, and 4) a novel non-paraxial nonthin multipass cell. Preliminary tests and projection for performance of future sensors based on this technology is presented.

  10. Measurement of trace impurities in ultra pure hydrogen and deuterium at the parts-per-billion level using gas chromatography

    NASA Astrophysics Data System (ADS)

    Ganzha, V.; Ivshin, K.; Kammel, P.; Kravchenko, P.; Kravtsov, P.; Petitjean, C.; Trofimov, V.; Vasilyev, A.; Vorobyov, A.; Vznuzdaev, M.; Wauters, F.

    2018-02-01

    A series of muon experiments at the Paul Scherrer Institute in Switzerland deploy ultra-pure hydrogen active targets. A new gas impurity analysis technique was developed, based on conventional gas chromatography, with the capability to measure part-per-billion (ppb) traces of nitrogen and oxygen in hydrogen and deuterium. Key ingredients are a cryogenic admixture accumulation, a directly connected sampling system and a dedicated calibration setup. The dependence of the measured concentration on the sample volume was investigated, confirming that all impurities from the sample gas are collected in the accumulation column and measured with the gas chromatograph. The system was calibrated utilizing dynamic dilution of admixtures into the gas flow down to sub-ppb level concentrations. The total amount of impurities accumulated in the purification system during a three month long experimental run was measured and agreed well with the calculated amount based on the measured concentrations in the flow.

  11. Rn-222 tracing and stable isotope measurements of biogenic gas fluxes from methane saturated sediments

    NASA Technical Reports Server (NTRS)

    Martens, Christopher S.; Green, C. D.; Blair, Neal; Chanton, J. P.

    1985-01-01

    Transport of reduced biogenic gases from anoxic sediments and soils to the atmosphere can be quantitatively studied through measurement of radon-222/radium-226 disequilibrium. In previous work, seasonal variations in biogenic gas transport mechanisms, net fluxes and overall composition were documented. Now presented are direct field measurements of radon-222 activity in gases exiting organic rich sediments which show their usefulness for tracing of the stripping of dissolved biogenic gases from within the sediment column and transport via bubble ebullition. Methane is depleted in deuterium during the summer as compared with winter months and is in general lighter than in most marine sediments signaling the probable importance of acetate as an important precursor molecule. The significant seasonal isotopic variations observed illustrate the importance of understanding mechanisms and rates of biogenic gas production in order to interpret observed tropospheric isotopic data.

  12. Development of data processing, interpretation and analysis system for the remote sensing of trace atmospheric gas species

    NASA Technical Reports Server (NTRS)

    Casas, Joseph C.; Saylor, Mary S.; Kindle, Earl C.

    1987-01-01

    The major emphasis is on the advancement of remote sensing technology. In particular, the gas filter correlation radiometer (GFCR) technique was applied to the measurement of trace gas species, such as carbon monoxide (CO), from airborne and Earth orbiting platforms. Through a series of low altitude aircraft flights, high altitude aircraft flights, and orbiting space platform flights, data were collected and analyzed, culminating in the first global map of carbon monoxide concentration in the middle troposphere and stratosphere. The four major areas of this remote sensing program, known as the Measurement of Air Pollution from Satellites (MAPS) experiment, are: (1) data acquisition, (2) data processing, analysis, and interpretation algorithms, (3) data display techniques, and (4) information processing.

  13. Mid-Infrared Trace Gas Sensor Technology Based on Intracavity Quartz-Enhanced Photoacoustic Spectroscopy.

    PubMed

    Wojtas, Jacek; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Tittel, Frank K

    2017-03-04

    The application of compact inexpensive trace gas sensor technology to a mid-infrared nitric oxide (NO) detectoion using intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) is reported. A minimum detection limit of 4.8 ppbv within a 30 ms integration time was demonstrated by using a room-temperature, continuous-wave, distributed-feedback quantum cascade laser (QCL) emitting at 5.263 µm (1900.08 cm -1 ) and a new compact design of a high-finesse bow-tie optical cavity with an integrated resonant quartz tuning fork (QTF). The optimum configuration of the bow-tie cavity was simulated using custom software. Measurements were performed with a wavelength modulation scheme (WM) using a 2f detection procedure.

  14. Mid-Infrared Trace Gas Sensor Technology Based on Intracavity Quartz-Enhanced Photoacoustic Spectroscopy

    PubMed Central

    Wojtas, Jacek; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Tittel, Frank K.

    2017-01-01

    The application of compact inexpensive trace gas sensor technology to a mid-infrared nitric oxide (NO) detectoion using intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) is reported. A minimum detection limit of 4.8 ppbv within a 30 ms integration time was demonstrated by using a room-temperature, continuous-wave, distributed-feedback quantum cascade laser (QCL) emitting at 5.263 µm (1900.08 cm−1) and a new compact design of a high-finesse bow-tie optical cavity with an integrated resonant quartz tuning fork (QTF). The optimum configuration of the bow-tie cavity was simulated using custom software. Measurements were performed with a wavelength modulation scheme (WM) using a 2f detection procedure. PMID:28273836

  15. Global Estimates of Trace Gas Fluxes Affected by Land Use Change and Irrigation of Major Crops

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; del Grosso, S.; Parton, W. J.; Keough, C.

    2005-12-01

    Cropland conversions have altered many fertile regions of the earth and have modified the biogeochemical and hydrological cycling in these regions. These croplands are significant sources of N trace gas emissions however, the extent of changing trace gas emission due to land management changes and irrigation need further analysis. We use the DAYCENT biogeochemical model which is a daily time step version of the CENTURY model. DAYCENT simulates fluxes of N2O between croplands and the atmosphere for major crop types, and allows for a dynamic representation of GHG fluxes that accounts for environmental conditions, soil characteristics, climate, specific crop qualities, and fertilizer and irrigation management practices. DAYCENT is applied to all world cropland regions. Global datasets of weather, soils, native vegetation and cropping fractions were mapped to an approximate 2° x 2° resolution. Non-spatial data (such as planting date and fertilizer application rates) were assigned as point values for each region (i.e. country), and were assumed to be similar within crop types across the region. Three major crops were simulated (corn, wheat and soybeans) under both irrigated and non-irrigated conditions. Results indicate that N2O emission for maize and soy bean increase between 3 to 10%, where as wheat emission decline by about 1% when irrigated systems are compared to non-irrigated systems.

  16. The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Korablev, O.; Montmessin, F.; Trokhimovskiy, A.; Fedorova, A. A.; Shakun, A. V.; Grigoriev, A. V.; Moshkin, B. E.; Ignatiev, N. I.; Forget, F.; Lefèvre, F.; Anufreychik, K.; Dzuban, I.; Ivanov, Y. S.; Kalinnikov, Y. K.; Kozlova, T. O.; Kungurov, A.; Makarov, V.; Martynovich, F.; Maslov, I.; Merzlyakov, D.; Moiseev, P. P.; Nikolskiy, Y.; Patrakeev, A.; Patsaev, D.; Santos-Skripko, A.; Sazonov, O.; Semena, N.; Semenov, A.; Shashkin, V.; Sidorov, A.; Stepanov, A. V.; Stupin, I.; Timonin, D.; Titov, A. Y.; Viktorov, A.; Zharkov, A.; Altieri, F.; Arnold, G.; Belyaev, D. A.; Bertaux, J. L.; Betsis, D. S.; Duxbury, N.; Encrenaz, T.; Fouchet, T.; Gérard, J.-C.; Grassi, D.; Guerlet, S.; Hartogh, P.; Kasaba, Y.; Khatuntsev, I.; Krasnopolsky, V. A.; Kuzmin, R. O.; Lellouch, E.; Lopez-Valverde, M. A.; Luginin, M.; Määttänen, A.; Marcq, E.; Martin Torres, J.; Medvedev, A. S.; Millour, E.; Olsen, K. S.; Patel, M. R.; Quantin-Nataf, C.; Rodin, A. V.; Shematovich, V. I.; Thomas, I.; Thomas, N.; Vazquez, L.; Vincendon, M.; Wilquet, V.; Wilson, C. F.; Zasova, L. V.; Zelenyi, L. M.; Zorzano, M. P.

    2018-02-01

    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7-1.6 μm spectral range with a resolving power of ˜20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2-4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7-17 μm with apodized resolution varying from 0.2 to 1.3 cm-1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ˜60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of

  17. Gaseous trace impurity analyzer and method

    DOEpatents

    Edwards, Jr., David; Schneider, William

    1980-01-01

    Simple apparatus for analyzing trace impurities in a gas, such as helium or hydrogen, comprises means for drawing a measured volume of the gas as sample into a heated zone. A segregable portion of the zone is then chilled to condense trace impurities in the gas in the chilled portion. The gas sample is evacuated from the heated zone including the chilled portion. Finally, the chilled portion is warmed to vaporize the condensed impurities in the order of their boiling points. As the temperature of the chilled portion rises, pressure will develop in the evacuated, heated zone by the vaporization of an impurity. The temperature at which the pressure increase occurs identifies that impurity and the pressure increase attained until the vaporization of the next impurity causes a further pressure increase is a measure of the quantity of the preceding impurity.

  18. Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops.

    PubMed

    Brulé, Mathieu; Bolduan, Rainer; Seidelt, Stephan; Schlagermann, Pascal; Bott, Armin

    2013-01-01

    Batch biochemical methane potential (BMP) assays to evaluate the methane yield of biogas substrates such as energy crops are usually carried out with undiluted inoculum. A BMP assay was performed on two energy crops (green cuttings and grass silage). Anaerobic digestion was performed both with and without supplementation of three commercial additives containing trace metals in liquid, solid or adsorbed form (on clay particles). In order to reveal positive effects of trace metal supplementation on the methane yield, besides undiluted inoculum, 3-fold and 10-fold dilutions of the inoculum were applied for substrate digestion. Diluted inoculum variants were supplemented with both mineral nutrients and pH-buffering substances to prevent a collapse of the digestion process. As expected, commercial additives had no effect on the digestion process performed with undiluted inoculum, while significant increases of methane production through trace element supplementation could be observed on the diluted variants. The effect of inoculum dilution may be twofold: (1) decrease in trace metal supplementation from the inoculum and (2) reduction in the initial number of bacterial cells. Bacteria require higher growth rates for substrate degradation and hence have higher trace element consumption. According to common knowledge of the biogas process, periods with volatile fatty acids accumulation and decreased pH may have occurred in the course ofanaerobic digestion. These effects may have led to inhibition, not only ofmethanogenes and acetogenes involved in the final phases of methane production, but also offibre-degrading bacterial strains involved in polymer hydrolysis. Further research is required to confirm this hypothesis.

  19. A Fully Non-metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2014-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute (NARI), represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies for fabricating polymer matrix composite (PMC) and ceramic matrix composite (CMC) gas turbine engine components. The benefits of the proposed effort include: 50 weight reduction compared to metallic parts, reduced manufacturing costs due to less machining and no tooling requirements, reduced part count due to net shape single component fabrication, and rapid design change and production iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature capable polymer filaments. The first component is an acoustic panel treatment with a honeycomb structure with an integrated back sheet and perforated front sheet. The second component is a compressor inlet guide vane. The CMC effort, which is starting at a lower technology readiness level, will use a binder jet process to fabricate silicon carbide test coupons and demonstration articles. The polymer and ceramic additive manufacturing efforts will advance from monolithic materials toward silicon carbide and carbon fiber reinforced composites for improved properties. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The proposed effort will be focused on a small 7000 lbf gas turbine engine. However, the concepts are equally applicable to large gas turbine engines. The proposed effort includes a multidisciplinary, multiorganization NASA - industry team that includes experts in

  20. Trace gas fluxes from intensively managed rice and soybean fields across three growing seasons in the Brazilian Amazon

    Treesearch

    R.C. Oliveira Junior; Michael Keller; P. Crill; T. Beldini; J. Van Haren; P. Camargo

    2015-01-01

    The emission of gases that may potentially intensify the greenhouse effect has received special attention due to their ability to raise global temperatures and possibly modify conditions for life on earth. The objectives of this study were the quantification of trace gas flux (N2O, CO2 and CH4) in soils of the lower Amazon basin that are planted with rice and soybean,...

  1. Measuring trace gas emission from multi-distributed sources using vertical radial plume mapping (VRPM) and backward Lagrangian stochastic (bLS) techniques

    USDA-ARS?s Scientific Manuscript database

    Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The accuracy of the vertical radial plume mapping (VRPM) and the backward Lagrangian (bLS) techniques with an open-path optical spectrosco...

  2. Tropospheric chemistry over the lower Great Plains of the United States. 2. Trace gas profiles and distributions

    NASA Astrophysics Data System (ADS)

    Luke, Winston T.; Dickerson, Russell R.; Ryan, William F.; Pickering, Kenneth E.; Nunnermacker, Linda J.

    1992-12-01

    Convective clouds and thunderstorms redistribute air pollutants vertically, and by altering the chemistry and radiative balance of the upper troposphere, these local actions can have global consequences. To study these effects, measurements of trace gases ozone, O3, carbon monoxide, CO, and odd nitrogen were made aboard the NCAR Sabreliner on 18 flights over the southern Great Plains during June 1985. To demonstrate chemical changes induced by vertical motions in the atmosphere and to facilitate comparison with computer model calculations, these data were categorized according to synoptic flow patterns. Part 1 of this two-part paper details the alternating pulses of polar and maritime air masses that dominate the vertical mixing in this region. In this paper, trace gas measurements are presented as altitude profiles (0-12 km) with statistical distributions of mixing ratios for each species in each flow pattern. The polar flow regime is characterized by northwesterly winds, subsiding air, and convective stability. Concentrations of CO and total odd nitrogen (NOy) are relatively high in the shallow planetary boundary layer (PBL) but decrease rapidly with altitude. Ozone, on the other hand, is uniformly distributed, suggesting limited photochemical production; in fact, nitric oxide, NO, mixing ratios fell below 10 ppt (parts per 1012 by volume) in the midtroposphere. The maritime regime is characterized by southerly surface winds, convective instability, and a deep PBL; uniformly high concentrations of trace gases were found up to 4 km on one flight. Severe storms occur in maritime flow, especially when capped by a dry layer, and they transport large amounts of CO, O3, and NOy into the upper troposphere. Median NO levels at high altitude exceeded 300 ppt. Lightning produces spikes of NO (but not CO) with mixing ratios sometimes exceeding 1000 ppt. This flow pattern tends to leave the midtroposphere relatively clean with concentrations of trace gases similar to those

  3. A Miniaturized QEPAS Trace Gas Sensor with a 3D-Printed Acoustic Detection Module.

    PubMed

    Yang, Xiaotao; Xiao, Youhong; Ma, Yufei; He, Ying; Tittel, Frank K

    2017-07-31

    A 3D printing technique was introduced to a quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor and is reported for the first time. The acoustic detection module (ADM) was designed and fabricated using the 3D printing technique and the ADM volume was compressed significantly. Furthermore, a small grin lens was used for laser focusing and facilitated the beam adjustment in the 3D-printed ADM. A quartz tuning fork (QTF) with a low resonance frequency of 30.72 kHz was used as the acoustic wave transducer and acetylene (C₂H₂) was chosen as the analyte. The reported miniaturized QEPAS trace gas sensor is useful in actual sensor applications.

  4. Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool

    DOEpatents

    Heiple, C.R.; Burgardt, P.

    1984-03-13

    An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

  5. Land use change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Veldkamp, Edzo; Purbopuspito, Joko; Corre, Marife D.; Brumme, Rainer; Murdiyarso, Daniel

    2008-06-01

    Land use changes and land use intensification are considered important processes contributing to the increasing concentrations of the greenhouse gases nitrous oxide (N2O) and methane (CH4) and of nitric oxide (NO), a precursor of ozone. Studies on the effects of land use changes and land use intensification on soil trace gas emissions were mostly conducted in Latin America and only very few in Asia. Here we present results from Central Sulawesi where profound changes in land use and cultivation practices take place: traditional agricultural practices like shifting cultivation and slash-and-burn agriculture are replaced by permanent cultivation systems and introduction of income-generating cash crops like cacao. Our results showed that N2O emissions were higher from cacao agroforestry (35 ± 10 μg N m-2 h-1) than maize (9 ± 2 μg N m-2 h-1), whereas intermediate rates were observed from secondary forests (25 ± 11 μg N m-2 h-1). NO emissions did not differ among land use systems, ranging from 12 ± 2 μg N m-2 h-1 for cacao agroforestry and secondary forest to 18 ± 2 μg N m-2 h-1 for maize. CH4 uptake was higher for maize (-30 ± 4 μg C m-2 h-1) than cacao agroforestry (-18 ± 2 μg C m-2 h-1) and intermediate rates were measured from secondary forests (-25 ± 4 μg C m-2 h-1). Combining these data with results from other studies in this area, we present chronosequence effects of land use change on trace gas emissions from natural forest, through maize cultivation, to cacao agroforestry (with or without fertilizer). Compared to the original forests, this typical land use change in the study area clearly led to higher N2O emissions and lower CH4 uptake with age of cacao agroforestry systems. We conclude that this common land use sequence in the area combined with the increasing use of fertilizer will strongly increase soil trace gas emissions. We suggest that the future hot spot regions of high N2O (and to a lesser extend NO) emissions in the tropics are those

  6. Tracing kinematic (mis)alignments in CALIFA merging galaxies. Stellar and ionized gas kinematic orientations at every merger stage

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; García-Lorenzo, B.; Falcón-Barroso, J.; van de Ven, G.; Lyubenova, M.; Wild, V.; Méndez-Abreu, J.; Sánchez, S. F.; Marquez, I.; Masegosa, J.; Monreal-Ibero, A.; Ziegler, B.; del Olmo, A.; Verdes-Montenegro, L.; García-Benito, R.; Husemann, B.; Mast, D.; Kehrig, C.; Iglesias-Paramo, J.; Marino, R. A.; Aguerri, J. A. L.; Walcher, C. J.; Vílchez, J. M.; Bomans, D. J.; Cortijo-Ferrero, C.; González Delgado, R. M.; Bland-Hawthorn, J.; McIntosh, D. H.; Bekeraitė, S.

    2015-10-01

    We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. In order to distinguish kinematic properties caused by a merger event from those driven by internal processes, we compare our galaxies with a control sample of 80 non-interacting galaxies. We measure for both the stellar and the ionized gas components the major (projected) kinematic position angles (PAkin, approaching and receding) directly from the velocity distributions with no assumptions on the internal motions. This method also allow us to derive the deviations of the kinematic PAs from a straight line (δPAkin). We find that around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. In particular, we observe those misalignments in galaxies with morphological signatures of interaction. On the other hand, thelevel of alignment between the approaching and receding sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the kinematic PA orientation from a straight line in the stellar component measured by δPAkin are large for both samples. However, for a large fraction of interacting galaxies the ionized gas δPAkin is larger than the typical values derived from isolated galaxies (48%), indicating that this parameter is a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42% (28/66) of the interacting galaxies have misalignments larger than 16°, compared to 10% from the control sample. Our results show the impact of interactions in the motion of stellar and ionized gas as well as the wide the variety of their spatially resolved kinematic distributions. This study also provides a local

  7. Measuring Trace Hydrocarbons in Silanes

    NASA Technical Reports Server (NTRS)

    Lesser, L. A.

    1984-01-01

    Technique rapid and uses standard analytical equipment. Silane gas containing traces of hydrocarbons injected into carrier gas of moist nitrogen having about 0.2 percent water vapor. Carrier, water and silane pass through short column packed with powdered sodium hydroxide which combines moisture and silane to form nonvolatile sodium silicate. Carrier gas free of silane but containing nonreactive hydrocarbons, pass to silica-gel column where chromatographic separation takes place. Hydrocarbons measured by FID.

  8. [Quartz-enhanced photoacoustic spectroscopy trace gas detection system based on the Fabry-Perot demodulation].

    PubMed

    Lin, Cheng; Zhu, Yong; Wei, Wei; Zhang, Jie; Tian, Li; Xu, Zu-Wen

    2013-05-01

    An all-optical quartz-enhanced photoacoustic spectroscopy system, based on the F-P demodulation, for trace gas detection in the open environment was proposed. In quartz-enhanced photoacoustic spectroscopy (QEPAS), an optical fiber Fabry-Perot method was used to replace the conventional electronic demodulation method. The photoacoustic signal was obtained by demodulating the variation of the Fabry-Perot cavity between the quartz tuning fork side and the fiber face. An experimental system was setup. The experiment for detection of water vapour in the open environment was carried on. A normalized noise equivalent absorption coefficient of 2.80 x 10(-7) cm(-1) x W x Hz(-1/2) was achieved. The result demonstrated that the sensitivity of the all-optical quartz-enhanced photoacoustic spectroscopy system is about 2.6 times higher than that of the conventional QEPAS system. The all-optical quartz-enhanced photoacoustic spectroscopy system is immune to electromagnetic interference, safe in flammable and explosive gas detection, suitable for high temperature and high humidity environments and realizable for long distance, multi-point and network sensing.

  9. Effects of SO/sub 2/ shielding gas additions on GTA weld shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Burgardt, P.

    1985-06-01

    Substantial increases in GTA weld depth/width ratio resulted from small additions of sulfur dioxide (SO/sub 2/) to the torch shielding gas when welding two stainless steels. The improvement was demonstrated on both Types 304 and 21-6-9 austenitic stainless steels, but would be expected for iron-base alloys generally. The weld pool shape achieved was essentially independent of variations in both SO/sub 2/ content of the torch gas and base metal composition when SO/sub 2/ in the shielding gas was in the range of 500 to 1400 ppm. With 700 ppm SO/sub 2/ in the torch gas, less than 30 ppm sulfurmore » was added to an autogenous weld bead. For alloys where this additional sulfur can be tolerated and appropriate measures can be taken to handle the toxic SO/sub 2/, this technique offers a promising way to improve GTA weld joint penetration while suppressing variable penetration.« less

  10. Coupled-Circulation-Chemistry Studies with the Finite-Volume CCM: Trace Gas Transport in the Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Lin, Shian-Jiann; Rood, Richard B.; Nebuda, Sharon; Nielsen, J. Eric; Douglass, Anne R.

    2000-01-01

    A joint project between the Data Assimilation Office at NASA GSFC and NCAR involves linking the physical packages from the Community Climate Model (CCM) with the flux-form semi-Lagrangian dynamical core developed by Lin and Rood in the DAO. A further development of this model includes the implementation of a chemical package developed by Douglass and colleagues in the Atmospheric Chemistry and Dynamics Branch at NASA GSFC. Results from this coupled dynamics-radiation-chemistry model will be presented, focussing on trace gas transport in the tropopause region.

  11. Implementation of Cloud Retrievals for Tropospheric Emission Spectrometer (TES) Atmospheric Retrievals: Part 1. Description and Characterization of Errors on Trace Gas Retrievals

    NASA Technical Reports Server (NTRS)

    Kulawik, Susan S.; Worden, John; Eldering, Annmarie; Bowman, Kevin; Gunson, Michael; Osterman, Gregory B.; Zhang, Lin; Clough, Shepard A.; Shephard, Mark W.; Beer, Reinhard

    2006-01-01

    We develop an approach to estimate and characterize trace gas retrievals in the presence of clouds in high spectral measurements of upwelling radiance in the infrared spectral region (650-2260/cm). The radiance contribution of clouds is parameterized in terms of a set of frequency-dependent nonscattering optical depths and a cloud height. These cloud parameters are retrieved jointly with surface temperature, emissivity, atmospheric temperature, and trace gases such as ozone from spectral data. We demonstrate the application of this approach using data from the Tropospheric Emission Spectrometer (TES) and test data simulated with a scattering radiative transfer model. We show the value of this approach in that it results in accurate estimates of errors for trace gas retrievals, and the retrieved values improve over the initial guess for a wide range of cloud conditions. Comparisons are made between TES retrievals of ozone, temperature, and water to model fields from the Global Modeling and Assimilation Office (GMAO), temperature retrievals from the Atmospheric Infrared Sounder (AIRS), tropospheric ozone columns from the Goddard Earth Observing System (GEOS) GEOS-Chem, and ozone retrievals from the Total Ozone Mapping Spectrometer (TOMS). In each of these cases, this cloud retrieval approach does not introduce observable biases into TES retrievals.

  12. Geometric calibration of Colour and Stereo Surface Imaging System of ESA's Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Tulyakov, Stepan; Ivanov, Anton; Thomas, Nicolas; Roloff, Victoria; Pommerol, Antoine; Cremonese, Gabriele; Weigel, Thomas; Fleuret, Francois

    2018-01-01

    There are many geometric calibration methods for "standard" cameras. These methods, however, cannot be used for the calibration of telescopes with large focal lengths and complex off-axis optics. Moreover, specialized calibration methods for the telescopes are scarce in literature. We describe the calibration method that we developed for the Colour and Stereo Surface Imaging System (CaSSIS) telescope, on board of the ExoMars Trace Gas Orbiter (TGO). Although our method is described in the context of CaSSIS, with camera-specific experiments, it is general and can be applied to other telescopes. We further encourage re-use of the proposed method by making our calibration code and data available on-line.

  13. Retrieval of Vertical Aerosol and Trace Gas Distributions from Polarization Sensitive Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Tirpitz, Jan-Lukas; Friess, Udo; Platt, Ulrich

    2017-04-01

    An accurate knowledge of the vertical distribution of trace gases and aerosols is crucial for our understanding of the chemical and dynamical processes in the lower troposphere. Their accurate determination is typically only possible by means of laborious and expensive airborne in-situ measurements but in the recent decades, numerous promising ground-based remote sensing approaches have been developed. One of them is to infer vertical distributions from "Differential Optical Absorption Spectroscopy" (DOAS) measurements. DOAS is a technique to analyze UV- and visible radiation spectra of direct or scattered sunlight, which delivers information on different atmospheric parameters, integrated over the light path from space to the instrument. An appropriate set of DOAS measurements, recorded under different viewing directions (Multi-Axis DOAS) and thus different light path geometries, provides information on the atmospheric state. The vertical profiles of aerosol properties and trace gas concentrations can be retrieved from such a set by numerical inversion techniques, incorporating radiative transfer models. The information content of measured data is rarely sufficient for a well-constrained retrieval, particularly for atmospheric layers above 1 km. We showed in first simulations that, apart from spectral properties, the polarization state of skylight is likely to provide a significant amount of additional information on the atmospheric state and thus to enhance retrieval quality. We present first simulations, expectations and ideas on how to implement and characterize a polarization sensitive Multi-Axis DOAS instrument and a corresponding profile retrieval algorithm.

  14. Airborne In-Situ Trace Gas Measurements of Multiple Wildfires in California (2013-2014)

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Yates, E. L.; Tanaka, T.; Roby, M.; Gore, W.; Clements, C. B.; Lareau, N.; Ambrosia, V. G.; Quayle, B.; Schroeder, W.

    2014-12-01

    Biomass burning emissions are an important source of a wide range of trace gases and particles that can impact local, regional and global air quality, climate forcing, biogeochemical cycles and human health. In the western US, wildfires dominate over prescribed fires, contributing to atmospheric trace gas budgets and regional and local air pollution. Limited sampling of emissions from wildfires means western US emission estimates rely largely on data from prescribed fires, which may not be a suitable proxy for wildfire emissions. We report here in-situ measurements of carbon dioxide, methane, ozone and water vapor from the plumes of a variety of wildfires sampled in California in the fire seasons of 2013 and 2014. Included in the analysis are the Rim Fire (August - October 2013, near Yosemite National Park), the Morgan Fire (September 2013, near Clayton, CA), and the El Portal Fire (July - August 2014, in Yosemite National Park), among others. When possible, fires were sampled on multiple days. Emission ratios and estimated emission factors will be presented and discussed in the context of fuel composition, plume structure, and fire phase. Correlations of plume chemical composition to MODIS/VIIRS Fire Radiative Power (FRP) and other remote sensing information will be explored. Furthermore, the role of plumes in delivery of enhanced ozone concentrations to downwind municipalities will be discussed.

  15. The effect of trace additions of Zn on the precipitation behavior of alloy 8090 during artificial aging

    NASA Technical Reports Server (NTRS)

    Kilmer, R. J.; Stoner, G. E.

    1991-01-01

    The effect(s) of trace additions of Zn to the artificial aging behavior of alloy 8090 (Al-Li-Cu-Mg-Zr) was investigated in the approximate composition range 0-1 wt-pct Zn. Trace Zn additions were found to delay aging and under equivalent aging treatments (100 hrs at 160 C) the alloy without Zn and the 1.07 wt-pct Zn alloy developed delta-prime-free zones along subgrain boundaries, while the alloys of 0.21 and 0.58 wt-pct Zn did not. DSC analysis indicated that Zn was being incorporated into the delta-prime, shifting it's exotherm to higher temperatures, while having little if any effect on its associated endotherm making it unlikely that it is an artifact of a solvus shift. In the 8090 + 1.07 wt-pct Zn alloy, coarse precipitates were found to reside on subgrain boundaries and EDS indicated that they were rich in Cu and Zn. It was also noted that in the Zn containing 8090 varients, the S prime precipitates were more coarse in size than the baseline 8090.

  16. Next Generation Offline Approaches to Trace Gas-Phase Organic Compound Speciation: Sample Collection and Analysis

    NASA Astrophysics Data System (ADS)

    Sheu, R.; Marcotte, A.; Khare, P.; Ditto, J.; Charan, S.; Gentner, D. R.

    2017-12-01

    Intermediate-volatility and semi-volatile organic compounds (I/SVOCs) are major precursors to secondary organic aerosol, and contribute to tropospheric ozone formation. Their wide volatility range, chemical complexity, behavior in analytical systems, and trace concentrations present numerous hurdles to characterization. We present an integrated sampling-to-analysis system for the collection and offline analysis of trace gas-phase organic compounds with the goal of preserving and recovering analytes throughout sample collection, transport, storage, and thermal desorption for accurate analysis. Custom multi-bed adsorbent tubes are used to collect samples for offline analysis by advanced analytical detectors. The analytical instrumentation comprises an automated thermal desorption system that introduces analytes from the adsorbent tubes into a gas chromatograph, which is coupled with an electron ionization mass spectrometer (GC-EIMS) and other detectors. In order to optimize the collection and recovery for a wide range of analyte volatility and functionalization, we evaluated a variety of commercially-available materials, including Res-Sil beads, quartz wool, glass beads, Tenax TA, and silica gel. Key properties for optimization include inertness, versatile chemical capture, minimal affinity for water, and minimal artifacts or degradation byproducts; these properties were assessed with a diverse mix of traditionally-measured and functionalized analytes. Along with a focus on material selection, we provide recommendations spanning the entire sampling-and-analysis process to improve the accuracy of future comprehensive I/SVOC measurements, including oxygenated and other functionalized I/SVOCs. We demonstrate the performance of our system by providing results on speciated VOCs-SVOCs from indoor, outdoor, and chamber studies that establish the utility of our protocols and pave the way for precise laboratory characterization via a mix of detection methods.

  17. Simultaneous Photoacoustic and Photopyroelectric Detection of Trace Gas Emissions from Some Plant Parts and Their Related Essential Oils in a Combined Detection Cell

    NASA Astrophysics Data System (ADS)

    Abu-Taha, M. I.; Abu-Teir, M. M.; Al-Jamal, A. J.; Eideh, H.

    The aim of this work was to establish the feasibility of the combined photoacoustic (PA) and photopyroelectric (PPE) detection of the vapours emitted from essential oils and their corresponding uncrushed leaves or flowers. Gas traces of jasmine (Jessamine (Jasminum)), mint (Mentha arvensis L.) and Damask rose (Rosa damascena Miller) and their essential oils were tested using a combined cell fitted with both a photopyroelectric film (PVDF) and a microphone in conjunction with a pulsed wideband infrared source (PWBS) source. Infrared PA and PPE absorbances were obtained simultaneously at room temperatures with excellent reproducibility and high signal-to-noise ratios. Significant similarities found between the PA and PPE spectra of the trace gas emissions of plant parts, i.e., flowers or leaves and their related essential oils show the good correlation of their emissions and that both effects are initiated by the same absorbing molecules.

  18. Deep ALMA imaging of the merger NGC 1614. Is CO tracing a massive inflow of non-starforming gas?

    NASA Astrophysics Data System (ADS)

    König, S.; Aalto, S.; Muller, S.; Gallagher, J. S.; Beswick, R. J.; Xu, C. K.; Evans, A.

    2016-10-01

    Aims: Observations of the molecular gas over scales of ~0.5 to several kpc provide crucial information on how molecular gas moves through galaxies, especially in mergers and interacting systems, where it ultimately reaches the galaxy center, accumulates, and feeds nuclear activity. Studying the processes involved in the gas transport is one of the important steps forward to understand galaxy evolution. Methods: 12CO, 13CO, and C18O 1-0 high-sensitivity ALMA observations (~4'' × 2'') were used to assess the properties of the large-scale molecular gas reservoir and its connection to the circumnuclear molecular ring in the merger NGC 1614. Specifically, the role of excitation and abundances were studied in this context. We also observed the molecular gas high-density tracers CN and CS. Results: The spatial distributions of the detected 12CO 1-0 and 13CO 1-0 emission show significant differences. 12CO traces the large-scale molecular gas reservoir, which is associated with a dust lane that harbors infalling gas, and extends into the southern tidal tails. 13CO emission is for the first time detected in the large-scale dust lane. In contrast to 12CO, its line emission peaks between the dust lane and the circumnuclear molecular ring. A 12CO-to-13CO 1-0 intensity ratio map shows high values in the ring region (~30) that are typical for the centers of luminous galaxy mergers and even more extreme values in the dust lane (>45). Surprisingly, we do not detect C18O emission in NGC 1614, but we do observe gas emitting the high-density tracers CN and CS. Conclusions: We find that the 12CO-to-13CO 1-0 line ratio in NGC 1614 changes from >45 in the 2 kpc dust lane to ~30 in the starburst nucleus. This drop in ratio with decreasing radius is consistent with the molecular gas in the dust lane being kept in a diffuse, unbound state while it is being funneled toward the nucleus. This also explains why there are no (or very faint) signs of star formation in the dust lane, despite its

  19. Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere

    DOEpatents

    Wamsley, Paula R.; Weimer, Carl S.; Nelson, Loren D.; O'Brien, Martin J.

    2003-01-01

    An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

  20. Measurements of trace contaminants in closed-type plant cultivation chambers

    NASA Astrophysics Data System (ADS)

    Tani, A.; Kiyota, M.; Aiga, I.; Nitta, K.; Tako, Y.; Ashida, A.; Otsubo, K.; Saito, T.

    Trace contaminants generated in closed facilities can cause abnormal plant growth. We present measurement data of trace contaminants released from soils, plants, and construction materials. We mainly used two closed chambers, a Closed-type Plant and Mushroom Cultivation Chamber (PMCC) and Closed-type Plant Cultivation Equipment (CPCE). Although trace gas budgets from soils obtained in this experiment are only one example, the results indicate that the budgets of trace gases, as well as CO_2 and O_2, change greatly with the degree of soil maturation and are dependent on the kind of substances in the soil. Both in the PMCC and in the CPCE, trace gases such as dioctyl phthalate (DOP), dibutyl phthalate (DBP), toluene and xylene were detected. These gases seemed to be released from various materials used in the construction of these chambers. The degree of increase in these trace gas levels was dependent on the relationship between chamber capacity and plant quantity. Results of trace gas measurement in the PMCC, in which lettuce and shiitake mushroom were cultivated, showed that ethylene was released both from lettuce and from the mushroom culture bed. The release rates were about 90 ng bed^-1 h^-1 for the shiitake mushroom culture bed (volume is 1700 cm^3) and 4.1 ~ 17.3 ng dm^-2h^-1 (leaf area basis) for lettuce. Higher ethylene release rates per plant and per unit leaf area were observed in mature plants than in young plants.

  1. Characterization of potential EC flux underestimation of "sticky" trace gas species

    NASA Astrophysics Data System (ADS)

    Neftel, Albrecht; Hensen, Arjan; Ibrom, Andreas; Ammann, Christof; Voglmeier, Karl; Brümmer, Christian

    2017-04-01

    Eddy covariance (EC) flux measurements of "sticky" trace gas species are affected of damping of high frequency variations of the gas concentration. Several approaches have been developed to correct for this effect (see e.g. Ibrom et al., 2007, Ammann et al., 2006). These approaches have in common that the spectral properties of the scalar are compared with the sonic temperature deduced from the Sonic anemometer data that is only marginally damped. A main difference between the two method is that one uses power spectra, while the other is based on co-spectra of the gas concentration with the vertical wind speed. NH3 fluxes used in the analysis stem from two field experiments: a) Posieux intercomparison October 2015: NH3 emissions of a grazed pasture measured with Eddy Covariance using an Aerodyne quantum cascade laser and with a horizontal gradient measurement using MiniDOAS systems (Sintermann et al., 2016) in conjunction with a dispersion model. b) Dronten experiment June 2016 in the Netherlands: NH3 emissions from two manured circles within 40m diameters have been determined with four different approaches (Eddy Covariance, Integrated Horizontal Flux approach, horizontal gradients and plume measurements). Despite correction with standard methods, turbulent NH3 flux measurements with the eddy covariance method seem still be underestimated when, e.g., compared to flux estimated using gradient methods. We discuss possible correction algorithms and how such underestimations can be recognized in the usual case, where no alternative flux estimation methods are available. References: Ammann, C., Brunner, A., Spirig, C., and Neftel, A. 2006: Technical note: Water vapour concentration and flux measurements with PTR-MS, Atmos. Chem. Phys., 6, 4643-4651 Ibrom, A., Dellwik, E., Jensen, N.O., Flyvbjerg, H. and Pilegaard, K., 2007. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agricultural and Forest Meteorology

  2. Comparative Model Evaluation Studies of Biogenic Trace Gas Fluxes in Tropical Forests

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Simulation modeling can play a number of important roles in large-scale ecosystem studies, including synthesis of patterns and changes in carbon and nutrient cycling dynamics, scaling up to regional estimates, and formulation of testable hypotheses for process studies. Recent comparative studies have shown that ecosystem models of soil trace gas exchange with the atmosphere are evolving into several distinct simulation approaches. Different levels of detail exist among process models in the treatment of physical controls on ecosystem nutrient fluxes and organic substrate transformations leading to gas emissions. These differences are is in part from distinct objectives of scaling and extrapolation. Parameter requirements for initialization scalings, boundary conditions, and time-series driven therefore vary among ecosystem simulation models, such that the design of field experiments for integration with modeling should consider a consolidated series of measurements that will satisfy most of the various model requirements. For example, variables that provide information on soil moisture holding capacity, moisture retention characteristics, potential evapotranspiration and drainage rates, and rooting depth appear to be of the first order in model evaluation trials for tropical moist forest ecosystems. The amount and nutrient content of labile organic matter in the soil, based on accurate plant production estimates, are also key parameters that determine emission model response. Based on comparative model results, it is possible to construct a preliminary evaluation matrix along categories of key diagnostic parameters and temporal domains. Nevertheless, as large-scale studied are planned, it is notable that few existing models age designed to simulate transient states of ecosystem change, a feature which will be essential for assessment of anthropogenic disturbance on regional gas budgets, and effects of long-term climate variability on biosphere-atmosphere exchange.

  3. Tuning fork enhanced interferometric photoacoustic spectroscopy: a new method for trace gas analysis

    NASA Astrophysics Data System (ADS)

    Köhring, M.; Pohlkötter, A.; Willer, U.; Angelmahr, M.; Schade, W.

    2011-01-01

    A photoacoustic trace gas sensor based on an optical read-out method of a quartz tuning fork is shown. Instead of conventional piezoelectric signal read-out, as applied in well-known quartz-enhanced photoacoustic spectroscopy (QEPAS), an interferometric read-out method for measurement of the tuning fork's oscillation is presented. To demonstrate the potential of the optical read-out of tuning forks in photoacoustics, a comparison between the performances of a sensor with interferometric read-out and conventional QEPAS with piezoelectric read-out is reported. The two sensors show similar characteristics. The detection limit (L) for the optical read-out is determined to be L opt=(2598±84) ppm (1 σ) compared to L elec=(2579±78) ppm (1 σ) for piezoelectric read-out. In both cases the detection limit is defined by the thermal noise of the tuning fork.

  4. Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks.

    PubMed

    Ma, Yufei; Yu, Guang; Zhang, Jingbo; Yu, Xin; Sun, Rui; Tittel, Frank K

    2015-03-27

    A sensitive trace gas sensor platform based on quartz-enhanced photoacoustic spectroscopy (QEPAS) is reported. A 1.395 μm continuous wave (CW), distributed feedback pigtailed diode laser was used as the excitation source and H2O was selected as the target analyte. Two kinds of quartz tuning forks (QTFs) with a resonant frequency (f0) of 30.72 kHz and 38 kHz were employed for the first time as an acoustic wave transducer, respectively for QEPAS instead of a standard QTF with a f0 of 32.768 kHz. The QEPAS sensor performance using the three different QTFs was experimentally investigated and theoretically analyzed. A minimum detection limit of 5.9 ppmv and 4.3 ppmv was achieved for f0 of 32.768 kHz and 30.72 kHz, respectively.

  5. MODELING THE EFFECTS OF CLIMATE AND LAND USE CHANGE ON CARBON AND TRACE GAS BUDGETS OVER THE AMAZON REGION USING NASA SATELLITE PRODUCTS

    EPA Science Inventory

    As part of the LBA-ECO Phase III synthesis efforts for remote sensing and predictive modeling of Amazon carbon, water, and trace gas fluxes, we are evaluating results from the regional ecosystem model called NASA-CASA (Carnegie-Ames Stanford Approach). The NASA-CASA model has bee...

  6. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    PubMed

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  7. Trace gas measurements during aircraft flights in the tropopause region over Europe and North Africa

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Borchers, R.; Fabian, P.; Flentje, G.; Matthews, W. A.; Szabo, A.; Lal, S.

    During aircraft flights in May 1981 from Munich (40 deg N) to north of the Spitsbergen Islands (82 deg N) and to Monrovia, Liberia (6 deg N), air samples were obtained in the altitude range of 8 to 11 km and during the ascents and descents near the airports. These samples have been analyzed for the trace gas mixing ratios of CH4, CO and N2O. The results of these analyses are presented and discussed. The results provide new evidence of tropospheric-stratospheric exchange events in the vicinity of the subpolar and subtropical tropopause foldings and possibly show a case of transport of CO-enriched air in the upper troposphere above the North Atlantic Ocean.

  8. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2015-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute, represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies to fabricate polymer matrix composite and ceramic matrix composite turbine engine components. The benefits include: 50 weight reduction compared to metallic parts, reduced manufacturing costs, reduced part count and rapid design iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature polymer filaments. The CMC effort uses a binder jet process to fabricate silicon carbide test coupons and demonstration articles. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The research project includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  9. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID

  10. Procedures of determining organic trace compounds in municipal sewage sludge-a review.

    PubMed

    Lindholm-Lehto, Petra C; Ahkola, Heidi S J; Knuutinen, Juha S

    2017-02-01

    Sewage sludge is the largest by-product generated during the wastewater treatment process. Since large amounts of sludge are being produced, different ways of disposal have been introduced. One tempting option is to use it as fertilizer in agricultural fields due to its high contents of inorganic nutrients. This, however, can be limited by the amount of trace contaminants in the sewage sludge, containing a variety of microbiological pollutants and pathogens but also inorganic and organic contaminants. The bioavailability and the effects of trace contaminants on the microorganisms of soil are still largely unknown as well as their mixture effects. Therefore, there is a need to analyze the sludge to test its suitability before further use. In this article, a variety of sampling, pretreatment, extraction, and analysis methods have been reviewed. Additionally, different organic trace compounds often found in the sewage sludge and their methods of analysis have been compiled. In addition to traditional Soxhlet extraction, the most common extraction methods of organic contaminants in sludge include ultrasonic extraction (USE), supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), and pressurized liquid extraction (PLE) followed by instrumental analysis based on gas or liquid chromatography and mass spectrometry.

  11. Mobile Platforms for Continuous Spatial Measurements of Urban Trace Gases and Criteria Pollutants

    NASA Astrophysics Data System (ADS)

    Fasoli, B.; Mitchell, L.; Bares, R.; Crosman, E.; Bush, S. E.; Horel, J.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.

    2015-12-01

    Surface-based observations of atmospheric trace gases and criteria pollutants provide critical data on how emissions and pollutant concentrations vary over time. However, traditional stationary measurement sites only quantify concentrations at a single point in space, limiting our ability to understand spatial patterns. Using trace gas instrumentation capable of making continuous high-frequency (~1s) measurements, we have developed mobile platforms to complement stationary observation sites in order to better constrain the heterogeneity and complexities of urban emissions. These compact trace gas and criteria pollutant measurement systems are capable of precisely measuring CO2, CH4 PM2.5, O3, NOx, and several meteorological parameters on TRAX, Salt Lake City's light-rail system, and in a van-based mobile laboratory. Using case study observations, we discuss mobile measurement methodologies and the practical applications of mobile trace gas sampling platforms.

  12. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics

    PubMed Central

    Bringel, Françoise; Couée, Ivan

    2015-01-01

    The phyllosphere, which lato sensu consists of the aerial parts of plants, and therefore primarily, of the set of photosynthetic leaves, is one of the most prevalent microbial habitats on earth. Phyllosphere microbiota are related to original and specific processes at the interface between plants, microorganisms and the atmosphere. Recent –omics studies have opened fascinating opportunities for characterizing the spatio-temporal structure of phyllosphere microbial communities in relation with structural, functional, and ecological properties of host plants, and with physico-chemical properties of the environment, such as climate dynamics and trace gas composition of the surrounding atmosphere. This review will analyze recent advances, especially those resulting from environmental genomics, and how this novel knowledge has revealed the extent of the ecosystemic impact of the phyllosphere at the interface between plants and atmosphere. Highlights • The phyllosphere is one of the most prevalent microbial habitats on earth. • Phyllosphere microbiota colonize extreme, stressful, and changing environments. • Plants, phyllosphere microbiota and the atmosphere present a dynamic continuum. • Phyllosphere microbiota interact with the dynamics of volatile organic compounds and atmospheric trace gasses. PMID:26052316

  13. Correcting for trace gas absorption when retrieving aerosol optical depth from satellite observations of reflected shortwave radiation

    NASA Astrophysics Data System (ADS)

    Patadia, Falguni; Levy, Robert C.; Mattoo, Shana

    2018-06-01

    Retrieving aerosol optical depth (AOD) from top-of-atmosphere (TOA) satellite-measured radiance requires separating the aerosol signal from the total observed signal. Total TOA radiance includes signal from the underlying surface and from atmospheric constituents such as aerosols, clouds and gases. Multispectral retrieval algorithms, such as the dark-target (DT) algorithm that operates upon the Moderate Resolution Imaging Spectroradiometer (MODIS, on board Terra and Aqua satellites) and Visible Infrared Imaging Radiometer Suite (VIIRS, on board Suomi-NPP) sensors, use wavelength bands in window regions. However, while small, the gas absorptions in these bands are non-negligible and require correction. In this paper, we use the High-resolution TRANsmission (HITRAN) database and Line-By-Line Radiative Transfer Model (LBLRTM) to derive consistent gas corrections for both MODIS and VIIRS wavelength bands. Absorptions from H2O, CO2 and O3 are considered, as well as other trace gases. Even though MODIS and VIIRS bands are similar, they are different enough that applying MODIS-specific gas corrections to VIIRS observations results in an underestimate of global mean AOD (by 0.01), but with much larger regional AOD biases of up to 0.07. As recent studies have been attempting to create a long-term data record by joining multiple satellite data sets, including MODIS and VIIRS, the consistency of gas correction has become even more crucial.

  14. Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste.

    PubMed

    Moestedt, J; Nordell, E; Shakeri Yekta, S; Lundgren, J; Martí, M; Sundberg, C; Ejlertsson, J; Svensson, B H; Björn, A

    2016-01-01

    This study used semi-continuous laboratory scale biogas reactors to simulate the effects of trace-element addition in different combinations, while degrading the organic fraction of municipal solid waste and slaughterhouse waste. The results show that the combined addition of Fe, Co and Ni was superior to the addition of only Fe, Fe and Co or Fe and Ni. However, the addition of only Fe resulted in a more stable process than the combined addition of Fe and Co, perhaps indicating a too efficient acidogenesis and/or homoacetogenesis in relation to a Ni-deprived methanogenic population. The results were observed in terms of higher biogas production (+9%), biogas production rates (+35%) and reduced VFA concentration for combined addition compared to only Fe and Ni. The higher stability was supported by observations of differences in viscosity, intraday VFA- and biogas kinetics as well as by the 16S rRNA gene and 16S rRNA of the methanogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Experimental characterization of enhanced SNCR process with carbonaceous gas additives.

    PubMed

    Yao, Ting; Duan, Yufeng; Yang, Zhizhong; Li, Yuan; Wang, Linwei; Zhu, Chun; Zhou, Qiang; Zhang, Jun; She, Min; Liu, Meng

    2017-06-01

    Carbonaceous gases such as CO and alkanes are commonly used as additives to enhance the selective non-catalytic reduction (SNCR) performance due to their high reducibility. This study compared the effect of CO and CH 4 on NO reduction in a tubular reactor with simulated flue gas. The enhancement of C 3 H 8 on SNCR process was tested at extremely low temperature, i.e. 650 °C. Experimental results suggested that reactions between NH 3 and SO 2 were favored at low temperatures and the competition for NH 3 between SO 2 and NO was influenced by gas additives. A maximum downward shift of 25 °C and 100 °C in temperature window for 50% NO reduction efficiency was obtained with the addition of CO and CH 4 , respectively. Considerable CO emission was observed with addition of CH 4 . The addition of CH 4 contributed to the formation of a self-accelerating reaction route within NO/O 2 /NH 3 SNCR reaction system. NO 2 produced from NO accelerates the oxidation of CH 4 to CO, while the oxidation of CH 4 returns to enhance the NO reduction globally. Optimal NO reduction of 44% was achieved with addition of C 3 H 8 at 650 °C. Substantial portion of C 3 H 8 was partially oxidized to CO and the remaining was converted into C 2 H 4 and C 3 H 6 during the SNCR process. Oxidative dehydrogenation of C 3 H 8 was involved. High reactivity of C 3 H 6 and C 2 H 4 favored the further oxidation and cracking to produce CO. These differences in oxidation behavior significantly influence the promotion capacities of CO, CH 4 and C 3 H 8 for NO reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    EPA Science Inventory

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  17. Sensitive Multi-Species Emissions Monitoring: Infrared Laser-Based Detection of Trace-Level Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steill, Jeffrey D.; Huang, Haifeng; Hoops, Alexandra A.

    This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to thesemore » species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.« less

  18. Present Status and Near Term Activities for the ExoMars Trace Gas Orbiter.

    NASA Astrophysics Data System (ADS)

    Svedhem, H.; Vago, J. L.

    2017-12-01

    The ExoMars 2016 mission was launched on a Proton rocket from Baikonur, Kazakhstan, on 14 March 2016 and arrived at Mars on 19 October 2016. The spacecraft is now performing aerobraking to reduce its orbital period from initial post-insertion orbital period of one Sol to the final science orbit with a 2 hours period. The orbital inclination will be 74 degrees. During the aerobraking a wealth of data has been acquired on the state of the atmosphere along the tracks between 140km and the lowest altitude at about 105 km. These data are now being analysed and compared with existing models. In average TGO measures a lower atmospheric density than predicted, but the numbers lay within the expected variability. ExoMars is a joint programme of the European Space Agency (ESA) and Roscosmos, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2020 mission, which carries a lander and a rover. The TGO scientific payload consists of four instruments: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector to search for subsurface hydrogen (as proxy for water ice and hydrated minerals). The launch mass of the TGO was 3700 kg, including fuel. In addition to its scientific measurements TGO will act as a relay orbiter for NASA's landers on Mars and as from 2021 for the ESA-Roscosmos Rover and Surface Station.

  19. Effects of SO/sub 2/ torch gas additions on GTA weld shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Burgardt, P.

    1984-01-01

    Small additions of sulfur or oxygen to the GTA weld pool in steels with low weld d/w (depth/width) ratios substantially increases the weld d/w ratio and furthermore the improved weld d/w ratio is largely independent of reasonable variations in base metal sulfur and oxygen content. The addition of small concentrations of SO/sub 2/ to the normal argon shielding gas is a simple and effective way to add sulfur to the weld pool and increase weld d/w ratio. Autogenous bead-on-plate welds under otherwise identical welding conditions were made on stainless steel plate with SO/sub 2/ concentrations in the torch gas rangingmore » between 0 and 2000 ppM.« less

  20. Variability of trace gas concentrations over Asian region: satellite observations vs model

    NASA Astrophysics Data System (ADS)

    Sheel, Varun; Richter, Andreas; Srivastava, Shuchita; Lal, Shyam

    2012-07-01

    Nitrogen dioxide (NO_2) and Carbon Monoxide (CO) play a key role in the chemistry of the tropospheric ozone and are emitted mainly by anthropogenic processes. These emissions have been increasing over Asia over the past few years due to rapid economic growth and yet there are very few systematic ground based observations of these species over this region. We have analysed ten years of data from space borne instruments: Global Ozone Monitoring Experiment (GOME), SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) and Measurements of Pollution in the Troposphere (MOPITT), which have been measuring the tropospheric abundance of these trace gases. We have examined trends over the period 1996-2008 in NO_2 and CO over a few Indian regions where high economic growth in the present decade is likely to see increased emissions for these species. However, even the highest growth rate of these species seen in the present study, is less when compared with similar polluted regions of China, where a much more rapid increase has been observed. In order to understand the trends and variability in atmospheric trace gas concentrations, one must take into account changes in emissions and transport. Only by assessing the relevance of each of these factors will it be possible to predict future changes with reasonable confidence. To this effect we have used a global chemical transport model, MOZART, to simulate concentrations of NO_2 and CO using the POET (European) and REAS (Asian) emission inventories. These are compared with satellite measurements to study seasonal variations and the discrepancies are discussed. The combined uncertainties of the emission inventory and retrieval of the satellite data could be contributing factors to the discrepancies. It may be thus worthwhile to develop emission inventories for India at a higher resolution to include local level activity data.

  1. Atmospheric Trace Gas Abundances and Stable Isotope Ratios via IR-LIF

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2004-01-01

    studies form the necessary precursors to the development of compact, lightweight stable isotope/trace gas sensors for future planetary missions.

  2. Trace gas variability within the Asian monsoon anticyclone on intraseasonal and interannual timescales

    NASA Astrophysics Data System (ADS)

    Nützel, Matthias; Dameris, Martin; Fierli, Federico; Stiller, Gabriele; Garny, Hella; Jöckel, Patrick

    2016-04-01

    The Asian monsoon and the associated monsoon anticyclone have the potential of substantially influencing the composition of the UTLS (upper troposphere/lower stratosphere) and hence global climate. Here we study the variability of the Asian summer monsoon anticyclone in the UTLS on intraseasonal and interannual timescales using results from long term simulations performed with the CCM EMAC (ECHAM5/MESSy Atmospheric Chemistry). In particular, we focus on specified dynamics simulations (Newtonian relaxation to ERA-Interim data) covering the period 1980-2013, which have been performed within the ESCiMo (Earth System Chemistry integrated Modelling) project (Jöckel et al., GMDD, 2015). Our main focus lies on variability of the anticyclone's strength (in terms of potential vorticity, geopotential and circulation) and variability in trace gas signatures (O3, H2O) within the anticyclone. To support our findings, we also include observations from satellites (MIPAS, MLS). Our work is linked to the EU StratoClim campaign in 2016.

  3. Digital Architecture for a Trace Gas Sensor Platform

    NASA Technical Reports Server (NTRS)

    Gonzales, Paula; Casias, Miguel; Vakhtin, Andrei; Pilgrim, Jeffrey

    2012-01-01

    A digital architecture has been implemented for a trace gas sensor platform, as a companion to standard analog control electronics, which accommodates optical absorption whose fractional absorbance equivalent would result in excess error if assumed to be linear. In cases where the absorption (1-transmission) is not equivalent to the fractional absorbance within a few percent error, it is necessary to accommodate the actual measured absorption while reporting the measured concentration of a target analyte with reasonable accuracy. This requires incorporation of programmable intelligence into the sensor platform so that flexible interpretation of the acquired data may be accomplished. Several different digital component architectures were tested and implemented. Commercial off-the-shelf digital electronics including data acquisition cards (DAQs), complex programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs), and microcontrollers have been used to achieve the desired outcome. The most completely integrated architecture achieved during the project used the CPLD along with a microcontroller. The CPLD provides the initial digital demodulation of the raw sensor signal, and then communicates over a parallel communications interface with a microcontroller. The microcontroller analyzes the digital signal from the CPLD, and applies a non-linear correction obtained through extensive data analysis at the various relevant EVA operating pressures. The microcontroller then presents the quantitatively accurate carbon dioxide partial pressure regardless of optical density. This technique could extend the linear dynamic range of typical absorption spectrometers, particularly those whose low end noise equivalent absorbance is below one-part-in-100,000. In the EVA application, it allows introduction of a path-length-enhancing architecture whose optical interference effects are well understood and quantified without sacrificing the dynamic range that allows

  4. Experimental and numerical test of the micrometeorological mass difference technique for the measurement of trace gas emissions from small plots.

    PubMed

    Magliulo, Vincenzo; Alterio, Giovanni; Peressotti, Alessandro

    2004-05-01

    Micrometeorological methods for measuring fluxes of gases between the land surface and the atmosphere are non-invasive: in fact, they do not interfere with natural processes of gas exchange. The Micrometeorological Mass Difference (MMD) approach can be used for many environmental monitoring purposes, such as to measure methane and carbon dioxide emission from landfills, methane production by grazing animals, trace gas emission from waste products and from agricultural soils, photosynthesis, and transpiration of plant canopies. The purpose of this study is to adapt the MMD technique, originally developed in Australia, to monitor CO2 and trace gases exchange rate at the plot level. Comparison of different treatments in replicated experiments requires plots of few rather than tens of meters. The tests reported here were performed on a square area (4 m x 4 m) in the meteorological field of the experimental farm of CNR-ISAFOM located in Vitulazio, province of Caserta, Italy (40 degrees 07' N, 14 degrees 50' E, 25 m above sea level) and consisted of the release of pure CO2 at different rates (1.7, 1.3, 0.6 L min(-1)) from a single source on the ground in the center of the experimental area and the consequent measurement of the environmental variables (wind speed and direction, CO2 concentration) at different times at four heights (up to 1.2 m) in order to compute the mass balance according to MMD technique. Measured flow rates well accounted for the mass of CO2 released. A flow underestimation occurred when wind speed dropped below 1.5 m s(-1), in accord with the previous findings obtained in Australia: this happened because anemometers can stall at low speeds, and their measurements are unreliable and because of significant loss of mass from the top of the apparatus. The experimental results were compared with outputs of Computational Fluid Dynamic (CFD) simulations. The commercial CFD package Fluent was used to evaluate performances and sources of errors. According to

  5. Radon 222 tracing of soil and forest canopy trace gas exchange in an open canopy boreal forest

    NASA Technical Reports Server (NTRS)

    Ussler, William, III; Chanton, Jeffrey P.; Kelley, Cheryl A.; Martens, Christopher S.

    1994-01-01

    A set of continuous, high-resolution atmospheric radon (Rn-222) concentration time series and radon soil flux measurements were acquired during the summer of 1990 at a micrometeorological tower site 13 km northwest of Schefferville, Quebec, Canada. The tower was located in a dry upland, open-canopy lichen-spruce woodland. For the period July 23 to August 1, 1990, the mean radon soil flux was 41.1 +/- 4.8 Bq m(exp -2)/h. Radon surface flux from the two end-member forest floor cover types (lichen mat and bare soil) were 38.8 +/- 5.1 and 61.8 +/- 15.6 Bq m(exp -2)/h, respectively. Average total forest canopy resistances computed using a simple 'flux box' model for radon exchange between the forest canopy and the overlying atmosphere range from 0.47 +/- 0.24 s cm(exp -1) to 2.65 +/- 1.61 cm(exp -1) for daytime hours (0900-1700 LT) and from 3.44 +/- 0.91 s cm(exp -1) to 10.55 +/- 7.16 s cm(exp -1) for nighttime hours (2000-0600) for the period July 23 to August 6, 1990. Continuous radon profiling of canopy atmospheres is a suitable approach for determining rates of biosphere/atmosphere trace gas exchange for remote field sites where daily equipment maintenance is not possible. where daily equipment maintenance is not possible.

  6. The influence of oxygen additions on argon-shielded gas metal arc welding processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joensson, P.G.; Murphy, A.B.; Szekely, J.

    1995-02-01

    It has been observed experimentally that small additions of oxygen to the argon shielding gas affect the general operation of GMAW processes. By theoretically modeling the arc column, it is shown that the addition of 2 to 5% oxygen to argon has an insignificant effect on the arc characteristics. This corresponds to the minor changes in the thermophysical transport and thermodynamic properties caused by the oxygen addition. Therefore, it is concluded that the addition of oxygen to the argon shielding gas mainly affects the anode and the cathode regions. From the literature, it was found that the formation of oxidesmore » initiates arcing at the cathode and decreases the movement of the cathode spots. These oxides can also improve the wetting conditions at the workpiece and the electrode. Finally, oxygen is found to affect the surface tension gradient and thereby the convective flow of liquid metal in the weld pool.« less

  7. The airborne mass spectrometer AIMS - Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS

    NASA Astrophysics Data System (ADS)

    Jurkat, T.; Kaufmann, S.; Voigt, C.; Schäuble, D.; Jeßberger, P.; Ziereis, H.

    2015-12-01

    Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulphur components. The Airborne chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using chemical ionization with SF5- reagent ions for the simultaneous measurement of trace gas concentrations in the pptv to ppmv (10-12 to 10-6 mol mol-1) range of HCl, HNO3 and SO2 with in-flight and online calibration called AIMS-TG. Part 1 of this paper (Kaufmann et al., 2015) reports on the UTLS water vapour measurements with the AIMS-H2O configuration. The instrument can be flexibly switched between two configurations depending on the scientific objective of the mission. For AIMS-TG, a custom-made gas discharge ion source has been developed generating a characteristic ionization scheme. HNO3 and HCl are routinely calibrated in-flight using permeation devices, SO2 is permanently calibrated during flight adding an isotopically labelled 34SO2 standard. In addition, we report on trace gas measurements of HONO which is sensitive to the reaction with SF5-. The detection limit for the various trace gases is in the low ten pptv range at a 1 s time resolution with an overall uncertainty of the measurement in the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO. Exemplarily, measurements conducted during the TACTS/ESMVal mission with HALO in 2012 are presented, focusing on a classification of tropospheric and stratospheric influences in the UTLS region. Comparison of AIMS measurements with other measurement techniques allow to draw a comprehensive

  8. Trace desulfurization. [DOE patent application

    DOEpatents

    Chen, H.L.; Stevens, C.G.

    A method for reducing a trace concentration of sulfur-containing compounds in a gas stream from about one part in 10/sup 4/ to about one part in 10/sup 7/. The method includes the steps of irradiating the gas stream with an energy source which has a central emission frequency chosen to substantially match a wavelength of energy absorption of the sulfur-containing compounds and of subsequently contacting the gas stream with a reactive surface which includes a reactant selected from elemental metals and metal oxides so that metallic sulfur-containing compounds are formed. The reduction in concentration allows the gas stream to be processed in certain reactions having catalysts which would otherwise be poisoned by the sulfur-containing compounds.

  9. Miniaturized hollow fibre assisted liquid-phase microextraction and gas chromatography for determination of trace concentration of sufentanil and alfentanil in biological samples.

    PubMed

    Fakhari, Ali Reza; Tabani, Hadi; Nojavan, Saeed

    2013-07-01

    A simple and highly sensitive method that involves miniaturized hollow fibre assisted liquid-phase microextraction with gas chromatography-flame ionization detector was developed for the determination of trace concentration of sufentanil and alfentanil in biological samples. These drugs were extracted from 5 ml of aqueous solution with pH 10.0 into an organic extracting solvent (1-octanol) impregnated in the pores and lumen of a hollow fibre. After extraction for a prescribed time, 2.0 µl of the extraction solvent was injected directly in to the GC injection port. Under the optimized conditions, (1-octanol as extracting solvent, stirring rate of 700 rpm, 15% (w/v) salt addition, pH 10.0 and 25 min sampling time at 50 °C) large enrichment factors of 535 and 420 were achieved for sufentanil and alfentanil, respectively. Dynamic linear ranges were in the range of 0.05 to 500 ng/ml for sufentanil and 0.1 to 500 ng/ml for alfentanil. Limits of detection 0.01 and 0.02 ng/ml were obtained for sufentanil and alfentanil, respectively. The percent relative intra-day and inter-day standard deviations were found to be less than 8.4% (n = 5). Finally, this method was successfully applied for the separation, preconcentration and determination of trace concentration of sufentanil and alfentanil in plasma and urine samples. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Real-time trace ambient ammonia monitor for haze prevention

    NASA Astrophysics Data System (ADS)

    Nishimura, Katsumi; Sakaguchi, Yuhei; Crosson, Eric; Wahl, Edward; Rella, Chris

    2007-05-01

    In photolithography, haze prevention is of critical importance to integrated circuit chip manufacturers. Numerous studies have established that the presence of ammonia in the photolithography tool can cause haze to form on optical surfaces resulting in permanent damage to costly deep ultra-violet optics. Ammonia is emitted into wafer fab air by various semiconductor processes including coating steps in the track and CMP. The workers in the clean room also emit a significant amount of ammonia. Chemical filters are typically used to remove airborne contamination from critical locations but their lifetime and coverage cannot offer complete protection. Therefore, constant or periodic monitoring of airborne ammonia at parts-per-trillion (ppt) levels is critical to insure the integrity of the lithography process. Real time monitoring can insure that an accidental ammonia release in the clean room is detected before any optics is damaged. We have developed a transportable, highly accurate, highly specific, real-time trace gas monitor that detects ammonia using Cavity Ring-Down Spectroscopy (CRDS). The trace gas monitor requires no calibration gas standards, and can measure ammonia with 200 ppt sensitivity in five minutes with little or no baseline drift. In addition, the high spectral resolution of CRDS makes the analyzer less susceptible to interference from other gases when compared to other detection methods. In this paper we describe the monitor, focus on its performance, discuss the results of a careful comparison with ion chromatography (IC), and present field data measured inside the aligner and the reticule stocker at a semiconductor fab.

  11. Simultaneous removal of SO2 and trace SeO2 from flue gas: effect of SO2 on selenium capture and kinetics study.

    PubMed

    Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Wang, Shujuan; Xu, Xuchang

    2006-12-15

    Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of SO2 and trace selenium dioxide (SeO2) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range, especially the effect of SO2 presence on selenium capture. Experiments performed on a thermogravimetric analyzer (TGA) can reach the following conclusions. When the CaO conversion is relatively low and the reaction rate is controlled by chemical kinetics, the SO2 presence does not affect the selenium capture. When the CaO conversion is very high and the reaction rate is controlled by product layer diffusion, the SO2 presence and the product layer diffusion resistance jointly reduce the selenium capture. On the basis of the kinetics study, a method to estimate the trace selenium removal efficiency using kinetic parameters and the sulfur removal efficiency is developed.

  12. The airborne mass spectrometer AIMS - Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS

    NASA Astrophysics Data System (ADS)

    Jurkat, Tina; Kaufmann, Stefan; Voigt, Christiane; Schäuble, Dominik; Jeßberger, Philipp; Ziereis, Helmut

    2016-04-01

    Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulfur compounds. The Atmospheric chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using SF5- reagent ions for the simultaneous measurement of trace gas concentrations of HCl, HNO3 and SO2 in the pptv to ppmv (10-12 to 10-6 mol mol-1) range with in-flight and online calibration called AIMS-TG (Atmospheric chemical Ionization Mass Spectrometer for measurements of trace gases). Part 1 of this paper (Kaufmann et al., 2016) reports on the UTLS water vapor measurements with the AIMS-H2O configuration. The instrument can be flexibly switched between two configurations depending on the scientific objective of the mission. For AIMS-TG, a custom-made gas discharge ion source has been developed for generation of reagent ions that selectively react with HCl, HNO3, SO2 and HONO. HNO3 and HCl are routinely calibrated in-flight using permeation devices; SO2 is continuously calibrated during flight adding an isotopically labeled 34SO2 standard. In addition, we report on trace gas measurements of HONO, which is sensitive to the reaction with SF5-. The detection limit for the various trace gases is in the low 10 pptv range at a 1 s time resolution with an overall uncertainty of the measurement of the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO (High Altitude LOng range research aircraft). As an example, measurements conducted during the TACTS/ESMVal (Transport and Composition of the LMS/UT and Earth System Model Validation) mission with

  13. Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Dix, Barbara; Koenig, Theodore K.; Volkamer, Rainer

    2016-11-01

    We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversion of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCDref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMRpara) and the true VMR (VMRtrue) is excellent for all trace gases. Offsets, slopes and R2 values for the linear fit of VMRpara over

  14. Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dix, Barbara; Koenig, Theodore K.; Volkamer, Rainer

    We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversionmore » of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O 4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCD ref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO 2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMR para) and the true VMR (VMR true) is excellent for all trace gases. Offsets, slopes and R 2 values for the linear fit

  15. Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS

    DOE PAGES

    Dix, Barbara; Koenig, Theodore K.; Volkamer, Rainer

    2016-11-28

    We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversionmore » of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O 4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCD ref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO 2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMR para) and the true VMR (VMR true) is excellent for all trace gases. Offsets, slopes and R 2 values for the linear fit

  16. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging

    PubMed Central

    Greening, Chris; Carere, Carlo R.; Rushton-Green, Rowena; Harold, Liam K.; Hards, Kiel; Taylor, Matthew C.; Morales, Sergio E.; Stott, Matthew B.; Cook, Gregory M.

    2015-01-01

    The majority of microbial cells in global soils exist in a spectrum of dormant states. However, the metabolic processes that enable them to survive environmental challenges, such as nutrient-limitation, remain to be elucidated. In this work, we demonstrate that energy-starved cultures of Pyrinomonas methylaliphatogenes, an aerobic heterotrophic acidobacterium isolated from New Zealand volcanic soils, persist by scavenging the picomolar concentrations of H2 distributed throughout the atmosphere. Following the transition from exponential to stationary phase due to glucose limitation, the bacterium up-regulates by fourfold the expression of an eight-gene operon encoding an actinobacteria-type H2-uptake [NiFe]-hydrogenase. Whole-cells of the organism consume atmospheric H2 in a first-order kinetic process. Hydrogen oxidation occurred most rapidly under oxic conditions and was weakly associated with the cell membrane. We propose that atmospheric H2 scavenging serves as a mechanism to sustain the respiratory chain of P. methylaliphatogenes when organic electron donors are scarce. As the first observation of H2 oxidation to our knowledge in the Acidobacteria, the second most dominant soil phylum, this work identifies new sinks in the biogeochemical H2 cycle and suggests that trace gas oxidation may be a general mechanism for microbial persistence. PMID:26240343

  17. Land-Use Change, Soil Process and Trace Gas Fluxes in the Brazilian Amazon Basin

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Steudler, Paul A.

    1997-01-01

    We measured changes in key soil processes and the fluxes of CO2, CH4 and N2O associated with the conversion of tropical rainforest to pasture in Rondonia, a state in the southwest Amazon that has experienced rapid deforestation, primarily for cattle ranching, since the late 1970s. These measurements provide a comprehensive quantitative picture of the nature of surface soil element stocks, C and nutrient dynamics, and trace gas fluxes between soils and the atmosphere during the entire sequence of land-use change from the initial cutting and burning of native forest, through planting and establishment of pasture grass and ending with very old continuously-pastured land. All of our work is done in cooperation with Brazilian scientists at the Centro de Energia Nuclear na Agricultura (CENA) through an extant official bi-lateral agreement between the Marine Biological Laboratory and the University of Sao Paulo, CENA's parent institution.

  18. Seismic Evidence And Complex Trace Attributes Of Shallow Gas Structures In The Sea Of Marmara

    NASA Astrophysics Data System (ADS)

    Aydemir, Seval; Okay, Seda; Cifci, Gunay; Dondurur, Derman; Sorlien, Christopher; Cormier, Marie-Helene

    2015-04-01

    Analysis of multi-channel seismic reflection, sparker and chirp data from Marmara Sea observed various shallow gas indicators including seismic chimneys, bright spots, mud diapirs, pockmarks, and acoustic blanking related to gas accumulations along North Anatolian Fault (NAF) system which branches out towards the west into the in Marmara Sea. Middle branch of the (NAF) is the place where distinct amount of seismic activity has occurred and gas deposits have been observed. This study is also devoted to evaluate the gas related structures with seismic attributes of multichannel seismic reflection data which have been collected at South Marmara shelf. The dataset was collected in September 2013 and July 2014 including nearly 1000 km high Resolution Multichannel Seismic and Chirp data and 967 km Sparker data in the frame of a bilateral TÜBİTAK Project onboard R/V K. Piri Reis. The streamer has 168 or 144 channel and group interval was 6.25 m. The source was 45+45 inch GI gun fired every 12.5 or 25 m producing high-resolution seismic signal between 10-250 Hz frequency bands. The Chirp data was collected with a transducer, which produced acoustic signal between 2.75-6.75 kHz. The source of sparker system was used to 1000 J. The data have been processed using a conventional data processing flow. In addition attributes were applied to final migration sections and than was tried to find gas accumulations with Reflection strength section, instantaneous frequency section and apparent polarity. Reflection strength section has strong reflections (bright spot). Also instantaneous frequency section has low-frequency zone depending on absorption where gas accumulations are expected. Apparent polarity section has negative polarity anamoly due to low acoustic impedance where gas accumulations are expected in sediments. In addition, attributes were coincided with sparker and chirp data where expected shallow gas accumulations.

  19. Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy.

    PubMed

    He, Yabai; Kan, Ruifeng; Englich, Florian V; Liu, Wenqing; Orr, Brian J

    2010-09-13

    The greenhouse-gas molecules CO(2), CH(4), and H(2)O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this technique depends, is evaluated. Our instrument is both sensitive and compact, as needed for reliable environmental monitoring with high absolute accuracy to detect trace concentrations of greenhouse gases in outdoor air.

  20. Consolidation of silicon nitride without additives. [for gas turbine engine efficiency increase

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.; Yeh, H. C.

    1976-01-01

    The use of ceramics for gas turbine engine construction might make it possible to increase engine efficiency by raising operational temperatures to values beyond those which can be tolerated by metallic alloys. The most promising ceramics being investigated in this connection are Si3N4 and SiC. A description is presented of a study which had the objective to produce dense Si3N4. The two most common methods of consolidating Si3N4 currently being used include hot pressing and reaction sintering. The feasibility was explored of producing a sound, dense Si3N4 body without additives by means of conventional gas hot isostatic pressing techniques and an uncommon hydraulic hot isostatic pressing technique. It was found that Si3N4 can be densified without additions to a density which exceeds 95% of the theoretical value

  1. Open Path Trace Gas Laser Sensors for UAV Deployment

    NASA Astrophysics Data System (ADS)

    Shadman, S.; Mchale, L.; Rose, C.; Yalin, A.

    2015-12-01

    Novel trace gas sensors based on open-path Cavity Ring-down Spectroscopy (CRDS) are being developed to enable remote and mobile deployments including on small unmanned aerial systems (UAS). Relative to established closed-path CRDS instruments, the use of open-path configurations allows removal of the bulky and power hungry vacuum and flow system, potentially enabling lightweight and low power instruments with high sensitivity. However, open path operation introduces new challenges including the need to maintain mirror cleanliness, mitigation of particle optical effects, and the need to measure spectral features that are relatively broad. The present submission details open-path CRDS instruments for ammonia and methane and their planned use in UAS studies. The ammonia sensor uses a quantum cascade laser at 10.3 mm in a configuration in which the laser frequency is continuously swept and a trigger circuit and acousto-optic modulator (AOM) extinguish the light when the laser is resonant with the cavity. Ring-down signals are measured with a two-stage thermoelectrically cooled MCT photodetector. The cavity mirrors have reflectivity of 0.9995 and a noise equivalent absorption of 1.5 ppb Hz-1/2 was demonstrated. A first version of the methane sensor operated at 1.7um with a telecom diode laser while the current version operates at 3.6 um with an interband cascade laser (stronger absorption). We have performed validation measurements against known standards for both sensors. Compact optical assemblies are being developed for UAS deployment. For example, the methane sensor head will have target mass of <4 kg and power draw <40 W. A compact single board computer and DAQ system is being designed for sensor control and signal processing with target mass <1 kg and power draw <10 W. The sensor size and power parameters are suitable for UAS deployment on both fixed wing and rotor style UAS. We plan to deploy the methane sensor to measure leakage and emission of methane from

  2. Climate-chemical interactions and effects of changing atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  3. Identification of tropospheric emissions sources from satellite observations: Synergistic use of HCHO, NO2, and SO2 trace gas measurements

    NASA Astrophysics Data System (ADS)

    Marbach, T.; Beirle, S.; Khokhar, F.; Platt, U.

    2005-12-01

    We present case studies for combined HCHO, NO2, and SO2 satellite observations, derived from GOME measurements. Launched on the ERS-2 satellite in April 1995, GOME has already performed continuous operations over 8 years providing global observations of the different trace gases. In this way, satellite observations provide unique opportunities for the identifications of trace gas sources. The satellite HCHO observations provide information concerning the localization of biomass burning (intense source of HCHO). The principal biomass burning areas can be observed in the Amazon basin region and in central Africa Weaker HCHO sources (south east of the United States, northern part of the Amazon basin, and over the African tropical forest), not correlated with biomass burning, could be due to biogenic isoprene emissions. The HCHO data can be compared with NO2 and SO2 results to identify more precisely the tropospheric sources (biomass burning events, human activities, additional sources like volcanic emissions). Biomass burning are important tropospheric sources for both HCHO and NO2. Nevertheless HCHO reflects more precisely the biomass burning as it appears in all biomass burning events. NO2 correlate with HCHO over Africa (grassland fires) but not over Indonesia (forest fires). In south America, an augmentation of the NO2 concentrations can be observed with the fire shift from the forest to grassland vegetation. So there seems to be a dependence between the NO2 emissions during biomass burning and the vegetation type. Other high HCHO, SO2, and NO2 emissions can be correlated with climatic events like the El Nino in 1997, which induced dry conditions in Indonesia causing many forest fires.

  4. Intercomparison of infrared cavity leak-out spectroscopy and gas chromatography-flame ionization for trace analysis of ethane.

    PubMed

    Thelen, Sven; Miekisch, Wolfram; Halmer, Daniel; Schubert, Jochen; Hering, Peter; Mürtz, Manfred

    2008-04-15

    Comparison of two different methods for the measurement of ethane at the parts-per-billion (ppb) level is reported. We used cavity leak-out spectroscopy (CALOS) in the 3 microm wavelength region and gas chromatography-flame ionization detection (GC-FID) for the analysis of various gas samples containing ethane fractions in synthetic air. Intraday and interday reproducibilities were studied. Intercomparing the results of two series involving seven samples with ethane mixing ratios ranging from 0.5 to 100 ppb, we found a reasonable agreement between both methods. The scatter plot of GC-FID data versus CALOS data yields a linear regression slope of 1.07 +/- 0.03. Furthermore, some of the ethane mixtures were checked over the course of 1 year, which proved the long-term stability of the ethane mixing ratio. We conclude that CALOS shows equivalent ethane analysis precision compared to GC-FID, with the significant advantage of a much higher time resolution (<1 s) since there is no requirement for sample preconcentration. This opens new analytical possibilities, e.g., for real-time monitoring of ethane traces in exhaled human breath.

  5. Measurement of fine particulate and gas-phase species during the New Year's fireworks 2005 in Mainz, Germany

    NASA Astrophysics Data System (ADS)

    Drewnick, Frank; Hings, Silke S.; Curtius, Joachim; Eerdekens, Gunter; Williams, Jonathan

    The chemical composition and chemically resolved size distributions of fine aerosol particles were measured at high time resolution (5 min) with a time-of-flight aerosol mass spectrometer (TOF-AMS) during the New Year's 2005 fireworks in Mainz, central Germany. In addition, particle number concentrations and trace gas concentrations were measured using a condensation particle counter (CPC) and a proton transfer reaction mass spectrometer (PTR-MS). The main non-refractory components of the firework aerosol were potassium, sulfate, total organics and chloride. Increased trace gas mixing ratios of methanol, acetonitrile, acetone and acetaldehyde were observed. Aerosol nitrate and ammonium concentrations were not significantly affected by the fireworks as well as the measured aromatic trace gases. The sub-micron aerosol concentrations peaked about 20 min after midnight with total mass concentrations larger than 600 μg m -3. The trace gas concentrations peaked about 30 min later. Using the sulfur-to-potassium concentration ratio measured in another fireworks aerosol, it was for the first time possible to estimate the relative ionization efficiency of aerosol potassium, measured with the TOF-AMS. Here we found a value of RIE K=2.9.

  6. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris.

    PubMed

    Crombie, Andrew T; Murrell, J Colin

    2014-06-05

    The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur.

  7. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Treesearch

    S. K. Akagi; R. J. Yokelson; I. R. Burling; S. Meinardi; I. Simpson; D. R. Blake; G. R. McMeeking; A. Sullivan; T. Lee; S. Kreidenweis; S. Urbanski; J. Reardon; D. W. T. Griffith; T. J. Johnson; D. R. Weise

    2013-01-01

    In October-November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas- 5 chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling...

  8. Interannual Variability in Soil Trace Gas (CO2, N2O, NO) Fluxes and Analysis of Controllers

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Interannual variability in flux rates of biogenic trace gases must be quantified in order to understand the differences between short-term trends and actual long-term change in biosphere-atmosphere interactions. We simulated interannual patterns (1983-1988) of global trace gas fluxes from soils using the NASA Ames model version of CASA (Carnegie-Ames-Stanford Approach) in a transient simulation mode. This ecosystem model has been recalibrated for simulations driven by satellite vegetation index data from the NOAA Advanced Very High Resolution Radiometer (AVHRR) over the mid-1980s. The predicted interannual pattern of soil heterotropic CO2 emissions indicates that relatively large increases in global carbon flux from soils occurred about three years following the strong El Nino Southern Oscillation (ENSO) event of 1983. Results for the years 1986 and 1987 showed an annual increment of +1 Pg (1015 g) C-CO2 emitted from soils, which tended to dampen the estimated global increase in net ecosystem production with about a two year lag period relative to plant carbon fixation. Zonal discrimination of model results implies that 80-90 percent of the yearly positive increments in soil CO2 emission during 1986-87 were attributable to soil organic matter decomposition in the low-latitudes (between 30 N and 30 S). Soils of the northern middle-latitude zone (between 30 N and 60 N) accounted for the residual of these annual increments. Total annual emissions of nitrogen trace gases (N2O and NO) from soils were estimated to vary from 2-4 percent over the time period modeled, a level of variability which is consistent with predicted interannual fluctuations in global soil CO2 fluxes. Interannual variability of precipitation in tropical and subtropical zones (30 N to 20 S appeared to drive the dynamic inverse relationship between higher annual emissions of NO versus emissions of N2O. Global mean emission rates from natural (heterotrophic) soil sources over the period modeled (1983

  9. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks.

    PubMed

    Woellner, Michelle; Hausdorf, Steffen; Klein, Nicole; Mueller, Philipp; Smith, Martin W; Kaskel, Stefan

    2018-06-19

    The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development, Application, and Transition of Aerosol and Trace Gas Products Derived from Next-Generation Satellite Observations to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Naeger, Aaron; Zavodsky, Bradley; McGrath, Kevin; LaFontaine, Frank

    2016-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center has a history of successfully transitioning unique observations and research capabilities to the operational weather community to improve short-term forecasts. SPoRTstrives to bridge the gap between research and operations by maintaining interactive partnerships with end users to develop products that match specific forecast challenges, provide training, and assess the products in the operational environment. This presentation focuses on recent product development, application, and transition of aerosol and trace gas products to operations for specific forecasting applications. Recent activities relating to the SPoRT ozone products, aerosol optical depth composite product, sulfur dioxide, and aerosol index products are discussed.

  11. Is there still a TRACE of trace?

    NASA Astrophysics Data System (ADS)

    McClelland, James; Mirman, Daniel; Holt, Lori

    2003-04-01

    According to the TRACE model [McClelland and Elman, Cogn. Psychol. 18, 1-86 (1986)], speech recognition is an interactive activation process involving the integrated use of top-down (lexical) and bottom-up (acoustic) information. Although it is widely accepted that there are lexical influences on speech perception, there has been a disagreement over their exact nature. Two contested predictions of TRACE are that (a) lexical influences should delay or inhibit recognition of phonemes not consistent with lexical information and (b) a lexical influence on the identification of one phoneme can trigger compensation for co-articulation, affecting the identification of other phonemes. Others [Norris, McQueen, and Cutler, BBS 23, 299-370 (2000)] have argued that the predicted effects do not occur, taking this to support an alternative to the TRACE model in which lexical influences do not affect perception, but only a post-perceptual identification process. We re-examine the evidence on these points along with the recent finding that lexical information may lead to a lasting adjustment of category boundaries [McQueen, Norris, and Cutler, Psychonomics Abstract 255 (2001)]. Our analysis indicates that the existing evidence is completely consistent with TRACE, and we suggest additional research that will be necessary to resolve unanswered questions.

  12. A True Eddy Accumulation - Eddy Covariance hybrid for measurements of turbulent trace gas fluxes

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2016-04-01

    sampling system closely reproduced dynamics of simulated TEA-TM fluxes. In conclusion this study introduces a new approach to trace gas flux measurements using transient-mode true eddy accumulation. First TEA-TM CO2 fluxes compared favorably with side-by-side EC fluxes, in agreement with our previous experiments comparing discrete TEA to EC. True eddy accumulation has thus potential for measuring turbulent fluxes of a range of atmospheric tracers using slow response analyzers.

  13. Are additional trace elements necessary in total parenteral nutrition for patients with esophageal cancer receiving cisplatin-based chemotherapy?

    PubMed

    Akutsu, Yasunori; Kono, Tsuguaki; Uesato, Masaya; Hoshino, Isamu; Murakami, Kentaro; Fujishiro, Takeshi; Imanishi, Shunsuke; Endo, Satoshi; Toyozumi, Takeshi; Matsubara, Hisahiro

    2012-12-01

    It is known that cisplatin induces the excretion of zinc from the urine and thereby reduces its serum concentration. However, the fluctuation of these trace elements during or after cisplatin-based chemotherapy has not been evaluated. To answer this question, we performed a clinical study in esophageal cancer patients undergoing cisplatin-based chemotherapy. Eighteen patients with esophageal cancer who were not able to swallow food or water orally due to complete stenosis of the esophagus were evaluated. The patients were divided into a control group [total parenteral nutrition (TPN) alone for 28 days, ten cases] and an intervention group (TPN with additional trace elements for 28 days, eight cases). The serum concentrations of zinc, iron, copper, manganese, triiodothyronin (T3), and thyroxin (T4), as alternative indicators of iodine, were measured on days 0, 14, and 28 of treatment, and statistically analyzed on day 28. In the control group, the serum concentration of copper was significantly decreased from 135.4 (day 0) to 122.1 μg/ml (day 14), and finally to 110.6 μg/ml (day 28, p = 0.015). The concentration of manganese was also significantly decreased from 1.34 (day 0) to 1.17 μg/ml (day 14) and finally to 1.20 (day 28, p = 0.049). The levels of zinc, iron, T3, and T4 were not significantly changed. In the intervention group, the supplementation with trace elements successfully prevented these decreases in their concentrations. TPN with supplementary trace elements is preferable and recommended for patients who are undergoing chemotherapy in order to maintain the patients' nutrient homeostasis.

  14. Regional trace gas monitoring simplified - A linear retrieval scheme for carbon monoxide from hyperspectral soundings

    NASA Astrophysics Data System (ADS)

    Smith, N.; Huang, A.; Weisz, E.; Annegarn, H. J.

    2011-12-01

    The Fast Linear Inversion Trace gas System (FLITS) is designed to retrieve tropospheric total column trace gas densities [molec.cm-2] from space-borne hyperspectral infrared soundings. The objective to develop a new retrieval scheme was motivated by the need for near real-time air quality monitoring at high spatial resolution. We present a case study of FLITS carbon monoxide (CO) retrievals from daytime (descending orbit) Infrared Atmospheric Sounding Interferometer (IASI) measurements that have a 0.5 cm-1 spectral resolution and 12 km footprint at nadir. The standard Level 2 IASI CO retrieval product (COL2) is available in near real-time but is spatially averaged over 2 x 2 pixels, or 50 x 50 km, and thus more suitable for global analysis. The study region is Southern Africa (south of the equator) for the period 28-31 August 2008. An atmospheric background estimate is obtained from a chemical transport model, emissivity from regional measurements and surface temperature (ST) from space-borne retrievals. The CO background error is set to 10%. FLITS retrieves CO by assuming a simple linear relationship between the IASI measurements and background estimate of the atmosphere and surface parameters. This differs from the COL2 algorithm that treats CO retrieval as a moderately non-linear problem. When compared to COL2, the FLITS retrievals display similar trends in distribution and transport of CO over time with the advantage of an improved spatial resolution (single-pixel). The value of the averaging kernel (A) is consistently above 0.5 and indicates that FLITS retrievals have a stable dependence on the measurement. This stability is achieved through careful channel selection in the strongest CO absorption lines (2050-2225 cm-1) and joint retrieval with skin temperature (IASI sensitivity to CO is highly correlated with ST), thus no spatial averaging is necessary. We conclude that the simplicity and stability of FLITS make it useful first as a research tool, i.e. the

  15. Balloon-borne measurements of middle atmosphere aerosols and trace gases in Antarctica

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.

    1988-01-01

    This paper reviews data on in situ balloon-borne measurements on stratospheric ozone concentrations and aerosol contents obtained prior to 1986, along with the measurements obtained in 1986 during the National Ozone Expedition. The data indicate that the phenomenon of ozone depletion appears to be shaped spatially and temporally by dynamical stratospheric phenomena. In terms of Antarctic stratospheric research, it appears that the most important problems at the moment involve delineating the springtime ozone depletion through accurate in situ measurements of temperature, trace gas, and particle size (in addition to remote sensing from space).

  16. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes [Discussions

    Treesearch

    S. K. Akagi; R. J. Yokelson; I. R. Burling; S. Meinardi; I. Simpson; D. R. Blake; G. R. McMeeking; A. Sullivan; T. Lee; S. Kreidenweis; S. Urbanski; J. Reardon; D. W. T. Griffith; T. J. Johnson; D. R. Weise

    2012-01-01

    In October–November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling...

  17. Detection of circumstellar gas associated with GG Tauri

    NASA Technical Reports Server (NTRS)

    Skrutskie, M. F.; Snell, R. L.; Strom, K. M.; Strom, S. E.; Edwards, S.; Fukui, Y.; Mizuno, A.; Hayashi, M.; Ohashi, N.

    1993-01-01

    Double-peaked (C-12)O (1-0) emission centered on the young T Tauri star GG Tau possesses a line profile which may be modeled on the assumption that CO emission arises in an extended circumstellar disk. While bounds on the observed gas mass can be estimated on this basis, it is suggested that a large amount of mass could lie within a small and optically thick region, escaping detection due to beam-dilution effects. In addition, CO may no longer accurately trace the gas mass due to its dissociation, or freezing into grains, or due to the locking-up of carbon into more complex molecules.

  18. Effect of pairwise additivity on finite-temperature behavior of classical ideal gas

    NASA Astrophysics Data System (ADS)

    Shekaari, Ashkan; Jafari, Mahmoud

    2018-05-01

    Finite-temperature molecular dynamics simulations have been applied to inquire into the effect of pairwise additivity on the behavior of classical ideal gas within the temperature range of T = 250-4000 K via applying a variety of pair potentials and then examining the temperature dependence of a number of thermodynamical properties. Examining the compressibility factor reveals the most deviation from ideal-gas behavior for the Lennard-Jones system mainly due to the presence of both the attractive and repulsive terms. The systems with either attractive or repulsive intermolecular potentials are found to present no resemblance to real gases, but the most similarity to the ideal one as temperature rises.

  19. Orientation-free and differentially pumped addition of a low-flux reactive gas beam to a surface analysis system.

    PubMed

    Harthcock, Colin; Jahanbekam, Abdolreza; Eskelsen, Jeremy R; Lee, David Y

    2016-11-01

    We describe an example of a piecewise gas chamber that can be customized to incorporate a low flux of gas-phase radicals with an existing surface analysis chamber for in situ and stepwise gas-surface interaction experiments without any constraint in orientation. The piecewise nature of this gas chamber provides complete angular freedom and easy alignment and does not require any modification of the existing surface analysis chamber. In addition, the entire gas-surface system is readily differentially pumped with the surface chamber kept under ultra-high-vacuum during the gas-surface measurements. This new design also allows not only straightforward reconstruction to accommodate the orientation of different surface chambers but also for the addition of other desired features, such as an additional pump to the current configuration. Stepwise interaction between atomic oxygen and a highly ordered pyrolytic graphite surface was chosen to test the effectiveness of this design, and the site-dependent O-atom chemisorption and clustering on the graphite surface were resolved by a scanning tunneling microscope in the nm-scale. X-ray photoelectron spectroscopy was used to further confirm the identity of the chemisorbed species on the graphite surface as oxygen.

  20. Indications of Transformation Products from Hydraulic Fracturing Additives in Shale-Gas Wastewater.

    PubMed

    Hoelzer, Kathrin; Sumner, Andrew J; Karatum, Osman; Nelson, Robert K; Drollette, Brian D; O'Connor, Megan P; D'Ambro, Emma L; Getzinger, Gordon J; Ferguson, P Lee; Reddy, Christopher M; Elsner, Martin; Plata, Desiree L

    2016-08-02

    Unconventional natural gas development (UNGD) generates large volumes of wastewater, the detailed composition of which must be known for adequate risk assessment and treatment. In particular, transformation products of geogenic compounds and disclosed additives have not been described. This study investigated six Fayetteville Shale wastewater samples for organic composition using a suite of one- and two-dimensional gas chromatographic techniques to capture a broad distribution of chemical structures. Following the application of strict compound-identification-confidence criteria, we classified compounds according to their putative origin. Samples displayed distinct chemical distributions composed of typical geogenic substances (hydrocarbons and hopane biomarkers), disclosed UNGD additives (e.g., hydrocarbons, phthalates such as diisobutyl phthalate, and radical initiators such as azobis(isobutyronitrile)), and undisclosed compounds (e.g., halogenated hydrocarbons, such as 2-bromohexane or 4-bromoheptane). Undisclosed chloromethyl alkanoates (chloromethyl propanoate, pentanoate, and octanoate) were identified as potential delayed acids (i.e., those that release acidic moieties only after hydrolytic cleavage, the rate of which could be potentially controlled), suggesting they were deliberately introduced to react in the subsurface. In contrast, the identification of halogenated methanes and acetones suggested that those compounds were formed as unintended byproducts. Our study highlights the possibility that UNGD operations generate transformation products and underscores the value of disclosing additives injected into the subsurface.

  1. Neutral gas temperature estimates and metastable resonance energy transfer for argon-nitrogen discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greig, A., E-mail: amelia.greig@anu.edu.au; Charles, C.; Boswell, R. W.

    2016-01-15

    Rovibrational spectroscopy band fitting of the nitrogen (N{sub 2}) second positive system is a technique used to estimate the neutral gas temperature of N{sub 2} discharges, or atomic discharges with trace amounts of a N{sub 2} added. For mixtures involving argon and N{sub 2}, resonant energy transfer between argon metastable atoms (Ar*) and N{sub 2} molecules may affect gas temperature estimates made using the second positive system. The effect of Ar* resonance energy transfer is investigated here by analyzing neutral gas temperatures of argon-N{sub 2} mixtures, for N{sub 2} percentages from 1% to 100%. Neutral gas temperature estimates are highermore » than expected for mixtures involving greater than 5% N{sub 2} addition, but are reasonable for argon with less than 5% N{sub 2} addition when compared with an analytic model for ion-neutral charge exchange collisional heating. Additional spatiotemporal investigations into neutral gas temperature estimates with 10% N{sub 2} addition demonstrate that although absolute temperature values may be affected by Ar* resonant energy transfer, spatiotemporal trends may still be used to accurately diagnose the discharge.« less

  2. Computation and analysis of backward ray-tracing in aero-optics flow fields.

    PubMed

    Xu, Liang; Xue, Deting; Lv, Xiaoyi

    2018-01-08

    A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.

  3. Polar Vortex Dynamics During Spring and Fall Diagnosed Using ATMOS Trace Gas Observation

    NASA Technical Reports Server (NTRS)

    Manney, G.; Michelsen, H.; Santee, M.; Gunson, M.; Irion, F.; Roche, A.; Livesey, N.

    1999-01-01

    Trace gases measured by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during the Mar/Apr 1992(AT-1), Apr 1993(AT-2), and Nov 1994(AT-3) space-shuttle missions have been mapped into equivalent latitude/potential temperature (EqL/0) coordinates.

  4. An Ultra-Trace Analysis Technique for SF6 Using Gas Chromatography with Negative Ion Chemical Ionization Mass Spectrometry.

    PubMed

    Jong, Edmund C; Macek, Paul V; Perera, Inoka E; Luxbacher, Kray D; McNair, Harold M

    2015-07-01

    Sulfur hexafluoride (SF6) is widely used as a tracer gas because of its detectability at low concentrations. This attribute of SF6 allows the quantification of both small-scale flows, such as leakage, and large-scale flows, such as atmospheric currents. SF6's high detection sensitivity also facilitates greater usage efficiency and lower operating cost for tracer deployments by reducing quantity requirements. The detectability of SF6 is produced by its high molecular electronegativity. This property provides a high potential for negative ion formation through electron capture thus naturally translating to selective detection using negative ion chemical ionization mass spectrometry (NCI-MS). This paper investigates the potential of using gas chromatography (GC) with NCI-MS for the detection of SF6. The experimental parameters for an ultra-trace SF6 detection method utilizing minimal customizations of the analytical instrument are detailed. A method for the detection of parts per trillion (ppt) level concentrations of SF6 for the purpose of underground ventilation tracer gas analysis was successfully developed in this study. The method utilized a Shimadzu gas chromatography with negative ion chemical ionization mass spectrometry system equipped with an Agilent J&W HP-porous layer open tubular column coated with an alumina oxide (Al2O3) S column. The method detection limit (MDL) analysis as defined by the Environmental Protection Agency of the tracer data showed the method MDL to be 5.2 ppt. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The Noble Gas Fingerprint in a UK Unconventional Gas Reservoir

    NASA Astrophysics Data System (ADS)

    McKavney, Rory; Gilfillan, Stuart; Györe, Domokos; Stuart, Fin

    2016-04-01

    In the last decade, there has been an unprecedented expansion in the development of unconventional hydrocarbon resources. Concerns have arisen about the effect of this new industry on groundwater quality, particularly focussing on hydraulic fracturing, the technique used to increase the permeability of the targeted tight shale formations. Methane contamination of groundwater has been documented in areas of gas production1 but conclusively linking this to fugitive emissions from unconventional hydrocarbon production has been controversial2. A lack of baseline measurements taken before drilling, and the equivocal interpretation of geochemical data hamper the determination of possible contamination. Common techniques for "fingerprinting" gas from discrete sources rely on gas composition and isotopic ratios of elements within hydrocarbons (e.g. δ13CCH4), but the original signatures can be masked by biological and gas transport processes. The noble gases (He, Ne, Ar, Kr, Xe) are inert and controlled only by their physical properties. They exist in trace quantities in natural gases and are sourced from 3 isotopically distinct environments (atmosphere, crust and mantle)3. They are decoupled from the biosphere, and provide a separate toolbox to investigate the numerous sources and migration pathways of natural gases, and have found recent utility in the CCS4 and unconventional gas5 industries. Here we present a brief overview of noble gas data obtained from a new coal bed methane (CBM) field, Central Scotland. We show that the high concentration of helium is an ideal fingerprint for tracing fugitive gas migration to a shallow groundwater. The wells show variation in the noble gas signatures that can be attributed to differences in formation water pumping from the coal seams as the field has been explored for future commercial development. Dewatering the seams alters the gas/water ratio and the degree to which noble gases degas from the formation water. Additionally the

  6. Gas Chromatographic Determination of Methyl Salicylate in Rubbing Alcohol: An Experiment Employing Standard Addition.

    ERIC Educational Resources Information Center

    Van Atta, Robert E.; Van Atta, R. Lewis

    1980-01-01

    Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)

  7. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    USGS Publications Warehouse

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  8. Subtask 4.8 - Fate and Control of Mercury and Trace Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlish, John; Lentz, Nicholas; Martin, Christopher

    2011-12-31

    The Center for Air Toxic Metals® (CATM®) Program at the Energy & Environmental Research Center (EERC) continues to focus on vital basic and applied research related to the fate, behavior, measurement, and control of trace metals, especially mercury, and the impact that these trace metals have on human health and the environment. For years, the CATM Program has maintained an international perspective, performing research and providing results that apply to both domestic and international audiences, with reports distributed in the United States and abroad. In addition to trace metals, CATM’s research focuses on other related emissions and issues that impactmore » trace metal releases to the environment, such as SO x, NO x, CO 2, ash, and wastewater streams. Of paramount interest and focus has been performing research that continues to enable the power and industrial sectors to operate in an environmentally responsible manner to meet regulatory standards. The research funded by the U.S. Department of Energy’s (DOE’s) National Energy Technology Laboratory (NETL) through CATM has allowed significant strides to be made to gain a better understanding of trace metals and other emissions, improve sampling and measurement techniques, fill data gaps, address emerging technical issues, and develop/test control technologies that allow industry to cost-effectively meet regulatory standards. The DOE NETL–CATM research specifically focused on the fate and control of mercury and trace elements in power systems that use CO 2 control technologies, such as oxycombustion and gasification systems, which are expected to be among those technologies that will be used to address climate change issues. In addition, research addressed data gaps for systems that use conventional and multipollutant control technologies, such as electrostatic precipitators, selective catalytic reduction units, flue gas desulfurization systems, and flue gas-conditioning methods, to understand mercury

  9. Indications of Transformation Products from Hydraulic Fracturing Additives in Shale Gas Wastewater

    NASA Astrophysics Data System (ADS)

    Elsner, Martin; Hoelzer, Kathrin; Sumner, Andrew J.; Karatum, Osman; Nelson, Robert K.; Drollette, Brian D.; O'Connor, Megan P.; D'Ambro, Emma; Getzinger, Gordon J.; Ferguson, P. Lee; Reddy, Christopher M.; Plata, Desiree L.

    2016-04-01

    Unconventional natural gas development (UNGD) generates large volumes of wastewater, whose detailed composition must be known for adequate risk assessment and treatment. In particular, there is a need to elucidate the structures of organic chemical additives, extracted geogenic compounds, and transformation products. This study investigated six Fayetteville Shale UNGD wastewater samples for their organic composition using purge-and-trap gas chromatography-mass spectrometry (P&T-GC-MS) in combination with liquid-liquid extraction with comprehensive two-dimensional gas chromatography-time of flight-mass spectrometry (GCxGC-TOF-MS). Following application of strict compound identification confidence criteria, we classified compounds according to their putative origin. Samples displayed distinct chemical distributions composed of typical geogenic substances (hydrocarbons), disclosed UNGD additives (e.g., hydrocarbons, phthalates, such as diisobutyl phthalate, and radical initiators, such as azobisisobutyronitrile), and undisclosed compounds (e.g., halogenated hydrocarbons, such as 2-bromohexane or 4-bromoheptane). Undisclosed chloromethyl alkanoates (chloromethyl propanoate, pentanoate, and octanoate) were identified as putative delayed acids (those that release acidic moieties only after hydrolytic cleavage, whose rate could potentially be controlled), suggesting they were deliberately introduced to react in the subsurface. Identification of halogenated methanes and acetones, in contrast, suggested they were formed as unintended by-products. Our study highlights the possibility that UNGD operations generate transformation products, knowledge of which is crucial for risk assessment and treatment strategies, and underscores the value of disclosing potential precursors that are injected into the subsurface.

  10. Theory and Practice of Lineage Tracing.

    PubMed

    Hsu, Ya-Chieh

    2015-11-01

    Lineage tracing is a method that delineates all progeny produced by a single cell or a group of cells. The possibility of performing lineage tracing initiated the field of Developmental Biology and continues to revolutionize Stem Cell Biology. Here, I introduce the principles behind a successful lineage-tracing experiment. In addition, I summarize and compare different methods for conducting lineage tracing and provide examples of how these strategies can be implemented to answer fundamental questions in development and regeneration. The advantages and limitations of each method are also discussed. © 2015 AlphaMed Press.

  11. Multi-species trace gas analysis with dual-wavelength quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Jágerská, Jana; Tuzson, Béla; Looser, Herbert; Jouy, Pierre; Hugi, Andreas; Mangold, Markus; Soltic, Patrik; Faist, Jérôme; Emmenegger, Lukas

    2015-04-01

    ). [2] J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, 'Dual-wavelength quantum cascade laser for trace gas spectroscopy,' Applied Physics Letters 105, 161109-161109-4 (2014).

  12. CO2 lidar for measurements of trace gases and wind velocities

    NASA Technical Reports Server (NTRS)

    Hess, R. V.

    1982-01-01

    CO2 lidar systems technology and signal processing requirements relevant to measurement needs and sensitivity are discussed. Doppler processing is similar to microwave radar, with signal reception controlled by a computer capable of both direct and heterodyne operations. Trace gas concentrations have been obtained with the NASA DIAL system, and trace gas transport has been determined with Doppler lidar measurements for wind velocity and turbulence. High vertical resolution measurement of trace gases, wind velocity, and turbulence are most important in the planetary boundary layer and in regions between the PBL and the lower stratosphere. Shear measurements are critical for airport operational safety. A sensitivity analysis for heterodyne detection with the DIAL system and for short pulses using a Doppler lidar system is presented. The development of transient injection locking techniques, as well as frequency stability by reducing chirp and catalytic control of closed cycle CO2 laser chemistry, is described.

  13. NOAA Mobile Laboratory Measures Oil and Gas Emissions

    NASA Astrophysics Data System (ADS)

    Kofler, J. D.; Petron, G.; Dube, W. P.; Edwards, P. M.; Brown, S. S.; Geiger, F.; Patrick, L.; Crepinsek, S.; Chen, H.; Miller, B. R.; Montzka, S. A.; Lang, P. M.; Newberger, T.; Higgs, J. A.; Sweeney, C.; Guenther, D.; Karion, A.; Wolter, S.; Williams, J.; Jordan, A.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    A van capable of continuous real time measurements of CH4 , CO2, CO, Water Vapor, Ozone, NO, NO2, Volatile Organic Compounds VOCs including aromatics and other traces gases was driven in the oil and gas fields of the Uintah Basin in northeastern Utah. Compressor Stations, processing plants, oil and gas well heads. Separators, condensate tanks, evaporation pond disposal facilities, holding tanks, hydraulic fracturing sites, gas pipelines and more were studied using the van. The mobile measurements provide a powerful tool to get to the source of the emissions and reveal the unique chemical signature of each of the stages and components of oil and gas production as well as the overall basin and background gas concentrations. In addition to a suite of gas analyzers, the van includes a meteorological system (temperature, humidity, and wind speed and direction), GPS tracking, flask sampling system and a batter power system. Aspects of the vans hardware, sampling methods and operations are discussed along with a few highlights of the measurements.

  14. Analysis of trace contaminants in hot gas streams using time-weighted average solid-phase microextraction: proof of concept.

    PubMed

    Woolcock, Patrick J; Koziel, Jacek A; Cai, Lingshuang; Johnston, Patrick A; Brown, Robert C

    2013-03-15

    Time-weighted average (TWA) passive sampling using solid-phase microextraction (SPME) and gas chromatography was investigated as a new method of collecting, identifying and quantifying contaminants in process gas streams. Unlike previous TWA-SPME techniques using the retracted fiber configuration (fiber within needle) to monitor ambient conditions or relatively stagnant gases, this method was developed for fast-moving process gas streams at temperatures approaching 300 °C. The goal was to develop a consistent and reliable method of analyzing low concentrations of contaminants in hot gas streams without performing time-consuming exhaustive extraction with a slipstream. This work in particular aims to quantify trace tar compounds found in a syngas stream generated from biomass gasification. This paper evaluates the concept of retracted SPME at high temperatures by testing the three essential requirements for TWA passive sampling: (1) zero-sink assumption, (2) consistent and reliable response by the sampling device to changing concentrations, and (3) equal concentrations in the bulk gas stream relative to the face of the fiber syringe opening. Results indicated the method can accurately predict gas stream concentrations at elevated temperatures. Evidence was also discovered to validate the existence of a second boundary layer within the fiber during the adsorption/absorption process. This limits the technique to operating within reasonable mass loadings and loading rates, established by appropriate sampling depths and times for concentrations of interest. A limit of quantification for the benzene model tar system was estimated at 0.02 g m(-3) (8 ppm) with a limit of detection of 0.5 mg m(-3) (200 ppb). Using the appropriate conditions, the technique was applied to a pilot-scale fluidized-bed gasifier to verify its feasibility. Results from this test were in good agreement with literature and prior pilot plant operation, indicating the new method can measure low

  15. Control of Cr6+ emissions from gas metal arc welding using a silica precursor as a shielding gas additive.

    PubMed

    Topham, Nathan; Wang, Jun; Kalivoda, Mark; Huang, Joyce; Yu, Kuei-Min; Hsu, Yu-Mei; Wu, Chang-Yu; Oh, Sewon; Cho, Kuk; Paulson, Kathleen

    2012-03-01

    Hexavalent chromium (Cr(6+)) emitted from welding poses serious health risks to workers exposed to welding fumes. In this study, tetramethylsilane (TMS) was added to shielding gas to control hazardous air pollutants produced during stainless steel welding. The silica precursor acted as an oxidation inhibitor when it decomposed in the high-temperature welding arc, limiting Cr(6+) formation. Additionally, a film of amorphous SiO(2) was deposited on fume particles to insulate them from oxidation. Experiments were conducted following the American Welding Society (AWS) method for fume generation and sampling in an AWS fume hood. The results showed that total shielding gas flow rate impacted the effectiveness of the TMS process. Increasing shielding gas flow rate led to increased reductions in Cr(6+) concentration when TMS was used. When 4.2% of a 30-lpm shielding gas flow was used as TMS carrier gas, Cr(6+) concentration in gas metal arc welding (GMAW) fumes was reduced to below the 2006 Occupational Safety and Health Administration standard (5 μg m(-3)) and the efficiency was >90%. The process also increased fume particle size from a mode size of 20 nm under baseline conditions to 180-300 nm when TMS was added in all shielding gas flow rates tested. SiO(2) particles formed in the process scavenged nanosized fume particles through intercoagulation. Transmission electron microscopy imagery provided visual evidence of an amorphous film of SiO(2) on some fume particles along with the presence of amorphous SiO(2) agglomerates. These results demonstrate the ability of vapor phase silica precursors to increase welding fume particle size and minimize chromium oxidation, thereby preventing the formation of hexavalent chromium.

  16. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  17. Effect of water treatment additives on lime softening residual trace chemical composition--implications for disposal and reuse.

    PubMed

    Cheng, Weizhi; Roessler, Justin; Blaisi, Nawaf I; Townsend, Timothy G

    2014-12-01

    Drinking water treatment residues (WTR) offer potential benefits when recycled through land application. The current guidance in Florida, US allows for unrestricted land application of lime softening WTR; alum and ferric WTR require additional evaluation of total and leachable concentrations of select trace metals prior to land application. In some cases a mixed WTR is produced when lime softening is accompanied by the addition of a coagulant or other treatment chemical; applicability of the current guidance is unclear. The objective of this research was to characterize the total and leachable chemical content of WTR from Florida facilities that utilize multiple treatment chemicals. Lime and mixed lime WTR samples were collected from 18 water treatment facilities in Florida. Total and leachable concentrations of the WTR were measured. To assess the potential for disposal of mixed WTR as clean fill below the water table, leaching tests were conducted at multiple liquid to solid ratios and under reducing conditions. The results were compared to risk-based soil and groundwater contamination thresholds. Total metal concentrations of WTR were found to be below Florida soil contaminant thresholds with Fe found in the highest abundance at a concentration of 3600 mg/kg-dry. Aluminum was the only element that exceeded the Florida groundwater contaminant thresholds using SPLP (95% UCL = 0.23 mg/L; risk threshold = 0.2 mg/L). Tests under reducing conditions showed elevated concentrations of Fe and Mn, ranging from 1 to 3 orders of magnitude higher than SPLP leachates. Mixed lime WTR concentrations (total and leachable) were lower than the ferric and alum WTR concentrations, supporting that mixed WTR are appropriately represented as lime WTR. Testing of WTR under reducing conditions demonstrated the potential for release of certain trace metals (Fe, Al, Mn) above applicable regulatory thresholds; additional evaluation is needed to assess management options where

  18. Simultaneous removal of SO2 and trace As2O3 from flue gas: mechanism, kinetics study, and effect of main gases on arsenic capture.

    PubMed

    Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Li, Yan; Xu, Xuchang

    2007-04-15

    Sulfur dioxide (SO2) and trace elements are pollutants derived from coal combustion. This study focuses on the simultaneous removal of S02 and trace arsenic oxide (As2O3) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range. Experiments have been performed on a thermogravimetric analyzer (TGA). The interaction mechanism between As2O3 and CaO is studied via XRD detection. Calcium arsenate [Ca3(AsO4)2] is found to be the reaction product in the range of 600-1000 degrees C. The ability of CaO to absorb As2O3 increases with the increasing temperature over the range of 400-1000 degrees C. Through kinetics analysis, it has been found that the rate constant of arsenate reaction is much higher than that of sulfate reaction. SO2 presence does not affect the trace arsenic capture either in the initial reaction stage when CaO conversion is relatively low or in the later stage when CaO conversion is very high. The product of sulfate reaction, CaS04, is proven to be able to absorb As2O3. The coexisting CO2 does not weaken the trace arsenic capture either.

  19. A wide field-of-view imaging DOAS instrument for continuous trace gas mapping from aircraft

    NASA Astrophysics Data System (ADS)

    Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.

    2014-04-01

    For the purpose of trace gas measurements and pollution mapping, the Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed, characterised and successfully operated from aircraft. From the observations with the AirMAP instrument nitrogen dioxide (NO2) columns were retrieved. A major benefit of the pushbroom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a frame-transfer detector. With a wide-angle entrance objective, a broad field-of-view across track of around 48° is achieved, leading to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m. From a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 single fibres, the number of viewing directions is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Exploitation of all the viewing directions yields observations at 30 m spatial resolution, making the instrument a suitable tool for mapping trace gas point sources and small scale variability. For accurate spatial mapping the position and aircraft attitude are taken into account using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken. In June 2011, AirMAP has been operated on the AWI Polar-5 aircraft in the framework of the AIRMETH2011 campaign. During a flight above a medium sized coal-fired power plant in North-West Germany, AirMAP clearly detects the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 × 1016 molecules cm-2 in the plume center. The emission

  20. Development of a simple and valid method for the trace determination of phthalate esters in human plasma using dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry.

    PubMed

    Ebrahim, Karim; Poursafa, Parinaz; Amin, Mohammad Mehdi

    2017-11-01

    A new method was developed for the trace determination of phthalic acid esters in plasma using dispersive liquid-liquid microextraction and gas chromatography with mass spectrometry analysis. Plasma proteins were efficiently precipitated by trichloroacetic acid and then a mixture of chlorobenzene (as extraction solvent) and acetonitrile (as dispersive solvent) rapidly injected to clear supernatant using a syringe. After centrifuging, chlorobenzene sedimented at the bottom of the test tube. 1 μL of this sedimented phase was injected into the gas chromatograph for phthalic acid esters analysis. Different factors affecting the extraction performance, such as the type of extraction and dispersive solvent, their volume, extraction time, and the effects of salt addition were investigated and optimized. Under the optimum conditions, the enrichment factors and extraction recoveries were satisfactory and ranged between 820-1020 and 91-97%, respectively. The linear range was wide (50-1000 ng/mL) and limit of detection was very low (1.5-2.5 ng/mL for all analytes). The relative standard deviations for analysis of 1 μg/mL of the analytes were between 3.2-6.1%. Salt addition showed no significant effect on extraction recovery. Finally, the proposed method was successfully utilized for the extraction and determination of the phthalic acid esters in human plasma samples and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A compact high resolution ion mobility spectrometer for fast trace gas analysis.

    PubMed

    Kirk, Ansgar T; Allers, Maria; Cochems, Philipp; Langejuergen, Jens; Zimmermann, Stefan

    2013-09-21

    Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak. This theoretical analysis shows that the SNR is not a function of the initial ion packet width, meaning that compact drift tube IMS with both very high resolution and extremely low limits of detection can be designed. Based on these implications, an optimized combination of a compact drift tube with a length of just 10 cm and a transimpedance amplifier has been constructed with a resolution of 183 measured for the positive reactant ion peak (RIP(+)), which is sufficient to e.g. separate the RIP(+) from the protonated acetone monomer, even though their drift times only differ by a factor of 1.007. Furthermore, the limits of detection (LODs) for acetone are 180 pptv within 1 s of averaging time and 580 pptv within only 100 ms.

  2. Trace explosives sensor testbed (TESTbed)

    NASA Astrophysics Data System (ADS)

    Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.

    2017-03-01

    A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

  3. TRACE GAS CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    Seventeen headwater watersheds within the SFBR watershed ranging from 0.5 to 3.4 km2 were selected. We have been monitoring concentrations of the trace gases nitrous oxide, methane, and carbon dioxide, and other parameters (T, conductivity, dissolved oxygen, pH, nutrients, flow r...

  4. Technical and Scientific Aspects of the JET Trace-Tritium Experimental Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, T.T.C.; Brennan, D; Pearce, R.J.H.

    The JET Trace Tritium (TTE) programme marked the first use of tritium in experiments under the managerial control of UKAEA, which operates the JET Facility on behalf of EFDA. The introduction of tritium into the plasma by gas fuelling and neutral beam injection, even in trace quantities, required the mobilisation of gram-quantities of tritium gas from the Active Gas Handling System (AGHS) product storage units into the supply lines connected to the torus gas valve and the neutral beam injectors. All systems for DT gas handling, recovery and reprocessing were therefore recommissioned and operating procedures re-established, involving extensive operations staffmore » training. The validation of Key Safety Related Equipment (KSRE) is described with reference to specific examples. The differences between requirements for TTE and full DT operations are shown to be relatively small. The scientific motivation for TTE, such as the possibility to obtain high-quality measurements in key areas such as fuel-ion transport and fast ion dynamics, is described, and the re-establishment and development of JET's 14MeV neutron diagnostic capability for TTE and future DT campaigns are outlined. Some scientific highlights from the TTE campaign are presented.« less

  5. Sources and sinks of trace gases in Amazonia and the Cerrado

    Treesearch

    M.M.C. Bustamante; Michael Keller; D.A. Silva

    2009-01-01

    Data for trace gas fluxes (NOx, N2O, and CH4) from the Amazon and cerrado region are presented with focus on the processes of production and consumption of these trace gases in soils and how they may be changed because of land use changes in both regions. Fluxes are controlled by seaonality, soil moisture, soil texture, topography, and fine-root dynamics. Compared to...

  6. Status of the DOE/NASA critical gas turbine research and technology project

    NASA Technical Reports Server (NTRS)

    Clark, J. S.

    1980-01-01

    Activities performed in order to provide an R&T data base for utility gas turbine systems burning coal-derived fuels are described. Experiments were run to determine the corrosivity effects of trace metal contaminants (and potential fuel additives) on gas turbine materials and these results were correlated in a corrosion-life prediction model. Actual fuels were burned in a burner rig hot corrosion test to verify the model. A deposition prediction model was assembled and compared with results of actual coal-derived fuel deposition tests. Thermal barrier coatings were tested to determine their potential for protecting gas turbine hardware from the corrosive contaminants. Several coatings were identified with significantly improved spallation-resistance (and, hence, corrosion resistance).

  7. Rail-type gas switch with preionization by an additional corona discharge

    NASA Astrophysics Data System (ADS)

    Belozerov, O. S.; Krastelev, E. G.

    2017-05-01

    Results of an experimental research of a rail-type gas switch with preionization by an additional negative corona discharge are presented. The most of measurements were performed for an air insulated two-electrode switch assembled of cylindrical electrodes of 22 mm diameter and 100 mm length, arranged parallel to each other, with a spark gap between them varying from 6 to 15 mm. A set of 1 to 5 needles connected to a negative cylindrical electrode and located aside of them were used for corona discharges. The needle positions, allowing an effecient stabilization of the pulsed breakdown voltage and preventing the a transition of the corona discharge in a spark form, were found. It was shown that the gas preionization by the UV-radiation of the parallel corona discharge provides a stable operation of the switch with low variations of the pulsed breakdown voltage, not exceeding 1% for a given voltage rise-time tested within the range from 40 ns to 5 µs.

  8. 21 CFR 868.5430 - Gas-scavenging apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas-scavenging apparatus. 868.5430 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5430 Gas-scavenging apparatus. (a) Identification. A gas-scavenging apparatus is a device intended to collect excess anesthetic, analgesic, or trace...

  9. 21 CFR 868.5430 - Gas-scavenging apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gas-scavenging apparatus. 868.5430 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5430 Gas-scavenging apparatus. (a) Identification. A gas-scavenging apparatus is a device intended to collect excess anesthetic, analgesic, or trace...

  10. Real-time trace gas sensor using a multimode diode laser and multiple-line integrated cavity enhanced absorption spectroscopy.

    PubMed

    Karpf, Andreas; Rao, Gottipaty N

    2015-07-01

    We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400  mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively.

  11. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz

    1988-01-01

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas.

  12. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, S.; Bernstein, L.S.; Bien, F.

    1988-08-23

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas. 12 figs.

  13. Comparison of CAM-Chem with Trace Gas Measurements from Airborne Field Campaigns from 2009-2016.

    NASA Astrophysics Data System (ADS)

    Schauffler, S.; Atlas, E. L.; Kinnison, D. E.; Lamarque, J. F.; Saiz-Lopez, A.; Navarro, M. A.; Donets, V.; Blake, D. R.; Blake, N. J.

    2016-12-01

    Trace gas measurements collected during seven field campaigns, two with multiple deployments, will be compared with the NCAR CAM-Chem model to evaluate the model performance over multiple years. The campaigns include HIPPO (2009-2011) pole to pole observations in the Pacific on the NSF/NCAR GV over multiple seasons; SEAC4RS (Aug./Sept., 2013) in the central and southern U.S. and western Gulf of Mexico on the NASA ER-2 and DC8; ATTREX (2011-2015) on the NASA Global Hawk over multiple seasons and locations; CONTRAST (Jan/Feb, 2014) in the western Pacific on the NSF/NCAR GV; VIRGAS (Oct., 2015) in the south central US and western Gulf of Mexico on the NASA WB-57; ORCAS (Jan/Feb, 2016) over the southern ocean on the NSF/NCAR GV; and POSIDON (Oct, 2016) in the western Pacific on the NASA WB-57. We will focus on along the flight tracks comparisons with the model and will also examine comparisons of vertical distributions and various tracer-tracer correlations.

  14. Oxidation of contaminative methane traces with radio-frequency discharge

    NASA Technical Reports Server (NTRS)

    Flamm, D. L.; Wydeven, T. L.

    1976-01-01

    An 11.8 MHz glow discharge was used to oxidize trace levels of methane in oxygen. The concentration of methane can be reduced by three orders of magnitude. The effects of power (0-400 W), flow rate (10-1000 cc-STP/min) and concentration (70-8000 ppm) were investigated at pressures ranging from 50 torr to almost 1 atm. No organic reaction products were detected in the treated gas stream. The process may prove useful for the removal of atmospheric trace contaminants at ambient pressure.

  15. Mechanism of wiggling enhancement due to HBr gas addition during amorphous carbon etching

    NASA Astrophysics Data System (ADS)

    Kofuji, Naoyuki; Ishimura, Hiroaki; Kobayashi, Hitoshi; Une, Satoshi

    2015-06-01

    The effect of gas chemistry during etching of an amorphous carbon layer (ACL) on wiggling has been investigated, focusing especially on the changes in residual stress. Although the HBr gas addition reduces critical dimension loss, it enhances the surface stress and therefore increases wiggling. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the increase in surface stress was caused by hydrogenation of the ACL surface with hydrogen radicals. Three-dimensional (3D) nonlinear finite element method analysis confirmed that the increase in surface stress is large enough to cause the wiggling. These results also suggest that etching with hydrogen compound gases using an ACL mask has high potential to cause the wiggling.

  16. The Independence of Neutral and Ionized Gas Outflows in Low-z Galaxies

    NASA Astrophysics Data System (ADS)

    Bae, Hyun-Jin; Woo, Jong-Hak

    2018-02-01

    Using a large sample of emission line galaxies selected from the Sloan Digital Sky Survey, we investigate the kinematics of the neutral gas in the interstellar medium (ISM) based on the Na I λλ5890,5896 (Na D) doublet absorption line. By removing the Na D contribution from stellar atmospheres, we isolate the line profile of the Na D excess, which represents the neutral gas in the ISM. The kinematics traced by the Na D excess show high velocity and velocity dispersion for a fraction of galaxies, indicating the presence of neutral gas outflows. We find that the kinematics measured from the Na D excess are similar between AGNs and star-forming galaxies. Moreover, by comparing the kinematics traced by the Na D excess and those by the [O III] λ5007 line taken from Woo et al., which traces ionized outflows driven by AGNs, we find no correlation between them. These results demonstrate that the neutral gas in the ISM traced by the Na D excess and the ionized gas traced by [O III] are kinematically independent, and AGNs have no impact on the neutral gas outflows. In contrast to [O III], we find that the measured line-of-sight velocity shift and velocity dispersion of the Na D excess increase for more face-on galaxies due to the projection effect, supporting that Na D outflows are radially driven (i.e., perpendicular to the major axis of galaxies), presumably due to star formation.

  17. An overview of the flight campaign for the GAUGE project: airborne greenhouse gas (and other complementary trace gas) measurements around and over the UK between April 2014 and May 2015

    NASA Astrophysics Data System (ADS)

    Allen, Grant; Pitt, Joseph; Le Breton, Michael; Percival, Carl; Bannan, Thomas; O'Doherty, Simon; Manning, Alistair; Rigby, Matt; Gannesan, Anita; Mead, Mohammed; Bauguitte, Stephane; Lee, James; Wenger, Angelina; Palmer, Paul

    2016-04-01

    This work highlights data measured during flights by the UK Facility for Airborne Atmospheric Measurement (FAAM) as part of the Greenhouse gAs UK and Global Emissions (GAUGE) campaign. A total of 17 flights (85 flight-hours) have been conducted so far around the UK mainland and Ireland to sample precision in situ CH4, CO2, N2O (and other trace gas) concentrations and meteorological parameters at altitudes up to 9500m throughout the period April 2014 to May 2015. Airborne remote sensing retrievals of greenhouse gas total columns have also been calculated using the Manchester Airborne Retrieval Scheme for the UK Met Office ARIES high resolution FTIR instrument. This airborne dataset represents a mapped climatology and a series of case studies from which to assess top-down bulk-net-flux snapshots for regions of the UK, and provides for evaluation of inverse modelling approaches that challenge bottom-up inventories, satellite remote sensing measurements, and assessment of model transport uncertainty. In this paper, we shall describe the instrumentation on the FAAM aircraft and provide a diary of GAUGE FAAM flights (and data highlights) to date; and discuss selected flights of interest to studies such as those above with a focus of net mass flux evaluation.

  18. Imaging trace gases in volcanic plumes with Fabry Perot Interferometers

    NASA Astrophysics Data System (ADS)

    Kuhn, Jonas; Platt, Ulrich; Bobrowski, Nicole; Lübcke, Peter; Wagner, Thomas

    2017-04-01

    Within the last decades, progress in remote sensing of atmospheric trace gases revealed many important insights into physical and chemical processes in volcanic plumes. In particular, their evolution could be studied in more detail than by traditional in-situ techniques. A major limitation of standard techniques for volcanic trace gas remote sensing (e.g. Differential Optical Absorption Spectroscopy, DOAS) is the constraint of the measurement to a single viewing direction since they use dispersive spectroscopy with a high spectral resolution. Imaging DOAS-type approaches can overcome this limitation, but become very time consuming (of the order of minutes to record a single image) and often cannot match the timescales of the processes of interest for volcanic gas measurements (occurring at the order of seconds). Spatially resolved imaging observations with high time resolution for volcanic sulfur dioxide (SO2) emissions became possible with the introduction of the SO2-Camera. Reducing the spectral resolution to two spectral channels (using interference filters) that are matched to the SO2 absorption spectrum, the SO2-Camera is able to record full frame SO2 slant column density distributions at a temporal resolution on the order of < 1s. This for instance allows for studying variations in SO2 fluxes on very short time scales and applying them in magma dynamics models. However, the currently employed SO2-Camera technique is limited to SO2 detection and, due to its coarse spectral resolution, has a limited spectral selectivity. This limits its application to very specific, infrequently found measurement conditions. Here we present a new approach, based on matching the transmission profile of Fabry Perot Interferometers (FPIs) to periodic spectral absorption features of trace gases. The FPI's transmission spectrum is chosen to achieve a high correlation with the spectral absorption of the trace gas, allowing a high selectivity and sensitivity with still using only a

  19. Pyrolysis-gas chromatography-isotope ratio mass spectrometry for monitoring natural additives in polylactic acid active food packages.

    PubMed

    Llana-Ruíz-Cabello, M; Pichardo, S; Jiménez-Morillo, N T; González-Vila, F J; Guillamón, E; Bermúdez, J M; Aucejo, S; Camean, A M; González-Pérez, J A

    2017-11-24

    Compound-specific isotope analysis (CSIA) usually requires preparative steps (pretreatments, extraction, derivatization) to get amenable chromatographic analytes from bulk geological, biological or synthetic materials. Analytical pyrolysis (Py-GC/MS) can help to overcome such sample manipulation. This communication describe the results obtained by hyphenating analytical pyrolysis (Py-GC) with carbon isotope-ratio mass spectrometry (IRMS) for the analysis of a polylactic acid (PLA) a based bio-plastic extruded with variable quantities of a natural plant extract or oregano essential oil. The chemical structural information of pyrolysates was first determined by conventional analytical pyrolysis and the measure of δ 13 C in specific compounds was done by coupling a pyrolysis unit to a gas chromatograph connected to a continuous flow IRMS unit (Py-GC-C-IRMS). Using this Py-CSIA device it was possible to trace natural additives with depleted δ 13 C values produced by C3 photosystem vegetation (cymene: -26.7‰±2.52; terpinene: -27.1‰±0.13 and carvacrol: -27.5‰±1.80 from oregano and two unknown structures: -23.3‰±3.32 and -24.4‰±1.70 and butyl valerate: -24.1‰±3.55 from Allium spp.), within the naturally isotopically enriched bio-plastic backbone derived from corn (C4 vegetation) starch (cyclopentanones: -14.2‰±2.11; lactide enantiomers: -9.2‰±1.56 and larger polymeric units: -17.2‰±1.71). This is the first application of Py-CSIA to characterize a bio-plastic and is shown as a promising tool to study such materials, providing not only a fingerprinting, but also valuable information about the origin of the materials, allowing the traceability of additives and minimizing sample preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Low-Power Architecture for an Optical Life Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey; Vakhtin, Andrei

    2012-01-01

    Analog and digital electronic control architecture has been combined with an operating methodology for an optical trace gas sensor platform that allows very low power consumption while providing four independent gas measurements in essentially real time, as well as a user interface and digital data storage and output. The implemented design eliminates the cross-talk between the measurement channels while maximizing the sensitivity, selectivity, and dynamic range for each measured gas. The combination provides for battery operation on a simple camcorder battery for as long as eight hours. The custom, compact, rugged, self-contained design specifically targets applications of optical major constituent and trace gas detection for multiple gases using multiple lasers and photodetectors in an integrated package.

  1. Experimental investigations about the effect of trace amount of propane on the formation of mixed hydrates of methane and propane

    NASA Astrophysics Data System (ADS)

    Cai, W.; Lu, H.; Huang, X.

    2016-12-01

    In natural gas hydrates, some heavy hydrocarbons are always detected in addition to methane. However, it is still not well understood how the trace amount of heavy gas affect the hydrate properties. Intensive studies have been carried out to study the thermodynamic properties and structure types of mixed gases hydrates, but comparatively few investigations have been carried out on the cage occupancies of guest molecules in mixed gases hydrates. For understanding how trace amount of propane affects the formation of mixed methane-propane hydrates, X-ray diffraction, Raman spectroscopy, and gas chromatography were applied to the synthesized mixed methane-propane hydrate specimens, to get their structural characteristics (structure type, structural parameters, cage occupancy, etc.) and gas compositions. The mixed methane-propane hydrates were prepared by reacting fine ice powders with various gas mixtures of methane and propane. When the propane content was below 0.4%, the hydrates synthesized were found containing both sI methane hydrate and sII methane-propane hydrate; while the hydrates were found always sII when propane was over certain content. Detail studies about the cage occupancies of propane and methane in sII hydrate revealed that: 1) with the increase in propane content of methane-propane mixture, the occupancy of propane in large cage increased as accompanied with the decrease in methane occupancy in large cage, however the occupancy of methane in small cage didn't experience significant change; 2) temperature and pressure seemed no obvious influence on cage occupancy.

  2. High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centeno, R.; Marchenko, D.; Mandon, J.

    We present a high power, widely tunable, continuous wave external cavity quantum cascade laser designed for infrared vibrational spectroscopy of molecules exhibiting broadband and single line absorption features. The laser source exhibits single mode operation with a tunability up to 303 cm{sup −1} (∼24% of the center wavelength) at 8 μm, with a maximum optical output power of 200 mW. In combination with off-axis integrated output spectroscopy, trace-gas detection of broadband absorption gases such as acetone was performed and a noise equivalent absorption sensitivity of 3.7 × 10{sup −8 }cm{sup −1 }Hz{sup −1/2} was obtained.

  3. A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft

    NASA Astrophysics Data System (ADS)

    Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.

    2015-12-01

    The Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed for the purpose of trace gas measurements and pollution mapping. The instrument has been characterized and successfully operated from aircraft. Nitrogen dioxide (NO2) columns were retrieved from the AirMAP observations. A major benefit of the push-broom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a charge coupled device (CCD) frame-transfer detector. A broad field of view across track of around 48° is achieved with wide-angle entrance optics. This leads to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible instrument positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m depending on flight altitude. The number of viewing directions is chosen from a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 individual fibres. The selection is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Observations at 30 m spatial resolution are obtained when flying at 1000 m altitude and making use of all 35 viewing directions. This makes the instrument a suitable tool for mapping trace gas point sources and small-scale variability. The position and aircraft attitude are taken into account for accurate spatial mapping using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken in June 2011. AirMAP was operated on the AWI Polar-5 aircraft in the framework of the AIRMETH-2011 campaign. During a flight above a medium-sized coal-fired power plant in north

  4. Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources

    PubMed Central

    Elia, Angela; Lugarà, Pietro Mario; Di Franco, Cinzia; Spagnolo, Vincenzo

    2009-01-01

    The paper provides an overview on the use of photoacoustic sensors based on semiconductor laser sources for the detection of trace gases. We review the results obtained using standard, differential and quartz enhanced photoacoustic techniques. PMID:22303143

  5. Method for detecting trace impurities in gases

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1981-01-01

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  6. Method for detecting trace impurities in gases

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  7. Non-additive non-interacting kinetic energy of rare gas dimers

    NASA Astrophysics Data System (ADS)

    Jiang, Kaili; Nafziger, Jonathan; Wasserman, Adam

    2018-03-01

    Approximations of the non-additive non-interacting kinetic energy (NAKE) as an explicit functional of the density are the basis of several electronic structure methods that provide improved computational efficiency over standard Kohn-Sham calculations. However, within most fragment-based formalisms, there is no unique exact NAKE, making it difficult to develop general, robust approximations for it. When adjustments are made to the embedding formalisms to guarantee uniqueness, approximate functionals may be more meaningfully compared to the exact unique NAKE. We use numerically accurate inversions to study the exact NAKE of several rare-gas dimers within partition density functional theory, a method that provides the uniqueness for the exact NAKE. We find that the NAKE decreases nearly exponentially with atomic separation for the rare-gas dimers. We compute the logarithmic derivative of the NAKE with respect to the bond length for our numerically accurate inversions as well as for several approximate NAKE functionals. We show that standard approximate NAKE functionals do not reproduce the correct behavior for this logarithmic derivative and propose two new NAKE functionals that do. The first of these is based on a re-parametrization of a conjoint Perdew-Burke-Ernzerhof (PBE) functional. The second is a simple, physically motivated non-decomposable NAKE functional that matches the asymptotic decay constant without fitting.

  8. Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX

    NASA Astrophysics Data System (ADS)

    Selimovic, Vanessa; Yokelson, Robert J.; Warneke, Carsten; Roberts, James M.; de Gouw, Joost; Reardon, James; Griffith, David W. T.

    2018-03-01

    Western wildfires have a major impact on air quality in the US. In the fall of 2016, 107 test fires were burned in the large-scale combustion facility at the US Forest Service Missoula Fire Sciences Laboratory as part of the Fire Influence on Regional and Global Environments Experiment (FIREX). Canopy, litter, duff, dead wood, and other fuel components were burned in combinations that represented realistic fuel complexes for several important western US coniferous and chaparral ecosystems including ponderosa pine, Douglas fir, Engelmann spruce, lodgepole pine, subalpine fir, chamise, and manzanita. In addition, dung, Indonesian peat, and individual coniferous ecosystem fuel components were burned alone to investigate the effects of individual components (e.g., duff) and fuel chemistry on emissions. The smoke emissions were characterized by a large suite of state-of-the-art instruments. In this study we report emission factor (EF, grams of compound emitted per kilogram of fuel burned) measurements in fresh smoke of a diverse suite of critically important trace gases measured using open-path Fourier transform infrared spectroscopy (OP-FTIR). We also report aerosol optical properties (absorption EF; single-scattering albedo, SSA; and Ångström absorption exponent, AAE) as well as black carbon (BC) EF measured by photoacoustic extinctiometers (PAXs) at 870 and 401 nm. The average trace gas emissions were similar across the coniferous ecosystems tested and most of the variability observed in emissions could be attributed to differences in the consumption of components such as duff and litter, rather than the dominant tree species. Chaparral fuels produced lower EFs than mixed coniferous fuels for most trace gases except for NOx and acetylene. A careful comparison with available field measurements of wildfires confirms that several methods can be used to extract data representative of real wildfires from the FIREX laboratory fire data. This is especially valuable

  9. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production

    DOE PAGES

    Mo, Jingke; Zhang, Feng -Yuan; Dehoff, Ryan R.; ...

    2016-01-14

    The electron beam melting (EBM) additive manufacturing technology was used to fabricate titanium liquid/gas diffusion media with high-corrosion resistances and well-controllable multifunctional parameters, including two-phase transport and excellent electric/thermal conductivities, has been first demonstrated. Their applications in proton exchange membrane eletrolyzer cells have been explored in-situ in a cell and characterized ex-situ with SEM and XRD. Compared with the conventional woven liquid/gas diffusion layers (LGDLs), much better performance with EBM fabricated LGDLs is obtained due to their significant reduction of ohmic loss. The EBM technology components exhibited several distinguished advantages in fabricating gas diffusion layer: well-controllable pore morphology and structure,more » rapid prototyping, fast manufacturing, highly customizing and economic. In addition, by taking advantage of additive manufacturing, it possible to fabricate complicated three-dimensional designs of virtually any shape from a digital model into one single solid object faster, cheaper and easier, especially for titanium. More importantly, this development will provide LGDLs with control of pore size, pore shape, pore distribution, and therefore porosity and permeability, which will be very valuable to develop modeling and to validate simulations of electrolyzers with optimal and repeatable performance. Further, it will lead to a manufacturing solution to greatly simplify the PEMEC/fuel cell components and to couple the LGDLs with other parts, since they can be easily integrated together with this advanced manufacturing process« less

  10. Products of random matrices from fixed trace and induced Ginibre ensembles

    NASA Astrophysics Data System (ADS)

    Akemann, Gernot; Cikovic, Milan

    2018-05-01

    We investigate the microcanonical version of the complex induced Ginibre ensemble, by introducing a fixed trace constraint for its second moment. Like for the canonical Ginibre ensemble, its complex eigenvalues can be interpreted as a two-dimensional Coulomb gas, which are now subject to a constraint and a modified, collective confining potential. Despite the lack of determinantal structure in this fixed trace ensemble, we compute all its density correlation functions at finite matrix size and compare to a fixed trace ensemble of normal matrices, representing a different Coulomb gas. Our main tool of investigation is the Laplace transform, that maps back the fixed trace to the induced Ginibre ensemble. Products of random matrices have been used to study the Lyapunov and stability exponents for chaotic dynamical systems, where the latter are based on the complex eigenvalues of the product matrix. Because little is known about the universality of the eigenvalue distribution of such product matrices, we then study the product of m induced Ginibre matrices with a fixed trace constraint—which are clearly non-Gaussian—and M  ‑  m such Ginibre matrices without constraint. Using an m-fold inverse Laplace transform, we obtain a concise result for the spectral density of such a mixed product matrix at finite matrix size, for arbitrary fixed m and M. Very recently local and global universality was proven by the authors and their coworker for a more general, single elliptic fixed trace ensemble in the bulk of the spectrum. Here, we argue that the spectral density of mixed products is in the same universality class as the product of M independent induced Ginibre ensembles.

  11. Modeling of contact tracing in social networks

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev S.; Huerta, Ramón

    2003-07-01

    Spreading of certain infections in complex networks is effectively suppressed by using intelligent strategies for epidemic control. One such standard epidemiological strategy consists in tracing contacts of infected individuals. In this paper, we use a recently introduced generalization of the standard susceptible-infectious-removed stochastic model for epidemics in sparse random networks which incorporates an additional (traced) state. We describe a deterministic mean-field description which yields quantitative agreement with stochastic simulations on random graphs. We also discuss the role of contact tracing in epidemics control in small-world and scale-free networks. Effectiveness of contact tracing grows as the rewiring probability is reduced.

  12. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iver; Siemon, John

    The charge for each gas atomization experiment was provided by Alcoa and consisted of cast blocks cut into 1 inch by 1 inch square rods of the chosen aluminum alloys. The atmosphere in the melting chamber and connected atomization system was evacuated with a mechanical pump prior to backfilling with ultrahigh purity (UHP grade) Ar. The melt was contained in a bottom tapped alumina crucible with an alumina stopper rod to seal the exit while heating to a pouring temperature of 1000 – 1400°C. When the desired superheat was reached, the stopper rod was lifted and melt flowed through pourmore » tube and was atomized with Ar from a 45-22-052-409 gas atomization nozzle (or atomization die), having a jet apex angle of 45 degrees with 22 cylindrical gas jets (each with diameter of 1.32 mm or 0.052 inches) arrayed around the axis of a 10.4 mm central bore. The Ar atomization gas supply regulator pressure was set to produce nozzle manifold pressures for the series of runs at pressures of 250-650 psi. Secondary gas halos of Ar+O 2 and He also were added to the interior of the spray chamber at various downstream locations for additional cooling of the atomized droplets, surface passivation, and to prevent coalescence of the resulting powder.« less

  13. 77 FR 59393 - Jordan Cove Energy Project LP; Pacific Connector Gas Pipeline LP; Notice of Additional Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ...-17-000] Jordan Cove Energy Project LP; Pacific Connector Gas Pipeline LP; Notice of Additional Public..., and 11, 2012, the Federal Energy Regulatory Commission (FERC or Commission) Office of Energy Projects... additional public scoping meetings to take comments on Jordan Cove Energy Project LP's (Jordan Cove) proposed...

  14. Chemical Properties, Decomposition, and Methane Production of Tertiary Relict Plant Litters: Implications for Atmospheric Trace Gas Production in the Early Tertiary

    NASA Astrophysics Data System (ADS)

    Yavitt, J. B.; Bartella, T. M.; Williams, C. J.

    2006-12-01

    Throughout the early Tertiary (ca. 65-38 Ma) Taxodiaceae-dominated (redwood) wetland forests occupied the high latitudes and were circumpolar in their distribution. Many of these forests had high standing biomass with moderate primary productivity. The geographic extent and amount of Tertiary coals and fossil forests throughout Arctic Canada suggests large areas of wetland forests that may have cycled substantial quantities of carbon, particularly methane until they were replaced by cold tolerant Pinus, Picea, and Larix following climatic cooling associated with the Terminal Eocene Event. To test this hypothesis we compared physiochemical properties, decomposition, and trace gas production of litter from extant Metasequoia, Pinus, Picea, and Larix. Initial results from plantation-grown trees indicate Metasequoia litter is a better source of labile organic substrate than pinaceous litter. Metasequoia litter contained the least lignin and highest amounts of water-soluble compounds of the four litter types studied. Analysis of the lignin structure using cupric oxide oxidation indicates that Metasequoia lignin is enriched in 4'-hydroxyacetophenone and 4'- Hydroxy-3'-methoxyacetophenone relative to the pinaceous litter. In a 12-month decomposition study using litterbags, average litter mass loss was greater for Metasequoia litter (62%) compared to the pinaceous species (50%). Moreover, Metasequoia litter incubated under anoxic conditions produced nearly twice as much CO2 (ca. 4.2 umol/g.day) and CH4 (2.1 umol/g.day) as the pinaceous litter (2.4 umol/g.day for CO2; 1.2 umol/g.day for CH4). Our results support the idea of greater decomposability and palatability of Metasequoia litter as compared to Larix, Picea, or Pinus. Provided that the biochemical properties of Metasequoia have remained relatively stable through geologic time, it appears that early Tertiary Metasequoia-dominated wetland forests may have had higher microbial driven trace gas production than the

  15. The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter

    USGS Publications Warehouse

    Thomas, N.; Cremonese, G.; Ziethe, R.; Gerber, M.; Brändli, M.; Bruno, G.; Erismann, M.; Gambicorti, L.; Gerber, T.; Ghose, K.; Gruber, M.; Gubler, P.; Mischler, H.; Jost, J.; Piazza, D.; Pommerol, A.; Rieder, M.; Roloff, V.; Servonet, A.; Trottmann, W.; Uthaicharoenpong, T.; Zimmermann, C.; Vernani, D.; Johnson, M.; Pelò, E.; Weigel, T.; Viertl, J.; De Roux, N.; Lochmatter, P.; Sutter, G.; Casciello, A.; Hausner, T.; Ficai Veltroni, I.; Da Deppo, V.; Orleanski, P.; Nowosielski, W.; Zawistowski, T.; Szalai, S.; Sodor, B.; Tulyakov, S.; Troznai, G.; Banaskiewicz, M.; Bridges, J.C.; Byrne, S.; Debei, S.; El-Maarry, M. R.; Hauber, E.; Hansen, C.J.; Ivanov, A.; Keszthelyil, L.; Kirk, Randolph L.; Kuzmin, R.; Mangold, N.; Marinangeli, L.; Markiewicz, W. J.; Massironi, M.; McEwen, A.S.; Okubo, Chris H.; Tornabene, L.L.; Wajer, P.; Wray, J.J.

    2017-01-01

    The Colour and Stereo Surface Imaging System (CaSSIS) is the main imaging system onboard the European Space Agency’s ExoMars Trace Gas Orbiter (TGO) which was launched on 14 March 2016. CaSSIS is intended to acquire moderately high resolution (4.6 m/pixel) targeted images of Mars at a rate of 10–20 images per day from a roughly circular orbit 400 km above the surface. Each image can be acquired in up to four colours and stereo capability is foreseen by the use of a novel rotation mechanism. A typical product from one image acquisition will be a 9.5 km×∼45 km">9.5 km×∼45 km9.5 km×∼45 km swath in full colour and stereo in one over-flight of the target thereby reducing atmospheric influences inherent in stereo and colour products from previous high resolution imagers. This paper describes the instrument including several novel technical solutions required to achieve the scientific requirements.

  16. Low-temperature headspace-trap gas chromatography with mass spectrometry for the determination of trace volatile compounds from the fruit of Lycium barbarum L.

    PubMed

    Chen, Fangjiao; Su, Yue; Zhang, Fang; Guo, Yinlong

    2015-02-01

    The total saccharides content of Lycium barbarum L. is very high, and a high temperature would result in saccharide decomposition and the emergence of a large amount of water. Moreover, the volatile compounds from the fruit of L. barbarum L. are rather low in concentration. Hence, it is difficult for a conventional headspace method to study the volatile compounds from the fruit of L. barbarum L. Since headspace-trap gas chromatography with mass spectrometry is an excellent method for trace analysis, a headspace-trap gas chromatography with mass spectrometry method based on low-temperature (30°C) enrichment and multiple headspace extraction was developed to explore the volatile compounds from the fruit of L. barbarum L. The headspace of the sample was extracted in 17 cycles at 30°C. Each time, the compounds extracted were concentrated in the trap (Tenax TA and Tenax GR, 1:1). Finally, all the volatile compounds were delivered into the gas chromatograph after thermal desorption. With the method described above, a total of 57 compounds were identified. The identification was completed by mass spectral search, retention index, and accurate mass measurement. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Impact of trace element addition on biogas production from food industrial waste--linking process to microbial communities.

    PubMed

    Feng, Xin Mei; Karlsson, Anna; Svensson, Bo H; Bertilsson, Stefan

    2010-10-01

    Laboratory-scale reactors treating food industry waste were used to investigate the effects of additions of cobalt (Co), nickel/molybdenum/boron (Ni/Mo/B) and selenium/tungsten (Se/W) on the biogas process and the associated microbial community. The highest methane production (predicted value: 860 mL g(-1) VS) was linked to high Se/W concentrations in combination with a low level of Co. A combination of quantitative real-time PCR of 16S rRNA genes, terminal restriction fragment length polymorphism (T-RFLP) and clone library sequencing was used for the community analysis. The T-RFLP data show a higher diversity for bacteria than for archaea in all the treatments. The most abundant bacterial population (31-55% of the total T-RFLP fragments' intensity) was most closely related to Actinomyces europaeus (94% homology). Two dominant archaeal populations shared 98-99% sequence homology with Methanosarcina siciliae and Methanoculleus bourgensis, respectively. Only limited influence of the trace metal additions was found on the bacterial community composition, with two bacterial populations responding to the addition of a combination of Ni/Mo/B, while the dominant archaeal populations were influenced by the addition of Ni/Mo/B and/or Se/W. The maintenance of methanogenic activity was largely independent of archaeal community composition, suggesting a high degree of functional redundancy in the methanogens of the biogas reactors. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor.

    PubMed

    Nguyen, Luong N; Hai, Faisal I; Price, William E; Leusch, Frederic D L; Roddick, Felicity; Ngo, Hao H; Guo, Wenshan; Magram, Saleh F; Nghiem, Long D

    2014-09-01

    The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Trace conditioning in insects—keep the trace!

    PubMed Central

    Dylla, Kristina V.; Galili, Dana S.; Szyszka, Paul; Lüdke, Alja

    2013-01-01

    Trace conditioning is a form of associative learning that can be induced by presenting a conditioned stimulus (CS) and an unconditioned stimulus (US) following each other, but separated by a temporal gap. This gap distinguishes trace conditioning from classical delay conditioning, where the CS and US overlap. To bridge the temporal gap between both stimuli and to form an association between CS and US in trace conditioning, the brain must keep a neural representation of the CS after its termination—a stimulus trace. Behavioral and physiological studies on trace and delay conditioning revealed similarities between the two forms of learning, like similar memory decay and similar odor identity perception in invertebrates. On the other hand differences were reported also, like the requirement of distinct brain structures in vertebrates or disparities in molecular mechanisms in both vertebrates and invertebrates. For example, in commonly used vertebrate conditioning paradigms the hippocampus is necessary for trace but not for delay conditioning, and Drosophila delay conditioning requires the Rutabaga adenylyl cyclase (Rut-AC), which is dispensable in trace conditioning. It is still unknown how the brain encodes CS traces and how they are associated with a US in trace conditioning. Insects serve as powerful models to address the mechanisms underlying trace conditioning, due to their simple brain anatomy, behavioral accessibility and established methods of genetic interference. In this review we summarize the recent progress in insect trace conditioning on the behavioral and physiological level and emphasize similarities and differences compared to delay conditioning. Moreover, we examine proposed molecular and computational models and reassess different experimental approaches used for trace conditioning. PMID:23986710

  20. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2014-10-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy). The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12 month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6 and 12 month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes, agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  1. A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE). I. Introduction to the survey

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Fossati, M.; Ferrarese, L.; Boissier, S.; Consolandi, G.; Longobardi, A.; Amram, P.; Balogh, M.; Barmby, P.; Boquien, M.; Boulanger, F.; Braine, J.; Buat, V.; Burgarella, D.; Combes, F.; Contini, T.; Cortese, L.; Côté, P.; Côté, S.; Cuillandre, J. C.; Drissen, L.; Epinat, B.; Fumagalli, M.; Gallagher, S.; Gavazzi, G.; Gomez-Lopez, J.; Gwyn, S.; Harris, W.; Hensler, G.; Koribalski, B.; Marcelin, M.; McConnachie, A.; Miville-Deschenes, M. A.; Navarro, J.; Patton, D.; Peng, E. W.; Plana, H.; Prantzos, N.; Robert, C.; Roediger, J.; Roehlly, Y.; Russeil, D.; Salome, P.; Sanchez-Janssen, R.; Serra, P.; Spekkens, K.; Sun, M.; Taylor, J.; Tonnesen, S.; Vollmer, B.; Willis, J.; Wozniak, H.; Burdullis, T.; Devost, D.; Mahoney, B.; Manset, N.; Petric, A.; Prunet, S.; Withington, K.

    2018-06-01

    The Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) is a blind narrow-band (NB) Hα+[NII] imaging survey carried out with MegaCam at the Canada-France-Hawaii Telescope. The survey covers the whole Virgo cluster region from its core to one virial radius (104 deg2). The sensitivity of the survey is of f(Hα) 4 × 10-17 erg s-1 cm-2 (5σ detection limit) for point sources and Σ(Hα) 2 × 10-18 erg s-1 cm-2 arcsec-2 (1σ detection limit at 3 arcsec resolution) for extended sources, making VESTIGE the deepest and largest blind NB survey of a nearby cluster. This paper presents the survey in all its technical aspects, including the survey design, the observing strategy, the achieved sensitivity in both the NB Hα+[NII] and in the broad-band r filter used for the stellar continuum subtraction, the data reduction, calibration, and products, as well as its status after the first observing semester. We briefly describe the Hα properties of galaxies located in a 4 × 1 deg2 strip in the core of the cluster north of M87, where several extended tails of ionised gas are detected. This paper also lists the main scientific motivations for VESTIGE, which include the study of the effects of the environment on galaxy evolution, the fate of the stripped gas in cluster objects, the star formation process in nearby galaxies of different type and stellar mass, the determination of the Hα luminosity function and of the Hα scaling relations down to 106 M⊙ stellar mass objects, and the reconstruction of the dynamical structure of the Virgo cluster. This unique set of data will also be used to study the HII luminosity function in hundreds of galaxies, the diffuse Hα+[NII] emission of the Milky Way at high Galactic latitude, and the properties of emission line galaxies at high redshift. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research

  2. STUDY OF THE EFFECT OF CHLORINE ADDITION ON MERCURY OXIDATION BY SCR CATALYST UNDER SIMULATED SUBBITUMINOUS COAL FLUE GAS

    EPA Science Inventory

    An entrained flow reactor is used to study the effect of addition of chlorine-containing species on the oxidation of elemental mercury (Hgo)by a selective catalytic reduction (SCR) catalyst in simulated subbituminous coal combustion flue gas. The combustion flue gas was doped wit...

  3. An automated multidimensional preparative gas chromatographic system for isolation and enrichment of trace amounts of xenon from ambient air.

    PubMed

    Larson, Tuula; Östman, Conny; Colmsjö, Anders

    2011-04-01

    The monitoring of radioactive xenon isotopes is one of the principal methods for the detection of nuclear explosions in order to identify clandestine nuclear testing. In this work, a miniaturized, multiple-oven, six-column, preparative gas chromatograph was constructed in order to isolate trace quantities of radioactive xenon isotopes from ambient air, utilizing nitrogen as the carrier gas. The multidimensional chromatograph comprised preparative stainless steel columns packed with molecular sieves, activated carbon, and synthetic carbon adsorbents (e.g., Anasorb®-747 and Carbosphere®). A combination of purification techniques--ambient adsorption, thermal desorption, back-flushing, thermal focusing, and heart cutting--was selectively optimized to produce a well-defined xenon peak that facilitated reproducible heart cutting and accurate quantification. The chromatographic purification of a sample requires approximately 4 h and provides complete separation of xenon from potentially interfering components (such as water vapor, methane, carbon dioxide, and radon) with recovery and accuracy close to 100%. The preparative enrichment process isolates and concentrates a highly purified xenon gas fraction that is suitable for subsequent ultra-low-level γ-, ß/γ-spectroscopic or high-resolution mass spectrometric measurement (e.g., to monitor the gaseous fission products of nuclear explosions at remote locations). The Xenon Processing Unit is a free-standing, relatively lightweight, and transportable system that can be interfaced to a variety of sampling and detection systems. It has a relatively inexpensive, rugged, and compact modular (19-inch rack) design that provides easy access to all parts for maintenance and has a low power requirement.

  4. Fetal Heart Rate Monitoring Using Maternal Abdominal Surface Electrodes in Third Trimester: Can We Obtain Additional Information Other than CTG Trace?

    PubMed

    Fuchs, Tomasz; Grobelak, Krzysztof; Pomorski, Michał; Zimmer, Mariusz

    2016-01-01

    Cardiotocography (CTG) is the most widely used procedure despite its low specificity for fetal acidosis and poor perinatal outcome. Fetal electrocardiography (fECG) with transabdominal electrodes is a new, non-invasive and promising method with greater potential for detecting impairment of fetal circulation. This study is the first that attempts to assess the usefulness of fECG in comparison to CTG during antepartum period. To determine if a single fECG examination along with CTG tracing and Doppler flow measurement in the fetal vessels has any additional clinical value in normal and intrauterine growth restricted (IUGR) fetuses. The study included 93 pregnancies with IUGR, 37 pregnancies with IUGR and brain sparing effect, and 324 healthy pregnant women. The T/QRS ratio, cerebro-placental ratio (CRP), and CTG tracings were analyzed. One-way analysis of variance and Spearman's rank correlation coefficient were applied. The relationship between results of the T/QRS ratio and CTG examination among the study groups was analyzed. The highest average mean value of the T/QRS ratio was recorded in the IUGR group with a normal CPR and a pathologic CTG (0.235 ± 0.014). The highest average maximum values were observed in the groups of IUGR pregnancies with a reduced CPR with normal (0.309 ± 0.100), suspicious (0.330 ± 0.102) and pathologic (0.319 ± 0.056) CTGs. Analysis of variance revealed differences between study groups regarding maximum values and the difference between maximum and minimal values of T/QRS. Correlations between groups were insignificant. Higher values of T/QRS ratio in IUGR pregnancies with normal and reduced CPR than in control group regardless of the result of CTG examination may indicate minimal worsening of intrauterine fetal well-being in growth retarded fetuses. No relationship between fECG examination and CTG tracings suggests that a single fECG does not provide any additional clinically significant information determining the condition of the

  5. An integrated simulator of structure and anisotropic flow in gas diffusion layers with hydrophobic additives

    NASA Astrophysics Data System (ADS)

    Burganos, Vasilis N.; Skouras, Eugene D.; Kalarakis, Alexandros N.

    2017-10-01

    The lattice-Boltzmann (LB) method is used in this work to reproduce the controlled addition of binder and hydrophobicity-promoting agents, like polytetrafluoroethylene (PTFE), into gas diffusion layers (GDLs) and to predict flow permeabilities in the through- and in-plane directions. The present simulator manages to reproduce spreading of binder and hydrophobic additives, sequentially, into the neat fibrous layer using a two-phase flow model. Gas flow simulation is achieved by the same code, sidestepping the need for a post-processing flow code and avoiding the usual input/output and data interface problems that arise in other techniques. Compression effects on flow anisotropy of the impregnated GDL are also studied. The permeability predictions for different compression levels and for different binder or PTFE loadings are found to compare well with experimental data for commercial GDL products and with computational fluid dynamics (CFD) predictions. Alternatively, the PTFE-impregnated structure is reproduced from Scanning Electron Microscopy (SEM) images using an independent, purely geometrical approach. A comparison of the two approaches is made regarding their adequacy to reproduce correctly the main structural features of the GDL and to predict anisotropic flow permeabilities at different volume fractions of binder and hydrophobic additives.

  6. Trace gas emissions from burning Florida wetlands

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Lebel, Peter J.; Winstead, Edward L.; Koller, Albert M., Jr.; Hinkle, C. Ross

    1990-01-01

    Measurements of biomass burn-produced trace gases were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide normalized emission ratios for carbon monoxide, hydrogen, methane, total nonmethane hydrocarbons, and nitrous oxide were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak and saw palmetto were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. It is believed that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly deminished.

  7. Batch methods for enriching trace impurities in hydrogen gas for their further analysis

    DOEpatents

    Ahmed, Shabbir; Lee, Sheldon H.D.; Kumar, Romesh; Papdias, Dionissios D.

    2014-07-15

    Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio P.sub.hi/P.sub.lo and the volume ratio V.sub.1/V.sub.2, with following detection of the impurities using commonly-available detection methods.

  8. Manipulations of soil microbiota for C sequestration and mitigation of greenhouse gas emissions in managed systems

    USDA-ARS?s Scientific Manuscript database

    Soil microbes dominate processes that regulate soil trace gas emissions and soil C and N dynamics. Intensive management in agroecosystems provides unique opportunities to assess the effectiveness of microbial manipulations to enhance soil C retention and reduce trace gas emissions. While reduced til...

  9. Blood-collection device for trace and ultra-trace metal specimens evaluated.

    PubMed

    Moyer, T P; Mussmann, G V; Nixon, D E

    1991-05-01

    We evaluated the evacuated phlebotomy tube designed specifically for trace metal analysis by Sherwood Medical Co. Pools of human serum containing known concentrations of aluminum, arsenic, calcium, cadmium, copper, chromium, iron, lead, magnesium, manganese, mercury, selenium, and zinc were exposed to the tube and rubber stopper for defined periods ranging from 5 min to 24 h. Analysis for each element was performed in a randomized fashion under rigidly controlled conditions by use of standard electrothermal atomization atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy, and cold vapor atomic absorption spectrometry. In addition, for comparative purposes, we collected blood samples from normal volunteers by use of ultra-clean polystyrene phlebotomy syringes as well as standard evacuated phlebotomy tubes. We conclude that, except for lead, there was no significant contribution of any trace element studied from the evaluated tube and stopper to the serum. Because whole blood is the usual specimen for lead testing, the observation of a trace amount of lead in this tube designed for serum collection is trivial.

  10. Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4

    NASA Technical Reports Server (NTRS)

    Chen, W.; Mouret, G.; Boucher, D.; Tittel, F. K.

    2001-01-01

    A tunable mid-infrared continuous-wave (cw) spectroscopic source in the 3.4-4.5 micrometers region is reported, based on difference frequency generation (DFG) in a quasi-phase-matched periodically poled RbTiOAsO4 (PPRTA) crystal. DFG power levels of 10 microW were generated at approximately 4 micrometers in a 20-mm long PPRTA crystal by mixing two cw single-frequency Ti:Al2O3 lasers operating near 713 nm and 871 nm, respectively, using a laser pump power of 300 mW. A quasi-phase-matched infrared wavelength-tuning bandwidth (FWHM) of 12 cm-1 and a temperature tuning rate of 1.02 cm-1/degree C were achieved. Experimental details regarding the feasibility of trace gas detection based on absorption spectroscopy of CO2 in ambient air using this DFG radiation source are also described.

  11. The SPIRIT airborne instrument: a three-channel infrared absorption spectrometer with quantum cascade lasers for in situ atmospheric trace-gas measurements

    NASA Astrophysics Data System (ADS)

    Catoire, Valéry; Robert, Claude; Chartier, Michel; Jacquet, Patrick; Guimbaud, Christophe; Krysztofiak, Gisèle

    2017-09-01

    An infrared absorption spectrometer called SPIRIT (SPectromètre Infra-Rouge In situ Toute altitude) has been developed for airborne measurements of trace gases in the troposphere. At least three different trace gases can be measured simultaneously every 1.6 s using the coupling of a single Robert multipass optical cell with three Quantum Cascade Lasers (QCLs), easily interchangeable to select species depending on the scientific objectives. Absorptions of the mid-infrared radiations by the species in the cell at reduced pressure (<40 hPa), with path lengths adjustable up to 167.78 m, are quantified using an HgCdTe photodetector cooled by Stirling cycle. The performances of the instrument are assessed: a linearity with a coefficient of determination R 2 > 0.979 for the instrument response is found for CO, CH4, and NO2 volume mixing ratios under typical tropospheric conditions. In-flight comparisons with calibrated gas mixtures allow to show no instrumental drift correlated with atmospheric pressure and temperature changes (when vertical profiling) and to estimate the overall uncertainties in the measurements of CO, CH4, and NO2 to be 0.9, 22, and 0.5 ppbv, respectively. In-flight precision (1 σ) for these species at 1.6 s sampling is 0.3, 5, and 0.3 ppbv, respectively.

  12. Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition

    NASA Astrophysics Data System (ADS)

    Hernández, Liliana; Kafarov, Viatcheslav

    Omitting the influence of the addition of carrier gas to the reaction system for hydrogen production by bio-ethanol steam reforming can lead to wrong conclusions, especially when it is going to be made to scale. The effect of carrier gas addition to produce hydrogen using bio-ethanol steam reforming to feed fuel cells was evaluated. Thermodynamic calculations in equilibrium conditions were made, however the analysis derived from them can also be applied to kinetic conditions. These calculations were made by using the Aspen-HYSYS software at atmospheric pressure and different values of temperature, water/ethanol molar ratios, and inert (argon)/(water/ethanol) molar ratios. The addition of inert carrier gas modifies the concentrations of the reaction products in comparison to those obtained without its presence. This behavior occurs because most of the reactions which take place in bio-ethanol steam reforming have a positive difference of moles. This fact enhances the system sensitivity to inert concentration at low and moderated temperatures (<700 °C). At high values of temperature, the inert addition does not influence the composition of the reaction products because of the predominant effect of inverse WGS reaction.

  13. Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC-MS/AES analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweigkofler, M.; Niessner, R.

    1999-10-15

    Biogases such as landfill gas and sewage gas undergo a combustion process which is generating electric energy. Since several trace compounds such as siloxanes (also halogenated and sulfur compounds) are known to cause severe problems to these gas combustion engines, they are of particular interest. In this work, a new technique for sampling, identification, and quantification of siloxanes and volatile organic carbon (VOC) in landfill gas and sewage gas is presented. After sample collection using evacuated stainless steel canisters biogas was analyzed by gas chromatography-mass spectrometry/atomic emission spectroscopy (GC-MS/AES). Using gas canisters, the sampling process was simplified (no vacuum pumpmore » needed), and multiple analysis was possible. The simultaneous application of MSD and AED allowed a rapid screening of silicon compounds in the complex biogases. Individual substances were identified independently both by MSD analysis and by determination of their elemental constitution. Quantification of trace compounds was achieved using a 30 component external standard containing siloxanes, organochlorine and organosulfur compounds, alkanes, terpenes, and aromatic compounds. Precision, linearity, and detection limits have been studied. In real samples, concentrations of silicon containing compounds (trimethylsilanol, hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasilioxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane) in the mg/m{sub 3} range have been observed.« less

  14. Long term aerosol and trace gas measurements in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  15. Gas chromatography/trace analysis of derivatized azelaic acid as a stability marker.

    PubMed

    Alzweiri, Muhammed; Tarawneh, Ruba; Khanfar, Mohammad A

    2013-10-01

    Azelaic acid, a naturally occurring saturated dicarboxylic acid, is found in many topical formulations for its various medical benefits or as a byproduct of the oxidative decomposition of unsaturated fatty acids. The poor volatility of azelaic acid hinders its applicability in GC analysis. Therefore, azelaic acid was derivatized by methylation and silylation procedures to enhance its volatility for GC analysis. Accordingly, dimethyl azelate (DMA) and di(trimethylsilyl) azelate were synthesized and characterized by GC-MS. Subsequently, a GC with flame ionization detection method was developed and validated to analyze trace amounts of azelaic acid in some marketed skin creams. Unlike DMA, di(trimethylsilyl) azelate was chemically unstable and degraded within few hours. Nonane was used as a stable internal standard. Variability due to derivatization and extraction was controlled by a standard addition procedure. DMA analysis was linear in a wide concentration range (100 ng/mL to 100 mg/mL). Moreover, the method was accurate (96.4-103.4%) and precise with inter- and intraday variability <2.0% and LOQ and LOD of 100 and 10 ng/mL, respectively. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. ExoMars Trace Gas Orbiter Instrument Modelling Approach to Streamline Science Operations

    NASA Astrophysics Data System (ADS)

    Munoz Fernandez, Michela; Frew, David; Ashman, Michael; Cardesin Moinelo, Alejandro; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Nespoli, Federico; Muniz Solaz, Carlos

    2018-05-01

    ExoMars Trace Gas Orbiter (TGO) science operations activities are centralised at ESAC's Science Operations Centre (SOC). The SOC receives the inputs from the principal investigators (PIs) in order to implement and deliver the spacecraft pointing requests and instrument timelines to the Mission Operations Centre (MOC). The high number of orbits per planning cycle has made it necessary to abstract the planning interactions between the SOC and the PI teams at the observation level. This paper describes the modelling approach we have conducted for TGOís instruments to streamline science operations. We have created dynamic observation types that scale to adapt to the conditions specified by the PI teams including observation timing, and pointing block parameters calculated from observation geometry. This approach is considered and improvement with respect to previous missions where the generation of the observation pointing and commanding requests was performed manually by the instrument teams. Automation software assists us to effectively handle the high density of planned orbits with increasing volume of scientific data and to successfully meet opportunistic scientific goals and objectives. Our planning tool combines the instrument observation definition files provided by the PIs together with the flight dynamics products to generate the Pointing Requests and the instrument timeline (ITL). The ITL contains all the validated commands at the TC sequence level and computes the resource envelopes (data rate, power, data volume) within the constraints. At the SOC, our main goal is to maximise the science output while minimising the number of iterations among the teams, ensuring that the timeline does not violate the state transitions allowed in the Mission Operations Rules and Constraints Document.

  17. A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE). II. Constraining the quenching time in the stripped galaxy NGC 4330

    NASA Astrophysics Data System (ADS)

    Fossati, M.; Mendel, J. T.; Boselli, A.; Cuillandre, J. C.; Vollmer, B.; Boissier, S.; Consolandi, G.; Ferrarese, L.; Gwyn, S.; Amram, P.; Boquien, M.; Buat, V.; Burgarella, D.; Cortese, L.; Côté, P.; Côté, S.; Durrell, P.; Fumagalli, M.; Gavazzi, G.; Gomez-Lopez, J.; Hensler, G.; Koribalski, B.; Longobardi, A.; Peng, E. W.; Roediger, J.; Sun, M.; Toloba, E.

    2018-06-01

    The Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) is a blind narrow-band Hα + [NII] imaging survey carried out with MegaCam at the Canada-France-Hawaii Telescope. During pilot observations taken in the spring of 2016 we observed NGC 4330, an intermediate mass (M* ≃ 109.8 M⊙) edge-on star forming spiral currently falling into the core of the Virgo cluster. While previous Hα observations showed a clumpy complex of ionised gas knots outside the galaxy disc, new deep observations revealed a low surface brightness 10 kpc tail exhibiting a peculiar filamentary structure. The filaments are remarkably parallel to one another and clearly indicate the direction of motion of the galaxy in the Virgo potential. Motivated by the detection of these features which indicate ongoing gas stripping, we collected literature photometry in 15 bands from the far-UV to the far-IR and deep optical long-slit spectroscopy using the FORS2 instrument at the ESO Very Large Telescope. Using a newly developed Monte Carlo code that jointly fits spectroscopy and photometry, we reconstructed the star formation histories in apertures along the major axis of the galaxy. Our results have been validated against the output of CIGALE, a fitting code which has been previously used for similar studies. We found a clear outside-in gradient with radius of the time when the quenching event started: the outermost radii were stripped 500 Myr ago, while the stripping reached the inner 5 kpc from the centre in the last 100 Myr. Regions at even smaller radii are currently still forming stars fueled by the presence of HI and H2 gas. When compared to statistical studies of the quenching timescales in the local Universe we find that ram pressure stripping of the cold gas is an effective mechanism to reduce the transformation times for galaxies falling into massive clusters. Future systematic studies of all the active galaxies observed by VESTIGE in the Virgo cluster will extend these results

  18. Soluble trace elements and total mercury in Arctic Alaskan snow

    USGS Publications Warehouse

    Snyder-Conn, E.; Garbarino, J.R.; Hoffman, G.L.; Oelkers, A.

    1997-01-01

    Ultraclean field and laboratory procedures were used to examine trace element concentrations in northern Alaskan snow. Sixteen soluble trace elements and total mercury were determined in snow core samples representing the annual snowfall deposited during the 1993-94 season at two sites in the Prudhoe Bay oil field and nine sites in the Arctic National Wildlife Refuge (Arctic NWR). Results indicate there were two distinct point sources for trace elements in the Prudhoe Bay oil field - a source associated with oil and gas production and a source associated with municipal solid-waste incineration. Soluble trace element concentrations measured in snow from the Arctic NWR resembled concentrations of trace elements measured elsewhere in the Arctic using clean sample-collection and processing techniques and were consistent with deposition resulting from widespread arctic atmospheric contamination. With the exception of elements associated with sea salts, there were no orographic or east-west trends observed in the Arctic NWR data, nor were there any detectable influences from the Prudhoe Bay oil field, probably because of the predominant easterly and northeasterly winds on the North Slope of Alaska. However, regression analysis on latitude suggested significant south-to-north increases in selected trace element concentrations, many of which appear unrelated to the sea salt contribution.

  19. Low-temperature gas from marine shales: wet gas to dry gas over experimental time.

    PubMed

    Mango, Frank D; Jarvie, Daniel M

    2009-11-09

    Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300 degrees below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100 degrees C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.

  20. Trace gas emissions from a mid-latitude prescribed chaparral fire

    Treesearch

    Wesley R. Cofer; Joel S. Levine; Philip J. Riggan; Daniel I. Sebacher; Edward L. Winstead; Shaw Edwin F.; James A. Brass; Vincent. G. Ambrosia

    1988-01-01

    Gas samples were collected in smoke plumes over the San Dimas Experimental Forest during a 400-acre prescribed chaparral fire on December 12, 1986. A helicopter was used to collect gas samples over areas of vigorous flaming combustion and over areas of mixed stages (vigorous/transitional/smoldering) of combustion. Sampling was conducted at altitudes as low as 35 m and...

  1. Using the NAME Lagrangian Particle Dispersion model, and aircraft measurements to assess the accuracy of trace gas emission inventories from the U.K.

    NASA Astrophysics Data System (ADS)

    O'Sullivan, D. A.; Harrison, M.; Ploson, D.; Oram, D.; Reeves, C.

    2007-12-01

    A top-down approach using a combination of aircraft data and atmospheric dispersion modelling has been used to estimate emissions for 24 halogenated trace gases from the United Kingdom. This has been done using data collected during AMPEP/FLUXEX, a U.K based measurement campaign which took place between April and September 2005. The primary objective relating to this work was to make direct airborne measurements of concentration enhancements within the boundary layer arising from anthropogenic pollution events, and then to use mass balance methods to determine an emission flux. This was done by analysing Whole Air Samples (WAS) collected in the boundary layer upwind and downwind of the UK at frequent intervals around the coast using the technique of gas chromatography mass spectrometry (GCMS). Emissions were then calculated using a simple box-model approach and also using NAME (Numerical Atmospheric-dispersion Modelling Environment) which is a Lagrangian particle model using 3 hourly 3D meteorology fields from the Met Office Unified Model. By using such an approach it is also possible to identify the most likely main source regions in the UK for the compounds measured. Among the trace gases studied are many which through their effects on stratospheric ozone, and their large radiative forcing have a direct impact on global climate such as CFC's 11, 12, 113 and 114, HCFC's 21, 22, 141b and 142b, HFC's 134a and 152a, methyl chloroform, methyl bromide and carbon tetrachloride. Also the emissions of some short lived gases with have direct effects on human health, such as tetrachloroethene, and trichloroethene, have been derived. The UK emissions estimates calculated from this experimental and modelling work are compared with bottom-up and other top-down emission inventories for the UK and Europe. It was found that the estimates from this study were often higher than those in bottom-up emission inventories derived from industry. In addition for a number of trace gases

  2. Epiphytic cryptogams as a source of bioaerosols and trace gases

    NASA Astrophysics Data System (ADS)

    Ruckteschler, Nina; Hrabe de Angelis, Isabella; Zartman, Charles E.; Araùjo, Alessandro; Pöschl, Ulrich; Manzi, Antonio O.; Andreae, Meinrat O.; Pöhlker, Christopher; Weber, Bettina

    2016-04-01

    Cryptogamic covers comprise (cyano-)bacteria, algae, lichens, bryophytes, fungi, and archaea in varying proportions. These organisms do not form flowers, but reproduce by spores or cell cleavage with these reproductive units being dispersed via the atmosphere. As so-called poikilohydric organisms they are unable to regulate their water content, and their physiological activity pattern mainly follows the external water conditions. We hypothesize, that both spore dispersal and the release of trace gases are governed by the moisture patterns of these organisms and thus they could have a greater impact on the atmosphere than previously thought. In order to test this hypothesis, we initiated experiments at the study site Amazonian Tall Tower Observatory (ATTO) in September 2014. We installed microclimate sensors in epiphytic cryptogams at four different heights of a tree to monitor the activity patterns of these organisms. Self-developed moisture probes are used to analyze the water status of the organisms accompanied by light and temperature sensors. The continuously logged data are linked to ongoing measurements of trace gases and particulate bioaerosols to analyze these for the relevance of cryptogams. Here, we are particularly interested in diurnal cycles of coarse mode particles and the atmospheric abundance of fine potassium-rich particles from a currently unknown biogenic source. Based upon the results of this field study we also investigate the bioaerosol and trace gas release patterns of cryptogamic covers under controlled conditions. With this combined approach of field and laboratory experiments we aim to disclose the role of cryptogamic covers in bioaerosol and trace gas release patterns in the Amazonian rainforest.

  3. Properties of Sn3.8Ag0.7Cu Solder Alloy with Trace Rare Earth Element Y Additions

    NASA Astrophysics Data System (ADS)

    Hao, H.; Tian, J.; Shi, Y. W.; Lei, Y. P.; Xia, Z. D.

    2007-07-01

    In the current research, trace rare earth (RE) element Y was incorporated into a promising lead-free solder, Sn3.8Ag0.7Cu, in an effort to improve the comprehensive properties of Sn3.8Ag0.7Cu solder. The range of Y content in Sn3.8Ag0.7Cu solder alloys varied from 0 wt.% to 1.0 wt.%. As an illustration of the advantage of Y doping, the melting temperature, wettability, mechanical properties, and microstructures of Sn3.8Ag0.7CuY solder were studied. Trace Y additions had little influence on the melting behavior, but the solder showed better wettability and mechanical properties, as well as finer microstructures, than found in Y-free Sn3.8Ag0.7Cu solder. The Sn3.8Ag0.7Cu0.15Y solder alloy exhibited the best comprehensive properties compared to other solders with different Y content. Furthermore, interfacial and microstructural studies were conducted on Sn3.8Ag0.7Cu0.15Y solder alloys, and notable changes in microstructure were found compared to the Y-free alloy. The thickness of an intermetallic compound layer (IML) was decreased during soldering, and the growth of the IML was suppressed during aging. At the same time, the growth of intermetallic compounds (IMCs) inside the solder was reduced. In particular, some bigger IMC plates were replaced by fine, granular IMCs.

  4. Mars Atmospheric Capture and Gas Separation

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    The Mars atmospheric capture and gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure C02 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as welL To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from un-reacted carbon oxides (C02- CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3) carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper and presentation will summarize the results of an extensive literature review and laboratory evaluations of candidate technologies for the capture and separation of C02 and other relevant gases.

  5. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2015-02-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy), about 30 km away from the study area along the north direction. The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12-month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6-month and 12-month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  6. Seasonal Variations in Titan's Stratosphere Observed with Cassini/CIRS: Temperature, Trace Molecular Gas and Aerosol Mixing Ratio Profiles

    NASA Technical Reports Server (NTRS)

    Vinatier, S.; Bezard, B.; Anderson, C. M.; Coustenis, A.; Teanby, N.

    2012-01-01

    Titan's northern spring equinox occurred in August 2009. General Circulation Models (e.g. Lebonnois et al., 2012) predict strong modifications of the global circulation in this period, with formation of two circulation cells instead of the pole-to-pole cell that occurred during northern winter. This winter single cell, which had its descending branch at the north pole, was at the origin of the enrichment of molecular abundances and high stratopause temperatures observed by Cassini/CIRS at high northern latitudes (e.g. Achterberg et al., 2011, Coustenis et al., 2010, Teanby et al., 2008, Vinatier et al., 2010). The predicted dynamical seasonal variations after the equinox have strong impact on the spatial distributions of trace gas, temperature and aerosol abundances. We will present here an analysis of CIRS limb-geometry datasets acquired in 2010 and 2011 that we used to monitor the seasonal evolution of the vertical profiles of temperature, molecular (C2H2, C2H6, HCN, ..) and aerosol abundances.

  7. Tracking Oxidation During Transport of Trace Gases in Air from the Northern to Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Montzka, S. A.; Moore, F. L.; Atlas, E. L.; Parrish, D. D.; Miller, B. R.; Sweeney, C.; McKain, K.; Hall, B. D.; Siso, C.; Crotwell, M.; Hintsa, E. J.; Elkins, J. W.; Blake, D. R.; Barletta, B.; Meinardi, S.; Claxton, T.; Hossaini, R.

    2017-12-01

    Trace gas mole fractions contain the imprint of recent influences on an air mass such as sources, transport, and oxidation. Covariations among the many gases measured from flasks during ATom and HIPPO, and from the ongoing NOAA cooperative air sampling program enable recent influences to be identified from a wide range of sources including industrial activity, biomass burning, emissions from wetlands, and uptake by terrestrial ecosystems. In this work we explore the evolution of trace gas concentrations owing to atmospheric oxidation as air masses pass through the tropics, the atmospheric region with the highest concentrations of the hydroxyl radical. Variations in C2-C5 hydrocarbon concentrations downwind of source regions provide a measure of photochemical ageing in an air mass since emission, but they become less useful when tracking photochemical ageing as air is transported from the NH into the SH owing to their low mixing ratios, lifetimes that are very short relative to transport times, non-industrial sources in the tropics (e.g., biomass burning), and southern hemispheric sources. Instead, we consider a range of trace gases and trace gas pairs that provide a measure of photochemical processing as air transits the tropics. To be useful in this analysis, these trace gases would have lifetimes comparable to interhemispheric transport times, emissions arising from only the NH at constant relative magnitudes, and concentrations sufficient to allow precise and accurate measurements in both hemispheres. Some anthropogenically-emitted chlorinated hydrocarbons meet these requirements and have been measured during ATom, HIPPO, and from NOAA's ongoing surface sampling efforts. Consideration of these results and their implications for tracking photochemical processing in air as it is transported across the tropics will be presented.

  8. [Analysis of Multiplatform CO (Carbon Monoxide) Measurements During Trace-P Mission

    NASA Technical Reports Server (NTRS)

    Pougatchev, Nikita S.

    2004-01-01

    Carbon monoxide is considered mission critical (TRACE-P NRA) because it is one of the gases involved in controlling the oxidizing power of the atmosphere and, as a tracer gas, is valuable in interpreting mission data sets. Carbon monoxide exhibits interannual differences, suggesting relatively short-term imbalances in sources and sinks. Sources of CO are dominated by fossil fuel combustion, biomass burning, and the photochemical oxidation of CH4 and nonmethane hydrocarbons while reaction with OH is believed to be the major sink for atmospheric CO, with additional losses due to soil uptake. Uncertainties in the magnitude and distribution of both sources and sinks remain fairly large however, and additional data are required to refine the global budget. Seasonal changes and a northern hemispheric latitudinal gradient have been described for a variety of Pacific basin sites through long-term monitoring of surface background levels. Latitudinal variations have also recently been described at upper tropospheric altitudes over a multi-year period by. TRACE-P will provide an aircraft survey of CO over the northern Pacific in the northern spring when CO concentrations are at their seasonal maximum in the northern hemisphere (NH) and at their seasonal minimum in the southern hemisphere (SH). Previous GTE missions, Le., PEM West-B and PEM Tropics-B, ground-based, and satellite observations (MAPS, April 1994) give us a general picture of the distribution of CO over the northern Pacific during this season. Based on these measurements, background CO levels over remote ocean areas are anticipated to be in the range of 110 - 180 ppbv, while those closer to the Asian continent may rise as high as 600 ppbv. These measurements also reveal high spatial variability (both horizontal and vertical) as well as temporal variations in CO over the area planned for the TRACE-P mission. This variability is a result of multiple CO sources, the meteorological complexity of transport processes

  9. Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Gao, Wei; Xu, Bo; Li, Ying-Ai; Li, Hong-Dong; Gu, Guang-Rui; Yin, Hong

    2016-10-01

    The excellent physical and chemical properties of cubic boron nitride (c-BN) film make it a promising candidate for various industry applications. However, the c-BN film thickness restricts its practical applications in many cases. Thus, it is indispensable to develop an economic, simple and environment-friend way to synthesize high-quality thick, stable c-BN films. High-cubic-content BN films are prepared on silicon (100) substrates by radio frequency (RF) magnetron sputtering from an h-BN target at low substrate temperature. Adhesions of the c-BN films are greatly improved by adding hydrogen to the argon/nitrogen gas mixture, allowing the deposition of a film up to 5-μm thick. The compositions and the microstructure morphologies of the c-BN films grown at different substrate temperatures are systematically investigated with respect to the ratio of H2 gas content to total working gas. In addition, a primary mechanism for the deposition of thick c-BN film is proposed. Project supported by the National Natural Science Foundation of China (Grant Nos. 51572105, 61504046, and 51272224), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, the Development and Reform Commission of Jilin Province, China (Grant No. 2015Y050), and the Scientific Research Foundation for the Returned Overseas of Jilin Province, China.

  10. Further developments in oxidation of methane traces with radiofrequency discharge

    NASA Technical Reports Server (NTRS)

    Flamm, D. L.; Wydeven, T. J.

    1977-01-01

    The radiofrequency discharge, previously shown to oxidize trace levels of methane in oxygen, was studied with contaminated air at 50, 600, and 760 torr. As with oxygen, the concentration of methane traces could be reduced by several orders of magnitude, and no organic reaction products were detected in the effluent; however, substantial concentrations of NOx (0.1-6%) were formed during treatment. The concentration of NOx was decreased by using a large diameter electrode. There is evidence that the process will oxidize N2 and NO as well as organic impurities in oxygen or oxygen/inert gas atmospheres.

  11. In Situ Determination of Trace Elements in Fish Otoliths by Laser Ablation Double Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry Using a Solution Standard Addition Calibration Method

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Jones, C. M.

    2002-05-01

    Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.

  12. Aircraft assessment of trace compound fluxes in the atmosphere with Relaxed Eddy Accumulation: Sensitivity to the conditions of selection

    NASA Astrophysics Data System (ADS)

    Delon, C.; Druilhet, A.; Delmas, R.; Greenberg, J.

    2000-08-01

    The Relaxed Eddy Accumulation (REA) technique, implemented aboard aircraft, may be used to measure a wide variety of trace gas fluxes at a regional scale. Its principle is rather simple: air is sampled at a constant rate and the flux is calculated by multiplying a constant β (0.58 in field experiment and 0.62 in simulations) by the standard deviation of the vertical velocity and by the difference between the average concentrations of the scalar (trace gas) for updrafts and downdrafts. The storage of the chemical compound in reservoirs allows for trace gas analysis in laboratory, when in situ measurement with fast response and high sensitivity sensors are not available. The REA method was implemented on the Avion de Recherche Atmosphérique et de Télédétection aircraft during the Experiment for Regional Sources and Sinks of Oxidants (EXPRESSO) campaign. The main requirement for accurate flux determination is the measurement of the vertical component of wind velocity in real time. A simulation technique was developed to evaluate the performance of an aircraft REA. The influence of the time lag between the vertical velocity (W) measurement and REA control was tested, as well as the offset of W, the threshold, and the filtering imposed on W. Correction factors, used in a deployment of aircraft REA, were deduced from this study. An additional simulation was performed to evaluate the influence of spatial or temporal drifts on the scalar. The simulation showed that the REA method is not more disturbed than the Eddy Correlation method by low frequencies of physical origin, such as topography. The REA method was used during EXPRESSO for the measurement of isoprene fluxes over the wet savanna and the evergreen rain forest.

  13. Gas monitoring onboard ISS using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre

    2017-06-01

    In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.

  14. Areal-averaged trace gas emission rates from long-range open-path measurements in stable boundary layer conditions

    NASA Astrophysics Data System (ADS)

    Schäfer, K.; Grant, R. H.; Emeis, S.; Raabe, A.; von der Heide, C.; Schmid, H. P.

    2012-07-01

    Measurements of land-surface emission rates of greenhouse and other gases at large spatial scales (10 000 m2) are needed to assess the spatial distribution of emissions. This can be readily done using spatial-integrating micro-meteorological methods like flux-gradient methods which were evaluated for determining land-surface emission rates of trace gases under stable boundary layers. Non-intrusive path-integrating measurements are utilized. Successful application of a flux-gradient method requires confidence in the gradients of trace gas concentration and wind, and in the applicability of boundary-layer turbulence theory; consequently the procedures to qualify measurements that can be used to determine the flux is critical. While there is relatively high confidence in flux measurements made under unstable atmospheres with mean winds greater than 1 m s-1, there is greater uncertainty in flux measurements made under free convective or stable conditions. The study of N2O emissions of flat grassland and NH3 emissions from a cattle lagoon involves quality-assured determinations of fluxes under low wind, stable or night-time atmospheric conditions when the continuous "steady-state" turbulence of the surface boundary layer breaks down and the layer has intermittent turbulence. Results indicate that following the Monin-Obukhov similarity theory (MOST) flux-gradient methods that assume a log-linear profile of the wind speed and concentration gradient incorrectly determine vertical profiles and thus flux in the stable boundary layer. An alternative approach is considered on the basis of turbulent diffusivity, i.e. the measured friction velocity as well as height gradients of horizontal wind speeds and concentrations without MOST correction for stability. It is shown that this is the most accurate of the flux-gradient methods under stable conditions.

  15. Dense Gas, Dynamical Equilibrium Pressure, and Star Formation in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Gallagher, Molly J.; Leroy, Adam K.; Bigiel, Frank; Cormier, Diane; Jiménez-Donaire, María J.; Ostriker, Eve; Usero, Antonio; Bolatto, Alberto D.; García-Burillo, Santiago; Hughes, Annie; Kepley, Amanda A.; Krumholz, Mark; Meidt, Sharon E.; Meier, David S.; Murphy, Eric J.; Pety, Jérôme; Rosolowsky, Erik; Schinnerer, Eva; Schruba, Andreas; Walter, Fabian

    2018-05-01

    We use new ALMA observations to investigate the connection between dense gas fraction, star formation rate (SFR), and local environment across the inner region of four local galaxies showing a wide range of molecular gas depletion times. We map HCN (1–0), HCO+ (1–0), CS (2–1), 13CO (1–0), and C18O (1–0) across the inner few kiloparsecs of each target. We combine these data with short-spacing information from the IRAM large program EMPIRE, archival CO maps, tracers of stellar structure and recent star formation, and recent HCN surveys by Bigiel et al. and Usero et al. We test the degree to which changes in the dense gas fraction drive changes in the SFR. {I}HCN}/{I}CO} (tracing the dense gas fraction) correlates strongly with I CO (tracing molecular gas surface density), stellar surface density, and dynamical equilibrium pressure, P DE. Therefore, {I}HCN}/{I}CO} becomes very low and HCN becomes very faint at large galactocentric radii, where ratios as low as {I}HCN}/{I}CO}∼ 0.01 become common. The apparent ability of dense gas to form stars, {{{Σ }}}SFR}/{{{Σ }}}dense} (where Σdense is traced by the HCN intensity and the star formation rate is traced by a combination of Hα and 24 μm emission), also depends on environment. {{{Σ }}}SFR}/{{{Σ }}}dense} decreases in regions of high gas surface density, high stellar surface density, and high P DE. Statistically, these correlations between environment and both {{{Σ }}}SFR}/{{{Σ }}}dense} and {I}HCN}/{I}CO} are stronger than that between apparent dense gas fraction ({I}HCN}/{I}CO}) and the apparent molecular gas star formation efficiency {{{Σ }}}SFR}/{{{Σ }}}mol}. We show that these results are not specific to HCN.

  16. Modeling Gas-Aerosol Processes during MILAGRO 2006

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Chapman, E. G.; Easter, R. C.; Fast, J. D.; Flocke, F.; Kleinman, L. I.; Madronich, S.; Springston, S. R.; Voss, P. B.; Weinheimer, A.

    2007-12-01

    Significant gas-aerosol interactions are expected in the Mexico City outflow due to formation of various semi- volatile secondary inorganic and organic gases that can partition into the particulate phase and due to various heterogeneous chemical processes. A number of T0-T1-T2 Lagrangian transport episodes during the MILAGRO campaign provide focused modeling opportunities to elucidate the roles of various chemical and physical processes in the evolution of the primary trace gases and aerosol particles emitted in Mexico City over a period of 4-8 hours. Additionally, one long-range Lagrangian transport episode on March 18-19, 2006, as characterized by the Controlled Meteorological (CMET) balloon trajectories, presents an excellent opportunity to model evolution of Mexico City pollutants over 26 hours. The key tools in our analysis of these Lagrangian episodes include a comprehensive Lagrangian box-model and the WRF-chem model based on the new Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), which simulates gas-phase photochemistry, heterogeneous reactions, equilibrium particulate phase-state and water content, and dynamic gas-particle partitioning for size- resolved aerosols. Extensive gas, aerosol, and meteorological measurements onboard the G1 and C130 aircraft and T0, T1, and T2 ground sites will be used to initialize, constrain, and evaluate the models. For the long-range transport event, in-situ vertical profiles of wind vectors from repeated CMET balloon soundings in the Mexico City outflow will be used to nudge the winds in the WRF-chem simulation. Preliminary model results will be presented with the intention to explore further collaborative opportunities to use additional gas and particulate measurements to better constrain and evaluate the models.

  17. Diode laser absorption sensors for gas-dynamic and combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.

    1998-01-01

    Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room

  18. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  19. FormTracer. A mathematica tracing package using FORM

    NASA Astrophysics Data System (ADS)

    Cyrol, Anton K.; Mitter, Mario; Strodthoff, Nils

    2017-10-01

    We present FormTracer, a high-performance, general purpose, easy-to-use Mathematica tracing package which uses FORM. It supports arbitrary space and spinor dimensions as well as an arbitrary number of simple compact Lie groups. While keeping the usability of the Mathematica interface, it relies on the efficiency of FORM. An additional performance gain is achieved by a decomposition algorithm that avoids redundant traces in the product tensors spaces. FormTracer supports a wide range of syntaxes which endows it with a high flexibility. Mathematica notebooks that automatically install the package and guide the user through performing standard traces in space-time, spinor and gauge-group spaces are provided. Program Files doi:http://dx.doi.org/10.17632/7rd29h4p3m.1 Licensing provisions: GPLv3 Programming language: Mathematica and FORM Nature of problem: Efficiently compute traces of large expressions Solution method: The expression to be traced is decomposed into its subspaces by a recursive Mathematica expansion algorithm. The result is subsequently translated to a FORM script that takes the traces. After FORM is executed, the final result is either imported into Mathematica or exported as optimized C/C++/Fortran code. Unusual features: The outstanding features of FormTracer are the simple interface, the capability to efficiently handle an arbitrary number of Lie groups in addition to Dirac and Lorentz tensors, and a customizable input-syntax.

  20. The Effects of the Location of Au Additives on Combustion-generated SnO2 Nanopowders for CO Gas Sensing

    PubMed Central

    Bakrania, Smitesh D.; Wooldridge, Margaret S.

    2010-01-01

    The current work presents the results of an experimental study of the effects of the location of gold additives on the performance of combustion-generated tin dioxide (SnO2) nanopowders in solid state gas sensors. The time response and sensor response to 500 ppm carbon monoxide is reported for a range of gold additive/SnO2 film architectures including the use of colloidal, sputtered, and combustion-generated Au additives. The opportunities afforded by combustion synthesis to affect the SnO2/additive morphology are demonstrated. The best sensor performance in terms of sensor response (S) and time response (τ) was observed when the Au additives were restricted to the outermost layer of the gas-sensing film. Further improvement was observed in the sensor response and time response when the Au additives were dispersed throughout the outermost layer of the film, where S = 11.3 and τ = 51 s, as opposed to Au localized at the surface, where S = 6.1 and τ = 60 s. PMID:22163586

  1. Assessing snow extent data sets over North America to inform and improve trace gas retrievals from solar backscatter

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew J.; Martin, Randall V.; Lyapustin, Alexei I.; McLinden, Chris A.

    2018-05-01

    Accurate representation of surface reflectivity is essential to tropospheric trace gas retrievals from solar backscatter observations. Surface snow cover presents a significant challenge due to its variability and thus snow-covered scenes are often omitted from retrieval data sets; however, the high reflectance of snow is potentially advantageous for trace gas retrievals. We first examine the implications of surface snow on retrievals from the upcoming TEMPO geostationary instrument for North America. We use a radiative transfer model to examine how an increase in surface reflectivity due to snow cover changes the sensitivity of satellite retrievals to NO2 in the lower troposphere. We find that a substantial fraction (> 50 %) of the TEMPO field of regard can be snow covered in January and that the average sensitivity to the tropospheric NO2 column substantially increases (doubles) when the surface is snow covered.We then evaluate seven existing satellite-derived or reanalysis snow extent products against ground station observations over North America to assess their capability of informing surface conditions for TEMPO retrievals. The Interactive Multisensor Snow and Ice Mapping System (IMS) had the best agreement with ground observations (accuracy of 93 %, precision of 87 %, recall of 83 %). Multiangle Implementation of Atmospheric Correction (MAIAC) retrievals of MODIS-observed radiances had high precision (90 % for Aqua and Terra), but underestimated the presence of snow (recall of 74 % for Aqua, 75 % for Terra). MAIAC generally outperforms the standard MODIS products (precision of 51 %, recall of 43 % for Aqua; precision of 69 %, recall of 45 % for Terra). The Near-real-time Ice and Snow Extent (NISE) product had good precision (83 %) but missed a significant number of snow-covered pixels (recall of 45 %). The Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data set had strong performance metrics (accuracy of 91 %, precision of 79 %, recall of 82

  2. Development of Gas-Lubricated Pistons for Heavy Duty Diesel Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Shapiro, W.

    1984-01-01

    Static testing of a segmented, gas-lubricated, piston-ring was accomplished. The ring utilizes high-pressure gas generated during the diesel cycle to energize a hydrostatic gas film between the piston and cylinder liner. The configuration was deficient in overall performance, because all segments of a ring set failed to form a fluid-film simultaneously, when exposed to internal preload. The difficulty was traced to the moment balance required to prevent the segments from overturning and contacting the cylinder walls. Some individual sectors formed a film and performed well in every respect including load capability to 6,000 N. These results produce optimism as to the ultimate feasibility of hydrostatic, gas-lubricated piston rings. In addition to test results, the principles of operation, and theoretical developments are presented. Breathable liner concepts are suggested for future consideration. In these configurations, solid hydrostatic pistons are coupled with flexible liners that elastically deform to form a gas-film under hydrostatic pressurization. Breathable liners afford the mechanical simplicity required for mass produced engines, and initial examination indicates satisfactory operation.

  3. Design and Testing of Trace Contaminant Injection and Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Broerman, Craig D.; Sweterlitsch, Jeff

    2009-01-01

    In support of the Carbon dioxide And Moisture Removal Amine Swing-bed (CAMRAS) testing, a contaminant injection system as well as a contaminant monitoring system has been developed by the Johnson Space Center Air Revitalization Systems (JSC-ARS) team. The contaminant injection system has been designed to provide trace level concentrations of contaminants generated by humans in a closed environment during space flight missions. The contaminant injection system continuously injects contaminants from three gas cylinders, two liquid reservoirs and three permeation ovens. The contaminant monitoring system has been designed to provide real time gas analysis with accurate flow, humidity and gas concentration measurements for collection during test. The contaminant monitoring system consists of an analytical real time gas analyzer, a carbon monoxide sensor, and an analyzer for ammonia and water vapor.

  4. Basecalling with LifeTrace

    PubMed Central

    Walther, Dirk; Bartha, Gábor; Morris, Macdonald

    2001-01-01

    A pivotal step in electrophoresis sequencing is the conversion of the raw, continuous chromatogram data into the actual sequence of discrete nucleotides, a process referred to as basecalling. We describe a novel algorithm for basecalling implemented in the program LifeTrace. Like Phred, currently the most widely used basecalling software program, LifeTrace takes processed trace data as input. It was designed to be tolerant to variable peak spacing by means of an improved peak-detection algorithm that emphasizes local chromatogram information over global properties. LifeTrace is shown to generate high-quality basecalls and reliable quality scores. It proved particularly effective when applied to MegaBACE capillary sequencing machines. In a benchmark test of 8372 dye-primer MegaBACE chromatograms, LifeTrace generated 17% fewer substitution errors, 16% fewer insertion/deletion errors, and 2.4% more aligned bases to the finished sequence than did Phred. For two sets totaling 6624 dye-terminator chromatograms, the performance improvement was 15% fewer substitution errors, 10% fewer insertion/deletion errors, and 2.1% more aligned bases. The processing time required by LifeTrace is comparable to that of Phred. The predicted quality scores were in line with observed quality scores, permitting direct use for quality clipping and in silico single nucleotide polymorphism (SNP) detection. Furthermore, we introduce a new type of quality score associated with every basecall: the gap-quality. It estimates the probability of a deletion error between the current and the following basecall. This additional quality score improves detection of single basepair deletions when used for locating potential basecalling errors during the alignment. We also describe a new protocol for benchmarking that we believe better discerns basecaller performance differences than methods previously published. PMID:11337481

  5. Trace analysis of multi-class pesticide residues in Chinese medicinal health wines using gas chromatography with electron capture detection

    PubMed Central

    Kong, Wei-Jun; Liu, Qiu-Tao; Kong, Dan-Dan; Liu, Qian-Zhen; Ma, Xin-Ping; Yang, Mei-Hua

    2016-01-01

    A method is described for multi-residue, high-throughput determination of trace levels of 22 organochlorine pesticides (OCPs) and 5 pyrethroid pesticides (PYPs) in Chinese medicinal (CM) health wines using a QuEChERS (quick, easy, cheap, effective, rugged, and safe) based extraction method and gas chromatography-electron capture detection (GC-ECD). Several parameters were optimized to improve preparation and separation time while still maintaining high sensitivity. Validation tests of spiked samples showed good linearities for 27 pesticides (R = 0.9909–0.9996) over wide concentration ranges. Limits of detection (LODs) and quantification (LOQs) were measured at ng/L levels, 0.06–2 ng/L and 0.2–6 ng/L for OCPs and 0.02–3 ng/L and 0.06–7 ng/L for PYPs, respectively. Inter- and intra-day precision tests showed variations of 0.65–9.89% for OCPs and 0.98–13.99% for PYPs, respectively. Average recoveries were in the range of 47.74–120.31%, with relative standard deviations below 20%. The developed method was then applied to analyze 80 CM wine samples. Beta-BHC (Benzene hexachloride) was the most frequently detected pesticide at concentration levels of 5.67–31.55 mg/L, followed by delta-BHC, trans-chlordane, gamma-BHC, and alpha-BHC. The validated method is simple and economical, with adequate sensitivity for trace levels of multi-class pesticides. It could be adopted by laboratories for this and other types of complex matrices analysis. PMID:26883080

  6. Trace analysis of multi-class pesticide residues in Chinese medicinal health wines using gas chromatography with electron capture detection

    NASA Astrophysics Data System (ADS)

    Kong, Wei-Jun; Liu, Qiu-Tao; Kong, Dan-Dan; Liu, Qian-Zhen; Ma, Xin-Ping; Yang, Mei-Hua

    2016-02-01

    A method is described for multi-residue, high-throughput determination of trace levels of 22 organochlorine pesticides (OCPs) and 5 pyrethroid pesticides (PYPs) in Chinese medicinal (CM) health wines using a QuEChERS (quick, easy, cheap, effective, rugged, and safe) based extraction method and gas chromatography-electron capture detection (GC-ECD). Several parameters were optimized to improve preparation and separation time while still maintaining high sensitivity. Validation tests of spiked samples showed good linearities for 27 pesticides (R = 0.9909-0.9996) over wide concentration ranges. Limits of detection (LODs) and quantification (LOQs) were measured at ng/L levels, 0.06-2 ng/L and 0.2-6 ng/L for OCPs and 0.02-3 ng/L and 0.06-7 ng/L for PYPs, respectively. Inter- and intra-day precision tests showed variations of 0.65-9.89% for OCPs and 0.98-13.99% for PYPs, respectively. Average recoveries were in the range of 47.74-120.31%, with relative standard deviations below 20%. The developed method was then applied to analyze 80 CM wine samples. Beta-BHC (Benzene hexachloride) was the most frequently detected pesticide at concentration levels of 5.67-31.55 mg/L, followed by delta-BHC, trans-chlordane, gamma-BHC, and alpha-BHC. The validated method is simple and economical, with adequate sensitivity for trace levels of multi-class pesticides. It could be adopted by laboratories for this and other types of complex matrices analysis.

  7. Trace element determination using static high-sensitivity inductively coupled plasma optical emission spectrometry (SHIP-OES).

    PubMed

    Engelhard, Carsten; Scheffer, Andy; Nowak, Sascha; Vielhaber, Torsten; Buscher, Wolfgang

    2007-02-05

    A low-flow air-cooled inductively coupled plasma (ICP) design for optical emission spectrometry (OES) with axial plasma viewing is described and an evaluation of its analytical capabilities in trace element determinations is presented. Main advantage is a total argon consumption of 0.6 L min(-1) in contrast to 15 L min(-1) using conventional ICP sources. The torch was evaluated in trace element determinations and studied in direct comparison with a conventional torch under the same conditions with the same OES system, ultrasonic nebulization (USN) and single-element optimization. A variety of parameters (x-y-position of the torch, rf power, external air cooling, gas flow rates and USN operation parameters) was optimized to achieve limits of detection (LOD) which are competitive to those of a conventional plasma source. Ionic to atomic line intensity ratios for magnesium were studied at different radio frequency (rf) power conditions and different sample carrier gas flows to characterize the robustness of the excitation source. A linear dynamic range of three to five orders of magnitude was determined under compromise conditions in multi-element mode. The accuracy of the system was investigated by the determination of Co, Cr, Mn, Zn in two certified reference materials (CRM): CRM 075c (Copper with added impurities), and CRM 281 (Trace elements in rye grass). With standard addition values of 2.44+/-0.04 and 3.19+/-0.21 microg g(-1) for Co and Mn in the CRM 075c and 2.32+/-0.09, 81.8+/-0.4, 32.2+/-3.9 for Cr, Mn and Zn, respectively, were determined in the samples and found to be in good agreement with the reported values; recovery rates in the 98-108% range were obtained. No influence on the analysis by the matrix load in the sample was observed.

  8. Uncovering the effects of Arundo invasion & forest restoration on riparian soils: Plant controls on microbial processes & trace gas flux in a California watershed

    NASA Astrophysics Data System (ADS)

    Dowdy, K. L.; Dudley, T.; Schimel, J.

    2016-12-01

    The opportunistic reed Arundo donax has invaded riparian zones in many California watersheds, altering hydrological and ecological processes. There have been intense efforts to restore these watersheds to native vegetation. How the shifts in communities—native to invaded to restored—affect soil conditions and processes, however, remains unclear. Because riparian zones are hotspots of nutrient cycling and greenhouse gas flux, it is critical to understand how plant community composition (and associated litter contributions) governs riparian biogeochemistry. How do organic matter inputs in invaded and restored plant communities alter soil microbial processes and trace gas dynamics? In this study, we use laboratory incubations to compare microbial cycling of C and nitrogen (N) and trace gas flux between the soils and litter of the invasive Arundo and three native riparian species: Populus tricocarpa, Salix laevigata, and Baccharis salicifolia (or, black cotton wood, red willow, and mulefat). Soils beneath Arundo and Salix produced CO2 at a similar rate ( 250 ug CO2 g dry soil-1 hour-1), while Populus and Baccharis produced less ( 170 ug CO2 g dry soil-1 hour-1). All soils consumed CH4; however, Arundo soils consumed more than native-restored species, which consumed similar quantities (-0.013 CH4 g dry soil-1 hour-1 in Arundo vs. -0.009 CH4 g dry soil-1 hour-1 in native). Arundo soils also produced less N2O (0.02 ug N2O g dry soil-1 hour-1) than all native species ( 0.09 ug N2O g dry soil-1 hour-1). Arundo contributed far less litter inputs than native-restored species, as Arundo leaves senesce and remain on the stalk; furthermore, Arundo litter has been shown to have a higher C:N (40.2) than Salix and Baccharis (30.9). Greater CH4 consumption and lower N2O production in Arundo soils may be the result of enhanced porosity compared to restored soils, leading to more aeration and less methanogenesis and denitrification, or it may be that there is lower N availability

  9. Trace gas detection from fermentation processes in apples; an intercomparison study between proton-transfer-reaction mass spectrometry and laser photoacoustics

    NASA Astrophysics Data System (ADS)

    Boamfa, E. I.; Steeghs, M. M. L.; Cristescu, S. M.; Harren, F. J. M.

    2004-12-01

    A custom-built proton-transfer-reaction mass spectrometry (PTR-MS) instrument was used to monitor the emission of various compounds (aldehydes, alcohols, acids, acetates and C-6 compounds) related to fermentation, aroma and flavour, released by four apple cultivars (Elstar, Jonaglod, Granny Smith and Pink Lady) under short anaerobic (24 h) and post-anaerobic conditions. The novel feature of our instrument is the new design of the collisional dissociation chamber, which separates the high pressure in the drift tube (2 mbar) from the high vacuum pressure in the detection region (10-6 mbar). The geometry of this chamber was changed and a second turbo pump was added to reduce the influence of collisional loss of ions, background signals and cluster ions, which facilitates the interpretation of the mass spectra and increases the signal intensity at the mass of the original protonated compound. With this system, detection limits of similar magnitude to the ones reported in literature are reached. An intercomparison study between PTR-MS and a CO laser-based photoacoustic trace gas detector is presented. The alcoholic fermentation products (acetaldehyde and ethanol) from young rice plants were simultaneously monitored by both methods. A very good agreement was observed for acetaldehyde production. The photoacoustic detector showed about two times lower ethanol concentration as compared to PTR-MS, caused by memory effects due to sticking of compounds to the walls of the nylon tube used to transport the trace gases to the detector.

  10. NASA GTE TRACE-P Augmentation

    NASA Technical Reports Server (NTRS)

    Sandholm, Scott; Conners, Vickie (Technical Monitor)

    2005-01-01

    There were three major tasks and objectives that the Tropospheric Trace Gas and Airborne Measurement Group's (TTGAMG) worked on for different aspects of this grant: 1) Migrate the data acquisition system from HP-UX to Linux, thus reducing future costs as the result of software and operating system (OS) upgrades and improving upon usability as membership in the group changes; 2) Rework the Optical Parametric Oscillator (OPO) cavities. These are the OPOs that are integral to the Georgia Institute of Technology Airborne Laser Induced Fluorescent Experiment (GITALIFE) that the TTGAMG flew on TRACE-P. The objective was to improve upon optimizing the pump laser energy and narrowing the linewidth of the UV wavelength generated by the OPOs; 3) Improve and expand the interactive website on http://tmbk2.eas.gatech.edu by adding 3-D graphing, improve the response time for Joe Surfer Dude, improve performance, usability, and expand the database. If I were to assign a letter grade to each of the above tasks, I would give the TTGAMG two Bs and an A to the tasks listed above.

  11. A Novel Low-Power, High-Performance, Zero-Maintenance Closed-Path Trace Gas Eddy Covariance System with No Water Vapor Dilution or Spectroscopic Corrections

    NASA Astrophysics Data System (ADS)

    Sargent, S.; Somers, J. M.

    2015-12-01

    Trace-gas eddy covariance flux measurement can be made with open-path or closed-path analyzers. Traditional closed-path trace-gas analyzers use multipass absorption cells that behave as mixing volumes, requiring high sample flow rates to achieve useful frequency response. The high sample flow rate and the need to keep the multipass cell extremely clean dictates the use of a fine-pore filter that may clog quickly. A large-capacity filter cannot be used because it would degrade the EC system frequency response. The high flow rate also requires a powerful vacuum pump, which will typically consume on the order of 1000 W. The analyzer must measure water vapor for spectroscopic and dilution corrections. Open-path analyzers are available for methane, but not for nitrous oxide. The currently available methane analyzers have low power consumption, but are very large. Their large size degrades frequency response and disturbs the air flow near the sonic anemometer. They require significant maintenance to keep the exposed multipass optical surfaces clean. Water vapor measurements for dilution and spectroscopic corrections require a separate water vapor analyzer. A new closed-path eddy covariance system for measuring nitrous oxide or methane fluxes provides an elegant solution. The analyzer (TGA200A, Campbell Scientific, Inc.) uses a thermoelectrically-cooled interband cascade laser. Its small sample-cell volume and unique sample-cell configuration (200 ml, 1.5 m single pass) provide excellent frequency response with a low-power scroll pump (240 W). A new single-tube Nafion® dryer removes most of the water vapor, and attenuates fluctuations in the residual water vapor. Finally, a vortex intake assembly eliminates the need for an intake filter without adding volume that would degrade system frequency response. Laboratory testing shows the system attenuates the water vapor dilution term by more than 99% and achieves a half-power band width of 3.5 Hz.

  12. Composition and Trends of Short-Lived Trace Gases in the UT/LS over Europe Observed by the CARIBIC Aircraft

    NASA Astrophysics Data System (ADS)

    Baker, A. K.; Brenninkmeijer, C. A.; Oram, D. E.; O'Sullivan, D. A.; Slemr, F.; Schuck, T. J.

    2009-12-01

    region, photochemical processing and transport timescales of an air mass. Seasonal and longer-term trends in trace gases and trace gas composition are discussed, as well as composition of air masses having different origins. Additionally, we apply relationships between the different species, particularly the NMHC, to gain a qualitative understanding of photochemical processes occurring during transport from the boundary layer to the upper troposphere over Europe.

  13. Identification of trace additives in polymer materials by attenuated total reflection Fourier transform infrared mapping coupled with multivariate curve resolution

    NASA Astrophysics Data System (ADS)

    Li, Qian; Tang, Yongjiao; Yan, Zhiwei; Zhang, Pudun

    2017-06-01

    Although multivariate curve resolution (MCR) has been applied to the analysis of Fourier transform infrared (FTIR) imaging, it is still problematic to determine the number of components. The reported methods at present tend to cause the components of low concentration missed. In this paper a new idea was proposed to resolve this problem. First, MCR calculation was repeated by increasing the number of components sequentially, then each retrieved pure spectrum of as-resulted MCR component was directly compared with a real-world pixel spectrum of the local high concentration in the corresponding MCR map. One component was affirmed only if the characteristic bands of the MCR component had been included in its pixel spectrum. This idea was applied to attenuated total reflection (ATR)/FTIR mapping for identifying the trace additives in blind polymer materials and satisfactory results were acquired. The successful demonstration of this novel approach opens up new possibilities for analyzing additives in polymer materials.

  14. Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability.

    PubMed

    Nigussie, Abebe; Bruun, Sander; Kuyper, Thomas W; de Neergaard, Andreas

    2017-01-01

    Municipal waste is usually composted with an N-rich substrate, such as manure, to increase the N content of the product. This means that a significant amount of nitrogen can be lost during composting. The objectives of this study were (i) to investigate the effect of split addition of a nitrogen-rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed that split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust was used and 20% when coffee husks were used as the bulking agent. Depending on the bulking agent used, split addition increased cumulative N 2 O emissions by 400-600% compared to single addition. In contrast, single addition increased methane emissions by up to 50% compared to split addition of the substrate. Hence, the timing of the addition of the N-rich substrate had only a marginal effect on total non-CO 2 greenhouse gas emissions. Split addition of the N-rich substrate resulted in compost that was just as stable and effective at completely eradicating weed seeds as single addition. These findings therefore show that split addition of a nitrogen-rich substrate could be an option for increasing the fertilising value of municipal waste compost without having a significant effect on total greenhouse gas emissions or compost stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Submicron aerosol and trace gas composition near Manaus as observed during GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Ferreira De Brito, J.; Wurm, F.; Liu, Y.; de Sá, S. S.; Carbone, S.; Rizzo, L. V.; Cirino, G. G.; Barbosa, H. M.; Souza, R. A. F. D.; Martin, S. T.; Artaxo, P.

    2014-12-01

    The Amazon Basin, during the wet season, has one of the lowest aerosol concentrations worldwide, with air masses covering thousands of kilometers of pristine forest with negligible human impact. The atmosphere in such regions is strongly coupled with the biosphere through primary biological aerosols, biogenic salts and secondary aerosols from oxidation of biogenic VOCs. The natural environment is strongly modified nearby urbanized areas, in particular Manaus, a city of nearly two million people. The urban pollution plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants, strongly contrasting with the clean air masses reaching the city. Such unique location provides the ideal laboratory to study the isolated urban emission, as well the pristine environment by perturbing it in a relatively known fashion. The GoAmazon experiment was designed with these questions in mind, combining remote sensing, in situand airborne measurements. This manuscript describes the measurements currently taking place at the T2 site, near Manaus, frequently impacted by relatively fresh emissions from the city. This presentation focuses on aerosol properties and trace gas composition at the T2 site. PM1 mass concentration from March up to July 2014 has been observed to be dominated by organics (1.51 μg m-3), followed by BC (0.83 μg m-3), SO4 (0.17 μg m-3), NO3 (0.08 μg m-3) and NH4 (0.06 μg m-3). Mean aerosol number concentration was 3600 cm-3, with a mean geometric diameter of 70 nm. As for the trace gases, initial estimates of isoprene average ambient concentration is 0.95 ppb, whereas MVK+MACR has been estimated to be 0.76 ppb. Average mixing ratios of toluene, benzene and C8 aromatics were 0.31 ppb, 0.16 ppb and 0.15 ppb, respectively, correlating relatively well with markers of anthropogenic activities, such as BC. Such measurements will carry on throughout GoAmazon 2014/5, providing a unique dataset

  16. Trace gas and particle emissions from open biomass burning in Mexico

    Treesearch

    R. J. Yokelson; I. R. Burling; Shawn Urbanski; E. L. Atlas; K. Adachi; P. R. Buseck; C. Wiedinmyer; S. K. Akagi; D. W. Toohey; C. E. Wold

    2011-01-01

    We report airborne measurements of emission factors (EF) for trace gases and PM2.5 made in southern Mexico in March of 2006 on 6 crop residue fires, 3 tropical dry forest fires, 8 savanna fires, 1 garbage fire, and 7 mountain pine-oak forest fires. The savanna fire EF were measured early in the local dry season and when compared to EF measured late in the African dry...

  17. Compact Laser Multi-gas Spectral Sensors for Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Tittel, Frank K.

    1997-01-01

    The objective of this research effort has been the development of a new gas sensor technology to meet NASA requirements for spacecraft and space station human life support systems for sensitive selective and real time detection of trace gas species in the mid-infrared spectral region.

  18. Trace mineral feeding and assessment.

    PubMed

    Swecker, William S

    2014-11-01

    This article gives practitioners an overview of trace mineral requirements, supplementation, and assessment in dairy herds. In addition, a step-by-step guideline for liver biopsy in cows is provided with interpretive results from a sample herd. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Reversal electron attachment ionizer for detection of trace species

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T. (Inventor); Chutjian, Ara (Inventor)

    1990-01-01

    An in-line reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region and executing a reversal of said electrons, such that the electrons possess zero kinetic energy at the point of reversal, may be used to produce both negative and positive ions. A sample gas is introduced at the point of electron reversal for low energy electron-(sample gas) molecule attachment with high efficiency. The attachment process produces negative ions from the sample gas, which includes species present in trace (minute) amounts. These ions are extracted efficiently and directed to a mass analyzer where they may be detected and identified. The generation and detection of positive ions is accomplished in a similar fashion with minimal adjustment to potentials applied to the apparatus.

  20. Reversal electron attachment ionizer for detection of trace species

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T. (Inventor); Chutjian, Ara (Inventor)

    1989-01-01

    An in-line reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region and executing a reversal of the electrons, such that the electrons possess zero kinetic energy at the point of reversal, may be used to produce both negative and positive ions. A sample gas is introduced at the point of electron reversal for low energy electron-(sample gas) molecule attachment with high efficiency. The attachment process produces negative ions from the sample gas, which includes species present in trace (minute) amounts. These ions are extracted efficiently and directed to a mass analyzer where they may be detected and identified. The generation and detection of positive ions is accomplished in a similar fashion with minimal adjustment to potentials applied to the apparatus.

  1. Inhibition and promotion of trace pollutant adsorption within electrostatic precipitators.

    PubMed

    Clack, Herek L

    2017-08-01

    Among the technologies available for reducing mercury emissions from coal-fired electric utilities is the injection of a powdered sorbent, often some form of activated carbon, into the flue gas upstream of the particulate control device, most commonly an electrostatic precipitator (ESP). Detailed measurements of mercury removal within ESPs are lacking due to the hazardous environment they pose, increasing the importance of analysis and numerical simulation in understanding the mechanisms involved. Our previous analyses revealed that mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are not additive removal mechanisms but rather are competitive. The present study expands on this counterintuitive finding. Presented are results from numerical simulations reflecting the complete range of possible mass transfer boundary conditions representing mercury adsorption by the accumulated dust cake covering internal ESP collection electrodes. Using the two mercury removal mechanisms operating concurrently and interdependently always underperforms the sum of the two mechanisms' individual contributions. The dual use of electrostatic precipitators (ESPs) for particulate removal and adsorption of trace gaseous pollutants such as mercury is increasing as mercury regulations become more widespread. Under such circumstances, mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are competitive. Together, the two mercury removal mechanisms always underperform the sum of their two independent contributions. These findings can inform strategies sought by electric utilities for reducing the usage costs of mercury sorbents.

  2. The Alba ray tracing code: ART

    NASA Astrophysics Data System (ADS)

    Nicolas, Josep; Barla, Alessandro; Juanhuix, Jordi

    2013-09-01

    The Alba ray tracing code (ART) is a suite of Matlab functions and tools for the ray tracing simulation of x-ray beamlines. The code is structured in different layers, which allow its usage as part of optimization routines as well as an easy control from a graphical user interface. Additional tools for slope error handling and for grating efficiency calculations are also included. Generic characteristics of ART include the accumulation of rays to improve statistics without memory limitations, and still providing normalized values of flux and resolution in physically meaningful units.

  3. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    PubMed Central

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment. PMID:25319447

  4. Which is the best method to trace group A streptococci in sore throat patients: culture or GAS antigen test?

    PubMed

    Lindbaek, Morten; Høiby, Ernst Arne; Lermark, Gro; Steinsholt, Inger Marie; Hjortdahl, Per

    2004-12-01

    To compare an antigen detection test (GAS antigen test) with the results from combinations of two various bacteriological test media in general practice patients with sore throat. Furthermore to assess the diagnostic properties of the chosen GAS antigen test and to compare semi-quantitative results of this test with the bacterial load found in the throat culture. Two Norwegian general practices in Stokke and Kongsberg communities. 306 patients with sore throat lasting less than 7 days; 244 were adults, 62 were children under 10 years old, mean age 23.9 years (SD 15.0), 40% were men. Results from GAS antigen test, and distribution of bacteriological findings in throat cultures, compared with the results of our GAS antigen test; semi-quantitative results of the GAS antigen test compared with the bacterial load by culture. In the primary culture 110 patients harboured group A streptococci (GAS) infection, while the second culture identified another 17, giving a total of 127 patients. Some 33 patients harboured large-colony groups C and G. The GAS antigen test used had a sensitivity of 97% and specificity of 95% regarding GAS when compared with the two cultures. We found a significant correlation between the bacterial loads by culture and the semi-quantitative results of the GAS antigen test. By using a second, different set of bacteriological media, we identified an additional 17 patients with GAS infections. This raises the question of validity of frequently used reference standards in studies related to streptococcal infections. Compared with the combined results of the two throat cultures, the GAS antigen test used showed high sensitivity and specificity. Semi-quantitative evaluations of the rapid immunological test may also be of clinical value.

  5. The Pillars of Creation revisited with MUSE: gas kinematics and high-mass stellar feedback traced by optical spectroscopy

    NASA Astrophysics Data System (ADS)

    McLeod, A. F.; Dale, J. E.; Ginsburg, A.; Ercolano, B.; Gritschneder, M.; Ramsay, S.; Testi, L.

    2015-06-01

    Integral field unit (IFU) data of the iconic Pillars of Creation in M16 are presented. The ionization structure of the pillars was studied in great detail over almost the entire visible wavelength range, and maps of the relevant physical parameters, e.g. extinction, electron density, electron temperature, line-of-sight velocity of the ionized and neutral gas are shown. In agreement with previous authors, we find that the pillar tips are being ionized and photoevaporated by the massive members of the nearby cluster NGC 6611. They display a stratified ionization structure where the emission lines peak in a descending order according to their ionization energies. The IFU data allowed us to analyse the kinematics of the photoevaporative flow in terms of the stratified ionization structure, and we find that, in agreement with simulations, the photoevaporative flow is traced by a blueshift in the position-velocity profile. The gas kinematics and ionization structure have allowed us to produce a sketch of the 3D geometry of the Pillars, positioning the pillars with respect to the ionizing cluster stars. We use a novel method to detect a previously unknown bipolar outflow at the tip of the middle pillar and suggest that it has an embedded protostar as its driving source. Furthermore we identify a candidate outflow in the leftmost pillar. With the derived physical parameters and ionic abundances, we estimate a mass-loss rate due to the photoevaporative flow of 70 M⊙ Myr-1 which yields an expected lifetime of approximately 3 Myr.

  6. Trace Minerals and Livestock: Not Too Much Not Too Little

    PubMed Central

    López-Alonso, Marta

    2012-01-01

    The new approaches of the animal production systems make managing the mineral nutrition a challenge. Versus the excessive, trace mineral supply in intensively managed livestock, well above the physiological requirements, is the no trace mineral supplementation of organic systems, which become highly dependent on trace minerals in the soil. Nowadays, in addition to the animal health perspective, trace mineral nutrition must be environment friendly and allow getting mineral-enriched animal products. We are in a new scenario, where a balance between animal trace mineral needs and limits is needed. This papers focuses on different aspects that will help us to enter a critical dialogue in relation to animal-human-environment. PMID:23762589

  7. Flow immune photoacoustic sensor for real-time and fast sampling of trace gases

    NASA Astrophysics Data System (ADS)

    Petersen, Jan C.; Balslev-Harder, David; Pelevic, Nikola; Brusch, Anders; Persijn, Stefan; Lassen, Mikael

    2018-02-01

    A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C6H14) in clean air at 2950cm-1 (3.38 μm) with a custom made mid-infrared interband cascade laser (ICL). The PA sensor will contribute to solve a major problem in a number of industries using compressed air by the detection of oil contaminants in high purity compressed air. We observe a (1σ, standard deviation) sensitivity of 0.4 +/-0.1 ppb (nmol/mol) for hexane in clean air at flow rates up to 2 L/min, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 2.5×10-9 W cm-1 Hz1/2, thus demonstrating high sensitivity and fast and real-time gas analysis. The PA sensor is not limited to molecules with C-H stretching modes, but can be tailored to measure any trace gas by simply changing the excitation wavelength (i.e. the laser source) making it useful for many different applications where fast and sensitive trace gas measurements are needed.

  8. Analysis of Trace Gas Mixtures Using an External Cavity Quantum Cascade Laser Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Taubman, Matthew S.; Brumfield, Brian E.

    2015-07-01

    We measure and analyze mixtures of trace gases at ppb-ppm levels using an external cavity quantum cascade laser sensor with a 1-second response time. Accurate spectral fits are obtained in the presence of overlapping spectra.

  9. What We Have Learned About the Existing Trace Element Partitioning data During the Population Phase of traceDs

    NASA Astrophysics Data System (ADS)

    Nielsen, R. L.; Ghiorso, M. S.; Trischman, T.

    2015-12-01

    The database traceDs is designed to provide a transparent and accessible resource of experimental partitioning data. It now includes ~ 90% of all the experimental trace element partitioning data (~4000 experiments) produced over the past 45 years, and is accessible through a web based interface (using the portal lepr.ofm-research.org). We set a minimum standard for inclusion, with the threshold criteria being the inclusion of: Experimental conditions (temperature, pressure, device, container, time, etc.) Major element composition of the phases Trace element analyses of the phases Data sources that did not report these minimum components were not included. The rationale for not including such data is that the degree of equilibration is unknown, and more important, no rigorous approach to modeling the behavior of trace elements is possible without knowledge of composition of the phases, and the temperature and pressure of formation/equilibration. The data are stored using a schema derived from that of the Library of Experimental Phase Relations (LEPR), modified to account for additional metadata, and restructured to permit multiple analytical entries for various element/technique/standard combinations. In the process of populating the database, we have learned a number of things about the existing published experimental partitioning data. Most important are: ~ 20% of the papers do not satisfy one or more of the threshold criteria. The standard format for presenting data is the average. This was developed as the standard during the time where there were space constraints for publication in spite of fact that all the information can now be published as electronic supplements. The uncertainties that are published with the compositional data are often not adequately explained (e.g. 1 or 2 sigma, standard deviation of the average, etc.). We propose a new set of publication standards for experimental data that include the minimum criteria described above, the publication

  10. Level 2 processing for the imaging Fourier transform spectrometer GLORIA: derivation and validation of temperature and trace gas volume mixing ratios from calibrated dynamics mode spectra

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Blank, J.; Dick, M.; Ebersoldt, A.; Friedl-Vallon, F.; Giez, A.; Guggenmoser, T.; Höpfner, M.; Jurkat, T.; Kaufmann, M.; Kaufmann, S.; Kleinert, A.; Krämer, M.; Latzko, T.; Oelhaf, H.; Olchewski, F.; Preusse, P.; Rolf, C.; Schillings, J.; Suminska-Ebersoldt, O.; Tan, V.; Thomas, N.; Voigt, C.; Zahn, A.; Zöger, M.; Riese, M.

    2014-12-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra. 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line-of-sight. Simultaneous in-situ observations by the BAsic HALO Measurement And Sensor System (BAHAMAS), the Fast In-Situ Stratospheric Hygrometer (FISH), FAIRO, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in-situ trace gas data, and discrepancies can to a large fraction be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.

  11. A fiber optic sensor with a metal organic framework as a sensing material for trace levels of water in industrial gases.

    PubMed

    Ohira, Shin-Ichi; Miki, Yusuke; Matsuzaki, Toru; Nakamura, Nao; Sato, Yu-ki; Hirose, Yasuo; Toda, Kei

    2015-07-30

    Industrial gases such as nitrogen, oxygen, argon, and helium are easily contaminated with water during production, transfer and use, because there is a high volume fraction of water in the atmosphere (approximately 1.2% estimated with the average annual atmospheric temperature and relative humidity). Even trace water (<1 parts per million by volume (ppmv) of H2O, dew point < -76 °C) in the industrial gases can cause quality problems in the process such as production of semiconductors. Therefore, it is important to monitor and to control trace water levels in industrial gases at each supplying step, and especially during their use. In the present study, a fiber optic gas sensor was investigated for monitoring trace water levels in industrial gases. The sensor consists of a film containing a metal organic framework (MOF). MOFs are made of metals coordinated to organic ligands, and have mesoscale pores that adsorb gas molecules. When the MOF, copper benzene-1,3,5-tricarboxylate (Cu-BTC), was used as a sensing material, we investigated the color of Cu-BTC with water adsorption changed both in depth and tone. Cu-BTC crystals appeared deep blue in dry gases, and then changed to light blue in wet gases. An optical gas sensor with the Cu-BTC film was developed using a light emitting diode as the light source and a photodiode as the light intensity detector. The sensor showed a reversible response to trace water, did not require heating to remove the adsorbed water molecules. The sample gas flow rate did not affect the sensitivity. The obtained limit of detection was 40 parts per billion by volume (ppbv). The response time for sample gas containing 2.5 ppmvH2O was 23 s. The standard deviation obtained for daily analysis of 1.0 ppmvH2O standard gas over 20 days was 9%. Furthermore, the type of industrial gas did not affect the sensitivity. These properties mean the sensor will be applicable to trace water detection in various industrial gases. Copyright © 2015 Elsevier B

  12. Ultra-trace analysis of hormones, pharmaceutical substances, alkylphenols and phthalates in two French natural mineral waters.

    PubMed

    Dévier, Marie-Hélène; Le Menach, Karyn; Viglino, Liza; Di Gioia, Lodovico; Lachassagne, Patrick; Budzinski, Hélène

    2013-01-15

    The aim of this work was to investigate the potential presence of a broad range of organic compounds, such as hormones, alkylphenols, bisphenol A and phthalates, as well as pharmaceutical substances in two brands of bottled natural mineral waters (Evian and Volvic, Danone). The phthalates were determined by solid-phase microextraction coupled to gas chromatography-mass spectrometry (SPME-GC-MS) and the other compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS) or gas chromatography-mass spectrometry (GC-MS) after solid-phase extraction. The potential migration of alkylphenols, bisphenol A and phthalates from polyethylene terephthalate (PET) bottles was also investigated under standardized test conditions. Evian and Volvic natural mineral waters contain none of the around 120 targeted organic compounds. Traces of 3 pharmaceuticals (ketoprofen, salicylic acid, and caffeine), 3 alkylphenols (4-nonylphenol, 4-t-octylphenol, and 4-nonylphenol diethoxylate), and some phthalates including di(2-ethylhexyl)phthalate (DEHP) were detected in the samples, but they were also present in the procedural blanks at similar levels. The additional test procedures demonstrated that the few detected compounds originated from the background laboratory contamination. Analytical procedures have been designed both in the bottling factory and in the laboratory in order to investigate the sources of DEHP and to minimize to the maximum this unavoidable laboratory contamination. It was evidenced that no migration of the targeted compounds from bottles occurred under the test conditions. The results obtained in this study underline the complexity of reaching a reliable measure to qualify the contamination of a sample at ultra-trace level, in the field of very pure matrices. The analytical procedures involving glassware, equipment, hoods, and rooms specifically dedicated to trace analysis allowed us to reach reliable procedural limits of quantification at the ng/L level, by

  13. Investigating African trace gas sources, vertical transport, and oxidation using IAGOS-CARIBIC measurements between Germany and South Africa between 2009 and 2011

    NASA Astrophysics Data System (ADS)

    Thorenz, U. R.; Baker, A. K.; Leedham Elvidge, E. C.; Sauvage, C.; Riede, H.; van Velthoven, P. F. J.; Hermann, M.; Weigelt, A.; Oram, D. E.; Brenninkmeijer, C. A. M.; Zahn, A.; Williams, J.

    2017-06-01

    Between March 2009 and March 2011 a commercial airliner equipped with a custom built measurement container (IAGOS-CARIBIC observatory) conducted 13 flights between South Africa and Germany at 10-12 km altitude, traversing the African continent north-south. In-situ measurements of trace gases (CO, CH4, H2O) and aerosol particles indicated that strong surface sources (like biomass burning) and rapid vertical transport combine to generate maximum concentrations in the latitudinal range between 10°N and 10°S coincident with the inter-tropical convergence zone (ITCZ). Pressurized air samples collected during these flights were subsequently analyzed for a suite of trace gases including C2-C8 non-methane hydrocarbons (NMHC) and halocarbons. These shorter-lived trace gases, originating from both natural and anthropogenic sources, also showed near equatorial maxima highlighting the effectiveness of convective transport in this region. Two source apportionment methods were used to investigate the specific sources of NMHC: positive matrix factorization (PMF), which is used for the first time for NMHC analysis in the upper troposphere (UT), and enhancement ratios to CO. Using the PMF method three characteristic airmass types were identified based on the different trace gas concentrations they obtained: biomass burning, fossil fuel emissions, and "background" air. The first two sources were defined with reference to previously reported surface source characterizations, while the term "background" was given to air masses in which the concentration ratios approached that of the lifetime ratios. Comparison of enhancement ratios between NMHC and CO for the subset of air samples that had experienced recent contact with the planetary boundary layer (PBL) to literature values showed that the burning of savanna and tropical forest is likely the main source of NMHC in the African upper troposphere (10-12 km). Photochemical aging patterns for the samples with PBL contact revealed that

  14. Parametric Trace Slicing

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)

    2014-01-01

    A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.

  15. Toward Gas Chemistry in Low Metallicity Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Meier, David S.; Anderson, Crystal N.; Turner, Jean; Ott, Juergen; Beck, Sara C.

    2017-01-01

    Dense gas, which is intimately connected with star formation, is key to understanding star formation. Though challenging to study, dense gas in low metallicity starbursts is important given these system's often extreme star formation and their potential implications for high redshift analogs. High spatial resolution (~50 pc) ALMA observations of several key probes of gas chemistry, including HCN(1-0), HCO+(1-0), CS(2-1), CCH(1-0;3/2-1/2) and SiO(2-1), towards the nearby super star-cluster (SSC) forming, sub-solar metallicity galaxy NGC 5253 are discussed. Dense gas is observed to be extended well beyond the current compact starburst, reaching into the apparently infalling molecular streamer. The faintness of HCN, the standard dense gas tracer, is extreme both in an absolute sense relative to high metallicity starbursts of a similar intensity and in a relative sense, with the HCO+/HCN ratio being one of the most elevated observed. UV-irradiated molecular gas, traced by CCH, is also extended over the mapped region, not being strongly correlated with the SSC. Despite the accretion of molecular gas from the halo and the intense burst of star formation, chemical signatures of shocked gas, traced by SiO (and HNCO), are not obvious. By placing NGC 5253 in context with other local starbursts, like 30 Doradus in the Large Magellanic Clouds and the high metallicity proto-typical starburst NGC 253, it is suggested that a combination of gas excitation and abundance changes associated with the sub solar metallicity may explain these anomalous dense gas properties.

  16. Addition of organic amendments contributes to C sequestration in trace element contaminated soils.

    NASA Astrophysics Data System (ADS)

    del Mar Montiel Rozas, María; Panettier, Marco; Madejón Rodríguez, Paula; Madejón Rodríguez, Engracia

    2015-04-01

    Nowadays, the study of global C cycle and the different natural sinks of C have become especially important in a climate change context. Fluxes of C have been modified by anthropogenic activities and, presently, the global objective is the decrease of net CO2 emission. For this purpose, many studies are being conducted at local level for evaluate different C sequestration strategies. These techniques must be, in addition to safe in the long term, environmentally friendly. Restoration of contaminated and degraded areas is considered as a strategy for SOC sequestration. Our study has been carried out in the Guadiamar Green Corridor (Seville, Spain) affected by the Aznalcóllar mining accident. This accident occurred 16 years ago, due to the failure of the tailing dam which contained 4-5 million m3 of toxic tailings (slurry and acid water).The affected soils had a layer of toxic sludge containing heavy metals as As, Cd, Cu, Pb and Zn. Restoration techniques began to be applied just after the accident, including the removal of the toxic sludge and a variable layer of topsoil (10-30 cm) from the surface. In a second phase, in a specific area (experimental area) of the Green Corridor the addition of organic amendments (Biosolid compost (BC) and Leonardite (LE), a low grade coal rich in humic acids) was carried out to increase pH, organic matter and fertility in a soil which lost its richest layer during the clean-up operation. In our experimental area, half of the plots (A) received amendments for four years (2002, 2003, 2006 and 2007) whereas the other half (B) received amendments only for two years (2002-2003). To compare, plots without amendments were also established. Net balance of C was carried out using values of Water Soluble Carbon (WSC) and Total Organic Carbon (TOC) for three years (2012, 2013 and 2015). To eliminate artificial changes carried out in the plots, amendment addition and withdrawal of biomass were taken into account to calculate balance of kg TOC

  17. Recycling of trace elements required for humans in CELSS.

    PubMed

    Ashida, A

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a possibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  18. Recycling of trace elements required for humans in CELSS

    NASA Astrophysics Data System (ADS)

    Ashida, A.

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a posibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  19. Computational thermo-fluid dynamics contributions to advanced gas turbine engine design

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Adamczyk, J. J.; Rohlik, H. E.

    1984-01-01

    The design practices for the gas turbine are traced throughout history with particular emphasis on the calculational or analytical methods. Three principal components of the gas turbine engine will be considered: namely, the compressor, the combustor and the turbine.

  20. Gas production and migration in landfills and geological materials.

    PubMed

    Nastev, M; Therrien, R; Lefebvre, R; Gélinas, P

    2001-11-01

    Landfill gas, originating from the anaerobic biodegradation of the organic content of waste, consists mainly of methane and carbon dioxide, with traces of volatile organic compounds. Pressure, concentration and temperature gradients that develop within the landfill result in gas emissions to the atmosphere and in lateral migration through the surrounding soils. Environmental and safety issues associated with the landfill gas require control of off-site gas migration. The numerical model TOUGH2-LGM (Transport of Unsaturated Groundwater and Heat-Landfill Gas Migration) has been developed to simulate landfill gas production and migration processes within and beyond landfill boundaries. The model is derived from the general non-isothermal multiphase flow simulator TOUGH2, to which a new equation of state module is added. It simulates the migration of five components in partially saturated media: four fluid components (water, atmospheric air, methane and carbon dioxide) and one energy component (heat). The four fluid components are present in both the gas and liquid phases. The model incorporates gas-liquid partitioning of all fluid components by means of dissolution and volatilization. In addition to advection in the gas and liquid phase, multi-component diffusion is simulated in the gas phase. The landfill gas production rate is proportional to the organic substrate and is modeled as an exponentially decreasing function of time. The model is applied to the Montreal's CESM landfill site, which is located in a former limestone rock quarry. Existing data were used to characterize hydraulic properties of the waste and the limestone. Gas recovery data at the site were used to define the gas production model. Simulations in one and two dimensions are presented to investigate gas production and migration in the landfill, and in the surrounding limestone. The effects of a gas recovery well and landfill cover on gas migration are also discussed.

  1. Effect of electronegative additives on physical properties and chemical activity of gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Kuznetsov, D. L.; Filatov, I. E.; Uvarin, V. V.

    2018-01-01

    Effect of electronegative additives (oxygen O2, sulfur dioxide SO2, carbon disulfide CS2, and carbon tetrachloride CCl4) on physical properties and chemical activity of plasma formed by pulsed corona discharge and by non-self-sustained discharge supported by pulsed electron beam in atmospheric pressure gas mixtures was investigated. It is shown that a decrease in discharge current depends on a sort of the additive and on its concentration. The reason is the difference in rate constants of electron attachment processes for the above molecules. In experiments on volatile organic compounds (VOCs) conversion in air by streamer corona it is obtained that an addition of CCl4 both decreases the discharge current amplitude and increases the VOCs conversion degree. An installation for investigation of electron attachment processes and for study of toxic impurities conversion in plasma formed by non-self-sustained discharge initiated by pulsed nanosecond electron beam is created.

  2. Chemical studies of H chondrites. I - Mobile trace elements and gas retention ages

    NASA Technical Reports Server (NTRS)

    Lingner, David W.; Huston, Ted J.; Hutson, Melinda; Lipschutz, Michael E.

    1987-01-01

    Trends for 16 trace elements (Ag, As, Au, Bi, Cd, Co, Cs, Ga, In, K, Rb, Sb, Se, Te, Tl, and Zn), chosen to span a broad geochemical and thermal response range, in 44 H4-6 chondrites, differ widely from those in L4-6 chondrites. In particular, H chondrites classified as heavily shocked petrologically do not necessarily exhibit Ar-40 loss and vice versa. The clear-cut causal relationship between siderophile and mobile element loss with increasing late shock seen in L chondrites is not generally evident in the H group. H chondrite parent material experienced an early high temperature genetic episode that mobilized a substantial proportion of these trace elements so that later thermal episodes resulted in more subtle, collateral fractionations. Mildly shocked L chondrites escaped this early high temperature event, indicating that the two most numerous meteorite groups differ fundamentally in genetic history.

  3. Modeling Microbial Processes in EPIC to Estimate Greenhouse Gas Emissions from soils

    NASA Astrophysics Data System (ADS)

    Schwab, D. E.; Izaurralde, R. C.; McGill, W. B.; Williams, J. R.; Schmid, E.

    2009-12-01

    Emissions of trace gases (CO2, N2O and CH4) to the atmosphere from managed terrestrial ecosystems have been contributing significantly to the warming of Earth. Trace gas production is dominated by biospheric processes. An improved knowledge of the soil-plant-atmosphere interface is of key importance for understanding trace gas dynamics. In soils, microbial metabolism plays a key role in the release or uptake of trace gases. Here we present work on the biophysical and biogeochemical model EPIC (Environmental Policy/Integrated Climate) to extend its capabilities to simulate CO2 and N2O fluxes in managed and unmanaged ecosystems. Emphasis will be given to recently developed, microbially-based, denitrification and nitrification modules. The soil-atmosphere exchange of trace gases can be measured by using various equipments, but often these measurements exhibit extreme space-time variability. We use hourly time steps to account for the variability induced by small changes in environmental conditions. Soils are often studied as macroscopic systems, although their functions are predominantly controlled at a microscopic level; i.e. the level of the microorganisms. We include these processes to the extent that these are known and can be quantitatively described. We represent soil dynamics mathematically with routines for gas diffusion, Michael Menten processes, electron budgeting and other processes such as uptake and transformations. We hypothesize that maximization of energy capture form scarce substrates using energetic favorable reactions drives evolution and that competitive advantage can result by depriving a competitor from a substrate. This Microbe Model changes concepts of production of N-containing trace gases; it unifies understanding of N oxidation and reduction, predicts production and evolution of trace gases and is consistent with observations of anaerobic ammonium oxidation.

  4. Analysis of trace halocarbon contaminants in ultra high purity helium

    NASA Technical Reports Server (NTRS)

    Fewell, Larry L.

    1994-01-01

    This study describes the analysis of ultra high purity helium. Purification studies were conducted and containment removal was effected by the utilization of solid adsorbent purge-trap systems at cryogenic temperatures. Volatile organic compounds in ultra high purity helium were adsorbed on a solid adsorbent-cryogenic trap, and thermally desorbed trace halocarbon and other contaminants were analyzed by combined gas chromatography-mass spectrometry.

  5. Origins Space Telescope: Tracing Dark Molecular Gas in the Milky Way

    NASA Astrophysics Data System (ADS)

    Narayanan, Desika; Li, Qi; Krumholz, Mark; Dave, Romeel; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    We present theoretical models for quantifying the fraction of CO-dark molecular gas in galaxies. To do this, we combine novel thermal, chemical, and radiative equilibrium calculations with high-resolution cosmological zoom galaxy formation models. We discuss how this dark molecular gas will be uncovered by the Origins Space Telescope, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey.

  6. Universal trace pollutant detector for aircraft monitoring of the ozone layer and industrial areas

    NASA Technical Reports Server (NTRS)

    Filiouguine, I. V.; Kostiouchenko, S. V.; Koudriavtsev, N. N.

    1994-01-01

    A method of monitoring the trace impurities of nitrogen oxides based on controlling of luminescence of NO molecules excited by nanosecond gas discharge have been developed having pptv-ppbv sensitivity and temporal resolution less than 0.01 s.

  7. Physical properties of CO-dark molecular gas traced by C+

    NASA Astrophysics Data System (ADS)

    Tang, Ningyu; Li, Di; Heiles, Carl; Wang, Shen; Pan, Zhichen; Wang, Jun-Jie

    2016-09-01

    Context. Neither Hi nor CO emission can reveal a significant quantity of so-called dark gas in the interstellar medium (ISM). It is considered that CO-dark molecular gas (DMG), the molecular gas with no or weak CO emission, dominates dark gas. Determination of physical properties of DMG is critical for understanding ISM evolution. Previous studies of DMG in the Galactic plane are based on assumptions of excitation temperature and volume density. Independent measurements of temperature and volume density are necessary. Aims: We intend to characterize physical properties of DMG in the Galactic plane based on C+ data from the Herschel open time key program, namely Galactic Observations of Terahertz C+ (GOT C+) and Hi narrow self-absorption (HINSA) data from international Hi 21 cm Galactic plane surveys. Methods: We identified DMG clouds with HINSA features by comparing Hi, C+, and CO spectra. We derived the Hi excitation temperature and Hi column density through spectral analysis of HINSA features. The Hi volume density was determined by utilizing the on-the-sky dimension of the cold foreground Hi cloud under the assumption of axial symmetry. The column and volume density of H2 were derived through excitation analysis of C+ emission. The derived parameters were then compared with a chemical evolutionary model. Results: We identified 36 DMG clouds with HINSA features. Based on uncertainty analysis, optical depth of HiτHi of 1 is a reasonable value for most clouds. With the assumption of τHi = 1, these clouds were characterized by excitation temperatures in a range of 20 K to 92 K with a median value of 55 K and volume densities in the range of 6.2 × 101 cm-3 to 1.2 × 103 cm-3 with a median value of 2.3 × 102 cm-3. The fraction of DMG column density in the cloud (fDMG) decreases with increasing excitation temperature following an empirical relation fDMG =-2.1 × 10-3Tex,(τHi = 1) + 1.0. The relation between fDMG and total hydrogen column density NH is given by f

  8. Ultra-trace level analysis of morpholine, cyclohexylamine, and diethylaminoethanol in steam condensate by gas chromatography with multi-mode inlet, and flame ionization detection.

    PubMed

    Luong, J; Shellie, R A; Cortes, H; Gras, R; Hayward, T

    2012-03-16

    Steam condensate water treatment is a vital and integral part of the overall cooling water treatment process. Steam condensate often contains varying levels of carbon dioxide and oxygen which acts as an oxidizer. Carbon dioxide forms corrosive carbonic acid when dissolved in condensed steam. To neutralize the harmful effect of the carbonic acid, volatile amine compounds such as morpholine, cyclohexylamine, and diethylaminoethanol are often employed as part of a strategy to control corrosion in the water treatment process. Due to the high stability of these compounds in a water matrix, the indirect addition of such chemicals into the process via steam condensate often results in their presence throughout the process and even into the final product. It is therefore important to understand the impact of these chemicals and their fate within a chemical plant. The ability to analyze such compounds by gas chromatography has historically been difficult due to the lack of chromatographic system inertness at the trace level concentrations especially in an aqueous matrix. Here a highly sensitive, practical, and reliable gas chromatographic approach is described for the determination of morpholine, cyclohexylamine, and diethylaminoethanol in steam condensate at the part-per-billion (ppb) levels. The approach does not require any sample enrichment or derivatization. The technique employs a multi-mode inlet operating in pulsed splitless mode with programmed inlet temperature for sample introduction, an inert base-deactivated capillary column for solute separation and flame ionization detection. Chromatographic performance was further enhanced by the incorporation of 2-propanol as a co-solvent. Detection limits for morpholine, cyclohexylamine, diethylaminoethanol were established to be 100 ppb (v/v), with relative standard deviations (RSD) of less than 6% at the 95% confidence level (n=20) and a percent recovery of 96% or higher for the solutes of interest over a range of 0

  9. Gas Chromatic Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Wey, Chowen

    1995-01-01

    Gas chromatograph/mass spectrometer (GC/MS) used to measure and identify combustion species present in trace concentration. Advanced extractive diagnostic method measures to parts per billion (PPB), as well as differentiates between different types of hydrocarbons. Applicable for petrochemical, waste incinerator, diesel transporation, and electric utility companies in accurately monitoring types of hydrocarbon emissions generated by fuel combustion, in order to meet stricter environmental requirements. Other potential applications include manufacturing processes requiring precise detection of toxic gaseous chemicals, biomedical applications requiring precise identification of accumulative gaseous species, and gas utility operations requiring high-sensitivity leak detection.

  10. Intercomparison of stratospheric water vapor observed by satellite experiments - Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chiou, E. W.; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Larsen, J. C.; Rind, D.; Oltmans, S.

    1993-01-01

    A comparison is made of the stratospheric water vapor measurements made by the satellite sensors of the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus-7 LIMS, and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. It was found that, despite differences in the measurement techniques, sampling bias, and observational periods, the three experiments have disclosed a generally consistent pattern of stratospheric water vapor distribution. The only significant difference occurs at high southern altitudes in May below 18 km, where LIMS measurements were 2-3 ppmv greater than those of SAGE II and ATMOS.

  11. Level 2 processing for the imaging Fourier transform spectrometer GLORIA: derivation and validation of temperature and trace gas volume mixing ratios from calibrated dynamics mode spectra

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Blank, J.; Dick, M.; Ebersoldt, A.; Friedl-Vallon, F.; Giez, A.; Guggenmoser, T.; Höpfner, M.; Jurkat, T.; Kaufmann, M.; Kaufmann, S.; Kleinert, A.; Krämer, M.; Latzko, T.; Oelhaf, H.; Olchewski, F.; Preusse, P.; Rolf, C.; Schillings, J.; Suminska-Ebersoldt, O.; Tan, V.; Thomas, N.; Voigt, C.; Zahn, A.; Zöger, M.; Riese, M.

    2015-06-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO) research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm-1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS), the Fast In-situ Stratospheric Hygrometer (FISH), an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.

  12. Shape and structural motifs control of MgTi bimetallic nanoparticles using hydrogen and methane as trace impurities.

    PubMed

    Krishnan, Gopi; de Graaf, Sytze; Ten Brink, Gert H; Verheijen, Marcel A; Kooi, Bart J; Palasantzas, George

    2018-01-18

    In this work we report the influence of methane/hydrogen on the nucleation and formation of MgTi bimetallic nanoparticles (NPs) prepared by gas phase synthesis. We show that a diverse variety of structural motifs can be obtained from MgTi alloy, TiC x /Mg/MgO, TiC x /MgO and TiH x /MgO core/shell NPs via synthesis using CH 4 /H 2 as a trace gas, and with good control of the final NP morphology and size distribution. Moreover, depending on the concentration of Ti and type of employed trace gas, the as prepared MgTi NPs can be tuned from truncated hexagonal pyramid to triangular and hexagonal platelet shapes. The shape of MgTi NPs is identified using detailed analysis from selected area electron diffraction (SAED) patterns and tomography (3D reconstruction based on a tilt series of Bright-Field transmission electron microscopy (TEM) micrographs). We observe the truncated hexagonal pyramid as a shape of MgTi alloy NPs in contrast to Mg NPs that show a hexagonal prismatic shape. Moreover, based on our experimental observations and generic geometrical model analysis, we also prove that the formation of the various structural motifs is based on a sequential growth mechanism instead of phase separation. One of the prime reasons for such mechanism is based on the inadequacy of Mg to nucleate without template in the synthesis condition. In addition, the shape of the TiC x /TiH x core, and the concentration of Mg have strong influence on the shape evolution of TiC x /MgO and TiH x /MgO NPs compared to TiC x /Mg/MgO NPs, where the thermodynamics and growth rates of the Mg crystal planes dominate the final shape. Finally, it is demonstrated that the core shape of TiC x and TiH x is affected by the Mg/Ti target ratio (affecting the composition in the plasma), and the type of the trace gas employed. In the case of CH 4 the TiC x core forms a triangular platelet, while in the case of H 2 the TiH x core transforms into a hexagonal platelet. We elucidate the reason for the TiC x

  13. Discharge dynamics and plasma density recovery by on/off switches of additional gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyo-Chang, E-mail: lhc@kriss.re.kr; Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763; Kwon, Deuk-Chul

    2016-06-15

    Measurement of the plasma density is investigated to study plasma dynamics by adding reactive gas (O{sub 2}) or rare gas (He) in Ar plasmas. When the O{sub 2} or He gas is added, plasma density is suddenly decreased, while the plasma density recovers slowly with gas off. It is found that the recovery time is strongly dependent on the gas flow rate, and it can be explained by effect of gas residence time. When the He gas is off in the Ar plasma, the plasma density is overshot compared to the case of the O{sub 2} gas pulsing due tomore » enhanced ionizations by metastable atoms. Analysis and calculation for correlation between the plasma density dynamics and the gas pulsing are also presented in detail.« less

  14. Large-scale correlations in gas traced by Mg II absorbers around low-mass galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere

    2018-03-01

    The physical origin of the large-scale conformity in the colours and specific star formation rates of isolated low-mass central galaxies and their neighbours on scales in excess of 1 Mpc is still under debate. One possible scenario is that gas is heated over large scales by feedback from active galactic nuclei (AGNs), leading to coherent modulation of cooling and star formation between well-separated galaxies. In this Letter, the metal line absorption catalogue of Zhu & Ménard is used to probe gas out to large projected radii around a sample of a million galaxies with stellar masses ˜1010M⊙ and photometric redshifts in the range 0.4 < z < 0.8 selected from Sloan Digital Sky Survey imaging data. This galaxy sample covers an effective volume of 2.2 Gpc3. A statistically significant excess of Mg II absorbers is present around the red-low-mass galaxies compared to their blue counterparts out to projected radii of 10 Mpc. In addition, the equivalent width distribution function of Mg II absorbers around low-mass galaxies is shown to be strongly affected by the presence of a nearby (Rp < 2 Mpc) radio-loud AGNs out to projected radii of 5 Mpc.

  15. Color Addition and Subtraction Apps

    ERIC Educational Resources Information Center

    Ruiz, Frances; Ruiz, Michael J.

    2015-01-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step…

  16. Preparation of a novel hyperbranched carbosilane-silica hybrid coating for trace amount detection by solid phase microextraction/gas chromatography.

    PubMed

    Chen, Guowen; Li, Wenjie; Zhang, Chen; Zhou, Chuanjian; Feng, Shengyu

    2012-09-21

    Phenyl-ended hyperbranched carbosilane (HBC) is synthesized and immobilized onto the inner wall of a fused silica capillary column using a sol-gel process. The hybrid coating layer formed is used as a stationary phase for gas chromatography (GC) and as an adsorption medium for solid phase microextraction (SPME). Trifluoroacetic acid, as a catalyst in this process, helps produce a homogeneous hybrid coating layer. This result is beneficial for better column chromatographic performances, such as high efficiency and high resolution. Extraction tests using the novel hybrid layer show an extraordinarily large adsorption capacity and specific adsorption behavior for aromatic compounds. A 1 ppm trace level detectability is obtained with the SPME/GC work model when both of the stationary phase and adsorption layer bear a hyperbranched structure. A large amount of phenyl groups and a low viscosity of hyperbranched polymers contribute to these valuable properties, which are important to environment and safety control, wherein detection sensitivity and special adsorption behavior are usually required. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Spatial contrasts of seasonal and intraflock broiler litter trace gas emissions, physical and chemical properties.

    PubMed

    Miles, D M; Brooks, J P; Sistani, K

    2011-01-01

    Comprehensive mitigation strategies for gaseous emissions from broiler operations requires knowledge of the litters' physical and chemical properties, gas evolution, bird effects, as well as broiler house management and structure. This research estimated broiler litter surface fluxes for ammonia (NH3), nitrous oxide (N2O), and carbon dioxide (CO2). Ancillary measurements of litter temperature, litter total N, ammonium (NH4+), total C content, moisture, and pH were also made. Grid sampling was imposed over the floor area of two commercial broiler houses at the beginning (Day 1), middle (Day 23), and end (Day 43) of a winter and subsequent summer flock housed on reused pine shavings litter. The grid was composed of 36 points, three locations across the width, and 12 locations down the length of the houses. To observe feeder and waterer (F/W) influences on the parameters, eight additional sample locations were added in a crisscross pattern among these automated supply lines. Color variograms illustrate the nature of parameter changes within each flock and between seasons. Overall trends for the NH3, N2O, and CO2 gas fluxes indicate an increase in magnitude with bird age during a flock for both summer and winter, but flux estimates were reduced in areas where compacted litter (i.e., caked litter or cake) formed at the end of the flocks (at F/W locations and in the fan area). End of flock gas fluxes were estimated at 1040 mg NH3 m(-2) h(-1), 20 mg N2O m(-2) h(-1), and 24,200 mg CO2 m(-2) h(-1) in winter; and 843 mg NH3 m(-2) h(-1), 18 mg N2O m(-2) h(-1)), and 27,200 mg CO2 m(-2) h(-1) in summer. The results of intensive sample efforts during winter and summer flocks, reported visually using contour plots, offer a resource to the poultry industry and researchers for creating new management strategies for improving production and controlling gas evolution. Particularly, efforts could focus on designing housing systems that minimize extremes in litter compaction. The

  18. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.

    2016-06-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  19. Nitrogen Dioxide Observations from the Geostationary Trace Gas and Aerosol Sensor Optimization (GeoTaso) Airborne Instrument: Retrieval Algorithm and Measurements During DISCOVER-AQ Texas 2013

    NASA Technical Reports Server (NTRS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; Abad, Gonzalo Gonzalez; Liu, Xiaojun; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; hide

    2016-01-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m x 250 m spatial resolution with a fitting precision of 2.2 x 10(exp 15) molecules/sq cm. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  20. The Effect of Mustard Gas on Salivary Trace Metals (Zn, Mn, Cu, Mg, Mo, Sr, Cd, Ca, Pb, Rb)

    PubMed Central

    Zamani Pozveh, Elham; Seif, Ahmad; Ghalayani, Parichehr; Maleki, Abbas; Mottaghi, Ahmad

    2015-01-01

    We have determined and compared trace metals concentration in saliva taken from chemical warfare injures who were under the exposure of mustard gas and healthy subjects by means of inductively coupled plasma optical emission spectroscopy (ICP-OES) for the first time. The influence of preliminary operations on the accuracy of ICP-OES analysis, blood contamination, the number of restored teeth in the mouth, salivary flow rate, and daily variations in trace metals concentration in saliva were also considered. Unstimulated saliva was collected at 10:00–11:00 a.m. from 45 subjects in three equal groups. The first group was composed of 15 healthy subjects (group 1); the second group consisted of 15 subjects who, upon chemical warfare injuries, did not use Salbutamol spray, which they would have normally used on a regular basis (group 2); and the third group contained the same number of patients as the second group, but they had taken their regular medicine (Salbutamol spray; group 3). Our results showed that the concentration of Cu in saliva was significantly increased in the chemical warfare injures compared to healthy subjects, as follows: healthy subjects 15.3± 5.45(p.p.b.), patients (group 2) 45.77±13.65, and patients (Salbutamol spray; group 3) 29 ±8.51 (P <0.02). In contrast, zinc was significantly decreased in the patients, as follows: healthy subjects 37 ± 9.03(p.p.b.), patients (group 2) 12.2 ± 3.56, and patients (Salbutamol spray; group 3) 20.6 ±10.01 (P < 0.01). It is important to note that direct dilution of saliva samples with ultrapure nitric acid showed the optimum ICP-OES outputs. PMID:25965704

  1. Improved aqueous scrubber for collection of soluble atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Talbot, R. W.; Collins, V. G.

    1985-01-01

    A new concentration technique for the extraction and enrichment of water-soluble atmospheric trace gases has been developed. The gas scrubbing technique efficiently extracts soluble gases from a large volume flow rate of air sample into a small volume of refluxed trapping solution. The gas scrubber utilizes a small nebulizing nozzle that mixes the incoming air with an aqueous extracting solution to form an air/droplet mist. The mist provides excellent interfacial surface areas for mass transfer. The resulting mist sprays upward through the reaction chamber until it impinges upon a hydrophobic membrane that virtually blocks the passage of droplets but offers little resistance to the existing gas flow. Droplets containing the scrubbed gases coalesce on the membrane and drip back into the reservoir for further refluxing. After a suitable concentration period, the extracting solution containing the analyte can be withdrawn for analysis. The nebulization-reflex concentration technique is more efficient (maximum flow of gas through the minimum volume of extractant) than conventional bubbler/impinger gas extraction techniques and is offered as an alternative method.

  2. Analysis of minerals containing dissolved traces of the fluid phase components water and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann

    1991-01-01

    Substantial progress has been made towards a better understanding of the dissolution of common gas/fluid phase components, notably H2O and CO2, in minerals. It has been shown that the dissolution mechanisms are significantly more complex than currently believed. By judiciously combining various solid state analytical techniques, convincing evidence was obtained that traces of dissolved gas/fluid phase components undergo, at least in part, a redox conversion by which they split into reduced H2 and and reduced C on one hand and oxidized oxygen, O(-), on the other. Analysis for 2 and C as well as for any organic molecules which may form during the process of co-segregation are still impeded by the omnipresent danger of extraneous contamination. However, the presence of O(-), an unusual oxidized form of oxygen, has been proven beyond a reasonable doubt. The presence of O(-) testifies to the fact that a redox reaction must have taken place in the solid state involving the dissolved traces of gas/fluid phase components. Detailed information on the techniques used and the results obtained are given.

  3. CARBON TRACE GASES IN LAKE AND BEAVER POND ICE NEAR THOMPSON, MANITOBA, CANADA

    EPA Science Inventory

    Concentrations of CO2, CO, and CH4 were measured in beaver pond and lake ice in April 1996 near Thompson, Manitoba to derive information on possible impacts of ice melting on corresponding atmospheric trace gas concentrations. CH4 concentrations in beaver pond and lake ice ranged...

  4. Feeding the fire: tracing the mass-loading of 107 K galactic outflows with O VI absorption

    NASA Astrophysics Data System (ADS)

    Chisholm, J.; Bordoloi, R.; Rigby, J. R.; Bayliss, M.

    2018-02-01

    Galactic outflows regulate the amount of gas galaxies convert into stars. However, it is difficult to measure the mass outflows remove because they span a large range of temperatures and phases. Here, we study the rest-frame ultraviolet spectrum of a lensed galaxy at z ˜ 2.9 with prominent interstellar absorption lines from O I, tracing neutral gas, up to O VI, tracing transitional phase gas. The O VI profile mimics weak low-ionization profiles at low velocities, and strong saturated profiles at high velocities. These trends indicate that O VI gas is co-spatial with the low-ionization gas. Further, at velocities blueward of -200 km s-1 the column density of the low-ionization outflow rapidly drops while the O VI column density rises, suggesting that O VI is created as the low-ionization gas is destroyed. Photoionization models do not reproduce the observed O VI, but adequately match the low-ionization gas, indicating that the phases have different formation mechanisms. Photoionized outflows are more massive than O VI outflows for most of the observed velocities, although the O VI mass outflow rate exceeds the photoionized outflow at velocities above the galaxy's escape velocity. Therefore, most gas capable of escaping the galaxy is in a hot outflow phase. We suggest that the O VI absorption is a temporary by-product of conduction transferring mass from the photoionized phase to an unobserved hot wind, and discuss how this mass-loading impacts the observed circum-galactic medium.

  5. Measurement techniques for trace metals in coal-plant effluents: A brief review

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1979-01-01

    The strong features and limitations of techniques for determining trace elements in aerosols emitted from coal plants are discussed. Techniques reviewed include atomic absorption spectroscopy, charged particle scattering and activation, instrumental neutron activation analysis, gas/liquid chromatography, gas chromatographic/mass spectrometric methods, X-ray fluorescence, and charged-particle-induced X-ray emission. The latter two methods are emphasized. They provide simultaneous, sensitive multielement analyses and lend themselves readily to depth profiling. It is recommended that whenever feasible, two or more complementary techniques should be used for analyzing environmental samples.

  6. Resonant photoacoustic detection of NO2 traces with a Q-switched green laser

    NASA Astrophysics Data System (ADS)

    Slezak, Verónica; Codnia, Jorge; Peuriot, Alejandro L.; Santiago, Guillermo

    2003-01-01

    Resonant photoacoustic detection of NO2 traces by means of a high repetition pulsed green laser is presented. The resonator is a cylindrical Pyrex glass cell with a measured Q factor 380 for the first radial mode in air at atmospheric pressure. The system is calibrated with known mixtures in dry air and a minimum detectable volume concentration of 50 parts in 109 is obtained (S/N=1). Its sensitivity allows one to detect and quantify NO2 traces in the exhaust gases of cars. Previously, the analysis of gas adsorption and desorption on the walls and of changes in the sample composition is carried out in order to minimize errors in the determination of NO2 content upon application of the extractive method. The efficiency of catalytic converters of several models of automobiles is studied and the NO2 concentration in samples from exhausts of different types of engine (gasoline, diesel, and methane gas) at idling operation are measured.

  7. Environmental analysis for pipeline gas demonstration plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinton, L.H.

    1978-09-01

    The Department of Energy (DOE) has implemented programs for encouraging the development and commercialization of coal-related technologies, which include coal gasification demonstration-scale activities. In support of commercialization activities the Environmental Analysis for Pipeline Gas Demonstration Plants has been prepared as a reference document to be used in evaluating potential environmental and socioeconomic effects from construction and operation of site- and process-specific projects. Effluents and associated impacts are identified for six coal gasification processes at three contrasting settings. In general, impacts from construction of a high-Btu gas demonstration plant are similar to those caused by the construction of any chemical plantmore » of similar size. The operation of a high-Btu gas demonstration plant, however, has several unique aspects that differentiate it from other chemical plants. Offsite development (surface mining) and disposal of large quantities of waste solids constitute important sources of potential impact. In addition, air emissions require monitoring for trace metals, polycyclic aromatic hydrocarbons, phenols, and other emissions. Potential biological impacts from long-term exposure to these emissions are unknown, and additional research and data analysis may be necessary to determine such effects. Possible effects of pollutants on vegetation and human populations are discussed. The occurrence of chemical contaminants in liquid effluents and the bioaccumulation of these contaminants in aquatic organisms may lead to adverse ecological impact. Socioeconomic impacts are similar to those from a chemical plant of equivalent size and are summarized and contrasted for the three surrogate sites.« less

  8. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

    USGS Publications Warehouse

    Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.

    2018-01-01

    Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.

  9. Methodology Used for Gas Analysis and Control of Trace Chemical Contaminants at a Hyperbaric Facility. 1. Gas Sampling

    DTIC Science & Technology

    1988-12-01

    made using a gas sampling valve. All instruments were calibrated using gravimetric standards certified to t 1-2% relative of stated value ( Air Products and Chemicals , Inc ., Allentown...cannister - 985410 7. High Purity Gas Cylinder Regulators - several sources Air Products and Chemicals , Inc . P.O. Box 1536 Washington, DC 20013 (301

  10. Spatial Variability of Trace Gases During DISCOVER-AQ: Planning for Geostationary Observations of Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Follette-Cook, Melanie B.; Pickering, K.; Crawford, J.; Appel, W.; Diskin, G.; Fried, A.; Loughner, C.; Pfister, G.; Weinheimer, A.

    2015-01-01

    Results from an in-depth analysis of trace gas variability in MD indicated that the variability in this region was large enough to be observable by a TEMPO-like instrument. The variability observed in MD is relatively similar to the other three campaigns with a few exceptions: CO variability in CA was much higher than in the other regions; HCHO variability in CA and CO was much lower; MD showed the lowest variability in NO2All model simulations do a reasonable job simulating O3 variability. For CO, the CACO simulations largely under over estimate the variability in the observations. The variability in HCHO is underestimated for every campaign. NO2 variability is slightly overestimated in MD, more so in CO. The TX simulation underestimates the variability in each trace gas. This is most likely due to missing emissions sources (C. Loughner, manuscript in preparation).Future Work: Where reasonable, we will use these model outputs to further explore the resolvability from space of these key trace gases using analyses of tropospheric column amounts relative to satellite precision requirements, similar to Follette-Cook et al. (2015).

  11. Schiff Base as Additive for Preventing Gas Evolution in Li4Ti5O12-Based Lithium-Ion Battery.

    PubMed

    Daigle, Jean-Christophe; Asakawa, Yuichiro; Hovington, Pierre; Zaghib, Karim

    2017-11-29

    Lithium titanium oxide (Li 4 Ti 5 O 12 )-based electrodes are very promising for long-life cycle batteries. However, the surface reactivity of Li 4 Ti 5 O 12 in organic electrolytes leading to gas evolution is still a problem that may cause expansion of pouch cells. In this study, we report the use of Schiff base (1,8-diazabicyclo[5.4.0]undec-7-ene) as an additive that prevents gas evolution during cell aging by a new mechanism involving the solid electrolyte interface on the anode surface. The in situ ring opening polymerization of cyclic carbonates occurs during the first cycles to decrease gas evolution by 9.7 vol % without increasing the internal resistance of the battery.

  12. Computational investigation of noble gas adsorption and separation by nanoporous materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.; Sanders, Joseph C.; Greathouse, Jeffery A.

    2008-10-01

    Molecular simulations are used to assess the ability of metal-organic framework (MOF) materials to store and separate noble gases. Specifically, grand canonical Monte Carlo simulation techniques are used to predict noble gas adsorption isotherms at room temperature. Experimental trends of noble gas inflation curves of a Zn-based material (IRMOF-1) are matched by the simulation results. The simulations also predict that IRMOF-1 selectively adsorbs Xe atoms in Xe/Kr and Xe/Ar mixtures at total feed gas pressures of 1 bar (14.7 psia) and 10 bar (147 psia). Finally, simulations of a copper-based MOF (Cu-BTC) predict this material's ability to selectively adsorb Xemore » and Kr atoms when present in trace amounts in atmospheric air samples. These preliminary results suggest that Cu-BTC may be an ideal candidate for the pre-concentration of noble gases from air samples. Additional simulations and experiments are needed to determine the saturation limit of Cu-BTC for xenon, and whether any krypton atoms would remain in the Cu-BTC pores upon saturation.« less

  13. TraceContract

    NASA Technical Reports Server (NTRS)

    Kavelund, Klaus; Barringer, Howard

    2012-01-01

    TraceContract is an API (Application Programming Interface) for trace analysis. A trace is a sequence of events, and can, for example, be generated by a running program, instrumented appropriately to generate events. An event can be any data object. An example of a trace is a log file containing events that a programmer has found important to record during a program execution. Trace - Contract takes as input such a trace together with a specification formulated using the API and reports on any violations of the specification, potentially calling code (reactions) to be executed when violations are detected. The software is developed as an internal DSL (Domain Specific Language) in the Scala programming language. Scala is a relatively new programming language that is specifically convenient for defining such internal DSLs due to a number of language characteristics. This includes Scala s elegant combination of object-oriented and functional programming, a succinct notation, and an advanced type system. The DSL offers a combination of data-parameterized state machines and temporal logic, which is novel. As an extension of Scala, it is a very expressive and convenient log file analysis framework.

  14. Trace elements in hazardous mineral fibres.

    PubMed

    Bloise, Andrea; Barca, Donatella; Gualtieri, Alessandro Francesco; Pollastri, Simone; Belluso, Elena

    2016-09-01

    Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed. The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Interpretation of Trace Gas Data Using Inverse Methods and Global Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1997-01-01

    This is a theoretical research project aimed at: (1) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for long lived gases important in ozone depletion and climate forcing, (2) utilization of inverse methods to determine these source/sink strengths which use the NCAR/Boulder CCM2-T42 3-D model and a global 3-D Model for Atmospheric Transport and Chemistry (MATCH) which is based on analyzed observed wind fields (developed in collaboration by MIT and NCAR/Boulder), (3) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple titrating gases, and, (4) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3-D models. Important goals include determination of regional source strengths of methane, nitrous oxide, and other climatically and chemically important biogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements and hydrohalocarbons used as alternatives to the restricted halocarbons.

  16. The ATTA-Hefei Instrument for Radioactive Noble-gas Dating

    NASA Astrophysics Data System (ADS)

    Hu, S.; Cheng, C.; Cheng, G.; Sun, Y. R.; Tu, L.; Yang, G.

    2013-12-01

    Long-lived noble-gas isotopes 85Kr (10.8 y), 39Ar (269 y) and 81Kr (229 ky) are ideal tracers for dating environmental samples such as groundwater and ice. Together with 14C, these nuclides can be used to cover the whole range of 100-106 y. Atom Trap Trace Analysis (ATTA) is an emerging method for the analysis of these isotopes at an isotopic abundance level as low as 10^-16 [1,2]. The ATTA instrument built in Hefei, China, can determine the isotopic abundances of 85Kr and 81Kr with typically 5-10% accuracy using krypton gas samples of a few micro-liters (STP) krypton gas [3]. The krypton gas sample can be extracted from several liters of air using a distillation-chromatograph setup with a typical efficiency of 85%, while the air sample can be extracted from groundwater or ices. The typical sample size for ATTA measurement is 100L groundwater or 40Kg ices. One such ATTA beamline can handle about 100 samples per year. [1] Chen, C. Y. et al. Ultrasensitive isotope trace analyses with a magneto-optical trap. Science 286, 1139-1141 (1999). [2] Jiang, W. et al. 39Ar detection at the 10-16 isotopic abundance level with atom trap trace analysis. Phys. Rev. Lett. 106, 103001 (2011). [3] Yang, G. -M. et al. Analysis of 85Kr: a comparison at the 10-14 level using micro-liter samples, Sci. Rep. 3, 1596 (2013). Relative uncertainty of the determined 85Kr abundance by the ATTA-Hefei instrument.

  17. 76 FR 13431 - Major Portion Prices and Due Date for Additional Royalty Payments on Indian Gas Production in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ...: Notice of major portion prices for calendar year 2009. SUMMARY: Final regulations for valuing gas produced from Indian leases, published August 10, 1999, require the Office of Natural Resources Revenue... calendar year 2009. DATES: The due date to pay additional royalties based on the major portion prices is...

  18. Are CO Observations of Interstellar Clouds Tracing the H2?

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Glover, S. C. O.; Klessen, R. S.; Mac Low, M.

    2010-01-01

    Interstellar clouds are commonly observed through the emission of rotational transitions from carbon monoxide (CO). However, the abundance ratio of CO to molecular hydrogen (H2), which is the most abundant molecule in molecular clouds is only about 10-4. This raises the important question of whether the observed CO emission is actually tracing the bulk of the gas in these clouds, and whether it can be used to derive quantities like the total mass of the cloud, the gas density distribution function, the fractal dimension, and the velocity dispersion--size relation. To evaluate the usability and accuracy of CO as a tracer for H2 gas, we generate synthetic observations of hydrodynamical models that include a detailed chemical network to follow the formation and photo-dissociation of H2 and CO. These three-dimensional models of turbulent interstellar cloud formation self-consistently follow the coupled thermal, dynamical and chemical evolution of 32 species, with a particular focus on H2 and CO (Glover et al. 2009). We find that CO primarily traces the dense gas in the clouds, however, with a significant scatter due to turbulent mixing and self-shielding of H2 and CO. The H2 probability distribution function (PDF) is well-described by a log-normal distribution. In contrast, the CO column density PDF has a strongly non-Gaussian low-density wing, not at all consistent with a log-normal distribution. Centroid velocity statistics show that CO is more intermittent than H2, leading to an overestimate of the velocity scaling exponent in the velocity dispersion--size relation. With our systematic comparison of H2 and CO data from the numerical models, we hope to provide a statistical formula to correct for the bias of CO observations. CF acknowledges financial support from a Kade Fellowship of the American Museum of Natural History.

  19. Test results for fuel cell operation on anaerobic digester gas

    NASA Astrophysics Data System (ADS)

    Spiegel, R. J.; Preston, J. L.

    EPA, in conjunction with ONSI, embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the process of treating sewage anaerobically to reduce solids. ADG is primarily comprised of methane (57-66%), carbon dioxide (33-39%), nitrogen (1-10%), and a small amount of oxygen (<0.5%). Additionally, ADG contains trace amounts of fuel cell catalyst contaminants consisting of sulfur-bearing compounds (principally hydrogen sulfide) and halogen compounds (chlorides). The project has addressed two major issues: development of a cleanup system to remove fuel cell contaminants from the gas and testing/assessing of a modified ONSI PC25 C fuel cell power plant operating on the cleaned, but dilute, ADG. Results to date demonstrate that the ADG fuel cell power plant can, depending on the energy content of the gas, produce electrical output levels close to full power (200 kW) with measured air emissions comparable to those obtained by a natural gas fuel cell. The cleanup system results show that the hydrogen sulfide levels are reduced to below 10 ppbv and halides to approximately 30 ppbv.

  20. The environmental geochemistry of trace elements and naturally radionuclides in a coal gangue brick-making plant.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K S

    2014-08-28

    An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system.

  1. The Environmental Geochemistry of Trace Elements and Naturally Radionuclides in a Coal Gangue Brick-Making Plant

    PubMed Central

    Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K. S.

    2014-01-01

    An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system. PMID:25164252

  2. Winter measurements of trace gas and aerosol composition at a rural site in southern ontario

    NASA Astrophysics Data System (ADS)

    Daum, P. H.; Kelly, T. J.; Tanner, R. L.; Tang, X.; Anlauf, K.; Bottenheim, J.; Brice, K. A.; Wiebe, H. A.

    This paper reports the results of continuous measurements of concentrations of trace gas and aerosol species at Powassan, Ontario, a rural location in southern Ontario, from 20 January to 24 February 1984. The measurements included aerosol H + , NH 4+, Na +, Ca 2+ , NO 3-, SO 42- and Cl -, gaseous SO 2, NO, NO' y; ( = NO + NO2 + PAN + HNO3), HNO 3, PAN, and O 3. Average values of concentrations for key species during the project were: SO 2, 7.3 ppb; NO y, 7.5 ppb; HNO 3, 0.85 ppb; O 3, 33 ppb; NH 4+ 1.5 ppb; NO 3-, 0.4 ppb; and SO 42-, 0.9 ppb. Concentrations of primary pollutants (e.g. SO 2) were typically much higher, and concentrations of secondary species (e.g. SO 42-) typically lower, than observed at this location in summer. However, clear-air t- NO 3-/SO 42- ratios averaged 5-10 times higher in winter than in summer which suggests that HNO 3 is a more important source of atmospheric acidity, relative to SO 42- aerosol, in winter than in summer. Pollutant concentrations were highly variable; back trajectory calculations indicate that periods of high concentrations of both primary and secondary species were typically associated with air-mass back trajectories from the southern sectors while periods of low concentrations of secondary species were associated with back trajectories from the north. Comparison of these measurements with those at other locations suggests that concentrations at Powassan were characteristic of those prevailing over a much larger, possibly regional, area.

  3. Nitrogen dioxide observations from the Geostationary Trace ...

    EPA Pesticide Factsheets

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m  ×  250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with prelim

  4. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fibermore » optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second

  5. Lupus Disks with Faint CO Isotopologues: Low Gas/Dust or High Carbon Depletion?

    NASA Astrophysics Data System (ADS)

    Miotello, Anna

    2017-11-01

    With the advent of ALMA, complete surveys of gas and dust in protoplanetary disks are being carried out in different star forming regions. In particular, continuum emission is used to trace the large (mm-sized) dust grains and CO isotopologues are observed in order to trace the bulk of the gas. The attempt is to simultaneously constrain the gas and dust disk mass as well as the gas/dust mass ratio. In this presentation I will present the Lupus disk survey observations, analyzed with thermo-chemical disk models, including radiative transfer, CO isotope-selective processes and freeze-out. The main result is that CO-based gas masses are very low, often smaller than Jupiter Mass. Moreover, gas/dust mass ratios are much lower than value of 100 found in the ISM, being mainly between 1 and 10. This result can be interpreted either as rapid loss of gas, or as a chemical effect removing carbon from CO and locking it into more complex molecules or in larger bodies. Previous data cannot distinguish between the two scenarios (except for sources with detected HD lines), but new Cycle 4 observations of hydrocarbon lines will be presented and they can help to calibrate CO-based gas masses and to constrain disk gas masses.

  6. Analysis of Process Gases and Trace Contaminants in Membrane-Aerated Gaseous Effluent Streams.

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Lunn, Griffin Michael; Meyer, Caitlin E.

    2015-01-01

    In membrane-aerated biofilm reactors (MABRs), hollow fibers are used to supply oxygen to the biofilms and bulk fluid. A pressure and concentration gradient between the inner volume of the fibers and the reactor reservoir drives oxygen mass transport across the fibers toward the bulk solution, providing the fiber-adhered biofilm with oxygen. Conversely, bacterial metabolic gases from the bulk liquid, as well as from the biofilm, move opposite to the flow of oxygen, entering the hollow fiber and out of the reactor. Metabolic gases are excellent indicators of biofilm vitality, and can aid in microbial identification. Certain gases can be indicative of system perturbations and control anomalies, or potentially unwanted biological processes occurring within the reactor. In confined environments, such as those found during spaceflight, it is important to understand what compounds are being stripped from the reactor and potentially released into the crew cabin to determine the appropriateness or the requirement for additional mitigation factors. Reactor effluent gas analysis focused on samples provided from Kennedy Space Center's sub-scale MABRs, as well as Johnson Space Center's full-scale MABRs, using infrared spectroscopy and gas chromatography techniques. Process gases, such as carbon dioxide, oxygen, nitrogen, nitrogen dioxide, and nitrous oxide, were quantified to monitor reactor operations. Solid Phase Microextraction (SPME) GC-MS analysis was used to identify trace volatile compounds. Compounds of interest were subsequently quantified. Reactor supply air was examined to establish target compound baseline concentrations. Concentration levels were compared to average ISS concentration values and/or Spacecraft Maximum Allowable Concentration (SMAC) levels where appropriate. Based on a review of to-date results, current trace contaminant control systems (TCCS) currently on board the ISS should be able to handle the added load from bioreactor systems without the need

  7. Overview of the International Space Station System Level Trace Contaminant Injection Test

    NASA Technical Reports Server (NTRS)

    Tatara, James D.; Perry, Jay L.; Franks, Gerald D.

    1997-01-01

    Trace contaminant control onboard the International Space Station will be accomplished not only by the Trace Contaminant Control Subassembly but also by other Environmental Control and Life Support System subassemblies. These additional removal routes include absorption by humidity condensate in the Temperature and Humidity Control Condensing Heat Exchanger and adsorption by the Carbon Dioxide Removal Assembly. The Trace Contaminant Injection Test, which was performed at NASA's Marshall Space Flight Center, investigated the system-level removal of trace contaminants by the International Space Station Atmosphere Revitalization, and Temperature/Humidity Control Subsystems, (November-December 1997). It is a follow-on to the Integrated Atmosphere Revitalization Test conducted in 1996. An estimate for the magnitude of the assisting role provided by the Carbon Dioxide Removal Assembly and the Temperature and Humidity Control unit was obtained. In addition, data on the purity of Carbon Dioxide Removal Assembly carbon dioxide product were obtained to support Environmental Control and Life Support System Air Revitalization Subsystem loop closure.

  8. Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers.

    PubMed

    Mattiello, Mario; Niklès, Marc; Schilt, Stéphane; Thévenaz, Luc; Salhi, Abdelmajid; Barat, David; Vicet, Aurore; Rouillard, Yves; Werner, Ralph; Koeth, Johannes

    2006-04-01

    A new and compact photoacoustic sensor for trace gas detection in the 2-2.5 microm atmospheric window is reported. Both the development of antimonide-based DFB lasers with singlemode emission in this spectral range and a novel design of photoacoustic cell adapted to the characteristics of these lasers are discussed. The laser fabrication was made in two steps. The structure was firstly grown by molecular beam epitaxy then a metallic DFB grating was processed. The photoacoustic cell is based on a Helmholtz resonator that was designed in order to fully benefit from the highly divergent emission of the antimonide laser. An optimized modulation scheme based on wavelength modulation of the laser source combined with second harmonic detection has been implemented for efficient suppression of wall noise. Using a 2211 nm laser, sub-ppm detection limit has been demonstrated for ammonia.

  9. Knudsen cell: Investigations about the uptake of important traces gases on ambient airborne mineral dust

    NASA Astrophysics Data System (ADS)

    Horn, Sabrina; Herrmann, Hartmut

    2013-04-01

    Mineral dust constitutes one of the largest mass fractions of natural aerosol. Its emission is estimated between 800 - 2000 Tg/a]. The dust is emitted through sand and dust storms in the arid regions of our planet, in particular by the great desserts such as the Sahara. The complex chemical composition of mineral dust is similar to crust material, because the dust is produced by soil erosion. The main components of mineral dust are SiO2 and Al2O3, whereas the active oxides (Fe2O3, TiO2) show some variety in content due to the dust source region. Mineral dust particles can be transported over several 1000 km and during its transport the surface can be changed by the uptake of water vapor and trace gases. On such modified surfaces homo- and heterogeneous reactions can occur. Trace gas uptakes play an important role in atmospheric chemistry as sinks or sources for several gaseous species. Hence, it is necessary to study these reactions. Among several experimental setups, the Knudsen cell is one of the promising tools to study reactive uptakes from the gas phase and the release of products formed by dust surface-mediated reactions. The Knudsen cell, implemented by Golden et al. in 1975, is a high vacuum flow reactor operating under molecular flow conditions, i.e., gas-wall collisions are highly preferred over gas-gas collisions. Despite several Knudsen cell studies examining the reaction between different traces gases and model dust surfaces constituted of not more than a few components, no measurements utilizing collected ambient mineral dust are done so far. For a better understanding of the chemistry on mineral dust surfaces gas uptake measurements will be done with a Knudsen cell. The first measurements are done with isopropanol on TiO2. Afterwards there are studies with different substrates like, Al2O3 (α- and γ-phase), FeO2, Arizona test dust, air collected mineral dust from the Cap Verde islands. In the beginning SO2, NO2 and HNO3 will be used.

  10. Method and apparatus for detecting and measuring trace impurities in flowing gases

    DOEpatents

    Taylor, Gene W.; Dowdy, Edward J.

    1979-01-01

    Trace impurities in flowing gases may be detected and measured by a dynamic atomic molecular emission spectrograph utilizing as its energy source the energy transfer reactions of metastable species, atomic or molecular, with the impurities in the flowing gas. An electronically metastable species which maintains a stable afterglow is formed and mixed with the flowing gas in a region downstream from and separate from the region in which the metastable species is formed. Impurity levels are determined quantitatively by the measurement of line and/or band intensity as a function of concentration employing emission spectroscopic techniques.

  11. Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber.

    PubMed

    Trabold, Barbara M; Hupfer, Robert J R; Abdolvand, Amir; St J Russell, Philip

    2017-09-01

    We report the use of coherent anti-Stokes Raman spectroscopy (CARS) in gas-filled hollow-core photonic crystal fiber (HC-PCF) for trace gas detection. The long optical path-lengths yield a 60 dB increase in the signal level compared with free-space arrangements. This enables a relatively weak supercontinuum (SC) to be used as Stokes seed, along with a ns pump pulse, paving the way for broadband (>4000  cm -1 ) single-shot CARS with an unprecedented resolution of ∼100  MHz. A kagomé-style HC-PCF provides broadband guidance, and, by operating close to the pressure-tunable zero dispersion wavelength, we can ensure simultaneous phase-matching of all gas species. We demonstrate simultaneous measurement of the concentrations of multiple trace gases in a gas sample introduced into the core of the HC-PCF.

  12. The partitioning behavior of trace element and its distribution in the surrounding soil of a cement plant integrated utilization of hazardous wastes.

    PubMed

    Yang, Zhenzhou; Chen, Yan; Sun, Yongqi; Liu, Lili; Zhang, Zuotai; Ge, Xinlei

    2016-07-01

    In the present study, the trace elements partitioning behavior during cement manufacture process were systemically investigated as well as their distribution behaviors in the soil surrounding a cement plant using hazardous waste as raw materials. In addition to the experimental analysis, the thermodynamic equilibrium calculations were simultaneously conducted. The results demonstrate that in the industrial-scale cement manufacture process, the trace elements can be classified into three groups according to their releasing behaviors. Hg is recognized as a highly volatile element, which almost totally partitions into the vapor phase. Co, Cu, Mn, V, and Cr are considered to be non-volatile elements, which are largely incorporated into the clinker. Meanwhile, Cd, Ba, As, Ni, Pb, and Zn can be classified into semi-volatile elements, as they are trapped into clinker to various degrees. Furthermore, the trace elements emitted into the flue gas can be adsorbed onto the fine particles, transport and deposit in the soil, and it is clarified here that the soil around the cement plant is moderately polluted by Cd, slightly polluted by As, Cr, Ba, Zn, yet rarely influenced by Co, Mn, Ni, Cu, Hg, and V elements. It was also estimated that the addition of wastes can efficiently reduce the consumption of raw materials and energy. The deciphered results can thus provide important insights for estimating the environmental impacts of the cement plant on its surroundings by utilizing wastes as raw materials.

  13. Trace Gas Quantification with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Schuyler, T. J.; Guzman, M. I.; Bailey, S.; Jacob, J.

    2017-12-01

    Measurements of atmospheric composition are generally performed with advanced instrumentation from ground stations using tall towers and weather balloons or with manned aircraft. Unmanned aerial systems (UAS) are a promising technology for atmospheric monitoring of trace atmospheric gases as they can bridge the gap between the regions of the atmospheric boundary layer measured by ground stations and aircraft. However, in general, the sophisticated instrumentation required for these measurements are heavy, preventing its deployment with small UAS. In order to successfully detect and quantify these gases, sensor packages aboard UAS must be lightweight, have low-power consumption, and possess limits of detection on the ppm scale or below with reasonably fast response times. Thus, a new generation of portable instrument is being developed in this work to meet these requirements employing new sensing packages. The cross sensitivity of these sensors to several gases is examined through laboratory testing of the instrument under variable environmental conditions prior to performing field measurements. Datasets include timestamps with position, temperature, relative humidity, pressure, along with variable mixing ratio values of important greenhouse gases. The work will present an analysis of the results gathered during authorized flights performed during the second CLOUD-MAP§ field campaign held in June 2017. §CLOUD-MAP: Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics, a 4-year NSF funded effort.

  14. Volcanic gas

    USGS Publications Warehouse

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  15. A high-current rail-type gas switch with preionization by an additional corona discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10–45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, andmore » the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.« less

  16. A high-current rail-type gas switch with preionization by an additional corona discharge

    NASA Astrophysics Data System (ADS)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G.

    2016-12-01

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10-45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, and the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.

  17. Trace gas and vegetation feedback responses of Alaskan tussock tundra to long-term snow depth manipulations

    NASA Astrophysics Data System (ADS)

    Ebbs, L. M.; Taneva, L.; Sullivan, P.; Welker, J. M.

    2009-12-01

    Changes in the precipitation and temperature regimes in Northern Alaska are manifesting themselves through shifts in sea ice, vegetation traits, animal migration timing and hydrologic dynamics. Changes in precipitation and soil temperature result in changes in plant mineral nutrition, soil nutrient availability, trace gas exchanges and differential nutrient acquisition strategies by arctic plants. In this study, we report on the extent to which long-term increases in snow depth, along with reductions in snow depth alter the magnitudes and pattern of CO2 exchange, soil properties and vegetation traits. A doubling of snow depth (from ~0.5 to ~1.0m) results in a delay of the growing season by ~ 2 weeks, however, by peak season, the rates of CO2 exchange are 50% higher in areas which had experienced deeper snow depth levels. To the contrary, long-term reductions in snow depth results in accelerated rates of plant phenology, however CO2 exchange rates at peak season are 30% less than those areas under ambient snow cover in the preceding winter. Reduced snow depth areas had the coldest winter soil temperatures while the deeper areas had the warmest winter soil temperatures, which may partially explain the summer CO2 fluxes indirectly via different rates of winter N mineralization and differences in leaf N properties. Our results indicate that shifting fall, winter and spring when snow is the primary form of precipitation, may have profound effects on tussock tundra systems.

  18. A first proposal for a general description model of forensic traces

    NASA Astrophysics Data System (ADS)

    Lindauer, Ina; Schäler, Martin; Vielhauer, Claus; Saake, Gunter; Hildebrandt, Mario

    2012-06-01

    In recent years, the amount of digitally captured traces at crime scenes increased rapidly. There are various kinds of such traces, like pick marks on locks, latent fingerprints on various surfaces as well as different micro traces. Those traces are different from each other not only in kind but also in which information they provide. Every kind of trace has its own properties (e.g., minutiae for fingerprints, or raking traces for locks) but there are also large amounts of metadata which all traces have in common like location, time and other additional information in relation to crime scenes. For selected types of crime scene traces, type-specific databases already exist, such as the ViCLAS for sexual offences, the IBIS for ballistic forensics or the AFIS for fingerprints. These existing forensic databases strongly differ in the trace description models. For forensic experts it would be beneficial to work with only one database capable of handling all possible forensic traces acquired at a crime scene. This is especially the case when different kinds of traces are interrelated (e.g., fingerprints and ballistic marks on a bullet casing). Unfortunately, current research on interrelated traces as well as general forensic data models and structures is not mature enough to build such an encompassing forensic database. Nevertheless, recent advances in the field of contact-less scanning make it possible to acquire different kinds of traces with the same device. Therefore the data of these traces is structured similarly what simplifies the design of a general forensic data model for different kinds of traces. In this paper we introduce a first common description model for different forensic trace types. Furthermore, we apply for selected trace types from the well established database schema development process the phases of transferring expert knowledge in the corresponding forensic fields into an extendible, database-driven, generalised forensic description model. The

  19. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy

    2015-01-01

    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.

  20. Method for removing trace pollutants from aqueous solutions

    DOEpatents

    Silver, Gary L.

    1986-01-01

    A method of substantially removing a trace metallic contaminant from a liquid containing the same comprises, adding an oxidizing agent to a liquid containing a trace amount of a metallic contaminant of a concentration of up to about 10.sup.-1 ppm, the oxidizing agent being one which oxidizes the contaminant to form an oxidized product which is insoluble in the liquid and precipitates therefrom, and the conditions of the addition being selected to ensure that the precipitation of the oxidized product is homogeneous, and separating the homogeneously precipitated product from the liquid.

  1. ExoMars Trace Gas Orbiter provides atmospheric data during Aerobraking into its final orbit

    NASA Astrophysics Data System (ADS)

    Svedhem, Hakan; Vago, Jorge L.; Bruinsma, Sean; Müller-Wodarg, Ingo; ExoMars 2016 Team

    2017-10-01

    After the arrival of the Trace Gas Orbiter (TGO) at Mars on 19 October 2016 a number of initial orbit change manoeuvres were executed and the spacecraft was put in an orbit with a 24 hour period and 74 degrees inclination. The spacecraft and its four instruments were thoroughly checked out after arrival and a few measurements and images were taken in November 2016 and in Feb-March 2017. The solar occultation observations have however not yet been possible due to lack of the proper geometry.On 15 March a long period of aerobraking to reach the final 400km semi-circular frozen orbit (370x430km, with a fixed pericentre latitude). This orbit is optimised for the payload observations and for the communication relay with the ExoMars Rover, due to arrive in 2021.The aerobraking is proceeding well and the final orbit is expected to be reached in April 2018. A large data set is being acquired for the upper atmosphere of Mars, from the limit of the sensitivity of the accelerometer, down to lowest altitude of the aerobraking at about 105km. Initial analysis has shown a highly variable atmosphere with a slightly lower density then predicted by existing models. Until the time of the abstract writing no dust storms have been observed.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the Proton launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission, consisting of a Rover and a Surface platform also launched by a Proton rocket, the TGO will handle the communication between the Earth and the Rover and Surface Platform through its (NASA provided) UHF communication system.

  2. The effects of flue gas desulfurization (FGD) system additives on solid by-products. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huyck, K.A.; Tatum, G.S.; DeKraker, D.P.

    This study was designed to examine characteristics of by-products from flue gas desulfurization (FGD) systems that use performance-enhancing additives. The by-products were evaluated for handling, disposal, properties, and utilization potential. This study was designed to identify potential operation-limiting consequences (fatal flaws) caused by using FGD system additives. It was not intended to be an all-encompassing study of the possible process, environmental, and utilization circumstances at each plant. Seven utilities conducting additive testing agreed to provide samples for this study both before and during their testing. Solid samples were collected from FGD systems using the following additives: di-basic acid (DBA), whichmore » is a mixture of succinic, glutaric, and adipic acids; formate; sulfur; ethylene diamine tetraacetic acid (EDTA); and chloride. Changes in handling properties that may alter process operations were observed at sites where DBS was used. Changes in leaching behavior, permeability and unconfined compressive strength (properties that affect by-product disposal properties) showed no clear trend for additive or system type. The intent of this study is to provide an overall assessment of potential system-limiting effects of FGD additive use. There were no overriding problems relating to disposal with the use of additives. However, properties of solids produced with and without additives should be tested at each site prior to use of an FGD system additive. This is necessary because of the variability in state disposal and permitting requirements and the influence of specific operating conditions on by-product properties.« less

  3. Trace anesthetic vapors in hospital operating-room environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi-Lao, A.T.

    1981-05-01

    This study investigated concentrations of halothane anesthetic vapors in the operating rooms of two hospitals in the Ottawa, Ontario, Canada, area. Air samples, taken by active charcoal tubes and dosimeter badges, were analyzed by a gas chromatographic technique. Readings of 71 samples taken from hospital A and 65 samples from hospital B ranged from 1.0 to 29.4 parts per billion (ppb) for the active period and 0.1 to 3.8 ppb for the inactive period. All samples showed trace concentrations of halothane, but were well below the recommended maximal level.

  4. Trace analysis of impurities in bulk gases by gas chromatography-pulsed discharge helium ionization detection with "heart-cutting" technique.

    PubMed

    Weijun, Yao

    2007-10-12

    A method has been developed for the detection of low-nL/L-level impurities in bulk gases such as H(2), O(2), Ar, N(2), He, methane, ethylene and propylene, respectively. The solution presented here is based upon gas chromatography-pulsed discharge helium ionization detection (GC-PDHID) coupled with three two-position valves, one two-way solenoid valve and four packed columns. During the operation, the moisture and heavy compounds are first back-flushed via a pre-column. Then the trace impurities (except CO(2) which is diverted to a separate analytical column for separation and detection) together with the matrix enter onto a main column, followed by the heart-cut of the impurities onto a longer analytical column for complete separation. Finally the detection is performed by PDHID. This method has been applied to different bulk gases and the applicability of detecting impurities in H(2), Ar, and N(2) are herewith demonstrated. As an example, the resulting detection limit of 100 nL/L and a dynamic range of 100-1000 nL/L have been obtained using an Ar sample containing methane.

  5. Trace Level Determination of Mesityl Oxide and Diacetone Alcohol in Atazanavir Sulfate Drug Substance by a Gas Chromatography Method.

    PubMed

    Raju, K V S N; Pavan Kumar, K S R; Siva Krishna, N; Madhava Reddy, P; Sreenivas, N; Kumar Sharma, Hemant; Himabindu, G; Annapurna, N

    2016-01-01

    A capillary gas chromatography method with a short run time, using a flame ionization detector, has been developed for the quantitative determination of trace level analysis of mesityl oxide and diacetone alcohol in the atazanavir sulfate drug substance. The chromatographic method was achieved on a fused silica capillary column coated with 5% diphenyl and 95% dimethyl polysiloxane stationary phase (Rtx-5, 30 m x 0.53 mm x 5.0 µm). The run time was 20 min employing programmed temperature with a split mode (1:5) and was validated for specificity, sensitivity, precision, linearity, and accuracy. The detection and quantitation limits obtained for mesityl oxide and diacetone alcohol were 5 µg/g and 10 µg/g, respectively, for both of the analytes. The method was found to be linear in the range between 10 µg/g and 150 µg/g with a correlation coefficient greater than 0.999, and the average recoveries obtained in atazanavir sulfate were between 102.0% and 103.7%, respectively, for mesityl oxide and diacetone alcohol. The developed method was found to be robust and rugged. The detailed experimental results are discussed in this research paper.

  6. Trace gas flux from container production of woody landscape plants

    USDA-ARS?s Scientific Manuscript database

    The agriculture industry is a large source of greenhouse gas (GHG) emissions which are widely believed to be causing increased global temperatures. Reduction of these emissions has been heavily researched, with most of the work focusing on row crop and animal production sectors. Little attention has...

  7. Compact Multi-Gas Monitor for Life Support Systems Control in Space: Evaluation Under Realistic Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Delgado, Jesus; Chullen, Cinda; Mendoza, Edgar

    2014-01-01

    Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, pressure range from 3.5 to 14.7 psi, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under liquid water saturation. This paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a spacesuit portable Life support system and the analytical characterization of the optical sensors interrogated by the novel optoelectronic system. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the spacesuit, which may interfere with gas sensor readings. The paper also presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in spacesuits. The studies were conducted with the spacecraft maximum allowable concentrations for those trace gases and the calculated 8-hr. concentrations resulting from having no trace contaminant control system in the ventilation loop. Finally, a profile of temperature, pressure, humidity, and gas composition for a typical EVA mission has been defined, and the performance of sensors operated repeatedly under simulated EVA mission conditions has been studied.

  8. Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy

    NASA Astrophysics Data System (ADS)

    Kapsalidis, Filippos; Shahmohammadi, Mehran; Süess, Martin J.; Wolf, Johanna M.; Gini, Emilio; Beck, Mattias; Hundt, Morten; Tuzson, Béla; Emmenegger, Lukas; Faist, Jérôme

    2018-06-01

    We report on the design, fabrication, and performance of dual-wavelength distributed-feedback (DFB) quantum cascade lasers (QCLs) emitting at several wavelengths in the mid-infrared (mid-IR) spectrum. In this work, two new designs are presented: for the first one, called "Neighbour" DFB, two single-mode DFB QCLs are fabricated next to each other, with minimal lateral distance, to allow efficient beam-coupling into multi-pass gas cells. In addition, the minimal distance allows either laser to be used as an integrated heater for the other, allowing to extend the tuning range of its neighbour without any electrical cross-talk. For the second design, the Vernier effect was used to realize a switchable DFB laser, with two target wavelengths which are distant by about 300 cm^{-1}. These devices are promising laser sources for Tunable Diode Laser Absorption Spectroscopy applications targeting simultaneous detection of multiple gasses, with distant spectral features, in compact and mobile setups.

  9. Hollow fibers for compact infrared gas sensors

    NASA Astrophysics Data System (ADS)

    Lambrecht, A.; Hartwig, S.; Herbst, J.; Wöllenstein, J.

    2008-02-01

    Hollow fibers can be used for compact infrared gas sensors. The guided light is absorbed by the gas introduced into the hollow core. High sensitivity and a very small sampling volume can be achieved depending on fiber parameters i.e. attenuation, flexibility, and gas exchange rates. Different types of infrared hollow fibers including photonic bandgap fibers were characterized using quantum cascade lasers and thermal radiation sources. Obtained data are compared with available product specifications. Measurements with a compact fiber based ethanol sensor are compared with a system simulation. First results on the detection of trace amounts of the explosive material TATP using hollow fibers and QCL will be shown.

  10. Trace metals in upland headwater lakes in Ireland.

    PubMed

    Burton, Andrew; Aherne, Julian; Hassan, Nouri

    2013-10-01

    Trace elements (n = 23) in Irish headwater lakes (n = 126) were investigated to determine their ambient concentrations, fractionation (total, dissolved, and non-labile), and geochemical controls. Lakes were generally located in remote upland, acid-sensitive regions along the coastal margins of the country. Total trace metal concentrations were low, within the range of natural pristine surface waters; however, some lakes (~20 %) had inorganic labile aluminum and manganese at levels potentially harmful to aquatic organisms. Redundancy analysis indicated that geochemical weathering was the dominant controlling factor for total metals, compared with acidity for dissolved metals. In addition, many metals were positively correlated with dissolved organic carbon indicating their affinity (or complexation) with humic substances (e.g., aluminum, iron, mercury, lead). However, a number of trace metals (e.g., aluminum, mercury, zinc) were correlated with anthropogenic acidic deposition (i.e., non-marine sulfate), suggesting atmospheric sources or elevated leaching owing to acidic deposition. As transboundary air pollution continues to decline, significant changes in the cycling of trace metals is anticipated.

  11. Hidden correlations entailed by q-non additivity render the q-monoatomic gas highly non trivial

    NASA Astrophysics Data System (ADS)

    Plastino, A.; Rocca, M. C.

    2018-01-01

    It ts known that Tsallis' q-non-additivity entails hidden correlations. It has also been shown that even for a monoatomic gas, both the q-partition function Z and the mean energy 〈 U 〉 diverge and, in particular, exhibit poles for certain values of the Tsallis non additivity parameter q. This happens because Z and 〈 U 〉 both depend on a Γ-function. This Γ, in turn, depends upon the spatial dimension ν. We encounter three different regimes according to the argument A of the Γ-function. (1) A > 0, (2) A < 0 and Γ > 0 outside the poles. (3) A displays poles and the physics is obtained via dimensional regularization. In cases (2) and (3) one discovers gravitational effects and quartets of particles. Moreover, bound states and gravitational effects emerge as a consequence of the hidden q-correlations.

  12. Trace element inhibition of phytase activity.

    PubMed

    Santos, T; Connolly, C; Murphy, R

    2015-02-01

    Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p < 0.001 was verified. The proteinate sources of OTMs were consistently and significantly less inhibitory than the majority of the other sources, p < 0.05. This was verified for Escherichia coli and Peniophora lycii phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.

  13. Ultra-sensitive Trace-Water Optical Sensor with In situ- synthesized Metal-Organic Framework in Glass Paper.

    PubMed

    Ohira, Shin-Ichi; Nakamura, Nao; Endo, Masaaki; Miki, Yusuke; Hirose, Yasuo; Toda, Kei

    2018-01-01

    Monitoring of trace water in industrial gases is strongly recommended because contaminants cause serious problems during use, especially in the semiconductor industry. An ultra-sensitive trace-water sensor was developed with an in situ-synthesized metal-organic framework as the sensing material. The sample gas is passed through the sensing membrane and efficiently and rapidly collected by the sensing material in the newly designed gas collection/detection cell. The sensing membrane, glass paper impregnated with copper 1,3,5-benzenetricarboxylate (Cu-BTC), is also newly developed. The amount and density of the sensing material in the sensing membrane must be well balanced to achieve rapid and sensitive responses. In the present study, Cu-BTC was synthesized in situ in glass paper. The developed system gave high sensing performances with a limit of detection (signal/noise ratio = 3) of 9 parts per billion by volume (ppbv) H 2 O and a 90% response time of 86 s for 200 ppbv H 2 O. The reproducibility of the responses within and between lots had relative standard deviations for 500 ppbv H 2 O of 0.8% (n = 10) and 1.5% (n = 3), respectively. The long-term (2 weeks) stability was 7.3% for 400 ppbv H 2 O and one-year continuous monitoring test showed the sensitivity change of <∼3% before and after the study. Furthermore, the system response was in good agreement with the response achieved in cavity ring-down spectroscopy. These performances are sufficient for monitoring trace water in industrial gases. The integrated system with light and gas transparent structure for gas collection/absorbance detection can also be used for other target gases, using specific metal-organic frameworks.

  14. Validation of Global Climatologies of Trace Gases Using NASA Global Tropospheric Experiment (GTE) Data

    NASA Technical Reports Server (NTRS)

    Courchaine, Brian; Venable, Jessica C.

    1995-01-01

    Methane is an important trace gas because it is a greenhouse gas that affects the oxidative capacity of the atmosphere. It is produced from biological and anthropogenic sources, and is increasing globally at a rate of approximately 0.6% per year [Climate Change 1992, IPCC]. By using National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) ground station data, a global climatology of methane values was produced. Unfortunately, because the NOAA/CMDL ground stations are so sparse, the global climatology is low resolution. In order to compensate for this low resolution data, it was compared to in-situ flight data obtained from the NASA Global Tropospheric Experiment (GTE). The smoothed ground station data correlated well with the flight data. Thus, for the first time it is shown that the smoothing process used to make global contours of methane using the ground stations is a plausible way to approximate global atmospheric concentrations of the gas. These verified climatologies can be used for testing large-scale models of chemical production, destruction, and transport. This project develops the groundwork for further research in building global climatologies from sparse ground station data and studying the transport and distribution of trace gases.

  15. Flue gas desulfurization/denitrification using metal-chelate additives

    DOEpatents

    Harkness, John B. L.; Doctor, Richard D.; Wingender, Ronald J.

    1986-01-01

    A method of simultaneously removing SO.sub.2 and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO.sub.2 and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled.

  16. Where is OH and Does It Trace the Dark Molecular Gas (DMG)?

    NASA Astrophysics Data System (ADS)

    Li, Di; Tang, Ningyu; Nguyen, Hiep; Dawson, J. R.; Heiles, Carl; Xu, Duo; Pan, Zhichen; Goldsmith, Paul F.; Gibson, Steven J.; Murray, Claire E.; Robishaw, Tim; McClure-Griffiths, N. M.; Dickey, John; Pineda, Jorge; Stanimirović, Snežana; Bronfman, L.; Troland, Thomas; PRIMO Collaboration

    2018-03-01

    Hydroxyl (OH) is expected to be abundant in diffuse interstellar molecular gas because it forms along with H2 under similar conditions and forms within a similar extinction range. We have analyzed absorption measurements of OH at 1665 MHz and 1667 MHz toward 44 extragalactic continuum sources, together with the J = 1–0 transitions of 12CO, 13CO, and C18O, and the J = 2–1 transition of 12CO. The excitation temperatures of OH were found to follow a modified lognormal distribution f({T}ex})\\propto \\tfrac{1}{\\sqrt{2π }σ }\\exp ≤ft[-\\tfrac{{[{ln}({T}ex})-{ln}(3.4{{K}})]}2}{2{σ }2}\\right], the peak of which is close to the temperature of the Galactic emission background (CMB+synchrotron). In fact, 90% of the OH has excitation temperatures within 2 K of the Galactic background at the same location, providing a plausible explanation for the apparent difficulty of mapping this abundant molecule in emission. The opacities of OH were found to be small and to peak around 0.01. For gas at intermediate extinctions (AV ∼ 0.05–2 mag), the detection rate of OH with a detection limit N(OH) ≃ 1012 cm‑2 is approximately independent of AV. We conclude that OH is abundant in the diffuse molecular gas and OH absorption is a good tracer of “dark molecular gas (DMG).” The measured fraction of DMG depends on the assumed detection threshold of the CO data set. The next generation of highly sensitive low-frequency radio telescopes, such as FAST and SKA, will make feasible the systematic inventory of diffuse molecular gas through decomposing, in velocity, the molecular (e.g., OH and CH) absorption profiles toward background continuum sources with numbers exceeding what is currently available by orders of magnitude.

  17. Increase in the thermodynamic efficiency of the working process of spark-ignited engines on natural gas with the addition of hydrogen

    NASA Astrophysics Data System (ADS)

    Mikhailovna Smolenskaya, Natalia; Vladimirovich Smolenskii, Victor; Vladimirovich Korneev, Nicholas

    2018-02-01

    The work is devoted to the substantiation and practical implementation of a new approach for estimating the change in internal energy by pressure and volume. The pressure is measured with a calibrated sensor. The change in volume inside the cylinder is determined by changing the position of the piston. The position of the piston is precisely determined by the angle of rotation of the crankshaft. On the basis of the proposed approach, the thermodynamic efficiency of the working process of spark ignition engines on natural gas with the addition of hydrogen was estimated. Experimental studies were carried out on a single-cylinder unit UIT-85. Their analysis showed an increase in the thermodynamic efficiency of the working process with the addition of hydrogen in a compressed natural gas (CNG).The results obtained make it possible to determine the characteristic of heat release from the analysis of experimental data. The effect of hydrogen addition on the CNG combustion process is estimated.

  18. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOEpatents

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  19. Molecular gas in low-metallicity starburst galaxies:. Scaling relations and the CO-to-H2 conversion factor

    NASA Astrophysics Data System (ADS)

    Amorín, R.; Muñoz-Tuñón, C.; Aguerri, J. A. L.; Planesas, P.

    2016-04-01

    Context. Tracing the molecular gas-phase in low-mass star-forming galaxies becomes extremely challenging due to significant UV photo-dissociation of CO molecules in their low-dust, low-metallicity ISM environments. Aims: We aim to study the molecular content and the star-formation efficiency of a representative sample of 21 blue compact dwarf galaxies (BCDs), previously characterized on the basis of their spectrophotometric properties. Methods: We present CO (1-0) and (2-1) observations conducted at the IRAM-30m telescope. These data are further supplemented with additional CO measurements and multiwavelength ancillary data from the literature. We explore correlations between the derived CO luminosities and several galaxy-averaged properties. Results: We detect CO emission in seven out of ten BCDs observed. For two galaxies these are the first CO detections reported so far. We find the molecular content traced by CO to be correlated with the stellar and Hi masses, star formation rate (SFR) tracers, the projected size of the starburst, and its gas-phase metallicity. BCDs appear to be systematically offset from the Schmidt-Kennicutt (SK) law, showing lower average gas surface densities for a given ΣSFR, and therefore showing extremely low (≲0.1 Gyr) H2 and H2 +Hi depletion timescales. The departure from the SK law is smaller when considering H2 +Hi rather than H2 only, and is larger for BCDs with lower metallicity and higher specific SFR. Thus, the molecular fraction (ΣH2/ ΣHI) and CO depletion timescale (ΣH2/ ΣSFR) of BCDs is found to be strongly correlated with metallicity. Using this, and assuming that the empirical correlation found between the specific SFR and galaxy-averaged H2 depletion timescale of more metal-rich galaxies extends to lower masses, we derive a metallicity-dependent CO-to-H2 conversion factor αCO,Z ∝ (Z/Z⊙)- y, with y = 1.5(±0.3)in qualitative agreement with previous determinations, dust-based measurements, and recent model

  20. Trace contaminant studies of HSC adsorbent. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Yieh, D. T. N.

    1978-01-01

    The adsorption and desorption of fifteen trace contaminants on HSC (polyethylenimine coated acrylic ester) adsorbent were experimentally investigated with the following two objectives: to test the removal potential and the adsorption reversibility of the selected trace contaminants, and to test the effect a preadsorbed trace contaminant has on the CO2 adsorption capacity. The experimental method for acquiring the adsorption equilibrium data used is based on the volumetric (or displacement) concept of vacuum adsorption. From the experimental results, it was found that the HSC adsorbent has good adsorption potential for contaminants of alcohol compounds, esters, and benzene compounds; whereas, adsorption of ketone compounds, oxidizing and reducing agents are detrimental to the adsorbent. In addition, all liquid contaminants reduce the CO2 capacity of HSC adsorbent.

  1. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath

    NASA Astrophysics Data System (ADS)

    Smith, David; Španěl, Patrik

    Our major objective in this paper is to describe a new method we have developed for the analysis of trace gases at partial pressures down to the ppb level in atmospheric air, with special emphasis on the detection and quantification of trace gases on human breath. It involves the use of our selected ion flow tube (Sift) technique which we previously developed and used extensively for the study of gas phase ionic reactions occurring in ionized media such as the terrestrial atmosphere and interstellar gas clouds. Before discussing this analytical technique we describe the results of our very recent Sift and flowing afterglow (FA) studies of the reactions of the H3O+ and OH- ions, of their hydrates H3O+(H2O)1,2,3 and OH- (H2O)1,2, and of NO+ and O2+, with several hydrocarbons and oxygen-bearing organic molecules, studies that are very relevant to our trace gas analytical studies. Then follows a detailed discussion of the application of our Sift technique to trace gas analysis, after which we present some results obtained for the analyses of laboratory air, the breath of a healthy non-smoking person, the breath of a person who regularly smokes cigarettes, the complex vapours emitted by banana and onion, and the molecules present in a butane/air flame. We show how the quantitative analysis of breath can be achieved from only a single exhalation and in real time (the time response of the instrument is only about 20 ms). We also show how the time variation of breath gases over long time periods can be followed, using the decay of ethanol on the breath after the ingestion of distilled liquor as an example, yet simultaneously following several other trace gases including acetone and isoprene which are very easily detected on the breath of all individuals because of their relatively high partial pressures (typically 100 to 1000 ppb). The breath of a smoker is richer in complex molecules, some nitrogen containing organics apparently being very evident at the 5 to 50 ppb level

  2. Effect of different agronomic practises on greenhouse gas emissions, especially N2O and nutrient cycling

    NASA Astrophysics Data System (ADS)

    Koal, Philipp; Schilling, Rolf; Gerl, Georg; Pritsch, Karin; Munch, Jean Charles

    2014-05-01

    In order to achieve a reduction of greenhouse gas emissions, management practises need to be adapted by implementing sustainable land use. At first, reliable field data are required to assess the effect of different farming practises on greenhouse gas budgets. The conducted field experiment covers and compares two main aspects of agricultural management, namely an organic farming system and an integrated farming system, implementing additionally the effects of diverse tillage systems and fertilisation practises. Furthermore, the analysis of the alterable biological, physical and chemical soil properties enables a link between the impact of different management systems on greenhouse gas emissions and the monitored cycle of matter, especially the nitrogen cycle. Measurements were carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term field trials of the organic and integrated farming system were started in 1992. Since then, parcels in a field (each around 0,2-0,4 ha) with a particular interior plot set-up have been conducted. So the 20 years impacts of different tillage and fertilisation practises on soil properties including trace gases were examined. Fluxes of CH4, N2O and CO2 are monitored since 2007 for the integrated farming system trial and since 2012 for the organic farming system trial using an automated system which consists of chambers (per point: 4 chambers, each covering 0,4 m2 area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit (Flessa et al. 2002). Each chamber is sampled 3-4 times in 24 hours. The main outcomes are the analysis of temporal and spatial dynamics of greenhouse gas fluxes as influenced by management practice events (fertilisation and tillage) and weather effects (drying-rewetting, freezing-thawing, intense rainfall and dry periods

  3. Flue gas desulfurization/denitrification using metal-chelate additives

    DOEpatents

    Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

    1985-08-05

    A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

  4. Investigation of Cross-Linked and Additive Containing Polymer Materials for Membranes with Improved Performance in Pervaporation and Gas Separation

    PubMed Central

    Hunger, Katharina; Schmeling, Nadine; Jeazet, Harold B. Tanh; Janiak, Christoph; Staudt, Claudia; Kleinermanns, Karl

    2012-01-01

    Pervaporation and gas separation performances of polymer membranes can be improved by crosslinking or addition of metal-organic frameworks (MOFs). Crosslinked copolyimide membranes show higher plasticization resistance and no significant loss in selectivity compared to non-crosslinked membranes when exposed to mixtures of CO2/CH4 or toluene/cyclohexane. Covalently crosslinked membranes reveal better separation performances than ionically crosslinked systems. Covalent interlacing with 3-hydroxypropyldimethylmaleimide as photocrosslinker can be investigated in situ in solution as well as in films, using transient UV/Vis and FTIR spectroscopy. The photocrosslinking yield can be determined from the FTIR-spectra. It is restricted by the stiffness of the copolyimide backbone, which inhibits the photoreaction due to spatial separation of the crosslinker side chains. Mixed-matrix membranes (MMMs) with MOFs as additives (fillers) have increased permeabilities and often also selectivities compared to the pure polymer. Incorporation of MOFs into polysulfone and Matrimid® polymers for MMMs gives defect-free membranes with performances similar to the best polymer membranes for gas mixtures, such as O2/N2 H2/CH4, CO2/CH4, H2/CO2, CH4/N2 and CO2/N2 (preferentially permeating gas is named first). The MOF porosity, its particle size and content in the MMM are factors to influence the permeability and the separation performance of the membranes. PMID:24958427

  5. Trace-Element Concentrations in Northwest Africa 032

    NASA Technical Reports Server (NTRS)

    Korotev, R. L.; Jolliff, B. L.; Wang, A.; Gillis, J. J.; Haskin, L. A.; Fagan, T. J.; Taylor, G. J.; Keil, K.

    2001-01-01

    Trace-element concentrations (INAA) are presented for four samples of the NWA 032 lunar meteorite. The mare basalt has a moderately high Th concentration (1.9 ppm) and a higher Th/REE ratio than any other known mare basalt. Additional information is contained in the original extended abstract.

  6. Color Addition and Subtraction Apps

    NASA Astrophysics Data System (ADS)

    Ruiz, Frances; Ruiz, Michael J.

    2015-10-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step in understanding mathematical representations of RGB color. Finally, color addition and subtraction are presented for the X11 colors from web design to illustrate yet another real-life application of color mixing.

  7. Speciation, Characterization, And Mobility Of As, Se and Hg In Flue Gas Desulphurization Residues

    EPA Science Inventory

    Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se) and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue...

  8. Development of Optical Parametric Amplifier for Lidar Measurements of Trace Gases on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2011-01-01

    Trace gases in planetary atmospheres offer important clues as to the origins of the planet's hydrology, geology. atmosphere. and potential for biology. Wc report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OP A output light is single frequency with high spectral purity and is widely tunable both at 1600 nm and 3300 nm with an optical-optical conversion efficiency of approximately 40%. We demonstrated open-path atmospheric measurements ofCH4 (3291 nm and 1651 nm). CO2 (1573 nm), H20 (1652 nm) with this laser source.

  9. Studies of Trace Gas Chemical Cycles Using Inverse Methods and Global Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    2003-01-01

    We report progress in the first year, and summarize proposed work for the second year of the three-year dynamical-chemical modeling project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for long lived gases important in ozone depletion and climate forcing, (b) utilization of inverse methods to determine these source/sink strengths using either MATCH (Model for Atmospheric Transport and Chemistry) which is based on analyzed observed wind fields or back-trajectories computed from these wind fields, (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple titrating gases, and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important goals include determination of regional source strengths of methane, nitrous oxide, methyl bromide, and other climatically and chemically important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal protocol and its follow-on agreements and hydrohalocarbons now used as alternatives to the restricted halocarbons.

  10. Enhanced spatially-resolved trace analysis using combined SIMS-single-stage AMS

    NASA Astrophysics Data System (ADS)

    Grabowski, K. S.; Groopman, E. E.; Fahey, A. J.

    2017-11-01

    Secondary ion mass spectrometry (SIMS) provides spatially resolved trace analysis of solid materials, but can be complicated by unresolved abundant molecular isobars. By adding a 300-kV single-stage accelerator mass spectrometer (SSAMS) as a detector for a Cameca ims 4f SIMS, one can measure more abundant positive ions from the SIMS while removing molecular isobars, thus improving very low abundance trace element and isotope analysis. This paper describes important features and capabilities of such an integrated system at the Naval Research Laboratory using charge state +1 ions. Transmission loss is compared to molecule destruction as gas flow to the molecule-destruction cell increases. As most measurements tolerate more modest abundance sensitivities than for 14C analysis, a lower gas flow is acceptable, so good transmission of 20-50% for ions of interest can be maintained for a broad range of ion masses. This new instrument has measured isotope ratios for uranium, lead, rare earths, and other elements from particulates and localized regions, with molecule destruction enabling the measurement at low SIMS mass resolving power and thus high transmission, as examples will show. This new and world-unique instrument provides improved capabilities for applications in nuclear and other forensics, geochemistry, cosmochemistry, and the development of optical, electronic, multifunctional, and structural materials.

  11. The Influence of Trace Gases Absorption on Differential Ring Cross Sections

    NASA Astrophysics Data System (ADS)

    Han, Dong; Zhao, Keyi

    2017-04-01

    The Ring effect refers to the filling in of Fraunhofer lines, which is known as solar absorption lines, caused almost entirely by rotational Raman scattering. The rotational Raman scattering by N2 and O2 in the atmosphere is the main factor that leads to Ring effect. The Ring effect is one significant limitation to the accuracy of the retrieval of trace gas constituents in atmosphere, while using satellite data with Differential Optical Absorption Spectroscopy technique. In this study, firstly the solar spectrum is convolved with rotational Raman cross sections of atmosphere, which is calculated with rotational Raman cross sections of N2 and O2, divided by the original solar spectrum, with a cubic polynomial subtracted off, to create differential Ring spectrum Ring1. Secondly, the Ring effect for pure Raman scattering of the Fraunhofer spectrum plus the contribution from interference by terrestrial absorption which always comes from a kind of trace gas (e.g., O3) are derived. To allow for more generality, the optically thin term as well as the next term in the expansion for the Beer-Lambert law are calculated.Ring1, Ring2, and Ring3are the Fraunhofer only, 1st terrestrial correction, and 2nd terrestrial correction for DOAS fitting.

  12. Transferring pharmaceuticals into the gas phase

    NASA Astrophysics Data System (ADS)

    Christen, Wolfgang; Krause, Tim; Rademann, Klaus

    2008-11-01

    The dissolution of molecules of biological interest in supercritical carbon dioxide is investigated using pulsed molecular beam mass spectrometry. Due to the mild processing temperatures of most supercritical fluids, their adiabatic expansion into vacuum permits to transfer even thermally very sensitive substances into the gas phase, which is particularly attractive for pharmaceutical and biomedical applications. In addition, supercritical CO2constitutes a chemically inert solvent that is compatible with hydrocarbon-free ultrahigh vacuum conditions. Here, we report on the dissolution and pulsed supersonic jet expansion of caffeine (C8H10N4O2), the provitamin menadione (C11H8O2), and the amino acid derivative l-phenylalanine tert-butyl ester hydrochloride (C6H5CH2CH(NH2)COOC(CH3)3[dot operator]HCl), into vacuum. An on-axis residual gas analyzer is used to monitor the relative amounts of solute and solvent in the molecular beam as a function of solvent densityE The excellent selectivity and sensitivity provided by mass spectrometry permits to probe even trace amounts of solutes. The strong density variation of CO2 close to the critical point results in a pronounced pressure dependence of the relative ion currents of solute and solvent molecules, reflecting a substantial change in solubility.

  13. Trace Gas Measurements in Nascent, Aged and Cloud-processed Smoke from Africa Savanna Fires by Airborne Fourier Transform Infrared Spectroscopy (AFTIR)

    NASA Technical Reports Server (NTRS)

    Yokelson, Robert J.; Bertschi, Isaac T.; Christian, Ted J.; Hobbs, Peter V.; Ward, Darold E.; Hao, Wei Min

    2003-01-01

    We measured stable and reactive trace gases with an airborne Fourier transform infrared spectrometer (AFTIR) on the University of Washington Convair-580 research aircraft in August/September 2000 during the SAFARI 2000 dry season campaign in Southern Africa. The measurements included vertical profiles of C02, CO, H20, and CH4 up to 5.5 km on six occasions above instrumented ground sites and below the TERRA satellite and ER-2 high-flying research aircraft. We also measured the trace gas emissions from 10 African savanna fires. Five of these fires featured extensive ground-based fuel characterization, and two were in the humid savanna ecosystem that accounts for most African biomass burning. The major constituents we detected in nascent CH3OOH, HCHO, CH30H, HCN, NH3, HCOOH, and C2H2. These are the first quantitative measurements of the initial emissions of oxygenated volatile organic compounds (OVOC), NH3, and HCN from African savanna fires. On average, we measured 5.3 g/kg of OVOC and 3.6 g/kg of hydrocarbons (including CH4) in the initial emissions from the fires. Thus, the OVOC will have profound, largely unexplored effects on tropical tropospheric chemistry. The HCN emission factor was only weakly dependent on fire type; the average value (0.53 g/kg) is about 20 times that of a previous recommendation. HCN may be useful as a tracer for savanna fires. Delta O3/Delta CO and Delta CH3COO/Delta CO increased to as much as 9% in <1 h of photochemical processing downwind of fires. Direct measurements showed that cloud processing of smoke greatly reduced CH30H, NH3, CH3COOH, SO2, and NO2 levels, but significantly increased HCHO and NO.

  14. Limiting Short-term Noise versus Optical Density in a Direct Absorption Spectrometer for Trace Gas Detection

    NASA Astrophysics Data System (ADS)

    Jervis, D.

    2016-12-01

    Field-deployable trace gas monitors are important for understanding a multitude of atmospheric processes: from forest photosynthesis and respiration [1], to fugitive methane emissions [2] and satellite measurement validation [3]. Consequently, a detailed knowledge of the performance limitations of these instruments is essential in order to establish reliable datasets. We present the short-term ( >1 Hz) performance of a long-pass direct absorption spectrometer as a function of the optical density of the absorption transition being probed. In particular, we identify fluctuations in the laser intensity as limiting the optical density uncertainty to 4x10-6/√Hz for weak transitions, and noise in the laser drive current as limiting the fractional noise in the optical density to 4x10-5/√Hz for deep transitions. We provide numerical and analytical predictions for both effects, as well as using the understanding of this phenomena to estimate how noise on neighboring strong and weak transitions couple to each other. All measurements were performed using the Aerodyne Research TILDAS Monitor, but are general to any instrument that uses direct absorption spectroscopy as a detection method. Wehr, R., et al. "Seasonality of temperate forest photosynthesis and daytime respiration." Nature 534.7609 (2016): 680-683. Conley, S., et al. "Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA." Science 351.6279 (2016): 1317-1320. Emmons, L. K., et al. "Validation of Measurements of Pollution in the Troposphere (MOPITT) CO retrievals with aircraft in situ profiles." Journal of Geophysical Research: Atmospheres 109.D3 (2004).

  15. Gas chromatographic analysis of volatiles in fluid and gas inclusions

    USGS Publications Warehouse

    Andrawes, F.; Holzer, G.; Roedder, E.; Gibson, E.K.; Oro, John

    1984-01-01

    Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping.These inclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels.We present here some analyses of inclusions in a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography—mass spectrometry (GC—MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crusing surfaces, and is operated in a pure helium atmosphere at a controlled temperature.Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC—MS. This combination of procedures has been shown to provide geochemically useful information on the process involved in the history of the samples analyzed.

  16. Gas chromatographic analysis of volatiles in fluid and gas inclusions.

    PubMed

    Andrawes, F; Holzer, G; Roedder, E; Gibson, E K; Oro, J

    1984-01-01

    Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping. These conclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels. We present here some analyses of inclusion on a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography-mass spectrometry (GC-MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crushing surfaces, and is operated in a pure helium atmosphere at a controlled temperature. Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC-MS. This combination of procedures has been shown to provide geochemically useful information on the processes involved in the history of the samples analyzed.

  17. Dangerous gas detection based on infrared video

    NASA Astrophysics Data System (ADS)

    Ding, Kang; Hong, Hanyu; Huang, Likun

    2018-03-01

    As the gas leak infrared imaging detection technology has significant advantages of high efficiency and remote imaging detection, in order to enhance the detail perception of observers and equivalently improve the detection limit, we propose a new type of gas leak infrared image detection method, which combines background difference methods and multi-frame interval difference method. Compared to the traditional frame methods, the multi-frame interval difference method we proposed can extract a more complete target image. By fusing the background difference image and the multi-frame interval difference image, we can accumulate the information of infrared target image of the gas leak in many aspect. The experiment demonstrate that the completeness of the gas leakage trace information is enhanced significantly, and the real-time detection effect can be achieved.

  18. Simultaneously combining AOD and multiple trace gas measurements to identify decadal changes in urban and biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Cohen, Jason

    2017-04-01

    This work presents a methodology by which to comprehensively analyze simultaneous tropospheric measurements of AOD and associated trace gasses. It then applies this methodology by focusing over the past 11 years (2006-2016) on one of the most rapidly changing regions of the troposphere: Eastern and Southeastern Asia. The specific work presented incorporates measurements of both aerosol and related gas phase tropospheric measurements across different spectral, spatial, temporal, and passive/active sensors and properties, including: MODIS, MISR, OMI, CALIOP, and others. This new characterization reveals a trio of new information, including a time-invariant urban signal, slowly-time-varying new-urbanization signal, and a rapidly time-varying biomass burning signal. Additionally, due to the different chemical properties of the various species analyzed, analyzing the different spatial domains of the resulting products allows for further information in terms of the amounts of aerosols produced both through primary emissions as well as secondary processing. The end result is a new characterization, in space, time, and magnitude, of both anthropogenic and biomass burning aerosols. These results are then used to drive an advanced modeling system including aerosol chemistry, physics, optics, and transport, and employing an aerosol routine based on multi-modal and both externally mixed and core-shell mixing. The resulting characterization in space, time, and quantity is analyzed and compared against AERONET, NOAA, and other ground networks, with the results comparing consistently to or better than present approaches which set up net emissions separately from urban and biomass burning products. Scientifically, new source regions of emissions are identified, some of which were previously non-urbanized or found to not contain any fire hotspots. This new approach is consistent with the underlying economic and development pathways of expanding urban areas and rapid economic growth

  19. Neutral Beam Injection in the JET Trace Tritium Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surrey, E.; Ciric, D.; Cox, S. J.

    Operation of the JET Neutral Beam Injectors with tritium is described. Supplying the tritium feed via the special electrically grounded gas feed compromised the performance of the up-graded high current triode Positive Ion Neutral Injectors (PINI) due to gas starvation of the source and the methods adopted to ameliorate this effect are described. A total of 362 PINI beam pulses were requested, circulating a total of 4.73g tritium, of which 9.3mg was injected into the torus. Safety considerations required a continuous, cumulative total to be maintained of the mass of tritium adsorbed onto the cryo-pumping panel; a daily limit ofmore » 0.5g was adopted for the Trace Tritium Experiment (TTE). A subsequent clean up phase using 115keV deuterium beams completed the isotopic exchange of components in the beamline.« less

  20. Characterization and calibration of gas sensor systems at ppb level—a versatile test gas generation system

    NASA Astrophysics Data System (ADS)

    Leidinger, Martin; Schultealbert, Caroline; Neu, Julian; Schütze, Andreas; Sauerwald, Tilman

    2018-01-01

    This article presents a test gas generation system designed to generate ppb level gas concentrations from gas cylinders. The focus is on permanent gases and volatile organic compounds (VOCs) for applications like indoor and outdoor air quality monitoring or breath analysis. In the design and the setup of the system, several issues regarding handling of trace gas concentrations have been considered, addressed and tested. This concerns not only the active fluidic components (flow controllers, valves), which have been chosen specifically for the task, but also the design of the fluidic tubing regarding dead volumes and delay times, which have been simulated for the chosen setup. Different tubing materials have been tested for their adsorption/desorption characteristics regarding naphthalene, a highly relevant gas for indoor air quality monitoring, which has generated high gas exchange times in a previous gas mixing system due to long time adsorption/desorption effects. Residual gas contaminations of the system and the selected carrier air supply have been detected and quantified using both an analytical method (GC-MS analysis according to ISO 16000-6) and a metal oxide semiconductor gas sensor, which detected a maximum contamination equivalent to 28 ppb of carbon monoxide. A measurement strategy for suppressing even this contamination has been devised, which allows the system to be used for gas sensor and gas sensor system characterization and calibration in the low ppb concentration range.

  1. Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Upgrade to Full Sun-Sky-Cloud-Trace Gas Spectrometry Capability for Airborne Science

    NASA Astrophysics Data System (ADS)

    Dunagan, S. E.; Flynn, C. J.; Johnson, R. R.; Kacenelenbogen, M. S.; Knobelspiesse, K. D.; LeBlanc, S. E.; Livingston, J. M.; Redemann, J.; Russell, P. B.; Schmid, B.; Segal-Rosenhaimer, M.; Shinozuka, Y.

    2014-12-01

    The Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument has been developed at NASA Ames in collaboration with Pacific Northwest National Laboratory (PNNL) and NASA Goddard, supported substantially since 2009 by NASA's Radiation Science Program and Earth Science Technology Office. It combines grating spectrometers with fiber optic links to a tracking, scanning head to enable sun tracking, sky scanning, and zenith viewing. 4STAR builds on the long and productive heritage of the NASA Ames Airborne Tracking Sunphotometers (AATS-6 and -14), which have yielded more than 100 peer-reviewed publications and extensive archived data sets in many NASA Airborne Science campaigns from 1986 to the present. The baseline 4STAR instrument has provided extensive data supporting the TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013), SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys, 2013), and ARISE (Arctic Radiation - IceBridge Sea and Ice Experiment, 2014), field campaigns.This poster presents plans and progress for an upgrade to the 4STAR instrument to achieve full science capability, including (1) direct-beam sun tracking measurements to derive aerosol optical depth spectra, (2) sky radiance measurements to retrieve aerosol absorption and type (via complex refractive index and mode-resolved size distribution), (3) cloud properties via zenith radiance, and (4) trace gas spectrometry. Technical progress in context with the governing physics is reported on several upgrades directed at improved light collection and usage, particularly as related to spectrally and radiometrically stable propagation through the collection light path. In addition, improvements to field calibration and verification, and flight operability and reliability are addressed.

  2. Considerations on ultra-trace analysis of phthalates in drinking water.

    PubMed

    Serôdio, P; Nogueira, J M F

    2006-07-01

    Stir bar sorptive extraction with liquid desorption followed by large volume injection and capillary gas chromatography coupled to mass spectrometry (SBSE-LD/LVI-GC-MS), had been applied for the determination of ultra-traces of seven-phthalates (dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, butyl benzyl phthalate, bis(2-ethylhexyl) adipate, bis(2-ethylhexyl) phthalate and bis(1-octyl) phthalate) in drinking water samples, which are included in the priority lists set by several international regulatory organizations. Instrumental calibration under the selected-ion monitoring mode acquisition (LVI-GC-MS(SIM)), experimental parameters that could affect the SBSE-LD efficiency, as well as, the control of the contamination profile are fully discussed. Throughout systematic assays on 30 mL water samples spiked at the 0.40 microg/L level, it had been established that stir bars coated with 47 microL of polydimethylsiloxane, an equilibrium time of 60 min (1,000 rpm) and methanol as back extraction solvent, allowed the best analytical performance to monitor phthalates in water matrices. From the data obtained, good accuracy and a remarkable reproducibility (< 14.8%) were attained, providing experimental recovery data in agreement with the theoretical equilibrium described by the octanol-water partition coefficients (K(PDMS/W) approximately K(O/W)), with the exception of bis(2-ethylhexyl) adipate, bis(2-ethylhexyl) phthalate and bis(1-octyl) phthalate, for which lower yields were measured. Additionally, a remarkable linear dynamic range between 25 and 2,000 ng/L (r(2)>0.99) and low detection limits (3-40 ng/L) were also achieved for the seven-phthalates studied. The application of the present method to monitor phthalates in tap and bottled mineral water samples, allowed convenient selectivity and high sensitivity up to 1.0 microg/L level, using the standard addition methodology. The proposed method showed to be feasible and sensitive with a low sample volume

  3. Accumulation and trace-metal variability of estuarine sediments, St. Bernard delta geomorphic region, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landrum, K.E.

    1995-10-01

    Prior to government regulation, little monitoring of metal discharges into the canals, bayous, and rivers that drain estuarine systems occured. Discharges of trace-metals by industries and municipalities into surface water bodies are presently regulated through the use of Federal and State mandated permit programs. Resource management of economically important estuarine systems has fostered increasing concern over the accumulation of trace-metal pollutants in water, sediments, and biota from these dynamic areas. The acid-leachable concentrations of fourteen trace-metals were determined for 125 bottom sediment samples and 50 core interval samples by plasma emission analysis. Bottom sediments of the St. Bernard estuarom complexmore » consist predominantly of silty clays and clayey silts derived from the erosion of the St. Bernard lobe of the Mississippi River delta and sediments associated with historic crevasses along the Mississippi River. Within the 2 cm core intervals, trace-metal concentrations of Ba, Cr, Cd, Pb, and Zn increased by 10% to 18% in sediments accumulated within the last 75 years. Trace-metal concentrations from sediments for the study area tend to have greater mean concentrations than Florida estuarine sediments, basinwide and Gulf Coast trace-metal comparisons, sediment geochronology. Rates varied from 0.12 to 0.21 cm/yr. Within the 2 cm core intervals, trace-metal concentrations of Ba, Cr, Cd, Pb, and Zn increased by 10% to 18% in sediments accumulated within the last 75 years. Natural trace-metal variability was examined through the use of an aluminum normalization model based on Florida and Louisiana estuarine sediments, basinwide and Gulf Coast trace-metal comparisons, sediment geochronology, and grain-size corrected data. Elevated concentrations of As, Ba, Cd, Pb, V and Zn were noted from sediments associated with oil and gas drilling and production, sandblasting and shipbuilding, dredging, and stormwater, municipal, and industrial

  4. Soil-atmosphere trace gas exchange from tropical oil palm plantations on peat

    NASA Astrophysics Data System (ADS)

    Arn Teh, Yit; Manning, Frances; Zin Zawawi, Norliyana; Hill, Timothy; Chocholek, Melanie; Khoon Kho, Lip

    2015-04-01

    Oil palm is the largest agricultural crop in the tropics, accounting for 13 % of all tropical land cover. Due to its large areal extent, oil palm cultivation may have important implications not only for terrestrial stores of C and N, but may also impact regional and global exchanges of material and energy, including fluxes of trace gases and water vapor. In particular, recent expansion of oil palm into tropical peatlands has raised concerns over enhanced soil C emissions from degradation of peat, and elevated N-gas fluxes linked to N fertilizer application. Here we report our preliminary findings on soil carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes from a long-term, multi-scale project investigating the C, N and greenhouse gas (GHG) dynamics of oil palm ecosystems established on peat soils in Sarawak, Malaysian Borneo. Flux chamber measurements indicate that soil CO2, CH4 and N2O fluxes averaged 20.0 ± 16.0 Mg CO2-C ha-1 yr-1, 37.4 ± 29.9 kg CH4-C ha-1 yr-1 and 4.7 ± 4.2 g N2O-N ha-1 yr-1, respectively. Soil CO2 fluxes were on par with other drained tropical peatlands; whereas CH4 fluxes exceeded observations from similar study sites elsewhere. Nitrous oxide fluxes were in a similar range to fluxes from other drained tropical peatlands, but lower than emissions from mineral-soil plantations by up to three orders of magnitude. Fluxes of soil CO2 and N2O were spatially stratified, and contingent upon the distribution of plants, deposited harvest residues, and soil moisture. Soil CO2 fluxes were most heavily influenced by the distribution of palms and their roots. On average, autotrophic (root) respiration accounted for approximately 78 % of total soil CO2 flux, and total soil respiration declined steeply away from palms; e.g. soil CO2 fluxes in the immediate 1 m radius around palms were up to 6 times greater than fluxes in inter-palm spaces due to higher densities of roots. Placement of harvest residues played an important - but secondary

  5. A primer on trace metal-sediment chemistry

    USGS Publications Warehouse

    Horowitz, Arthur J.

    1985-01-01

    In most aquatic systems, concentrations of trace metals in suspended sediment and the top few centimeters of bottom sediment are far greater than concentrations of trace metals dissolved in the water column. Consequently, the distribution, transport, and availability of these constituents can not be intelligently evaluated, nor can their environmental impact be determined or predicted solely through the sampling and analysis of dissolved phases. This Primer is designed to acquaint the reader with the basic principles that govern the concentration and distribution of trace metals associated with bottom and suspended sediments. The sampling and analysis of suspended and bottom sediments are very important for monitoring studies, not only because trace metal concentrations associated with them are orders of magnitude higher than in the dissolved phase, but also because of several other factors. Riverine transport of trace metals is dominated by sediment. In addition, bottom sediments serve as a source for suspended sediment and can provide a historical record of chemical conditions. This record will help establish area baseline metal levels against which existing conditions can be compared. Many physical and chemical factors affect a sediment's capacity to collect and concentrate trace metals. The physical factors include grain size, surface area, surface charge, cation exchange capacity, composition, and so forth. Increases in metal concentrations are strongly correlated with decreasing grain size and increasing surface area, surface charge, cation exchange capacity, and increasing concentrations of iron and manganese oxides, organic matter, and clay minerals. Chemical factors are equally important, especially for differentiating between samples having similar bulk chemistries and for inferring or predicting environmental availability. Chemical factors entail phase associations (with such sedimentary components as interstitial water, sulfides, carbonates, and organic

  6. TraceContract: A Scala DSL for Trace Analysis

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Havelund, Klaus

    2011-01-01

    In this paper we describe TRACECONTRACT, an API for trace analysis, implemented in the SCALA programming language. We argue that for certain forms of trace analysis the best weapon is a high level programming language augmented with constructs for temporal reasoning. A trace is a sequence of events, which may for example be generated by a running program, instrumented appropriately to generate events. The API supports writing properties in a notation that combines an advanced form of data parameterized state machines with temporal logic. The implementation utilizes SCALA's support for defining internal Domain Specific Languages (DSLs). Furthermore SCALA's combination of object oriented and functional programming features, including partial functions and pattern matching, makes it an ideal host language for such an API.

  7. Adsorptive removal of catalyst poisons from coal gas for methanol synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, B.L.; Golden, T.C.; Hsiung, T.H.

    1991-12-01

    As an integral part of the liquid-phase methanol (LPMEOH) process development program, the present study evaluated adsorptive schemes to remove traces of catalyst poisons such as iron carbonyl, carbonyl sulfide, and hydrogen sulfide from coal gas on a pilot scale. Tests were conducted with coal gas from the Cool Water gasification plant at Daggett, California. Iron carbonyl, carbonyl sulfide, and hydrogen sulfide were effectively removed from the coal gas. The adsorption capacities of Linde H-Y zeolite and Calgon BPL carbon for Fe(CO){sub 5} compared well with previous bench-scale results at similar CO{sub 2} partial pressure. Adsorption of COS by Calgonmore » FCA carbon appeared to be chemical and nonregenerable by thermal treatment in nitrogen. A Cu/Zn catalyst removed H{sub 2}S very effectively. With the adsorption system on-line, a methanol catalyst showed stable activity during 120 h operation, demonstrating the feasibility of adsorptive removal of trace catalyst poisons from the synthesis gas. Mass transfer coefficients were estimated for Fe(CO){sub 5} and COS removal which can be directly used for design and scale up.« less

  8. Assessment of the TRACE Reactor Analysis Code Against Selected PANDA Transient Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavisca, M.; Ghaderi, M.; Khatib-Rahbar, M.

    2006-07-01

    The TRACE (TRAC/RELAP Advanced Computational Engine) code is an advanced, best-estimate thermal-hydraulic program intended to simulate the transient behavior of light-water reactor systems, using a two-fluid (steam and water, with non-condensable gas), seven-equation representation of the conservation equations and flow-regime dependent constitutive relations in a component-based model with one-, two-, or three-dimensional elements, as well as solid heat structures and logical elements for the control system. The U.S. Nuclear Regulatory Commission is currently supporting the development of the TRACE code and its assessment against a variety of experimental data pertinent to existing and evolutionary reactor designs. This paper presents themore » results of TRACE post-test prediction of P-series of experiments (i.e., tests comprising the ISP-42 blind and open phases) conducted at the PANDA large-scale test facility in 1990's. These results show reasonable agreement with the reported test results, indicating good performance of the code and relevant underlying thermal-hydraulic and heat transfer models. (authors)« less

  9. Quantification of Stable Isotope Traces Close to Natural Enrichment in Human Plasma Metabolites Using Gas Chromatography-Mass Spectrometry.

    PubMed

    Krämer, Lisa; Jäger, Christian; Trezzi, Jean-Pierre; Jacobs, Doris M; Hiller, Karsten

    2018-02-14

    Currently, changes in metabolic fluxes following consumption of stable isotope-enriched foods are usually limited to the analysis of postprandial kinetics of glucose. Kinetic information on a larger diversity of metabolites is often lacking, mainly due to the marginal percentage of fully isotopically enriched plant material in the administered food product, and hence, an even weaker 13 C enrichment in downstream plasma metabolites. Therefore, we developed an analytical workflow to determine weak 13 C enrichments of diverse plasma metabolites with conventional gas chromatography-mass spectrometry (GC-MS). The limit of quantification was increased by optimizing (1) the metabolite extraction from plasma, (2) the GC-MS measurement, and (3) most importantly, the computational data processing. We applied our workflow to study the catabolic dynamics of 13 C-enriched wheat bread in three human subjects. For that purpose, we collected time-resolved human plasma samples at 16 timepoints after the consumption of 13 C-labeled bread and quantified 13 C enrichment of 12 metabolites (glucose, lactate, alanine, glycine, serine, citrate, glutamate, glutamine, valine, isoleucine, tyrosine, and threonine). Based on isotopomer specific analysis, we were able to distinguish catabolic profiles of starch and protein hydrolysis. More generally, our study highlights that conventional GC-MS equipment is sufficient to detect isotope traces below 1% if an appropriate data processing is integrated.

  10. Quantification of Stable Isotope Traces Close to Natural Enrichment in Human Plasma Metabolites Using Gas Chromatography-Mass Spectrometry

    PubMed Central

    Krämer, Lisa; Jäger, Christian; Jacobs, Doris M.; Hiller, Karsten

    2018-01-01

    Currently, changes in metabolic fluxes following consumption of stable isotope-enriched foods are usually limited to the analysis of postprandial kinetics of glucose. Kinetic information on a larger diversity of metabolites is often lacking, mainly due to the marginal percentage of fully isotopically enriched plant material in the administered food product, and hence, an even weaker 13C enrichment in downstream plasma metabolites. Therefore, we developed an analytical workflow to determine weak 13C enrichments of diverse plasma metabolites with conventional gas chromatography-mass spectrometry (GC-MS). The limit of quantification was increased by optimizing (1) the metabolite extraction from plasma, (2) the GC-MS measurement, and (3) most importantly, the computational data processing. We applied our workflow to study the catabolic dynamics of 13C-enriched wheat bread in three human subjects. For that purpose, we collected time-resolved human plasma samples at 16 timepoints after the consumption of 13C-labeled bread and quantified 13C enrichment of 12 metabolites (glucose, lactate, alanine, glycine, serine, citrate, glutamate, glutamine, valine, isoleucine, tyrosine, and threonine). Based on isotopomer specific analysis, we were able to distinguish catabolic profiles of starch and protein hydrolysis. More generally, our study highlights that conventional GC-MS equipment is sufficient to detect isotope traces below 1% if an appropriate data processing is integrated. PMID:29443915

  11. Connecting the Interstellar Gas and Dust Properties in Distant Galaxies Using Quasar Absorption Systems

    NASA Technical Reports Server (NTRS)

    Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; hide

    2016-01-01

    Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.

  12. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  13. Light Isotopes and Trace Organics Analysis of Mars Samples with Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Niemann, Hasso (Technical Monitor)

    2001-01-01

    Precision measurement of light isotopes in Mars surface minerals and comparison of this isotopic composition with atmospheric gas and other, well-mixed reservoirs such as surface dust are necessary to understand the history of atmospheric evolution from a possibly warmer and wetter Martian surface to the present state. Atmospheric sources and sinks that set these ratios are volcanism, solar wind sputtering, photochemical processes, and weathering. Measurement of a range of trace organic species with a particular focus on species such as amino acids that are the building blocks of terrestrial life are likewise important to address the questions of prebiotic and present or past biological activity on Mars. The workshop topics "isotopic mineralogy" and "biology and pre-biotic chemistry" will be addressed from the point of view of the capabilities and limitations of insitu mass spectrometry (MS) techniques such as thermally evolved gas analysis (TEGA) and gas chromatography (GC) surface experiments using MS, in both cases, as a final chemical and isotopic composition detector. Insitu experiments using straightforward adaptations of existing space proven hardware can provide a substantial improvement in the precision and accuracy of our present knowledge of isotopic composition both in molecular and atomic species in the atmosphere and those chemically bound in rocks and soils. Likewise, detection of trace organic species with greatly improved sensitivity from the Viking GCMS experiment is possible using gas enrichment techniques. The limits to precision and accuracy of presently feasible insitu techniques compared to laboratory analysis of returned samples will be explored. The insitu techniques are sufficiently powerful that they can provide a high fidelity method of screening samples obtained from a diverse set of surface locations such as the subsurface or the interior of rocks for selection of those that are the most interesting for return to Earth.

  14. Soil Mesocosm CO2 Emissions after 13C-glucose Addition, Soil Physical and Chemical Characteristics, and Microbial Biomass, Barrow, Alaska, 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydia Vaughn; Biao Zhu; Carolin Bimueller

    Measurements made from a 2014-2016 field glucose addition experiment. Dataset includes measurements of surface trace gas emissions (Delta13C of ecosystem respiration and source-partitioned surface CO2 flux, CH4 flux, and GPP), soil profile information (concentrations of carbon, nitrogen, and soil microbial biomass carbon, Delta13C of soil organic matter and microbial biomass, gravimetric water content, and bulk density), soil mineral nitrogen availability, and field-measured soil temperature, air temperature and soil moisture. Experiment was conducted in a region of high-centered polygons on the BEO. Data will be available Fall 2017.

  15. A robust and reliable optical trace oxygen sensor

    NASA Astrophysics Data System (ADS)

    McDowell, G. R.; Holmes-Smith, A. S.; Uttamlal, M.; Mitchell, C.; Shannon, P. H.

    2017-05-01

    In applications of nitrogen (N2) generation, industrial gas manufacturing and food packaging there is a need to ensure oxygen (O2) is absent from the environment, even at the lowest concentration levels. Therefore, there has been an increased growth in the development of trace O2 parts per million (ppm) sensors over the past decade to detect and quantify the concentration of molecular O2 in the environment whether it be dissolved or gaseous O2. The majority of commercially available trace O2 sensors are based on electrochemical, zirconia and paramagnetic technologies. Here, the development of a luminescence-based optical trace O2 sensor is presented. Luminescence-based sensing is now regarded as one of the best techniques for the detection and quantification of O2. This is due to the high detection sensitivity, no O2 is consumed and there are a vast array of luminescent indicators and sensing platforms (polymers) that can be selected to suit the desired application. The sensor will be shown to operate from -30 °C to +60 °C in the 0-1000 ppm and/or 0-1200 μbar partial pressure of oxygen (ppO2) range and is equipped with temperature and pressure compensation. The luminescence non-depleting principle, sensor specifications and miniaturized nature offers an attractive alternative to other sensing technologies and advantages over other luminescence-based O2 ppm sensors.

  16. Characterizing Gas Transport in Wetland Soil-Root Systems with Dissolved Gas Tracer Techniques

    NASA Astrophysics Data System (ADS)

    Reid, M. C.; Jaffe, P. R.

    2016-12-01

    Soil fluxes of methane (CH4), nitrous oxide (N2O), and other biogenic gases depend on coupling between microbial and physiochemical processes within soil media. The importance of plant-mediated transport in wetland CH4 emissions is well known, but a generalized understanding of gas transfer between pore water and root aerenchyma, and how this process competes with biogeochemical production/consumption of gases beyond CH4, is incomplete [1]. A lack of experimental approaches to characterize transport processes in complex soil-water-plant systems at field scale has limited efforts to close this knowledge gap. In this presentation we describe dissolved gas tracer techniques to tease apart effects of transport from simultaneous biochemical reaction on trace gas dynamics in soils. We discuss a push-pull test with helium and sulfur hexafluoride gas tracers to quantify in situ root-mediated gas transfer kinetics in a wetland soil [2]. A Damköhler number analysis is introduced to interpret the results and evaluate the balance between biochemical reaction and root-driven gas transfer in controlling the fate of CH4 and N2O in vegetated wetland soils. We conclude with a brief discussion of other problems in soil gas dynamics that can be addressed with gas tracer approaches. [1] Blagodatsky and Smith 2012. Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biology and Biochemistry 47, 78-92. [2] Reid et al. 2015. Dissolved gas dynamics in wetland soils: Root-mediated gas transfer kinetics determind via push-pull tracer tests. Water Resour. Res. 51, doi:10.1002/2014WR016803.

  17. Use of argon to measure gas exchange in turbulent mountain streams

    NASA Astrophysics Data System (ADS)

    Hall, Robert O., Jr.; Madinger, Hilary L.

    2018-05-01

    Gas exchange is a parameter needed in stream metabolism and trace gas emissions models. One way to estimate gas exchange is via measuring the decline of added tracer gases such as sulfur hexafluoride (SF6). Estimates of oxygen (O2) gas exchange derived from SF6 additions require scaling via Schmidt number (Sc) ratio, but this scaling is uncertain under conditions of high gas exchange via bubbles because scaling depends on gas solubility as well as Sc. Because argon (Ar) and O2 have nearly identical Schmidt numbers and solubility, Ar may be a useful tracer gas for estimating stream O2 exchange. Here we compared rates of gas exchange measured via Ar and SF6 for turbulent mountain streams in Wyoming, USA. We measured Ar as the ratio of Ar : N2 using a membrane inlet mass spectrometer (MIMS). Normalizing to N2 confers higher precision than simply measuring [Ar] alone. We consistently enriched streams with Ar from 1 to 18 % of ambient Ar concentration and could estimate gas exchange rate using an exponential decline model. The mean ratio of gas exchange of Ar relative to SF6 was 1.8 (credible interval 1.1 to 2.5) compared to the theoretical estimate 1.35, showing that using SF6 would have underestimated exchange of Ar. Steep streams (slopes 11-12 %) had high rates of gas exchange velocity normalized to Sc = 600 (k600, 57-210 m d-1), and slope strongly predicted variation in k600 among all streams. We suggest that Ar is a useful tracer because it is easily measured, requires no scaling assumptions to estimate rates of O2 exchange, and is not an intense greenhouse gas as is SF6. We caution that scaling from rates of either Ar or SF6 gas exchange to CO2 is uncertain due to solubility effects in conditions of bubble-mediated gas transfer.

  18. Changes in in vitro gas and methane production from rumen fluid from dairy cows during adaptation to feed additives in vivo.

    PubMed

    Klop, G; van Laar-van Schuppen, S; Pellikaan, W F; Hendriks, W H; Bannink, A; Dijkstra, J

    2017-04-01

    The adaptation of dairy cows to methane (CH4)-mitigating feed additives was evaluated using the in vitro gas production (GP) technique. Nine rumen-fistulated lactating Holstein cows were grouped into three blocks and within blocks randomly assigned to one of three experimental diets: Control (CON; no feed additive), Agolin Ruminant® (AR; 0.05 g/kg dry matter (DM)) or lauric acid (LA; 30 g/kg DM). Total mixed rations composed of maize silage, grass silage and concentrate were fed in a 40 : 30 : 30 ratio on DM basis. Rumen fluid was collected from each cow at days -4, 1, 4, 8, 15 and 22 relative to the introduction of the additives in the diets. On each of these days, a 48-h GP experiment was performed in which rumen fluid from each individual donor cow was incubated with each of the three substrates that reflected the treatment diets offered to the cows. DM intake was on average 19.8, 20.1 and 16.2 kg/day with an average fat- and protein-corrected milk production of 30.7, 31.7 and 26.2 kg/day with diet CON, AR and LA, respectively. In general, feed additives in the donor cow diet had a larger effect on gas and CH4 production than the same additives in the incubation substrate. Incubation substrate affected asymptotic GP, half-time of asymptotic CH4 production, total volatile fatty acid (VFA) concentration, molar proportions of propionate and butyrate and degradation of organic matter (OMD), but did not affect CH4 production. No substrate×day interactions were observed. A significant diet×day interaction was observed for in vitro gas and CH4 production, total VFA concentration, molar proportions of VFA and OMD. From day 4 onwards, the LA diet persistently reduced gas and CH4 production, total VFA concentration, acetate molar proportion and OMD, and increased propionate molar proportion. In vitro CH4 production was reduced by the AR diet on day 8, but not on days 15 and 22. In line with these findings, the molar proportion of propionate in fermentation fluid was

  19. Tracing time scales of fluid residence and migration in the crust (Invited)

    NASA Astrophysics Data System (ADS)

    Yokochi, R.; Sturchio, N. C.; Purtschert, R.; Jiang, W.; Lu, Z.; Müller, P.; Yang, G.; Kennedy, B. M.

    2013-12-01

    Crustal fluids (water, gas and oil) mediate chemical reactions, and they may transport, concentrate or disperse elements in the crust; the fluids are often valuable resources in their own right. In this context, determining the time scales of fluid transport and residence time is essential for understanding geochemical cycle of elements, as well as risk and resource management. Crustal fluids contain stable and radioactive noble gases indigenous to the fluid, which may be of magmatic or atmospheric origin of various ages. In addition, radiogenic and nucleogenic noble gases (both stable and radioactive) are continuously produced by the decay of U, Th and K and related nuclear reactions in the crust at known rates and in known relative proportions. They may be released from their production sites and incorporated into the fluid, acting as natural spikes to trace fluid flow. The concentrations of a noble gas isotope in a crustal fluid in a system devoid of phase separation or mixing varies as a function of decay time and supply from the production sites into the fluids. The release rate of noble gases from the production sites in minerals to the fluid phase may be determined uniquely through the studies of noble gas radionuclides (Yokochi et al., 2012), which is fundamental to the behavior of volatile elements in geochemistry. A pilot study of noble gas radionuclides in an active geothermal system was performed at Yellowstone National Park (Yokochi et al., 2013). Prior studies of the Yellowstone system using stable noble gas isotopes show that the thermal fluids contain a mixture of atmospheric, mantle, and crustal components. Noble gas radionuclide measurements provide new chronometric constraints regarding the subsurface residence times of Yellowstone thermal fluids. Upper limits on deep thermal fluid mean residence times, estimated from 39Ar/40Ar* ratios, range from 118 to 137 kyr for features in the Gibbon and Norris Geyser Basin areas, and are about 16 kyr in

  20. LIDAR technology for measuring trace gases on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Riris, H.; Abshire, J. B.; Graham, Allan; Hasselbrack, William; Rodriguez, Mike; Sun, Xiaoli; Weaver, Clark; Mao, Jianping; Kawa, Randy; Li, Steve; Numata, Kenji; Wu, Stewart

    2017-11-01

    Trace gases and their isotopic ratios in planetary atmospheres offer important but subtle clues as to the origins of a planet's atmosphere, hydrology, geology, and potential for biology. An orbiting laser remote sensing instrument is capable of measuring trace gases on a global scale with unprecedented accuracy, and higher spatial resolution that can be obtained by passive instruments. For Earth we have developed laser technique for the remote measurement of the tropospheric CO2, O2, and CH4 concentrations from space. Our goal is to develop a space instrument and mission approach for active CO2 measurements. Our technique uses several on and off-line wavelengths tuned to the CO2 and O2 absorption lines. This exploits the atmospheric pressure broadening of the gas lines to weigh the measurement sensitivity to the atmospheric column below 5 km and maximizes sensitivity to CO2 changes in the boundary layer where variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column use a selected region in the Oxygen A-band. Laser altimetry and atmospheric backscatter can also be measured simultaneously, which permits determining the surface height and measurements made to thick cloud tops and through aerosol layers. We use the same technique but with a different transmitter at 1.65 um to measure methane concentrations. Methane is also a very important trace gas on earth, and a stronger greenhouse gas than CO2 on a per molecule basis. Accurate, global observations are needed in order to better understand climate change and reduce the uncertainty in the carbon budget. Although carbon dioxide is currently the primary greenhouse gas of interest, methane can have a much larger impact on climate change. Methane levels have remained relatively constant over the last decade but recent observations in the Arctic have indicated that levels may be on the rise due to permafrost thawing. NASA's Decadal Survey underscored the importance of Methane as a