Sample records for additional transcription unit

  1. Reducing nontemplated 3' nucleotide addition to polynucleotide transcripts

    DOEpatents

    Kao, C. Cheng

    2000-01-01

    Non-template 3' nucleotide addition to a transcript is reduced by transcribing a transcript from a template comprising an ultimate and/or penultimate 5' ribose having a C'2 substituent such as methoxy, which reduces non-template 3' nucleotide addition to the transcript. The methods are shown to be applicable to a wide variety of polymerases, including Taq, T7 RNA polymerase, etc.

  2. Versatility of Cooperative Transcriptional Activation: A Thermodynamical Modeling Analysis for Greater-Than-Additive and Less-Than-Additive Effects

    PubMed Central

    Frank, Till D.; Carmody, Aimée M.; Kholodenko, Boris N.

    2012-01-01

    We derive a statistical model of transcriptional activation using equilibrium thermodynamics of chemical reactions. We examine to what extent this statistical model predicts synergy effects of cooperative activation of gene expression. We determine parameter domains in which greater-than-additive and less-than-additive effects are predicted for cooperative regulation by two activators. We show that the statistical approach can be used to identify different causes of synergistic greater-than-additive effects: nonlinearities of the thermostatistical transcriptional machinery and three-body interactions between RNA polymerase and two activators. In particular, our model-based analysis suggests that at low transcription factor concentrations cooperative activation cannot yield synergistic greater-than-additive effects, i.e., DNA transcription can only exhibit less-than-additive effects. Accordingly, transcriptional activity turns from synergistic greater-than-additive responses at relatively high transcription factor concentrations into less-than-additive responses at relatively low concentrations. In addition, two types of re-entrant phenomena are predicted. First, our analysis predicts that under particular circumstances transcriptional activity will feature a sequence of less-than-additive, greater-than-additive, and eventually less-than-additive effects when for fixed activator concentrations the regulatory impact of activators on the binding of RNA polymerase to the promoter increases from weak, to moderate, to strong. Second, for appropriate promoter conditions when activator concentrations are increased then the aforementioned re-entrant sequence of less-than-additive, greater-than-additive, and less-than-additive effects is predicted as well. Finally, our model-based analysis suggests that even for weak activators that individually induce only negligible increases in promoter activity, promoter activity can exhibit greater-than-additive responses when

  3. Genes on a Wire: The Nucleoid-Associated Protein HU Insulates Transcription Units in Escherichia coli

    PubMed Central

    Berger, Michael; Gerganova, Veneta; Berger, Petya; Rapiteanu, Radu; Lisicovas, Viktoras; Dobrindt, Ulrich

    2016-01-01

    The extent to which chromosomal gene position in prokaryotes affects local gene expression remains an open question. Several studies have shown that chromosomal re-positioning of bacterial transcription units does not alter their expression pattern, except for a general decrease in gene expression levels from chromosomal origin to terminus proximal positions, which is believed to result from gene dosage effects. Surprisingly, the question as to whether this chromosomal context independence is a cis encoded property of a bacterial transcription unit, or if position independence is a property conferred by factors acting in trans, has not been addressed so far. For this purpose, we established a genetic test system assessing the chromosomal positioning effects by means of identical promoter-fluorescent reporter gene fusions inserted equidistantly from OriC into both chromosomal replichores of Escherichia coli K-12. Our investigations of the reporter activities in mutant cells lacking the conserved nucleoid associated protein HU uncovered various drastic chromosomal positional effects on gene transcription. In addition we present evidence that these positional effects are caused by transcriptional activity nearby the insertion site of our reporter modules. We therefore suggest that the nucleoid-associated protein HU is functionally insulating transcription units, most likely by constraining transcription induced DNA supercoiling. PMID:27545593

  4. Survey and evaluation of mutations in the human KLF1 transcription unit.

    PubMed

    Gnanapragasam, Merlin Nithya; Crispino, John D; Ali, Abdullah M; Weinberg, Rona; Hoffman, Ronald; Raza, Azra; Bieker, James J

    2018-04-26

    Erythroid Krüppel-like Factor (EKLF/KLF1) is an erythroid-enriched transcription factor that plays a global role in all aspects of erythropoiesis, including cell cycle control and differentiation. We queried whether its mutation might play a role in red cell malignancies by genomic sequencing of the KLF1 transcription unit in cell lines, erythroid neoplasms, dysplastic disorders, and leukemia. In addition, we queried published databases from a number of varied sources. In all cases we only found changes in commonly notated SNPs. Our results suggest that if there are mutations in KLF1 associated with erythroid malignancies, they are exceedingly rare.

  5. Large transcription units unify copy number variants and common fragile sites arising under replication stress.

    PubMed

    Wilson, Thomas E; Arlt, Martin F; Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W

    2015-02-01

    Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. © 2015 Wilson et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Large transcription units unify copy number variants and common fragile sites arising under replication stress

    PubMed Central

    Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W.

    2015-01-01

    Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. PMID:25373142

  7. SeqTU: A web server for identification of bacterial transcription units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xin; Chou, Wen -Chi; Ma, Qin

    A transcription unit (TU) consists of K ≥ 1 consecutive genes on the same strand of a bacterial genome that are transcribed into a single mRNA molecule under certain conditions. Their identification is an essential step in elucidation of transcriptional regulatory networks. We have recently developed a machine-learning method to accurately identify TUs from RNA-seq data, based on two features of the assembled RNA reads: the continuity and stability of RNA-seq coverage across a genomic region. While good performance was achieved by the method on Escherichia coli and Clostridium thermocellum, substantial work is needed to make the program generally applicablemore » to all bacteria, knowing that the program requires organism specific information. A web server, named SeqTU, was developed to automatically identify TUs with given RNA-seq data of any bacterium using a machine-learning approach. The server consists of a number of utility tools, in addition to TU identification, such as data preparation, data quality check and RNA-read mapping. SeqTU provides a user-friendly interface and automated prediction of TUs from given RNA-seq data. Furthermore, the predicted TUs are displayed intuitively using HTML format along with a graphic visualization of the prediction.« less

  8. SeqTU: A web server for identification of bacterial transcription units

    DOE PAGES

    Chen, Xin; Chou, Wen -Chi; Ma, Qin; ...

    2017-03-07

    A transcription unit (TU) consists of K ≥ 1 consecutive genes on the same strand of a bacterial genome that are transcribed into a single mRNA molecule under certain conditions. Their identification is an essential step in elucidation of transcriptional regulatory networks. We have recently developed a machine-learning method to accurately identify TUs from RNA-seq data, based on two features of the assembled RNA reads: the continuity and stability of RNA-seq coverage across a genomic region. While good performance was achieved by the method on Escherichia coli and Clostridium thermocellum, substantial work is needed to make the program generally applicablemore » to all bacteria, knowing that the program requires organism specific information. A web server, named SeqTU, was developed to automatically identify TUs with given RNA-seq data of any bacterium using a machine-learning approach. The server consists of a number of utility tools, in addition to TU identification, such as data preparation, data quality check and RNA-read mapping. SeqTU provides a user-friendly interface and automated prediction of TUs from given RNA-seq data. Furthermore, the predicted TUs are displayed intuitively using HTML format along with a graphic visualization of the prediction.« less

  9. Alternate promoter selection within a human cytomegalovirus immediate-early and early transcription unit (UL119-115) defines true late transcripts containing open reading frames for putative viral glycoproteins.

    PubMed Central

    Leatham, M P; Witte, P R; Stinski, M F

    1991-01-01

    The human cytomegalovirus open reading frames (ORFs) UL119 through UL115 (UL119-115) are located downstream of the immediate-early 1 and 2 transcription units. The promoter upstream of UL119 is active at all times after infection and drives the synthesis of a spliced 3.1-kb mRNA. The viral mRNA initiates in UL119, contains UL119-117 and UL116, and terminates just downstream of UL115. True late transcripts that are detected only after viral DNA synthesis originate from this transcription unit. True late mRNAs of 2.1 kb, containing ORFs UL116 and UL115, and 1.2 kb, containing ORF UL115 only, are synthesized. The true late viral mRNAs are 3' coterminal with the 3.1-kb mRNA. This transcription unit is an example of late promoters nested within an immediate-early-early transcription unit. The gene products of UL119-117, UL116, and UL115 are predicted to be glycoproteins. Efficient expression of the downstream ORFs at late times after infection may be related to alternate promoter usage and downstream cap site selection. Images PMID:1717716

  10. The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts.

    PubMed

    Kolondra, Adam; Labedzka-Dmoch, Karolina; Wenda, Joanna M; Drzewicka, Katarzyna; Golik, Pawel

    2015-10-21

    Yeasts show remarkable variation in the organization of their mitochondrial genomes, yet there is little experimental data on organellar gene expression outside few model species. Candida albicans is interesting as a human pathogen, and as a representative of a clade that is distant from the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Unlike them, it encodes seven Complex I subunits in its mtDNA. No experimental data regarding organellar expression were available prior to this study. We used high-throughput RNA sequencing and traditional RNA biology techniques to study the mitochondrial transcriptome of C. albicans strains BWP17 and SN148. The 14 protein-coding genes, two ribosomal RNA genes, and 24 tRNA genes are expressed as eight primary polycistronic transcription units. We also found transcriptional activity in the noncoding regions, and antisense transcripts that could be a part of a regulatory mechanism. The promoter sequence is a variant of the nonanucleotide identified in other yeast mtDNAs, but some of the active promoters show significant departures from the consensus. The primary transcripts are processed by a tRNA punctuation mechanism into the monocistronic and bicistronic mature RNAs. The steady state levels of various mature transcripts exhibit large differences that are a result of posttranscriptional regulation. Transcriptome analysis allowed to precisely annotate the positions of introns in the RNL (2), COB (2) and COX1 (4) genes, as well as to refine the annotation of tRNAs and rRNAs. Comparative study of the mitochondrial genome organization in various Candida species indicates that they undergo shuffling in blocks usually containing 2-3 genes, and that their arrangement in primary transcripts is not conserved. tRNA genes with their associated promoters, as well as GC-rich sequence elements play an important role in these evolutionary events. The main evolutionary force shaping the mitochondrial genomes of yeasts is the

  11. groHMM: a computational tool for identifying unannotated and cell type-specific transcription units from global run-on sequencing data.

    PubMed

    Chae, Minho; Danko, Charles G; Kraus, W Lee

    2015-07-16

    Global run-on coupled with deep sequencing (GRO-seq) provides extensive information on the location and function of coding and non-coding transcripts, including primary microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and enhancer RNAs (eRNAs), as well as yet undiscovered classes of transcripts. However, few computational tools tailored toward this new type of sequencing data are available, limiting the applicability of GRO-seq data for identifying novel transcription units. Here, we present groHMM, a computational tool in R, which defines the boundaries of transcription units de novo using a two state hidden-Markov model (HMM). A systematic comparison of the performance between groHMM and two existing peak-calling methods tuned to identify broad regions (SICER and HOMER) favorably supports our approach on existing GRO-seq data from MCF-7 breast cancer cells. To demonstrate the broader utility of our approach, we have used groHMM to annotate a diverse array of transcription units (i.e., primary transcripts) from four GRO-seq data sets derived from cells representing a variety of different human tissue types, including non-transformed cells (cardiomyocytes and lung fibroblasts) and transformed cells (LNCaP and MCF-7 cancer cells), as well as non-mammalian cells (from flies and worms). As an example of the utility of groHMM and its application to questions about the transcriptome, we show how groHMM can be used to analyze cell type-specific enhancers as defined by newly annotated enhancer transcripts. Our results show that groHMM can reveal new insights into cell type-specific transcription by identifying novel transcription units, and serve as a complete and useful tool for evaluating functional genomic elements in cells.

  12. Intergenic Transcriptional Interference Is Blocked by RNA Polymerase III Transcription Factor TFIIIB in Saccharomyces cerevisiae

    PubMed Central

    Korde, Asawari; Rosselot, Jessica M.; Donze, David

    2014-01-01

    The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such “extratranscriptional” activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467–ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins. PMID:24336746

  13. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor.

    PubMed

    Ares, Miguel A; Fernández-Vázquez, José L; Pacheco, Sabino; Martínez-Santos, Verónica I; Jarillo-Quijada, Ma Dolores; Torres, Javier; Alcántar-Curiel, María D; González-Y-Merchand, Jorge A; De la Cruz, Miguel A

    2017-01-01

    Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae.

  14. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor

    PubMed Central

    Ares, Miguel A.; Fernández-Vázquez, José L.; Pacheco, Sabino; Martínez-Santos, Verónica I.; Jarillo-Quijada, Ma. Dolores; Torres, Javier; Alcántar-Curiel, María D.; González-y-Merchand, Jorge A.; De la Cruz, Miguel A.

    2017-01-01

    Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae. PMID:28278272

  15. Development of a modularized two-step (M2S) chromosome integration technique for integration of multiple transcription units in Saccharomyces cerevisiae.

    PubMed

    Li, Siwei; Ding, Wentao; Zhang, Xueli; Jiang, Huifeng; Bi, Changhao

    2016-01-01

    Saccharomyces cerevisiae has already been used for heterologous production of fuel chemicals and valuable natural products. The establishment of complicated heterologous biosynthetic pathways in S. cerevisiae became the research focus of Synthetic Biology and Metabolic Engineering. Thus, simple and efficient genomic integration techniques of large number of transcription units are demanded urgently. An efficient DNA assembly and chromosomal integration method was created by combining homologous recombination (HR) in S. cerevisiae and Golden Gate DNA assembly method, designated as modularized two-step (M2S) technique. Two major assembly steps are performed consecutively to integrate multiple transcription units simultaneously. In Step 1, Modularized scaffold containing a head-to-head promoter module and a pair of terminators was assembled with two genes. Thus, two transcription units were assembled with Golden Gate method into one scaffold in one reaction. In Step 2, the two transcription units were mixed with modules of selective markers and integration sites and transformed into S. cerevisiae for assembly and integration. In both steps, universal primers were designed for identification of correct clones. Establishment of a functional β-carotene biosynthetic pathway in S. cerevisiae within 5 days demonstrated high efficiency of this method, and a 10-transcriptional-unit pathway integration illustrated the capacity of this method. Modular design of transcription units and integration elements simplified assembly and integration procedure, and eliminated frequent designing and synthesis of DNA fragments in previous methods. Also, by assembling most parts in Step 1 in vitro, the number of DNA cassettes for homologous integration in Step 2 was significantly reduced. Thus, high assembly efficiency, high integration capacity, and low error rate were achieved.

  16. Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells.

    PubMed

    Zhang, Liyuan; Gu, Lingkun; Ringler, Patricia; Smith, Stanley; Rushton, Paul J; Shen, Qingxi J

    2015-07-01

    Members of the WRKY transcription factor superfamily are essential for the regulation of many plant pathways. Functional redundancy due to duplications of WRKY transcription factors, however, complicates genetic analysis by allowing single-mutant plants to maintain wild-type phenotypes. Our analyses indicate that three group I WRKY genes, OsWRKY24, -53, and -70, act in a partially redundant manner. All three showed characteristics of typical WRKY transcription factors: each localized to nuclei and yeast one-hybrid assays indicated that they all bind to W-boxes, including those present in their own promoters. Quantitative real time-PCR (qRT-PCR) analyses indicated that the expression levels of the three WRKY genes varied in the different tissues tested. Particle bombardment-mediated transient expression analyses indicated that all three genes repress the GA and ABA signaling in a dosage-dependent manner. Combination of all three WRKY genes showed additive antagonism of ABA and GA signaling. These results suggest that these WRKY proteins function as negative transcriptional regulators of GA and ABA signaling. However, different combinations of these WRKY genes can lead to varied strengths in suppression of their targets. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Flp and Cre expressed from Flp–2A–Cre and Flp–IRES–Cre transcription units mediate the highest level of dual recombinase-mediated cassette exchange

    PubMed Central

    Anderson, Rachelle P.; Voziyanova, Eugenia; Voziyanov, Yuri

    2012-01-01

    Recombinase-mediated cassette exchange (RMCE) is a powerful tool for unidirectional integration of DNA fragments of interest into a pre-determined genome locale. In this report, we examined how the efficiency of dual RMCE catalyzed by Flp and Cre depends on the nature of transcription units that express the recombinases. The following recombinase transcription units were analyzed: (i) Flp and Cre genes expressed as individual transcription units located on different vectors, (ii) Flp and Cre genes expressed as individual transcription units located on the same vector, (iii) Flp and Cre genes expressed from a single promoter and separated by internal ribosome entry sequence and (iv) Flp and Cre coding sequences separated by the 2A peptide and expressed as a single gene. We found that the highest level of dual RMCE (35–45% of the transfected cells) can be achieved when Flp and Cre recombinases are expressed as Flp–2A–Cre and Flp–IRES–Cre transcription units. In contrast, the lowest level of dual RMCE (∼1% of the transfected cells) is achieved when Flp and Cre are expressed as individual transcription units. The analysis shows that it is the relative Flp–to–Cre ratio that critically affects the efficiency of dual RMCE. Our results will be helpful for maximizing the efficiency of dual RMCE aimed to engineer and re-engineer genomes. PMID:22270085

  18. RNA polymerases IV and V influence the 3' boundaries of Polymerase II transcription units in Arabidopsis.

    PubMed

    McKinlay, Anastasia; Podicheti, Ram; Wendte, Jered M; Cocklin, Ross; Rusch, Douglas B

    2018-02-01

    Nuclear multisubunit RNA polymerases IV and V (Pol IV and Pol V) evolved in plants as specialized forms of Pol II. Their functions are best understood in the context of RNA-directed DNA methylation (RdDM), a process in which Pol IV-dependent 24 nt siRNAs direct the de novo cytosine methylation of regions transcribed by Pol V. Pol V has additional functions, independent of Pol IV and 24 nt siRNA biogenesis, in maintaining the repression of transposons and genomic repeats whose silencing depends on maintenance cytosine methylation. Here we report that Pol IV and Pol V play unexpected roles in defining the 3' boundaries of Pol II transcription units. Nuclear run-on assays reveal that in the absence of Pol IV or Pol V, Pol II occupancy downstream of poly A sites increases for approximately 12% of protein-coding genes. This effect is most pronounced for convergently transcribed gene pairs. Although Pols IV and V are detected near transcript ends of the affected Pol II - transcribed genes, their role in limiting Pol II read-through is independent of siRNA biogenesis or cytosine methylation for the majority of these genes. Interestingly, we observed that splicing was less efficient in pol IV or pol V mutant plants, compared to wild-type plants, suggesting that Pol IV or Pol V might affect pre-mRNA processing. We speculate that Pols IV and V (and/or their associated factors) play roles in Pol II transcription termination and pre-mRNA splicing by influencing polymerase elongation rates and/or release at collision sites for convergent genes.

  19. Separation of replication and transcription domains in nucleoli.

    PubMed

    Smirnov, E; Borkovec, J; Kováčik, L; Svidenská, S; Schröfel, A; Skalníková, M; Švindrych, Z; Křížek, P; Ovesný, M; Hagen, G M; Juda, P; Michalová, K; Cardoso, M C; Cmarko, D; Raška, I

    2014-12-01

    In mammalian cells, active ribosomal genes produce the 18S, 5.8S and 28S RNAs of ribosomal particles. Transcription levels of these genes are very high throughout interphase, and the cell needs a special strategy to avoid collision of the DNA polymerase and RNA polymerase machineries. To investigate this problem, we measured the correlation of various replication and transcription signals in the nucleoli of HeLa, HT-1080 and NIH 3T3 cells using a specially devised software for analysis of confocal images. Additionally, to follow the relationship between nucleolar replication and transcription in living cells, we produced a stable cell line expressing GFP-RPA43 (subunit of RNA polymerase I, pol I) and RFP-PCNA (the sliding clamp protein) based on human fibrosarcoma HT-1080 cells. We found that replication and transcription signals are more efficiently separated in nucleoli than in the nucleoplasm. In the course of S phase, separation of PCNA and pol I signals gradually increased. During the same period, separation of pol I and incorporated Cy5-dUTP signals decreased. Analysis of single molecule localization microscopy (SMLM) images indicated that transcriptionally active FC/DFC units (i.e. fibrillar centers with adjacent dense fibrillar components) did not incorporate DNA nucleotides. Taken together, our data show that replication of the ribosomal genes is spatially separated from their transcription, and FC/DFC units may provide a structural basis for that separation. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. NUCLEAR FACTOR Y Transcription Factors Have Both Opposing and Additive Roles in ABA-Mediated Seed Germination

    PubMed Central

    Kumimoto, Roderick W.; Siriwardana, Chamindika L.; Gayler, Krystal K.; Risinger, Jan R.; Siefers, Nicholas; Holt, Ben F.

    2013-01-01

    In the model organism Arabidopsis thaliana the heterotrimeric transcription factor NUCLEAR FACTOR Y (NF-Y) has been shown to play multiple roles in facilitating plant growth and development. Although NF-Y itself represents a multi-protein transcriptional complex, recent studies have shown important interactions with other transcription factors, especially those in the bZIP family. Here we add to the growing evidence that NF-Y and bZIP form common complexes to affect many processes. We carried out transcriptional profiling on nf-yc mutants and through subsequent analyses found an enrichment of bZIP binding sites in the promoter elements of misregulated genes. Using NF-Y as bait, yeast two hybrid assays yielded interactions with bZIP proteins that are known to control ABA signaling. Accordingly, we find that plants mutant for several NF-Y subunits show characteristic phenotypes associated with the disruption of ABA signaling. While previous reports have shown additive roles for NF-YC family members in photoperiodic flowering, we found that they can have opposing roles in ABA signaling. Collectively, these results demonstrated the importance and complexity of NF-Y in the integration of environmental and hormone signals. PMID:23527203

  1. Structure of the 5' region of the Hst70 gene transcription unit: presence of an intron and multiple transcription initiation sites.

    PubMed Central

    Scieglinska, D; Widłak, W; Konopka, W; Poutanen, M; Rahman, N; Huhtaniemi, I; Krawczyk, Z

    2001-01-01

    The rat Hst70 gene and its mouse counterpart Hsp70.2 belong to the family of Hsp70 heat shock genes and are specifically expressed in male germ cells. Previous studies regarding the structure of the 5' region of the transcription unit of these genes as well as localization of the 'cis' elements conferring their testis-specific expression gave contradictory results [Widlak, Markkula, Krawczyk, Kananen and Huhtaniemi (1995) Biochim. Biophys. Acta 1264, 191-200; Dix, Rosario-Herrle, Gotoh, Mori, Goulding, Barret and Eddy (1996) Dev. Biol. 174, 310-321]. In the present paper we solve these controversies and show that the 5' untranslated region (UTR) of the Hst70 gene contains an intron which is localized similar to that of the mouse Hsp70.2 gene. Reverse transcriptase-mediated PCR, Northern blotting and RNase protection analysis revealed that the transcription initiation of both genes starts at two main distant sites, and one of them is localized within the intron. As a result two populations of Hst70 gene transcripts with similar sizes but different 5' UTR structures can be detected in total testicular RNA. Functional analysis of the Hst70 gene promoter in transgenic mice and transient transfection assays proved that the DNA fragment of approx. 360 bp localized upstream of the ATG transcription start codon is the minimal promoter required for testis-specific expression of the HST70/chloramphenicol acetyltransferase transgene. These experiments also suggest that the expression of the gene may depend on 'cis' regulatory elements localized within exon 1 and the intron sequences. PMID:11563976

  2. 42 CFR 412.29 - Excluded rehabilitation units: Additional requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Costs and Inpatient Capital-Related Costs § 412.29 Excluded rehabilitation units: Additional..., social services, psychological services (including neuropsychological services), and orthotic and...

  3. The Arabidopsis phytohormone crosstalk network involves a consecutive metabolic route and circular control units of transcription factors that regulate enzyme-encoding genes.

    PubMed

    Yue, Xun; Li, Xing Guo; Gao, Xin-Qi; Zhao, Xiang Yu; Dong, Yu Xiu; Zhou, Chao

    2016-09-02

    Phytohormone synergies and signaling interdependency are important topics in plant developmental biology. Physiological and genetic experimental evidence for phytohormone crosstalk has been accumulating and a genome-scale enzyme correlation model representing the Arabidopsis metabolic pathway has been published. However, an integrated molecular characterization of phytohormone crosstalk is still not available. A novel modeling methodology and advanced computational approaches were used to construct an enzyme-based Arabidopsis phytohormone crosstalk network (EAPCN) at the biosynthesis level. The EAPCN provided the structural connectivity architecture of phytohormone biosynthesis pathways and revealed a surprising result; that enzymes localized at the highly connected nodes formed a consecutive metabolic route. Furthermore, our analysis revealed that the transcription factors (TFs) that regulate enzyme-encoding genes in the consecutive metabolic route formed structures, which we describe as circular control units operating at the transcriptional level. Furthermore, the downstream TFs in phytohormone signal transduction pathways were found to be involved in the circular control units that included the TFs regulating enzyme-encoding genes. In addition, multiple functional enzymes in the EAPCN were found to be involved in ion and pH homeostasis, environmental signal perception, cellular redox homeostasis, and circadian clocks. Last, publicly available transcriptional profiles and a protein expression map of the Arabidopsis root apical meristem were used as a case study to validate the proposed framework. Our results revealed multiple scales of coupled mechanisms in that hormonal crosstalk networks that play a central role in coordinating internal developmental processes with environmental signals, and give a broader view of Arabidopsis phytohormone crosstalk. We also uncovered potential key regulators that can be further analyzed in future studies.

  4. Genome-wide Analysis Reveals Extensive Functional Interaction between DNA Replication Initiation and Transcription in the Genome of Trypanosoma brucei

    PubMed Central

    Tiengwe, Calvin; Marcello, Lucio; Farr, Helen; Dickens, Nicholas; Kelly, Steven; Swiderski, Michal; Vaughan, Diane; Gull, Keith; Barry, J. David; Bell, Stephen D.; McCulloch, Richard

    2012-01-01

    Summary Identification of replication initiation sites, termed origins, is a crucial step in understanding genome transmission in any organism. Transcription of the Trypanosoma brucei genome is highly unusual, with each chromosome comprising a few discrete transcription units. To understand how DNA replication occurs in the context of such organization, we have performed genome-wide mapping of the binding sites of the replication initiator ORC1/CDC6 and have identified replication origins, revealing that both localize to the boundaries of the transcription units. A remarkably small number of active origins is seen, whose spacing is greater than in any other eukaryote. We show that replication and transcription in T. brucei have a profound functional overlap, as reducing ORC1/CDC6 levels leads to genome-wide increases in mRNA levels arising from the boundaries of the transcription units. In addition, ORC1/CDC6 loss causes derepression of silent Variant Surface Glycoprotein genes, which are critical for host immune evasion. PMID:22840408

  5. Diversity of transcripts and transcript processing forms in plastids of the dinoflagellate alga Karenia mikimotoi.

    PubMed

    Dorrell, Richard G; Hinksman, George A; Howe, Christopher J

    2016-02-01

    Plastids produce a vast diversity of transcripts. These include mature transcripts containing coding sequences, and their processing precursors, as well as transcripts that lack direct coding functions, such as antisense transcripts. Although plastid transcriptomes have been characterised for many plant species, less is known about the transcripts produced in other plastid lineages. We characterised the transcripts produced in the fucoxanthin-containing plastids of the dinoflagellate alga Karenia mikimotoi. This plastid lineage, acquired through tertiary endosymbiosis, utilises transcript processing pathways that are very different from those found in plants and green algae, including 3' poly(U) tail addition, and extensive substitutional editing of transcript sequences. We have sequenced the plastid transcriptome of K. mikimotoi, and have detected evidence for divergent evolution of fucoxanthin plastid genomes. We have additionally characterised polycistronic and monocistronic transcripts from two plastid loci, psbD-tRNA (Met)-ycf4 and rpl36-rps13-rps11. We find evidence for a range of transcripts produced from each locus that differ in terms of editing state, 5' end cleavage position, and poly(U) tail addition. Finally, we identify antisense transcripts in K. mikimotoi, which appear to undergo different processing events from the corresponding sense transcripts. Overall, our study provides insights into the diversity of transcripts and processing intermediates found in plastid lineages across the eukaryotes.

  6. Technical options for processing additional light tight oil volumes within the United States

    EIA Publications

    2015-01-01

    This report examines technical options for processing additional LTO volumes within the United States. Domestic processing of additional LTO would enable an increase in petroleum product exports from the United States, already the world’s largest net exporter of petroleum products. Unlike crude oil, products are not subject to export limitations or licensing requirements. While this is one possible approach to absorbing higher domestic LTO production in the absence of a relaxation of current limitations on crude exports, domestic LTO would have to be priced at a level required to encourage additional LTO runs at existing refinery units, debottlenecking, or possible additions of processing capacity.

  7. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  8. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  9. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  10. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  11. Mechanical Properties of Transcription

    NASA Astrophysics Data System (ADS)

    Sevier, Stuart A.; Levine, Herbert

    2017-06-01

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

  12. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Additional rules for United States Secret Service employees. [Reserved] 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE....111 Additional rules for United States Secret Service employees. [Reserved] ...

  13. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Additional rules for United States Secret Service employees. [Reserved] 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE....111 Additional rules for United States Secret Service employees. [Reserved] ...

  14. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Additional rules for United States Secret Service employees. [Reserved] 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE....111 Additional rules for United States Secret Service employees. [Reserved] ...

  15. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Additional rules for United States Secret Service employees. [Reserved] 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE....111 Additional rules for United States Secret Service employees. [Reserved] ...

  16. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Additional rules for United States Secret Service employees. [Reserved] 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE....111 Additional rules for United States Secret Service employees. [Reserved] ...

  17. mRNA Cap Methyltransferase, RNMT-RAM, Promotes RNA Pol II-Dependent Transcription.

    PubMed

    Varshney, Dhaval; Lombardi, Olivia; Schweikert, Gabriele; Dunn, Sianadh; Suska, Olga; Cowling, Victoria H

    2018-05-01

    mRNA cap addition occurs early during RNA Pol II-dependent transcription, facilitating pre-mRNA processing and translation. We report that the mammalian mRNA cap methyltransferase, RNMT-RAM, promotes RNA Pol II transcription independent of mRNA capping and translation. In cells, sublethal suppression of RNMT-RAM reduces RNA Pol II occupancy, net mRNA synthesis, and pre-mRNA levels. Conversely, expression of RNMT-RAM increases transcription independent of cap methyltransferase activity. In isolated nuclei, recombinant RNMT-RAM stimulates transcriptional output; this requires the RAM RNA binding domain. RNMT-RAM interacts with nascent transcripts along their entire length and with transcription-associated factors including the RNA Pol II subunits SPT4, SPT6, and PAFc. Suppression of RNMT-RAM inhibits transcriptional markers including histone H2BK120 ubiquitination, H3K4 and H3K36 methylation, RNA Pol II CTD S5 and S2 phosphorylation, and PAFc recruitment. These findings suggest that multiple interactions among RNMT-RAM, RNA Pol II factors, and RNA along the transcription unit stimulate transcription. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. 3. ELEVATIONS, ADDITION TO POWER HOUSE. United Engineering Company Ltd., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ELEVATIONS, ADDITION TO POWER HOUSE. United Engineering Company Ltd., Alameda Shipyard. John Hudspeth, architect, foot of Main Street, Alameda, California. Sheet 4. Plan no. 10,548. Scale 1/4 inch to the foot, elevations, and one inch to the foot, sections and details. April 30, 1945, last revised 6/19/45. pencil on vellum - United Engineering Company Shipyard, Boiler House, 2900 Main Street, Alameda, Alameda County, CA

  19. ALTERATIONS AND ADDITIONS TO THE GATE HOUSE, United Engineering Company ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ALTERATIONS AND ADDITIONS TO THE GATE HOUSE, United Engineering Company Ltd., Alameda Shipyard. Plan, elevations, and details of expanded structure. No architect noted. Drawn by "J.B.H." (John Hudspeth?). Sheet 2 of 2. Plan no. 10,504. Scale 1/4 inch to the foot. November 28, 1942, last revised 5/5/45. pencil on vellum - United Engineering Company Shipyard, Gate House, 2900 Main Street, Alameda, Alameda County, CA

  20. 39 CFR 963.16 - Transcript.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Transcript. 963.16 Section 963.16 Postal Service UNITED STATES POSTAL SERVICE PROCEDURES RULES OF PRACTICE IN PROCEEDINGS RELATIVE TO VIOLATIONS OF THE PANDERING ADVERTISEMENTS STATUTE, 39 U.S.C. 3008 § 963.16 Transcript. Testimony and argument at hearings...

  1. 4. FLOOR PLAN AND SECTIONS, ADDITION TO POWER HOUSE. United ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FLOOR PLAN AND SECTIONS, ADDITION TO POWER HOUSE. United Engineering Company Ltd., Alameda Shipyard. Also includes plot plan at 1 inch to 100 feet. John Hudspeth, architect, foot of Main Street, Alameda, California. Sheet 3. Plan no. 10,548. Scale 1/4 inch and h inch to the foot. April 30, 1945, last revised 6/22/45. pencil on vellum - United Engineering Company Shipyard, Boiler House, 2900 Main Street, Alameda, Alameda County, CA

  2. 15. MAP OF ALAMEDA SHIPYARD SHOWING PROPOSED ADDITIONAL FACILITIES. United ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. MAP OF ALAMEDA SHIPYARD SHOWING PROPOSED ADDITIONAL FACILITIES. United Engineering Company Ltd., Alameda Shipyard. A site map with all existing structures keyed to an identification legend. Also shows proposed new structures. No architect noted. Drawn by "J.B.H." (John Hudspeth?). Sheet 2. Plan no. 10,528. Scale one inch to 100 feet. November 12, 1943, last revised 1/18/44. pencil on vellum - United Engineering Company Shipyard, 2900 Main Street, Alameda, Alameda County, CA

  3. Superresolution imaging of transcription units on newt lampbrush chromosomes

    PubMed Central

    Kaufmann, Rainer; Cremer, Christoph; Gall, Joseph G.

    2013-01-01

    We have examined transcription loops on lampbrush chromosomes of the newt Notophthalmus by superresolution microscopy. Because of the favorable, essentially two-dimensional morphology of these loops, an average optical resolution in the x-y plane of about 50 nm was achieved. We analyzed the distribution of the multifunctional RNA-binding protein CELF1 on specific loops. CELF1 distribution is consistent with a model in which individual transcripts are tightly folded and hence closely packed against the loop axis. PMID:22892678

  4. Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression.

    PubMed

    Arnaiz, Olivier; Van Dijk, Erwin; Bétermier, Mireille; Lhuillier-Akakpo, Maoussi; de Vanssay, Augustin; Duharcourt, Sandra; Sallet, Erika; Gouzy, Jérôme; Sperling, Linda

    2017-06-26

    The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis

  5. WRKY transcription factors

    PubMed Central

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  6. 75 FR 48353 - United States Pharmacopeial Convention; Filing of Food Additive Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ...] United States Pharmacopeial Convention; Filing of Food Additive Petition AGENCY: Food and Drug.... Pharmacopeial Convention has filed a petition proposing that the food additive regulations that incorporate by... that a food additive petition (FAP 0A4782) has been filed by U.S. Pharmacopeial Convention, 12601...

  7. Integrating T7 RNA Polymerase and Its Cognate Transcriptional Units for a Host-Independent and Stable Expression System in Single Plasmid.

    PubMed

    Liang, Xiao; Li, Chenmeng; Wang, Wenya; Li, Qiang

    2018-05-18

    Metabolic engineering and synthetic biology usually require universal expression systems for stable and efficient gene expression in various organisms. In this study, a host-independent and stable T7 expression system had been developed by integrating T7 RNA polymerase and its cognate transcriptional units in single plasmid. The expression of T7 RNA polymerase was restricted below its lethal threshold using a T7 RNA polymerase antisense gene cassette, which allowed long periods of cultivation and protein production. In addition, by designing ribosome binding sites, we further tuned the expression capacity of this novel T7 system within a wide range. This host-independent expression system efficiently expressed genes in five different Gram-negative strains and one Gram-positive strain and was also shown to be applicable in a real industrial d- p-hydroxyphenylglycine production system.

  8. 5 CFR 3101.110 - Additional rules for United States Customs Service employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Customs Service employees. 3101.110 Section 3101.110 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Customs Service employees. The following rules apply to the employees of the United States Customs Service and are in addition to §§ 3101.101 through 3101.104: (a) Prohibition on...

  9. 5 CFR 3101.110 - Additional rules for United States Customs Service employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Customs Service employees. 3101.110 Section 3101.110 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Customs Service employees. The following rules apply to the employees of the United States Customs Service and are in addition to §§ 3101.101 through 3101.104: (a) Prohibition on...

  10. 5 CFR 3101.110 - Additional rules for United States Customs Service employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Customs Service employees. 3101.110 Section 3101.110 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Customs Service employees. The following rules apply to the employees of the United States Customs Service and are in addition to §§ 3101.101 through 3101.104: (a) Prohibition on...

  11. 5 CFR 3101.110 - Additional rules for United States Customs Service employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Customs Service employees. 3101.110 Section 3101.110 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Customs Service employees. The following rules apply to the employees of the United States Customs Service and are in addition to §§ 3101.101 through 3101.104: (a) Prohibition on...

  12. 5 CFR 3101.110 - Additional rules for United States Customs Service employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Customs Service employees. 3101.110 Section 3101.110 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Customs Service employees. The following rules apply to the employees of the United States Customs Service and are in addition to §§ 3101.101 through 3101.104: (a) Prohibition on...

  13. Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins

    PubMed Central

    2009-01-01

    Background MicroRNAs (miRNAs) are endogenous single-stranded small RNAs that regulate the expression of specific mRNAs involved in diverse biological processes. In plants, miRNAs are generally encoded as a single species in independent transcriptional units, referred to as MIRNA genes, in contrast to animal miRNAs, which are frequently clustered. Results We performed a comparative genomic analysis in three model plants (rice, poplar and Arabidopsis) and characterized miRNA clusters containing two to eight miRNA species. These clusters usually encode miRNAs of the same family and certain share a common evolutionary origin across monocot and dicot lineages. In addition, we identified miRNA clusters harboring miRNAs with unrelated sequences that are usually not evolutionarily conserved. Strikingly, non-homologous miRNAs from the same cluster were predicted to target transcripts encoding related proteins. At least four Arabidopsis non-homologous clusters were expressed as single transcriptional units. Overexpression of one of these polycistronic precursors, producing Ath-miR859 and Ath-miR774, led to the DCL1-dependent accumulation of both miRNAs and down-regulation of their different mRNA targets encoding F-box proteins. Conclusions In addition to polycistronic precursors carrying related miRNAs, plants also contain precursors allowing coordinated expression of non-homologous miRNAs to co-regulate functionally related target transcripts. This mechanism paves the way for using polycistronic MIRNA precursors as a new molecular tool for plant biologists to simultaneously control the expression of different genes. PMID:19951405

  14. A structure-based kinetic model of transcription.

    PubMed

    Zuo, Yuhong; Steitz, Thomas A

    2017-01-01

    During transcription, RNA polymerase moves downstream along the DNA template and maintains a transcription bubble. Several recent structural studies of transcription complexes with a complete transcription bubble provide new insights into how RNAP couples the nucleotide addition reaction to its directional movement.

  15. 77 FR 2492 - United States Pharmacopeial Convention; Filing of Food Additive Petition; Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ..., and 180 [Docket No. FDA-2010-F-0320] United States Pharmacopeial Convention; Filing of Food Additive... Food and Drug Administration (FDA) is amending the filing notice for a food additive petition filed by the U.S. Pharmacopeial Convention requesting that the food additive regulations that incorporate by...

  16. 10 CFR 35.2647 - Records of additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... remote afterloader units. 35.2647 Section 35.2647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2647 Records of additional technical requirements for mobile remote afterloader units. (a) A licensee shall retain a record of each check for mobile remote afterloader units...

  17. 10 CFR 35.2647 - Records of additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... remote afterloader units. 35.2647 Section 35.2647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2647 Records of additional technical requirements for mobile remote afterloader units. (a) A licensee shall retain a record of each check for mobile remote afterloader units...

  18. 10 CFR 35.2647 - Records of additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... remote afterloader units. 35.2647 Section 35.2647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2647 Records of additional technical requirements for mobile remote afterloader units. (a) A licensee shall retain a record of each check for mobile remote afterloader units...

  19. 10 CFR 35.2647 - Records of additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... remote afterloader units. 35.2647 Section 35.2647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2647 Records of additional technical requirements for mobile remote afterloader units. (a) A licensee shall retain a record of each check for mobile remote afterloader units...

  20. 10 CFR 35.2647 - Records of additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... remote afterloader units. 35.2647 Section 35.2647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2647 Records of additional technical requirements for mobile remote afterloader units. (a) A licensee shall retain a record of each check for mobile remote afterloader units...

  1. A structure-based kinetic model of transcription

    PubMed Central

    Steitz, Thomas A.

    2017-01-01

    ABSTRACT During transcription, RNA polymerase moves downstream along the DNA template and maintains a transcription bubble. Several recent structural studies of transcription complexes with a complete transcription bubble provide new insights into how RNAP couples the nucleotide addition reaction to its directional movement. PMID:27656764

  2. Construction of a Transcription Map for Papillomaviruses using RACE, RNAse Protection and Primer Extension Assays

    PubMed Central

    Wang, Xiaohong; Zheng, Zhi-Ming

    2016-01-01

    Papillomaviruses are a family of small, non-enveloped DNA tumor viruses. Knowing a complete transcription map from each papillomavirus genome can provide guidance for various papillomavirus studies. This unit provides detailed protocols to construct a transcription map of human papillomavirus type 18. The same approach can be easily adapted to other transcription map studies of any other papillomavirus genotype due to the high degree of conservation in the genome structure, organization and gene expression among papillomaviruses. The focused methods are 5’- and 3’- rapid amplification of cDNA ends (RACE), which are the techniques commonly used in molecular biology to obtain the full length RNA transcript or to map a transcription start site (TSS) or an RNA polyadenylation (pA) cleavage site. Primer walking RT-PCR is a method for studying splicing junction of RACE products. In addition, RNase protection assay and primer extension are also introduced as alternative methods in the mapping analysis. PMID:26855281

  3. Analysis of Strand-Specific RNA-Seq Data Using Machine Learning Reveals the Structures of Transcription Units in Clostridium thermocellum

    DOE PAGES

    Chou, Wen-Chi; Ma, Qin; Yang, Shihui; ...

    2015-03-12

    The identification of transcription units (TUs) encoded in a bacterial genome is essential to elucidation of transcriptional regulation of the organism. To gain a detailed understanding of the dynamically composed TU structures, we have used four strand-specific RNA-seq (ssRNA-seq) datasets collected under two experimental conditions to derive the genomic TU organization of Clostridium thermocellum using a machine-learning approach. Our method accurately predicted the genomic boundaries of individual TUs based on two sets of parameters measuring the RNA-seq expression patterns across the genome: expression-level continuity and variance. A total of 2590 distinct TUs are predicted based on the four RNA-seq datasets.more » Moreover, among the predicted TUs, 44% have multiple genes. We assessed our prediction method on an independent set of RNA-seq data with longer reads. The evaluation confirmed the high quality of the predicted TUs. Functional enrichment analyses on a selected subset of the predicted TUs revealed interesting biology. To demonstrate the generality of the prediction method, we have also applied the method to RNA-seq data collected on Escherichia coli and achieved high prediction accuracies. The TU prediction program named SeqTU is publicly available athttps://code.google.com/p/seqtu/. We expect that the predicted TUs can serve as the baseline information for studying transcriptional and post-transcriptional regulation in C. thermocellum and other bacteria.« less

  4. Transcriptional Regulatory Networks in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Lee, Tong Ihn; Rinaldi, Nicola J.; Robert, François; Odom, Duncan T.; Bar-Joseph, Ziv; Gerber, Georg K.; Hannett, Nancy M.; Harbison, Christopher T.; Thompson, Craig M.; Simon, Itamar; Zeitlinger, Julia; Jennings, Ezra G.; Murray, Heather L.; Gordon, D. Benjamin; Ren, Bing; Wyrick, John J.; Tagne, Jean-Bosco; Volkert, Thomas L.; Fraenkel, Ernest; Gifford, David K.; Young, Richard A.

    2002-10-01

    We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global gene expression programs. We use this information to identify network motifs, the simplest units of network architecture, and demonstrate that an automated process can use motifs to assemble a transcriptional regulatory network structure. Our results reveal that eukaryotic cellular functions are highly connected through networks of transcriptional regulators that regulate other transcriptional regulators.

  5. Congruence of Additive and Non-Additive Effects on Gene Expression Estimated from Pedigree and SNP Data

    PubMed Central

    Powell, Joseph E.; Henders, Anjali K.; McRae, Allan F.; Kim, Jinhee; Hemani, Gibran; Martin, Nicholas G.; Dermitzakis, Emmanouil T.; Gibson, Greg

    2013-01-01

    There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted—in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts. For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects. PMID:23696747

  6. Congruence of additive and non-additive effects on gene expression estimated from pedigree and SNP data.

    PubMed

    Powell, Joseph E; Henders, Anjali K; McRae, Allan F; Kim, Jinhee; Hemani, Gibran; Martin, Nicholas G; Dermitzakis, Emmanouil T; Gibson, Greg; Montgomery, Grant W; Visscher, Peter M

    2013-05-01

    There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted--in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts. For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects.

  7. Interobserver Agreement on First-Stage Conversation Analytic Transcription

    ERIC Educational Resources Information Center

    Roberts, Felicia; Robinson, Jeffrey D.

    2004-01-01

    This investigation assesses interobserver agreement on conversation analytic (CA) transcription. Four professional CA transcribers spent a maximum of 3 hours transcribing 2.5 minutes of a previously unknown, naturally occurring, mundane telephone call. Researchers unitized transcripts into words, sounds, silences, inbreaths, outbreaths, and laugh…

  8. Two Drosophila chorion genes terminate transcription in discrete regions near their poly(A) sites.

    PubMed Central

    Osheim, Y N; Miller, O L; Beyer, A L

    1986-01-01

    We have examined transcription termination of two closely linked Drosophila melanogaster chorion genes, s36-1 and s38-1, using the electron microscope. Our method is unusual and is independent of in vitro nuclear run-on transcription. By measuring transcription unit lengths in chromatin spreads, we can localize efficient termination sites to a region of approximately 210 bp for s36-1 and approximately 365 bp for s38-1. The center of this region is approximately 105 nucleotides downstream of the poly(A) site for the s36-1 gene, and approximately 400 nucleotides downstream for the s38-1 gene. Thus, these two Drosophila chorion genes terminate more closely to their poly(A) addition sites and in a shorter region than many other polyadenylated genes examined to date. Images Fig. 1. Fig. 2. PMID:3104029

  9. Combinatorial Effects of the Glucocorticoid Receptor and Krüppel-Like Transcription Factor 15 on Bovine Herpesvirus 1 Transcription and Productive Infection.

    PubMed

    El-Mayet, Fouad S; Sawant, Laximan; Thunuguntla, Prasanth; Jones, Clinton

    2017-11-01

    Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Latently infected calves consistently reactivate from latency following a single intravenous injection of the synthetic corticosteroid dexamethasone. The immediate early transcription unit 1 (IEtu1) promoter, which drives bovine ICP0 (bICP0) and bICP4 expression, is stimulated by dexamethasone because it contains two glucocorticoid receptor (GR) response elements (GREs). Several Krüppel-like transcription factors (KLF), including KLF15, are induced during reactivation from latency, and they stimulate certain viral promoters and productive infection. In this study, we demonstrate that the GR and KLF15 were frequently expressed in the same trigeminal ganglion (TG) neuron during reactivation and cooperatively stimulated productive infection and IEtu1 GREs in mouse neuroblastoma cells (Neuro-2A). We further hypothesized that additional regions in the BoHV-1 genome are transactivated by the GR or stress-induced transcription factors. To test this hypothesis, BoHV-1 DNA fragments (less than 400 bp) containing potential GR and KLF binding sites were identified and examined for transcriptional activation by stress-induced transcription factors. Intergenic regions within the unique long 52 gene (UL52; a component of the DNA primase/helicase complex), bICP4, IEtu2, and the unique short region were stimulated by KLF15 and the GR. Chromatin immunoprecipitation studies revealed that the GR and KLF15 interacted with sequences within IEtu1 GREs and the UL52 fragment. Coimmunoprecipitation studies demonstrated that KLF15 and the GR were associated with each other in transfected cells. Since the GR stimulates KLF15 expression, we suggest that these two transcription factors form a feed-forward loop that stimulates viral gene expression and productive infection following stressful stimuli. IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is an important viral pathogen that causes

  10. Combinatorial Effects of the Glucocorticoid Receptor and Krüppel-Like Transcription Factor 15 on Bovine Herpesvirus 1 Transcription and Productive Infection

    PubMed Central

    El-mayet, Fouad S.; Sawant, Laximan; Thunuguntla, Prasanth

    2017-01-01

    ABSTRACT Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Latently infected calves consistently reactivate from latency following a single intravenous injection of the synthetic corticosteroid dexamethasone. The immediate early transcription unit 1 (IEtu1) promoter, which drives bovine ICP0 (bICP0) and bICP4 expression, is stimulated by dexamethasone because it contains two glucocorticoid receptor (GR) response elements (GREs). Several Krüppel-like transcription factors (KLF), including KLF15, are induced during reactivation from latency, and they stimulate certain viral promoters and productive infection. In this study, we demonstrate that the GR and KLF15 were frequently expressed in the same trigeminal ganglion (TG) neuron during reactivation and cooperatively stimulated productive infection and IEtu1 GREs in mouse neuroblastoma cells (Neuro-2A). We further hypothesized that additional regions in the BoHV-1 genome are transactivated by the GR or stress-induced transcription factors. To test this hypothesis, BoHV-1 DNA fragments (less than 400 bp) containing potential GR and KLF binding sites were identified and examined for transcriptional activation by stress-induced transcription factors. Intergenic regions within the unique long 52 gene (UL52; a component of the DNA primase/helicase complex), bICP4, IEtu2, and the unique short region were stimulated by KLF15 and the GR. Chromatin immunoprecipitation studies revealed that the GR and KLF15 interacted with sequences within IEtu1 GREs and the UL52 fragment. Coimmunoprecipitation studies demonstrated that KLF15 and the GR were associated with each other in transfected cells. Since the GR stimulates KLF15 expression, we suggest that these two transcription factors form a feed-forward loop that stimulates viral gene expression and productive infection following stressful stimuli. IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is an important viral pathogen that

  11. Identifying modules of coexpressed transcript units and their organization of Saccharopolyspora erythraea from time series gene expression profiles.

    PubMed

    Chang, Xiao; Liu, Shuai; Yu, Yong-Tao; Li, Yi-Xue; Li, Yuan-Yuan

    2010-08-12

    The Saccharopolyspora erythraea genome sequence was released in 2007. In order to look at the gene regulations at whole transcriptome level, an expression microarray was specifically designed on the S. erythraea strain NRRL 2338 genome sequence. Based on these data, we set out to investigate the potential transcriptional regulatory networks and their organization. In view of the hierarchical structure of bacterial transcriptional regulation, we constructed a hierarchical coexpression network at whole transcriptome level. A total of 27 modules were identified from 1255 differentially expressed transcript units (TUs) across time course, which were further classified in to four groups. Functional enrichment analysis indicated the biological significance of our hierarchical network. It was indicated that primary metabolism is activated in the first rapid growth phase (phase A), and secondary metabolism is induced when the growth is slowed down (phase B). Among the 27 modules, two are highly correlated to erythromycin production. One contains all genes in the erythromycin-biosynthetic (ery) gene cluster and the other seems to be associated with erythromycin production by sharing common intermediate metabolites. Non-concomitant correlation between production and expression regulation was observed. Especially, by calculating the partial correlation coefficients and building the network based on Gaussian graphical model, intrinsic associations between modules were found, and the association between those two erythromycin production-correlated modules was included as expected. This work created a hierarchical model clustering transcriptome data into coordinated modules, and modules into groups across the time course, giving insight into the concerted transcriptional regulations especially the regulation corresponding to erythromycin production of S. erythraea. This strategy may be extendable to studies on other prokaryotic microorganisms.

  12. Assembly of transcriptionally inactive chromatin in vitro.

    PubMed

    Shanahan, M M; Kmiec, E B

    1989-07-01

    We have successfully uncoupled the previously interlocked activities of chromatin assembly and in vitro transcription promoted by the Xenopus oocyte S-150 cell-free extract. Our isolated fraction catalyzes extensive chromatin assembly measured both by changes in DNA topology and Micrococcal nuclease digestions. The assembly of chromatin is slowed by the exogenous addition of ATP. In the absence of exogenously added ATP, the fraction forms a chromatin template that is transcriptionally inert. Addition of small amounts of the HeLa cell extract (S-100) converts these templates into transcriptionally active ones without disrupting the chromatin structure. Our protocol defines a method for the isolation of a fraction from the Xenopus cell free extract that catalyzes the assembly of transcriptionally inactive chromatin. We characterize this reaction and establish conditions for the transcriptional activation of these inactive minichromosomes.

  13. Investigating transcription reinitiation through in vitro approaches

    PubMed Central

    Dieci, Giorgio; Fermi, Beatrice; Bosio, Maria Cristina

    2014-01-01

    By influencing the number of RNA molecules repeatedly synthesized from the same gene, the control of transcription reinitiation has the potential to shape the transcriptome. Transcription reinitiation mechanisms have been mainly addressed in vitro, through approaches based on both crude and reconstituted systems. These studies support the notion that transcription reinitiation and its regulation rely on dedicated networks of molecular interactions within transcription machineries. At the same time, comparison with in vivo transcription rates suggests that additional mechanisms, factors and conditions must exist in the nucleus, whose biochemical elucidation is a fascinating challenge for future in vitro transcription studies. PMID:25764113

  14. Measles virus minigenomes encoding two autofluorescent proteins reveal cell-to-cell variation in reporter expression dependent on viral sequences between the transcription units.

    PubMed

    Rennick, Linda J; Duprex, W Paul; Rima, Bert K

    2007-10-01

    Transcription from morbillivirus genomes commences at a single promoter in the 3' non-coding terminus, with the six genes being transcribed sequentially. The 3' and 5' untranslated regions (UTRs) of the genes (mRNA sense), together with the intergenic trinucleotide spacer, comprise the non-coding sequences (NCS) of the virus and contain the conserved gene end and gene start signals, respectively. Bicistronic minigenomes containing transcription units (TUs) encoding autofluorescent reporter proteins separated by measles virus (MV) NCS were used to give a direct estimation of gene expression in single, living cells by assessing the relative amounts of each fluorescent protein in each cell. Initially, five minigenomes containing each of the MV NCS were generated. Assays were developed to determine the amount of each fluorescent protein in cells at both cell population and single-cell levels. This revealed significant variations in gene expression between cells expressing the same NCS-containing minigenome. The minigenome containing the M/F NCS produced significantly lower amounts of fluorescent protein from the second TU (TU2), compared with the other minigenomes. A minigenome with a truncated F 5' UTR had increased expression from TU2. This UTR is 524 nt longer than the other MV 5' UTRs. Insertions into the 5' UTR of the enhanced green fluorescent protein gene in the minigenome containing the N/P NCS showed that specific sequences, rather than just the additional length of F 5' UTR, govern this decreased expression from TU2.

  15. A Successful Automated Online Transcript System.

    ERIC Educational Resources Information Center

    Barnfather, Tony; Rosmanitz, Fred

    1981-01-01

    The academic transcript system at the University of Calgary, a successful application that combines online and batch processing to generate student transcripts, is described. In addition to improved service to students and alumni, the registrar's operating budget has been reduced and productivity has increased. (Author/MLW)

  16. Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs

    PubMed Central

    Ferry, Quentin R. V.; Lyutova, Radostina; Fulga, Tudor A.

    2017-01-01

    CRISPR-based transcription regulators (CRISPR-TRs) have transformed the current synthetic biology landscape by allowing specific activation or repression of any target gene. Here we report a modular and versatile framework enabling rapid implementation of inducible CRISPR-TRs in mammalian cells. This strategy relies on the design of a spacer-blocking hairpin (SBH) structure at the 5′ end of the single guide RNA (sgRNA), which abrogates the function of CRISPR-transcriptional activators. By replacing the SBH loop with ligand-controlled RNA-cleaving units, we demonstrate conditional activation of quiescent sgRNAs programmed to respond to genetically encoded or externally delivered triggers. We use this system to couple multiple synthetic and endogenous target genes with specific inducers, and assemble gene regulatory modules demonstrating parallel and orthogonal transcriptional programs. We anticipate that this ‘plug and play' approach will be a valuable addition to the synthetic biology toolkit, facilitating the understanding of natural gene circuits and the design of cell-based therapeutic strategies. PMID:28256578

  17. A model for regulation of mammalian ribosomal DNA transcription. Co-ordination of initiation and termination.

    PubMed Central

    Nashimoto, M; Mishima, Y

    1988-01-01

    Based on recent experimental data about transcription initiation and termination, a model for regulation of mammalian ribosomal DNA transcription is developed using a simple kinetic scheme. In this model, the existence of the transition pathway from the terminator to the promoter increases the rate of ribosomal RNA precursor synthesis. In addition to this 'non-transcribed spacer' traverse of RNA polymerase I, the co-ordination of initiation and termination allows a rapid on/off switch transition from the minimum to the maximum rate of ribosomal RNA precursor synthesis. Furthermore, taking account of the participation of two factors in the termination event, we propose a plausible molecular mechanism for the co-ordination of initiation and termination. This co-ordination is emphasized by repetition of the terminator unit. PMID:3223915

  18. Transcriptional mapping of rabies virus in vivo. [UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flamand, A.; Delagneau, J.F.

    1978-11-01

    Synthesis of the proteins of rabies virus was studied in hamster cell infected with uv-irradiated virus. The uv target size of genes L, N, M/sub 1/, and M/sub 2/ was measured during primary transcription. Except for N, the target size of the remaining genes was considerably larger than that of their physical sizes. The data fit the hypothesis that four genes occupy a single transcriptional unit and that transcription of rabies virus proceeds in the order N, M/sub 1/, M/sub 2/, and L.

  19. Determination of transcriptional units and gene products from the ftsA region of Escherichia coli.

    PubMed Central

    Lutkenhaus, J F; Wu, H C

    1980-01-01

    Lambda transducing phage gamma 16-2 carries the genes envA, ftsZ, ftsA, ddl, and murC and directs the synthesis of six unique proteins in ultraviolet-irradiated cells. Various derivatives of gamma 16-2 carrying smaller segments of the bacterial deoxyribonucleic acid have also been analyzed for their capacity to direct protein synthesis in ultraviolet-irradiated cells. These results, in combination with genetic results, have allowed the gene product of each of these genes to be assigned. In addition, an unidentified gene was located counterclockwise to murC between murC and murF. Analysis of the direction of transcription indicates that murC, ddl, ftsA, and ftsZ are transcribed clockwise on the Escherichia coli genetic map, and envA is transcribed counterclockwise. In addition, it is shown that each of the genes envA, ftsZ, and ftsA can be expressed independently. Images PMID:6447690

  20. Transcriptional Mechanisms Underlying Hemoglobin Synthesis

    PubMed Central

    Katsumura, Koichi R.; DeVilbiss, Andrew W.; Pope, Nathaniel J.; Johnson, Kirby D.; Bresnick, Emery H.

    2013-01-01

    The physiological switch in expression of the embryonic, fetal, and adult β-like globin genes has garnered enormous attention from investigators interested in transcriptional mechanisms and the molecular basis of hemoglobinopathies. These efforts have led to the discovery of cell type-specific transcription factors, unprecedented mechanisms of transcriptional coregulator function, genome biology principles, unique contributions of nuclear organization to transcription and cell function, and promising therapeutic targets. Given the vast literature accrued on this topic, this article will focus on the master regulator of erythroid cell development and function GATA-1, its associated proteins, and its frontline role in controlling hemoglobin synthesis. GATA-1 is a crucial regulator of genes encoding hemoglobin subunits and heme biosynthetic enzymes. GATA-1-dependent mechanisms constitute an essential regulatory core that nucleates additional mechanisms to achieve the physiological control of hemoglobin synthesis. PMID:23838521

  1. 12 CFR 407.6 - Transcripts, recordings and minutes of closed meetings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Transcripts, recordings and minutes of closed meetings. 407.6 Section 407.6 Banks and Banking EXPORT-IMPORT BANK OF THE UNITED STATES REGULATIONS... meetings. Eximbank will maintain a complete transcript or electronic recording of the proceedings of every...

  2. Putative Monofunctional Type I Polyketide Synthase Units: A Dinoflagellate-Specific Feature?

    PubMed Central

    Eichholz, Karsten; Beszteri, Bánk; John, Uwe

    2012-01-01

    Marine dinoflagellates (alveolata) are microalgae of which some cause harmful algal blooms and produce a broad variety of most likely polyketide synthesis derived phycotoxins. Recently, novel polyketide synthesase (PKS) transcripts have been described from the Florida red tide dinoflagellate Karenia brevis (gymnodiniales) which are evolutionarily related to Type I PKS but were apparently expressed as monofunctional proteins, a feature typical of Type II PKS. Here, we investigated expression units of PKS I-like sequences in Alexandrium ostenfeldii (gonyaulacales) and Heterocapsa triquetra (peridiniales) at the transcript and protein level. The five full length transcripts we obtained were all characterized by polyadenylation, a 3′ UTR and the dinoflagellate specific spliced leader sequence at the 5′end. Each of the five transcripts encoded a single ketoacylsynthase (KS) domain showing high similarity to K. brevis KS sequences. The monofunctional structure was also confirmed using dinoflagellate specific KS antibodies in Western Blots. In a maximum likelihood phylogenetic analysis of KS domains from diverse PKSs, dinoflagellate KSs formed a clade placed well within the protist Type I PKS clade between apicomplexa, haptophytes and chlorophytes. These findings indicate that the atypical PKS I structure, i.e., expression as putative monofunctional units, might be a dinoflagellate specific feature. In addition, the sequenced transcripts harbored a previously unknown, apparently dinoflagellate specific conserved N-terminal domain. We discuss the implications of this novel region with regard to the putative monofunctional organization of Type I PKS in dinoflagellates. PMID:23139807

  3. Rolling Circle Transcription of Ribozymes Targeted to ras and mdr-1

    DTIC Science & Technology

    2001-09-01

    ssDNA) to direct transcription of an tion-PCR, and recyclization were carried out to optimize active hammerhead ribozyme in E. coli cells. transcription...transcription I hammerhead ribozyme I in vitro selection and 12.5 units/ml RNase inhibitor (Promega), in a total reaction volume of 15 tk1. After a...sequence encoding a ssDNA, and splint ssDNA were ethanol-precipitated and used as hammerhead ribozyme . templates to begin the next round of in vitro

  4. 12 CFR 407.6 - Transcripts, recordings and minutes of closed meetings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Transcripts, recordings and minutes of closed meetings. 407.6 Section 407.6 Banks and Banking EXPORT-IMPORT BANK OF THE UNITED STATES REGULATIONS GOVERNING PUBLIC OBSERVATION OF EX-IM BANK MEETINGS § 407.6 Transcripts, recordings and minutes of closed...

  5. Transcriptional regulation of the novel monoamine oxidase renalase: Crucial roles of transcription factors Sp1, STAT3, and ZBP89.

    PubMed

    Sonawane, Parshuram J; Gupta, Vinayak; Sasi, Binu K; Kalyani, Ananthamohan; Natarajan, Bhargavi; Khan, Abrar A; Sahu, Bhavani S; Mahapatra, Nitish R

    2014-11-11

    Renalase, a novel monoamine oxidase, is emerging as an important regulator of cardiovascular, metabolic, and renal diseases. However, the mechanism of transcriptional regulation of this enzyme remains largely unknown. We undertook a systematic analysis of the renalase gene to identify regulatory promoter elements and transcription factors. Computational analysis coupled with transfection of human renalase promoter/luciferase reporter plasmids (5'-promoter-deletion constructs) into various cell types (HEK-293, IMR32, and HepG2) identified two crucial promoter domains at base pairs -485 to -399 and -252 to -150. Electrophoretic mobility shift assays using renalase promoter oligonucleotides with and without potential binding sites for transcription factors Sp1, STAT3, and ZBP89 displayed formation of specific complexes with HEK-293 nuclear proteins. Consistently, overexpression of Sp1, STAT3, and ZBP89 augmented renalase promoter activity; additionally, siRNA-mediated downregulation of Sp1, STAT3, and ZBP89 reduced the level of endogenous renalase transcription as well as the transfected renalase promoter activity. In addition, chromatin immunoprecipitation assays showed in vivo interactions of these transcription factors with renalase promoter. Interestingly, renalase promoter activity was augmented by nicotine and catecholamines; while Sp1 and STAT3 synergistically activated the nicotine-induced effect, Sp1 appeared to enhance epinephrine-evoked renalase transcription. Moreover, renalase transcript levels in mouse models of human essential hypertension were concomitantly associated with endogenous STAT3 and ZBP89 levels, suggesting crucial roles for these transcription factors in regulating renalase gene expression in cardiovascular pathological conditions.

  6. Multiple circadian transcriptional elements cooperatively regulate cell-autonomous transcriptional oscillation of Period3, a mammalian clock gene.

    PubMed

    Matsumura, Ritsuko; Akashi, Makoto

    2017-09-29

    Cell-autonomous oscillation in clock gene expression drives circadian rhythms. The development of comprehensive analytical techniques, such as bioinformatics and ChIP-sequencing, has enabled the genome-wide identification of potential circadian transcriptional elements that regulate the transcriptional oscillation of clock genes. However, detailed analyses using traditional biochemical and molecular-biological approaches, such as binding and reporter assays, are still necessary to determine whether these potential circadian transcriptional elements are actually functional and how significantly they contribute to driving transcriptional oscillation. Here, we focused on the molecular mechanism of transcriptional oscillations in the mammalian clock gene Period3 ( Per3 ). The PER3 protein is essential for robust peripheral clocks and is a key component in circadian output processes. We found three E box-like elements located upstream of human Per3 transcription start sites that additively contributed to cell-autonomous transcriptional oscillation. However, we also found that Per3 is still expressed in a circadian manner when all three E box-like elements are functionally impaired. We noted that Per3 transcription was activated by the synergistic actions of two D box-like elements and the three E box-like elements, leading to a drastic increase in circadian amplitude. Interestingly, circadian expression of Per3 was completely disrupted only when all five transcriptional elements were functionally impaired. These results indicate that three E box-like and two D box-like elements cooperatively and redundantly regulate cell-autonomous transcriptional oscillation of Per3 . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Acetyl Coenzyme A Stimulates RNA Polymerase II Transcription and Promoter Binding by Transcription Factor IID in the Absence of Histones

    PubMed Central

    Galasinski, Shelly K.; Lively, Tricia N.; Grebe de Barron, Alexandra; Goodrich, James A.

    2000-01-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression. PMID:10688640

  8. Acetyl coenzyme A stimulates RNA polymerase II transcription and promoter binding by transcription factor IID in the absence of histones.

    PubMed

    Galasinski, S K; Lively, T N; Grebe De Barron, A; Goodrich, J A

    2000-03-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression.

  9. Nascent Transcription Affected by RNA Polymerase IV in Zea mays

    PubMed Central

    Erhard, Karl F.; Talbot, Joy-El R. B.; Deans, Natalie C.; McClish, Allison E.; Hollick, Jay B.

    2015-01-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3ʹ-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance. PMID:25653306

  10. Structural and functional properties of the N transcriptional activation domain of thyroid transcription factor-1: similarities with the acidic activation domains.

    PubMed Central

    Tell, G; Perrone, L; Fabbro, D; Pellizzari, L; Pucillo, C; De Felice, M; Acquaviva, R; Formisano, S; Damante, G

    1998-01-01

    The thyroid transcription factor 1 (TTF-1) is a tissue-specific transcription factor involved in the development of thyroid and lung. TTF-1 contains two transcriptional activation domains (N and C domain). The primary amino acid sequence of the N domain does not show any typical characteristic of known transcriptional activation domains. In aqueous solution the N domain exists in a random-coil conformation. The increase of the milieu hydrophobicity, by the addition of trifluoroethanol, induces a considerable gain of alpha-helical structure. Acidic transcriptional activation domains are largely unstructured in solution, but, under hydrophobic conditions, folding into alpha-helices or beta-strands can be induced. Therefore our data indicate that the inducibility of alpha-helix by hydrophobic conditions is a property not restricted to acidic domains. Co-transfections experiments indicate that the acidic domain of herpes simplex virus protein VP16 (VP16) and the TTF-1 N domain are interchangeable and that a chimaeric protein, which combines VP16 linked to the DNA-binding domain of TTF-1, undergoes the same regulatory constraints that operate for the wild-type TTF-1. In addition, we demonstrate that the TTF-1 N domain possesses two typical properties of acidic activation domains: TBP (TATA-binding protein) binding and ability to activate transcription in yeast. Accordingly, the TTF-1 N domain is able to squelch the activity of the p65 acidic domain. Altogether, these structural and functional data suggest that a non-acidic transcriptional activation domain (TTF-1 N domain) activates transcription by using molecular mechanisms similar to those used by acidic domains. TTF-1 N domain and acidic domains define a family of proteins whose common property is to activate transcription through the use of mechanisms largely conserved during evolutionary development. PMID:9425125

  11. Unit-length line-1 transcripts in human teratocarcinoma cells.

    PubMed Central

    Skowronski, J; Fanning, T G; Singer, M F

    1988-01-01

    We have characterized the approximately 6.5-kilobase cytoplasmic poly(A)+ Line-1 (L1) RNA present in a human teratocarcinoma cell line, NTera2D1, by primer extension and by analysis of cloned cDNAs. The bulk of the RNA begins (5' end) at the residue previously identified as the 5' terminus of the longest known primate genomic L1 elements, presumed to represent "unit" length. Several of the cDNA clones are close to 6 kilobase pairs, that is, close to full length. The partial sequences of 18 cDNA clones and full sequence of one (5,975 base pairs) indicate that many different genomic L1 elements contribute transcripts to the 6.5-kilobase cytoplasmic poly(A)+ RNA in NTera2D1 cells because no 2 of the 19 cDNAs analyzed had identical sequences. The transcribed elements appear to represent a subset of the total genomic L1s, a subset that has a characteristic consensus sequence in the 3' noncoding region and a high degree of sequence conservation throughout. Two open reading frames (ORFs) of 1,122 (ORF1) and 3,852 (ORF2) bases, flanked by about 800 and 200 bases of sequence at the 5' and 3' ends, respectively, can be identified in the cDNAs. Both ORFs are in the same frame, and they are separated by 33 bases bracketed by two conserved in-frame stop codons. ORF 2 is interrupted by at least one randomly positioned stop codon in the majority of the cDNAs. The data support proposals suggesting that the human L1 family includes one or more functional genes as well as an extraordinarily large number of pseudogenes whose ORFs are broken by stop codons. The cDNA structures suggest that both genes and pseudogenes are transcribed. At least one of the cDNAs (cD11), which was sequenced in its entirety, could, in principle, represent an mRNA for production of the ORF1 polypeptide. The similarity of mammalian L1s to several recently described invertebrate movable elements defines a new widely distributed class of elements which we term class II retrotransposons. Images PMID:2454389

  12. Transcription Factor Information System (TFIS): A Tool for Detection of Transcription Factor Binding Sites.

    PubMed

    Narad, Priyanka; Kumar, Abhishek; Chakraborty, Amlan; Patni, Pranav; Sengupta, Abhishek; Wadhwa, Gulshan; Upadhyaya, K C

    2017-09-01

    Transcription factors are trans-acting proteins that interact with specific nucleotide sequences known as transcription factor binding site (TFBS), and these interactions are implicated in regulation of the gene expression. Regulation of transcriptional activation of a gene often involves multiple interactions of transcription factors with various sequence elements. Identification of these sequence elements is the first step in understanding the underlying molecular mechanism(s) that regulate the gene expression. For in silico identification of these sequence elements, we have developed an online computational tool named transcription factor information system (TFIS) for detecting TFBS for the first time using a collection of JAVA programs and is mainly based on TFBS detection using position weight matrix (PWM). The database used for obtaining position frequency matrices (PFM) is JASPAR and HOCOMOCO, which is an open-access database of transcription factor binding profiles. Pseudo-counts are used while converting PFM to PWM, and TFBS detection is carried out on the basis of percent score taken as threshold value. TFIS is equipped with advanced features such as direct sequence retrieving from NCBI database using gene identification number and accession number, detecting binding site for common TF in a batch of gene sequences, and TFBS detection after generating PWM from known raw binding sequences in addition to general detection methods. TFIS can detect the presence of potential TFBSs in both the directions at the same time. This feature increases its efficiency. And the results for this dual detection are presented in different colors specific to the orientation of the binding site. Results obtained by the TFIS are more detailed and specific to the detected TFs as integration of more informative links from various related web servers are added in the result pages like Gene Ontology, PAZAR database and Transcription Factor Encyclopedia in addition to NCBI and Uni

  13. Transcriptional regulation of drought response: a tortuous network of transcriptional factors

    PubMed Central

    Singh, Dhriti; Laxmi, Ashverya

    2015-01-01

    Drought is one of the leading factors responsible for the reduction in crop yield worldwide. Due to climate change, in future, more areas are going to be affected by drought and for prolonged periods. Therefore, understanding the mechanisms underlying the drought response is one of the major scientific concerns for improving crop yield. Plants deploy diverse strategies and mechanisms to respond and tolerate drought stress. Expression of numerous genes is modulated in different plants under drought stress that help them to optimize their growth and development. Plant hormone abscisic acid (ABA) plays a major role in plant response and tolerance by regulating the expression of many genes under drought stress. Transcription factors being the major regulator of gene expression play a crucial role in stress response. ABA regulates the expression of most of the target genes through ABA-responsive element (ABRE) binding protein/ABRE binding factor (AREB/ABF) transcription factors. Genes regulated by AREB/ABFs constitute a regulon termed as AREB/ABF regulon. In addition to this, drought responsive genes are also regulated by ABA-independent mechanisms. In ABA-independent regulation, dehydration-responsive element binding protein (DREB), NAM, ATAF, and CUC regulons play an important role by regulating many drought-responsive genes. Apart from these major regulons, MYB/MYC, WRKY, and nuclear factor-Y (NF-Y) transcription factors are also involved in drought response and tolerance. Our understanding about transcriptional regulation of drought is still evolving. Recent reports have suggested the existence of crosstalk between different transcription factors operating under drought stress. In this article, we have reviewed various regulons working under drought stress and their crosstalk with each other. PMID:26579147

  14. Transcriptional Regulation of Pattern-Triggered Immunity in Plants.

    PubMed

    Li, Bo; Meng, Xiangzong; Shan, Libo; He, Ping

    2016-05-11

    Perception of microbe-associated molecular patterns (MAMPs) by cell-surface-resident pattern recognition receptors (PRRs) induces rapid, robust, and selective transcriptional reprogramming, which is central for launching effective pattern-triggered immunity (PTI) in plants. Signal relay from PRR complexes to the nuclear transcriptional machinery via intracellular kinase cascades rapidly activates primary immune response genes. The coordinated action of gene-specific transcription factors and the general transcriptional machinery contribute to the selectivity of immune gene activation. In addition, PRR complexes and signaling components are often transcriptionally upregulated upon MAMP perception to ensure the robustness and sustainability of PTI outputs. In this review, we discuss recent advances in deciphering the signaling pathways and regulatory mechanisms that coordinately lead to timely and accurate MAMP-induced gene expression in plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Divergent transcription is associated with promoters of transcriptional regulators

    PubMed Central

    2013-01-01

    Background Divergent transcription is a wide-spread phenomenon in mammals. For instance, short bidirectional transcripts are a hallmark of active promoters, while longer transcripts can be detected antisense from active genes in conditions where the RNA degradation machinery is inhibited. Moreover, many described long non-coding RNAs (lncRNAs) are transcribed antisense from coding gene promoters. However, the general significance of divergent lncRNA/mRNA gene pair transcription is still poorly understood. Here, we used strand-specific RNA-seq with high sequencing depth to thoroughly identify antisense transcripts from coding gene promoters in primary mouse tissues. Results We found that a substantial fraction of coding-gene promoters sustain divergent transcription of long non-coding RNA (lncRNA)/mRNA gene pairs. Strikingly, upstream antisense transcription is significantly associated with genes related to transcriptional regulation and development. Their promoters share several characteristics with those of transcriptional developmental genes, including very large CpG islands, high degree of conservation and epigenetic regulation in ES cells. In-depth analysis revealed a unique GC skew profile at these promoter regions, while the associated coding genes were found to have large first exons, two genomic features that might enforce bidirectional transcription. Finally, genes associated with antisense transcription harbor specific H3K79me2 epigenetic marking and RNA polymerase II enrichment profiles linked to an intensified rate of early transcriptional elongation. Conclusions We concluded that promoters of a class of transcription regulators are characterized by a specialized transcriptional control mechanism, which is directly coupled to relaxed bidirectional transcription. PMID:24365181

  16. Mechanics of additively manufactured porous biomaterials based on the rhombicuboctahedron unit cell.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-01-01

    Thanks to recent developments in additive manufacturing techniques, it is now possible to fabricate porous biomaterials with arbitrarily complex micro-architectures. Micro-architectures of such biomaterials determine their physical and biological properties, meaning that one could potentially improve the performance of such biomaterials through rational design of micro-architecture. The relationship between the micro-architecture of porous biomaterials and their physical and biological properties has therefore received increasing attention recently. In this paper, we studied the mechanical properties of porous biomaterials made from a relatively unexplored unit cell, namely rhombicuboctahedron. We derived analytical relationships that relate the micro-architecture of such porous biomaterials, i.e. the dimensions of the rhombicuboctahedron unit cell, to their elastic modulus, Poisson's ratio, and yield stress. Finite element models were also developed to validate the analytical solutions. Analytical and numerical results were compared with experimental data from one of our recent studies. It was found that analytical solutions and numerical results show a very good agreement particularly for smaller values of apparent density. The elastic moduli predicted by analytical and numerical models were in very good agreement with experimental observations too. While in excellent agreement with each other, analytical and numerical models somewhat over-predicted the yield stress of the porous structures as compared to experimental data. As the ratio of the vertical struts to the inclined struts, α, approaches zero and infinity, the rhombicuboctahedron unit cell respectively approaches the octahedron (or truncated cube) and cube unit cells. For those limits, the analytical solutions presented here were found to approach the analytic solutions obtained for the octahedron, truncated cube, and cube unit cells, meaning that the presented solutions are generalizations of the

  17. Widespread antisense transcription of Populus genome under drought.

    PubMed

    Yuan, Yinan; Chen, Su

    2018-06-06

    Antisense transcription is widespread in many genomes and plays important regulatory roles in gene expression. The objective of our study was to investigate the extent and functional relevance of antisense transcription in forest trees. We employed Populus, a model tree species, to probe the antisense transcriptional response of tree genome under drought, through stranded RNA-seq analysis. We detected nearly 48% of annotated Populus gene loci with antisense transcripts and 44% of them with co-transcription from both DNA strands. Global distribution of reads pattern across annotated gene regions uncovered that antisense transcription was enriched in untranslated regions while sense reads were predominantly mapped in coding exons. We further detected 1185 drought-responsive sense and antisense gene loci and identified a strong positive correlation between the expression of antisense and sense transcripts. Additionally, we assessed the antisense expression in introns and found a strong correlation between intronic expression and exonic expression, confirming antisense transcription of introns contributes to transcriptional activity of Populus genome under drought. Finally, we functionally characterized drought-responsive sense-antisense transcript pairs through gene ontology analysis and discovered that functional groups including transcription factors and histones were concordantly regulated at both sense and antisense transcriptional level. Overall, our study demonstrated the extensive occurrence of antisense transcripts of Populus genes under drought and provided insights into genome structure, regulation pattern and functional significance of drought-responsive antisense genes in forest trees. Datasets generated in this study serve as a foundation for future genetic analysis to improve our understanding of gene regulation by antisense transcription.

  18. Bacterial Transcription as a Target for Antibacterial Drug Development

    PubMed Central

    Ma, Cong; Yang, Xiao

    2016-01-01

    SUMMARY Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design. PMID:26764017

  19. Reproduction of the FC/DFC units in nucleoli.

    PubMed

    Smirnov, Evgeny; Hornáček, Matúš; Kováčik, Lubomír; Mazel, Tomáš; Schröfel, Adam; Svidenská, Silvie; Skalníková, Magdalena; Bartová, Eva; Cmarko, Dušan; Raška, Ivan

    2016-04-25

    The essential structural components of the nucleoli, Fibrillar Centers (FC) and Dense Fibrillar Components (DFC), together compose FC/DFC units, loci of rDNA transcription and early RNA processing. In the present study we followed cell cycle related changes of these units in 2 human sarcoma derived cell lines with stable expression of RFP-PCNA (the sliding clamp protein) and GFP-RPA43 (a subunit of RNA polymerase I, pol I) or GFP-fibrillarin. Correlative light and electron microscopy analysis showed that the pol I and fibrillarin positive nucleolar beads correspond to individual FC/DFC units. In vivo observations showed that at early S phase, when transcriptionally active ribosomal genes were replicated, the number of the units in each cell increased by 60-80%. During that period the units transiently lost pol I, but not fibrillarin. Then, until the end of interphase, number of the units did not change, and their duplication was completed only after the cell division, by mid G1 phase. This peculiar mode of reproduction suggests that a considerable subset of ribosomal genes remain transcriptionally silent from mid S phase to mitosis, but become again active in the postmitotic daughter cells.

  20. Complex transcriptional and post-transcriptional regulation of an enzyme for Lipopolysaccharide modification

    PubMed Central

    Moon, Kyung; Six, David A.; Lee, Hyun-Jung; Raetz, Christian R.H.; Gottesman, Susan

    2013-01-01

    Summary The PhoQ/PhoP two-component system activates many genes for lipopolysaccharide (LPS) modification when cells are grown at low Mg2+ concentrations. An additional target of PhoQ and PhoP is MgrR, an Hfq-dependent small RNA that negatively regulates expression of eptB, also encoding a protein that carries out LPS modification. Examination of LPS confirmed that MgrR effectively silences EptB; the phosphoethanolamine modification associated with EptB is found in ΔmgrR::kan but not mgrR+ cells. Sigma E has been reported to positively regulate eptB, although the eptB promoter does not have the expected Sigma E recognition motifs. The effects of Sigma E and deletion of mgrR on levels of eptB mRNA were independent, and the same 5′ end was found in both cases. In vitro transcription and the behavior of transcriptional and translational fusions demonstrate that Sigma E acts directly at the level of transcription initiation for eptB, from the same start point as Sigma 70. The results suggest that when Sigma E is active, synthesis of eptB transcript outstrips MgrR-dependent degradation; presumably the modification of LPS is important under these conditions. Adding to the complexity of eptB regulation is a second sRNA, ArcZ, which also directly and negatively regulates eptB. PMID:23659637

  1. Bovine papilloma virus contains an activator of gene expression at the distal end of the early transcription unit.

    PubMed Central

    Lusky, M; Berg, L; Weiher, H; Botchan, M

    1983-01-01

    Bovine papilloma virus (BPV) contains a cis-acting DNA element which can enhance transcription of distal promoters. Utilizing both direct and indirect transient transfection assays, we showed that a 59-base-pair DNA sequence from the BPV genome could activate the simian virus 40 promoter from distances exceeding 2.5 kilobases and in an orientation-independent manner. In contrast to the promoter 5'-proximal localization of other known viral activators, this element was located immediately 3' to the early polyadenylation signal in the BPV genome. Deletion of these sequences from the BPV genome inactivated the transforming ability of BPV recombinant plasmids. Orientation-independent reinsertion of this 59-base-pair sequence, or alternatively of activator DNA sequences from simian virus 40 or polyoma virus, restored the transforming activity of the BPV recombinant plasmids. Furthermore, the stable transformation frequency of the herpes simplex virus type 1 thymidine kinase gene was enhanced when linked to restriction fragments of BPV DNA which included the defined activator element. This enhancement was orientation independent with respect to the thymidine kinase promoter. The enhancement also appeared to be unrelated to the establishment of the recombinant plasmids as episomes, since in transformed cells these sequences are found linked to high-molecular-weight DNA. We propose that the enhancement of stable transformation frequencies and the activation of transcription units are in this case alternate manifestations of the same biochemical events. Images PMID:6308425

  2. Transcriptional Response of Nitrifying Communities to Wetting of Dry Soil

    PubMed Central

    Firestone, Mary K.

    2013-01-01

    The first rainfall following a severe dry period provides an abrupt water potential change that is both an acute physiological stress and a defined stimulus for the reawakening of soil microbial communities. We followed the responses of indigenous communities of ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and nitrite-oxidizing bacteria to the addition of water to laboratory incubations of soils taken from two California annual grasslands following a typically dry Mediterranean summer. By quantifying transcripts for a subunit of bacterial and archaeal ammonia monooxygenases (amoA) and a bacterial nitrite oxidoreductase (nxrA) in soil from 15 min to 72 h after water addition, we identified transcriptional response patterns for each of these three groups of nitrifiers. An increase in quantity of bacterial amoA transcripts was detectable within 1 h of wet-up and continued until the size of the ammonium pool began to decrease, reflecting a possible role of transcription in upregulation of nitrification after drought-induced stasis. In one soil, the pulse of amoA transcription lasted for less than 24 h, demonstrating the transience of transcriptional pools and the tight coupling of transcription to the local soil environment. Analysis of 16S rRNA using a high-density microarray suggested that nitrite-oxidizing Nitrobacter spp. respond in tandem with ammonia-oxidizing bacteria while nitrite-oxidizing Nitrospina spp. and Nitrospira bacteria may not. Archaeal ammonia oxidizers may respond slightly later than bacterial ammonia oxidizers but may maintain elevated transcription longer. Despite months of desiccation-induced inactivation, we found rapid transcriptional response by all three groups of soil nitrifiers. PMID:23524666

  3. O-GlcNAc transferase regulates transcriptional activity of human Oct4.

    PubMed

    Constable, Sandii; Lim, Jae-Min; Vaidyanathan, Krithika; Wells, Lance

    2017-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a single sugar modification found on many different classes of nuclear and cytoplasmic proteins. Addition of this modification, by the enzyme O-linked N-acetylglucosamine transferase (OGT), is dynamic and inducible. One major class of proteins modified by O-GlcNAc is transcription factors. O-GlcNAc regulates transcription factor properties through a variety of different mechanisms including localization, stability and transcriptional activation. Maintenance of embryonic stem (ES) cell pluripotency requires tight regulation of several key transcription factors, many of which are modified by O-GlcNAc. Octamer-binding protein 4 (Oct4) is one of the key transcription factors required for pluripotency of ES cells and more recently, the generation of induced pluripotent stem (iPS) cells. The action of Oct4 is modulated by the addition of several post-translational modifications, including O-GlcNAc. Previous studies in mice found a single site of O-GlcNAc addition responsible for transcriptional regulation. This study was designed to determine if this mechanism is conserved in humans. We mapped 10 novel sites of O-GlcNAc attachment on human Oct4, and confirmed a role for OGT in transcriptional activation of Oct4 at a site distinct from that found in mouse that allows distinction between different Oct4 target promoters. Additionally, we uncovered a potential new role for OGT that does not include its catalytic function. These results confirm that human Oct4 activity is being regulated by OGT by a mechanism that is distinct from mouse Oct4. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. The Prefoldin Complex Regulates Chromatin Dynamics during Transcription Elongation

    PubMed Central

    Millán-Zambrano, Gonzalo; Rodríguez-Gil, Alfonso; Peñate, Xenia; de Miguel-Jiménez, Lola; Morillo-Huesca, Macarena; Krogan, Nevan; Chávez, Sebastián

    2013-01-01

    Transcriptional elongation requires the concerted action of several factors that allow RNA polymerase II to advance through chromatin in a highly processive manner. In order to identify novel elongation factors, we performed systematic yeast genetic screening based on the GLAM (Gene Length-dependent Accumulation of mRNA) assay, which is used to detect defects in the expression of long transcription units. Apart from well-known transcription elongation factors, we identified mutants in the prefoldin complex subunits, which were among those that caused the most dramatic phenotype. We found that prefoldin, so far involved in the cytoplasmic co-translational assembly of protein complexes, is also present in the nucleus and that a subset of its subunits are recruited to chromatin in a transcription-dependent manner. Prefoldin influences RNA polymerase II the elongation rate in vivo and plays an especially important role in the transcription elongation of long genes and those whose promoter regions contain a canonical TATA box. Finally, we found a specific functional link between prefoldin and histone dynamics after nucleosome remodeling, which is consistent with the extensive network of genetic interactions between this factor and the machinery regulating chromatin function. This study establishes the involvement of prefoldin in transcription elongation, and supports a role for this complex in cotranscriptional histone eviction. PMID:24068951

  5. The prefoldin complex regulates chromatin dynamics during transcription elongation.

    PubMed

    Millán-Zambrano, Gonzalo; Rodríguez-Gil, Alfonso; Peñate, Xenia; de Miguel-Jiménez, Lola; Morillo-Huesca, Macarena; Krogan, Nevan; Chávez, Sebastián

    2013-01-01

    Transcriptional elongation requires the concerted action of several factors that allow RNA polymerase II to advance through chromatin in a highly processive manner. In order to identify novel elongation factors, we performed systematic yeast genetic screening based on the GLAM (Gene Length-dependent Accumulation of mRNA) assay, which is used to detect defects in the expression of long transcription units. Apart from well-known transcription elongation factors, we identified mutants in the prefoldin complex subunits, which were among those that caused the most dramatic phenotype. We found that prefoldin, so far involved in the cytoplasmic co-translational assembly of protein complexes, is also present in the nucleus and that a subset of its subunits are recruited to chromatin in a transcription-dependent manner. Prefoldin influences RNA polymerase II the elongation rate in vivo and plays an especially important role in the transcription elongation of long genes and those whose promoter regions contain a canonical TATA box. Finally, we found a specific functional link between prefoldin and histone dynamics after nucleosome remodeling, which is consistent with the extensive network of genetic interactions between this factor and the machinery regulating chromatin function. This study establishes the involvement of prefoldin in transcription elongation, and supports a role for this complex in cotranscriptional histone eviction.

  6. The use of in vitro transcription to probe regulatory functions of viral protein domains.

    PubMed

    Loewenstein, Paul M; Song, Chao-Zhong; Green, Maurice

    2007-01-01

    Adenoviruses (Ads), like other DNA tumor viruses, have evolved specific regulatory genes that facilitate virus replication by controlling the transcription of other viral genes as well as that of key cellular genes. In this regard, the E1A transcription unit contains multiple protein domains that can transcriptionally activate or repress cellular genes involved in the regulation of cell proliferation and cell differentiation. Studies using in vitro transcription have provided a basis for a molecular understanding of the interaction of viral regulatory proteins with the transcriptional machinery of the cell and continue to inform our understanding of transcription regulation. This chapter provides examples of the use of in vitro transcription to analyze transcriptional activation and transcriptional repression by purified, recombinant Ad E1A protein domains and single amino acid substitution mutants as well as the use of protein-affinity chromatography to identify host cell transcription factors involved in viral transcriptional regulation. A detailed description is provided of the methodology to prepare nuclear transcription extract, to prepare biologically active protein domains, to prepare affinity depleted transcription extracts, and to analyze transcription by primer extension and by run-off assay using naked DNA templates.

  7. Different types of pausing modes during transcription initiation.

    PubMed

    Lerner, Eitan; Ingargiola, Antonino; Lee, Jookyung J; Borukhov, Sergei; Michalet, Xavier; Weiss, Shimon

    2017-08-08

    In many cases, initiation is rate limiting to transcription. This due in part to the multiple cycles of abortive transcription that delay promoter escape and the transition from initiation to elongation. Pausing of transcription in initiation can further delay promoter escape. The previously hypothesized pausing in initiation was confirmed by two recent studies from Duchi et al. 1 and from Lerner, Chung et al. 2 In both studies, pausing is attributed to a lack of forward translocation of the nascent transcript during initiation. However, the two works report on different pausing mechanisms. Duchi et al. report on pausing that occurs during initiation predominantly on-pathway of transcript synthesis. Lerner, Chung et al. report on pausing during initiation as a result of RNAP backtracking, which is off-pathway to transcript synthesis. Here, we discuss these studies, together with additional experimental results from single-molecule FRET focusing on a specific distance within the transcription bubble. We show that the results of these studies are complementary to each other and are consistent with a model involving two types of pauses in initiation: a short-lived pause that occurs in the translocation of a 6-mer nascent transcript and a long-lived pause that occurs as a result of 1-2 nucleotide backtracking of a 7-mer transcript.

  8. V(D)J recombination on minichromosomes is not affected by transcription.

    PubMed

    Hsieh, C L; McCloskey, R P; Lieber, M R

    1992-08-05

    It has been shown previously by others that transcription is temporally correlated with the onset of V(D)J recombination at the endogenous antigen receptor loci. We have been interested in determining whether this temporal correlation indicates a causal connection between these two processes. We have compared V(D)J recombination minichromosome substrates that have transcripts running through the recombination zone with substrates that do not in a transient transfection assay. In this system, the substrates acquire a minichromosome conformation within the first several hours after transfection. We find that the substrates recombine equally well over a 100-fold range in transcriptional variation. In additional studies, we have taken substrates that have low levels of transcription and inhibited transcription further by methylating the substrate DNA or by treating the cells with a general transcription inhibitor (alpha-amanitin). Although these treatments decrease the level of expression an additional 10-100-fold, there is still no observable effect on V(D)J recombination. Based on these results, we conclude that transcription is not necessary for the V(D)J reaction mechanism and does not alter substrate structure at the DNA level or at the simplest levels of chromatin structure in a way that affects the reaction.

  9. Transcription factor NF-kappaB regulates inducible CD83 gene expression in activated T lymphocytes.

    PubMed

    McKinsey, T A; Chu, Z; Tedder, T F; Ballard, D W

    2000-01-01

    The immunoglobulin superfamily member CD83 is expressed on the surface of mature dendritic cells that present processed antigens to T lymphocytes. In addition, T cells acquire CD83 expression following mitogenic stimulation in vitro. Here we report two lines of evidence demonstrating that this inducible lymphocyte response is genetically programmed by transcription factor NF-kappaB and contingent upon proteolytic breakdown of its cytoplasmic inhibitor IkappaBalpha. First, signal-dependent induction of CD83 mRNA expression is blocked in both transformed and primary T cells harboring a degradation-resistant mutant of IkappaBalpha that constitutively represses NF-kappaB. Second, as revealed in gel retardation assays, the IkappaBalpha constitutive repressor prevents the inducible interaction of NF-kappaB with consensus recognition sites identified in the CD83 promoter. Given that IkappaBalpha is functionally coupled to the T-cell antigen receptor, these findings suggest that the downstream transcription unit for CD83 is triggered by NF-kappaB during an adaptive immune response.

  10. Transcriptional "silencer" element in rat repetitive sequences associated with the rat insulin 1 gene locus.

    PubMed Central

    Laimins, L; Holmgren-König, M; Khoury, G

    1986-01-01

    The enhancer elements from either simian virus 40 or murine sarcoma virus activate the expression of a transfected rat insulin 1 (rI1) gene when placed within 2.0 kilobases or less of the rI1 gene cap site. Inclusion of 4.0 kilobases of upstream rI1 sequence, however, results in a substantial reduction in the enhancer-dependent insulin gene expression. These observations suggested that a negative transcriptional regulatory element was present between 2.0 and 4.0 kilobases of the rI1 sequence. To test this notion, we employed a heterologous enhancer-dependent transcription assay in which the simian virus 40 72-base-pair repeat is linked to a human beta-globin gene. Addition of the upstream rI1 element to this system decreased the level of enhancer-dependent beta-globin transcription by a factor of 5 to 15. This rI1 "silencer" element functions in a manner relatively independent of position and orientation and requires a cis-dependent relationship to the transcription unit on which it acts. Thus, the silencer sequence seems to have a number of the characteristics of enhancer elements, and we suggest that it may function by the converse of the enhancer mechanism. The rI1 silencer sequence was identified as a member of a long interspersed rat repetitive family. Thus, a potential role for certain repetitive sequences interspersed throughout the eukaryotic genome may be to regulate gene expression by retaining transcriptional activity within defined domains. Images PMID:3010279

  11. Evolution of Chloroplast Transcript Processing in Plasmodium and Its Chromerid Algal Relatives

    PubMed Central

    Dorrell, Richard G.; Drew, James; Nisbet, R. Ellen R.; Howe, Christopher J.

    2014-01-01

    It is well understood that apicomplexan parasites, such as the malaria pathogen Plasmodium, are descended from free-living algae, and maintain a vestigial chloroplast that has secondarily lost all genes of photosynthetic function. Recently, two fully photosynthetic relatives of parasitic apicomplexans have been identified, the ‘chromerid’ algae Chromera velia and Vitrella brassicaformis, which retain photosynthesis genes within their chloroplasts. Elucidating the processes governing gene expression in chromerid chloroplasts might provide valuable insights into the origins of parasitism in the apicomplexans. We have characterised chloroplast transcript processing pathways in C. velia, V. brassicaformis and P. falciparum with a focus on the addition of an unusual, 3′ poly(U) tail. We demonstrate that poly(U) tails in chromerids are preferentially added to transcripts that encode proteins that are directly involved in photosynthetic electron transfer, over transcripts for proteins that are not involved in photosynthesis. To our knowledge, this represents the first chloroplast transcript processing pathway to be associated with a particular functional category of genes. In contrast, Plasmodium chloroplast transcripts are not polyuridylylated. We additionally present evidence that poly(U) tail addition in chromerids is involved in the alternative processing of polycistronic precursors covering multiple photosynthesis genes, and appears to be associated with high levels of transcript abundance. We propose that changes to the chloroplast transcript processing machinery were an important step in the loss of photosynthesis in ancestors of parasitic apicomplexans. PMID:24453981

  12. Transcription and Regulation of the Bidirectional Hydrogenase in the Cyanobacterium Nostoc sp. Strain PCC 7120▿

    PubMed Central

    Sjöholm, Johannes; Oliveira, Paulo; Lindblad, Peter

    2007-01-01

    The filamentous, heterocystous cyanobacterium Nostoc sp. strain PCC 7120 (Anabaena sp. strain PCC 7120) possesses an uptake hydrogenase and a bidirectional enzyme, the latter being capable of catalyzing both H2 production and evolution. The completely sequenced genome of Nostoc sp. strain PCC 7120 reveals that the five structural genes encoding the bidirectional hydrogenase (hoxEFUYH) are separated in two clusters at a distance of approximately 8.8 kb. The transcription of the hox genes was examined under nitrogen-fixing conditions, and the results demonstrate that the cluster containing hoxE and hoxF can be transcribed as one polycistronic unit together with the open reading frame alr0750. The second cluster, containing hoxU, hoxY, and hoxH, is transcribed together with alr0763 and alr0765, located between the hox genes. Moreover, alr0760 and alr0761 form an additional larger operon. Nevertheless, Northern blot hybridizations revealed a rather complex transcription pattern in which the different hox genes are expressed differently. Transcriptional start points (TSPs) were identified 66 and 57 bp upstream from the start codon of alr0750 and hoxU, respectively. The transcriptions of the two clusters containing the hox genes are both induced under anaerobic conditions concomitantly with the induction of a higher level of hydrogenase activity. An additional TSP, within the annotated alr0760, 244 bp downstream from the suggested translation start codon, was identified. Electrophoretic mobility shift assays with purified LexA from Nostoc sp. strain PCC 7120 demonstrated specific interactions between the transcriptional regulator and both hox promoter regions. However, when LexA from Synechocystis sp. strain PCC 6803 was used, the purified protein interacted only with the promoter region of the alr0750-hoxE-hoxF operon. A search of the whole Nostoc sp. strain PCC 7120 genome demonstrated the presence of 216 putative LexA binding sites in total, including recA and rec

  13. A Third Approach to Gene Prediction Suggests Thousands of Additional Human Transcribed Regions

    PubMed Central

    Glusman, Gustavo; Qin, Shizhen; El-Gewely, M. Raafat; Siegel, Andrew F; Roach, Jared C; Hood, Leroy; Smit, Arian F. A

    2006-01-01

    The identification and characterization of the complete ensemble of genes is a main goal of deciphering the digital information stored in the human genome. Many algorithms for computational gene prediction have been described, ultimately derived from two basic concepts: (1) modeling gene structure and (2) recognizing sequence similarity. Successful hybrid methods combining these two concepts have also been developed. We present a third orthogonal approach to gene prediction, based on detecting the genomic signatures of transcription, accumulated over evolutionary time. We discuss four algorithms based on this third concept: Greens and CHOWDER, which quantify mutational strand biases caused by transcription-coupled DNA repair, and ROAST and PASTA, which are based on strand-specific selection against polyadenylation signals. We combined these algorithms into an integrated method called FEAST, which we used to predict the location and orientation of thousands of putative transcription units not overlapping known genes. Many of the newly predicted transcriptional units do not appear to code for proteins. The new algorithms are particularly apt at detecting genes with long introns and lacking sequence conservation. They therefore complement existing gene prediction methods and will help identify functional transcripts within many apparent “genomic deserts.” PMID:16543943

  14. Transcriptional networks in plant immunity.

    PubMed

    Tsuda, Kenichi; Somssich, Imre E

    2015-05-01

    Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    PubMed

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-03-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation.

  16. Mechanisms of specificity in neuronal activity-regulated gene transcription

    PubMed Central

    Lyons, Michelle R.; West, Anne E.

    2011-01-01

    The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain. PMID:21620929

  17. The Werner Syndrome Protein Is Involved in RNA Polymerase II Transcription

    PubMed Central

    Balajee, Adayabalam S.; Machwe, Amrita; May, Alfred; Gray, Matthew D.; Oshima, Junko; Martin, George M.; Nehlin, Jan O.; Brosh, Robert; Orren, David K.; Bohr, Vilhelm A.

    1999-01-01

    Werner syndrome (WS) is a human progeroid syndrome characterized by the early onset of a large number of clinical features associated with the normal aging process. The complex molecular and cellular phenotypes of WS involve characteristic features of genomic instability and accelerated replicative senescence. The gene involved (WRN) was recently cloned, and its gene product (WRNp) was biochemically characterized as a helicase. Helicases play important roles in a variety of DNA transactions, including DNA replication, transcription, repair, and recombination. We have assessed the role of the WRN gene in transcription by analyzing the efficiency of basal transcription in WS lymphoblastoid cell lines that carry homozygous WRN mutations. Transcription was measured in permeabilized cells by [3H]UTP incorporation and in vitro by using a plasmid template containing the RNA polymerase II (RNA pol II)–dependent adenovirus major late promoter. With both of these approaches, we find that the transcription efficiency in different WS cell lines is reduced to 40–60% of the transcription in cells from normal individuals. This defect can be complemented by the addition of normal cell extracts to the chromatin of WS cells. Addition of purified wild-type WRNp but not mutated WRNp to the in vitro transcription assay markedly stimulates RNA pol II–dependent transcription carried out by nuclear extracts. A nonhelicase domain (a direct repeat of 27 amino acids) also appears to have a role in transcription enhancement, as revealed by a yeast hybrid–protein reporter assay. This is further supported by the lack of stimulation of transcription when mutant WRNp lacking this domain was added to the in vitro assay. We have thus used several approaches to show a role for WRNp in RNA pol II transcription, possibly as a transcriptional activator. A deficit in either global or regional transcription in WS cells may be a primary molecular defect responsible for the WS clinical phenotype

  18. Transcriptional and post-transcriptional regulation of NK cell development and function

    PubMed Central

    Leong, Jeffrey W.; Wagner, Julia A.; Ireland, Aaron R.; Fehniger, Todd A.

    2016-01-01

    Natural killer (NK) cells are specialized innate lymphoid cells that survey against viral infections and malignancy. Numerous advances have improved our understanding of the molecular mechanisms that control NK cell development and function over the past decade. These include both studies on the regulatory effects of transcription factors and translational repression via microRNAs. In this review, we summarize our current knowledge of DNA-binding transcription factors that regulate gene expression and thereby orchestrate NK cell development and activation, with an emphasis on recent discoveries. Additionally, we highlight our understanding of how RNA-bindings microRNAs fine tune the NK cell molecular program. We also underscore the large number of open questions in field that are now being addressed using new technological approaches and genetically engineered model organisms. Ultimately, a deeper understanding of the basic molecular biology of NK cells will facilitate new strategies to manipulate NK cells for the treatment of human disease. PMID:26948928

  19. HALO--a Java framework for precise transcript half-life determination.

    PubMed

    Friedel, Caroline C; Kaufmann, Stefanie; Dölken, Lars; Zimmer, Ralf

    2010-05-01

    Recent improvements in experimental technologies now allow measurements of de novo transcription and/or RNA decay at whole transcriptome level and determination of precise transcript half-lives. Such transcript half-lives provide important insights into the regulation of biological processes and the relative contributions of RNA decay and de novo transcription to differential gene expression. In this article, we present HALO (Half-life Organizer), the first software for the precise determination of transcript half-lives from measurements of RNA de novo transcription or decay determined with microarrays or RNA-seq. In addition, methods for quality control, filtering and normalization are supplied. HALO provides a graphical user interface, command-line tools and a well-documented Java application programming interface (API). Thus, it can be used both by biologists to determine transcript half-lives fast and reliably with the provided user interfaces as well as software developers integrating transcript half-life analysis into other gene expression profiling pipelines. Source code, executables and documentation are available at http://www.bio.ifi.lmu.de/software/halo.

  20. Chromatin potentiates transcription

    PubMed Central

    Nagai, Shigeki; Davis, Ralph E.; Mattei, Pierre Jean; Eagen, Kyle Patrick; Kornberg, Roger D.

    2017-01-01

    Chromatin isolated from the chromosomal locus of the PHO5 gene of yeast in a transcriptionally repressed state was transcribed with 12 pure proteins (80 polypeptides): RNA polymerase II, six general transcription factors, TFIIS, the Pho4 gene activator protein, and the SAGA, SWI/SNF, and Mediator complexes. Contrary to expectation, a nucleosome occluding the TATA box and transcription start sites did not impede transcription but rather, enhanced it: the level of chromatin transcription was at least sevenfold greater than that of naked DNA, and chromatin gave patterns of transcription start sites closely similar to those occurring in vivo, whereas naked DNA gave many aberrant transcripts. Both histone acetylation and trimethylation of H3K4 (H3K4me3) were important for chromatin transcription. The nucleosome, long known to serve as a general gene repressor, thus also performs an important positive role in transcription. PMID:28137832

  1. 77 FR 16817 - Request for Comment on Payday Lending Hearing Transcript

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... Lending Hearing Transcript AGENCY: Bureau of Consumer Financial Protection. ACTION: Notice; request for... hearing on payday lending. The Bureau invites the public to review the transcript and provide additional..., 2012 in Birmingham, Alabama. Payday lending products are typically marketed to bridge a cash flow...

  2. Chromatin-Specific Regulation of Mammalian rDNA Transcription by Clustered TTF-I Binding Sites

    PubMed Central

    Diermeier, Sarah D.; Németh, Attila; Rehli, Michael; Grummt, Ingrid; Längst, Gernot

    2013-01-01

    Enhancers and promoters often contain multiple binding sites for the same transcription factor, suggesting that homotypic clustering of binding sites may serve a role in transcription regulation. Here we show that clustering of binding sites for the transcription termination factor TTF-I downstream of the pre-rRNA coding region specifies transcription termination, increases the efficiency of transcription initiation and affects the three-dimensional structure of rRNA genes. On chromatin templates, but not on free rDNA, clustered binding sites promote cooperative binding of TTF-I, loading TTF-I to the downstream terminators before it binds to the rDNA promoter. Interaction of TTF-I with target sites upstream and downstream of the rDNA transcription unit connects these distal DNA elements by forming a chromatin loop between the rDNA promoter and the terminators. The results imply that clustered binding sites increase the binding affinity of transcription factors in chromatin, thus influencing the timing and strength of DNA-dependent processes. PMID:24068958

  3. Transcriptional requirements of the distal heavy-strand promoter of mtDNA

    PubMed Central

    Zollo, Ornella; Tiranti, Valeria; Sondheimer, Neal

    2012-01-01

    The heavy strand of mtDNA contains two promoters with nonoverlapping functions. The role of the minor heavy-strand promoter (HSP2) is controversial, because the promoter has been difficult to activate in an in vitro system. We have isolated HSP2 by excluding its interaction with the more powerful HSP1 promoter, and we find that it is transcribed efficiently by recombinant mtRNA polymerase and mitochondrial transcription factor B2. The mitochondrial transcription factor A is not required for initiation, but it has the ability to alternatively activate and repress the HSP2 transcriptional unit depending on the ratio between mitochondrial transcription factor A and other transcription factors. The positioning of transcriptional initiation agrees with our current understanding of HSP2 activity in vivo. Serial deletion of HSP2 shows that only proximal sequences are required. Several mutations, including the disruption of a polycytosine track upstream of the HSP2 initiation site, influence transcriptional activity. Transcription from HSP2 is also observed when HeLa cell mitochondrial extract is used as the source of mitochondrial polymerase, and this transcription is maintained when HSP2 is provided in proper spacing and context to the HSP1 promoter. Studies of the linked heavy-strand promoters show that they are differentially regulated by ATP dosage. We conclude that HSP2 is transcribed and has features that allow it to regulate mitochondrial mRNA synthesis. PMID:22454497

  4. Predicting phonetic transcription agreement: Insights from research in infant vocalizations

    PubMed Central

    RAMSDELL, HEATHER L.; OLLER, D. KIMBROUGH; ETHINGTON, CORINNA A.

    2010-01-01

    The purpose of this study is to provide new perspectives on correlates of phonetic transcription agreement. Our research focuses on phonetic transcription and coding of infant vocalizations. The findings are presumed to be broadly applicable to other difficult cases of transcription, such as found in severe disorders of speech, which similarly result in low reliability for a variety of reasons. We evaluated the predictiveness of two factors not previously documented in the literature as influencing transcription agreement: canonicity and coder confidence. Transcribers coded samples of infant vocalizations, judging both canonicity and confidence. Correlation results showed that canonicity and confidence were strongly related to agreement levels, and regression results showed that canonicity and confidence both contributed significantly to explanation of variance. Specifically, the results suggest that canonicity plays a major role in transcription agreement when utterances involve supraglottal articulation, with coder confidence offering additional power in predicting transcription agreement. PMID:17882695

  5. Alternative polyadenylation of the gene transcripts encoding a rat DNA polymerase beta.

    PubMed

    Konopiński, R; Nowak, R; Siedlecki, J A

    1996-10-17

    Rat cells produce two different transcripts of DNA polymerase beta (beta-Pol). The low-molecular-weight transcript (1.4 kb) was already sequenced. We report here the cloning and sequencing of the full-length cDNA, corresponding to the high-molecular-weight (HMW) transcript (4.0 kb) of beta-Pol. Sequence data strongly suggest that both transcripts are produced from a single gene by alternative polyadenylation. The HMW transcript contains the entire 1.4 kb transcript sequence and additional 2.2 kb on the 3' end. The 3' UTR of the HMW transcript contains some regulatory sequences which are not present in the 1.4-kb transcript. The A + U-rich fragment and (GU)21 sequence are believed to influence the stability of the mRNA. The functional significance of the A-rich region locally destabilizing double-stranded secondary structure remains unknown.

  6. Multiple transcription factor codes activate epidermal wound–response genes in Drosophila

    PubMed Central

    Pearson, Joseph C.; Juarez, Michelle T.; Kim, Myungjin; Drivenes, Øyvind; McGinnis, William

    2009-01-01

    Wounds in Drosophila and mouse embryos induce similar genetic pathways to repair epidermal barriers. However, the transcription factors that transduce wound signals to repair epidermal barriers are largely unknown. We characterize the transcriptional regulatory enhancers of 4 genes—Ddc, ple, msn, and kkv—that are rapidly activated in epidermal cells surrounding wounds in late Drosophila embryos and early larvae. These epidermal wound enhancers all contain evolutionarily conserved sequences matching binding sites for JUN/FOS and GRH transcription factors, but vary widely in trans- and cis-requirements for these inputs and their binding sites. We propose that the combination of GRH and FOS is part of an ancient wound–response pathway still used in vertebrates and invertebrates, but that other mechanisms have evolved that result in similar transcriptional output. A common, but largely untested assumption of bioinformatic analyses of gene regulatory networks is that transcription units activated in the same spatial and temporal patterns will require the same cis-regulatory codes. Our results indicate that this is an overly simplistic view. PMID:19168633

  7. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    PubMed Central

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-01-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation. PMID:9062372

  8. TIF-IC, a factor involved in both transcription initiation and elongation of RNA polymerase I.

    PubMed

    Schnapp, G; Schnapp, A; Rosenbauer, H; Grummt, I

    1994-09-01

    We have characterized a transcription factor from Ehrlich ascites cells that is required for ribosomal gene transcription by RNA polymerase I (Pol I). This factor, termed TIF-IC, has a native molecular mass of 65 kDa, associates with Pol I, and is required both for the assembly of Sarkosyl-resistant initiation complexes and for the formation of the first internucleotide bonds. In addition to its function in transcription initiation, TIF-IC also plays a role in elongation of nascent RNA chains. At suboptimal levels of TIF-IC, transcripts with heterogeneous 3' ends are formed which are chased into full-length transcripts by the addition of more TIF-IC. Moreover, on a tailed template, which allows initiation in the absence of auxiliary factors, TIF-IC was found to stimulate the overall rate of transcription elongation and suppress pausing of Pol I. Thus TIF-IC appears to serve a function similar to the Pol II-specific factor TFIIF which is required for Pol II transcription initiation and elongation.

  9. HnRNP-like proteins as post-transcriptional regulators.

    PubMed

    Yeap, Wan-Chin; Namasivayam, Parameswari; Ho, Chai-Ling

    2014-10-01

    Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations

    PubMed Central

    Streubel, Jana; Baum, Heidi; Grau, Jan; Stuttman, Johannes; Boch, Jens

    2017-01-01

    Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators. PMID:28301511

  11. Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations.

    PubMed

    Streubel, Jana; Baum, Heidi; Grau, Jan; Stuttman, Johannes; Boch, Jens

    2017-01-01

    Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators.

  12. Plant Mediator complex and its critical functions in transcription regulation.

    PubMed

    Yang, Yan; Li, Ling; Qu, Li-Jia

    2016-02-01

    The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted. © 2015 Institute of Botany, Chinese Academy of Sciences.

  13. Zipper plot: visualizing transcriptional activity of genomic regions.

    PubMed

    Avila Cobos, Francisco; Anckaert, Jasper; Volders, Pieter-Jan; Everaert, Celine; Rombaut, Dries; Vandesompele, Jo; De Preter, Katleen; Mestdagh, Pieter

    2017-05-02

    Reconstructing transcript models from RNA-sequencing (RNA-seq) data and establishing these as independent transcriptional units can be a challenging task. Current state-of-the-art tools for long non-coding RNA (lncRNA) annotation are mainly based on evolutionary constraints, which may result in false negatives due to the overall limited conservation of lncRNAs. To tackle this problem we have developed the Zipper plot, a novel visualization and analysis method that enables users to simultaneously interrogate thousands of human putative transcription start sites (TSSs) in relation to various features that are indicative for transcriptional activity. These include publicly available CAGE-sequencing, ChIP-sequencing and DNase-sequencing datasets. Our method only requires three tab-separated fields (chromosome, genomic coordinate of the TSS and strand) as input and generates a report that includes a detailed summary table, a Zipper plot and several statistics derived from this plot. Using the Zipper plot, we found evidence of transcription for a set of well-characterized lncRNAs and observed that fewer mono-exonic lncRNAs have CAGE peaks overlapping with their TSSs compared to multi-exonic lncRNAs. Using publicly available RNA-seq data, we found more than one hundred cases where junction reads connected protein-coding gene exons with a downstream mono-exonic lncRNA, revealing the need for a careful evaluation of lncRNA 5'-boundaries. Our method is implemented using the statistical programming language R and is freely available as a webtool.

  14. Regulation of steroid hormone receptors and coregulators during the cell cycle highlights potential novel function in addition to roles as transcription factors

    PubMed Central

    Zheng, Yingfeng; Murphy, Leigh C.

    2016-01-01

    Cell cycle progression is tightly controlled by several kinase families including Cyclin-Dependent Kinases, Polo-Like Kinases, and Aurora Kinases. A large amount of data show that steroid hormone receptors and various components of the cell cycle, including cell cycle regulated kinases, interact, and this often results in altered transcriptional activity of the receptor. Furthermore, steroid hormones, through their receptors, can also regulate the transcriptional expression of genes that are required for cell cycle regulation. However, emerging data suggest that steroid hormone receptors may have roles in cell cycle progression independent of their transcriptional activity. The following is a review of how steroid receptors and their coregulators can regulate or be regulated by the cell cycle machinery, with a particular focus on roles independent of transcription in G2/M. PMID:26778927

  15. The glucose sensor Snf1 and the transcription factors Msn2 and Msn4 regulate transcription of the vacuolar iron importer gene CCC1 and iron resistance in yeast.

    PubMed

    Li, Liangtao; Kaplan, Jerry; Ward, Diane M

    2017-09-15

    The budding yeast Saccharomyces cerevisiae stores iron in the vacuole, which is a major resistance mechanism against iron toxicity. One key protein involved in vacuolar iron storage is the iron importer Ccc1, which facilitates iron entry into the vacuole. Transcription of the CCC1 gene is largely regulated by the binding of iron-sulfur clusters to the activator domain of the transcriptional activator Yap5. Additional evidence, however, suggests that Yap5-independent transcriptional activation of CCC1 also contributes to iron resistance. Here, we demonstrate that components of the signaling pathway involving the low-glucose sensor Snf1 regulate CCC1 transcription and iron resistance. We found that SNF1 deletion acts synergistically with YAP5 deletion to regulate CCC1 transcription and iron resistance. A kinase-dead mutation of Snf1 lowered iron resistance as did deletion of SNF4 , which encodes a partner protein of Snf1. Deletion of all three alternative partners of Snf1 encoded by SIT1 , SIT2 , and GAL83 decreased both CCC1 transcription and iron resistance. The Snf1 complex is known to activate the general stress transcription factors Msn2 and Msn4. We show that Msn2 and Msn4 contribute to Snf1-mediated CCC1 transcription. Of note, SNF1 deletion in combination with MSN2 and MSN4 deletion resulted in additive effects on CCC1 transcription, suggesting that other activators contribute to the regulation of CCC1 transcription. In conclusion, we show that yeast have developed multiple transcriptional mechanisms to regulate Ccc1 expression and to protect against high cytosolic iron toxicity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Transcriptional regulators of Na,K-ATPase subunits

    PubMed Central

    Li, Zhiqin; Langhans, Sigrid A.

    2015-01-01

    The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease. PMID:26579519

  17. Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells

    PubMed Central

    Min, Irene M.; Waterfall, Joshua J.; Core, Leighton J.; Munroe, Robert J.; Schimenti, John; Lis, John T.

    2011-01-01

    Transitions between pluripotent stem cells and differentiated cells are executed by key transcription regulators. Comparative measurements of RNA polymerase distribution over the genome's primary transcription units in different cell states can identify the genes and steps in the transcription cycle that are regulated during such transitions. To identify the complete transcriptional profiles of RNA polymerases with high sensitivity and resolution, as well as the critical regulated steps upon which regulatory factors act, we used genome-wide nuclear run-on (GRO-seq) to map the density and orientation of transcriptionally engaged RNA polymerases in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). In both cell types, progression of a promoter-proximal, paused RNA polymerase II (Pol II) into productive elongation is a rate-limiting step in transcription of ∼40% of mRNA-encoding genes. Importantly, quantitative comparisons between cell types reveal that transcription is controlled frequently at paused Pol II's entry into elongation. Furthermore, “bivalent” ESC genes (exhibiting both active and repressive histone modifications) bound by Polycomb group complexes PRC1 (Polycomb-repressive complex 1) and PRC2 show dramatically reduced levels of paused Pol II at promoters relative to an average gene. In contrast, bivalent promoters bound by only PRC2 allow Pol II pausing, but it is confined to extremely 5′ proximal regions. Altogether, these findings identify rate-limiting targets for transcription regulation during cell differentiation. PMID:21460038

  18. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    PubMed

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

  19. Silencers, silencing, and heritable transcriptional states.

    PubMed Central

    Laurenson, P; Rine, J

    1992-01-01

    Three copies of the mating-type genes, which determine cell type, are found in the budding yeast Saccharomyces cerevisiae. The copy at the MAT locus is transcriptionally active, whereas identical copies of the mating-type genes at the HML and HMR loci are transcriptionally silent. Hence, HML and HMR, also known as the silent mating-type loci, are subject to a position effect. Regulatory sequences flank the silent mating-type loci and mediate repression of HML and HMR. These regulatory sequences are called silencers for their ability to repress the transcription of nearby genes in a distance- and orientation-independent fashion. In addition, a number of proteins, including the four SIR proteins, histone H4, and an alpha-acetyltransferase, are required for the complete repression of HML and HMR. Because alterations in the amino-terminal domain of histone H4 result in the derepression of the silent mating-type loci, the mechanism of repression may involve the assembly of a specific chromatin structure. A number of additional clues permit insight into the nature of repression at HML and HMR. First, an S phase event is required for the establishment of repression. Second, at least one gene appears to play a role in the establishment mechanism yet is not essential for the stable propagation of repression through many rounds of cell division. Third, certain aspects of repression are linked to aspects of replication. The silent mating-type loci share many similarities with heterochromatin. Furthermore, regions of S. cerevisiae chromosomes, such as telomeres, which are known to be heterochromatic in other organisms, require a subset of SIR proteins for repression. Further analysis of the transcriptional repression at the silent mating-type loci may lend insight into heritable repression in other eukaryotes. PMID:1480108

  20. A critical role for topoisomerase IIb and DNA double strand breaks in transcription

    PubMed Central

    Calderwood, Stuart K.

    2016-01-01

    ABSTRACT Recent studies have indicated a novel role for topoisomerase IIb in transcription. Transcription of heat shock genes, serum-induced immediate early genes and nuclear receptor-activated genes, each required DNA double strands generated by topoisomerase IIb. Such strand breaks seemed both necessary and sufficient for transcriptional activation. In addition, such transcription was associated with initiation of the DNA damage response pathways, including the activation of the enzymes: ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase and poly (ADP ribose) polymerase 1. DNA damage response signaling was involved both in transcription and in repair of DNA breaks generated by topoisomerase IIb. PMID:27100743

  1. A critical role for topoisomerase IIb and DNA double strand breaks in transcription.

    PubMed

    Calderwood, Stuart K

    2016-05-26

    Recent studies have indicated a novel role for topoisomerase IIb in transcription. Transcription of heat shock genes, serum-induced immediate early genes and nuclear receptor-activated genes, each required DNA double strands generated by topoisomerase IIb. Such strand breaks seemed both necessary and sufficient for transcriptional activation. In addition, such transcription was associated with initiation of the DNA damage response pathways, including the activation of the enzymes: ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase and poly (ADP ribose) polymerase 1. DNA damage response signaling was involved both in transcription and in repair of DNA breaks generated by topoisomerase IIb.

  2. Deciphering principles of transcription regulation in eukaryotic genomes

    PubMed Central

    Nguyen, Dat H; D'haeseleer, Patrik

    2006-01-01

    Transcription regulation has been responsible for organismal complexity and diversity in the course of biological evolution and adaptation, and it is determined largely by the context-dependent behavior of cis-regulatory elements (CREs). Therefore, understanding principles underlying CRE behavior in regulating transcription constitutes a fundamental objective of quantitative biology, yet these remain poorly understood. Here we present a deterministic mathematical strategy, the motif expression decomposition (MED) method, for deriving principles of transcription regulation at the single-gene resolution level. MED operates on all genes in a genome without requiring any a priori knowledge of gene cluster membership, or manual tuning of parameters. Applying MED to Saccharomyces cerevisiae transcriptional networks, we identified four functions describing four different ways that CREs can quantitatively affect gene expression levels. These functions, three of which have extrema in different positions in the gene promoter (short-, mid-, and long-range) whereas the other depends on the motif orientation, are validated by expression data. We illustrate how nature could use these principles as an additional dimension to amplify the combinatorial power of a small set of CREs in regulating transcription. PMID:16738557

  3. TIF-IC, a factor involved in both transcription initiation and elongation of RNA polymerase I.

    PubMed Central

    Schnapp, G; Schnapp, A; Rosenbauer, H; Grummt, I

    1994-01-01

    We have characterized a transcription factor from Ehrlich ascites cells that is required for ribosomal gene transcription by RNA polymerase I (Pol I). This factor, termed TIF-IC, has a native molecular mass of 65 kDa, associates with Pol I, and is required both for the assembly of Sarkosyl-resistant initiation complexes and for the formation of the first internucleotide bonds. In addition to its function in transcription initiation, TIF-IC also plays a role in elongation of nascent RNA chains. At suboptimal levels of TIF-IC, transcripts with heterogeneous 3' ends are formed which are chased into full-length transcripts by the addition of more TIF-IC. Moreover, on a tailed template, which allows initiation in the absence of auxiliary factors, TIF-IC was found to stimulate the overall rate of transcription elongation and suppress pausing of Pol I. Thus TIF-IC appears to serve a function similar to the Pol II-specific factor TFIIF which is required for Pol II transcription initiation and elongation. Images PMID:8076598

  4. Bovine herpesvirus 1 productive infection and immediate early transcription unit 1 promoter are stimulated by the synthetic corticosteroid dexamethasone.

    PubMed

    Kook, Insun; Henley, Caitlin; Meyer, Florencia; Hoffmann, Federico G; Jones, Clinton

    2015-10-01

    The primary site for life-long latency of bovine herpesvirus 1 (BHV-1) is sensory neurons. The synthetic corticosteroid dexamethasone consistently induces reactivation from latency; however the mechanism by which corticosteroids mediate reactivation is unclear. In this study, we demonstrate for the first time that dexamethasone stimulates productive infection, in part, because the BHV-1 genome contains more than 100 potential glucocorticoid receptor (GR) response elements (GREs). Immediate early transcription unit 1 (IEtu1) promoter activity, but not IEtu2 or VP16 promoter activity, was stimulated by dexamethasone. Two near perfect consensus GREs located within the IEtu1 promoter were necessary for dexamethasone-mediated stimulation. Electrophoretic mobility shift assays and chromatin immunoprecipitation studies demonstrated that the GR interacts with IEtu1 promoter sequences containing the GREs. Although we hypothesize that DEX-mediated stimulation of IEtu1 promoter activity is important during productive infection and perhaps reactivation from latency, stress likely has pleiotropic effects on virus-infected cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs.

    PubMed

    Dhir, Ashish; Dhir, Somdutta; Proudfoot, Nick J; Jopling, Catherine L

    2015-04-01

    MicroRNAs (miRNAs) play a major part in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with cotranscriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. Although most miRNAs are located within introns of protein-coding transcripts, a substantial minority of miRNAs originate from long noncoding (lnc) RNAs, for which transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lncRNA transcripts containing miRNAs (lnc-pri-miRNAs) do not use the canonical cleavage-and-polyadenylation pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a new RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells.

  6. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    PubMed Central

    Fang, Xin; Sastry, Anand; Mih, Nathan; Kim, Donghyuk; Tan, Justin; Lloyd, Colton J.; Gao, Ye; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Transcriptional regulatory networks (TRNs) have been studied intensely for >25 y. Yet, even for the Escherichia coli TRN—probably the best characterized TRN—several questions remain. Here, we address three questions: (i) How complete is our knowledge of the E. coli TRN; (ii) how well can we predict gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions were collected from published, validated chromatin immunoprecipitation (ChIP) data and RegulonDB. For 21 different TF knockouts, up to 63% of the differentially expressed genes in the hiTRN were traced to the knocked-out TF through regulatory cascades. Second, we trained supervised machine learning algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems-level functions of an organism’s TRN from disparate data types. PMID:28874552

  7. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell.

    PubMed

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Anaraki, A P; Ahmadi, S M; Zadpoor, A A; Schmauder, S

    2015-10-01

    Since the advent of additive manufacturing techniques, regular porous biomaterials have emerged as promising candidates for tissue engineering scaffolds owing to their controllable pore architecture and feasibility in producing scaffolds from a variety of biomaterials. The architecture of scaffolds could be designed to achieve similar mechanical properties as in the host bone tissue, thereby avoiding issues such as stress shielding in bone replacement procedure. In this paper, the deformation and failure mechanisms of porous titanium (Ti6Al4V) biomaterials manufactured by selective laser melting from two different types of repeating unit cells, namely cubic and diamond lattice structures, with four different porosities are studied. The mechanical behavior of the above-mentioned porous biomaterials was studied using finite element models. The computational results were compared with the experimental findings from a previous study of ours. The Johnson-Cook plasticity and damage model was implemented in the finite element models to simulate the failure of the additively manufactured scaffolds under compression. The computationally predicted stress-strain curves were compared with the experimental ones. The computational models incorporating the Johnson-Cook damage model could predict the plateau stress and maximum stress at the first peak with less than 18% error. Moreover, the computationally predicted deformation modes were in good agreement with the results of scaling law analysis. A layer-by-layer failure mechanism was found for the stretch-dominated structures, i.e. structures made from the cubic unit cell, while the failure of the bending-dominated structures, i.e. structures made from the diamond unit cells, was accompanied by the shearing bands of 45°. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. WRKY transcription factors.

    PubMed

    Rushton, Paul J; Somssich, Imre E; Ringler, Patricia; Shen, Qingxi J

    2010-05-01

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants and form integral parts of signalling webs that modulate many plant processes. Here, we review recent significant progress in WRKY transcription factor research. New findings illustrate that WRKY proteins often act as repressors as well as activators, and that members of the family play roles in both the repression and de-repression of important plant processes. Furthermore, it is becoming clear that a single WRKY transcription factor might be involved in regulating several seemingly disparate processes. Mechanisms of signalling and transcriptional regulation are being dissected, uncovering WRKY protein functions via interactions with a diverse array of protein partners, including MAP kinases, MAP kinase kinases, 14-3-3 proteins, calmodulin, histone deacetylases, resistance proteins and other WRKY transcription factors. WRKY genes exhibit extensive autoregulation and cross-regulation that facilitates transcriptional reprogramming in a dynamic web with built-in redundancy. 2010 Elsevier Ltd. All rights reserved.

  9. Transcription boundaries of U1 small nuclear RNA.

    PubMed Central

    Kunkel, G R; Pederson, T

    1985-01-01

    Transcription-proximal stages of U1 small nuclear RNA biosynthesis were studied by 32P labeling of nascent chains in isolated HeLa cell nuclei. Labeled RNA was hybridized to nitrocellulose-immobilized, single-stranded M13 DNA clones corresponding to regions within or flanking a human U1 RNA gene. Transcription of U1 RNA was inhibited by greater than 95% by alpha-amanitin at 1 microgram/ml, consistent with previous evidence that it is synthesized by RNA polymerase II. No hybridization to DNA immediately adjacent to the 5' end of mature U1 RNA (-6 to -105 nucleotides) was detected, indicating that, like all studied polymerase II initiation, transcription of U1 RNA starts at or very near the cap site. However, in contrast to previously described transcription units for mRNA, in which equimolar transcription occurs for hundreds or thousands of nucleotides beyond the mature 3' end of the mRNA, labeled U1 RNA hybridization dropped off sharply within a very short region (approximately 60 nucleotides) immediately downstream from the 3' end of mature U1 RNA. Also in contrast to pre-mRNA, which is assembled into ribonucleoprotein (RNP) particles while still nascent RNA chains, the U1 RNA transcribed in isolated nuclei did not form RNP complexes by the criterion of reaction with a monoclonal antibody for the small nuclear RNP Sm proteins. This suggests that, unlike pre-mRNA-RNP particle formation, U1 small nuclear RNP assembly does not occur until after the completion of transcription. These results show that, despite their common synthesis by RNA polymerase II, mRNA and U1 small nuclear RNA differ markedly both in their extents of 3' processing and their temporal patterns of RNP assembly. Images PMID:2942763

  10. Piano Transcription with Convolutional Sparse Lateral Inhibition

    DOE PAGES

    Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt Egon

    2017-02-08

    This paper extends our prior work on contextdependent piano transcription to estimate the length of the notes in addition to their pitch and onset. This approach employs convolutional sparse coding along with lateral inhibition constraints to approximate a musical signal as the sum of piano note waveforms (dictionary elements) convolved with their temporal activations. The waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. A dictionary containing multiple waveforms per pitch is generated by truncating a long waveform for each pitch to different lengths. During transcription, the dictionary elements are fixed and their temporal activationsmore » are estimated and post-processed to obtain the pitch, onset and note length estimation. A sparsity penalty promotes globally sparse activations of the dictionary elements, and a lateral inhibition term penalizes concurrent activations of different waveforms corresponding to the same pitch within a temporal neighborhood, to achieve note length estimation. Experiments on the MAPS dataset show that the proposed approach significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting in transcription accuracy.« less

  11. Piano Transcription with Convolutional Sparse Lateral Inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt Egon

    This paper extends our prior work on contextdependent piano transcription to estimate the length of the notes in addition to their pitch and onset. This approach employs convolutional sparse coding along with lateral inhibition constraints to approximate a musical signal as the sum of piano note waveforms (dictionary elements) convolved with their temporal activations. The waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. A dictionary containing multiple waveforms per pitch is generated by truncating a long waveform for each pitch to different lengths. During transcription, the dictionary elements are fixed and their temporal activationsmore » are estimated and post-processed to obtain the pitch, onset and note length estimation. A sparsity penalty promotes globally sparse activations of the dictionary elements, and a lateral inhibition term penalizes concurrent activations of different waveforms corresponding to the same pitch within a temporal neighborhood, to achieve note length estimation. Experiments on the MAPS dataset show that the proposed approach significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting in transcription accuracy.« less

  12. Transcriptional regulation of fatty acid biosynthesis in mycobacteria

    PubMed Central

    Mondino, S.; Gago, G.; Gramajo, H.

    2013-01-01

    SUMMARY The main purpose of our study is to understand how mycobacteria exert control over the biosynthesis of their membrane lipids and find out the key components of the regulatory network that control fatty acid biosynthesis at the transcriptional level. In this paper we describe the identification and purification of FasR, a transcriptional regulator from Mycobacterium sp. that controls the expression of the fatty acid synthase (fas) and the 4-phosphopantetheinyl transferase (acpS) encoding genes, whose products are involved in the fatty acid and mycolic acid biosynthesis pathways. In vitro studies demonstrated that fas and acpS genes are part of the same transcriptional unit and that FasR specifically binds to three conserved operator sequences present in the fas-acpS promoter region (Pfas). The construction and further characterization of a fasR conditional mutant confirmed that FasR is a transcriptional activator of the fas-acpS operon and that this protein is essential for mycobacteria viability. Furthermore, the combined used of Pfas-lacZ fusions in different fasR backgrounds and electrophoretic mobility shift assays experiments, strongly suggested that long-chain acyl-CoAs are the effector molecules that modulate the affinity of FasR for its DNA binding sequences and therefore the expression of the essential fas-acpS operon. PMID:23721164

  13. Def1 interacts with TFIIH and modulates RNA polymerase II transcription.

    PubMed

    Damodaren, Nivedita; Van Eeuwen, Trevor; Zamel, Joanna; Lin-Shiao, Enrique; Kalisman, Nir; Murakami, Kenji

    2017-12-12

    The DNA damage response is an essential process for the survival of living cells. In a subset of stress-responsive genes in humans, Elongin controls transcription in response to multiple stimuli, such as DNA damage, oxidative stress, and heat shock. Yeast Elongin (Ela1-Elc1), along with Def1, is known to facilitate ubiquitylation and degradation of RNA polymerase II (pol II) in response to multiple stimuli, yet transcription activity has not been examined. We have found that Def1 copurifies from yeast whole-cell extract with TFIIH, the largest general transcription factor required for transcription initiation and nucleotide excision repair. The addition of recombinant Def1 and Ela1-Elc1 enhanced transcription initiation in an in vitro reconstituted system including pol II, the general transcription factors, and TFIIS. Def1 also enhanced transcription restart from TFIIS-induced cleavage in a pol II transcribing complex. In the Δdef1 strain, heat shock genes were misregulated, indicating that Def1 is required for induction of some stress-responsive genes in yeast. Taken together, our results extend the understanding of the molecular mechanism of transcription regulation on cellular stress and reveal functional similarities to the mammalian system.

  14. Factor requirements for transcription in the Archaeon Sulfolobus shibatae.

    PubMed

    Qureshi, S A; Bell, S D; Jackson, S P

    1997-05-15

    Archaea (archaebacteria) constitute a domain of life that is distinct from Bacteria (eubacteria) and Eucarya (eukaryotes). Although archaeal cells share many morphological features with eubacteria, their transcriptional apparatus is more akin to eukaryotic RNA polymerases I, II and III than it is to eubacterial transcription systems. Thus, in addition to possessing a 10 subunit RNA polymerase and a homologue of the TATA-binding protein (TBP), Archaea possess a polypeptide termed TFB that is homologous to eukaryotic TFIIB. Here, we investigate the factor requirements for transcription of several promoters of the archaeon Sulfolobus shibatae and its associated virus SSV. Through in vitro transcription and immunodepletion, we demonstrate that S. shibatae TBP, TFB and RNA polymerase are not complexed tightly with one another and that each is required for efficient transcription of all promoters tested. Furthermore, full transcription is restored by supplementing respective depleted extracts with recombinant TBP or TFB, indicating that TBP-associated factors or TFB-associated factors are not required. Indeed, gel-filtration suggests that Sulfolobus TBP and TFB are not associated stably with other proteins. Finally, all promoters analysed are transcribed accurately and efficiently in an in vitro system comprising recombinant TBP and TFB, together with essentially homogeneous preparation of RNA polymerase. Transcription in Archaea is therefore fundamentally homologous to that in eukaryotes, although factor requirements appear to be much less complex.

  15. Stochastic model for gene transcription on Drosophila melanogaster embryos

    NASA Astrophysics Data System (ADS)

    Prata, Guilherme N.; Hornos, José Eduardo M.; Ramos, Alexandre F.

    2016-02-01

    We examine immunostaining experimental data for the formation of stripe 2 of even-skipped (eve) transcripts on D. melanogaster embryos. An estimate of the factor converting immunofluorescence intensity units into molecular numbers is given. The analysis of the eve dynamics at the region of stripe 2 suggests that the promoter site of the gene has two distinct regimes: an earlier phase when it is predominantly activated until a critical time when it becomes mainly repressed. That suggests proposing a stochastic binary model for gene transcription on D. melanogaster embryos. Our model has two random variables: the transcripts number and the state of the source of mRNAs given as active or repressed. We are able to reproduce available experimental data for the average number of transcripts. An analysis of the random fluctuations on the number of eves and their consequences on the spatial precision of stripe 2 is presented. We show that the position of the anterior or posterior borders fluctuate around their average position by ˜1 % of the embryo length, which is similar to what is found experimentally. The fitting of data by such a simple model suggests that it can be useful to understand the functions of randomness during developmental processes.

  16. Silencing of IFN-stimulated gene transcription is regulated by histone H1 and its chaperone TAF-I

    PubMed Central

    Kadota, Shinichi; Nagata, Kyosuke

    2014-01-01

    Chromatin structure and its alteration play critical roles in the regulation of transcription. However, the transcriptional silencing mechanism with regard to the chromatin structure at an unstimulated state of the interferon (IFN)-stimulated gene (ISG) remains unclear. Here we investigated the role of template activating factor-I (TAF-I, also known as SET) in ISG transcription. Knockdown (KD) of TAF-I increased ISG transcript and simultaneously reduced the histone H1 level on the ISG promoters during the early stages of transcription after IFN stimulation from the unstimulated state. The transcription factor levels on the ISG promoters were increased in TAF-I KD cells only during the early stages of transcription. Furthermore, histone H1 KD also increased ISG transcript. TAF-I and histone H1 double KD did not show the additive effect in ISG transcription, suggesting that TAF-I and histone H1 may act on the same regulatory pathway to control ISG transcription. In addition, TAF-I KD and histone H1 KD affected the chromatin structure near the ISG promoters. On the basis of these findings, we propose that TAF-I and its target histone H1 are key regulators of the chromatin structure at the ISG promoter to maintain the silent state of ISG transcription. PMID:24878923

  17. Transcription factor interplay in T helper cell differentiation

    PubMed Central

    Evans, Catherine M.

    2013-01-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity. PMID:23878131

  18. Transcription factor interplay in T helper cell differentiation.

    PubMed

    Evans, Catherine M; Jenner, Richard G

    2013-11-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity.

  19. Directing traffic on DNA-How transcription factors relieve or induce transcriptional interference.

    PubMed

    Hao, Nan; Palmer, Adam C; Dodd, Ian B; Shearwin, Keith E

    2017-03-15

    Transcriptional interference (TI) is increasingly recognized as a widespread mechanism of gene control, particularly given the pervasive nature of transcription, both sense and antisense, across all kingdoms of life. Here, we discuss how transcription factor binding kinetics strongly influence the ability of a transcription factor to relieve or induce TI.

  20. Transcriptional Correlates of Memory Maintenance Following Long-Term Sensitization of "Aplysia Californica"

    ERIC Educational Resources Information Center

    Conte, Catherine; Herdegen, Samantha; Kamal, Saman; Patel, Jency; Patel, Ushma; Perez, Leticia; Rivota, Marissa; Calin-Jageman, Robert J.; Calin-Jageman, Irina E.

    2017-01-01

    We characterized the transcriptional response accompanying maintenance of long-term sensitization (LTS) memory in the pleural ganglia of "Aplysia californica" using microarray (N = 8) and qPCR (N = 11 additional samples). We found that 24 h after memory induction there is strong regulation of 1198 transcripts (748 up and 450 down) in a…

  1. Biallelic Germline Transcription at the κ Immunoglobulin Locus

    PubMed Central

    Singh, Nandita; Bergman, Yehudit; Cedar, Howard; Chess, Andrew

    2003-01-01

    Rearrangement of antigen receptor genes generates a vast array of antigen receptors on lymphocytes. The establishment of allelic exclusion in immunoglobulin genes requires differential treatment of the two sequence identical alleles. In the case of the κ immunoglobulin locus, changes in chromatin structure, methylation, and replication timing of the two alleles are all potentially involved in regulating rearrangement. Additionally, germline transcription of the κ locus which precedes rearrangement has been proposed to reflect an opening of the chromatin structure rendering it available for rearrangement. As the initial restriction of rearrangement to one allele is critical to the establishment of allelic exclusion, a key question is whether or not germline transcription at the κ locus is monoallelic or biallelic. We have used a sensitive reverse transcription-polymerase chain reaction (RT-PCR) assay and an RNA–fluorescence in situ hybridization (FISH) to show that germline transcription of the κ locus is biallelic in wild-type immature B cells and in recombination activating gene (RAG)−/−, μ+ B cells. Therefore, germline transcription is unlikely to dictate which allele will be rearranged first and rather reflects a general opening on both alleles that must be accompanied by a mechanism allowing one of the two alleles to be rearranged first. PMID:12629064

  2. Is verbatim transcription of interview data always necessary?

    PubMed

    Halcomb, Elizabeth J; Davidson, Patricia M

    2006-02-01

    Verbatim transcription of interview data has become a common data management strategy in nursing research and is widely considered to be integral to the analysis and interpretation of verbal data. As the benefits of verbal data are becoming more widely embraced in health care research, interviews are being increasingly used to collect information for a wide range of purposes. In addition to purely qualitative investigations, there has been a significant increase in the conduct of mixed-method inquiries. This article examines the issues surrounding the conduct of interviews in mixed-method research, with particular emphasis on the transcription and data analysis phases of data management. It also debates on the necessity to transcribe all audiorecorded interview data verbatim, particularly in relation to mixed-method investigations. Finally, it provides an alternative method to verbatim transcription of managing audiorecorded interview data.

  3. Community United Methodist Church passive solar classroom addition: comparison of predicted and actual energy use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, W.H.; Peckham, N.

    1984-01-01

    The Community United Methodist Church of Columbia, Missouri, has recently built a passive solar addition. This building was partially funded by the Department of Energy Passive Solar Commercial Building Demonstration Program (1) and by a grant from the Board of Global Ministries of the United Methodist Church. As part of the design phase, the PASOLE computer code was used to model the thermal characteristics of the building. The building was subsequently completed in September 1981, and one and one-half years of end use energy data has been collected as of March 1983. This paper presents (1) a description of themore » new building and the computer model used to analyze it, (2) a comparison of predicted and actual energy use, (3) a comparison between the new, solar building and conventional portions of the church complex and (4) summarizes other operational experiences.« less

  4. The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought

    PubMed Central

    Sosa-Valencia, Guadalupe; Palomar, Miguel; Covarrubias, Alejandra A.

    2017-01-01

    Abstract Recent studies have identified microRNAs as post-transcriptional regulators involved in stress responses. miR1514a is a legume microRNA that is induced in response to drought stress in Phaseolus vulgaris (common bean) and shows differential accumulation levels in roots during water deficit in two cultivars with different drought tolerance phenotypes. A recent degradome analysis revealed that miR1514a targets the transcripts of two NAC transcription factors (TFs), Phvul.010g121000 and Phvul.010g120700. Furthermore, expression studies and small RNA-seq data indicate that only Phvul.010g120700 generates phasiRNAs, which also accumulate under water deficit conditions. To confirm these results, we over-expressed miR1514a in transgenic hairy roots, and observed a reduced accumulation of Phvul.010g120700 and an increase in NAC-derived phasiRNAs; inhibition of miR1514a activity resulted in the opposite effect. Moreover, we determined that a NAC-derived phasiRNA associates with ARGONAUTE 1 (AGO1), suggesting that it is functional. In addition, a transcriptome analysis of transgenic hairy roots with reduced miR1514a levels revealed several differentially expressed transcripts, mainly involved in metabolism and stress responses, suggesting they are regulated by the NAC TF and/or by phasiRNAs. This work therefore demonstrates the participation of miR1514 in the regulation of a NAC transcription factor transcript through phasiRNA production during the plant response to water deficit. PMID:28338719

  5. The RNA Export Factor, Nxt1, Is Required for Tissue Specific Transcriptional Regulation

    PubMed Central

    Jiang, Jianqiao; White-Cooper, Helen

    2013-01-01

    The highly conserved, Nxf/Nxt (TAP/p15) RNA nuclear export pathway is important for export of most mRNAs from the nucleus, by interacting with mRNAs and promoting their passage through nuclear pores. Nxt1 is essential for viability; using a partial loss of function allele, we reveal a role for this gene in tissue specific transcription. We show that many Drosophila melanogaster testis-specific mRNAs require Nxt1 for their accumulation. The transcripts that require Nxt1 also depend on a testis-specific transcription complex, tMAC. We show that loss of Nxt1 leads to reduced transcription of tMAC targets. A reporter transcript from a tMAC-dependent promoter is under-expressed in Nxt1 mutants, however the same transcript accumulates in mutants if driven by a tMAC-independent promoter. Thus, in Drosophila primary spermatocytes, the transcription factor used to activate expression of a transcript, rather than the RNA sequence itself or the core transcription machinery, determines whether this expression requires Nxt1. We additionally find that transcripts from intron-less genes are more sensitive to loss of Nxt1 function than those from intron-containing genes and propose a mechanism in which transcript processing feeds back to increase activity of a tissue specific transcription complex. PMID:23754955

  6. Comparative Analysis of Transcription Factors Families across Fungal Tree of Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salamov, Asaf; Grigoriev, Igor

    2015-03-19

    Transcription factors (TFs) are proteins that regulate the transcription of genes, by binding to specific DNA sequences. Based on literature (Shelest, 2008; Weirauch and Hughes,2011) collected and manually curated list of DBD Pfam domains (in total 62 DBD domains) We looked for distribution of TFs in 395 fungal genomes plus additionally in plant genomes (Phytozome), prokaryotes(IMG), some animals/metazoans and protists genomes

  7. Illegitimate transcription: transcription of any gene in any cell type.

    PubMed Central

    Chelly, J; Concordet, J P; Kaplan, J C; Kahn, A

    1989-01-01

    Using in vitro amplification of cDNA by the polymerase chain reaction, we have detected spliced transcripts of various tissue-specific genes (genes for anti-Müllerian hormone, beta-globin, aldolase A, and factor VIIIc) in human nonspecific cells, such as fibroblasts, hepatoma cells, and lymphoblasts. In rats, erythroid- and liver-type pyruvate kinase transcripts were also detected in brain, lung, and muscle. The abundance of these "illegitimate" transcripts is very low; yet, their existence and the possibility of amplifying them by the cDNA polymerase chain reaction provide a powerful tool to analyze pathological transcripts of any tissue-specific gene by using any accessible cell. Images PMID:2495532

  8. Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn(II)(2)Cys(6) transcriptional activator and induced by kojic acid at the transcriptional level.

    PubMed

    Marui, Junichiro; Yamane, Noriko; Ohashi-Kunihiro, Sumiko; Ando, Tomohiro; Terabayashi, Yasunobu; Sano, Motoaki; Ohashi, Shinichi; Ohshima, Eiji; Tachibana, Kuniharu; Higa, Yoshitaka; Nishimura, Marie; Koike, Hideaki; Machida, Masayuki

    2011-07-01

    A gene encoding the Zn(II)(2)Cys(6) transcriptional factor is clustered with two genes involved in biosynthesis of a secondary metabolite, kojic acid (KA), in Aspergillus oryzae. We determined that the gene was essential for KA production and the transcriptional activation of KA biosynthetic genes, which were triggered by the addition of KA. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription

    PubMed Central

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin

    2014-01-01

    Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription. PMID:25764111

  10. Silencing of IFN-stimulated gene transcription is regulated by histone H1 and its chaperone TAF-I.

    PubMed

    Kadota, Shinichi; Nagata, Kyosuke

    2014-07-01

    Chromatin structure and its alteration play critical roles in the regulation of transcription. However, the transcriptional silencing mechanism with regard to the chromatin structure at an unstimulated state of the interferon (IFN)-stimulated gene (ISG) remains unclear. Here we investigated the role of template activating factor-I (TAF-I, also known as SET) in ISG transcription. Knockdown (KD) of TAF-I increased ISG transcript and simultaneously reduced the histone H1 level on the ISG promoters during the early stages of transcription after IFN stimulation from the unstimulated state. The transcription factor levels on the ISG promoters were increased in TAF-I KD cells only during the early stages of transcription. Furthermore, histone H1 KD also increased ISG transcript. TAF-I and histone H1 double KD did not show the additive effect in ISG transcription, suggesting that TAF-I and histone H1 may act on the same regulatory pathway to control ISG transcription. In addition, TAF-I KD and histone H1 KD affected the chromatin structure near the ISG promoters. On the basis of these findings, we propose that TAF-I and its target histone H1 are key regulators of the chromatin structure at the ISG promoter to maintain the silent state of ISG transcription. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. HTLV-1 Integration into Transcriptionally Active Genomic Regions Is Associated with Proviral Expression and with HAM/TSP

    PubMed Central

    Meekings, Kiran N.; Leipzig, Jeremy; Bushman, Frederic D.; Taylor, Graham P.; Bangham, Charles R. M.

    2008-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) causes leukaemia or chronic inflammatory disease in ∼5% of infected hosts. The level of proviral expression of HTLV-1 differs significantly among infected people, even at the same proviral load (proportion of infected mononuclear cells in the circulation). A high level of expression of the HTLV-1 provirus is associated with a high proviral load and a high risk of the inflammatory disease of the central nervous system known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). But the factors that control the rate of HTLV-1 proviral expression remain unknown. Here we show that proviral integration sites of HTLV-1 in vivo are not randomly distributed within the human genome but are associated with transcriptionally active regions. Comparison of proviral integration sites between individuals with high and low levels of proviral expression, and between provirus-expressing and provirus non-expressing cells from within an individual, demonstrated that frequent integration into transcription units was associated with an increased rate of proviral expression. An increased frequency of integration sites in transcription units in individuals with high proviral expression was also associated with the inflammatory disease HAM/TSP. By comparing the distribution of integration sites in human lymphocytes infected in short-term cell culture with those from persistent infection in vivo, we infer the action of two selective forces that shape the distribution of integration sites in vivo: positive selection for cells containing proviral integration sites in transcriptionally active regions of the genome, and negative selection against cells with proviral integration sites within transcription units. PMID:18369476

  12. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function

    PubMed Central

    Herzel, Lydia; Ottoz, Diana S. M.; Alpert, Tara; Neugebauer, Karla M.

    2018-01-01

    Several macromolecular machines collaborate to produce eukaryotic messenger RNA. RNA polymerase II (Pol II) translocates along genes that are up to millions of base pairs in length and generates a flexible RNA copy of the DNA template. This nascent RNA harbours introns that are removed by the spliceosome, which is a megadalton ribonucleoprotein complex that positions the distant ends of the intron into its catalytic centre. Emerging evidence that the catalytic spliceosome is physically close to Pol II in vivo implies that transcription and splicing occur on similar timescales and that the transcription and splicing machineries may be spatially constrained. In this Review, we discuss aspects of spliceosome assembly, transcription elongation and other co-transcriptional events that allow the temporal coordination of co-transcriptional splicing. PMID:28792005

  13. Selective Activation of Transcription by a Novel CCAAT Binding Factor

    NASA Astrophysics Data System (ADS)

    Maity, Sankar N.; Golumbek, Paul T.; Karsenty, Gerard; de Crombrugghe, Benoit

    1988-07-01

    A novel CCAAT binding factor (CBF) composed of two different subunits has been extensively purified from rat liver. Both subunits are needed for specific binding to DNA. Addition of this purified protein to nuclear extracts of NIH 3T3 fibroblasts stimulates transcription from several promoters including the α 2(I) collagen, the α 1(I) collagen, the Rous sarcoma virus long terminal repeat (RSV-LTR), and the adenovirus major late promoter. Point mutations in the CCAAT motif that show either no binding or a decreased binding of CBF likewise abolish or reduce activation of transcription by CBF. Activation of transcription requires, therefore, the specific binding of CBF to its recognition sites.

  14. Identification of conserved cis-elements and transcription factors required for sterol-regulated transcription of stearoyl-CoA desaturase 1 and 2.

    PubMed

    Tabor, D E; Kim, J B; Spiegelman, B M; Edwards, P A

    1999-07-16

    We previously identified stearoyl-CoA desaturase 2 (SCD2) as a new member of the family of genes that are transcriptionally regulated in response to changing levels of nuclear sterol regulatory element binding proteins (SREBPs) or adipocyte determination and differentiation factor 1 (ADD1). A novel sterol regulatory element (SRE) (5'-AGCAGATTGTG-3') identified in the proximal promoter of the mouse SCD2 gene is required for induction of SCD2 promoter-reporter genes in response to cellular sterol depletion (Tabor, D. E., Kim, J. B., Spiegelman, B. M., and Edwards, P. A. (1998) J. Biol. Chem. 273, 22052-22058). In this report, we demonstrate that this novel SRE is both present in the promoter of the SCD1 gene and is critical for the sterol-dependent transcription of SCD1 promoter-reporter genes. Two conserved cis elements (5'-CCAAT-3') lie 5 and 48 base pairs 3' of the novel SREs in the promoters of both the SCD1 and SCD2 murine genes. Mutation of either of these putative NF-Y binding sites attenuates the transcriptional activation of SCD1 or SCD2 promoter-reporter genes in response to cellular sterol deprivation. Induction of both reporter genes is also attenuated when cells are cotransfected with dominant-negative forms of either NF-Y or SREBP. In addition, we demonstrate that the induction of SCD1 and SCD2 mRNAs that occurs during the differentiation of 3T3-L1 preadipocytes to adipocytes is paralleled by an increase in the levels of ADD1/SREBP-1c and that the SCD1 and SCD2 mRNAs are induced to even higher levels in response to ectopic expression of ADD1/SREBP-1c. We conclude that transcription of both SCD1 and SCD2 genes is responsive to cellular sterol levels and to the levels of nuclear SREBP/ADD1 and that transcriptional induction requires three spatially conserved cis elements, that bind SREBP and NF-Y. Additional studies demonstrate that maximal transcriptional repression of SCD2 reporter genes in response to an exogenous polyunsaturated fatty acid is

  15. TetR Family Transcriptional Regulator PccD Negatively Controls Propionyl Coenzyme A Assimilation in Saccharopolyspora erythraea.

    PubMed

    Xu, Zhen; Wang, Miaomiao; Ye, Bang-Ce

    2017-10-15

    Propanol stimulates erythromycin biosynthesis by increasing the supply of propionyl coenzyme A (propionyl-CoA), a starter unit of erythromycin production in Saccharopolyspora erythraea Propionyl-CoA is assimilated via propionyl-CoA carboxylase to methylmalonyl-CoA, an extender unit of erythromycin. We found that the addition of n -propanol or propionate caused a 4- to 16-fold increase in the transcriptional levels of the SACE_3398-3400 locus encoding propionyl-CoA carboxylase, a key enzyme in propionate metabolism. The regulator PccD was proved to be directly involved in the transcription regulation of the SACE_3398-3400 locus by EMSA and DNase I footprint analysis. The transcriptional levels of SACE_3398-3400 were upregulated 15- to 37-fold in the pccD gene deletion strain (Δ pccD ) and downregulated 3-fold in the pccD overexpression strain (WT/pIB- pccD ), indicating that PccD was a negative transcriptional regulator of SACE_3398-3400. The Δ pccD strain has a higher growth rate than that of the wild-type strain (WT) on Evans medium with propionate as the sole carbon source, whereas the growth of the WT/pIB- pccD strain was repressed. As a possible metabolite of propionate metabolism, methylmalonic acid was identified as an effector molecule of PccD and repressed its regulatory activity. A higher level of erythromycin in the Δ pccD strain was observed compared with that in the wild-type strain. Our study reveals a regulatory mechanism in propionate metabolism and suggests new possibilities for designing metabolic engineering to increase erythromycin yield. IMPORTANCE Our work has identified the novel regulator PccD that controls the expression of the gene for propionyl-CoA carboxylase, a key enzyme in propionyl-CoA assimilation in S. erythraea PccD represses the generation of methylmalonyl-CoA through carboxylation of propionyl-CoA and reveals an effect on biosynthesis of erythromycin. This finding provides novel insight into propionyl-CoA assimilation, and

  16. TetR Family Transcriptional Regulator PccD Negatively Controls Propionyl Coenzyme A Assimilation in Saccharopolyspora erythraea

    PubMed Central

    Xu, Zhen; Wang, Miaomiao

    2017-01-01

    ABSTRACT Propanol stimulates erythromycin biosynthesis by increasing the supply of propionyl coenzyme A (propionyl-CoA), a starter unit of erythromycin production in Saccharopolyspora erythraea. Propionyl-CoA is assimilated via propionyl-CoA carboxylase to methylmalonyl-CoA, an extender unit of erythromycin. We found that the addition of n-propanol or propionate caused a 4- to 16-fold increase in the transcriptional levels of the SACE_3398–3400 locus encoding propionyl-CoA carboxylase, a key enzyme in propionate metabolism. The regulator PccD was proved to be directly involved in the transcription regulation of the SACE_3398–3400 locus by EMSA and DNase I footprint analysis. The transcriptional levels of SACE_3398–3400 were upregulated 15- to 37-fold in the pccD gene deletion strain (ΔpccD) and downregulated 3-fold in the pccD overexpression strain (WT/pIB-pccD), indicating that PccD was a negative transcriptional regulator of SACE_3398–3400. The ΔpccD strain has a higher growth rate than that of the wild-type strain (WT) on Evans medium with propionate as the sole carbon source, whereas the growth of the WT/pIB-pccD strain was repressed. As a possible metabolite of propionate metabolism, methylmalonic acid was identified as an effector molecule of PccD and repressed its regulatory activity. A higher level of erythromycin in the ΔpccD strain was observed compared with that in the wild-type strain. Our study reveals a regulatory mechanism in propionate metabolism and suggests new possibilities for designing metabolic engineering to increase erythromycin yield. IMPORTANCE Our work has identified the novel regulator PccD that controls the expression of the gene for propionyl-CoA carboxylase, a key enzyme in propionyl-CoA assimilation in S. erythraea. PccD represses the generation of methylmalonyl-CoA through carboxylation of propionyl-CoA and reveals an effect on biosynthesis of erythromycin. This finding provides novel insight into propionyl

  17. Transcriptomic profiling-based mutant screen reveals three new transcription factors mediating menadione resistance in Neurospora crassa.

    PubMed

    Zhu, Jufen; Yu, Xinxu; Xie, Baogui; Gu, Xiaokui; Zhang, Zhenying; Li, Shaojie

    2013-06-01

    To gain insight into the regulatory mechanisms of oxidative stress responses in filamentous fungi, the genome-wide transcriptional response of Neurospora crassa to menadione was analysed by digital gene expression (DGE) profiling, which identified 779 upregulated genes and 576 downregulated genes. Knockout mutants affecting 130 highly-upregulated genes were tested for menadione sensitivity, which revealed that loss of the transcription factor siderophore regulation (SRE) (a transcriptional repressor for siderophore biosynthesis), catatase-3, cytochrome c peroxidase or superoxide dismutase 1 copper chaperone causes hypersensitivity to menadione. Deletion of sre dramatically increased transcription of the siderophore biosynthesis gene ono and the siderophore iron transporter gene sit during menadione stress, suggesting that SRE is required for repression of iron uptake under oxidative stress conditions. Contrary to its phenotype, the sre deletion mutant showed higher transcriptional levels of genes encoding reactive oxygen species (ROS) scavengers than wild type during menadione stress, which implies that the mutant suffers a higher level of oxidative stress than wild type. Uncontrolled iron uptake in the sre mutant might exacerbate cellular oxidative stress. This is the first report of a negative regulator of iron assimilation participating in the fungal oxidative stress response. In addition to SRE, eight other transcription factor genes were also menadione-responsive but their single gene knockout mutants showed wild-type menadione sensitivity. Two of them, named as mit-2 (menadione induced transcription factor-2) and mit-4 (menadione induced transcription factor-4), were selected for double mutant analysis. The double mutant was hypersensitive to menadione. Similarly, the double mutation of mit-2 and sre also had additive effects on menadione sensitivity, suggesting multiple transcription factors mediate oxidative stress resistance in an additive manner

  18. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition.

    PubMed

    Morey, Jeanine S; Monroe, Emily A; Kinney, Amanda L; Beal, Marion; Johnson, Jillian G; Hitchcock, Gary L; Van Dolah, Frances M

    2011-07-05

    The role of coastal nutrient sources in the persistence of Karenia brevis red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' trans-spliced leader (SL) sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of K. brevis is responsive to nitrogen and phosphorus and is informative of nutrient status. Microarray analysis of N-depleted K. brevis cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases) relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10-4. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR) proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes. Microarray analysis provided transcriptomic

  19. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control.

    PubMed

    Celton, Jean-Marc; Gaillard, Sylvain; Bruneau, Maryline; Pelletier, Sandra; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Navarro, Lionel; Laurens, François; Renou, Jean-Pierre

    2014-07-01

    Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  20. cry1Aa lacks stability elements at its 5'-UTR but integrity of its transcription terminator is critical to prevent decay of its transcript.

    PubMed

    Ramírez-Prado, Jorge Humberto; Martínez-Márquez, Eva Isabel; Olmedo-Alvarez, Gabriela

    2006-07-01

    We analyzed the influence of the 5' and 3' untranslated regions of the Bacillus thuringiensis cry1Aa on its mRNA stability. Although the cry1Aa gene has a stable transcript (8 min), its 5' UTR did not provide stability to the reporter gene uidA. Stability of cry1Aa could be increased to 40 min by addition of an SP82 stability element at the 5' UTR, suggesting that once the 5' and 3' ends were protected initiation of decay could be effectively blocked. We generated mutations in the transcription terminator and found that changes that reduced the stability of the stem, a larger loop, or elimination of the U-trail sharply decreased the half-life of the transcript. Therefore, unlike some stable bacterial transcripts, cry1Aa lacks special features at the end 5' to prevent decay, but its terminator is the main determinant of its stability.

  1. Butyrate-Induced Transcriptional Changes in Human Colonic Mucosa

    PubMed Central

    Vanhoutvin, Steven A. L. W.; Troost, Freddy J.; Hamer, Henrike M.; Lindsey, Patrick J.; Koek, Ger H.; Jonkers, Daisy M. A. E.; Kodde, Andrea; Venema, Koen; Brummer, Robert J. M.

    2009-01-01

    Background Fermentation of dietary fiber in the colon results in the production of short chain fatty acids (mainly propionate, butyrate and acetate). Butyrate modulates a wide range of processes, but its mechanism of action is mostly unknown. This study aimed to determine the effects of butyrate on the transcriptional regulation of human colonic mucosa in vivo. Methodology/Principal Findings Five hundred genes were found to be differentially expressed after a two week daily butyrate administration with enemas. Pathway analysis showed that the butyrate intervention mainly resulted in an increased transcriptional regulation of the pathways representing fatty acid oxidation, electron transport chain and oxidative stress. In addition, several genes associated with epithelial integrity and apoptosis, were found to be differentially expressed after the butyrate intervention. Conclusions/Significance Colonic administration of butyrate in concentrations that can be achieved by consumption of a high-fiber diet enhances the maintenance of colonic homeostasis in healthy subjects, by regulating fatty acid metabolism, electron transport and oxidative stress pathways on the transcriptional level and provide for the first time, detailed molecular insight in the transcriptional response of gut mucosa to butyrate. PMID:19707587

  2. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos.

    PubMed

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-04-20

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo.

  3. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong

    2015-08-07

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screeningmore » techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. - Highlights: • Identification of new target genes of FOXA2. • Identifications of novel interaction proteins of FOXA2. • Construction of FOXA2-centered transcriptional regulatory network in non-small cell lung cancer.« less

  4. Transcription Regulation in Archaea

    PubMed Central

    Gehring, Alexandra M.; Walker, Julie E.

    2016-01-01

    The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription. PMID:27137495

  5. The histone modifications governing TFF1 transcription mediated by estrogen receptor.

    PubMed

    Li, Yanyan; Sun, Luyang; Zhang, Yu; Wang, Dandan; Wang, Feng; Liang, Jing; Gui, Bin; Shang, Yongfeng

    2011-04-22

    Transcription regulation by histone modifications is a major contributing factor to the structural and functional diversity in biology. These modifications are encrypted as histone codes or histone languages and function to establish and maintain heritable epigenetic codes that define the identity and the fate of the cell. Despite recent advances revealing numerous histone modifications associated with transcription regulation, how such modifications dictate the process of transcription is not fully understood. Here we describe spatial and temporal analyses of the histone modifications that are introduced during estrogen receptor α (ERα)-activated transcription. We demonstrated that aborting RNA polymerase II caused a disruption of the histone modifications that are associated with transcription elongation but had a minimal effect on modifications deposited during transcription initiation. We also found that the histone H3S10 phosphorylation mark is catalyzed by mitogen- and stress-activated protein kinase 1 (MSK1) and is recognized by a 14-3-3ζ/14-3-3ε heterodimer through its interaction with H3K4 trimethyltransferase SMYD3 and the p52 subunit of TFIIH. We showed that H3S10 phosphorylation is a prerequisite for H3K4 trimethylation. In addition, we demonstrated that SET8/PR-Set7/KMT5A is required for ERα-regulated transcription and its catalyzed H4K20 monomethylation is implicated in both transcription initiation and elongation. Our experiments provide a relatively comprehensive analysis of histone modifications associated with ERα-regulated transcription and define the biological meaning of several key components of the histone code that governs ERα-regulated transcription.

  6. Swinger RNAs with sharp switches between regular transcription and transcription systematically exchanging ribonucleotides: Case studies.

    PubMed

    Seligmann, Hervé

    2015-09-01

    During RNA transcription, DNA nucleotides A,C,G, T are usually matched by ribonucleotides A, C, G and U. However occasionally, this rule does not apply: transcript-DNA homologies are detectable only assuming systematic exchanges between ribonucleotides. Nine symmetric (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric (X ↔ Y ↔ Z, e.g. A ↔ C ↔ G) exchanges exist, called swinger transcriptions. Putatively, polymerases occasionally stabilize in unspecified swinger conformations, possibly similar to transient conformations causing punctual misinsertions. This predicts chimeric transcripts, part regular, part swinger-transformed, reflecting polymerases switching to swinger polymerization conformation(s). Four chimeric Genbank transcripts (three from human mitochondrion and one murine cytosolic) are described here: (a) the 5' and 3' extremities reflect regular polymerization, the intervening sequence exchanges systematically between ribonucleotides (swinger rule G ↔ U, transcript (1), with sharp switches between regular and swinger sequences; (b) the 5' half is 'normal', the 3' half systematically exchanges ribonucleotides (swinger rule C ↔ G, transcript (2), with an intercalated sequence lacking homology; (c) the 3' extremity fits A ↔ G exchanges (10% of transcript length), the 5' half follows regular transcription; the intervening region seems a mix of regular and A ↔ G transcriptions (transcript 3); (d) murine cytosolic transcript 4 switches to A ↔ U + C ↔ G, and is fused with A ↔ U + C ↔ G swinger transformed precursor rRNA. In (c), each concomitant transcript 5' and 3' extremities match opposite genome strands. Transcripts 3 and 4 combine transcript fusions with partial swinger transcriptions. Occasional (usually sharp) switches between regular and swinger transcriptions reveal greater coding potential than detected until now, suggest stable polymerase swinger conformations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Transcriptional activity across the Epstein-Barr virus genome in Raji cells during latency and after induction of an abortive lytic cycle.

    PubMed

    Kirchner, E A; Bornkamm, G W; Polack, A

    1991-10-01

    We have studied the relative rate of transcription across the Epstein-Barr virus genome in the Burkitt's lymphoma cell line Raji by nuclear run-on analysis during latency and after induction of an abortive lytic cycle with 12-0-tetradecanoylphorbol 13-acetate (TPA) and 5-iodo-2'-deoxyuridine (IUdR). During latency the entire, or almost the entire, viral genome was found to be transcriptionally active to a low or intermediate extent, with some variation in activity along the genome. The fragment with the highest transcriptional activity was EcoRI J, which contains the genes encoding the small nuclear RNAs EBER1 and -2, transcribed predominantly by RNA polymerase III. An intermediate level of transcription was observed between positions 10 and 138 (kb), with areas of slightly higher activity on the large internal repeats and the left duplicated region (DL). The remaining part of the viral genome, between position 138 and the termini, and the termini and position 10 (kb) (with the exception of the EcoRI J fragment), showed very little transcriptional activity, except for the intermediately active regions carrying the righthand oriLyt (DR) and the terminal repeats. Upon induction of the viral genome with TPA and IUdR, the viral genome was transcriptionally active at a rate at least tenfold that seen during latency. Polymerases were not equally distributed along the genome after induction; the highest density was found in regions 48 to 58 kb, 82 to 84 kb, 102 to 104 kb, 118 to 122 kb and 142 to 145 kb of the viral genome. High transcriptional activity correlated with distinct transcription units in some cases, i.e. BamHI H1LF1 (DL), BamHI MLF1, BamHI ZLF1/BamHI RLF1 and BamHI X (thymidine kinase), but not in others (BamHI H2). Besides initiation of transcription, other regulatory processes such as stabilization and processing of primary transcripts may also contribute to regulation of virus gene expression. Addition of cycloheximide completely abolished the

  8. Model-based redesign of global transcription regulation

    PubMed Central

    Carrera, Javier; Rodrigo, Guillermo; Jaramillo, Alfonso

    2009-01-01

    Synthetic biology aims to the design or redesign of biological systems. In particular, one possible goal could be the rewiring of the transcription regulation network by exchanging the endogenous promoters. To achieve this objective, we have adapted current methods to the inference of a model based on ordinary differential equations that is able to predict the network response after a major change in its topology. Our procedure utilizes microarray data for training. We have experimentally validated our inferred global regulatory model in Escherichia coli by predicting transcriptomic profiles under new perturbations. We have also tested our methodology in silico by providing accurate predictions of the underlying networks from expression data generated with artificial genomes. In addition, we have shown the predictive power of our methodology by obtaining the gene profile in experimental redesigns of the E. coli genome, where rewiring the transcriptional network by means of knockouts of master regulators or by upregulating transcription factors controlled by different promoters. Our approach is compatible with most network inference methods, allowing to explore computationally future genome-wide redesign experiments in synthetic biology. PMID:19188257

  9. Intrinsic disorder in transcription factors†

    PubMed Central

    Liu, Jiangang; Perumal, Narayanan B.; Oldfield, Christopher J.; Su, Eric W.; Uversky, Vladimir N.; Dunker, A. Keith

    2008-01-01

    Intrinsic disorder (ID) is highly abundant in eukaryotes, which reflect the greater need for disorder-associated signaling and transcriptional regulation in nucleated cells. Although several well-characterized examples of intrinsically disordered proteins in transcriptional regulation have been reported, no systematic analysis has been reported so far. To test for a general prevalence of intrinsic disorder in transcriptional regulation, we used the Predictor Of Natural Disorder Regions (PONDR) to analyze the abundance of intrinsic disorder in three transcription factor datasets and two control sets. This analysis revealed that from 94.13% to 82.63% of transcription factors posses extended regions of intrinsic disorder, relative to 54.51% and 18.64% of the proteins in two control datasets, which indicates the significant prevalence of intrinsic disorder in transcription factors. This propensity of transcription factors for intrinsic disorder was confirmed by cumulative distribution function analysis and charge-hydropathy plots. The amino acid composition analysis showed that all three transcription factor datasets were substantially depleted in order-promoting residues, and significantly enriched in disorder-promoting residues. Our analysis of the distribution of disorder within the transcription factor datasets revealed that: (a) The AT-hooks and basic regions of transcription factor DNA-binding domains are highly disordered; (b) The degree of disorder in transcription factor activation regions is much higher than that in DNA-binding domains; (c) The degree of disorder is significantly higher in eukaryotic transcription factors than in prokaryotic transcription factors; (d) The level of α-MoRFs (molecular recognition feature) prediction is much higher in transcription factors. Overall, our data reflected the fact that the eukaryotes with well-developed gene transcription machinery require transcription factor flexibility to be more efficient. PMID:16734424

  10. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos

    PubMed Central

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-01-01

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo. DOI: http://dx.doi.org/10.7554/eLife.23326.001 PMID:28425915

  11. Evaluation of marginal and internal gap of three-unit metal framework according to subtractive manufacturing and additive manufacturing of CAD/CAM systems

    PubMed Central

    Kim, Dong-Yeon; Kim, Eo-Bin; Kim, Hae-Young; Kim, Ji-Hwan

    2017-01-01

    PURPOSE To evaluate the fit of a three-unit metal framework of fixed dental prostheses made by subtractive and additive manufacturing. MATERIALS AND METHODS One master model of metal was fabricated. Twenty silicone impressions were made on the master die, working die of 10 poured with Type 4 stone, and working die of 10 made of scannable stone. Ten three-unit wax frameworks were fabricated by wax-up from Type IV working die. Stereolithography files of 10 three-unit frameworks were obtained using a model scanner and three-dimensional design software on a scannable working die. The three-unit wax framework was fabricated using subtractive manufacturing (SM) by applying the prepared stereolithography file, and the resin framework was fabricated by additive manufacturing (AM); both used metal alloy castings for metal frameworks. Marginal and internal gap were measured using silicone replica technique and digital microscope. Measurement data were analyzed by Kruskal-Wallis H test and Mann-Whitney U-test (α=.05). RESULTS The lowest and highest gaps between premolar and molar margins were in the SM group and the AM group, respectively. There was a statistically significant difference in the marginal gap among the 3 groups (P<.001). In the marginal area where pontic was present, the largest gap was 149.39 ± 42.30 µm in the AM group, and the lowest gap was 24.40 ± 11.92 µm in the SM group. CONCLUSION Three-unit metal frameworks made by subtractive manufacturing are clinically applicable. However, additive manufacturing requires more research to be applied clinically. PMID:29279766

  12. Evaluation of marginal and internal gap of three-unit metal framework according to subtractive manufacturing and additive manufacturing of CAD/CAM systems.

    PubMed

    Kim, Dong-Yeon; Kim, Eo-Bin; Kim, Hae-Young; Kim, Ji-Hwan; Kim, Woong-Chul

    2017-12-01

    To evaluate the fit of a three-unit metal framework of fixed dental prostheses made by subtractive and additive manufacturing. One master model of metal was fabricated. Twenty silicone impressions were made on the master die, working die of 10 poured with Type 4 stone, and working die of 10 made of scannable stone. Ten three-unit wax frameworks were fabricated by wax-up from Type IV working die. Stereolithography files of 10 three-unit frameworks were obtained using a model scanner and three-dimensional design software on a scannable working die. The three-unit wax framework was fabricated using subtractive manufacturing (SM) by applying the prepared stereolithography file, and the resin framework was fabricated by additive manufacturing (AM); both used metal alloy castings for metal frameworks. Marginal and internal gap were measured using silicone replica technique and digital microscope. Measurement data were analyzed by Kruskal-Wallis H test and Mann-Whitney U-test (α=.05). The lowest and highest gaps between premolar and molar margins were in the SM group and the AM group, respectively. There was a statistically significant difference in the marginal gap among the 3 groups ( P <.001). In the marginal area where pontic was present, the largest gap was 149.39 ± 42.30 µm in the AM group, and the lowest gap was 24.40 ± 11.92 µm in the SM group. Three-unit metal frameworks made by subtractive manufacturing are clinically applicable. However, additive manufacturing requires more research to be applied clinically.

  13. Structural insights into the rhabdovirus transcription/replication complex.

    PubMed

    Ivanov, Ivan; Yabukarski, Filip; Ruigrok, Rob W H; Jamin, Marc

    2011-12-01

    The rhabdoviruses have a non-segmented single stranded negative-sense RNA genome. Their multiplication in a host cell requires three viral proteins in addition to the viral RNA genome. The nucleoprotein (N) tightly encapsidates the viral RNA, and the N-RNA complex serves as the template for both transcription and replication. The viral RNA-dependent RNA polymerase is a two subunit complex that consists of a large subunit, L, and a non-catalytic cofactor, the phosphoprotein, P. P also acts as a chaperone of nascent RNA-free N by forming a N(0)-P complex that prevents N from binding to cellular RNAs and from polymerizing in the absence of RNA. Here, we discuss the recent molecular and structural studies of individual components and multi-molecular complexes that are involved in the transcription/replication complex of these viruses with regard to their implication in viral transcription and replication. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors.

    PubMed

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Barbas, Carlos F; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.

  15. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors

    PubMed Central

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 –which resides mainly in resting CD4+ T cells–is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection. PMID:26933881

  16. The transcription factor p53: Not a repressor, solely an activator

    PubMed Central

    Fischer, Martin; Steiner, Lydia; Engeland, Kurt

    2014-01-01

    The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway. PMID:25486564

  17. Organization of genes for transcription and translation in the rif region of the Escherichia coli chromosome. [uv radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, M.; Nomura, M.

    1979-01-01

    The lambda rif/sup d/18 transducing phage is known to carry several genes for components of transcriptional and translational machineries; these genes are clustered in the rif region at 88 min on the Escherichia coli genetic map. They include a set of genes for rRNA's (rrnB), a gene for spacer tRNA, tRNA/sub 2//sup Glu/(tgtB), one of the two genes for EF-TU (tufB), genes for four ribosomal proteins (rplK, A, J, and L), genes for the ..beta.. and ..beta..' subunits of RNA polymerase (rpoB and rpoC), and genes for three tRNA's (tyrU, gluT, and thrT). An additional tRNA gene (subsequently identified asmore » thrU by Landy and his co-workers) and a gene for a protein (protein U) with unknown functions were found to be carried by lambda rif/sup d/18. We analyzed the organization of these genes by using various deletion and hybrid phages derived from lambda rif/sup d/18 and lambda rif/sup d/12, a phage related to lambda rif/sup d/18. The expression of various genes was examined in uv-irradiated cells infected with these transducing phages. Two main conclusions were obtained. First, the four tRNA genes are not cotranscribed with the genes in rrnB, even though these tRNA genes are located close to the distal end of rrnB. Second, the four ribosomal protein genes are organized into two separate transcriptional units; rplK and A are in one unit and rplJ and L are in the second unit.« less

  18. Likelihood for transcriptions in a genetic regulatory system under asymmetric stable Lévy noise.

    PubMed

    Wang, Hui; Cheng, Xiujun; Duan, Jinqiao; Kurths, Jürgen; Li, Xiaofan

    2018-01-01

    This work is devoted to investigating the evolution of concentration in a genetic regulation system, when the synthesis reaction rate is under additive and multiplicative asymmetric stable Lévy fluctuations. By focusing on the impact of skewness (i.e., non-symmetry) in the probability distributions of noise, we find that via examining the mean first exit time (MFET) and the first escape probability (FEP), the asymmetric fluctuations, interacting with nonlinearity in the system, lead to peculiar likelihood for transcription. This includes, in the additive noise case, realizing higher likelihood of transcription for larger positive skewness (i.e., asymmetry) index β, causing a stochastic bifurcation at the non-Gaussianity index value α = 1 (i.e., it is a separating point or line for the likelihood for transcription), and achieving a turning point at the threshold value β≈-0.5 (i.e., beyond which the likelihood for transcription suddenly reversed for α values). The stochastic bifurcation and turning point phenomena do not occur in the symmetric noise case (β = 0). While in the multiplicative noise case, non-Gaussianity index value α = 1 is a separating point or line for both the MFET and the FEP. We also investigate the noise enhanced stability phenomenon. Additionally, we are able to specify the regions in the whole parameter space for the asymmetric noise, in which we attain desired likelihood for transcription. We have conducted a series of numerical experiments in "regulating" the likelihood of gene transcription by tuning asymmetric stable Lévy noise indexes. This work offers insights for possible ways of achieving gene regulation in experimental research.

  19. Likelihood for transcriptions in a genetic regulatory system under asymmetric stable Lévy noise

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Cheng, Xiujun; Duan, Jinqiao; Kurths, Jürgen; Li, Xiaofan

    2018-01-01

    This work is devoted to investigating the evolution of concentration in a genetic regulation system, when the synthesis reaction rate is under additive and multiplicative asymmetric stable Lévy fluctuations. By focusing on the impact of skewness (i.e., non-symmetry) in the probability distributions of noise, we find that via examining the mean first exit time (MFET) and the first escape probability (FEP), the asymmetric fluctuations, interacting with nonlinearity in the system, lead to peculiar likelihood for transcription. This includes, in the additive noise case, realizing higher likelihood of transcription for larger positive skewness (i.e., asymmetry) index β, causing a stochastic bifurcation at the non-Gaussianity index value α = 1 (i.e., it is a separating point or line for the likelihood for transcription), and achieving a turning point at the threshold value β ≈ - 0.5 (i.e., beyond which the likelihood for transcription suddenly reversed for α values). The stochastic bifurcation and turning point phenomena do not occur in the symmetric noise case (β = 0). While in the multiplicative noise case, non-Gaussianity index value α = 1 is a separating point or line for both the MFET and the FEP. We also investigate the noise enhanced stability phenomenon. Additionally, we are able to specify the regions in the whole parameter space for the asymmetric noise, in which we attain desired likelihood for transcription. We have conducted a series of numerical experiments in "regulating" the likelihood of gene transcription by tuning asymmetric stable Lévy noise indexes. This work offers insights for possible ways of achieving gene regulation in experimental research.

  20. Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase.

    PubMed

    Ahmed, Wareed; Sala, Claudia; Hegde, Shubhada R; Jha, Rajiv Kumar; Cole, Stewart T; Nagaraja, Valakunja

    2017-05-01

    Movement of the transcription machinery along a template alters DNA topology resulting in the accumulation of supercoils in DNA. The positive supercoils generated ahead of transcribing RNA polymerase (RNAP) and the negative supercoils accumulating behind impose severe topological constraints impeding transcription process. Previous studies have implied the role of topoisomerases in the removal of torsional stress and the maintenance of template topology but the in vivo interaction of functionally distinct topoisomerases with heterogeneous chromosomal territories is not deciphered. Moreover, how the transcription-induced supercoils influence the genome-wide recruitment of DNA topoisomerases remains to be explored in bacteria. Using ChIP-Seq, we show the genome-wide occupancy profile of both topoisomerase I and DNA gyrase in conjunction with RNAP in Mycobacterium tuberculosis taking advantage of minimal topoisomerase representation in the organism. The study unveils the first in vivo genome-wide interaction of both the topoisomerases with the genomic regions and establishes that transcription-induced supercoils govern their recruitment at genomic sites. Distribution profiles revealed co-localization of RNAP and the two topoisomerases on the active transcriptional units (TUs). At a given locus, topoisomerase I and DNA gyrase were localized behind and ahead of RNAP, respectively, correlating with the twin-supercoiled domains generated. The recruitment of topoisomerases was higher at the genomic loci with higher transcriptional activity and/or at regions under high torsional stress compared to silent genomic loci. Importantly, the occupancy of DNA gyrase, sole type II topoisomerase in Mtb, near the Ter domain of the Mtb chromosome validates its function as a decatenase.

  1. Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase

    PubMed Central

    Ahmed, Wareed; Sala, Claudia; Hegde, Shubhada R.; Jha, Rajiv Kumar

    2017-01-01

    Movement of the transcription machinery along a template alters DNA topology resulting in the accumulation of supercoils in DNA. The positive supercoils generated ahead of transcribing RNA polymerase (RNAP) and the negative supercoils accumulating behind impose severe topological constraints impeding transcription process. Previous studies have implied the role of topoisomerases in the removal of torsional stress and the maintenance of template topology but the in vivo interaction of functionally distinct topoisomerases with heterogeneous chromosomal territories is not deciphered. Moreover, how the transcription-induced supercoils influence the genome-wide recruitment of DNA topoisomerases remains to be explored in bacteria. Using ChIP-Seq, we show the genome-wide occupancy profile of both topoisomerase I and DNA gyrase in conjunction with RNAP in Mycobacterium tuberculosis taking advantage of minimal topoisomerase representation in the organism. The study unveils the first in vivo genome-wide interaction of both the topoisomerases with the genomic regions and establishes that transcription-induced supercoils govern their recruitment at genomic sites. Distribution profiles revealed co-localization of RNAP and the two topoisomerases on the active transcriptional units (TUs). At a given locus, topoisomerase I and DNA gyrase were localized behind and ahead of RNAP, respectively, correlating with the twin-supercoiled domains generated. The recruitment of topoisomerases was higher at the genomic loci with higher transcriptional activity and/or at regions under high torsional stress compared to silent genomic loci. Importantly, the occupancy of DNA gyrase, sole type II topoisomerase in Mtb, near the Ter domain of the Mtb chromosome validates its function as a decatenase. PMID:28463980

  2. The TIE1 Transcriptional Repressor Links TCP Transcription Factors with TOPLESS/TOPLESS-RELATED Corepressors and Modulates Leaf Development in Arabidopsis[W

    PubMed Central

    Tao, Qing; Guo, Dongshu; Wei, Baoye; Zhang, Fan; Pang, Changxu; Jiang, Hao; Zhang, Jinzhe; Wei, Tong; Gu, Hongya; Qu, Li-Jia; Qin, Genji

    2013-01-01

    Leaf size and shape are mainly determined by coordinated cell division and differentiation in lamina. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are key regulators of leaf development. However, the mechanisms that control TCP activities during leaf development are largely unknown. We identified the TCP Interactor containing EAR motif protein1 (TIE1), a novel transcriptional repressor, as a major modulator of TCP activities during leaf development. Overexpression of TIE1 leads to hyponastic and serrated leaves, whereas disruption of TIE1 causes epinastic leaves. TIE1 is expressed in young leaves and encodes a transcriptional repressor containing a C-terminal EAR motif, which mediates interactions with the TOPLESS (TPL)/TOPLESS-RELATED (TPR) corepressors. In addition, TIE1 physically interacts with CIN-like TCPs. We propose that TIE1 regulates leaf size and morphology by inhibiting the activities of TCPs through recruiting the TPL/TPR corepressors to form a tertiary complex at early stages of leaf development. PMID:23444332

  3. The significance of alternative transcripts for Caenorhabditis elegans transcription factor genes, based on expression pattern analysis

    PubMed Central

    2013-01-01

    Background Sequence-specific DNA-binding proteins, with their paramount importance in the regulation of expression of the genetic material, are encoded by approximately 5% of the genes in an animal’s genome. But it is unclear to what extent alternative transcripts from these genes may further increase the complexity of the transcription factor complement. Results Of the 938 potential C. elegans transcription factor genes, 197 were annotated in WormBase as encoding at least two distinct isoforms. Evaluation of prior evidence identified, with different levels of confidence, 50 genes with alternative transcript starts, 23 with alternative transcript ends, 35 with alternative splicing and 34 with alternative transcripts generated by a combination of mechanisms, leaving 55 that were discounted. Expression patterns were determined for transcripts for a sample of 29 transcription factor genes, concentrating on those with alternative transcript starts for which the evidence was strongest. Seamless fosmid recombineering was used to generate reporter gene fusions with minimal modification to assay expression of specific transcripts while maintaining the broad genomic DNA context and alternative transcript production. Alternative transcription factor gene transcripts were typically expressed with identical or substantially overlapping distributions rather than in distinct domains. Conclusions Increasingly sensitive sequencing technologies will reveal rare transcripts but many of these are clearly non-productive. The majority of the transcription factor gene alternative transcripts that are productive may represent tolerable noise rather than encoding functionally distinct isoforms. PMID:23586691

  4. Clk post-transcriptional control denoises circadian transcription both temporally and spatially.

    PubMed

    Lerner, Immanuel; Bartok, Osnat; Wolfson, Victoria; Menet, Jerome S; Weissbein, Uri; Afik, Shaked; Haimovich, Daniel; Gafni, Chen; Friedman, Nir; Rosbash, Michael; Kadener, Sebastian

    2015-05-08

    The transcription factor CLOCK (CLK) is essential for the development and maintenance of circadian rhythms in Drosophila. However, little is known about how CLK levels are controlled. Here we show that Clk mRNA is strongly regulated post-transcriptionally through its 3' UTR. Flies expressing Clk transgenes without normal 3' UTR exhibit variable CLK-driven transcription and circadian behaviour as well as ectopic expression of CLK-target genes in the brain. In these flies, the number of the key circadian neurons differs stochastically between individuals and within the two hemispheres of the same brain. Moreover, flies carrying Clk transgenes with deletions in the binding sites for the miRNA bantam have stochastic number of pacemaker neurons, suggesting that this miRNA mediates the deterministic expression of CLK. Overall our results demonstrate a key role of Clk post-transcriptional control in stabilizing circadian transcription, which is essential for proper development and maintenance of circadian rhythms in Drosophila.

  5. A historical review of additives and modifiers used in paving asphalt refining processes in the United States.

    PubMed

    Mundt, Diane J; Adams, Robert C; Marano, Kristin M

    2009-11-01

    The U.S. asphalt paving industry has evolved over time to meet various performance specifications for liquid petroleum asphalt binder (known as bitumen outside the United States). Additives to liquid petroleum asphalt produced in the refinery may affect exposures to workers in the hot mix paving industry. This investigation documented the changes in the composition and distribution of the liquid petroleum asphalt products produced from petroleum refining in the United States since World War II. This assessment was accomplished by reviewing documents and interviewing individual experts in the industry to identify current and historical practices. Individuals from 18 facilities were surveyed; the number of facilities reporting use of any material within a particular class ranged from none to more than half the respondents. Materials such as products of the process stream, polymers, elastomers, and anti-strip compounds have been added to liquid petroleum asphalt in the United States over the past 50 years, but modification has not been generally consistent by geography or time. Modifications made to liquid petroleum asphalt were made generally to improve performance and were dictated by state specifications.

  6. Enzymes Involved in Post-transcriptional RNA Metabolism in Gram-negative bacteria

    PubMed Central

    Mohanty, Bijoy K.

    2018-01-01

    Gene expression in Gram-negative bacteria is regulated at many levels, including transcription initiation, RNA processing, RNA/RNA interactions, mRNA decay, and translational controls involving enzymes that alter translational efficiency. In this chapter we discuss the various enzymes that control transcription, translation and RNA stability through RNA processing and degradation. RNA processing is essential to generate functional RNAs, while degradation helps control the steady-state level of each individual transcript. For example, all the pre-tRNAs are transcribed with extra nucleotides at both their 5′ and 3′ termini, which are subsequently processed to produce mature tRNAs that can be aminoacylated. Similarly, rRNAs that are transcribed as part of a 30S polycistronic transcript, are matured to individual 16S, 23S and 5S rRNAs. Decay of mRNAs plays a key role in gene regulation through controlling the steady-state level of each transcript, which is essential for maintaining appropriate protein levels. In addition, degradation of both translated and non-translated RNAs recycles nucleotides to facilitate new RNA synthesis. To carry out all these reactions Gram-negative bacteria employ a large number of endonucleases, exonucleases, RNA helicases, and poly(A) polymerase as well as proteins that regulate the catalytic activity of particular ribonucleases. Under certain stress conditions an additional group of specialized endonucleases facilitate the cell’s ability to adapt and survive. Many of the enzymes, such as RNase E, RNase III, polynucleotide phosphorylase, RNase R, and poly(A) polymerase I participate in multiple RNA processing and decay pathways. PMID:29676246

  7. Transcription factor clusters regulate genes in eukaryotic cells

    PubMed Central

    Hedlund, Erik G; Friemann, Rosmarie; Hohmann, Stefan

    2017-01-01

    Transcription is regulated through binding factors to gene promoters to activate or repress expression, however, the mechanisms by which factors find targets remain unclear. Using single-molecule fluorescence microscopy, we determined in vivo stoichiometry and spatiotemporal dynamics of a GFP tagged repressor, Mig1, from a paradigm signaling pathway of Saccharomyces cerevisiae. We find the repressor operates in clusters, which upon extracellular signal detection, translocate from the cytoplasm, bind to nuclear targets and turnover. Simulations of Mig1 configuration within a 3D yeast genome model combined with a promoter-specific, fluorescent translation reporter confirmed clusters are the functional unit of gene regulation. In vitro and structural analysis on reconstituted Mig1 suggests that clusters are stabilized by depletion forces between intrinsically disordered sequences. We observed similar clusters of a co-regulatory activator from a different pathway, supporting a generalized cluster model for transcription factors that reduces promoter search times through intersegment transfer while stabilizing gene expression. PMID:28841133

  8. Transcriptional activation of mouse mast cell Protease-7 by activin and transforming growth factor-beta is inhibited by microphthalmia-associated transcription factor.

    PubMed

    Funaba, Masayuki; Ikeda, Teruo; Murakami, Masaru; Ogawa, Kenji; Tsuchida, Kunihiro; Sugino, Hiromu; Abe, Matanobu

    2003-12-26

    Previous studies have revealed that activin A and transforming growth factor-beta1 (TGF-beta1) induced migration and morphological changes toward differentiation in bone marrow-derived cultured mast cell progenitors (BMCMCs). Here we show up-regulation of mouse mast cell protease-7 (mMCP-7), which is expressed in differentiated mast cells, by activin A and TGF-beta1 in BMCMCs, and the molecular mechanism of the gene induction of mmcp-7. Smad3, a signal mediator of the activin/TGF-beta pathway, transcriptionally activated mmcp-7. Microphthalmia-associated transcription factor (MITF), a tissue-specific transcription factor predominantly expressed in mast cells, melanocytes, and heart and skeletal muscle, inhibited Smad3-mediated mmcp-7 transcription. MITF associated with Smad3, and the C terminus of MITF and the MH1 and linker region of Smad3 were required for this association. Complex formation between Smad3 and MITF was neither necessary nor sufficient for the inhibition of Smad3 signaling by MITF. MITF inhibited the transcriptional activation induced by the MH2 domain of Smad3. In addition, MITF-truncated N-terminal amino acids could associate with Smad3 but did not inhibit Smad3-mediated transcription. The level of Smad3 was decreased by co-expression of MITF but not of dominant-negative MITF, which resulted from proteasomal protein degradation. The changes in the level of Smad3 protein were paralleled by those in Smad3-mediated signaling activity. These findings suggest that MITF negatively regulates Smad-dependent activin/TGF-beta signaling in a tissue-specific manner.

  9. Transcriptional regulation of genes related to progesterone production.

    PubMed

    Mizutani, Tetsuya; Ishikane, Shin; Kawabe, Shinya; Umezawa, Akihiro; Miyamoto, Kaoru

    2015-01-01

    Steroid hormones are synthesized from cholesterol in various tissues, mainly in the adrenal glands and gonads. Because these lipid-soluble steroid hormones immediately diffuse through the cells in which they are produced, their secretion directly reflects the activity of the genes related to their production. Progesterone is important not only for luteinization and maintenance of pregnancy, but also as a substrate for most other steroids. Steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) are well-known proteins essential for progesterone production. In addition to them, glutathione S-transferase A1-1 and A3-3 are shown to exert Δ(5)-Δ(4) isomerization activity to produce progesterone in a cooperative fashion with 3β-HSD. 5-Aminolevulinic acid synthase 1, ferredoxin 1, and ferredoxin reductase also play a role in steroidogenesis as accessory factors. Members of the nuclear receptor 5A (NR5A) family (steroidogenic factor 1 and liver receptor homolog 1) play a crucial role in the transcriptional regulation of these genes. The NR5A family activates these genes by binding to NR5A responsive elements present within their promoter regions, as well as to the elements far from their promoters. In addition, various NR5A-interacting proteins including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear receptor subfamily 0, group B, member 1 (DAX-1), and CCAAT/enhancer-binding proteins (C/EBP) are involved in the transcription of NR5A target genes and regulate the transcription either positively or negatively under both basal and tropic hormone-stimulated conditions. In this review, we describe the transcriptional regulation of genes related to progesterone production.

  10. Analysis of a Plant Transcriptional Regulatory Network Using Transient Expression Systems.

    PubMed

    Díaz-Triviño, Sara; Long, Yuchen; Scheres, Ben; Blilou, Ikram

    2017-01-01

    In plant biology, transient expression systems have become valuable approaches used routinely to rapidly study protein expression, subcellular localization, protein-protein interactions, and transcriptional activity prior to in vivo studies. When studying transcriptional regulation, luciferase reporter assays offer a sensitive readout for assaying promoter behavior in response to different regulators or environmental contexts and to confirm and assess the functional relevance of predicted binding sites in target promoters. This chapter aims to provide detailed methods for using luciferase reporter system as a rapid, efficient, and versatile assay to analyze transcriptional regulation of target genes by transcriptional regulators. We describe a series of optimized transient expression systems consisting of Arabidopsis thaliana protoplasts, infiltrated Nicotiana benthamiana leaves, and human HeLa cells to study the transcriptional regulations of two well-characterized transcriptional regulators SCARECROW (SCR) and SHORT-ROOT (SHR) on one of their targets, CYCLIN D6 (CYCD6).Here, we illustrate similarities and differences in outcomes when using different systems. The plant-based systems revealed that the SCR-SHR complex enhances CYCD6 transcription, while analysis in HeLa cells showed that the complex is not sufficient to strongly induce CYCD6 transcription, suggesting that additional, plant-specific regulators are required for full activation. These results highlight the importance of the system and suggest that including heterologous systems, such as HeLa cells, can provide a more comprehensive analysis of a complex gene regulatory network.

  11. Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements.

    PubMed

    Hashikawa, Naoya; Yamamoto, Noritaka; Sakurai, Hiroshi

    2007-04-06

    The hydrophobic repeat is a conserved structural motif of eukaryotic heat shock transcription factor (HSF) that enables HSF to form a homotrimer. Homotrimeric HSF binds to heat shock elements (HSEs) consisting of three inverted repeats of the sequence nGAAn. Sequences consisting of four or more nGAAn units are bound cooperatively by two HSF trimers. We show that in Saccharomyces cerevisiae cells oligomerization-defective Hsf1 is not able to bind HSEs with three units and is not extensively phosphorylated in response to stress; it is therefore unable to activate genes containing this type of HSE. Several lines of evidence indicate that oligomerization is a prerequisite for stress-induced hyperphosphorylation of Hsf1. In contrast, oligomerization and hyperphosphorylation are not necessary for gene activation via HSEs with four units. Intragenic suppressor screening of oligomerization-defective hsf1 showed that an interface between adjacent DNA-binding domains is important for the binding of Hsf1 to the HSE. We suggest that Saccharomyces cerevisiae HSEs with different structures are regulated differently; HSEs with three units require Hsf1 to be both oligomerized and hyperphosphorylated, whereas HSEs with four or more units do not require either.

  12. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    PubMed

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Specificity in ROS Signaling and Transcript Signatures

    PubMed Central

    Vaahtera, Lauri; Brosché, Mikael; Wrzaczek, Michael

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS), important signaling molecules in plants, are involved in developmental control and stress adaptation. ROS production can trigger broad transcriptional changes; however, it is not clear how specificity in transcriptional regulation is achieved. Recent Advances: A large collection of public transcriptome data from the model plant Arabidopsis thaliana is available for analysis. These data can be used for the analysis of biological processes that are associated with ROS signaling and for the identification of suitable transcriptional indicators. Several online tools, such as Genevestigator and Expression Angler, have simplified the task to analyze, interpret, and visualize this wealth of data. Critical Issues: The analysis of the exact transcriptional responses to ROS requires the production of specific ROS in distinct subcellular compartments with precise timing, which is experimentally difficult. Analyses are further complicated by the effect of ROS production in one subcellular location on the ROS accumulation in other compartments. In addition, even subtle differences in the method of ROS production or treatment can lead to significantly different outcomes when various stimuli are compared. Future Directions: Due to the difficulty of inducing ROS production specifically with regard to ROS type, subcellular localization, and timing, we propose that the concept of a “ROS marker gene” should be re-evaluated. We suggest guidelines for the analysis of transcriptional data in ROS signaling. The use of “ROS signatures,” which consist of a set of genes that together can show characteristic and indicative responses, should be preferred over the use of individual marker genes. Antioxid. Redox Signal. 21, 1422–1441. PMID:24180661

  14. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Cong; Wang, Jingchao; Guo, Wei

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated thatmore » triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.« less

  15. A Herpesviral Immediate Early Protein Promotes Transcription Elongation of Viral Transcripts.

    PubMed

    Fox, Hannah L; Dembowski, Jill A; DeLuca, Neal A

    2017-06-13

    Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (RNA Pol II). While four viral immediate early proteins (ICP4, ICP0, ICP27, and ICP22) function in some capacity in viral transcription, the mechanism by which ICP22 functions remains unclear. We observed that the FACT complex (comprised of SSRP1 and Spt16) was relocalized in infected cells as a function of ICP22. ICP22 was also required for the association of FACT and the transcription elongation factors SPT5 and SPT6 with viral genomes. We further demonstrated that the FACT complex interacts with ICP22 throughout infection. We therefore hypothesized that ICP22 recruits cellular transcription elongation factors to viral genomes for efficient transcription elongation of viral genes. We reevaluated the phenotype of an ICP22 mutant virus by determining the abundance of all viral mRNAs throughout infection by transcriptome sequencing (RNA-seq). The accumulation of almost all viral mRNAs late in infection was reduced compared to the wild type, regardless of kinetic class. Using chromatin immunoprecipitation sequencing (ChIP-seq), we mapped the location of RNA Pol II on viral genes and found that RNA Pol II levels on the bodies of viral genes were reduced in the ICP22 mutant compared to wild-type virus. In contrast, the association of RNA Pol II with transcription start sites in the mutant was not reduced. Taken together, our results indicate that ICP22 plays a role in recruiting elongation factors like the FACT complex to the HSV-1 genome to allow for efficient viral transcription elongation late in viral infection and ultimately infectious virion production. IMPORTANCE HSV-1 interacts with many cellular proteins throughout productive infection. Here, we demonstrate the interaction of a viral protein, ICP22, with a subset of cellular proteins known to be involved in transcription elongation. We determined that ICP22 is required to recruit the FACT complex and other transcription

  16. A homolog of teleostean signal transducer and activator of transcription 3 (STAT3) from rock bream, Oplegnathus fasciatus: Structural insights, transcriptional modulation, and subcellular localization.

    PubMed

    Bathige, S D N K; Thulasitha, William Shanthakumar; Umasuthan, Navaneethaiyer; Jayasinghe, J D H E; Wan, Qiang; Nam, Bo-Hye; Lee, Jehee

    2017-04-01

    Signal transducer and activator of transcription 3 (STAT3) is one of the crucial transcription factors in the Janus kinase (JAK)/STAT signaling pathway, and it was previously considered as acute phase response factor. A number of interleukins (ILs) such as IL-5, IL-6, IL-9, IL-10, IL-12, and IL-22 are known to be involved in activation of STAT3. In addition, various growth factors and pathogenic or oxidative stresses mediate the activation of a wide range of functions via STAT3. In this study, a STAT3 homolog was identified and functionally characterized from rock bream (RbSTAT3), Oplegnathus fasciatus. In silico characterization revealed that the RbSTAT3 amino acid sequence shares highly conserved common domain architectural features including N-terminal domain, coiled coil domain, DNA binding domain, linker domain, and Src homology 2 (SH2) domains. In addition, a fairly conserved transcriptional activation domain (TAD) was located at the C-terminus. Comparison of RbSTAT3 with other counterparts revealed higher identities (>90%) with fish orthologs. The genomic sequence of RbSTAT3 was obtained from a bacterial artificial chromosome (BAC) library, and was identified as a multi-exonic gene (24 exons), as found in other vertebrates. Genomic structural comparison and phylogenetic studies have showed that the evolutionary routes of teleostean and non-teleostean vertebrates were distinct. Quantitative real time PCR (qPCR) analysis revealed that the spatial distribution of RbSTAT3 mRNA expression was ubiquitous and highly detectable in blood, heart, and liver tissues. Transcriptional modulation of RbSTAT3 was examined in blood and liver tissues after challenges with bacteria (Edwardsiella tarda and Streptococcus iniae), rock bream irido virus (RBIV), and immune stimulants (LPS and poly (I:C)). Significant changes in RbSTAT3 transcription were also observed in response to tissue injury. In addition, the transcriptional up-regulation of RbSTAT3 was detected in rock bream

  17. Sequences required for transcription termination at the intrinsic lambdatI terminator.

    PubMed

    Martínez-Trujillo, Miguel; Sánchez-Trujillo, Alejandra; Ceja, Víctor; Avila-Moreno, Federico; Bermúdez-Cruz, Rosa María; Court, Donald; Montañez, Cecilia

    2010-02-01

    The lambdatI terminator is located approximately 280 bp beyond the lambdaint gene, and it has a typical structure of an intrinsic terminator. To identify sequences required for lambdatI transcription termination a set of deletion mutants were generated, either from the 5' or the 3' end onto the lambdatI region. The termination efficiency was determined by measuring galactokinase (galK) levels by Northern blot assays and by in vitro transcription termination. The importance of the uridines and the stability of the stem structure in the termination were demonstrated. The nontranscribed DNA beyond the 3' end also affects termination. Additionally, sequences upstream have a small effect on transcription termination. The in vivo RNA termination sites at lambdatI were determined by S1 mapping and were located at 8 different positions. Processing of transcripts from the 3' end confirmed the importance of the hairpin stem in protection against exonuclease.

  18. Transcriptional analysis of the bglP gene from Streptococcus mutans.

    PubMed

    Cote, Christopher K; Honeyman, Allen L

    2006-04-21

    An open reading frame encoding a putative antiterminator protein, LicT, was identified in the genomic sequence of Streptococcus mutans. A potential ribonucleic antitermination (RAT) site to which the LicT protein would potentially bind has been identified immediately adjacent to this open reading frame. The licT gene and RAT site are both located 5' to a beta-glucoside PTS regulon previously described in S. mutans that is responsible for esculin utilization in the presence of glucose. It was hypothesized that antitermination is the regulatory mechanism that is responsible for the control of the bglP gene expression, which encodes an esculin-specific PTS enzyme II. To localize the promoter activity associated with the bglP locus, a series of transcriptional lacZ gene fusions was formed on a reporter shuttle vector using various DNA fragments from the bglP promoter region. Subsequent beta-galactosidase assays in S. mutans localized the bglP promoter region and identified putative -35 and -10 promoter elements. Primer extension analysis identified the bglP transcriptional start site. In addition, a terminated bglP transcript formed by transcriptional termination was identified via transcript mapping experiments. The physical location of these genetic elements, the RAT site and the promoter regions, and the identification of a short terminated mRNA support the hypothesis that antitermination regulates the bglP transcript.

  19. Transcriptional analysis of the bglP gene from Streptococcus mutans

    PubMed Central

    Cote, Christopher K; Honeyman, Allen L

    2006-01-01

    Background An open reading frame encoding a putative antiterminator protein, LicT, was identified in the genomic sequence of Streptococcus mutans. A potential ribonucleic antitermination (RAT) site to which the LicT protein would potentially bind has been identified immediately adjacent to this open reading frame. The licT gene and RAT site are both located 5' to a beta-glucoside PTS regulon previously described in S. mutans that is responsible for esculin utilization in the presence of glucose. It was hypothesized that antitermination is the regulatory mechanism that is responsible for the control of the bglP gene expression, which encodes an esculin-specific PTS enzyme II. Results To localize the promoter activity associated with the bglP locus, a series of transcriptional lacZ gene fusions was formed on a reporter shuttle vector using various DNA fragments from the bglP promoter region. Subsequent beta-galactosidase assays in S. mutans localized the bglP promoter region and identified putative -35 and -10 promoter elements. Primer extension analysis identified the bglP transcriptional start site. In addition, a terminated bglP transcript formed by transcriptional termination was identified via transcript mapping experiments. Conclusion The physical location of these genetic elements, the RAT site and the promoter regions, and the identification of a short terminated mRNA support the hypothesis that antitermination regulates the bglP transcript. PMID:16630357

  20. The Eimeria Transcript DB: an integrated resource for annotated transcripts of protozoan parasites of the genus Eimeria

    PubMed Central

    Rangel, Luiz Thibério; Novaes, Jeniffer; Durham, Alan M.; Madeira, Alda Maria B. N.; Gruber, Arthur

    2013-01-01

    Parasites of the genus Eimeria infect a wide range of vertebrate hosts, including chickens. We have recently reported a comparative analysis of the transcriptomes of Eimeria acervulina, Eimeria maxima and Eimeria tenella, integrating ORESTES data produced by our group and publicly available Expressed Sequence Tags (ESTs). All cDNA reads have been assembled, and the reconstructed transcripts have been submitted to a comprehensive functional annotation pipeline. Additional studies included orthology assignment across apicomplexan parasites and clustering analyses of gene expression profiles among different developmental stages of the parasites. To make all this body of information publicly available, we constructed the Eimeria Transcript Database (EimeriaTDB), a web repository that provides access to sequence data, annotation and comparative analyses. Here, we describe the web interface, available sequence data sets and query tools implemented on the site. The main goal of this work is to offer a public repository of sequence and functional annotation data of reconstructed transcripts of parasites of the genus Eimeria. We believe that EimeriaTDB will represent a valuable and complementary resource for the Eimeria scientific community and for those researchers interested in comparative genomics of apicomplexan parasites. Database URL: http://www.coccidia.icb.usp.br/eimeriatdb/ PMID:23411718

  1. Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs.

    PubMed

    Chen, Shu-Chuan; Jeng, King-Song; Lai, Michael M C

    2017-10-15

    Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5' untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target. IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the regulation of

  2. Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs

    PubMed Central

    Chen, Shu-Chuan; Jeng, King-Song

    2017-01-01

    ABSTRACT Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5′ untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target. IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the

  3. Stages in Constructing and Coordinating Units Additively and Multiplicatively (Part 2)

    ERIC Educational Resources Information Center

    Ulrich, Catherine

    2016-01-01

    This is the second of a two-part article that presents a theory of unit construction and coordination that underlies radical constructivist empirical studies of student learning ranging from young students' counting strategies to high school students' algebraic reasoning. In Part I, I discussed the formation of arithmetical units and composite…

  4. Stages in Constructing and Coordinating Units Additively and Multiplicatively (Part 1)

    ERIC Educational Resources Information Center

    Ulrich, Catherine

    2015-01-01

    This is the first of a two-part article that presents a theory of unit construction and coordination that underlies radical constructivist empirical studies of student learning ranging from young students' counting strategies to high school students' algebraic reasoning. My explanation starts with the formation of arithmetical units, which presage…

  5. Signatures from Tissue-specific MPSS Libraries Identify Transcripts Preferentially Expressed in the Mouse Inner Ear

    PubMed Central

    Peters, Linda M.; Belyantseva, Inna A.; Lagziel, Ayala; Battey, James F.; Friedman, Thomas B.; Morell, Robert J.

    2007-01-01

    Specialization in cell function and morphology is influenced by the differential expression of mRNAs, many of which are expressed at low abundance and restricted to certain cell types. Detecting such transcripts in cDNA libraries may require sequencing millions of clones. Massively parallel signature sequencing (MPSS) is well-suited for identifying transcripts that are expressed in discrete cell types and in low abundance. We have made MPSS libraries from microdissections of three inner ear tissues. By comparing these MPSS libraries to those of 87 other tissues included in the Mouse Reference Transcriptome (MRT) online resource, we have identified genes that are highly enriched in, or specific to, the inner ear. We show by RT-PCR and in situ hybridization that signatures unique to the inner ear libraries identify transcripts with highly specific cell-type localizations. These transcripts serve to illustrate the utility of a resource that is available to the research community. Utilization of these resources will increase the number of known transcription units and expand our knowledge of the tissue-specific regulation of the transcriptome. PMID:17049805

  6. The transcriptional terminator sequences downstream of the covR gene terminate covR/S operon transcription to generate covR monocistronic transcripts in Streptococcus pyogenes.

    PubMed

    Chiang-Ni, Chuan; Tsou, Chih-Cheng; Lin, Yee-Shin; Chuang, Woei-Jer; Lin, Ming-T; Liu, Ching-Chuan; Wu, Jiunn-Jong

    2008-12-31

    CovR/S is an important two component regulatory system, which regulates about 15% of the gene expression in Streptococcus pyogenes. The covR/S locus was identified as an operon generating an RNA transcript around 2.5-kb in size. In this study, we found the covR/S operon produced three RNA transcripts (around 2.5-, 1.0-, and 0.8-kb in size). Using RNA transcriptional terminator sequence prediction and transcriptional terminator analysis, we identified two atypical rho-independent terminator sequences downstream of the covR gene and showed these terminator sequences terminate RNA transcription efficiently. These results indicate that covR/S operon generates covR/S transcript and monocistronic covR transcripts.

  7. When transcription goes on Holliday: Double Holliday junctions block RNA polymerase II transcription in vitro.

    PubMed

    Pipathsouk, Anne; Belotserkovskii, Boris P; Hanawalt, Philip C

    2017-02-01

    Non-canonical DNA structures can obstruct transcription. This transcription blockage could have various biological consequences, including genomic instability and gratuitous transcription-coupled repair. Among potential structures causing transcription blockage are Holliday junctions (HJs), which can be generated as intermediates in homologous recombination or during processing of stalled replication forks. Of particular interest is the double Holliday junction (DHJ), which contains two HJs. Topological considerations impose the constraint that the total number of helical turns in the DNA duplexes between the junctions cannot be altered as long as the flanking DNA duplexes are intact. Thus, the DHJ structure should strongly resist transient unwinding during transcription; consequently, it is predicted to cause significantly stronger blockage than single HJ structures. The patterns of transcription blockage obtained for RNA polymerase II transcription in HeLa cell nuclear extracts were in accordance with this prediction. However, we did not detect transcription blockage with purified T7 phage RNA polymerase; we discuss a possible explanation for this difference. In general, our findings implicate naturally occurring Holliday junctions in transcription arrest. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis.

    PubMed

    Liu, Jie; Cheng, Xiliu; Liu, Pan; Li, Dayong; Chen, Tao; Gu, Xiaofeng; Sun, Jiaqiang

    2017-05-01

    The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering activators FLOWERING BHLH (FBHs), but not the flowering repressors CYCLING DOF FACTORs (CDFs), to additively activate CO expression. Furthermore, both the TCPs and FBHs physically interact with the flowering time regulator PHYTOCHROME AND FLOWERING TIME 1 (PFT1) to facilitate CO transcription. Our findings provide evidence that a set of transcriptional activators act directly and additively at the CO promoter to promote CO transcription, and establish a molecular mechanism underlying the regulation of photoperiodic flowering time in Arabidopsis.

  9. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis

    PubMed Central

    Liu, Pan; Li, Dayong; Chen, Tao; Gu, Xiaofeng; Sun, Jiaqiang

    2017-01-01

    The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering activators FLOWERING BHLH (FBHs), but not the flowering repressors CYCLING DOF FACTORs (CDFs), to additively activate CO expression. Furthermore, both the TCPs and FBHs physically interact with the flowering time regulator PHYTOCHROME AND FLOWERING TIME 1 (PFT1) to facilitate CO transcription. Our findings provide evidence that a set of transcriptional activators act directly and additively at the CO promoter to promote CO transcription, and establish a molecular mechanism underlying the regulation of photoperiodic flowering time in Arabidopsis. PMID:28558040

  10. Transcription of Gypsy Elements in a Y-Chromosome Male Fertility Gene of Drosophila Hydei

    PubMed Central

    Hochstenbach, R.; Harhangi, H.; Schouren, K.; Bindels, P.; Suijkerbuijk, R.; Hennig, W.

    1996-01-01

    We have found that defective gypsy retrotransposons are a major constituent of the lampbrush loop pair Nooses in the short arm of the Y chromosome of Drosophila hydei. The loop pair is formed by male fertility gene Q during the primary spermatocyte stage of spermatogenesis, each loop being a single transcription unit with an estimated length of 260 kb. Using fluorescent in situ hybridization, we show that throughout the loop transcripts gypsy elements are interspersed with blocks of a tandemly repetitive Y-specific DNA sequence, ay1. Nooses transcripts containing both sequence types show a wide size range on Northern blots, do not migrate to the cytoplasm, and are degraded just before the first meiotic division. Only one strand of ay1 and only the coding strand of gypsy can be detected in the loop transcripts. However, as cloned genomic DNA fragments also display opposite orientations of ay1 and gypsy, such DNA sections cannot be part of the Nooses. Hence, they are most likely derived from the flanking heterochromatin. The direction of transcription of ay1 and gypsy thus appears to be of a functional significance. PMID:8852843

  11. Transcriptional regulation of metabolism in disease: From transcription factors to epigenetics

    PubMed Central

    2018-01-01

    Every cell in an individual has largely the same genomic sequence and yet cells in different tissues can present widely different phenotypes. This variation arises because each cell expresses a specific subset of genomic instructions. Control over which instructions, or genes, are expressed is largely controlled by transcriptional regulatory pathways. Each cell must assimilate a huge amount of environmental input, and thus it is of no surprise that transcription is regulated by many intertwining mechanisms. This large regulatory landscape means there are ample possibilities for problems to arise, which in a medical context means the development of disease states. Metabolism within the cell, and more broadly, affects and is affected by transcriptional regulation. Metabolism can therefore contribute to improper transcriptional programming, or pathogenic metabolism can be the result of transcriptional dysregulation. Here, we discuss the established and emerging mechanisms for controling transcription and how they affect metabolism in the context of pathogenesis. Cis- and trans-regulatory elements, microRNA and epigenetic mechanisms such as DNA and histone methylation, all have input into what genes are transcribed. Each has also been implicated in diseases such as metabolic syndrome, various forms of diabetes, and cancer. In this review, we discuss the current understanding of these areas and highlight some natural models that may inspire future therapeutics. PMID:29922517

  12. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

    DOE PAGES

    Garcia de Lomana, Adrian Lopez; Schäuble, Sascha; Valenzuela, Jacob; ...

    2015-12-02

    Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 minmore » that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In conclusion, in this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid

  13. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia de Lomana, Adrian Lopez; Schäuble, Sascha; Valenzuela, Jacob

    Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 minmore » that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In conclusion, in this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid

  14. Neurotoxocarosis alters myelin protein gene transcription and expression.

    PubMed

    Heuer, Lea; Beyerbach, Martin; Lühder, Fred; Beineke, Andreas; Strube, Christina

    2015-06-01

    Neurotoxocarosis is an infection of the central nervous system caused by migrating larvae of the common dog and cat roundworms (Toxocara canis and Toxocara cati), which are zoonotic agents. As these parasites are prevalent worldwide and neuropathological and molecular investigations on neurotoxocarosis are scare, this study aims to characterise nerve fibre demyelination associated with neurotoxocarosis on a molecular level. Transcription of eight myelin-associated genes (Cnp, Mag, Mbp, Mog, Mrf-1, Nogo-A, Plp1, Olig2) was determined in the mouse model during six time points of the chronic phase of infection using qRT-PCR. Expression of selected proteins was analysed by Western blotting or immunohistochemistry. Additionally, demyelination and neuronal damage were investigated histologically. Significant differences (p ≤ 0.05) between transcription rates of T. canis-infected and uninfected control mice were detected for all analysed genes while T. cati affected five of eight investigated genes. Interestingly, 2', 3 ´-cyclic nucleotide 3'-phosphodiesterase (Cnp) and myelin oligodendrocyte glycoprotein (Mog) were upregulated in both T. canis- and T. cati-infected mice preceding demyelination. Later, CNPase expression was additionally enhanced. As expected, myelin basic protein (Mbp) was downregulated in cerebra and cerebella of T. canis-infected mice when severe demyelination was present 120 days post infectionem (dpi). The transcriptional pattern observed in the present study appears to reflect direct traumatic and hypoxic effects of larval migration as well as secondary processes including host immune reactions, demyelination and attempts to remyelinate damaged areas.

  15. Transcription factors in pancreatic development. Animal models.

    PubMed

    Martin, Merce; Hauer, Viviane; Messmer, Mélanie; Orvain, Christophe; Gradwohl, Gérard

    2007-01-01

    Through the analysis of genetically modified mice a hierarchy of transcription factors regulating pancreas specification, endocrine destiny as well as endocrine subtype specification and differentiation has been established. In addition to conventional approaches such as transgenic technologies and gene targeting, recombinase fate mapping in mice has been key in establishing the lineage relationship between progenitor cells and their progeny in understanding pancreas formation. Moreover, the design of specific mouse models to conditionally express transcription factors in different populations of progenitor cells has revealed to what extent transcription factors required for islet cell development are also sufficient to induce endocrine differentiation and the importance of the competence of progenitor cells to respond to the genetic program implemented by these factors. Taking advantage of this basic science knowledge acquired in rodents, immature insulin-producing cells have recently been differentiated in vitro from human embryonic stem cells. Taken together these major advances emphasize the need to gain further in-depth knowledge of the molecular and cellular mechanisms controlling beta-cell differentiation in mice to generate functional beta-cells in the future that could be used for cell therapy in diabetes.

  16. Regulation of IL-17 in autoimmune diseases by transcriptional factors and microRNAs

    PubMed Central

    Khan, Deena; Ansar Ahmed, S.

    2015-01-01

    In recent years, IL-17A (IL-17), a pro-inflammatory cytokine, has received intense attention of researchers and clinicians alike with documented effects in inflammation and autoimmune diseases. IL-17 mobilizes, recruits and activates different cells to increase inflammation. Although protective in infections, overproduction of IL-17 promotes inflammation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, psoriasis, among others. Regulating IL-17 levels or action by using IL-17-blocking antibodies or IL-17R antagonist has shown to attenuate experimental autoimmune diseases. It is now known that in addition to IL-17-specific transcription factor, RORγt, several other transcription factors and select microRNAs (miRNA) regulate IL-17. Given that miRNAs are dysregulated in autoimmune diseases, a better understanding of transcriptional factors and miRNA regulation of IL-17 expression and function will be essential for devising potential new therapies. In this review, we will overview IL-17 induction and function in relation to autoimmune diseases. In addition, current findings on transcriptional regulation of IL-17 induction and plausible interplay between IL-17 and miRNA in autoimmune diseases are highlighted. PMID:26236331

  17. Chitosan multiple addition enhances laccase production from Trametes versicolor.

    PubMed

    Adekunle, Abiodun Emmanuel; Wang, Feng; Hu, Jianhua; Ma, Anzhou; Guo, Chen; Zhuang, Guoqiang; Liu, Chun-Zhao

    2015-10-01

    Chitosan multiple addition strategy was developed to improve laccase production from Trametes versicolor cultures. The optimized multiple addition strategy was carried out by two-time addition of 0.1 g L(-1) chitosan to a 2-day-old culture media, with 24-h interval between the treatments. Under these conditions, laccase activity of 644.9 U l(-1) was achieved on the seventh day and laccase production was improved by 93.5 % higher than the control. Chitosan treatment increased reactive oxygen species generation and extracellular protein concentration in the treated mycelia. In contrast, the inducer inhibited the mycelia growth. The result of the quantitative reverse transcription polymerase chain reaction showed that the copy number of the laccase gene transcript increased by 16.7-fold in the treated mycelia relative to the control. This study provides insight into some of the intrinsic metabolic processes involved in the upregulation of laccase production in the presence of chitosan inducer in fungal culture.

  18. Nucleosome displacement in transcription.

    PubMed

    Workman, Jerry L

    2006-08-01

    Recent reports reinforce the notion that nucleosomes are highly dynamic in response to the process of transcription. Nucleosomes are displaced at promoters during gene activation in a process that involves histone modification, ATP-dependent nucleosome remodeling complexes, histone chaperones and perhaps histone variants. During transcription elongation nucleosomes are acetylated and transferred behind RNA polymerase II where they are required to suppress spurious transcription initiation within the body of the gene. It is becoming increasingly clear that the eukaryotic transcriptional machinery is adapted to exploit the presence of nucleosomes in very sophisticated ways.

  19. Circadian oscillatory transcriptional programs in grapevine ripening fruits

    PubMed Central

    2014-01-01

    Background Temperature and solar radiation influence Vitis vinifera L. berry ripening. Both environmental conditions fluctuate cyclically on a daily period basis and the strength of this fluctuation affects grape ripening too. Additionally, a molecular circadian clock regulates daily cyclic expression in a large proportion of the plant transcriptome modulating multiple developmental processes in diverse plant organs and developmental phases. Circadian cycling of fruit transcriptomes has not been characterized in detail despite their putative relevance in the final composition of the fruit. Thus, in this study, gene expression throughout 24 h periods in pre-ripe berries of Tempranillo and Verdejo grapevine cultivars was followed to determine whether different ripening transcriptional programs are activated during certain times of day in different grape tissues and genotypes. Results Microarray analyses identified oscillatory transcriptional profiles following circadian variations in the photocycle and the thermocycle. A higher number of expression oscillating transcripts were detected in samples carrying exocarp tissue including biotic stress-responsive transcripts activated around dawn. Thermotolerance-like responses and regulation of circadian clock-related genes were observed in all studied samples. Indeed, homologs of core clock genes were identified in the grapevine genome and, among them, VvREVEILLE1 (VvRVE1), showed a consistent circadian expression rhythm in every grape berry tissue analysed. Light signalling components and terpenoid biosynthetic transcripts were specifically induced during the daytime in Verdejo, a cultivar bearing white-skinned and aromatic berries, whereas transcripts involved in phenylpropanoid biosynthesis were more prominently regulated in Tempranillo, a cultivar bearing black-skinned berries. Conclusions The transcriptome of ripening fruits varies in response to daily environmental changes, which might partially be under the control

  20. Characterization of a new ARID family transcription factor (Brightlike/ARID3C) that co-activates Bright/ARID3A-mediated immunoglobulin gene transcription

    PubMed Central

    Tidwell, Josephine A.; Schmidt, Christian; Heaton, Phillip; Wilson, Van; Tucker, Philip W.

    2011-01-01

    Two members, Bright/ARID3A and Bdp/ARID3B, of the ARID (AT-Rich Interaction Domain) transcription family are distinguished by their ability to specifically bind to DNA and to self-associate via a second domain, REKLES. Bright and Bdp positively regulate immunoglobulin heavy chain gene (IgH) transcription by binding to AT-rich motifs within Matrix Associating Regions (MARs) residing within a subset of VH promoters and the Eµ intronic enhancer. In addition, REKLES provides Bright nuclear export function, and a small pool of Bright is directed to plasma membrane sub-domains/lipid rafts where it associates with and modulates signaling of the B cell antigen receptor (BCR). Here, we characterize a third, highly conserved, physically condensed ARID3 locus, Brightlike/ARID3C. Brightlike encodes two alternatively spliced, SUMO-I-modified isoforms that include or exclude (Δ6) the REKLES-encoding exon 6. Brightlike transcripts and proteins are expressed preferentially within B lineage lymphocytes and coordinate with highest Bright expression--in activated follicular B cells. Brightlike, but not BrightlikeΔ6, undergoes nuclear-cytoplasmic shuttling with a fraction localizing within lipid rafts following BCR stimulation. Brightlike, but not BrightlikeΔ6, associates with Bright in solution, at common DNA binding sites in vitro, and is enriched at Bright binding sites in chromatin. Although possessing little transactivation capacity of its own, Brightlike significantly co-activates Bright-dependent IgH transcription with maximal activity mediated by the unsumoylated form. In sum, this report introduces Brightlike as an additional functional member of the family of ARID proteins, which should be considered in regulatory circuits, previously ascribed to be mediated by Bright. PMID:21955986

  1. Structural basis of transcriptional gene silencing mediated by Arabidopsis MOM1.

    PubMed

    Nishimura, Taisuke; Molinard, Guillaume; Petty, Tom J; Broger, Larissa; Gabus, Caroline; Halazonetis, Thanos D; Thore, Stéphane; Paszkowski, Jerzy

    2012-02-01

    Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2) as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA-independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.

  2. Post-transcriptional bursting in genes regulated by small RNA molecules

    NASA Astrophysics Data System (ADS)

    Rodrigo, Guillermo

    2018-03-01

    Gene expression programs in living cells are highly dynamic due to spatiotemporal molecular signaling and inherent biochemical stochasticity. Here we study a mechanism based on molecule-to-molecule variability at the RNA level for the generation of bursts of protein production, which can lead to heterogeneity in a cell population. We develop a mathematical framework to show numerically and analytically that genes regulated post transcriptionally by small RNA molecules can exhibit such bursts due to different states of translation activity (on or off), mostly revealed in a regime of few molecules. We exploit this framework to compare transcriptional and post-transcriptional bursting and also to illustrate how to tune the resulting protein distribution with additional post-transcriptional regulations. Moreover, because RNA-RNA interactions are predictable with an energy model, we define the kinetic constants of on-off switching as functions of the two characteristic free-energy differences of the system, activation and formation, with a nonequilibrium scheme. Overall, post-transcriptional bursting represents a distinctive principle linking gene regulation to gene expression noise, which highlights the importance of the RNA layer beyond the simple information transfer paradigm and significantly contributes to the understanding of the intracellular processes from a first-principles perspective.

  3. PlantTFDB: a comprehensive plant transcription factor database

    PubMed Central

    Guo, An-Yuan; Chen, Xin; Gao, Ge; Zhang, He; Zhu, Qi-Hui; Liu, Xiao-Chuan; Zhong, Ying-Fu; Gu, Xiaocheng; He, Kun; Luo, Jingchu

    2008-01-01

    Transcription factors (TFs) play key roles in controlling gene expression. Systematic identification and annotation of TFs, followed by construction of TF databases may serve as useful resources for studying the function and evolution of transcription factors. We developed a comprehensive plant transcription factor database PlantTFDB (http://planttfdb.cbi.pku.edu.cn), which contains 26 402 TFs predicted from 22 species, including five model organisms with available whole genome sequence and 17 plants with available EST sequences. To provide comprehensive information for those putative TFs, we made extensive annotation at both family and gene levels. A brief introduction and key references were presented for each family. Functional domain information and cross-references to various well-known public databases were available for each identified TF. In addition, we predicted putative orthologs of those TFs among the 22 species. PlantTFDB has a simple interface to allow users to search the database by IDs or free texts, to make sequence similarity search against TFs of all or individual species, and to download TF sequences for local analysis. PMID:17933783

  4. The 2p21 deletion syndrome: characterization of the transcription content.

    PubMed

    Parvari, Ruti; Gonen, Yael; Alshafee, Ismael; Buriakovsky, Sophia; Regev, Kfir; Hershkovitz, Eli

    2005-08-01

    The vast majority of small-deletion syndromes are caused by haploinsufficiency of one or several genes and are transmitted as dominant traits. We have previously identified a homozygous deletion of 179,311 bp on chromosome 2p21 as the cause of a unique syndrome, inherited in a recessive mode, consisting of cystinuria, neonatal seizures, hypotonia, severe somatic and developmental delay, facial dysmorphism, and reduced activity of all the respiratory chain enzymatic complexes that are encoded in the mitochondria. We now present the transcription content of this region: Multiple splicing variants of the genes protein phosphatase 1B (formerly 2C) magnesium-dependent, beta isoform (PPM1B), SLC3A1, and KIAA0436 (approved gene symbol PREPL) were identified and their patterns of expression analyzed. The spliced variants are predicted to have additional functions compared to the known variants and their patterns of expression fit the tissues affected by the syndrome. The first exon of an additional gene (C2orf34) is encoded in the deleted region and the gene is not expressed in the patients. In addition several transcripts with very short open reading frames are also encoded in the deletion. The identification of all transcripts encoded in the region deleted in the patients is the first step in the study of the genotype-phenotype correlation of the 2p21 patients.

  5. The amino terminal extension of mammalian mitochondrial RNA polymerase ensures promoter specific transcription initiation

    PubMed Central

    Posse, Viktor; Hoberg, Emily; Dierckx, Anke; Shahzad, Saba; Koolmeister, Camilla; Larsson, Nils-Göran; Wilhelmsson, L. Marcus; Hällberg, B. Martin; Gustafsson, Claes M.

    2014-01-01

    Mammalian mitochondrial transcription is executed by a single subunit mitochondrial RNA polymerase (Polrmt) and its two accessory factors, mitochondrial transcription factors A and B2 (Tfam and Tfb2m). Polrmt is structurally related to single-subunit phage RNA polymerases, but it also contains a unique N-terminal extension (NTE) of unknown function. We here demonstrate that the NTE functions together with Tfam to ensure promoter-specific transcription. When the NTE is deleted, Polrmt can initiate transcription in the absence of Tfam, both from promoters and non-specific DNA sequences. Additionally, when in presence of Tfam and a mitochondrial promoter, the NTE-deleted mutant has an even higher transcription activity than wild-type polymerase, indicating that the NTE functions as an inhibitory domain. Our studies lead to a model according to which Tfam specifically recruits wild-type Polrmt to promoter sequences, relieving the inhibitory effect of the NTE, as a first step in transcription initiation. In the second step, Tfb2m is recruited into the complex and transcription is initiated. PMID:24445803

  6. Control of bacteriophage P2 gene expression: analysis of transcription of the ogr gene.

    PubMed Central

    Birkeland, N K; Lindqvist, B H; Christie, G E

    1991-01-01

    The bacteriophage P2 ogr gene encodes an 8.3-kDa protein that is a positive effector of P2 late gene transcription. The ogr gene is preceded by a promoter sequence (Pogr) resembling a normal Escherichia coli promoter and is located just downstream of a late transcription unit. We analyzed the kinetics and regulation of ogr gene transcription by using an ogr-specific antisense RNA probe in an S1 mapping assay. During a normal P2 infection, ogr gene transcription starts from Pogr at an intermediate time between the onset of early and late transcription. At late times after infection the ogr gene is cotranscribed with the late FETUD operon; the ogr gene product thus positively regulates its own synthesis from the P2 late promoter PF. Expression of the P2 late genes also requires P2 DNA replication. Complementation experiments and transcriptional analysis show that a nonreplicating P2 phage expresses the ogr gene from Pogr but is unable to transcribe the late genes. A P2 ogr-defective phage makes an increased level of ogr mRNA, consistent with autogenous control from Pogr. Transcription of the ogr gene in the prophage of a P2 heteroimmune lysogen is stimulated after infection with P2, suggesting that Pogr is under indirect immunity control and is activated by a yet-unidentified P2 early gene product during infection. Images FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 PMID:1938896

  7. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements.

    PubMed

    Fisher, R P; Topper, J N; Clayton, D A

    1987-07-17

    Selective transcription of human mitochondrial DNA requires a transcription factor (mtTF) in addition to an essentially nonselective RNA polymerase. Partially purified mtTF is able to sequester promoter-containing DNA in preinitiation complexes in the absence of mitochondrial RNA polymerase, suggesting a DNA-binding mechanism for factor activity. Functional domains, required for positive transcriptional regulation by mtTF, are identified within both major promoters of human mtDNA through transcription of mutant promoter templates in a reconstituted in vitro system. These domains are essentially coextensive with DNA sequences protected from nuclease digestion by mtTF-binding. Comparison of the sequences of the two mtTF-responsive elements reveals significant homology only when one sequence is inverted; the binding sites are in opposite orientations with respect to the predominant direction of transcription. Thus mtTF may function bidirectionally, requiring additional protein-DNA interactions to dictate transcriptional polarity. The mtTF-responsive elements are arrayed as direct repeats, separated by approximately 80 bp within the displacement-loop region of human mitochondrial DNA; this arrangement may reflect duplication of an ancestral bidirectional promoter, giving rise to separate, unidirectional promoters for each strand.

  8. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors.

    PubMed

    Ai, Trinh Ngoc; Naing, Aung Htay; Arun, Muthukrishnan; Lim, Sun-Hyung; Kim, Chang Kil

    2016-11-01

    The effects of three different sucrose concentrations on plant growth and anthocyanin accumulation were examined in non-transgenic (NT) and transgenic (T 2 ) specimens of the Petunia hybrida cultivar 'Mirage rose' that carried the anthocyanin regulatory transcription factors B-Peru+mPAP1 or RsMYB1. Anthocyanin accumulation was not observed in NT plants in any treatments, whereas a range of anthocyanin accumulation was observed in transgenic plants. The anthocyanin content detected in transgenic plants expressing the anthocyanin regulatory transcription factors (B-Peru+mPAP1 or RsMYB1) was higher than that in NT plants. In addition, increasing sucrose concentration strongly enhanced anthocyanin content as shown by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, wherein increased concentrations of sucrose enhanced transcript levels of the transcription factors that are responsible for the induction of biosynthetic genes involved in anthocyanin synthesis; this pattern was not observed in NT plants. In addition, sucrose affected plant growth, although the effects were different between NT and transgenic plants. Taken together, the application of sucrose could enhance anthocyanin production in vegetative tissue of transgenic Petunia carrying anthocyanin regulatory transcription factors, and this study provides insights about interactive effects of sucrose and transcription factors in anthocyanin biosynthesis in the transgenic plant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Precision of Readout at the hunchback Gene: Analyzing Short Transcription Time Traces in Living Fly Embryos

    PubMed Central

    Tran, Huy; Ferraro, Teresa; Lucas, Tanguy; Guillou, Aurelien; Coppey, Mathieu; Dostatni, Nathalie

    2016-01-01

    The simultaneous expression of the hunchback gene in the numerous nuclei of the developing fly embryo gives us a unique opportunity to study how transcription is regulated in living organisms. A recently developed MS2-MCP technique for imaging nascent messenger RNA in living Drosophila embryos allows us to quantify the dynamics of the developmental transcription process. The initial measurement of the morphogens by the hunchback promoter takes place during very short cell cycles, not only giving each nucleus little time for a precise readout, but also resulting in short time traces of transcription. Additionally, the relationship between the measured signal and the promoter state depends on the molecular design of the reporting probe. We develop an analysis approach based on tailor made autocorrelation functions that overcomes the short trace problems and quantifies the dynamics of transcription initiation. Based on live imaging data, we identify signatures of bursty transcription initiation from the hunchback promoter. We show that the precision of the expression of the hunchback gene to measure its position along the anterior-posterior axis is low both at the boundary and in the anterior even at cycle 13, suggesting additional post-transcriptional averaging mechanisms to provide the precision observed in fixed embryos. PMID:27942043

  10. Frequency shifting approach towards textual transcription of heartbeat sounds.

    PubMed

    Arvin, Farshad; Doraisamy, Shyamala; Safar Khorasani, Ehsan

    2011-10-04

    Auscultation is an approach for diagnosing many cardiovascular problems. Automatic analysis of heartbeat sounds and extraction of its audio features can assist physicians towards diagnosing diseases. Textual transcription allows recording a continuous heart sound stream using a text format which can be stored in very small memory in comparison with other audio formats. In addition, a text-based data allows applying indexing and searching techniques to access to the critical events. Hence, the transcribed heartbeat sounds provides useful information to monitor the behavior of a patient for the long duration of time. This paper proposes a frequency shifting method in order to improve the performance of the transcription. The main objective of this study is to transfer the heartbeat sounds to the music domain. The proposed technique is tested with 100 samples which were recorded from different heart diseases categories. The observed results show that, the proposed shifting method significantly improves the performance of the transcription.

  11. Archaeal RNA polymerase and transcription regulation

    PubMed Central

    Jun, Sung-Hoon; Reichlen, Matthew J.; Tajiri, Momoko; Murakami, Katsuhiko S.

    2010-01-01

    To elucidate the mechanism of transcription by cellular RNA polymerases (RNAPs), high resolution X-ray crystal structures together with structure-guided biochemical, biophysical and genetics studies are essential. The recently-solved X-ray crystal structures of archaeal RNA polymerase (RNAP) allow a structural comparison of the transcription machinery among all three domains of life. The archaea were once thought of closely related to bacteria, but they are now considered to be more closely related to the eukaryote at the molecular level than bacteria. According to these structures, the archaeal transcription apparatus, which includes RNAP and general transcription factors, is similar to the eukaryotic transcription machinery. Yet, the transcription regulators, activators and repressors, encoded by archaeal genomes are closely related to bacterial factors. Therefore, archaeal transcription appears to possess an intriguing hybrid of eukaryotic-type transcription apparatus and bacterial-like regulatory mechanisms. Elucidating the transcription mechanism in archaea, which possesses a combination of bacterial and eukaryotic transcription mechanisms that are commonly regarded as separate and mutually exclusive, can provide data that will bring basic transcription mechanisms across all three domains of life. PMID:21250781

  12. DNA damage mediated transcription arrest: Step back to go forward.

    PubMed

    Mullenders, Leon

    2015-12-01

    The disturbance of DNA helix conformation by bulky DNA damage poses hindrance to transcription elongating due to stalling of RNA polymerase at transcription blocking lesions. Stalling of RNA polymerase provokes the formation of R-loops, i.e. the formation of a DNA-RNA hybrid and a displaced single stranded DNA strand as well as displacement of spliceosomes. R-loops are processed into DNA single and double strand breaks by NER factors depending on TC-NER factors leading to genome instability. Moreover, stalling of RNA polymerase induces a strong signal for cell cycle arrest and apoptosis. These toxic and mutagenic effects are counteracted by a rapid recruitment of DNA repair proteins to perform transcription coupled nucleotide excision repair (TC-NER) to remove the blocking DNA lesions and to restore transcription. Recent studies have highlighted the role of backtracking of RNA polymerase to facilitate TC-NER and identified novel factors that play key roles in TC-NER and in restoration of transcription. On the molecular level these factors facilitate stability of the repair complex by promotion and regulation of various post-translational modifications of NER factors and chromatin substrate. In addition, the continuous flow of new factors that emerge from screening assays hints to several regulatory levels to safeguard the integrity of transcription elongation after disturbance by DNA damage that have yet to be explored. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Integrative genetic analysis of transcription modules: towards filling the gap between genetic lociand inherited traits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongqiang; Chen, Hao; Bao, Lei

    2005-01-01

    Genetic loci that regulate inherited traits are routinely identified using quantitative trait locus (QTL) mapping methods. However, the genotype-phenotype associations do not provide information on the gene expression program through which the genetic loci regulate the traits. Transcription modules are 'selfconsistent regulatory units' and are closely related to the modular components of gene regulatory network [Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y. and Barkai, N. (2002) Revealing modular organization in the yeast transcriptional network. Nat. Genet., 31, 370-377; Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D. and Friedman, N. (2003) Module networks: identifyingmore » regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet., 34, 166-176]. We used genome-wide genotype and gene expression data of a genetic reference population that consists of mice of 32 recombinant inbred strains to identify the transcription modules and the genetic loci regulating them. Twenty-nine transcription modules defined by genetic variations were identified. Statistically significant associations between the transcription modules and 18 classical physiological and behavioral traits were found. Genome-wide interval mapping showed that major QTLs regulating the transcription modules are often co-localized with the QTLs regulating the associated classical traits. The association and the possible co-regulation of the classical trait and transcription module indicate that the transcription module may be involved in the gene pathways connecting the QTL and the classical trait. Our results show that a transcription module may associate with multiple seemingly unrelated classical traits and a classical trait may associate with different modules. Literature mining results provided strong independent evidences for the relations among genes of the transcription modules, genes in the regions of the QTLs

  14. VIEW TO NORTHEAST OF c19441950 c19441950 POSTU.S. RADIUM ADDITION ADDITIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO NORTHEAST OF c1944-1950 c1944-1950 POST-U.S. RADIUM ADDITION ADDITIONS TO PAINT APPLICATION BUILDING (RIGHT) AND CRYSTALLIZATION LABORATORY (LEFT) - United States Radium Corporation, 422-432 Alden Street, Orange, Essex County, NJ

  15. Decoupling of ammonium regulation and ntcA transcription in the diazotrophic marine cyanobacterium Trichodesmium sp. IMS101

    PubMed Central

    Post, Anton F; Rihtman, Branko; Wang, Qingfeng

    2012-01-01

    Nitrogen (N) physiology in the marine cyanobacterium Trichodesmium IMS101 was studied along with transcript accumulation of the N-regulatory gene ntcA and of two of its target genes: napA (nitrate assimilation) and nifH (N2 fixation). N2 fixation was impaired in the presence of nitrite, nitrate and urea. Strain IMS101 was capable of growth on these combined N sources at <2 μ but growth rates declined at elevated concentrations. Assimilation of nitrate and urea was impaired in the presence of ammonium. Whereas ecologically relevant N concentrations (2–20 μ) suppressed growth and assimilation, much higher concentrations were required to affect transcript levels. Transcripts of nifH accumulated under nitrogen-fixing conditions; these transcript levels were maintained in the presence of nitrate (100 μ) and ammonium (20 μ). However, nifH transcript levels were below detection at ammonium concentrations >20 μ. napA mRNA was found at low levels in both N2-fixing and ammonium-utilizing filaments, and it accumulated in filaments grown with nitrate. The positive effect of nitrate on napA transcription was abolished by ammonium additions of >200 μ. This effect was restored upon addition of the glutamine synthetase inhibitor -methionin--sulfoximine. Surprisingly, ntcA transcript levels remained high in the presence of ammonium, even at elevated concentrations. These findings indicate that ammonium repression is decoupled from transcriptional activation of ntcA in Trichodesmium IMS101. PMID:21938021

  16. Decoupling of ammonium regulation and ntcA transcription in the diazotrophic marine cyanobacterium Trichodesmium sp. IMS101.

    PubMed

    Post, Anton F; Rihtman, Branko; Wang, Qingfeng

    2012-03-01

    Nitrogen (N) physiology in the marine cyanobacterium Trichodesmium IMS101 was studied along with transcript accumulation of the N-regulatory gene ntcA and of two of its target genes: napA (nitrate assimilation) and nifH (N(2) fixation). N(2) fixation was impaired in the presence of nitrite, nitrate and urea. Strain IMS101 was capable of growth on these combined N sources at <2 μM but growth rates declined at elevated concentrations. Assimilation of nitrate and urea was impaired in the presence of ammonium. Whereas ecologically relevant N concentrations (2-20 μM) suppressed growth and assimilation, much higher concentrations were required to affect transcript levels. Transcripts of nifH accumulated under nitrogen-fixing conditions; these transcript levels were maintained in the presence of nitrate (100 μM) and ammonium (20 μM). However, nifH transcript levels were below detection at ammonium concentrations >20 μM. napA mRNA was found at low levels in both N(2)-fixing and ammonium-utilizing filaments, and it accumulated in filaments grown with nitrate. The positive effect of nitrate on napA transcription was abolished by ammonium additions of >200 μM. This effect was restored upon addition of the glutamine synthetase inhibitor L-methionin-DL-sulfoximine. Surprisingly, ntcA transcript levels remained high in the presence of ammonium, even at elevated concentrations. These findings indicate that ammonium repression is decoupled from transcriptional activation of ntcA in Trichodesmium IMS101.

  17. Transcriptional and translational adaptation to aerobic nitrate anabolism in the denitrifier Paracoccus denitrificans.

    PubMed

    Luque-Almagro, Victor M; Manso, Isabel; Sullivan, Matthew J; Rowley, Gary; Ferguson, Stuart J; Moreno-Vivián, Conrado; Richardson, David J; Gates, Andrew J; Roldán, M Dolores

    2017-05-10

    Transcriptional adaptation to nitrate-dependent anabolism by Paracoccus denitrificans PD1222 was studied. A total of 74 genes were induced in cells grown with nitrate as N-source compared with ammonium, including nasTSABGHC and ntrBC genes. The nasT and nasS genes were cotranscribed, although nasT was more strongly induced by nitrate than nasS The nasABGHC genes constituted a transcriptional unit, which is preceded by a non-coding region containing hairpin structures involved in transcription termination. The nasTS and nasABGHC transcripts were detected at similar levels with nitrate or glutamate as N-source, but nasABGHC transcript was undetectable in ammonium-grown cells. The nitrite reductase NasG subunit was detected by two-dimensional polyacrylamide gel electrophoresis in cytoplasmic fractions from nitrate-grown cells, but it was not observed when either ammonium or glutamate was used as the N-source. The nasT mutant lacked both nasABGHC transcript and nicotinamide adenine dinucleotide (NADH)-dependent nitrate reductase activity. On the contrary, the nasS mutant showed similar levels of the nasABGHC transcript to the wild-type strain and displayed NasG protein and NADH-nitrate reductase activity with all N-sources tested, except with ammonium. Ammonium repression of nasABGHC was dependent on the Ntr system. The ntrBC and ntrYX genes were expressed at low levels regardless of the nitrogen source supporting growth. Mutational analysis of the ntrBCYX genes indicated that while ntrBC genes are required for nitrate assimilation, ntrYX genes can only partially restore growth on nitrate in the absence of ntrBC genes. The existence of a regulation mechanism for nitrate assimilation in P. denitrificans , by which nitrate induction operates at both transcriptional and translational levels, is proposed. © 2017 The Author(s).

  18. Transcriptional and translational adaptation to aerobic nitrate anabolism in the denitrifier Paracoccus denitrificans

    PubMed Central

    Luque-Almagro, Victor M.; Manso, Isabel; Sullivan, Matthew J.; Rowley, Gary; Ferguson, Stuart J.; Moreno-Vivián, Conrado; Richardson, David J.; Gates, Andrew J.

    2017-01-01

    Transcriptional adaptation to nitrate-dependent anabolism by Paracoccus denitrificans PD1222 was studied. A total of 74 genes were induced in cells grown with nitrate as N-source compared with ammonium, including nasTSABGHC and ntrBC genes. The nasT and nasS genes were cotranscribed, although nasT was more strongly induced by nitrate than nasS. The nasABGHC genes constituted a transcriptional unit, which is preceded by a non-coding region containing hairpin structures involved in transcription termination. The nasTS and nasABGHC transcripts were detected at similar levels with nitrate or glutamate as N-source, but nasABGHC transcript was undetectable in ammonium-grown cells. The nitrite reductase NasG subunit was detected by two-dimensional polyacrylamide gel electrophoresis in cytoplasmic fractions from nitrate-grown cells, but it was not observed when either ammonium or glutamate was used as the N-source. The nasT mutant lacked both nasABGHC transcript and nicotinamide adenine dinucleotide (NADH)-dependent nitrate reductase activity. On the contrary, the nasS mutant showed similar levels of the nasABGHC transcript to the wild-type strain and displayed NasG protein and NADH–nitrate reductase activity with all N-sources tested, except with ammonium. Ammonium repression of nasABGHC was dependent on the Ntr system. The ntrBC and ntrYX genes were expressed at low levels regardless of the nitrogen source supporting growth. Mutational analysis of the ntrBCYX genes indicated that while ntrBC genes are required for nitrate assimilation, ntrYX genes can only partially restore growth on nitrate in the absence of ntrBC genes. The existence of a regulation mechanism for nitrate assimilation in P. denitrificans, by which nitrate induction operates at both transcriptional and translational levels, is proposed. PMID:28385879

  19. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable themore » differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  20. Epigenetics regulates transcription and pathogenesis in the parasite Trichomonas vaginalis.

    PubMed

    Pachano, Tomas; Nievas, Yesica R; Lizarraga, Ayelen; Johnson, Patricia J; Strobl-Mazzulla, Pablo H; de Miguel, Natalia

    2017-06-01

    Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogenital tract. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Different T. vaginalis strains vary greatly in their adherence and cytolytic capacities. These phenotypic differences might be attributed to differentially expressed genes as a consequence of extra-genetic variation, such as epigenetic modifications. In this study, we explored the role of histone acetylation in regulating gene transcription and pathogenesis in T. vaginalis. Here, we show that histone 3 lysine acetylation (H3KAc) is enriched in nucleosomes positioned around the transcription start site of active genes (BAP1 and BAP2) in a highly adherent parasite strain; compared with the low acetylation abundance in contrast to that observed in a less-adherent strain that expresses these genes at low levels. Additionally, exposition of less-adherent strain with a specific histone deacetylases inhibitor, trichostatin A, upregulated the transcription of BAP1 and BAP2 genes in concomitance with an increase in H3KAc abundance and chromatin accessibility around their transcription start sites. Moreover, we demonstrated that the binding of initiator binding protein, the transcription factor responsible for the initiation of transcription of ~75% of known T. vaginalis genes, depends on the histone acetylation state around the metazoan-like initiator to which initiator binding protein binds. Finally, we found that trichostatin A treatment increased parasite aggregation and adherence to host cells. Our data demonstrated for the first time that H3KAc is a permissive histone modification that functions to mediate both transcription and pathogenesis of the parasite T. vaginalis. © 2017 John Wiley & Sons Ltd.

  1. A microfluidic approach to parallelized transcriptional profiling of single cells.

    PubMed

    Sun, Hao; Olsen, Timothy; Zhu, Jing; Tao, Jianguo; Ponnaiya, Brian; Amundson, Sally A; Brenner, David J; Lin, Qiao

    2015-12-01

    The ability to correlate single-cell genetic information with cellular phenotypes is of great importance to biology and medicine, as it holds the potential to gain insight into disease pathways that is unavailable from ensemble measurements. We present a microfluidic approach to parallelized, rapid, quantitative analysis of messenger RNA from single cells via RT-qPCR. The approach leverages an array of single-cell RT-qPCR analysis units formed by a set of parallel microchannels concurrently controlled by elastomeric pneumatic valves, thereby enabling parallelized handling and processing of single cells in a drastically simplified operation procedure using a relatively small number of microvalves. All steps for single-cell RT-qPCR, including cell isolation and immobilization, cell lysis, mRNA purification, reverse transcription and qPCR, are integrated on a single chip, eliminating the need for off-chip manual cell and reagent transfer and qPCR amplification as commonly used in existing approaches. Additionally, the approach incorporates optically transparent microfluidic components to allow monitoring of single-cell trapping without the need for molecular labeling that can potentially alter the targeted gene expression and utilizes a polycarbonate film as a barrier against evaporation to minimize the loss of reagents at elevated temperatures during the analysis. We demonstrate the utility of the approach by the transcriptional profiling for the induction of the cyclin-dependent kinase inhibitor 1a and the glyceraldehyde 3-phosphate dehydrogenase in single cells from the MCF-7 breast cancer cell line. Furthermore, the methyl methanesulfonate is employed to allow measurement of the expression of the genes in individual cells responding to a genotoxic stress.

  2. Advanced Glycated End-Products Affect HIF-Transcriptional Activity in Renal Cells

    PubMed Central

    Bondeva, Tzvetanka; Heinzig, Juliane; Ruhe, Carola

    2013-01-01

    Advanced glycated end-products (AGEs) are ligands of the receptor for AGEs and increase in diabetic disease. MAPK organizer 1 (Morg1) via its binding partner prolyl-hydroxylase domain (PHD)-3 presumably plays a role in the regulation of hypoxia-inducible factor (HIF)-1α and HIF-2α transcriptional activation. The purpose of this study was to analyze the influence of AGEs on Morg1 expression and its correlation to PHD3 activity and HIF-transcriptional activity in various renal cell types. The addition of glycated BSA (AGE-BSA) significantly up-regulated Morg1 mRNA levels in murine mesangial cells and down-regulated it in murine proximal tubular cells and differentiated podocytes. These effects were reversible when the cells were preincubated with a receptor for α-AGE antibody. AGE-BSA treatment induced a relocalization of the Morg1 cellular distribution compared with nonglycated control-BSA. Analysis of PHD3 activity demonstrated an elevated PHD3 enzymatic activity in murine mesangial cells but an inhibition in murine proximal tubular cells and podocytes after the addition of AGE-BSA. HIF-transcriptional activity was also affected by AGE-BSA treatment. Reporter gene assays and EMSAs showed that AGEs regulate HIF- transcriptional activity under nonhypoxic conditions in a cell type-specific manner. In proximal tubular cells, AGE-BSA stimulation elevated mainly HIF-1α transcriptional activity and to a lesser extent HIF-2α. We also detected an increased expression of the HIF-1α and the HIF-2α proteins in kidneys from Morg1 heterozygous (HZ) placebo mice compared with the Morg1 wild-type (WT) placebo-treated mice, and the HIF-1α protein expression in the Morg1 HZ streptozotocin-treated mice was significantly higher than the WT streptozotocin-treated mice. Analysis of isolated mesangial cells from Morg1 HZ (±) and WT mice showed an inhibited PHD3 activity and an increased HIF-transcriptional activity in cells with only one Morg1 allele. These findings are

  3. Comparison of voice-automated transcription and human transcription in generating pathology reports.

    PubMed

    Al-Aynati, Maamoun M; Chorneyko, Katherine A

    2003-06-01

    Software that can convert spoken words into written text has been available since the early 1980s. Early continuous speech systems were developed in 1994, with the latest commercially available editions having a claimed accuracy of up to 98% of speech recognition at natural speech rates. To evaluate the efficacy of one commercially available voice-recognition software system with pathology vocabulary in generating pathology reports and to compare this with human transcription. To draw cost analysis conclusions regarding human versus computer-based transcription. Two hundred six routine pathology reports from the surgical pathology material handled at St Joseph's Healthcare, Hamilton, Ontario, were generated simultaneously using computer-based transcription and human transcription. The following hardware and software were used: a desktop 450-MHz Intel Pentium III processor with 192 MB of RAM, a speech-quality sound card (Sound Blaster), noise-canceling headset microphone, and IBM ViaVoice Pro version 8 with pathology vocabulary support (Voice Automated, Huntington Beach, Calif). The cost of the hardware and software used was approximately Can 2250 dollars. A total of 23 458 words were transcribed using both methods with a mean of 114 words per report. The mean accuracy rate was 93.6% (range, 87.4%-96%) using the computer software, compared to a mean accuracy of 99.6% (range, 99.4%-99.8%) for human transcription (P <.001). Time needed to edit documents by the primary evaluator (M.A.) using the computer was on average twice that needed for editing the documents produced by human transcriptionists (range, 1.4-3.5 times). The extra time needed to edit documents was 67 minutes per week (13 minutes per day). Computer-based continuous speech-recognition systems in pathology can be successfully used in pathology practice even during the handling of gross pathology specimens. The relatively low accuracy rate of this voice-recognition software with resultant increased editing

  4. Inhibition of host cell RNA polymerase III-mediated transcription by poliovirus: Inactivation of specific transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fradkin, L.G.; Yoshinaga, S.K.; Berk, A.J.

    1987-11-01

    The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription ofmore » RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoted, however, was not altered by infection of cells with the virus. The authors conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirtus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.« less

  5. Anti-Americanism: A Perfect Addition to a Russian Authoritarian’s Political Toolbox

    DTIC Science & Technology

    2013-12-01

    Putin’s autobiographical interview book First Person. Primary source transcripts from the Russian government’s public online archives will be...80. 36 Ibid., 106. 20 could not directly affect the repeated snubbing that Yeltsin incurred from the West, the memories of how the United

  6. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-inducedmore » MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.« less

  7. An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription.

    PubMed

    Walker, Amy K; Shi, Yang; Blackwell, T Keith

    2004-04-09

    The general transcription factor TFIID sets the mRNA start site and consists of TATA-binding protein and associated factors (TAF(II)s), some of which are also present in SPT-ADA-GCN5 (SAGA)-related complexes. In yeast, results of multiple studies indicate that TFIID-specific TAF(II)s are not required for the transcription of most genes, implying that intact TFIID may have a surprisingly specialized role in transcription. Relatively little is known about how TAF(II)s contribute to metazoan transcription in vivo, especially at developmental and tissue-specific genes. Previously, we investigated functions of four shared TFIID/SAGA TAF(II)s in Caenorhabditis elegans. Whereas TAF-4 was required for essentially all embryonic transcription, TAF-5, TAF-9, and TAF-10 were dispensable at multiple developmental and other metazoan-specific promoters. Here we show evidence that in C. elegans embryos transcription of most genes requires TFIID-specific TAF-1. TAF-1 is not as universally required as TAF-4, but it is essential for a greater proportion of transcription than TAF-5, -9, or -10 and is important for transcription of many developmental and other metazoan-specific genes. TAF-2, which binds core promoters with TAF-1, appears to be required for a similarly substantial proportion of transcription. C. elegans TAF-1 overlaps functionally with the coactivator p300/CBP (CBP-1), and at some genes it is required along with the TBP-like protein TLF(TRF2). We conclude that during C. elegans embryogenesis TAF-1 and TFIID have broad roles in transcription and development and that TFIID and TLF may act together at certain promoters. Our findings imply that in metazoans TFIID may be of widespread importance for transcription and for expression of tissue-specific genes.

  8. Managing the transcription revolution. Industry forces shape future of field.

    PubMed

    Faulkner, Scott D

    2003-01-01

    You may be struggling with contract issues with a vendor. Or maybe you're contemplating the pros and cons of working with outsource, at-home, or overseas transcriptionists. It's a fact: if transcription processes aren't working efficiently, the entire HIM department may be adversely affected. Factor in additional concerns such as data capture for electronic health records, compliance, and patient safety, and the importance of ensuring quality and cost-efficient transcription becomes even more apparent. To help you answer some of these questions, the Journal of AHIMA is launching a four-part series dedicated to transcription issues from the HIM professional's point of view. In this issue, we begin with MTIA president Scott Faulkner's overview of the industry and where it's going next. In upcoming issues, other experts will look at controlling cost and monitoring quality, navigating new technologies, and dealing with contract-related issues.

  9. The Basic Leucine Zipper Transcription Factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 Is an Important Transcriptional Regulator of Abscisic Acid-Dependent Grape Berry Ripening Processes1[W][OPEN

    PubMed Central

    Nicolas, Philippe; Lecourieux, David; Kappel, Christian; Cluzet, Stéphanie; Cramer, Grant; Delrot, Serge; Lecourieux, Fatma

    2014-01-01

    In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. PMID:24276949

  10. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    NASA Astrophysics Data System (ADS)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  11. HSP70 in human polymorphonuclear and mononuclear leukocytes: comparison of the protein content and transcriptional activity of HSPA genes.

    PubMed

    Boyko, Anna A; Azhikina, Tatyana L; Streltsova, Maria A; Sapozhnikov, Alexander M; Kovalenko, Elena I

    2017-01-01

    Cell-type specific variations are typical for the expression of different members of the HSP70 family. In circulating immune cells, HSP70 proteins interact with units of signaling pathways involved in the immune responses and may promote cell survival in sites of inflammation. In this work, we compared basal HSP70 expression and stress-induced HSP70 response in polymorphonuclear and mononuclear human leukocytes. The intracellular content of inducible and constitutive forms of HSP70 was analyzed in relation to the transcriptional activity of HSPA genes. Hyperthermia was used as the stress model for induction of HSP70 synthesis in the cells. Our results demonstrated that granulocytes (mainly neutrophils) and mononuclear cells differ significantly by both basal HSP70 expression and levels of HSP70 induction under hyperthermia. The differences were observed at the levels of HSPA gene transcription and intracellular HSP70 content. The expression of constitutive Hsс70 protein was much higher in mononuclear cells consisting of monocytes and lymphocytes than in granulocytes. At the same time, intact neutrophils showed increased expression of inducible Hsp70 protein compared to mononuclear cells. Heat treatment induced additional expression of HSPA genes in leukocytes. The most pronounced increase in the expression was observed in polymorphonuclear and mononuclear leukocytes for HSPA1A/B. However, in granulocytes, the induction of the transcription of the HSPA8 gene encoding the Hsc70 protein was significantly higher than in mononuclear cells. These variations in transcriptional activity of HSPA genes and intracellular HSP70 content in different populations of leukocytes may reflect specified requirements for the chaperone activity in the cells with a distinct functional role in the immune system.

  12. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    PubMed

    Hector, Ralph D; Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C; Bailey, Mark E S; Cobb, Stuart R

    2016-01-01

    Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  13. Checkpoints couple transcription network oscillator dynamics to cell-cycle progression.

    PubMed

    Bristow, Sara L; Leman, Adam R; Simmons Kovacs, Laura A; Deckard, Anastasia; Harer, John; Haase, Steven B

    2014-09-05

    The coupling of cyclin dependent kinases (CDKs) to an intrinsically oscillating network of transcription factors has been proposed to control progression through the cell cycle in budding yeast, Saccharomyces cerevisiae. The transcription network regulates the temporal expression of many genes, including cyclins, and drives cell-cycle progression, in part, by generating successive waves of distinct CDK activities that trigger the ordered program of cell-cycle events. Network oscillations continue autonomously in mutant cells arrested by depletion of CDK activities, suggesting the oscillator can be uncoupled from cell-cycle progression. It is not clear what mechanisms, if any, ensure that the network oscillator is restrained when progression in normal cells is delayed or arrested. A recent proposal suggests CDK acts as a master regulator of cell-cycle processes that have the potential for autonomous oscillatory behavior. Here we find that mitotic CDK is not sufficient for fully inhibiting transcript oscillations in arrested cells. We do find that activation of the DNA replication and spindle assembly checkpoints can fully arrest the network oscillator via overlapping but distinct mechanisms. Further, we demonstrate that the DNA replication checkpoint effector protein, Rad53, acts to arrest a portion of transcript oscillations in addition to its role in halting cell-cycle progression. Our findings indicate that checkpoint mechanisms, likely via phosphorylation of network transcription factors, maintain coupling of the network oscillator to progression during cell-cycle arrest.

  14. Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Lackey, Lela; McArthur, Evonne; Laederach, Alain

    2015-01-01

    expressed in lung and liver tissues and are regulated in a tissue-specific manner. Additionally, many complex COPD-associated genes are spliced differently between COPD and non-COPD patients. Our analysis therefore suggests that post-transcriptional regulation, particularly alternative splicing, is an important feature specific to COPD disease etiology that warrants further investigation. PMID:26480348

  15. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization.

    PubMed

    Pascali, Chiara; Teichmann, Martin

    2013-01-01

    RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.

  16. Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages.

    PubMed

    Basler, Tina; Jeckstadt, Sabine; Valentin-Weigand, Peter; Goethe, Ralph

    2006-03-01

    Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic enteritis in ruminants. In addition, MAP is presently the most favored pathogen linked to Crohn's disease. In this study, we were interested in dissecting the molecular mechanisms of macrophage activation or deactivation after infection with MAP. By subtractive hybridization of cDNAs, we identified the immune-responsive gene 1 (IRG1), which was expressed substantially higher in lipopolysaccharide (LPS)-stimulated than in MAP-infected murine macrophage cell lines. A nuclear run-on transcription assay revealed that the IRG1 gene was activated transcriptionally in LPS-stimulated and MAP-infected macrophages with higher expression in LPS-stimulated cells. Analysis of post-transcriptional regulation demonstrated that IRG1 mRNA stability was increased in LPS-stimulated but not in MAP-infected macrophages. Furthermore, IRG1 gene expression of macrophages infected with the nonpathogenic Mycobacterium smegmatis differed from those of LPS-stimulated and MAP-infected macrophages. At 2 h postinfection, M. smegmatis-induced IRG1 gene expression was as low as in MAP-infected, and 8 h postinfection, it increased nearly to the level in LPS-stimulated macrophages. Transient transfection experiments revealed similar IRG1 promoter activities in MAP- and M. smegmatis-infected cells. Northern analysis demonstrated increased IRG1 mRNA stability in M. smegmatis-infected macrophages. IRG1 mRNA stabilization was p38 mitogen-activated protein kinase-independent. Inhibition of protein synthesis revealed that constitutively expressed factors seemed to be responsible for IRG1 mRNA destabilization. Thus, our data demonstrate that transcriptional and post-transcriptional mechanisms are responsible for a differential IRG1 gene expression in murine macrophages treated with LPS, MAP, and M. smegmatis.

  17. The homeodomain transcription factors antennapedia and POU-M2 regulate the transcription of the steroidogenic enzyme gene Phantom in the silkworm.

    PubMed

    Meng, Meng; Cheng, Dao-Jun; Peng, Jian; Qian, Wen-Liang; Li, Jia-Rui; Dai, Dan-Dan; Zhang, Tian-Lei; Xia, Qing-You

    2015-10-02

    The steroid hormone ecdysone, which controls insect molting and metamorphosis, is synthesized in the prothoracic gland (PG), and several steroidogenic enzymes that are expressed specifically in the PG are involved in ecdysteroidogenesis. In this study, we identified new regulators that are involved in the transcriptional control of the silkworm steroidogenic enzyme genes. In silico analysis predicted several potential cis-regulatory elements (CREs) for the homeodomain transcription factors Antennapedia (Antp) and POU-M2 in the proximal promoters of steroidogenic enzyme genes. Antp and POU-M2 are expressed dynamically in the PG during larval development, and their overexpression in silkworm embryo-derived (BmE) cells induced the expression of steroidogenic enzyme genes. Importantly, luciferase reporter analyses, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays revealed that Antp and POU-M2 promote the transcription of the silkworm steroidogenic enzyme gene Phantom (Phm) by binding directly to specific motifs within overlapping CREs in the Phm promoter. Mutations of these CREs in the Phm promoter suppressed the transcriptional activities of both Antp and POU-M2 in BmE cells and decreased the activities of mutated Phm promoters in the silkworm PG. In addition, pulldown and co-immunoprecipitation assays demonstrated that Antp can interact with POU-M2. Moreover, RNA interference-mediated down-regulation of either Antp or POU-M2 during silkworm wandering not only decreased the ecdysone titer but also led to the failure of metamorphosis. In summary, our results suggest that Antp and POU-M2 coordinate the transcription of the silkworm Phm gene directly, indicating new roles for homeodomain proteins in regulating insect ecdysteroidogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Minireview: roles of the forkhead transcription factor FOXL2 in granulosa cell biology and pathology.

    PubMed

    Pisarska, Margareta D; Barlow, Gillian; Kuo, Fang-Ting

    2011-04-01

    The forkhead transcription factor (FOXL2) is an essential transcription factor in the ovary. It is important in ovarian development and a key factor in female sex determination. In addition, FOXL2 plays a significant role in the postnatal ovary and follicle maintenance. The diverse transcriptional activities of FOXL2 are likely attributable to posttranslational modifications and binding to other key proteins involved in granulosa cell function. Mutations of FOXL2 lead to disorders of ovarian function ranging from premature follicle depletion and ovarian failure to unregulated granulosa cell proliferation leading to tumor formation. Thus, FOXL2 is a key regulator of granulosa cell function and a master transcription factor in these cells.

  19. Minireview: Roles of the Forkhead Transcription Factor FOXL2 in Granulosa Cell Biology and Pathology

    PubMed Central

    Barlow, Gillian; Kuo, Fang-Ting

    2011-01-01

    The forkhead transcription factor (FOXL2) is an essential transcription factor in the ovary. It is important in ovarian development and a key factor in female sex determination. In addition, FOXL2 plays a significant role in the postnatal ovary and follicle maintenance. The diverse transcriptional activities of FOXL2 are likely attributable to posttranslational modifications and binding to other key proteins involved in granulosa cell function. Mutations of FOXL2 lead to disorders of ovarian function ranging from premature follicle depletion and ovarian failure to unregulated granulosa cell proliferation leading to tumor formation. Thus, FOXL2 is a key regulator of granulosa cell function and a master transcription factor in these cells. PMID:21248146

  20. An overview of transcriptional regulation in response to toxicological insult.

    PubMed

    Jennings, Paul; Limonciel, Alice; Felice, Luca; Leonard, Martin O

    2013-01-01

    The completion of the human genome project and the subsequent advent of DNA microarray and high-throughput sequencing technologies have led to a renaissance in molecular toxicology. Toxicogenomic data sets, from both in vivo and in vitro studies, are growing exponentially, providing a wealth of information on regulation of stress pathways at the transcriptome level. Through such studies, we are now beginning to appreciate the diversity and complexity of biological responses to xenobiotics. In this review, we aim to consolidate and summarise the major toxicologically relevant transcription factor-governed molecular pathways. It is becoming clear that different chemical entities can cause oxidative, genotoxic and proteotoxic stress, which induce cellular responses in an effort to restore homoeostasis. Primary among the response pathways involved are NFE2L2 (Nrf2), NFE2L1 (Nrf1), p53, heat shock factor and the unfolded protein response. Additionally, more specific mechanisms exist where xenobiotics act as ligands, including the aryl hydrocarbon receptor, metal-responsive transcription factor-1 and the nuclear receptor family of transcription factors. Other pathways including the immunomodulatory transcription factors NF-κB and STAT together with the hypoxia-inducible transcription factor HIF are also implicated in cellular responses to xenobiotic exposure. A less specific but equally important aspect to cellular injury controlled by transcriptional activity is loss of tissue-specific gene expression, resulting in dedifferentiation of target cells and compromise of tissue function. Here, we review these pathways and the genes they regulate in order to provide an overview of this growing field of molecular toxicology.

  1. Archaeal amoA and ureC genes and their transcriptional activity in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pedneault, Estelle; Galand, Pierre E.; Potvin, Marianne; Tremblay, Jean-Éric; Lovejoy, Connie

    2014-04-01

    Thaumarchaeota and the gene encoding for a subunit of ammonia monooxygenase (amoA) are ubiquitous in Polar Seas, and some Thaumarchaeota also have a gene coding for ureC, diagnostic for urease. Using quantitative PCR we investigated the occurrence of genes and transcripts of ureC and amoA in Arctic samples from winter, spring and summer. AmoA genes, ureC genes and amoA transcripts were always present, but ureC transcripts were rarely detected. Over a 48 h light manipulation experiment amoA transcripts persisted under light and dark conditions, but not ureC transcripts. In addition, maxima for amoA transcript were nearer the surface compared to amoA genes. Clone libraries using DNA template recovered shallow and deep amoA clades but only the shallow clade was recovered from cDNA (from RNA). These results imply environmental control of amoA expression with direct or indirect light effects, and rare ureC expression despite its widespread occurrence in the Arctic Ocean.

  2. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  3. In Silico Detection of Sequence Variations Modifying Transcriptional Regulation

    PubMed Central

    Andersen, Malin C; Engström, Pär G; Lithwick, Stuart; Arenillas, David; Eriksson, Per; Lenhard, Boris; Wasserman, Wyeth W; Odeberg, Jacob

    2008-01-01

    Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers). The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation. PMID:18208319

  4. Structural Basis of Transcriptional Gene Silencing Mediated by Arabidopsis MOM1

    PubMed Central

    Nishimura, Taisuke; Molinard, Guillaume; Petty, Tom J.; Broger, Larissa; Gabus, Caroline; Halazonetis, Thanos D.; Thore, Stéphane; Paszkowski, Jerzy

    2012-01-01

    Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2) as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA–independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation. PMID:22346760

  5. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    PubMed

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Ubiquitin and Proteasomes in Transcription

    PubMed Central

    Geng, Fuqiang; Wenzel, Sabine; Tansey, William P.

    2013-01-01

    Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription—from transcription initiation through to export of mRNA from the nucleus—is influenced by the UPS and that all major arms of the system—from the first step in ubiquitin (Ub) conjugation through to the proteasome—are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power. PMID:22404630

  7. Fetal asphyctic preconditioning alters the transcriptional response to perinatal asphyxia.

    PubMed

    Cox-Limpens, Kimberly E M; Vles, Johan S H; LA van den Hove, Daniel; Zimmermann, Luc J I; Gavilanes, Antonio W D

    2014-05-29

    Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of brain preconditioning. Unraveling mechanisms of this endogenous neuroprotection, activated by preconditioning, is an important step towards new clinical strategies for treating asphyctic neonates.Therefore, we investigated whole-genome transcriptional changes in the brain of rats which underwent perinatal asphyxia (PA), and rats where PA was preceded by fetal asphyctic preconditioning (FAPA). Offspring were sacrificed 6 h and 96 h after birth, and whole-genome transcription was investigated using the Affymetrix Gene1.0ST chip. Microarray data were analyzed with the Bioconductor Limma package. In addition to univariate analysis, we performed Gene Set Enrichment Analysis (GSEA) in order to derive results with maximum biological relevance. We observed minimal, 25% or less, overlap of differentially regulated transcripts across different experimental groups which leads us to conclude that the transcriptional phenotype of these groups is largely unique. In both the PA and FAPA group we observe an upregulation of transcripts involved in cellular stress. Contrastingly, transcripts with a function in the cell nucleus were mostly downregulated in PA animals, while we see considerable upregulation in the FAPA group. Furthermore, we observed that histone deacetylases (HDACs) are exclusively regulated in FAPA animals. This study is the first to investigate whole-genome transcription in the neonatal brain after PA alone, and after perinatal asphyxia preceded by preconditioning (FAPA). We describe several genes/pathways, such as ubiquitination and proteolysis, which were not previously linked to preconditioning-induced neuroprotection. Furthermore, we observed that the majority of upregulated genes in preconditioned animals have a function in the cell nucleus, including several epigenetic players such as HDACs, which suggests that epigenetic mechanisms are likely to play a role in

  8. Fetal asphyctic preconditioning alters the transcriptional response to perinatal asphyxia

    PubMed Central

    2014-01-01

    Background Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of brain preconditioning. Unraveling mechanisms of this endogenous neuroprotection, activated by preconditioning, is an important step towards new clinical strategies for treating asphyctic neonates. Therefore, we investigated whole-genome transcriptional changes in the brain of rats which underwent perinatal asphyxia (PA), and rats where PA was preceded by fetal asphyctic preconditioning (FAPA). Offspring were sacrificed 6 h and 96 h after birth, and whole-genome transcription was investigated using the Affymetrix Gene1.0ST chip. Microarray data were analyzed with the Bioconductor Limma package. In addition to univariate analysis, we performed Gene Set Enrichment Analysis (GSEA) in order to derive results with maximum biological relevance. Results We observed minimal, 25% or less, overlap of differentially regulated transcripts across different experimental groups which leads us to conclude that the transcriptional phenotype of these groups is largely unique. In both the PA and FAPA group we observe an upregulation of transcripts involved in cellular stress. Contrastingly, transcripts with a function in the cell nucleus were mostly downregulated in PA animals, while we see considerable upregulation in the FAPA group. Furthermore, we observed that histone deacetylases (HDACs) are exclusively regulated in FAPA animals. Conclusions This study is the first to investigate whole-genome transcription in the neonatal brain after PA alone, and after perinatal asphyxia preceded by preconditioning (FAPA). We describe several genes/pathways, such as ubiquitination and proteolysis, which were not previously linked to preconditioning-induced neuroprotection. Furthermore, we observed that the majority of upregulated genes in preconditioned animals have a function in the cell nucleus, including several epigenetic players such as HDACs, which suggests that epigenetic

  9. The minisatellite of the GPI/AMF/NLK/MF gene: interspecies conservation and transcriptional activity.

    PubMed

    Williams, R R; Hassan-Walker, A F; Lavender, F L; Morgan, M; Faik, P; Ragoussis, J

    2001-05-16

    Minisatellites are tandemly repeated DNA sequences found throughout the genomes of all eukaryotes. They are regions often prone to instability and hence hypervariability; thus repeat unit sequence is generally not conserved beyond closely related species. We have studied the minisatellite located in intron 9 of the human glucose phosphate isomerase (GPI) gene (also known as neuroleukin, autocrine motility factor, maturation and differentiation factor) and have found, by Zoo blotting coupled with PCR amplification and DNA sequencing, that similar repeat units are present in seven other species of mammal. There is also evidence for the presence of the minisatellite in chicken. The repeat unit does not appear to be present at any other locus in these genomes. Minisatellite DNA has been reported to be involved in recombination activity, control of gene expression of nearby gene(s) (both transcriptional and translational), whilst others form protein coding regions. The high level of conservation exhibited by the GPI minisatellite, coupled with the unique location, strongly suggests a functional role. Our results from transient and stable transfections using luciferase reporter constructs have shown that the GPI minisatellite region can act to increase transcription from the SV40 promoter, CMV promoter and the human GPI promoter.

  10. Centromere Transcription: Means and Motive.

    PubMed

    Duda, Zachary; Trusiak, Sarah; O'Neill, Rachel

    2017-01-01

    The chromosome biology field at large has benefited from studies of the cell cycle components, protein cascades and genomic landscape that are required for centromere identity, assembly and stable transgenerational inheritance. Research over the past 20 years has challenged the classical descriptions of a centromere as a stable, unmutable, and transcriptionally silent chromosome component. Instead, based on studies from a broad range of eukaryotic species, including yeast, fungi, plants, and animals, the centromere has been redefined as one of the more dynamic areas of the eukaryotic genome, requiring coordination of protein complex assembly, chromatin assembly, and transcriptional activity in a cell cycle specific manner. What has emerged from more recent studies is the realization that the transcription of specific types of nucleic acids is a key process in defining centromere integrity and function. To illustrate the transcriptional landscape of centromeres across eukaryotes, we focus this review on how transcripts interact with centromere proteins, when in the cell cycle centromeric transcription occurs, and what types of sequences are being transcribed. Utilizing data from broadly different organisms, a picture emerges that places centromeric transcription as an integral component of centromere function.

  11. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    PubMed Central

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674

  12. Transfer RNA Post-Transcriptional Processing, Turnover, and Subcellular Dynamics in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Hopper, Anita K.

    2013-01-01

    Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3′ mature sequence and, for tRNAHis, addition of a 5′ G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ∼15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain. PMID:23633143

  13. Comprehensive Genome-Wide Classification Reveals That Many Plant-Specific Transcription Factors Evolved in Streptophyte Algae

    PubMed Central

    Wilhelmsson, Per K I; Mühlich, Cornelia; Ullrich, Kristian K

    2017-01-01

    Abstract Plant genomes encode many lineage-specific, unique transcription factors. Expansion of such gene families has been previously found to coincide with the evolution of morphological complexity, although comparative analyses have been hampered by severe sampling bias. Here, we make use of the recently increased availability of plant genomes. We have updated and expanded previous rule sets for domain-based classification of transcription associated proteins (TAPs), comprising transcription factors and transcriptional regulators. The genome-wide annotation of these protein families has been analyzed and made available via the novel TAPscan web interface. We find that many TAP families previously thought to be specific for land plants actually evolved in streptophyte (charophyte) algae; 26 out of 36 TAP family gains are inferred to have occurred in the common ancestor of the Streptophyta (uniting the land plants—Embryophyta—with their closest algal relatives). In contrast, expansions of TAP families were found to occur throughout streptophyte evolution. 17 out of 76 expansion events were found to be common to all land plants and thus probably evolved concomitant with the water-to-land-transition. PMID:29216360

  14. Distinct modes of gene regulation by a cell-specific transcriptional activator.

    PubMed

    Sengupta, Tanushri; Cohet, Nathalie; Morlé, François; Bieker, James J

    2009-03-17

    The architectural layout of a eukaryotic RNA polymerase II core promoter plays a role in general transcriptional activation. However, its role in tissue-specific expression is not known. For example, differing modes of its recognition by general transcription machinery can provide an additional layer of control within which a single tissue-restricted transcription factor may operate. Erythroid Kruppel-like factor (EKLF) is a hematopoietic-specific transcription factor that is critical for the activation of subset of erythroid genes. We find that EKLF interacts with TATA binding protein-associated factor 9 (TAF9), which leads to important consequences for expression of adult beta-globin. First, TAF9 functionally supports EKLF activity by enhancing its ability to activate the beta-globin gene. Second, TAF9 interacts with a conserved beta-globin downstream promoter element, and ablation of this interaction by beta-thalassemia-causing mutations decreases its promoter activity and disables superactivation. Third, depletion of EKLF prevents recruitment of TAF9 to the beta-globin promoter, whereas depletion of TAF9 drastically impairs beta-promoter activity. However, a TAF9-independent mode of EKLF transcriptional activation is exhibited by the alpha-hemoglobin-stabilizing protein (AHSP) gene, which does not contain a discernable downstream promoter element. In this case, TAF9 does not enhance EKLF activity and depletion of TAF9 has no effect on AHSP promoter activation. These studies demonstrate that EKLF directs different modes of tissue-specific transcriptional activation depending on the architecture of its target core promoter.

  15. A novel statistical approach for identification of the master regulator transcription factor.

    PubMed

    Sikdar, Sinjini; Datta, Susmita

    2017-02-02

    Transcription factors are known to play key roles in carcinogenesis and therefore, are gaining popularity as potential therapeutic targets in drug development. A 'master regulator' transcription factor often appears to control most of the regulatory activities of the other transcription factors and the associated genes. This 'master regulator' transcription factor is at the top of the hierarchy of the transcriptomic regulation. Therefore, it is important to identify and target the master regulator transcription factor for proper understanding of the associated disease process and identifying the best therapeutic option. We present a novel two-step computational approach for identification of master regulator transcription factor in a genome. At the first step of our method we test whether there exists any master regulator transcription factor in the system. We evaluate the concordance of two ranked lists of transcription factors using a statistical measure. In case the concordance measure is statistically significant, we conclude that there is a master regulator. At the second step, our method identifies the master regulator transcription factor, if there exists one. In the simulation scenario, our method performs reasonably well in validating the existence of a master regulator when the number of subjects in each treatment group is reasonably large. In application to two real datasets, our method ensures the existence of master regulators and identifies biologically meaningful master regulators. An R code for implementing our method in a sample test data can be found in http://www.somnathdatta.org/software . We have developed a screening method of identifying the 'master regulator' transcription factor just using only the gene expression data. Understanding the regulatory structure and finding the master regulator help narrowing the search space for identifying biomarkers for complex diseases such as cancer. In addition to identifying the master regulator our

  16. Transcriptional regulation of intermediate progenitor cell generation during hippocampal development

    PubMed Central

    Harris, Lachlan; Zalucki, Oressia; Gobius, Ilan; McDonald, Hannah; Osinki, Jason; Harvey, Tracey J.; Essebier, Alexandra; Vidovic, Diana; Gladwyn-Ng, Ivan; Burne, Thomas H.; Heng, Julian I.; Richards, Linda J.; Gronostajski, Richard M.

    2016-01-01

    During forebrain development, radial glia generate neurons through the production of intermediate progenitor cells (IPCs). The production of IPCs is a central tenet underlying the generation of the appropriate number of cortical neurons, but the transcriptional logic underpinning this process remains poorly defined. Here, we examined IPC production using mice lacking the transcription factor nuclear factor I/X (Nfix). We show that Nfix deficiency delays IPC production and prolongs the neurogenic window, resulting in an increased number of neurons in the postnatal forebrain. Loss of additional Nfi alleles (Nfib) resulted in a severe delay in IPC generation while, conversely, overexpression of NFIX led to precocious IPC generation. Mechanistically, analyses of microarray and ChIP-seq datasets, coupled with the investigation of spindle orientation during radial glial cell division, revealed that NFIX promotes the generation of IPCs via the transcriptional upregulation of inscuteable (Insc). These data thereby provide novel insights into the mechanisms controlling the timely transition of radial glia into IPCs during forebrain development. PMID:27965439

  17. Transcription of the extended hyp-operon in Nostoc sp. strain PCC 7120

    PubMed Central

    Agervald, Åsa; Stensjö, Karin; Holmqvist, Marie; Lindblad, Peter

    2008-01-01

    Background The maturation of hydrogenases into active enzymes is a complex process and e.g. a correctly assembled active site requires the involvement of at least seven proteins, encoded by hypABCDEF and a hydrogenase specific protease, encoded either by hupW or hoxW. The N2-fixing cyanobacterium Nostoc sp. strain PCC 7120 may contain both an uptake and a bidirectional hydrogenase. The present study addresses the presence and expression of hyp-genes in Nostoc sp. strain PCC 7120. Results RT-PCRs demonstrated that the six hyp-genes together with one ORF may be transcribed as a single operon. Transcriptional start points (TSPs) were identified 280 bp upstream from hypF and 445 bp upstream of hypC, respectively, demonstrating the existence of several transcripts. In addition, five upstream ORFs located in between hupSL, encoding the small and large subunits of the uptake hydrogenase, and the hyp-operon, and two downstream ORFs from the hyp-genes were shown to be part of the same transcript unit. A third TSP was identified 45 bp upstream of asr0689, the first of five ORFs in this operon. The ORFs are annotated as encoding unknown proteins, with the exception of alr0692 which is identified as a NifU-like protein. Orthologues of the four ORFs asr0689-alr0692, with a highly conserved genomic arrangement positioned between hupSL, and the hyp genes are found in several other N2-fixing cyanobacteria, but are absent in non N2-fixing cyanobacteria with only the bidirectional hydrogenase. Short conserved sequences were found in six intergenic regions of the extended hyp-operon, appearing between 11 and 79 times in the genome. Conclusion This study demonstrated that five ORFs upstream of the hyp-gene cluster are co-transcribed with the hyp-genes, and identified three TSPs in the extended hyp-gene cluster in Nostoc sp. strain PCC 7120. This may indicate a function related to the assembly of a functional uptake hydrogenase, hypothetically in the assembly of the small subunit of

  18. Tissue-Specific and Genetic Regulation of Insulin Sensitivity-Associated Transcripts in African Americans

    PubMed Central

    Sharma, Neeraj K.; Sajuthi, Satria P.; Chou, Jeff W.; Calles-Escandon, Jorge; Demons, Jamehl; Rogers, Samantha; Ma, Lijun; Palmer, Nicholette D.; McWilliams, David R.; Beal, John; Comeau, Mary E.; Cherry, Kristina; Hawkins, Gregory A.; Menon, Lata; Kouba, Ethel; Davis, Donna; Burris, Marcie; Byerly, Sara J.; Easter, Linda; Bowden, Donald W.; Freedman, Barry I.; Langefeld, Carl D.

    2016-01-01

    Context: Compared with European Americans, African Americans (AAs) are more insulin resistant, have a higher insulin secretion response to glucose, and develop type 2 diabetes more often. Molecular processes and/or genetic variations contributing to altered glucose homeostasis in high-risk AAs remain uncharacterized. Objective: Adipose and muscle transcript expression profiling and genotyping were performed in 260 AAs to identify genetic regulatory mechanisms associated with insulin sensitivity (SI). We hypothesized that: 1) transcription profiles would reveal tissue-specific modulation of physiologic pathways with SI, and 2) a subset of SI-associated transcripts would be controlled by DNA sequence variants as expression quantitative traits, and these variants in turn would be associated with SI. Design and Settings: The cross-sectional research study was performed in a clinical research unit. Participants: Unrelated nondiabetic AAs were recruited for the study. Main Outcome Measures: SI was measured by frequently sampled iv glucose tolerance test. Results: The expression levels of 2212 transcripts in adipose and 145 transcripts in muscle were associated with SI. Genes involved in eIF2, eIF4-p70S6K, and mTOR signaling were modulated with SI in both tissues. Genes involved in leukocyte extravasation signaling showed adipose-specific regulation, and genes involved in oxidative phosphorylation had discordant regulation between tissues. Intersecting cis-expression quantitative trait loci results with data from transcript-SI association analysis identified cis-regulatory single nucleotide polymorphisms for 363 and 42 SI-associated transcripts in adipose and muscle, respectively. Cis-eSNPs for three SI-associated adipose transcripts, NINJ1, AGA, and CLEC10A were associated with SI. Abrogation of NINJ1 induction in THP1 macrophages modulated expression of genes in chemokine signaling, cell adhesion, and angiogenesis pathways. Conclusion: This study identified multiple

  19. Synthesis of photolabile transcription initiators and preparation of photocleavable functional RNA by transcription.

    PubMed

    Huang, Faqing; Shi, Yongliang

    2012-07-01

    Two new photolabile adenosine-containing transcription initiators with terminal thiol and amino functionalities are chemically synthesized. Transcription in the presence of the transcription initiators under the T7 phi2.5 promoter produces 5' thiol- and amino-functionalized RNA conjugated by a photocleavable (PC) linker. Further RNA functionalization with biotin may be achieved through acyl transfer reactions from either biotinyl AMP to the RNA thiol group or biotin NHS to the RNA amino group. Photocleavage of the PC linker displays relatively fast kinetics with a half-life of 4-5 min. The availability of these transcription initiators makes new photolabile RNA accessible for affinity purification of RNA, in vitro selection of functional RNAs, and functional RNA caging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between that...

  1. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between that...

  2. Helix Unwinding and Base Flipping Enable Human MTERF1 to Terminate Mitochondrial Transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakubovskaya, E.; Mejia, E; Byrnes, J

    2010-01-01

    Defects in mitochondrial gene expression are associated with aging and disease. Mterf proteins have been implicated in modulating transcription, replication and protein synthesis. We have solved the structure of a member of this family, the human mitochondrial transcriptional terminator MTERF1, bound to dsDNA containing the termination sequence. The structure indicates that upon sequence recognition MTERF1 unwinds the DNA molecule, promoting eversion of three nucleotides. Base flipping is critical for stable binding and transcriptional termination. Additional structural and biochemical results provide insight into the DNA binding mechanism and explain how MTERF1 recognizes its target sequence. Finally, we have demonstrated that themore » mitochondrial pathogenic G3249A and G3244A mutations interfere with key interactions for sequence recognition, eliminating termination. Our results provide insight into the role of mterf proteins and suggest a link between mitochondrial disease and the regulation of mitochondrial transcription.« less

  3. POEM: Identifying Joint Additive Effects on Regulatory Circuits.

    PubMed

    Botzman, Maya; Nachshon, Aharon; Brodt, Avital; Gat-Viks, Irit

    2016-01-01

    Expression Quantitative Trait Locus (eQTL) mapping tackles the problem of identifying variation in DNA sequence that have an effect on the transcriptional regulatory network. Major computational efforts are aimed at characterizing the joint effects of several eQTLs acting in concert to govern the expression of the same genes. Yet, progress toward a comprehensive prediction of such joint effects is limited. For example, existing eQTL methods commonly discover interacting loci affecting the expression levels of a module of co-regulated genes. Such "modularization" approaches, however, are focused on epistatic relations and thus have limited utility for the case of additive (non-epistatic) effects. Here we present POEM (Pairwise effect On Expression Modules), a methodology for identifying pairwise eQTL effects on gene modules. POEM is specifically designed to achieve high performance in the case of additive joint effects. We applied POEM to transcription profiles measured in bone marrow-derived dendritic cells across a population of genotyped mice. Our study reveals widespread additive, trans-acting pairwise effects on gene modules, characterizes their organizational principles, and highlights high-order interconnections between modules within the immune signaling network. These analyses elucidate the central role of additive pairwise effect in regulatory circuits, and provide computational tools for future investigations into the interplay between eQTLs. The software described in this article is available at csgi.tau.ac.il/POEM/.

  4. Mediator directs co-transcriptional heterochromatin assembly by RNA interference-dependent and -independent pathways.

    PubMed

    Oya, Eriko; Kato, Hiroaki; Chikashige, Yuji; Tsutsumi, Chihiro; Hiraoka, Yasushi; Murakami, Yota

    2013-01-01

    Heterochromatin at the pericentromeric repeats in fission yeast is assembled and spread by an RNAi-dependent mechanism, which is coupled with the transcription of non-coding RNA from the repeats by RNA polymerase II. In addition, Rrp6, a component of the nuclear exosome, also contributes to heterochromatin assembly and is coupled with non-coding RNA transcription. The multi-subunit complex Mediator, which directs initiation of RNA polymerase II-dependent transcription, has recently been suggested to function after initiation in processes such as elongation of transcription and splicing. However, the role of Mediator in the regulation of chromatin structure is not well understood. We investigated the role of Mediator in pericentromeric heterochromatin formation and found that deletion of specific subunits of the head domain of Mediator compromised heterochromatin structure. The Mediator head domain was required for Rrp6-dependent heterochromatin nucleation at the pericentromere and for RNAi-dependent spreading of heterochromatin into the neighboring region. In the latter process, Mediator appeared to contribute to efficient processing of siRNA from transcribed non-coding RNA, which was required for efficient spreading of heterochromatin. Furthermore, the head domain directed efficient transcription in heterochromatin. These results reveal a pivotal role for Mediator in multiple steps of transcription-coupled formation of pericentromeric heterochromatin. This observation further extends the role of Mediator to co-transcriptional chromatin regulation.

  5. Macaca specific exon creation event generates a novel ZKSCAN5 transcript.

    PubMed

    Kim, Young-Hyun; Choe, Se-Hee; Song, Bong-Seok; Park, Sang-Je; Kim, Myung-Jin; Park, Young-Ho; Yoon, Seung-Bin; Lee, Youngjeon; Jin, Yeung Bae; Sim, Bo-Woong; Kim, Ji-Su; Jeong, Kang-Jin; Kim, Sun-Uk; Lee, Sang-Rae; Park, Young-Il; Huh, Jae-Won; Chang, Kyu-Tae

    2016-02-15

    ZKSCAN5 (also known as ZFP95) is a zinc-finger protein belonging to the Krűppel family. ZKSCAN5 contains a SCAN box and a KRAB A domain and is proposed to play a distinct role during spermatogenesis. In humans, alternatively spliced ZKSCAN5 transcripts with different 5'-untranslated regions (UTRs) have been identified. However, investigation of our Macaca UniGene Database revealed novel alternative ZKSCAN5 transcripts that arose due to an exon creation event. Therefore, in this study, we identified the full-length sequences of ZKSCAN5 and its alternative transcripts in Macaca spp. Additionally, we investigated different nonhuman primate sequences to elucidate the molecular mechanism underlying the exon creation event. We analyzed the evolutionary features of the ZKSCAN5 transcripts by reverse transcription polymerase chain reaction (RT-PCR) and genomic PCR, and by sequencing various nonhuman primate DNA and RNA samples. The exon-created transcript was only detected in the Macaca lineage (crab-eating monkey and rhesus monkey). Full-length sequence analysis by rapid amplification of cDNA ends (RACE) identified ten full-length transcripts and four functional isoforms of ZKSCAN5. Protein sequence analyses revealed the presence of two groups of isoforms that arose because of differences in start-codon usage. Together, our results demonstrate that there has been specific selection for a discrete set of ZKSCAN5 variants in the Macaca lineage. Furthermore, study of this locus (and perhaps others) in Macaca spp. might facilitate our understanding of the evolutionary pressures that have shaped the mechanism of exon creation in primates. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1

    PubMed Central

    Boddu, Ravindra; Yang, Chaozhe; O’Connor, Amber K.; Hendrickson, Robert Curtis; Boone, Braden; Cui, Xiangqin; Garcia-Gonzalez, Miguel; Igarashi, Peter; Onuchic, Luiz F.; Germino, Gregory G.

    2014-01-01

    Autosomal recessive polycystic kidney disease (ARPKD) results from mutations in the human PKHD1 gene. Both this gene, and its mouse ortholog, Pkhd1, are primarily expressed in renal and biliary ductal structures. The mouse protein product, fibrocystin/polyductin complex (FPC), is a 445-kDa protein encoded by a 67-exon transcript that spans >500 kb of genomic DNA. In the current study, we observed multiple alternatively spliced Pkhd1 transcripts that varied in size and exon composition in embryonic mouse kidney, liver, and placenta samples, as well as among adult mouse pancreas, brain, heart, lung, testes, liver, and kidney. Using reverse transcription PCR and RNASeq, we identified 22 novel Pkhd1 kidney transcripts with unique exon junctions. Various mechanisms of alternative splicing were observed, including exon skipping, use of alternate acceptor/donor splice sites, and inclusion of novel exons. Bioinformatic analyses identified, and exon-trapping minigene experiments validated, consensus binding sites for serine/arginine-rich proteins that modulate alternative splicing. Using site-directed mutagenesis, we examined the functional importance of selected splice enhancers. In addition, we demonstrated that many of the novel transcripts were polysome bound, thus likely translated. Finally, we determined that the human PKHD1 R760H missense variant alters a splice enhancer motif that disrupts exon splicing in vitro and is predicted to truncate the protein. Taken together, these data provide evidence of the complex transcriptional regulation of Pkhd1/PKHD1 and identified motifs that regulate its splicing. Our studies indicate that Pkhd1/PKHD1 transcription is modulated, in part by intragenic factors, suggesting that aberrant PKHD1 splicing represents an unappreciated pathogenic mechanism in ARPKD. PMID:24984783

  7. Intestinal Master Transcription Factor CDX2 Controls Chromatin Access for Partner Transcription Factor Binding

    PubMed Central

    Verzi, Michael P.; Shin, Hyunjin; San Roman, Adrianna K.

    2013-01-01

    Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determination and maintenance. One prevailing view is that several transcription factors enable chromatin access in combination. The homeodomain protein CDX2 specifies the embryonic intestinal epithelium, through unknown mechanisms, and partners with transcription factors such as HNF4A in the adult intestine. We examined enhancer chromatin and gene expression following Cdx2 or Hnf4a excision in mouse intestines. HNF4A loss did not affect CDX2 binding or chromatin, whereas CDX2 depletion modified chromatin significantly at CDX2-bound enhancers, disrupted HNF4A occupancy, and abrogated expression of neighboring genes. Thus, CDX2 maintains transcription-permissive chromatin, illustrating a powerful and dominant effect on enhancer configuration in an adult tissue. Similar, hierarchical control of cell-specific chromatin states is probably a general property of master transcription factors. PMID:23129810

  8. A comprehensive transcript index of the human genome generated using microarrays and computational approaches

    PubMed Central

    Schadt, Eric E; Edwards, Stephen W; GuhaThakurta, Debraj; Holder, Dan; Ying, Lisa; Svetnik, Vladimir; Leonardson, Amy; Hart, Kyle W; Russell, Archie; Li, Guoya; Cavet, Guy; Castle, John; McDonagh, Paul; Kan, Zhengyan; Chen, Ronghua; Kasarskis, Andrew; Margarint, Mihai; Caceres, Ramon M; Johnson, Jason M; Armour, Christopher D; Garrett-Engele, Philip W; Tsinoremas, Nicholas F; Shoemaker, Daniel D

    2004-01-01

    Background Computational and microarray-based experimental approaches were used to generate a comprehensive transcript index for the human genome. Oligonucleotide probes designed from approximately 50,000 known and predicted transcript sequences from the human genome were used to survey transcription from a diverse set of 60 tissues and cell lines using ink-jet microarrays. Further, expression activity over at least six conditions was more generally assessed using genomic tiling arrays consisting of probes tiled through a repeat-masked version of the genomic sequence making up chromosomes 20 and 22. Results The combination of microarray data with extensive genome annotations resulted in a set of 28,456 experimentally supported transcripts. This set of high-confidence transcripts represents the first experimentally driven annotation of the human genome. In addition, the results from genomic tiling suggest that a large amount of transcription exists outside of annotated regions of the genome and serves as an example of how this activity could be measured on a genome-wide scale. Conclusions These data represent one of the most comprehensive assessments of transcriptional activity in the human genome and provide an atlas of human gene expression over a unique set of gene predictions. Before the annotation of the human genome is considered complete, however, the previously unannotated transcriptional activity throughout the genome must be fully characterized. PMID:15461792

  9. Mediator-regulated transcription through the +1 nucleosome.

    PubMed

    Nock, Adam; Ascano, Janice M; Barrero, Maria J; Malik, Sohail

    2012-12-28

    Many genes are regulated at the level of a Pol II that is recruited to a nucleosome-free region upstream of the +1 nucleosome. How the Mediator coactivator complex, which functions at multiple steps, affects transcription through the promoter proximal region, including this nucleosome, remains largely unaddressed. We have established a fully defined in vitro assay system to delineate mechanisms for Pol II transit across the +1 nucleosome. Our results reveal cooperative functions of multiple cofactors, particularly of Mediator and elongation factor SII, in transcribing into this nucleosome. This is achieved, in part, through an unusual activity of SII that alters the intrinsic catalytic properties of promoter-proximal Pol II and, in concert with the Mediator, leads to enhancement in transcription of nucleosomal DNA. Our data provide additional mechanistic bases for Mediator function after recruitment of Pol II and, potentially, for regulation of genes controlled via nucleosome-mediated promoter-proximal pausing. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. SKN-1-independent transcriptional activation of glutathione S-transferase 4 (GST-4) by EGF signaling

    PubMed Central

    Van de Walle, Pieter; Schoofs, Liliane

    2016-01-01

    ABSTRACT In C. elegans research, transcriptional activation of glutathione S-transferase 4 (gst-4) is often used as a read-out for SKN-1 activity. While many heed an assumed non-exclusivity of the GFP reporter signal driven by the gst-4 promoter to SKN-1, this is also often ignored. We here show that gst-4 can also be transcriptionally activated by EOR-1, a transcription factor mediating effects of the epidermal growth factor (EGF) pathway. Along with enhancing exogenous oxidative stress tolerance, EOR-1 inde-pendently of SKN-1 increases gst-4 transcription in response to augmented EGF signaling. Our findings caution researchers within the C. elegans community to always rely on sufficient experimental controls when assaying SKN-1 transcriptional activity with a gst-4p::gfp reporter, such as SKN-1 loss-of-function mutants and/or additional target genes next to gst-4. PMID:28090393

  11. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse

    PubMed Central

    Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C.; Bailey, Mark E. S.; Cobb, Stuart R.

    2016-01-01

    Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3’-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders. PMID:27315173

  12. IQCJ-SCHIP1, a novel fusion transcript encoding a calmodulin-binding IQ motif protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwasnicka-Crawford, Dorota A.; Carson, Andrew R.; Scherer, Stephen W.

    The existence of transcripts that span two adjacent, independent genes is considered rare in the human genome. This study characterizes a novel human fusion gene named IQCJ-SCHIP1. IQCJ-SCHIP1 is the longest isoform of a complex transcriptional unit that bridges two separate genes that encode distinct proteins, IQCJ, a novel IQ motif containing protein and SCHIP1, a schwannomin interacting protein that has been previously shown to interact with the Neurofibromatosis type 2 (NF2) protein. IQCJ-SCHIP1 is located on the chromosome 3q25 and comprises a 1692-bp transcript encompassing 11 exons spanning 828 kb of the genomic DNA. We show that IQCJ-SCHIP1 mRNAmore » is highly expressed in the brain. Protein encoded by the IQCJ-SCHIP1 gene was localized to cytoplasm and actin-rich regions and in differentiated PC12 cells was also seen in neurite extensions.« less

  13. A synthetic mammalian electro-genetic transcription circuit.

    PubMed

    Weber, Wilfried; Luzi, Stefan; Karlsson, Maria; Sanchez-Bustamante, Carlota Diaz; Frey, Urs; Hierlemann, Andreas; Fussenegger, Martin

    2009-03-01

    Electric signal processing has evolved to manage rapid information transfer in neuronal networks and muscular contraction in multicellular organisms and controls the most sophisticated man-built devices. Using a synthetic biology approach to assemble electronic parts with genetic control units engineered into mammalian cells, we designed an electric power-adjustable transcription control circuit able to integrate the intensity of a direct current over time, to translate the amplitude or frequency of an alternating current into an adjustable genetic readout or to modulate the beating frequency of primary heart cells. Successful miniaturization of the electro-genetic devices may pave the way for the design of novel hybrid electro-genetic implants assembled from electronic and genetic parts.

  14. A synthetic mammalian electro-genetic transcription circuit

    PubMed Central

    Weber, Wilfried; Luzi, Stefan; Karlsson, Maria; Sanchez-Bustamante, Carlota Diaz; Frey, Urs; Hierlemann, Andreas; Fussenegger, Martin

    2009-01-01

    Electric signal processing has evolved to manage rapid information transfer in neuronal networks and muscular contraction in multicellular organisms and controls the most sophisticated man-built devices. Using a synthetic biology approach to assemble electronic parts with genetic control units engineered into mammalian cells, we designed an electric power-adjustable transcription control circuit able to integrate the intensity of a direct current over time, to translate the amplitude or frequency of an alternating current into an adjustable genetic readout or to modulate the beating frequency of primary heart cells. Successful miniaturization of the electro-genetic devices may pave the way for the design of novel hybrid electro-genetic implants assembled from electronic and genetic parts. PMID:19190091

  15. Genetic instability associated with loop or stem–loop structures within transcription units can be independent of nucleotide excision repair

    PubMed Central

    Burns, John A; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Scicchitano, David A

    2018-01-01

    Abstract Simple sequence repeats (SSRs) are found throughout the genome, and under some conditions can change in length over time. Germline and somatic expansions of trinucleotide repeats are associated with a series of severely disabling illnesses, including Huntington's disease. The underlying mechanisms that effect SSR expansions and contractions have been experimentally elusive, but models suggesting a role for DNA repair have been proposed, in particular the involvement of transcription-coupled nucleotide excision repair (TCNER) that removes transcription-blocking DNA damage from the transcribed strand of actively expressed genes. If the formation of secondary DNA structures that are associated with SSRs were to block RNA polymerase progression, TCNER could be activated, resulting in the removal of the aberrant structure and a concomitant change in the region's length. To test this, TCNER activity in primary human fibroblasts was assessed on defined DNA substrates containing extrahelical DNA loops that lack discernible internal base pairs or DNA stem–loops that contain base pairs within the stem. The results show that both structures impede transcription elongation, but there is no corresponding evidence that nucleotide excision repair (NER) or TCNER operates to remove them. PMID:29474673

  16. Identification and Classification of New Transcripts in Dorper and Small-Tailed Han Sheep Skeletal Muscle Transcriptomes.

    PubMed

    Chao, Tianle; Wang, Guizhi; Wang, Jianmin; Liu, Zhaohua; Ji, Zhibin; Hou, Lei; Zhang, Chunlan

    2016-01-01

    High-throughput mRNA sequencing enables the discovery of new transcripts and additional parts of incompletely annotated transcripts. Compared with the human and cow genomes, the reference annotation level of the sheep genome is still low. An investigation of new transcripts in sheep skeletal muscle will improve our understanding of muscle development. Therefore, applying high-throughput sequencing, two cDNA libraries from the biceps brachii of small-tailed Han sheep and Dorper sheep were constructed, and whole-transcriptome analysis was performed to determine the unknown transcript catalogue of this tissue. In this study, 40,129 transcripts were finally mapped to the sheep genome. Among them, 3,467 transcripts were determined to be unannotated in the current reference sheep genome and were defined as new transcripts. Based on protein-coding capacity prediction and comparative analysis of sequence similarity, 246 transcripts were classified as portions of unannotated genes or incompletely annotated genes. Another 1,520 transcripts were predicted with high confidence to be long non-coding RNAs. Our analysis also revealed 334 new transcripts that displayed specific expression in ruminants and uncovered a number of new transcripts without intergenus homology but with specific expression in sheep skeletal muscle. The results confirmed a complex transcript pattern of coding and non-coding RNA in sheep skeletal muscle. This study provided important information concerning the sheep genome and transcriptome annotation, which could provide a basis for further study.

  17. The cryo-electron microscopy structure of human transcription factor IIH

    DOE PAGES

    Greber, Basil J.; Nguyen, Thi Hoang Duong; Fang, Jie; ...

    2017-09-13

    We report human transcription factor IIH (TFIIH) is part of the general transcriptional machinery required by RNA polymerase II for the initiation of eukaryotic gene transcription. Composed of ten subunits that add up to a molecular mass of about 500 kDa, TFIIH is also essential for nucleotide excision repair. The seven-subunit TFIIH core complex formed by XPB, XPD, p62, p52, p44, p34, and p8 is competent for DNA repair, while the CDK-activating kinase subcomplex, which includes the kinase activity of CDK7 as well as the cyclin H and MAT1 subunits, is additionally required for transcription initiation. Mutations in the TFIIHmore » subunits XPB, XPD, and p8 lead to severe premature ageing and cancer propensity in the genetic diseases xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy, highlighting the importance of TFIIH for cellular physiology. Here we present the cryo-electron microscopy structure of human TFIIH at 4.4 Å resolution. The structure reveals the molecular architecture of the TFIIH core complex, the detailed structures of its constituent XPB and XPD ATPases, and how the core and kinase subcomplexes of TFIIH are connected. Also, our structure provides insight into the conformational dynamics of TFIIH and the regulation of its activity.« less

  18. The cryo-electron microscopy structure of human transcription factor IIH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greber, Basil J.; Nguyen, Thi Hoang Duong; Fang, Jie

    We report human transcription factor IIH (TFIIH) is part of the general transcriptional machinery required by RNA polymerase II for the initiation of eukaryotic gene transcription. Composed of ten subunits that add up to a molecular mass of about 500 kDa, TFIIH is also essential for nucleotide excision repair. The seven-subunit TFIIH core complex formed by XPB, XPD, p62, p52, p44, p34, and p8 is competent for DNA repair, while the CDK-activating kinase subcomplex, which includes the kinase activity of CDK7 as well as the cyclin H and MAT1 subunits, is additionally required for transcription initiation. Mutations in the TFIIHmore » subunits XPB, XPD, and p8 lead to severe premature ageing and cancer propensity in the genetic diseases xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy, highlighting the importance of TFIIH for cellular physiology. Here we present the cryo-electron microscopy structure of human TFIIH at 4.4 Å resolution. The structure reveals the molecular architecture of the TFIIH core complex, the detailed structures of its constituent XPB and XPD ATPases, and how the core and kinase subcomplexes of TFIIH are connected. Also, our structure provides insight into the conformational dynamics of TFIIH and the regulation of its activity.« less

  19. Transcription control and neuronal differentiation by agents that activate the LXR nuclear receptor family.

    PubMed

    Schmidt, A; Vogel, R; Holloway, M K; Rutledge, S J; Friedman, O; Yang, Z; Rodan, G A; Friedman, E

    1999-09-10

    LXR and PPAR receptors belong to the nuclear receptor superfamily of transcriptional activating factors. Using ligand-dependent transcription assays, we found that 5-tetradecyloxy-2-furancarboxylic acid (TOFA) transactivates chimeric receptors composed of the glucocorticoid receptor DNA binding domain and the ligand binding regions of PPARalpha, PPARbeta (NUC-1) and LXRbeta (NER) receptors. In the same assays, ligands for PPARs (oleic acid, WY-14643 and L-631,033) and LXRs (hydroxycholesterols) maintain their respective receptor selectivity. TOFA and hydroxycholesterols also stimulate transcription from a minimal fibrinogen promoter that is under the control of AP-1 or NF-kappaB transcription factor binding sites. In addition to their effects on transcription, these LXRbeta activators induce neuronal differentiation in rat pheochromocytoma cells. TOFA and the natural LXR agonist, 22 (R)-hydroxycholesterol, stimulate neurite outgrowth in 55 and 28% of cells, respectively. No neurite outgrowth was induced by the related 22(S)-hydroxycholesterol, which does not activate the LXR family. These results suggest that the hydroxycholesterol signaling pathway has a complex effect on transcription that mediates the activity of TOFA and hydroxycholesterol on neuronal differentiation in pheochromocytoma cells.

  20. A dermal HOX transcriptional program regulates site-specific epidermal fate

    PubMed Central

    Rinn, John L.; Wang, Jordon K.; Allen, Nancy; Brugmann, Samantha A.; Mikels, Amanda J.; Liu, Helen; Ridky, Todd W.; Stadler, H. Scott; Nusse, Roel; Helms, Jill A.; Chang, Howard Y.

    2008-01-01

    Reciprocal epithelial–mesenchymal interactions shape site-specific development of skin. Here we show that site-specific HOX expression in fibroblasts is cell-autonomous and epigenetically maintained. The distal-specific gene HOXA13 is continually required to maintain the distal-specific transcriptional program in adult fibroblasts, including expression of WNT5A, a morphogen required for distal development. The ability of distal fibroblasts to induce epidermal keratin 9, a distal-specific gene, is abrogated by depletion of HOXA13, but rescued by addition of WNT5A. Thus, maintenance of appropriate HOX transcriptional program in adult fibroblasts may serve as a source of positional memory to differentially pattern the epithelia during homeostasis and regeneration. PMID:18245445

  1. A dermal HOX transcriptional program regulates site-specific epidermal fate.

    PubMed

    Rinn, John L; Wang, Jordon K; Allen, Nancy; Brugmann, Samantha A; Mikels, Amanda J; Liu, Helen; Ridky, Todd W; Stadler, H Scott; Nusse, Roel; Helms, Jill A; Chang, Howard Y

    2008-02-01

    Reciprocal epithelial-mesenchymal interactions shape site-specific development of skin. Here we show that site-specific HOX expression in fibroblasts is cell-autonomous and epigenetically maintained. The distal-specific gene HOXA13 is continually required to maintain the distal-specific transcriptional program in adult fibroblasts, including expression of WNT5A, a morphogen required for distal development. The ability of distal fibroblasts to induce epidermal keratin 9, a distal-specific gene, is abrogated by depletion of HOXA13, but rescued by addition of WNT5A. Thus, maintenance of appropriate HOX transcriptional program in adult fibroblasts may serve as a source of positional memory to differentially pattern the epithelia during homeostasis and regeneration.

  2. Pervasive transcription: detecting functional RNAs in bacteria.

    PubMed

    Lybecker, Meghan; Bilusic, Ivana; Raghavan, Rahul

    2014-01-01

    Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.

  3. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors.

    PubMed

    Thiel, Gerald; Rössler, Oliver G

    2017-03-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin of grapes and other fruits and plants, is a common constituent of our diet and of dietary supplements. Many health-promoting benefits have been connected with resveratrol in the treatment of cardiovascular diseases, cancer, diabetes, inflammation, neurodegeneration, and diseases connected with aging. To explain the pleiotropic effects of resveratrol, the molecular targets of this compound have to be identified on the cellular level. Resveratrol induces intracellular signal transduction pathways which ultimately lead to changes in the gene expression pattern of the cells. Here, we review the effect of resveratrol on the activation of the stimulus-responsive transcription factors CREB, AP-1, Egr-1, Elk-1, and Nrf2. Following activation, these transcription factors induce transcription of delayed response genes. The gene products of these delayed response genes are ultimately responsible for the changes in the biochemistry and physiology of resveratrol-treated cells. The activation of stimulus-responsive transcription factors may explain many of the intracellular activities of resveratrol. However, results obtained in vitro may not easily be transferred to in vivo systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Regulation of expression of two LY-6 family genes by intron retention and transcription induced chimerism

    PubMed Central

    Calvanese, Vincenzo; Mallya, Meera; Campbell, R Duncan; Aguado, Begoña

    2008-01-01

    Background Regulation of the expression of particular genes can rely on mechanisms that are different from classical transcriptional and translational control. The LY6G5B and LY6G6D genes encode LY-6 domain proteins, whose expression seems to be regulated in an original fashion, consisting of an intron retention event which generates, through an early premature stop codon, a non-coding transcript, preventing expression in most cell lines and tissues. Results The MHC LY-6 non-coding transcripts have shown to be stable and very abundant in the cell, and not subject to Nonsense Mediated Decay (NMD). This retention event appears not to be solely dependent on intron features, because in the case of LY6G5B, when the intron is inserted in the artificial context of a luciferase expression plasmid, it is fully spliced but strongly stabilises the resulting luciferase transcript. In addition, by quantitative PCR we found that the retained and spliced forms are differentially expressed in tissues indicating an active regulation of the non-coding transcript. EST database analysis revealed that these genes have an alternative expression pathway with the formation of Transcription Induced Chimeras (TIC). This data was confirmed by RT-PCR, revealing the presence of different transcripts that would encode the chimeric proteins CSNKβ-LY6G5B and G6F-LY6G6D, in which the LY-6 domain would join to a kinase domain and an Ig-like domain, respectively. Conclusion In conclusion, the LY6G5B and LY6G6D intron-retained transcripts are not subjected to NMD and are more abundant than the properly spliced forms. In addition, these genes form chimeric transcripts with their neighbouring same orientation 5' genes. Of interest is the fact that the 5' genes (CSNKβ or G6F) undergo differential splicing only in the context of the chimera (CSNKβ-LY6G5B or G6F-LY6G6C) and not on their own. PMID:18817541

  5. Polycomb repressive complex 1 modifies transcription of active genes

    PubMed Central

    Pherson, Michelle; Misulovin, Ziva; Gause, Maria; Mihindukulasuriya, Kathie; Swain, Amanda; Dorsett, Dale

    2017-01-01

    This study examines the role of Polycomb repressive complex 1 (PRC1) at active genes. The PRC1 and PRC2 complexes are crucial for epigenetic silencing during development of an organism. They are recruited to Polycomb response elements (PREs) and establish silenced domains over several kilobases. Recent studies show that PRC1 is also directly recruited to active genes by the cohesin complex. Cohesin participates broadly in control of gene transcription, but it is unknown whether cohesin-recruited PRC1 also plays a role in transcriptional control of active genes. We address this question using genome-wide RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq). The results show that PRC1 influences transcription of active genes, and a significant fraction of its effects are likely direct. The roles of different PRC1 subunits can also vary depending on the gene. Depletion of PRC1 subunits by RNA interference alters phosphorylation of RNA polymerase II (Pol II) and occupancy by the Spt5 pausing-elongation factor at most active genes. These effects on Pol II phosphorylation and Spt5 are likely linked to changes in elongation and RNA processing detected by nascent RNA-seq, although the mechanisms remain unresolved. The experiments also reveal that PRC1 facilitates association of Spt5 with enhancers and PREs. Reduced Spt5 levels at these regulatory sequences upon PRC1 depletion coincide with changes in Pol II occupancy and phosphorylation. Our findings indicate that, in addition to its repressive roles in epigenetic gene silencing, PRC1 broadly influences transcription of active genes and may suppress transcription of nonpromoter regulatory sequences. PMID:28782042

  6. Serine/Threonine kinase dependent transcription from the polyhedrin promoter of SpltNPV-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Gourav; Gautam, Hemant K.; Das, Rakha H.

    2007-07-06

    Polyhedrin (polh) and p10 are the two hyper-expressed very late genes of nucleopolyhedroviruses. Alpha amanitin resistant transcription from Spodoptera litura nucleopolyhedrovirus (SpltNPV-I) polyhedrin promoter was observed with virus infected nuclear extract of NIV-HA-197 cells but not with that from uninfected nuclear extract. Anti-protein kinase-1 (pk1) antibody inhibited the transcription and the inhibition reversed on addition of pk1, however, pk1 mutant protein, K50M having no phosphorylation activity did not overcome the transcription inhibition. Chromatin immuno-precipitation assays with viral anti-pk1 antibody showed the interaction of pk1 with the polh while electrophoretic mobility shift assays indicated the strong binding affinity (K {sub d}more » {approx} 5.5 x 10{sup -11}) of purified pk1 with the polh promoter. These results suggested that the viral coded pk1 acts as a transcription factor in transcribing baculovirus very late genes.« less

  7. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase.

    PubMed

    Zheng, D; MacLean, P S; Pohnert, S C; Knight, J B; Olson, A L; Winder, W W; Dohm, G L

    2001-09-01

    Skeletal muscle GLUT-4 transcription in response to treatment with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), a known activator of AMP-activated protein kinase (AMPK), was studied in rats and mice. The increase in GLUT-4 mRNA levels in response to a single subcutaneous injection of AICAR, peaked at 13 h in white and red quadriceps muscles but not in the soleus muscle. The mRNA level of chloramphenicol acyltransferase reporter gene which is driven by 1,154 or 895 bp of the human GLUT-4 proximal promoter was increased in AICAR-treated transgenic mice, demonstrating the transcriptional upregulation of the GLUT-4 gene by AICAR. However, this induction of transcription was not apparent with 730 bp of the promoter. In addition, nuclear extracts from AICAR-treated mice bound to the consensus sequence of myocyte enhancer factor-2 (from -473 to -464) to a greater extent than from saline-injected mice. Thus AMP-activated protein kinase activation by AICAR increases GLUT-4 transcription by a mechanism that requires response elements within 895 bp of human GLUT-4 proximal promoter and that may be cooperatively mediated by myocyte enhancer factor-2.

  8. Pervasive Targeting of Nascent Transcripts by Hfq.

    PubMed

    Kambara, Tracy K; Ramsey, Kathryn M; Dove, Simon L

    2018-05-01

    Hfq is an RNA chaperone and an important post-transcriptional regulator in bacteria. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq), we show that Hfq associates with hundreds of different regions of the Pseudomonas aeruginosa chromosome. These associations are abolished when transcription is inhibited, indicating that they reflect Hfq binding to transcripts during their synthesis. Analogous ChIP-seq analyses with the post-transcriptional regulator Crc reveal that it associates with many of the same nascent transcripts as Hfq, an activity we show is Hfq dependent. Our findings indicate that Hfq binds many transcripts co-transcriptionally in P. aeruginosa, often in concert with Crc, and uncover direct regulatory targets of these proteins. They also highlight a general approach for studying the interactions of RNA-binding proteins with nascent transcripts in bacteria. The binding of post-transcriptional regulators to nascent mRNAs may represent a prevalent means of controlling translation in bacteria where transcription and translation are coupled. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. CacyBP/SIP as a regulator of transcriptional responses in brain cells

    PubMed Central

    Kilanczyk, Ewa; Filipek, Anna; Hetman, Michal

    2014-01-01

    Summary The Calcyclin-Binding Protein/Siah-1-Interacting Protein (CacyBP/SIP) is highly expressed in the brain and was shown to regulate the β-catenin-driven transcription in thymocytes. Therefore, it was investigated whether in brain cells CacyBP/SIP might play a role as a transcriptional regulator. In BDNF- or forskolin-stimulated rat primary cortical neurons, overexpression of CacyBP/SIP enhanced transcriptional activity of the cAMP-response element (CRE). In addition, overexpressed CacyBP/SIP enhanced BDNF-mediated activation of the Nuclear Factor of Activated T-cells (NFAT) but not the Serum Response Element (SRE). These stimulatory effects required an intact C-terminal domain of CacyBP/SIP. Moreover, in C6 rat glioma cells, the overexpressed CacyBP/SIP enhanced activation of CRE- or NFAT- following forskolin- or serum stimulation, respectively. Conversely, knockdown of endogenous CacyBP/SIP reduced activation of CRE- and NFAT but not SRE. Taken together, these results indicate that CacyBP/SIP is a novel regulator of CRE- and NFAT-driven transcription. PMID:25163685

  10. RNA-guided transcriptional regulation

    DOEpatents

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  11. Switch Transcripts in Immunoglobulin Class Switching

    NASA Astrophysics Data System (ADS)

    Lorenz, Matthias; Jung, Steffen; Radbruch, Andreas

    1995-03-01

    B cells can exchange gene segments for the constant region of the immunoglobulin heavy chain, altering the class and effector function of the antibodies that they produce. Class switching is directed to distinct classes by cytokines, which induce transcription of the targeted DNA sequences. These transcripts are processed, resulting in spliced "switch" transcripts. Switch recombination can be directed to immunoglobulin G1 (IgG1) by the heterologous human metallothionein II_A promoter in mutant mice. Induction of the structurally conserved, spliced switch transcripts is sufficient to target switch recombination to IgG1, whereas transcription alone is not.

  12. Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    PubMed Central

    Grimplet, Jérôme; Bravo, Gema; Flores, Pilar; Fenoll, José; Hellín, Pilar; Oliveros, Juan Carlos; Martínez-Zapater, José M.

    2012-01-01

    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early

  13. The transcription factor ETS-1 regulates angiotensin II-stimulated fibronectin production in mesangial cells.

    PubMed

    Hua, Ping; Feng, Wenguang; Rezonzew, Gabriel; Chumley, Phillip; Jaimes, Edgar A

    2012-06-01

    Angiotensin II (ANG II) produced as result of activation of the renin-angiotensin system (RAS) plays a critical role in the pathogenesis of chronic kidney disease via its hemodynamic effects on the renal microcirculation as well as by its nonhemodynamic actions including the production of extracellular matrix proteins such as fibronectin, a multifunctional extracellular matrix protein that plays a major role in cell adhesion and migration as well as in the development of glomerulosclerosis. ETS-1 is an important transcription factor essential for normal kidney development and glomerular integrity. We previously showed that ANG II increases ETS-1 expression and is required for fibronectin production in mesangial cells. In these studies, we determined that ANG II induces phosphorylation of ETS-1 via activation of the type 1 ANG II receptor and that Erk1/2 and Akt/PKB phosphorylation are required for these effects. In addition, we characterized the role of ETS-1 on the transcriptional activation of fibronectin production in mesangial cells. We determined that ETS-1 directly activates the fibronectin promoter and by utilizing gel shift assays and chromatin immunoprecipitation assays identified two different ETS-1 binding sites that promote the transcriptional activation of fibronectin in response to ANG II. In addition, we identified the essential role of CREB and its coactivator p300 on the transcriptional activation of fibronectin by ETS-1. These studies unveil novel mechanisms involved in RAS-induced production of the extracellular matrix protein fibronectin in mesangial cells and establish the role of the transcription factor ETS-1 as a direct mediator of these effects.

  14. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates.

    PubMed

    Barvík, Ivan; Rejman, Dominik; Panova, Natalya; Šanderová, Hana; Krásný, Libor

    2017-03-01

    RNA polymerase (RNAP) is the central enzyme of transcription of the genetic information from DNA into RNA. RNAP recognizes four main substrates: ATP, CTP, GTP and UTP. Experimental evidence from the past several years suggests that, besides these four NTPs, other molecules can be used to initiate transcription: (i) ribooligonucleotides (nanoRNAs) and (ii) coenzymes such as NAD+, NADH, dephospho-CoA and FAD. The presence of these molecules at the 5΄ ends of RNAs affects the properties of the RNA. Here, we discuss the expanding portfolio of molecules that can initiate transcription, their mechanism of incorporation, effects on RNA and cellular processes, and we present an outlook toward other possible initiation substrates. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Relationships between Translation and Transcription Processes during fMRI Connectivity Scanning and Coded Translation and Transcription in Writing Products after Scanning in Children with and without Transcription Disabilities

    PubMed Central

    Wallis, Peter; Richards, Todd; Boord, Peter; Abbott, Robert; Berninger, Virginia

    2018-01-01

    Students with transcription disabilities (dysgraphia/impaired handwriting, n = 13 or dyslexia/impaired word spelling, n = 16) or without transcription disabilities (controls) completed transcription and translation (idea generating, planning, and creating) writing tasks during fMRI connectivity scanning and compositions after scanning, which were coded for transcription and translation variables. Compositions in both groups showed diversity in genre beyond usual narrative-expository distinction; groups differed in coded transcription but not translation variables. For the control group specific transcription or translation tasks during scanning correlated with corresponding coded transcription or translation skills in composition, but connectivity during scanning was not correlated with coded handwriting during composing in dysgraphia group and connectivity during translating was not correlated with any coded variable during composing in dyslexia group. Results are discussed in reference to the trend in neuroscience to use connectivity from relevant seed points while performing tasks and trends in education to recognize the generativity (creativity) of composing at both the genre and syntax levels. PMID:29600113

  16. Transcription factor ThWRKY4 binds to a novel WLS motif and a RAV1A element in addition to the W-box to regulate gene expression.

    PubMed

    Xu, Hongyun; Shi, Xinxin; Wang, Zhibo; Gao, Caiqiu; Wang, Chao; Wang, Yucheng

    2017-08-01

    WRKY transcription factors play important roles in many biological processes, and mainly bind to the W-box element to regulate gene expression. Previously, we characterized a WRKY gene from Tamarix hispida, ThWRKY4, in response to abiotic stress, and showed that it bound to the W-box motif. However, whether ThWRKY4 could bind to other motifs remains unknown. In this study, we employed a Transcription Factor-Centered Yeast one Hybrid (TF-Centered Y1H) screen to study the motifs recognized by ThWRKY4. In addition to the W-box core cis-element (termed W-box), we identified that ThWRKY4 could bind to two other motifs: the RAV1A element (CAACA) and a novel motif with sequence of GTCTA (W-box like sequence, WLS). The distributions of these motifs were screened in the promoter regions of genes regulated by some WRKYs. The results showed that the W-box, RAV1A, and WLS motifs were all present in high numbers, suggesting that they play key roles in gene expression mediated by WRKYs. Furthermore, five WRKY proteins from different WRKY subfamilies in Arabidopsis thaliana were selected and confirmed to bind to the RAV1A and WLS motifs, indicating that they are recognized commonly by WRKYs. These findings will help to further reveal the functions of WRKY proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene.

    PubMed

    Park, Jeong-Woong; Song, Ki-Duk; Kim, Nam Young; Choi, Jae-Young; Hong, Seul A; Oh, Jin Hyeog; Kim, Si Won; Lee, Jeong Hyo; Park, Tae Sub; Kim, Jin-Kyoo; Kim, Jong Geun; Cho, Byung-Wook

    2017-10-01

    Since athletic performance is a most importance trait in horses, most research focused on physiological and physical studies of horse athletic abilities. In contrast, the molecular analysis as well as the regulatory pathway studies remain insufficient for evaluation and prediction of horse athletic abilities. In our previous study, we identified AXL receptor tyrosine kinase ( AXL ) gene which was expressed as alternative spliced isoforms in skeletal muscle during exercise. In the present study, we validated two AXL alternative splicing transcripts (named as AXLa for long form and AXLb for short form) in equine skeletal muscle to gain insight(s) into the role of each alternative transcript during exercise. We validated two isoforms of AXL transcripts in horse tissues by reverse transcriptase polymerase chain reaction (RT-PCR), and then cloned the transcripts to confirm the alternative locus and its sequences. Additionally, we examined the expression patterns of AXLa and AXLb transcripts in horse tissues by quantitative RT-PCR (qRT-PCR). Both of AXLa and AXLb transcripts were expressed in horse skeletal muscle and the expression levels were significantly increased after exercise. The sequencing analysis showed that there was an alternative splicing event at exon 11 between AXLa and AXLb transcripts. 3-dimentional (3D) prediction of the alternative protein structures revealed that the structural distance of the connective region between fibronectin type 3 (FN3) and immunoglobin (Ig) domain was different between two alternative isoforms. It is assumed that the expression patterns of AXLa and AXLb transcripts would be involved in regulation of exercise-induced stress in horse muscle possibly through an NF-κB signaling pathway. Further study is necessary to uncover biological function(s) and significance of the alternative splicing isoforms in race horse skeletal muscle.

  18. Transcriptional Control of the Lateral-Flagellar Genes of Bradyrhizobium diazoefficiens.

    PubMed

    Mongiardini, Elías J; Quelas, J Ignacio; Dardis, Carolina; Althabegoiti, M Julia; Lodeiro, Aníbal R

    2017-08-01

    Bradyrhizobium diazoefficiens , a soybean N 2 -fixing symbiont, possesses a dual flagellar system comprising a constitutive subpolar flagellum and inducible lateral flagella. Here, we analyzed the genomic organization and biosynthetic regulation of the lateral-flagellar genes. We found that these genes are located in a single genomic cluster, organized in two monocistronic transcriptional units and three operons, one possibly containing an internal transcription start site. Among the monocistronic units is blr6846, homologous to the class IB master regulators of flagellum synthesis in Brucella melitensis and Ensifer meliloti and required for the expression of all the lateral-flagellar genes except lafA2 , whose locus encodes a single lateral flagellin. We therefore named blr6846 lafR ( la teral- f lagellar r egulator). Despite its similarity to two-component response regulators and its possession of a phosphorylatable Asp residue, lafR behaved as an orphan response regulator by not requiring phosphorylation at this site. Among the genes induced by lafR is flbT L , a class III regulator. We observed different requirements for FlbT L in the synthesis of each flagellin subunit. Although the accumulation of lafA1 , but not lafA2 , transcripts required FlbT L , the production of both flagellin polypeptides required FlbT L Moreover, the regulation cascade of this lateral-flagellar regulon appeared to be not as strictly ordered as those found in other bacterial species. IMPORTANCE Bacterial motility seems essential for the free-living style in the environment, and therefore these microorganisms allocate a great deal of their energetic resources to the biosynthesis and functioning of flagella. Despite energetic costs, some bacterial species possess dual flagellar systems, one of which is a primary system normally polar or subpolar, and the other is a secondary, lateral system that is produced only under special circumstances. Bradyrhizobium diazoefficiens , an N 2 -fixing

  19. Epstein-Barr virus nuclear antigen EBNA-LP is essential for transforming naïve B cells, and facilitates recruitment of transcription factors to the viral genome.

    PubMed

    Szymula, Agnieszka; Palermo, Richard D; Bayoumy, Amr; Groves, Ian J; Ba Abdullah, Mohammed; Holder, Beth; White, Robert E

    2018-02-01

    The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells.

  20. Epstein-Barr virus nuclear antigen EBNA-LP is essential for transforming naïve B cells, and facilitates recruitment of transcription factors to the viral genome

    PubMed Central

    Szymula, Agnieszka; Palermo, Richard D.; Bayoumy, Amr; Groves, Ian J.

    2018-01-01

    The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells. PMID:29462212

  1. Analysis of the regulation of viral transcription.

    PubMed

    Gloss, Bernd; Kalantari, Mina; Bernard, Hans-Ulrich

    2005-01-01

    Despite the small genomes and number of genes of papillomaviruses, regulation of their transcription is very complex and governed by numerous transcription factors, cis-responsive elements, and epigenetic phenomena. This chapter describes the strategies of how one can approach a systematic analysis of these factors, elements, and mechanisms. From the numerous different techniques useful for studying transcription, we describe in detail three selected protocols of approaches that have been relevant in shaping our knowledge of human papillomavirus transcription. These are DNAse I protection ("footprinting") for location of transcription-factor binding sites, electrophoretic mobility shifts ("gelshifts") for analysis of bound transcription factors, and bisulfite sequencing for analysis of DNA methylation as a prerequisite for epigenetic transcriptional regulation.

  2. Transcription regulation by the Mediator complex.

    PubMed

    Soutourina, Julie

    2018-04-01

    Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.

  3. The RNA-induced transcriptional silencing complex targets chromatin exclusively via interacting with nascent transcripts.

    PubMed

    Shimada, Yukiko; Mohn, Fabio; Bühler, Marc

    2016-12-01

    Small RNAs regulate chromatin modification and transcriptional gene silencing across the eukaryotic kingdom. Although these processes have been well studied, fundamental mechanistic aspects remain obscure. Specifically, it is unclear exactly how small RNA-loaded Argonaute protein complexes target chromatin to mediate silencing. Here, using fission yeast, we demonstrate that transcription of the target locus is essential for RNA-directed formation of heterochromatin. However, high transcriptional activity is inhibitory; thus, a transcriptional window exists that is optimal for silencing. We further found that pre-mRNA splicing is compatible with RNA-directed heterochromatin formation. However, the kinetics of pre-mRNA processing is critical. Introns close to the 5' end of a transcript that are rapidly spliced result in a bistable response whereby the target either remains euchromatic or becomes fully silenced. Together, our results discount siRNA-DNA base pairing in RNA-mediated heterochromatin formation, and the mechanistic insights further reveal guiding paradigms for the design of small RNA-directed chromatin silencing studies in multicellular organisms. © 2016 Shimada et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida.

    PubMed

    Rich, Mélanie K; Courty, Pierre-Emmanuel; Roux, Christophe; Reinhardt, Didier

    2017-08-08

    Development of arbuscular mycorrhiza (AM) requires a fundamental reprogramming of root cells for symbiosis. This involves the induction of hundreds of genes in the host. A recently identified GRAS-type transcription factor in Petunia hybrida, ATA/RAM1, is required for the induction of host genes during AM, and for morphogenesis of the fungal endosymbiont. To better understand the role of RAM1 in symbiosis, we set out to identify all genes that depend on activation by RAM1 in mycorrhizal roots. We have carried out a transcript profiling experiment by RNAseq of mycorrhizal plants vs. non-mycorrhizal controls in wild type and ram1 mutants. The results show that the expression of early genes required for AM, such as the strigolactone biosynthetic genes and the common symbiosis signalling genes, is independent of RAM1. In contrast, genes that are involved at later stages of symbiosis, for example for nutrient exchange in cortex cells, require RAM1 for induction. RAM1 itself is highly induced in mycorrhizal roots together with many other transcription factors, in particular GRAS proteins. Since RAM1 has previously been shown to be directly activated by the common symbiosis signalling pathway through CYCLOPS, we conclude that it acts as an early transcriptional switch that induces many AM-related genes, among them genes that are essential for the development of arbuscules, such as STR, STR2, RAM2, and PT4, besides hundreds of additional RAM1-dependent genes the role of which in symbiosis remains to be explored. Taken together, these results indicate that the defect in the morphogenesis of the fungal arbuscules in ram1 mutants may be an indirect consequence of functional defects in the host, which interfere with nutrient exchange and possibly other functions on which the fungus depends.

  5. POEM: Identifying Joint Additive Effects on Regulatory Circuits

    PubMed Central

    Botzman, Maya; Nachshon, Aharon; Brodt, Avital; Gat-Viks, Irit

    2016-01-01

    Motivation: Expression Quantitative Trait Locus (eQTL) mapping tackles the problem of identifying variation in DNA sequence that have an effect on the transcriptional regulatory network. Major computational efforts are aimed at characterizing the joint effects of several eQTLs acting in concert to govern the expression of the same genes. Yet, progress toward a comprehensive prediction of such joint effects is limited. For example, existing eQTL methods commonly discover interacting loci affecting the expression levels of a module of co-regulated genes. Such “modularization” approaches, however, are focused on epistatic relations and thus have limited utility for the case of additive (non-epistatic) effects. Results: Here we present POEM (Pairwise effect On Expression Modules), a methodology for identifying pairwise eQTL effects on gene modules. POEM is specifically designed to achieve high performance in the case of additive joint effects. We applied POEM to transcription profiles measured in bone marrow-derived dendritic cells across a population of genotyped mice. Our study reveals widespread additive, trans-acting pairwise effects on gene modules, characterizes their organizational principles, and highlights high-order interconnections between modules within the immune signaling network. These analyses elucidate the central role of additive pairwise effect in regulatory circuits, and provide computational tools for future investigations into the interplay between eQTLs. Availability: The software described in this article is available at csgi.tau.ac.il/POEM/. PMID:27148351

  6. Molecular cloning, transcriptional profiling, and subcellular localization of signal transducer and activator of transcription 2 (STAT2) ortholog from rock bream, Oplegnathus fasciatus.

    PubMed

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Priyathilaka, Thanthrige Thiunuwan; Thulasitha, William Shanthakumar; Jayasinghe, J D H E; Wan, Qiang; Nam, Bo-Hye; Lee, Jehee

    2017-08-30

    Signal transducer and activator of transcription 2 (STAT2) is a key element that transduces signals from the cell membrane to the nucleus via the type I interferon-signaling pathway. Although the structural and functional aspects of STAT proteins are well studied in mammals, information on teleostean STATs is very limited. In this study, a STAT paralog, which is highly homologous to the STAT2 members, was identified from a commercially important fish species called rock bream and designated as RbSTAT2. The RbSTAT2 gene was characterized at complementary DNA (cDNA) and genomic sequence levels, and was found to possess structural features common with its mammalian counterparts. The complete cDNA sequence was distributed into 24 exons in the genomic sequence. The promoter proximal region was analyzed and found to contain potential transcription factor binding sites to regulate the transcription of RbSTAT2. Phylogenetic studies and comparative genomic structure organization revealed the distinguishable evolution for fish and other vertebrate STAT2 orthologs. Transcriptional quantification was performed by SYBR Green quantitative real-time PCR (qPCR) and the ubiquitous expression of RbSTAT2 transcripts was observed in all tissues analyzed from healthy fish, with a remarkably high expression in blood cells. Significantly (P<0.05) altered transcription of RbSTAT2 was detected after immune challenge experiments with viral (rock bream irido virus; RBIV), bacterial (Edwardsiella tarda and Streptococcus iniae), and immune stimulants (poly I:C and LPS). Antiviral potential was further confirmed by WST-1 assay, by measuring the viability of rock bream heart cells treated with RBIV. In addition, results of an in vitro challenge experiment signified the influence of rock bream interleukin-10 (RbIL-10) on transcription of RbSTAT2. Subcellular localization studies by transfection of pEGFP-N1/RbSTAT2 into rock bream heart cells revealed that the RbSTAT2 was usually located in the

  7. Tiny abortive initiation transcripts exert antitermination activity on an RNA hairpin-dependent intrinsic terminator.

    PubMed

    Lee, Sooncheol; Nguyen, Huong Minh; Kang, Changwon

    2010-10-01

    No biological function has been identified for tiny RNA transcripts that are abortively and repetitiously released from initiation complexes of RNA polymerase in vitro and in vivo to date. In this study, we show that abortive initiation affects termination in transcription of bacteriophage T7 gene 10. Specifically, abortive transcripts produced from promoter phi 10 exert trans-acting antitermination activity on terminator T phi both in vitro and in vivo. Following abortive initiation cycling of T7 RNA polymerase at phi 10, short G-rich and oligo(G) RNAs were produced and both specifically sequestered 5- and 6-nt C + U stretch sequences, consequently interfering with terminator hairpin formation. This antitermination activity depended on sequence-specific hybridization of abortive transcripts with the 5' but not 3' half of T phi RNA. Antitermination was abolished when T phi was mutated to lack a C + U stretch, but restored when abortive transcript sequence was additionally modified to complement the mutation in T phi, both in vitro and in vivo. Antitermination was enhanced in vivo when the abortive transcript concentration was increased via overproduction of RNA polymerase or ribonuclease deficiency. Accordingly, antitermination activity exerted on T phi by abortive transcripts should facilitate expression of T phi-downstream promoter-less genes 11 and 12 in T7 infection of Escherichia coli.

  8. Global isoform-specific transcript alterations and deregulated networks in clear cell renal cell carcinoma

    PubMed Central

    Hamilton, Michael J.; Girke, Thomas; Martinez, Ernest

    2018-01-01

    Extensive genome-wide analyses of deregulated gene expression have now been performed for many types of cancer. However, most studies have focused on deregulation at the gene-level, which may overlook the alterations of specific transcripts for a given gene. Clear cell renal cell carcinoma (ccRCC) is one of the best-characterized and most pervasive renal cancers, and ccRCCs are well-documented to have aberrant RNA processing. In the present study, we examine the extent of aberrant isoform-specific RNA expression by reporting a comprehensive transcript-level analysis, using the new kallisto-sleuth-RATs pipeline, investigating coding and non-coding differential transcript expression in ccRCC. We analyzed 50 ccRCC tumors and their matched normal samples from The Cancer Genome Altas datasets. We identified 7,339 differentially expressed transcripts and 94 genes exhibiting differential transcript isoform usage in ccRCC. Additionally, transcript-level coexpression network analyses identified vasculature development and the tricarboxylic acid cycle as the most significantly deregulated networks correlating with ccRCC progression. These analyses uncovered several uncharacterized transcripts, including lncRNAs FGD5-AS1 and AL035661.1, as potential regulators of the tricarboxylic acid cycle associated with ccRCC progression. As ccRCC still presents treatment challenges, our results provide a new resource of potential therapeutics targets and highlight the importance of exploring alternative methodologies in transcriptome-wide studies.

  9. Global transcriptional responses of Bacillus subtilis to xenocoumacin 1.

    PubMed

    Zhou, T; Zeng, H; Qiu, D; Yang, X; Wang, B; Chen, M; Guo, L; Wang, S

    2011-09-01

    To determine the global transcriptional response of Bacillus subtilis to an antimicrobial agent, xenocoumacin 1 (Xcn1). Subinhibitory concentration of Xcn1 applied to B. subtilis was measured according to Hutter's method for determining optimal concentrations. cDNA microarray technology was used to study the global transcriptional response of B. subtilis to Xcn1. Real-time RT-PCR was employed to verify alterations in the transcript levels of six genes. The subinhibitory concentration was determined to be 1 μg ml(-1). The microarray data demonstrated that Xcn1 treatment of B. subtilis led to more than a 2.0-fold up-regulation of 480 genes and more than a 2.0-fold down-regulation of 479 genes (q ≤ 0.05). The transcriptional responses of B. subtilis to Xcn1 were determined, and several processes were affected by Xcn1. Additionally, cluster analysis of gene expression profiles after treatment with Xcn1 or 37 previously studied antibiotics indicated that Xcn1 has similar mechanisms of action to protein synthesis inhibitors. These microarray data showed alterations of gene expression in B. subtilis after exposure to Xcn1. From the results, we identified various processes affected by Xcn1. This study provides a whole-genome perspective to elucidate the action of Xcn1 as a potential antimicrobial agent. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  10. Dexamethasone Enhances 1α,25-Dihydroxyvitamin D3 Effects by Increasing Vitamin D Receptor Transcription*

    PubMed Central

    Hidalgo, Alejandro A.; Deeb, Kristin K.; Pike, J. Wesley; Johnson, Candace S.; Trump, Donald L.

    2011-01-01

    Calcitriol, the active form of vitamin D, in combination with the glucocorticoid dexamethasone (Dex) has been shown to increase the antitumor effects of calcitriol in squamous cell carcinoma. In this study we found that pretreatment with Dex potentiates calcitriol effects by inhibiting cell growth and increasing vitamin D receptor (VDR) and VDR-mediated transcription. Treatment with actinomycin D inhibits Vdr mRNA synthesis, indicating that Dex regulates VDR expression at transcriptional level. Real time PCR shows that treatment with Dex increases Vdr transcripts in a time- and a dose-dependent manner, indicating that Dex directly regulates expression of Vdr. RU486, an inhibitor of glucocorticoids, inhibits Dex-induced Vdr expression. In addition, the silencing of glucocorticoid receptor (GR) abolishes the induction of Vdr by Dex, indicating that Dex increases Vdr transcripts in a GR-dependent manner. A fragment located 5.2 kb upstream of Vdr transcription start site containing two putative glucocorticoid response elements (GREs) was evaluated using a luciferase-based reporter assay. Treatment with 100 nm Dex induces transcription of luciferase driven by the fragment. Deletion of the GRE distal to transcription start site was sufficient to abolish Dex induction of luciferase. Also, chromatin immunoprecipitation reveals recruitment of GR to distal GRE with Dex treatment. We conclude that Dex increases VDR and vitamin D effects by increasing Vdr de novo transcription in a GR-dependent manner. PMID:21868377

  11. Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants.

    PubMed

    Dollhofer, Veronika; Callaghan, Tony M; Griffith, Gareth W; Lebuhn, Michael; Bauer, Johann

    2017-07-01

    Bioaugmentation with anaerobic fungi (AF) is promising for improved biogas generation from lignocelluloses-rich substrates. However, before implementing AF into biogas processes it is necessary to investigate their natural occurrence, community structure and transcriptional activity in agricultural biogas plants. Thus, AF were detected with three specific PCR based methods: (i) Copies of their 18S genes were found in 7 of 10 biogas plants. (ii) Transcripts of a GH5 endoglucanase gene were present at low level in two digesters, indicating transcriptional cellulolytic activity of AF. (iii) Phylogeny of the AF-community was inferred with the 28S gene. A new Piromyces species was isolated from a PCR-positive digester. Evidence for AF was only found in biogas plants operated with high proportions of animal feces. Thus, AF were most likely transferred into digesters with animal derived substrates. Additionally, high process temperatures in combination with long retention times seemed to impede AF survival and activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Global transcriptional responses of Acidithiobacillus ferrooxidans Wenelen under different sulfide minerals.

    PubMed

    Latorre, Mauricio; Ehrenfeld, Nicole; Cortés, María Paz; Travisany, Dante; Budinich, Marko; Aravena, Andrés; González, Mauricio; Bobadilla-Fazzini, Roberto A; Parada, Pilar; Maass, Alejandro

    2016-01-01

    In order to provide new information about the adaptation of Acidithiobacillus ferrooxidans during the bioleaching process, the current analysis presents the first report of the global transcriptional response of the native copper mine strain Wenelen (DSM 16786) oxidized under different sulfide minerals. Microarrays were used to measure the response of At. ferrooxidans Wenelen to shifts from iron supplemented liquid cultures (reference state) to the addition of solid substrates enriched in pyrite or chalcopyrite. Genes encoding for energy metabolism showed a similar transcriptional profile for the two sulfide minerals. Interestingly, four operons related to sulfur metabolism were over-expressed during growth on a reduced sulfur source. Genes associated with metal tolerance (RND and ATPases type P) were up-regulated in the presence of pyrite or chalcopyrite. These results suggest that At. ferrooxidans Wenelen presents an efficient transcriptional system developed to respond to environmental conditions, namely the ability to withstand high copper concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Growth-dependent regulation of rRNA synthesis is mediated by a transcription initiation factor (TIF-IA).

    PubMed

    Buttgereit, D; Pflugfelder, G; Grummt, I

    1985-11-25

    Mouse RNA polymerase I requires at least two chromatographically distinct transcription factors (designated TIF-IA and TIF-IB) to initiate transcription accurately and efficiently in vitro. In this paper we describe the partial purification of TIF-IA by a four-step fractionation procedure. The amount or activity of TIF-IA fluctuates in response to the physiological state of the cells. Extracts from quiescent cells are incapable of specific transcription and do not contain detectable levels of TIF-IA. Transcriptionally inactive extracts can be restored by the addition of TIF-IA preparations that have been highly purified from exponentially growing cells. During the fractionating procedure TIF-IA co-purifies with RNA polymerase I, suggesting that it is functionally associated with the transcribing enzyme. We suggest that only those enzyme molecules that are associated with TIF-IA are capable to interact with TIF-IB and to initiate transcription.

  14. Poly A- transcripts expressed in HeLa cells.

    PubMed

    Wu, Qingfa; Kim, Yeong C; Lu, Jian; Xuan, Zhenyu; Chen, Jun; Zheng, Yonglan; Zhou, Tom; Zhang, Michael Q; Wu, Chung-I; Wang, San Ming

    2008-07-30

    Transcripts expressed in eukaryotes are classified as poly A+ transcripts or poly A- transcripts based on the presence or absence of the 3' poly A tail. Most transcripts identified so far are poly A+ transcripts, whereas the poly A- transcripts remain largely unknown. We developed the TRD (Total RNA Detection) system for transcript identification. The system detects the transcripts through the following steps: 1) depleting the abundant ribosomal and small-size transcripts; 2) synthesizing cDNA without regard to the status of the 3' poly A tail; 3) applying the 454 sequencing technology for massive 3' EST collection from the cDNA; and 4) determining the genome origins of the detected transcripts by mapping the sequences to the human genome reference sequences. Using this system, we characterized the cytoplasmic transcripts from HeLa cells. Of the 13,467 distinct 3' ESTs analyzed, 24% are poly A-, 36% are poly A+, and 40% are bimorphic with poly A+ features but without the 3' poly A tail. Most of the poly A- 3' ESTs do not match known transcript sequences; they have a similar distribution pattern in the genome as the poly A+ and bimorphic 3' ESTs, and their mapped intergenic regions are evolutionarily conserved. Experiments confirmed the authenticity of the detected poly A- transcripts. Our study provides the first large-scale sequence evidence for the presence of poly A- transcripts in eukaryotes. The abundance of the poly A- transcripts highlights the need for comprehensive identification of these transcripts for decoding the transcriptome, annotating the genome and studying biological relevance of the poly A- transcripts.

  15. Spatial organization of transcription machinery and its segregation from the replisome in fast-growing bacterial cells

    PubMed Central

    Cagliero, Cedric; Zhou, Yan Ning; Jin, Ding Jun

    2014-01-01

    In a fast-growing Escherichia coli cell, most RNA polymerase (RNAP) is allocated to rRNA synthesis forming transcription foci at clusters of rrn operons or bacterial nucleolus, and each of the several nascent nucleoids contains multiple pairs of replication forks. The composition of transcription foci has not been determined. In addition, how the transcription machinery is three-dimensionally organized to promote cell growth in concord with replication machinery in the nucleoid remains essentially unknown. Here, we determine the spatial and functional landscapes of transcription and replication machineries in fast-growing E. coli cells using super-resolution-structured illumination microscopy. Co-images of RNAP and DNA reveal spatial compartmentation and duplication of the transcription foci at the surface of the bacterial chromosome, encompassing multiple nascent nucleoids. Transcription foci cluster with NusA and NusB, which are the rrn anti-termination system and are associated with nascent rRNAs. However, transcription foci tend to separate from SeqA and SSB foci, which track DNA replication forks and/or the replisomes, demonstrating that transcription machinery and replisome are mostly located in different chromosomal territories to maintain harmony between the two major cellular functions in fast-growing cells. Our study suggests that bacterial chromosomes are spatially and functionally organized, analogous to eukaryotes. PMID:25416798

  16. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans.

    PubMed

    Grishok, Alla; Sinskey, Jina L; Sharp, Phillip A

    2005-03-15

    The silencing of transgene expression at the level of transcription in the soma of Caenorhabditis elegans through an RNAi-dependent pathway has not been previously characterized. Most gene silencing due to RNAi in C. elegans occurs at the post-transcriptional level. We observed transcriptional silencing when worms containing the elt-2::gfp/LacZ transgene were fed RNA produced from the commonly used L4440 vector. The transgene and the vector share plasmid backbone sequences. This transgene silencing depends on multiple RNAi pathway genes, including dcr-1, rde-1, rde-4, and rrf-1. Unlike post-transcriptional gene silencing in worms, elt-2::gfp/LacZ silencing is dependent on the PAZ-PIWI protein Alg-1 and on the HP1 homolog Hpl-2. The latter is a chromatin silencing factor, and expression of the transgene is inhibited at the level of intron-containing precursor mRNA. This inhibition is accompanied by a decrease in the acetylation of histones associated with the transgene. This transcriptional silencing in the soma can be distinguished from transgene silencing in the germline by its inability to be transmitted across generations and its dependence on the rde-1 gene. We therefore define this type of silencing as RNAi-induced Transcriptional Gene Silencing (RNAi-TGS). Additional chromatin-modifying components affecting RNAi-TGS were identified in a candidate RNAi screen.

  17. FOXM1 promotes the progression of prostate cancer by regulating PSA gene transcription.

    PubMed

    Liu, Youhong; Liu, Yijun; Yuan, Bowen; Yin, Linglong; Peng, Yuchong; Yu, Xiaohui; Zhou, Weibing; Gong, Zhicheng; Liu, Jianye; He, Leye; Li, Xiong

    2017-03-07

    Androgen/AR is the primary contributor to prostate cancer (PCa) progression by regulating Prostate Specific Antigen (PSA) gene transcription. The disease inevitably evolves to androgen-independent (AI) status. Other mechanisms by which PSA is regulated and develops to AI have not yet been fully determined. FOXM1 is a cell proliferation-specific transcription factor highly expressed in PCa cells compared to non-malignant prostate epithelial cells, suggesting that the aberrant overexpression of FOXM1 contributes to PCa development. In addition to regulating AR gene transcription and cell cycle-regulatory genes, FOXM1 selectively regulates the gene transcription of KLK2 and PSA, typical androgen responsive genes. Screening the potential FOXM1-binding sites by ChIP-PCR, we found that FOXM1 directly binds to the FHK binding motifs in the PSA promoter/enhancer regions. AI C4-2 cells have more FOXM1 binding sites than androgen dependent LNCaP cells. The depletion of FOXM1 by small molecular inhibitors significantly improves the suppression of PSA gene transcription by the anti-AR agent Cadosax. This is the first report showing that FOXM1 promotes PCa progression by regulating PSA gene transcription, particularly in AI PCa cells. The combination of anti-AR agents and FOXM1 inhibitors has the potential to greatly improve therapy for late-stage PCa patients by suppressing PSA levels.

  18. Transcriptional regulation of Drosophila gonad formation.

    PubMed

    Tripathy, Ratna; Kunwar, Prabhat S; Sano, Hiroko; Renault, Andrew D

    2014-08-15

    The formation of the Drosophila embryonic gonad, involving the fusion of clusters of somatic gonadal precursor cells (SGPs) and their ensheathment of germ cells, provides a simple and genetically tractable model for the interplay between cells during organ formation. In a screen for mutants affecting gonad formation we identified a SGP cell autonomous role for Midline (Mid) and Longitudinals lacking (Lola). These transcriptional factors are required for multiple aspects of SGP behaviour including SGP cluster fusion, germ cell ensheathment and gonad compaction. The lola locus encodes more than 25 differentially spliced isoforms and we have identified an isoform specific requirement for lola in the gonad which is distinct from that in nervous system development. Mid and Lola work in parallel in gonad formation and surprisingly Mid overexpression in a lola background leads to additional SGPs at the expense of fat body cells. Our findings support the idea that although the transcription factors required by SGPs can ostensibly be assigned to those being required for either SGP specification or behaviour, they can also interact to impinge on both processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Extensive transcriptional response associated with seasonal plasticity of butterfly wing patterns.

    PubMed

    Daniels, Emily V; Murad, Rabi; Mortazavi, Ali; Reed, Robert D

    2014-12-01

    In the eastern United States, the buckeye butterfly, Junonia coenia, shows seasonal wing colour plasticity where adults emerging in the spring are tan, while those emerging in the autumn are dark red. This variation can be artificially induced in laboratory colonies, thus making J. coenia a useful model system to examine the mechanistic basis of plasticity. To better understand the developmental basis of seasonal plasticity, we used RNA-seq to quantify transcription profiles associated with development of alternative seasonal wing morphs. Depending on the developmental stage, between 547 and 1420 transfrags were significantly differentially expressed between morphs. These extensive differences in gene expression stand in contrast to the much smaller numbers of differentially expressed transcripts identified in previous studies of genetic wing pattern variation in other species and suggest that environmentally induced phenotypic shifts arise from very broad systemic processes. Analyses of candidate endocrine and pigmentation transcripts revealed notable genes upregulated in the red morph, including several ecdysone-associated genes, and cinnabar, an ommochrome pigmentation gene implicated in colour pattern variation in other butterflies. We also found multiple melanin-related transcripts strongly upregulated in the red morph, including tan and yellow-family genes, leading us to speculate that dark red pigmentation in autumn J. coenia may involve nonommochrome pigments. While we identified several endocrine and pigmentation genes as obvious candidates for seasonal colour morph differentiation, we speculate that the majority of observed expression differences were due to thermal stress response. The buckeye transcriptome provides a basis for further developmental studies of phenotypic plasticity. © 2014 John Wiley & Sons Ltd.

  20. Shikimate Induced Transcriptional Activation of Protocatechuate Biosynthesis Genes by QuiR, a LysR-Type Transcriptional Regulator, in Listeria monocytogenes.

    PubMed

    Prezioso, Stephanie M; Xue, Kevin; Leung, Nelly; Gray-Owen, Scott D; Christendat, Dinesh

    2018-04-27

    Listeria monocytogenes is a common foodborne bacterial pathogen that contaminates plant and animal consumable products. The persistent nature of L. monocytogenes is associated with millions of dollars in food recalls annually. Here, we describe the role of shikimate in directly modulating the expression of genes encoding enzymes for the conversion of quinate and shikimate metabolites to protocatechuate. In L. monocytogenes, these genes are found within two operons, named qui1 and qui2. In addition, a gene named quiR, encoding a LysR-Type Transcriptional Regulator (QuiR), is located immediately upstream of the qui1 operon. Transcriptional lacZ-promoter fusion experiments show that QuiR induces gene expression of both qui1 and qui2 operons in the presence of shikimate. Furthermore, co-crystallization of the QuiR effector binding domain in complex with shikimate provides insights into the mechanism of activation of this regulator. Together these data show that upon shikimate accumulation, QuiR activates the transcription of genes encoding enzymes involved in shikimate and quinate utilization for the production of protocatechuate. Furthermore, the accumulation of protocatechuate leads to the inhibition of Listeria growth. Since protocatechuate is not known to be utilized by Listeria, its role is distinct from those established in other bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Poly A- Transcripts Expressed in HeLa Cells

    PubMed Central

    Lu, Jian; Xuan, Zhenyu; Chen, Jun; Zheng, Yonglan; Zhou, Tom; Zhang, Michael Q.; Wu, Chung-I; Wang, San Ming

    2008-01-01

    Background Transcripts expressed in eukaryotes are classified as poly A+ transcripts or poly A- transcripts based on the presence or absence of the 3′ poly A tail. Most transcripts identified so far are poly A+ transcripts, whereas the poly A- transcripts remain largely unknown. Methodology/Principal Findings We developed the TRD (Total RNA Detection) system for transcript identification. The system detects the transcripts through the following steps: 1) depleting the abundant ribosomal and small-size transcripts; 2) synthesizing cDNA without regard to the status of the 3′ poly A tail; 3) applying the 454 sequencing technology for massive 3′ EST collection from the cDNA; and 4) determining the genome origins of the detected transcripts by mapping the sequences to the human genome reference sequences. Using this system, we characterized the cytoplasmic transcripts from HeLa cells. Of the 13,467 distinct 3′ ESTs analyzed, 24% are poly A-, 36% are poly A+, and 40% are bimorphic with poly A+ features but without the 3′ poly A tail. Most of the poly A- 3′ ESTs do not match known transcript sequences; they have a similar distribution pattern in the genome as the poly A+ and bimorphic 3′ ESTs, and their mapped intergenic regions are evolutionarily conserved. Experiments confirmed the authenticity of the detected poly A- transcripts. Conclusion/Significance Our study provides the first large-scale sequence evidence for the presence of poly A- transcripts in eukaryotes. The abundance of the poly A- transcripts highlights the need for comprehensive identification of these transcripts for decoding the transcriptome, annotating the genome and studying biological relevance of the poly A- transcripts. PMID:18665230

  2. ASTP Onboard Voice Transcription

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The transcription is presented of the Apollo-Soyuz Test Project voice communications as recorded on the command module data storage equipment. Data from this recorder are telemetered (dumped) to Space Tracking and Data Network sites for retransmission to the Johnson Space Center. The transcript is divided into three columns -- time, speaker, and text. The Greenwich mean time column consists of three two-digit numbers representing hours, minutes, and seconds (e.g., 22 34 14) for the Julian dates shown at the top of the page on which a new day begins. The speaker column indicates the source of a transmission; the text column contains the verbatim transcript of the communications.

  3. A movie of the RNA polymerase nucleotide addition cycle.

    PubMed

    Brueckner, Florian; Ortiz, Julio; Cramer, Patrick

    2009-06-01

    During gene transcription, RNA polymerase (Pol) passes through repetitive cycles of adding a nucleotide to the growing mRNA chain. Here we obtained a movie of the nucleotide addition cycle by combining structural information on different functional states of the Pol II elongation complex (EC). The movie illustrates the two-step loading of the nucleoside triphosphate (NTP) substrate, closure of the active site for catalytic nucleotide incorporation, and the presumed two-step translocation of DNA and RNA, which is accompanied by coordinated conformational changes in the polymerase bridge helix and trigger loop. The movie facilitates teaching and a mechanistic analysis of transcription and can be downloaded from http://www.lmb.uni-muenchen.de/cramer/pr-materials.

  4. Purification and characterization of FBI-1, a cellular factor that binds to the human immunodeficiency virus type 1 inducer of short transcripts.

    PubMed Central

    Pessler, F; Pendergrast, P S; Hernandez, N

    1997-01-01

    The human immunodeficiency virus (HIV-1) promoter directs the synthesis of two classes of RNA molecules, short transcripts and full-length transcripts. The synthesis of short transcripts depends on a bipartite DNA element, the inducer of short transcripts (IST), located in large part downstream of the HIV-1 start site of transcription. IST does not require any viral product for function and is thought to direct the assembly of transcription complexes that are incapable of efficient elongation. Nothing is known, however, about the biochemical mechanisms that mediate IST function. Here, we report the identification and purification of a factor that binds specifically to the IST. This factor, FBI-1, recognizes a large bipartite binding site that coincides with the bipartite IST element. It is constituted at least in part by an 86-kDa polypeptide that can be specifically cross-linked to IST. FBI-1 also binds to promoter and attenuation regions of a number of cellular and viral transcription units that are regulated by a transcription elongation block. This observation, together with the observation that the binding of FBI-1 to IST mutants correlates with the ability of these mutants to direct IST function, suggests that FBI-1 may be involved in the establishment of abortive transcription complexes. PMID:9199312

  5. Purification and characterization of FBI-1, a cellular factor that binds to the human immunodeficiency virus type 1 inducer of short transcripts.

    PubMed

    Pessler, F; Pendergrast, P S; Hernandez, N

    1997-07-01

    The human immunodeficiency virus (HIV-1) promoter directs the synthesis of two classes of RNA molecules, short transcripts and full-length transcripts. The synthesis of short transcripts depends on a bipartite DNA element, the inducer of short transcripts (IST), located in large part downstream of the HIV-1 start site of transcription. IST does not require any viral product for function and is thought to direct the assembly of transcription complexes that are incapable of efficient elongation. Nothing is known, however, about the biochemical mechanisms that mediate IST function. Here, we report the identification and purification of a factor that binds specifically to the IST. This factor, FBI-1, recognizes a large bipartite binding site that coincides with the bipartite IST element. It is constituted at least in part by an 86-kDa polypeptide that can be specifically cross-linked to IST. FBI-1 also binds to promoter and attenuation regions of a number of cellular and viral transcription units that are regulated by a transcription elongation block. This observation, together with the observation that the binding of FBI-1 to IST mutants correlates with the ability of these mutants to direct IST function, suggests that FBI-1 may be involved in the establishment of abortive transcription complexes.

  6. Transcriptional control of Sost in bone [Transcriptional control of Sclerostin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian, Aimy; Loots, Gabriela G.

    Sclerostin is an osteocyte derived negative regulator of bone formation. A highly specific expression pattern and the exclusive bone phenotype have made Sclerostin an attractive target for therapeutic intervention in treating metabolic bone diseases such as osteoporosis and in facilitating fracture repair. Understanding the molecular mechanisms that regulate Sclerostin transcription is of great interest as it may unveil new avenues for therapeutic approaches. Such studies may also elucidate how various signaling pathways intersect to modulate bone metabolism. Furthermore we review the current understanding of the upstream molecular mechanisms that regulate Sost/SOST transcription, in bone.

  7. Transcriptional control of Sost in bone [Transcriptional control of Sclerostin

    DOE PAGES

    Sebastian, Aimy; Loots, Gabriela G.

    2016-10-19

    Sclerostin is an osteocyte derived negative regulator of bone formation. A highly specific expression pattern and the exclusive bone phenotype have made Sclerostin an attractive target for therapeutic intervention in treating metabolic bone diseases such as osteoporosis and in facilitating fracture repair. Understanding the molecular mechanisms that regulate Sclerostin transcription is of great interest as it may unveil new avenues for therapeutic approaches. Such studies may also elucidate how various signaling pathways intersect to modulate bone metabolism. Furthermore we review the current understanding of the upstream molecular mechanisms that regulate Sost/SOST transcription, in bone.

  8. TIPMaP: a web server to establish transcript isoform profiles from reliable microarray probes.

    PubMed

    Chitturi, Neelima; Balagannavar, Govindkumar; Chandrashekar, Darshan S; Abinaya, Sadashivam; Srini, Vasan S; Acharya, Kshitish K

    2013-12-27

    Standard 3' Affymetrix gene expression arrays have contributed a significantly higher volume of existing gene expression data than other microarray platforms. These arrays were designed to identify differentially expressed genes, but not their alternatively spliced transcript forms. No resource can currently identify expression pattern of specific mRNA forms using these microarray data, even though it is possible to do this. We report a web server for expression profiling of alternatively spliced transcripts using microarray data sets from 31 standard 3' Affymetrix arrays for human, mouse and rat species. The tool has been experimentally validated for mRNAs transcribed or not-detected in a human disease condition (non-obstructive azoospermia, a male infertility condition). About 4000 gene expression datasets were downloaded from a public repository. 'Good probes' with complete coverage and identity to latest reference transcript sequences were first identified. Using them, 'Transcript specific probe-clusters' were derived for each platform and used to identify expression status of possible transcripts. The web server can lead the user to datasets corresponding to specific tissues, conditions via identifiers of the microarray studies or hybridizations, keywords, official gene symbols or reference transcript identifiers. It can identify, in the tissues and conditions of interest, about 40% of known transcripts as 'transcribed', 'not-detected' or 'differentially regulated'. Corresponding additional information for probes, genes, transcripts and proteins can be viewed too. We identified the expression of transcripts in a specific clinical condition and validated a few of these transcripts by experiments (using reverse transcription followed by polymerase chain reaction). The experimental observations indicated higher agreements with the web server results, than contradictions. The tool is accessible at http://resource.ibab.ac.in/TIPMaP. The newly developed online tool

  9. Characterization of the influence of mediator complex in HIV-1 transcription.

    PubMed

    Ruiz, Alba; Pauls, Eduardo; Badia, Roger; Riveira-Muñoz, Eva; Clotet, Bonaventura; Ballana, Ester; Esté, José A

    2014-10-03

    HIV-1 exploits multiple host proteins during infection. siRNA-based screenings have identified new proteins implicated in different pathways of the viral cycle that participate in a broad range of cellular functions. The human Mediator complex (MED) is composed of 28 elements and represents a fundamental component of the transcription machinery, interacting with the RNA polymerase II enzyme and regulating its ability to express genes. Here, we provide an evaluation of the MED activity on HIV replication. Knockdown of 9 out of 28 human MED proteins significantly impaired viral replication without affecting cell viability, including MED6, MED7, MED11, MED14, MED21, MED26, MED27, MED28, and MED30. Impairment of viral replication by MED subunits was at a post-integration step. Inhibition of early HIV transcripts was observed by siRNA-mediated knockdown of MED6, MED7, MED11, MED14, and MED28, specifically affecting the transcription of the nascent viral mRNA transactivation-responsive element. In addition, MED14 and MED30 were shown to have special relevance during the formation of unspliced viral transcripts (p < 0.0005). Knockdown of the selected MED factors compromised HIV transcription induced by Tat, with the strongest inhibitory effect shown by siMED6 and siMED14 cells. Co-immunoprecipitation experiments suggested physical interaction between MED14 and HIV-1 Tat protein. A better understanding of the mechanisms and factors controlling HIV-1 transcription is key to addressing the development of new strategies required to inhibit HIV replication or reactivate HIV-1 from the latent reservoirs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. 5' diversity of human hepatic PXR (NR1I2) transcripts and identification of the major transcription initiation site.

    PubMed

    Kurose, Kouichi; Koyano, Satoru; Ikeda, Shinobu; Tohkin, Masahiro; Hasegawa, Ryuichi; Sawada, Jun-Ichi

    2005-05-01

    The human pregnane X receptor (PXR) is a crucial regulator of the genes encoding several major cytochrome P450 enzymes and transporters, such as CYP3A4 and MDR1, but its own transcriptional regulation remains unclear. To elucidate the transcriptional mechanisms of human PXR gene, we first endeavored to identify the transcription initiation site of human PXR using 5'-RACE. Five types of 5'-variable transcripts (a, b, c, d, and e) with common exon 2 sequence were found, and comparison of these sequences with the genomic sequence suggested that their 5' diversity is derived from initiation by alternative promoters and alternative splicing. None of the exons found in our study contain any new in-frame coding regions. Newly identified introns IVS-a and IVS-b were found to have CT-AC splice sites that do not follow the GT-AG rule of conventional donor and acceptor splice sites. Of the five types of 5' variable transcripts identified, RT-PCR showed that type-a was the major transcript type. Four transcription initiation sites (A-D) for type-a transcript were identified by 5'-RACE using GeneRacer RACE Ready cDNA (human liver) constructed by the oligo-capping method. Putative TATA boxes were located approximately 30 bp upstream from the transcriptional start sites of the major transcript (C) and the longest minor transcript (A) expressed in the human liver. These results indicate that the initiation of transcription of human PXR is more complex than previously reported.

  11. Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus

    PubMed Central

    Kim, Yea Woon; Lee, Sungkung; Yun, Jangmi; Kim, AeRi

    2015-01-01

    Enhancers are closely positioned with actively transcribed target genes by chromatin looping. Non-coding RNAs are often transcribed on active enhancers, referred to as eRNAs (enhancer RNAs). To explore the kinetics of enhancer–promoter looping and eRNA transcription during transcriptional activation, we induced the β-globin locus by chemical treatment and analysed cross-linking frequency between the β-globin gene and locus control region (LCR) and the amount of eRNAs transcribed on the LCR in a time course manner. The cross-linking frequency was increased after chemical induction but before the transcriptional activation of gene in the β-globin locus. Transcription of eRNAs was increased in concomitant with the increase in cross-linking frequency. These results show that chromatin looping and eRNA transcription precedes the transcriptional activation of gene. Concomitant occurrence of the two events suggests functional relationship between them. PMID:25588787

  12. Early Cone Setting in Picea abies acrocona Is Associated with Increased Transcriptional Activity of a MADS Box Transcription Factor1[W][OA

    PubMed Central

    Uddenberg, Daniel; Reimegård, Johan; Clapham, David; Almqvist, Curt; von Arnold, Sara; Emanuelsson, Olof; Sundström, Jens F.

    2013-01-01

    Conifers normally go through a long juvenile period, for Norway spruce (Picea abies) around 20 to 25 years, before developing male and female cones. We have grown plants from inbred crosses of a naturally occurring spruce mutant (acrocona). One-fourth of the segregating acrocona plants initiate cones already in their second growth cycle, suggesting control by a single locus. The early cone-setting properties of the acrocona mutant were utilized to identify candidate genes involved in vegetative-to-reproductive phase change in Norway spruce. Poly(A+) RNA samples from apical and basal shoots of cone-setting and non-cone-setting plants were subjected to high-throughput sequencing (RNA-seq). We assembled and investigated 33,383 expressed putative protein-coding acrocona transcripts. Eight transcripts were differentially expressed between selected sample pairs. One of these (Acr42124_1) was significantly up-regulated in apical shoot samples from cone-setting acrocona plants, and the encoded protein belongs to the MADS box gene family of transcription factors. Using quantitative real-time polymerase chain reaction with independently derived plant material, we confirmed that the MADS box gene is up-regulated in both needles and buds of cone-inducing shoots when reproductive identity is determined. Our results constitute important steps for the development of a rapid cycling model system that can be used to study gene function in conifers. In addition, our data suggest the involvement of a MADS box transcription factor in the vegetative-to-reproductive phase change in Norway spruce. PMID:23221834

  13. 40 CFR 1610.4 - Deposition Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Deposition Transcripts. 1610.4 Section... INVESTIGATIONS § 1610.4 Deposition Transcripts. (a) Transcripts of depositions of witnesses compelled by subpoena... by the person conducting the deposition. (b) Such a witness, after completing the compelled testimony...

  14. 40 CFR 1610.4 - Deposition Transcripts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Deposition Transcripts. 1610.4 Section... INVESTIGATIONS § 1610.4 Deposition Transcripts. (a) Transcripts of depositions of witnesses compelled by subpoena... by the person conducting the deposition. (b) Such a witness, after completing the compelled testimony...

  15. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse

    PubMed Central

    Liu, Zhi-Ping; Wu, Canglin; Miao, Hongyu; Wu, Hulin

    2015-01-01

    Transcriptional and post-transcriptional regulation of gene expression is of fundamental importance to numerous biological processes. Nowadays, an increasing amount of gene regulatory relationships have been documented in various databases and literature. However, to more efficiently exploit such knowledge for biomedical research and applications, it is necessary to construct a genome-wide regulatory network database to integrate the information on gene regulatory relationships that are widely scattered in many different places. Therefore, in this work, we build a knowledge-based database, named ‘RegNetwork’, of gene regulatory networks for human and mouse by collecting and integrating the documented regulatory interactions among transcription factors (TFs), microRNAs (miRNAs) and target genes from 25 selected databases. Moreover, we also inferred and incorporated potential regulatory relationships based on transcription factor binding site (TFBS) motifs into RegNetwork. As a result, RegNetwork contains a comprehensive set of experimentally observed or predicted transcriptional and post-transcriptional regulatory relationships, and the database framework is flexibly designed for potential extensions to include gene regulatory networks for other organisms in the future. Based on RegNetwork, we characterized the statistical and topological properties of genome-wide regulatory networks for human and mouse, we also extracted and interpreted simple yet important network motifs that involve the interplays between TF-miRNA and their targets. In summary, RegNetwork provides an integrated resource on the prior information for gene regulatory relationships, and it enables us to further investigate context-specific transcriptional and post-transcriptional regulatory interactions based on domain-specific experimental data. Database URL: http://www.regnetworkweb.org PMID:26424082

  16. Development of field-based real-time reverse transcription-polymerase chain reaction assays for detection of Chikungunya and O'nyong-nyong viruses in mosquitoes.

    PubMed

    Smith, Darci R; Lee, John S; Jahrling, Jordan; Kulesh, David A; Turell, Michael J; Groebner, Jennifer L; O'Guinn, Monica L

    2009-10-01

    Chikungunya (CHIK) and O'nyong-nyong (ONN) are important emerging arthropod-borne diseases. Molecular diagnosis of these two viruses in mosquitoes has not been evaluated, and the effects of extraneous mosquito tissue on assay performance have not been tested. Additionally, no real-time reverse transcription-polymerase chain reaction (RT-PCR) assay exists for detecting ONN virus (ONNV) RNA. We describe the development of sensitive and specific real-time RT-PCR assays for detecting CHIK and ONN viral RNA in mosquitoes, which have application for field use. In addition, we compared three methods for primer/probe design for assay development by evaluating their sensitivity and specificity. This comparison resulted in development of virus-specific assays that could detect less than one plaque-forming unit equivalent of each of the viruses in mosquitoes. The use of these assays will aid in arthropod-borne disease surveillance and in the control of the associated diseases.

  17. Elimination of Cu(II) toxicity by powdered waste sludge (PWS) addition to an activated sludge unit treating Cu(II) containing synthetic wastewater.

    PubMed

    Pamukoglu, M Yunus; Kargi, Fikret

    2007-09-05

    Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.

  18. "Hit-and-Run" transcription: de novo transcription initiated by a transient bZIP1 "hit" persists after the "run".

    PubMed

    Doidy, Joan; Li, Ying; Neymotin, Benjamin; Edwards, Molly B; Varala, Kranthi; Gresham, David; Coruzzi, Gloria M

    2016-02-03

    Dynamic transcriptional regulation is critical for an organism's response to environmental signals and yet remains elusive to capture. Such transcriptional regulation is mediated by master transcription factors (TF) that control large gene regulatory networks. Recently, we described a dynamic mode of TF regulation named "hit-and-run". This model proposes that master TF can interact transiently with a set of targets, but the transcription of these transient targets continues after the TF dissociation from the target promoter. However, experimental evidence validating active transcription of the transient TF-targets is still lacking. Here, we show that active transcription continues after transient TF-target interactions by tracking de novo synthesis of RNAs made in response to TF nuclear import. To do this, we introduced an affinity-labeled 4-thiouracil (4tU) nucleobase to specifically isolate newly synthesized transcripts following conditional TF nuclear import. Thus, we extended the TARGET system (Transient Assay Reporting Genome-wide Effects of Transcription factors) to include 4tU-labeling and named this new technology TARGET-tU. Our proof-of-principle example is the master TF Basic Leucine Zipper 1 (bZIP1), a central integrator of metabolic signaling in plants. Using TARGET-tU, we captured newly synthesized mRNAs made in response to bZIP1 nuclear import at a time when bZIP1 is no longer detectably bound to its target. Thus, the analysis of de novo transcripomics demonstrates that bZIP1 may act as a catalyst TF to initiate a transcriptional complex ("hit"), after which active transcription by RNA polymerase continues without the TF being bound to the gene promoter ("run"). Our findings provide experimental proof for active transcription of transient TF-targets supporting a "hit-and-run" mode of action. This dynamic regulatory model allows a master TF to catalytically propagate rapid and broad transcriptional responses to changes in environment. Thus, the

  19. Quantification of Yeast and Bacterial Gene Transcripts in Retail Cheeses by Reverse Transcription-Quantitative PCR

    PubMed Central

    Straub, Cécile; Castellote, Jessie; Onesime, Djamila; Bonnarme, Pascal; Irlinger, Françoise

    2013-01-01

    The cheese microbiota contributes to a large extent to the development of the typical color, flavor, and texture of the final product. Its composition is not well defined in most cases and varies from one cheese to another. The aim of the present study was to establish procedures for gene transcript quantification in cheeses by reverse transcription-quantitative PCR. Total RNA was extracted from five smear-ripened cheeses purchased on the retail market, using a method that does not involve prior separation of microbial cells. 16S rRNA and malate:quinone oxidoreductase gene transcripts of Corynebacterium casei, Brevibacterium aurantiacum, and Arthrobacter arilaitensis and 26S rRNA and beta tubulin gene transcripts of Geotrichum candidum and Debaryomyces hansenii could be detected and quantified in most of the samples. Three types of normalization were applied: against total RNA, against the amount of cheese, and against a reference gene. For the first two types of normalization, differences of reverse transcription efficiencies from one sample to another were taken into account by analysis of exogenous control mRNA. No good correlation was found between the abundances of target mRNA or rRNA transcripts and the viable cell concentration of the corresponding species. However, in most cases, no mRNA transcripts were detected for species that did not belong to the dominant species. The applications of gene expression measurement in cheeses containing an undefined microbiota, as well as issues concerning the strategy of normalization and the assessment of amplification specificity, are discussed. PMID:23124230

  20. Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch

    PubMed Central

    Lohse, Matthew B.; Ene, Iuliana V.; Craik, Veronica B.; Hernday, Aaron D.; Mancera, Eugenio; Morschhäuser, Joachim; Bennett, Richard J.; Johnson, Alexander D.

    2016-01-01

    The human fungal pathogen Candida albicans can reversibly switch between two cell types named “white” and “opaque,” each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white–opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white–opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white–opaque switching to cellular physiology. PMID:27280690

  1. Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch.

    PubMed

    Lohse, Matthew B; Ene, Iuliana V; Craik, Veronica B; Hernday, Aaron D; Mancera, Eugenio; Morschhäuser, Joachim; Bennett, Richard J; Johnson, Alexander D

    2016-08-01

    The human fungal pathogen Candida albicans can reversibly switch between two cell types named "white" and "opaque," each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white-opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white-opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white-opaque switching to cellular physiology. Copyright © 2016 by the Genetics Society of America.

  2. Stochastic Model of Supercoiling-Dependent Transcription

    NASA Astrophysics Data System (ADS)

    Brackley, C. A.; Johnson, J.; Bentivoglio, A.; Corless, S.; Gilbert, N.; Gonnella, G.; Marenduzzo, D.

    2016-07-01

    We propose a stochastic model for gene transcription coupled to DNA supercoiling, where we incorporate the experimental observation that polymerases create supercoiling as they unwind the DNA helix and that these enzymes bind more favorably to regions where the genome is unwound. Within this model, we show that when the transcriptionally induced flux of supercoiling increases, there is a sharp crossover from a regime where torsional stresses relax quickly and gene transcription is random, to one where gene expression is highly correlated and tightly regulated by supercoiling. In the latter regime, the model displays transcriptional bursts, waves of supercoiling, and up regulation of divergent or bidirectional genes. It also predicts that topological enzymes which relax twist and writhe should provide a pathway to down regulate transcription.

  3. Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes.

    PubMed

    Basnet, Ram Kumar; Moreno-Pachon, Natalia; Lin, Ke; Bucher, Johan; Visser, Richard G F; Maliepaard, Chris; Bonnema, Guusje

    2013-12-01

    Brassica seeds are important as basic units of plant growth and sources of vegetable oil. Seed development is regulated by many dynamic metabolic processes controlled by complex networks of spatially and temporally expressed genes. We conducted a global microarray gene co-expression analysis by measuring transcript abundance of developing seeds from two diverse B. rapa morphotypes: a pak choi (leafy-type) and a yellow sarson (oil-type), and two of their doubled haploid (DH) progenies, (1) to study the timing of metabolic processes in developing seeds, (2) to explore the major transcriptional differences in developing seeds of the two morphotypes, and (3) to identify the optimum stage for a genetical genomics study in B. rapa seed. Seed developmental stages were similar in developing seeds of pak choi and yellow sarson of B. rapa; however, the colour of embryo and seed coat differed among these two morphotypes. In this study, most transcriptional changes occurred between 25 and 35 DAP, which shows that the timing of seed developmental processes in B. rapa is at later developmental stages than in the related species B. napus. Using a Weighted Gene Co-expression Network Analysis (WGCNA), we identified 47 "gene modules", of which 27 showed a significant association with temporal and/or genotypic variation. An additional hierarchical cluster analysis identified broad spectra of gene expression patterns during seed development. The predominant variation in gene expression was according to developmental stages rather than morphotype differences. Since lipids are the major storage compounds of Brassica seeds, we investigated in more detail the regulation of lipid metabolism. Four co-regulated gene clusters were identified with 17 putative cis-regulatory elements predicted in their 1000 bp upstream region, either specific or common to different lipid metabolic pathways. This is the first study of genome-wide profiling of transcript abundance during seed development in B

  4. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak.

    PubMed

    Hummel, Aaron W; Doyle, Erin L; Bogdanove, Adam J

    2012-09-01

    Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  5. BRD4 Regulates Transcription via Intrinsic HAT Activity | Center for Cancer Research

    Cancer.gov

    In order to express a gene, its DNA must be accessible to the transcription machinery. This requires chromatin de-compaction, which depends on the addition of acetyl groups to lysine residues on histones, thereby weakening interactions between histones and DNA and between adjacent nucleosomes.

  6. Is automatic speech-to-text transcription ready for use in psychological experiments?

    PubMed

    Ziman, Kirsten; Heusser, Andrew C; Fitzpatrick, Paxton C; Field, Campbell E; Manning, Jeremy R

    2018-04-23

    Verbal responses are a convenient and naturalistic way for participants to provide data in psychological experiments (Salzinger, The Journal of General Psychology, 61(1),65-94:1959). However, audio recordings of verbal responses typically require additional processing, such as transcribing the recordings into text, as compared with other behavioral response modalities (e.g., typed responses, button presses, etc.). Further, the transcription process is often tedious and time-intensive, requiring human listeners to manually examine each moment of recorded speech. Here we evaluate the performance of a state-of-the-art speech recognition algorithm (Halpern et al., 2016) in transcribing audio data into text during a list-learning experiment. We compare transcripts made by human annotators to the computer-generated transcripts. Both sets of transcripts matched to a high degree and exhibited similar statistical properties, in terms of the participants' recall performance and recall dynamics that the transcripts captured. This proof-of-concept study suggests that speech-to-text engines could provide a cheap, reliable, and rapid means of automatically transcribing speech data in psychological experiments. Further, our findings open the door for verbal response experiments that scale to thousands of participants (e.g., administered online), as well as a new generation of experiments that decode speech on the fly and adapt experimental parameters based on participants' prior responses.

  7. Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance

    PubMed Central

    Wong, Chui E; Bhalla, Prem L; Ottenhof, Harald; Singh, Mohan B

    2008-01-01

    Background Despite the importance of the shoot apical meristem (SAM) in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. Garden pea (Pisum sativum) is a well-established classic model species for genetics studies that has been used since the Mendel era. In addition, the availability of a plethora of developmental mutants makes pea an ideal crop legume for genomics studies. This study aims to utilise genomics tools in isolating genes that play potential roles in the regulation of SAM activity. Results In order to identify genes that are differentially expressed in the SAM, we generated 2735 ESTs from three cDNA libraries derived from freshly micro-dissected SAMs from 10-day-old garden peas (Pisum sativum cv Torsdag). Custom-designed oligonucleotide arrays were used to compare the transcriptional profiles of pea SAMs and non-meristematic tissues. A total of 184 and 175 transcripts were significantly up- or down-regulated in the pea SAM, respectively. As expected, close to 61% of the transcripts down-regulated in the SAM were found in the public database, whereas sequences from the same source only comprised 12% of the genes that were expressed at higher levels in the SAM. This highlights the under-representation of transcripts from the meristematic tissues in the current public pea protein database, and demonstrates the utility of our SAM EST collection as an essential genetic resource for revealing further information on the regulation of this developmental process. In addition to unknowns, many of the up-regulated transcripts are known to encode products associated with cell division and proliferation, epigenetic regulation, auxin

  8. Unveiling the transcriptional features associated with coccolithovirus infection of natural Emiliania huxleyi blooms.

    PubMed

    Pagarete, António; Le Corguillé, Gildas; Tiwari, Bela; Ogata, Hiroyuki; de Vargas, Colomban; Wilson, William H; Allen, Michael J

    2011-12-01

    Lytic viruses have been implicated in the massive cellular lysis observed during algal blooms, through which they assume a prominent role in oceanic carbon and nutrient flows. Despite their impact on biogeochemical cycling, the transcriptional dynamics of these important oceanic events is still poorly understood. Here, we employ an oligonucleotide microarray to monitor host (Emiliania huxleyi) and virus (coccolithovirus) transcriptomic features during the course of E. huxleyi blooms induced in seawater-based mesocosm enclosures. Host bloom development and subsequent coccolithovirus infection was associated with a major shift in transcriptional profile. In addition to the expected metabolic requirements typically associated with viral infection (amino acid and nucleotide metabolism, as well as transcription- and replication-associated functions), the results strongly suggest that the manipulation of lipid metabolism plays a fundamental role during host-virus interaction. The results herein reveal the scale, so far massively underestimated, of the transcriptional domination that occurs during coccolithovirus infection in the natural environment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. 5 CFR 1632.10 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maintain a complete transcript or electronic recording or transcription thereof adequate to record fully.... Transcriptions of recordings will disclose the identity of each speaker. (b) The Board will maintain either such a transcript, recording or transcription thereof, or a set of minutes that will fully and clearly...

  10. 5 CFR 1632.10 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maintain a complete transcript or electronic recording or transcription thereof adequate to record fully.... Transcriptions of recordings will disclose the identity of each speaker. (b) The Board will maintain either such a transcript, recording or transcription thereof, or a set of minutes that will fully and clearly...

  11. Electronic Transcripts: Past, Present, and Future

    ERIC Educational Resources Information Center

    Harris, Sarah; Hannah, Andrew; Stones, Dave; Morley, Robert

    2011-01-01

    Electronic transcripts are no longer a concept awaiting definition. They are here to stay. Although paper transcripts remain the standard--at least in terms of volume--an ever-increasing number and eventual majority of students and alumni will expect if not require electronic transcripts. College registrars and admissions officers' obligation to…

  12. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any, of...

  13. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any, of...

  14. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any, of...

  15. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any, of...

  16. Structural and transcriptional analysis of plant genes encoding the bifunctional lysine ketoglutarate reductase saccharopine dehydrogenase enzyme.

    PubMed

    Anderson, Olin D; Coleman-Derr, Devin; Gu, Yong Q; Heath, Sekou

    2010-06-16

    Among the dietary essential amino acids, the most severely limiting in the cereals is lysine. Since cereals make up half of the human diet, lysine limitation has quality/nutritional consequences. The breakdown of lysine is controlled mainly by the catabolic bifunctional enzyme lysine ketoglutarate reductase - saccharopine dehydrogenase (LKR/SDH). The LKR/SDH gene has been reported to produce transcripts for the bifunctional enzyme and separate monofunctional transcripts. In addition to lysine metabolism, this gene has been implicated in a number of metabolic and developmental pathways, which along with its production of multiple transcript types and complex exon/intron structure suggest an important node in plant metabolism. Understanding more about the LKR/SDH gene is thus interesting both from applied standpoint and for basic plant metabolism. The current report describes a wheat genomic fragment containing an LKR/SDH gene and adjacent genes. The wheat LKR/SDH genomic segment was found to originate from the A-genome of wheat, and EST analysis indicates all three LKR/SDH genes in hexaploid wheat are transcriptionally active. A comparison of a set of plant LKR/SDH genes suggests regions of greater sequence conservation likely related to critical enzymatic functions and metabolic controls. Although most plants contain only a single LKR/SDH gene per genome, poplar contains at least two functional bifunctional genes in addition to a monofunctional LKR gene. Analysis of ESTs finds evidence for monofunctional LKR transcripts in switchgrass, and monofunctional SDH transcripts in wheat, Brachypodium, and poplar. The analysis of a wheat LKR/SDH gene and comparative structural and functional analyses among available plant genes provides new information on this important gene. Both the structure of the LKR/SDH gene and the immediately adjacent genes show lineage-specific differences between monocots and dicots, and findings suggest variation in activity of LKR/SDH genes

  17. Demonstration of interleukin-1 beta transcripts in acute myeloblastic leukemic cells by in situ hybridization.

    PubMed

    Nakamura, M; Kanakura, Y; Furukawa, Y; Ernst, T J; Griffin, J D

    1990-07-01

    The cells from some patients with acute myeloblastic leukemia will secrete autostimulatory cytokines in tissue culture without the addition of stimulators such as phorbol 12-myristate 13-acetate. Production of interleukin-1 beta (IL-1 beta), for example, has been observed in up to 50% of cases. In order to investigate the nature of the cell secreting IL-1 beta in AML, we used an antisense RNA probe to detect specific IL-1 beta transcripts in individual leukemic cells by in situ hybridization. In fresh, uncultured cells, IL-1 beta transcripts were observed in 1-40% of undifferentiated leukemic blast cells in 17 of 19 cases. In situ hybridization was at least as sensitive as Northern blot analysis in detecting IL-1 beta transcripts. No correlation of IL-1 beta transcript expression with FAB classification was observed. Normal blood and bone marrow mononuclear cells did not contain cells expressing IL-1 beta transcripts. These results support the concept that the regulation of cytokine genes in AML cells is aberrant.

  18. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubin, Elizabeth A.; Fay, Allison; Xu, Catherine

    RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the -10 element where they likely facilitate DNA bending and impedemore » transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD.« less

  19. Sequential changes in chromatin structure during transcriptional activation in the beta globin LCR and its target gene.

    PubMed

    Kim, Kihoon; Kim, AeRi

    2010-09-01

    Chromatin structure is modulated during transcriptional activation. The changes include the association of transcriptional activators, formation of hypersensitive sites and covalent modifications of histones. To understand the order of the various changes accompanying transcriptional activation, we analyzed the mouse beta globin gene, which is transcriptionally inducible in erythroid MEL cells over a time course of HMBA treatment. Transcription of the globin genes requires the locus control region (LCR) consisting of several hypersensitive sites (HSs). Erythroid specific transcriptional activators such as NF-E2, GATA-1, TAL1 and EKLF were associated with the LCR in the uninduced state before transcriptional activation. The HSs of the LCR were formed in this state as revealed by high sensitivity to DNase I and MNase attack. However the binding of transcriptional activators and the depletion of histones were observed in the promoter of the beta globin gene only after transcriptional activation. In addition, various covalent histone modifications were sequentially detected in lysine residues of histone H3 during the activation. Acetylation of K9, K36 and K27 was notable in both LCR HSs and gene after induction but before transcriptional initiation. Inactive histone marks such as K9me2, K36me2 and K27me2 were removed coincident with transcriptional initiation in the gene region. Taken together, these results indicate that LCR has a substantially active structure in the uninduced state while transcriptional activation serially adds active marks, including histone modifications, and removes inactive marks in the target gene of the LCR. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.

    PubMed

    Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M

    2016-11-29

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.

  1. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage

    PubMed Central

    Hill, Sarah J.; Mordes, Daniel A.; Cameron, Lisa A.; Neuberg, Donna S.; Landini, Serena; Eggan, Kevin; Livingston, David M.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis. PMID:27849576

  2. Pnrc2 regulates 3'UTR-mediated decay of segmentation clock-associated transcripts during zebrafish segmentation.

    PubMed

    Gallagher, Thomas L; Tietz, Kiel T; Morrow, Zachary T; McCammon, Jasmine M; Goldrich, Michael L; Derr, Nicolas L; Amacher, Sharon L

    2017-09-01

    Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription.

    PubMed

    Ito, Jun; Fukaki, Hidehiro; Onoda, Makoto; Li, Lin; Li, Chuanyou; Tasaka, Masao; Furutani, Masahiko

    2016-06-07

    Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin.

  4. Transcriptional, post-transcriptional and chromatin-associated regulation of pri-miRNAs, pre-miRNAs and moRNAs

    PubMed Central

    Nepal, Chirag; Coolen, Marion; Hadzhiev, Yavor; Cussigh, Delphine; Mydel, Piotr; Steen, Vidar M.; Carninci, Piero; Andersen, Jesper B.; Bally-Cuif, Laure; Müller, Ferenc; Lenhard, Boris

    2016-01-01

    MicroRNAs (miRNAs) play a major role in the post-transcriptional regulation of target genes, especially in development and differentiation. Our understanding about the transcriptional regulation of miRNA genes is limited by inadequate annotation of primary miRNA (pri-miRNA) transcripts. Here, we used CAGE-seq and RNA-seq to provide genome-wide identification of the pri-miRNA core promoter repertoire and its dynamic usage during zebrafish embryogenesis. We assigned pri-miRNA promoters to 152 precursor-miRNAs (pre-miRNAs), the majority of which were supported by promoter associated post-translational histone modifications (H3K4me3, H2A.Z) and RNA polymerase II (RNAPII) occupancy. We validated seven miR-9 pri-miRNAs by in situ hybridization and showed similar expression patterns as mature miR-9. In addition, processing of an alternative intronic promoter of miR-9–5 was validated by 5′ RACE PCR. Developmental profiling revealed a subset of pri-miRNAs that are maternally inherited. Moreover, we show that promoter-associated H3K4me3, H2A.Z and RNAPII marks are not only present at pri-miRNA promoters but are also specifically enriched at pre-miRNAs, suggesting chromatin level regulation of pre-miRNAs. Furthermore, we demonstrated that CAGE-seq also detects 3′-end processing of pre-miRNAs on Drosha cleavage site that correlates with miRNA-offset RNAs (moRNAs) production and provides a new tool for detecting Drosha processing events and predicting pre-miRNA processing by a genome-wide assay. PMID:26673698

  5. Identification of a novel herpes simplex virus type 1 transcript and protein (AL3) expressed during latency.

    PubMed

    Jaber, Tareq; Henderson, Gail; Li, Sumin; Perng, Guey-Chuen; Carpenter, Dale; Wechsler, Steven L; Jones, Clinton

    2009-10-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is abundantly expressed in latently infected sensory neurons. In small animal models of infection, expression of the first 1.5 kb of LAT coding sequences is necessary and sufficient for wild-type reactivation from latency. The ability of LAT to inhibit apoptosis is important for reactivation from latency. Within the first 1.5 kb of LAT coding sequences and LAT promoter sequences, additional transcripts have been identified. For example, the anti-sense to LAT transcript (AL) is expressed in the opposite direction to LAT from the 5' end of LAT and LAT promoter sequences. In addition, the upstream of LAT (UOL) transcript is expressed in the LAT direction from sequences in the LAT promoter. Further examination of the first 1.5 kb of LAT coding sequences revealed two small ORFs that are anti-sense with respect to LAT (AL2 and AL3). A transcript spanning AL3 was detected in productively infected cells, mouse neuroblastoma cells stably expressing LAT and trigeminal ganglia (TG) of latently infected mice. Peptide-specific IgG directed against AL3 specifically recognized a protein migrating near 15 kDa in cells stably transfected with LAT, mouse neuroblastoma cells transfected with a plasmid containing the AL3 ORF and TG of latently infected mice. The inability to detect the AL3 protein during productive infection may have been because the 5' terminus of the AL3 transcript was downstream of the first in-frame methionine of the AL3 ORF during productive infection.

  6. Overview Article: Identifying transcriptional cis-regulatory modules in animal genomes

    PubMed Central

    Suryamohan, Kushal; Halfon, Marc S.

    2014-01-01

    Gene expression is regulated through the activity of transcription factors and chromatin modifying proteins acting on specific DNA sequences, referred to as cis-regulatory elements. These include promoters, located at the transcription initiation sites of genes, and a variety of distal cis-regulatory modules (CRMs), the most common of which are transcriptional enhancers. Because regulated gene expression is fundamental to cell differentiation and acquisition of new cell fates, identifying, characterizing, and understanding the mechanisms of action of CRMs is critical for understanding development. CRM discovery has historically been challenging, as CRMs can be located far from the genes they regulate, have few readily-identifiable sequence characteristics, and for many years were not amenable to high-throughput discovery methods. However, the recent availability of complete genome sequences and the development of next-generation sequencing methods has led to an explosion of both computational and empirical methods for CRM discovery in model and non-model organisms alike. Experimentally, CRMs can be identified through chromatin immunoprecipitation directed against transcription factors or histone post-translational modifications, identification of nucleosome-depleted “open” chromatin regions, or sequencing-based high-throughput functional screening. Computational methods include comparative genomics, clustering of known or predicted transcription factor binding sites, and supervised machine-learning approaches trained on known CRMs. All of these methods have proven effective for CRM discovery, but each has its own considerations and limitations, and each is subject to a greater or lesser number of false-positive identifications. Experimental confirmation of predictions is essential, although shortcomings in current methods suggest that additional means of validation need to be developed. PMID:25704908

  7. The C2H2-type transcription factor, FlbC, is involved in the transcriptional regulation of Aspergillus oryzae glucoamylase and protease genes specifically expressed in solid-state culture.

    PubMed

    Tanaka, Mizuki; Yoshimura, Midori; Ogawa, Masahiro; Koyama, Yasuji; Shintani, Takahiro; Gomi, Katsuya

    2016-07-01

    Aspergillus oryzae produces a large amount of secreted proteins in solid-state culture, and some proteins such as glucoamylase (GlaB) and acid protease (PepA) are specifically produced in solid-state culture, but rarely in submerged culture. From the disruption mutant library of A. oryzae transcriptional regulators, we successfully identified a disruption mutant showing an extremely low production level of GlaB but a normal level of α-amylase production. This strain was a disruption mutant of the C2H2-type transcription factor, FlbC, which is reported to be involved in the regulation of conidiospore development. Disruption mutants of other upstream regulators comprising a conidiation regulatory network had no apparent effect on GlaB production in solid-state culture. In addition to GlaB, the production of acid protease in solid-state culture was also markedly decreased by flbC disruption. Northern blot analyses revealed that transcripts of glaB and pepA were significantly decreased in the flbC disruption strain. These results suggested that FlbC is involved in the transcriptional regulation of genes specifically expressed under solid-state cultivation conditions, possibly independent of the conidiation regulatory network.

  8. Transcript and protein environmental biomarkers in fish--a review.

    PubMed

    Tom, Moshe; Auslander, Meirav

    2005-04-01

    The levels of contaminant-affected gene products (transcripts and proteins) are increasingly utilized as environmental biomarkers, and their appropriate implementation as diagnostic tools is discussed. The required characteristics of a gene product biomarker are accurate evaluation using properly normalized absolute units, aiming at long-term comparability of biomarker levels over a wide geographical range and among many laboratories. Quantitative RT-PCR and competitive ELISA are suggested as preferred evaluation methods for transcript and protein, respectively. Constitutively expressed RNAs or proteins which are part of the examined homogenate are suggested as normalizing agents, compensating for variable processing efficiency. Essential characterization of expression patterns is suggested, providing reference values to be compared to the monitored levels. This comparison would enable estimation of the intensity of biological effects of contaminants. Contaminant-independent reference expression patterns should include natural fluctuations of the biomarker level. Contaminant-dependent patterns should include dose response to model contaminants chronically administered in two environmentally-realistic routes, reaching extreme sub-lethal affected levels. Recent studies using fish as environmental sentinel species, applying gene products as environmental biomarkers, and implementing at least part of the depicted methodologies are reviewed.

  9. In silico methods for co-transcriptional RNA secondary structure prediction and for investigating alternative RNA structure expression.

    PubMed

    Meyer, Irmtraud M

    2017-05-01

    RNA transcripts are the primary products of active genes in any living organism, including many viruses. Their cellular destiny not only depends on primary sequence signals, but can also be determined by RNA structure. Recent experimental evidence shows that many transcripts can be assigned more than a single functional RNA structure throughout their cellular life and that structure formation happens co-transcriptionally, i.e. as the transcript is synthesised in the cell. Moreover, functional RNA structures are not limited to non-coding transcripts, but can also feature in coding transcripts. The picture that now emerges is that RNA structures constitute an additional layer of information that can be encoded in any RNA transcript (and on top of other layers of information such as protein-context) in order to exert a wide range of functional roles. Moreover, different encoded RNA structures can be expressed at different stages of a transcript's life in order to alter the transcript's behaviour depending on its actual cellular context. Similar to the concept of alternative splicing for protein-coding genes, where a single transcript can yield different proteins depending on cellular context, it is thus appropriate to propose the notion of alternative RNA structure expression for any given transcript. This review introduces several computational strategies that my group developed to detect different aspects of RNA structure expression in vivo. Two aspects are of particular interest to us: (1) RNA secondary structure features that emerge during co-transcriptional folding and (2) functional RNA structure features that are expressed at different times of a transcript's life and potentially mutually exclusive. Copyright © 2017. Published by Elsevier Inc.

  10. Strategies to identify natural antisense transcripts.

    PubMed

    Sun, Yulong; Li, Dijie; Zhang, Ru; Peng, Shang; Zhang, Ge; Yang, Tuanmin; Qian, Airong

    2017-01-01

    Natural antisense transcripts, originally considered as transcriptional noises arising from so-called "junk DNA″, are recently recognized as important modulators for gene regulation. They are prevalent in nearly all realms of life and have been found to modulate gene expression positively or negatively. By affecting almost all stages of gene expression range from pre-transcriptional, transcriptional and post-transcriptional to translation, NATs are fundamentally involved in various biological processes. However, compared to increasing huge data from transcriptional analysis especially high-throughput sequencing technologies (such as RNA-seq), limited functional NATs (around 70) are so far reported, which hinder our advanced comprehensive understanding for this field. Hence, efficient strategies for identifying NATs are urgently desired. In this review, we discussed the current strategies for identifying NATs, with a focus on the advantages, disadvantages, and applications of methods isolating functional NATs. Moreover, publicly available databases for NATs were also discussed. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Uridine 5'-Monophosphate Synthase Is Transcriptionally Regulated by Pyrimidine Levels in Nicotiana plumbaginifolia

    PubMed

    Santoso; Thornburg

    1998-02-01

    To understand the regulation and expression of pyrimidine biosynthesis in plants, we have examined the effect of the metabolic inhibitor 5-fluoroorotic acid (FOA) on uridine-5'-monophosphate synthase (UMPSase) expression in cell cultures of Nicotiana plumbaginifolia. UMPSase is the rate-limiting step of pyrimidine biosynthesis in plants. Addition of FOA causes an up-regulation of UMPSase enzyme activity in cell cultures after a lag phase of several days. Western-blot analysis demonstrated that the up-regulation in enzyme activity was caused by increased expression of the UMPSase protein. Northern-blot analysis demonstrated a higher level of UMPSase mRNA in the FOA-induced tissues than in control tissues. Run-on transcriptional assays showed that the UMPSase gene was transcriptionally activated after FOA treatment. The mechanism of toxicity of FOA is through thymine starvation. We found that addition of thymine abrogated the FOA-mediated up-regulation of UMPSase. In addition, methotrexate and aminopterin, which affect thymine levels by inhibiting dihydrofolate reductase, also up-regulate UMPSase in N. plumbaginifolia cells.

  12. Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing

    PubMed Central

    Pratt-Hyatt, Matthew; Pai, Dave A.; Haeusler, Rebecca A.; Wozniak, Glenn G.; Good, Paul D.; Miller, Erin L.; McLeod, Ian X.; Yates, John R.; Hopper, Anita K.; Engelke, David R.

    2013-01-01

    The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification. PMID:23898186

  13. Transcriptional responses in Honey Bee larvae infected with chalkbrood fungus

    PubMed Central

    2010-01-01

    Background Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that are differentially expressed in response to infection of honey bee larvae with the chalkbrood fungus, Ascosphaera apis. Results We used cDNA-AFLP ®Technology to profile transcripts in infected and uninfected bee larvae. From 64 primer combinations, over 7,400 transcriptionally-derived fragments were obtained A total of 98 reproducible polymorphic cDNA-AFLP fragments were excised and sequenced, followed by quantitative real-time RT-PCR (qRT-PCR) analysis of these and additional samples. We have identified a number of differentially-regulated transcripts that are implicated in general mechanisms of stress adaptation, including energy metabolism and protein transport. One of the most interesting differentially-regulated transcripts is for a chitinase-like enzyme that may be linked to anti-fungal activities in the honey bee larvae, similarly to gut and fat-body specific chitinases found in mosquitoes and the red flour beetle. Surprisingly, we did not find many components of the well-characterized NF-κB intracellular signaling pathways to be differentially-regulated using the cDNA-AFLP approach. Therefore, utilizing qRT-PCR, we probed some of the immune related genes to determine whether the lack of up-regulation of their transcripts in our analysis can be attributed to lack of immune activation or to limitations of the cDNA-AFLP approach. Conclusions Using a combination of cDNA-AFLP and qRT-PCR analyses, we were able to determine several key transcriptional events that constitute the overall effort in the honey bee larvae to fight natural fungal infection. Honey bee transcripts identified in this study are involved in critical functions related to

  14. Transcriptional responses in honey bee larvae infected with chalkbrood fungus.

    PubMed

    Aronstein, Katherine A; Murray, Keith D; Saldivar, Eduardo

    2010-06-21

    Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that are differentially expressed in response to infection of honey bee larvae with the chalkbrood fungus, Ascosphaera apis. We used cDNA-AFLP Technology to profile transcripts in infected and uninfected bee larvae. From 64 primer combinations, over 7,400 transcriptionally-derived fragments were obtained A total of 98 reproducible polymorphic cDNA-AFLP fragments were excised and sequenced, followed by quantitative real-time RT-PCR (qRT-PCR) analysis of these and additional samples.We have identified a number of differentially-regulated transcripts that are implicated in general mechanisms of stress adaptation, including energy metabolism and protein transport. One of the most interesting differentially-regulated transcripts is for a chitinase-like enzyme that may be linked to anti-fungal activities in the honey bee larvae, similarly to gut and fat-body specific chitinases found in mosquitoes and the red flour beetle. Surprisingly, we did not find many components of the well-characterized NF-kappaB intracellular signaling pathways to be differentially-regulated using the cDNA-AFLP approach. Therefore, utilizing qRT-PCR, we probed some of the immune related genes to determine whether the lack of up-regulation of their transcripts in our analysis can be attributed to lack of immune activation or to limitations of the cDNA-AFLP approach. Using a combination of cDNA-AFLP and qRT-PCR analyses, we were able to determine several key transcriptional events that constitute the overall effort in the honey bee larvae to fight natural fungal infection. Honey bee transcripts identified in this study are involved in critical functions related to transcriptional regulation, apoptotic

  15. Transport and transcriptional regulation of oil production in plants.

    PubMed

    Manan, Sehrish; Chen, Beibei; She, Guangbiao; Wan, Xiaochun; Zhao, Jian

    2017-08-01

    Triacylglycerol (TAG) serves as an energy reservoir and phospholipids as build blocks of biomembrane to support plant life. They also provide human with foods and nutrients. Multi-compartmentalized biosynthesis, trafficking or cross-membrane transport of lipid intermediates or precursors and their regulatory mechanisms are not fully understood. Recent progress has aided our understanding of how fatty acids (FAs) and phospholipids are transported between the chloroplast, the cytoplasm, and the endoplasmic reticulum (ER), and how the ins and outs of lipids take place in the peroxisome and other organelles for lipid metabolism and function. In addition, information regarding the transcriptional regulation network associated with FA and TAG biosynthesis has been further enriched. Recent breakthroughs made in lipid transport and transcriptional regulation has provided significant insights into our comprehensive understanding of plant lipid biology. This review attempts to highlight the recent progress made on lipid synthesis, transport, degradation, and their regulatory mechanisms. Metabolic engineering, based on these knowledge-powered technologies for production of edible oils or biofuels, is reviewed. The biotechnological application of metabolic enzymes, transcription factors and transporters, for oil production and composition improvement, are discussed in a broad context in order to provide a fresh scenario for researchers and to guide future research and applications.

  16. The Mission Transcript Collection: U.S. Human Spaceflight Missions from Mercury Redstone 3 to Apollo 17

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aboard every U.S. piloted spacecraft, from Mercury through Apollo, NASA installed tape recorders that captured nearly every word spoken by the astronauts during their history-making flights into space. For the first time ever, NASA has digitally scanned all of the transcripts made from both the onboard tapes and those tape recordings made on the ground from the air-to-ground transmissions and placed them on this two CD-ROM set. Gathered in this special collection are 80 transcripts totaling nearly 45,000 pages of text that cover every US human spaceflight from the first human Mercury mission through the last lunar landing flight of Apollo 17. Users of this CD will note that the quantity and type of transcripts made for each mission vary. For example, the Mercury flights each had one transcript whereas the Gemini missions produced several. Starting with the Gemini flights, NASA produced a Public Affairs Office (PAO) commentary version, as well as at least one "technical" air-to-ground transcript version, per mission. Most of the Apollo missions produced four transcripts per flight. These included the onboard voice data recorder transcripts made from the Data Storage Equipment (DSE) on the Command Module (CM), and the Data Storage Electronics Assembly (DSEA) onboard the Lunar Module (LM), in addition to the PAO commentary and air-to-ground technical transcripts. The CD set includes an index listing each transcript file by name. Some of the transcripts include a detailed explanation of their contents and how they were made. Also included in this collection is a listing of all the original air-to-ground audiotapes housed in NASA's archives from which many of these transcripts were made. We hope you find this collection of transcripts interesting and useful.

  17. ZBTB48 is both a vertebrate telomere-binding protein and a transcriptional activator.

    PubMed

    Jahn, Arne; Rane, Grishma; Paszkowski-Rogacz, Maciej; Sayols, Sergi; Bluhm, Alina; Han, Chung-Ting; Draškovič, Irena; Londoño-Vallejo, José Arturo; Kumar, Alan Prem; Buchholz, Frank; Butter, Falk; Kappei, Dennis

    2017-06-01

    Telomeres constitute the ends of linear chromosomes and together with the shelterin complex form a structure essential for genome maintenance and stability. In addition to the constitutive binding of the shelterin complex, other direct, yet more transient interactions are mediated by the CST complex and HOT1/HMBOX1, while subtelomeric variant repeats are recognized by NR2C/F transcription factors. Recently, the Kruppel-like zinc finger protein ZBTB48/HKR3/TZAP has been described as a novel telomere-associated factor in the vertebrate lineage. Here, we show that ZBTB48 binds directly both to telomeric and to subtelomeric variant repeat sequences. ZBTB48 is found at telomeres of human cancer cells regardless of the mode of telomere maintenance and it acts as a negative regulator of telomere length. In addition to its telomeric function, we demonstrate through a combination of RNAseq, ChIPseq and expression proteomics experiments that ZBTB48 acts as a transcriptional activator on a small set of target genes, including mitochondrial fission process 1 (MTFP1). This discovery places ZBTB48 at the interface of telomere length regulation, transcriptional control and mitochondrial metabolism. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Epigenetic regulation of intragenic transposable elements impacts gene transcription in Arabidopsis thaliana

    PubMed Central

    Le, Tu N.; Miyazaki, Yuji; Takuno, Shohei; Saze, Hidetoshi

    2015-01-01

    Genomes of higher eukaryotes, including plants, contain numerous transposable elements (TEs), that are often silenced by epigenetic mechanisms, such as histone modifications and DNA methylation. Although TE silencing adversely affects expression of nearby genes, recent studies reveal the presence of intragenic TEs marked by repressive heterochromatic epigenetic marks within transcribed genes. However, even for the well-studied plant model Arabidopsis thaliana, the abundance of intragenic TEs, how they are epigenetically regulated, and their potential impacts on host gene expression, remain unexplored. In this study, we comprehensively analyzed genome-wide distribution and epigenetic regulation of intragenic TEs in A. thaliana. Our analysis revealed that about 3% of TEs are located within gene bodies, dominantly at intronic regions. Most of them are shorter and less methylated than intergenic TEs, but they are still targeted by RNA-directed DNA methylation-dependent and independent pathways. Surprisingly, the heterochromatic epigenetic marks at TEs are maintained within actively transcribed genes. Moreover, the heterochromatic state of intronic TEs is critical for proper transcription of associated genes. Our study provides the first insight into how intragenic TEs affect the transcriptional landscape of the A. thaliana genome, and suggests the importance of epigenetic mechanisms for regulation of TEs within transcriptional gene units. PMID:25813042

  19. Estimating the similarity of alternative Affymetrix probe sets using transcriptional networks

    PubMed Central

    2013-01-01

    Background The usefulness of the data from Affymetrix microarray analysis depends largely on the reliability of the files describing the correspondence between probe sets, genes and transcripts. Particularly, when a gene is targeted by several probe sets, these files should give information about the similarity of each alternative probe set pair. Transcriptional networks integrate the multiple correlations that exist between all probe sets and supply much more information than a simple correlation coefficient calculated for two series of signals. In this study, we used the PSAWN (Probe Set Assignment With Networks) programme we developed to investigate whether similarity of alternative probe sets resulted in some specific properties. Findings PSAWNpy delivered a full textual description of each probe set and information on the number and properties of secondary targets. PSAWNml calculated the similarity of each alternative probe set pair and allowed finding relationships between similarity and localisation of probes in common transcripts or exons. Similar alternative probe sets had very low negative correlation, high positive correlation and similar neighbourhood overlap. Using these properties, we devised a test that allowed grouping similar probe sets in a given network. By considering several networks, additional information concerning the similarity reproducibility was obtained, which allowed defining the actual similarity of alternative probe set pairs. In particular, we calculated the common localisation of probes in exons and in known transcripts and we showed that similarity was correctly correlated with them. The information collected on all pairs of alternative probe sets in the most popular 3’ IVT Affymetrix chips is available in tabular form at http://bns.crbm.cnrs.fr/download.html. Conclusions These processed data can be used to obtain a finer interpretation when comparing microarray data between biological conditions. They are particularly well

  20. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription*

    PubMed Central

    Nadkarni, Aditi; Burns, John A.; Gandolfi, Alberto; Chowdhury, Moinuddin A.; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E.; Scicchitano, David A.

    2016-01-01

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N6-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N6-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N6-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N6-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N6-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. PMID:26559971

  1. Streamlining the medication process improves safety in the intensive care unit.

    PubMed

    Benoit, E; Eckert, P; Theytaz, C; Joris-Frasseren, M; Faouzi, M; Beney, J

    2012-09-01

    Multiple interventions were made to optimize the medication process in our intensive care unit (ICU). 1 Transcriptions from the medical order form to the administration plan were eliminated by merging both into a single document; 2 the new form was built in a logical sequence and was highly structured to promote completeness and standardization of information; 3 frequently used drug names, approved units, and fixed routes were pre-printed; 4 physicians and nurses were trained with regard to the correct use of the new form. This study was aimed at evaluating the impact of these interventions on clinically significant types of medication errors. Eight types of medication errors were measured by a prospective chart review before and after the interventions in the ICU of a public tertiary care hospital. We used an interrupted time-series design to control the secular trends. Over 85 days, 9298 lines of drug prescription and/or administration to 294 patients, corresponding to 754 patient-days were collected and analysed for the three series before and three series following the intervention. Global error rate decreased from 4.95 to 2.14% (-56.8%, P < 0.001). The safety of the medication process in our ICU was improved by simple and inexpensive interventions. In addition to the optimization of the prescription writing process, the documentation of intravenous preparation, and the scheduling of administration, the elimination of the transcription in combination with the training of users contributed to reducing errors and carried an interesting potential to increase safety. © 2012 The Authors. Acta Anaesthesiologica Scandinavica © 2012 The Acta Anaesthesiologica Scandinavica Foundation.

  2. Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing.

    PubMed

    Sánchez-León, Nidia; Arteaga-Vázquez, Mario; Alvarez-Mejía, César; Mendiola-Soto, Javier; Durán-Figueroa, Noé; Rodríguez-Leal, Daniel; Rodríguez-Arévalo, Isaac; García-Campayo, Vicenta; García-Aguilar, Marcelina; Olmedo-Monfil, Vianey; Arteaga-Sánchez, Mario; de la Vega, Octavio Martínez; Nobuta, Kan; Vemaraju, Kalyan; Meyers, Blake C; Vielle-Calzada, Jean-Philippe

    2012-06-01

    The life cycle of flowering plants alternates between a predominant sporophytic (diploid) and an ephemeral gametophytic (haploid) generation that only occurs in reproductive organs. In Arabidopsis thaliana, the female gametophyte is deeply embedded within the ovule, complicating the study of the genetic and molecular interactions involved in the sporophytic to gametophytic transition. Massively parallel signature sequencing (MPSS) was used to conduct a quantitative large-scale transcriptional analysis of the fully differentiated Arabidopsis ovule prior to fertilization. The expression of 9775 genes was quantified in wild-type ovules, additionally detecting >2200 new transcripts mapping to antisense or intergenic regions. A quantitative comparison of global expression in wild-type and sporocyteless (spl) individuals resulted in 1301 genes showing 25-fold reduced or null activity in ovules lacking a female gametophyte, including those encoding 92 signalling proteins, 75 transcription factors, and 72 RNA-binding proteins not reported in previous studies based on microarray profiling. A combination of independent genetic and molecular strategies confirmed the differential expression of 28 of them, showing that they are either preferentially active in the female gametophyte, or dependent on the presence of a female gametophyte to be expressed in sporophytic cells of the ovule. Among 18 genes encoding pentatricopeptide-repeat proteins (PPRs) that show transcriptional activity in wild-type but not spl ovules, CIHUATEOTL (At4g38150) is specifically expressed in the female gametophyte and necessary for female gametogenesis. These results expand the nature of the transcriptional universe present in the ovule of Arabidopsis, and offer a large-scale quantitative reference of global expression for future genomic and developmental studies.

  3. Conservation of Transcription Start Sites within Genes across a Bacterial Genus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Wenjun; Price, Morgan N.; Deutschbauer, Adam M.

    Transcription start sites (TSSs) lying inside annotated genes, on the same or opposite strand, have been observed in diverse bacteria, but the function of these unexpected transcripts is unclear. Here, we use the metal-reducing bacterium Shewanella oneidensis MR-1 and its relatives to study the evolutionary conservation of unexpected TSSs. Using high-resolution tiling microarrays and 5'-end RNA sequencing, we identified 2,531 TSSs in S. oneidensis MR-1, of which 18% were located inside coding sequences (CDSs). Comparative transcriptome analysis with seven additional Shewanella species revealed that the majority (76%) of the TSSs within the upstream regions of annotated genes (gTSSs) were conserved.more » Thirty percent of the TSSs that were inside genes and on the sense strand (iTSSs) were also conserved. Sequence analysis around these iTSSs showed conserved promoter motifs, suggesting that many iTSS are under purifying selection. Furthermore, conserved iTSSs are enriched for regulatory motifs, suggesting that they are regulated, and they tend to eliminate polar effects, which confirms that they are functional. In contrast, the transcription of antisense TSSs located inside CDSs (aTSSs) was significantly less likely to be conserved (22%). However, aTSSs whose transcription was conserved often have conserved promoter motifs and drive the expression of nearby genes. Overall, our findings demonstrate that some internal TSSs are conserved and drive protein expression despite their unusual locations, but the majority are not conserved and may reflect noisy initiation of transcription rather than a biological function.« less

  4. Mitochondrial transcription: Lessons from mouse models

    PubMed Central

    Peralta, Susana; Wang, Xiao; Moraes, Carlos T.

    2012-01-01

    Mammalian mitochondrial DNA (mtDNA) is a circular double-stranded DNA genome of ∼ 16.5 kilobase pairs (kb) that encodes 13 catalytic proteins of the ATP-producing oxidative phosphorylation system (OXPHOS), and the rRNAs and tRNAs required for the translation of the mtDNA transcripts. All the components needed for transcription and replication of the mtDNA are, therefore, encoded in the nuclear genome, as are the remaining components of the OXPHOS system and the mitochondrial translation machinery. Regulation of mtDNA gene expression is very important for modulating the OXPHOS capacity in response to metabolic requirements and in pathological processes. The combination of in vitro and in vivo studies has allowed the identification of the core machinery required for basal mtDNA transcription in mammals and a few proteins that regulate mtDNA transcription. Specifically, the generation of knockout mouse strains in the last several years, has been key to understanding the basis of mtDNA transcription in vivo. However, it is well accepted that many components of the transcription machinery are still unknown and little is known about mtDNA gene expression regulation under different metabolic requirements or disease processes. In this review we will focus on how the creation of knockout mouse models and the study of their phenotypes have contributed to the understanding of mitochondrial transcription in mammals. PMID:22120174

  5. The RNA polymerase II CTD coordinates transcription and RNA processing

    PubMed Central

    Hsin, Jing-Ping; Manley, James L.

    2012-01-01

    The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1–Ser2–Pro3–Thr4–Ser5–Pro6–Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity. PMID:23028141

  6. Expression Analysis of an R3-Type MYB Transcription Factor CPC-LIKE MYB4 (TRICHOMELESS2) and CPL4-Related Transcripts in Arabidopsis

    PubMed Central

    Tominaga-Wada, Rumi; Nukumizu, Yuka

    2012-01-01

    The CAPRICE (CPC)-like MYB gene family encodes R3-type MYB transcription factors in Arabidopsis. There are six additional CPC-like MYB sequences in the Arabidopsis genome, including TRYPTICHON (TRY), ENHANCER OF TRY AND CPC1 and 2 (ETC1 and ETC2), ENHANCER OF TRY AND CPC3/CPC-LIKE MYB3 (ETC3/CPL3), and TRICHOMELESS1 and 2 (TCL1 and TCL2). We independently identified CPC-LIKE MYB4 (CPL4), which was found to be identical to TCL2. RT-PCR analysis showed that CPL4 is strongly expressed in shoots, including true leaves, but not in roots. Promoter-GUS analyses indicated that CPL4 is specifically expressed in leaf blades. Although CPC expression was repressed in 35S::ETC1, 35S::ETC2 and 35S::CPL3 backgrounds, CPL4 expression was not affected by ETC1, ETC2 or CPL3 over-expression. Notably, several chimeric transcripts may result from inter-genic alternative splicing of CPL4 and ETC2, two tandemly repeated genes on chromosome II. At least two chimeric transcripts named CPL4-α and CPL4-β are expected to encode complete CPC-like MYB proteins. PMID:22489163

  7. SHPRH regulates rRNA transcription by recognizing the histone code in an mTOR-dependent manner.

    PubMed

    Lee, Deokjae; An, Jungeun; Park, Young-Un; Liaw, Hungjiun; Woodgate, Roger; Park, Jun Hong; Myung, Kyungjae

    2017-04-25

    Many DNA repair proteins have additional functions other than their roles in DNA repair. In addition to catalyzing PCNA polyubiquitylation in response to the stalling of DNA replication, SHPRH has the additional function of facilitating rRNA transcription by localizing to the ribosomal DNA (rDNA) promoter in the nucleoli. SHPRH was recruited to the rDNA promoter using its plant homeodomain (PHD), which interacts with histone H3 when the fourth lysine of H3 is not trimethylated. SHPRH enrichment at the rDNA promoter was inhibited by cell starvation, by treatment with actinomycin D or rapamycin, or by depletion of CHD4. SHPRH also physically interacted with the RNA polymerase I complex. Taken together, we provide evidence that SHPRH functions in rRNA transcription through its interaction with histone H3 in a mammalian target of rapamycin (mTOR)-dependent manner.

  8. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa)

    PubMed Central

    Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert

    2016-01-01

    A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189

  9. Transcription profiling suggests that mitochondrial topoisomerase IB acts as a topological barrier and regulator of mitochondrial DNA transcription.

    PubMed

    Dalla Rosa, Ilaria; Zhang, Hongliang; Khiati, Salim; Wu, Xiaolin; Pommier, Yves

    2017-12-08

    Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.

  10. Transcriptional regulation of mammalian selenoprotein expression

    PubMed Central

    Stoytcheva, Zoia R.; Berry, Marla J.

    2009-01-01

    Background Selenoproteins contain the twenty-first amino acid, selenocysteine, and are involved in cellular defenses against oxidative damage, important metabolic and developmental pathways, and responses to environmental challenges. Elucidating the mechanisms regulating selenoprotein expression at the transcriptional level is key to understanding how these mechanisms are called into play to respond to the changing environment. Methods This review summarizes published studies on transcriptional regulation of selenoprotein genes, focused primarily on genes whose encoded protein functions are at least partially understood. This is followed by in silico analysis of predicted regulatory elements in selenoprotein genes, including those in the aforementioned category as well as the genes whose functions are not known. Results Our findings reveal regulatory pathways common to many selenoprotein genes, including several involved in stress-responses. In addition, tissue-specific regulatory factors are implicated in regulating many selenoprotein genes. Conclusions These studies provide new insights into how selenoprotein genes respond to environmental and other challenges, and the roles these proteins play in allowing cells to adapt to these changes. General Significance Elucidating the regulatory mechanisms affecting selenoprotein expression is essential for understanding their roles in human diseases, and for developing diagnostic and potential therapeutic approaches to address dysregulation of members of this gene family. PMID:19465084

  11. Mitochondrial run-on transcription assay using biotin labeling.

    PubMed

    Kühn, Kristina

    2015-01-01

    RNA synthesis and different posttranscriptional processes shape the transcriptome of plant mitochondria. It is believed that mitochondrial transcription in plants is not stringently controlled, and that RNA degradation has a major impact on mitochondrial steady-state transcript levels. Nevertheless, the presence of two RNA polymerases with different gene specificities in mitochondria of dicotyledonous species indicates that transcriptional mechanisms may provide a means to control mitochondrial steady-state RNA pools and gene expression. To experimentally assess transcriptional activities in mitochondria, run-on transcription assays have been developed. These assays measure elongation rates for endogenous transcripts in freshly prepared mitochondrial extracts. The mitochondrial run-on transcription protocol described here has been optimized for the model plant Arabidopsis (Arabidopsis thaliana). It uses mitochondria prepared from soil-grown Arabidopsis plants and employs nonradioactive labeling for the subsequent detection of run-on transcripts.

  12. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription.

    PubMed

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H; Rothblum, Katrina; Schneider, David A; Rothblum, Lawrence I

    2013-03-29

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382-400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I.

  13. DNA Binding by the Ribosomal DNA Transcription Factor Rrn3 Is Essential for Ribosomal DNA Transcription*

    PubMed Central

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H.; Rothblum, Katrina; Schneider, David A.; Rothblum, Lawrence I.

    2013-01-01

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382–400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I. PMID:23393135

  14. Transcript of Audio Narrative Portion of: Scandinavian Heritage. A Set of Five Audio-Visual Film Strip/Cassette Presentations.

    ERIC Educational Resources Information Center

    Anderson, Gerald D.; Olson, David B.

    The document presents the transcript of the audio narrative portion of approximately 100 interviews with first and second generation Scandinavian immigrants to the United States. The document is intended for use by secondary school classroom teachers as they develop and implement educational programs related to the Scandinavian heritage in…

  15. The WRKY transcription factor family in Brachypodium distachyon.

    PubMed

    Tripathi, Prateek; Rabara, Roel C; Langum, Tanner J; Boken, Ashley K; Rushton, Deena L; Boomsma, Darius D; Rinerson, Charles I; Rabara, Jennifer; Reese, R Neil; Chen, Xianfeng; Rohila, Jai S; Rushton, Paul J

    2012-06-22

    A complete assembled genome sequence of wheat is not yet available. Therefore, model plant systems for wheat are very valuable. Brachypodium distachyon (Brachypodium) is such a system. The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating important agronomic traits. Studies of WRKY transcription factors in Brachypodium and wheat therefore promise to lead to new strategies for wheat improvement. We have identified and manually curated the WRKY transcription factor family from Brachypodium using a pipeline designed to identify all potential WRKY genes. 86 WRKY transcription factors were found, a total higher than all other current databases. We therefore propose that our numbering system (BdWRKY1-BdWRKY86) becomes the standard nomenclature. In the JGI v1.0 assembly of Brachypodium with the MIPS/JGI v1.0 annotation, nine of the transcription factors have no gene model and eleven gene models are probably incorrectly predicted. In total, twenty WRKY transcription factors (23.3%) do not appear to have accurate gene models. To facilitate use of our data, we have produced The Database of Brachypodium distachyon WRKY Transcription Factors. Each WRKY transcription factor has a gene page that includes predicted protein domains from MEME analyses. These conserved protein domains reflect possible input and output domains in signaling. The database also contains a BLAST search function where a large dataset of WRKY transcription factors, published genes, and an extensive set of wheat ESTs can be searched. We also produced a phylogram containing the WRKY transcription factor families from Brachypodium, rice, Arabidopsis, soybean, and Physcomitrella patens, together with published WRKY transcription factors from wheat. This phylogenetic tree provides evidence for orthologues, co-orthologues, and paralogues of Brachypodium WRKY transcription factors. The description of the WRKY transcription factor

  16. The Mediator Complex and Transcription Elongation

    PubMed Central

    Conaway, Ronald C.; Conaway, Joan Weliky

    2013-01-01

    Background Mediator is an evolutionarily conserved multisubunit RNA polymerase II (Pol II) coregulatory complex. Although Mediator was initially found to play a critical role in regulation of the initiation of Pol II transcription, recent studies have brought to light an expanded role for Mediator at post-initiation stages of transcription. Scope of review We provide a brief description of the structure of Mediator and its function in the regulation of Pol II transcription initiation, and we summarize recent findings implicating Mediator in the regulation of various stages of Pol II transcription elongation. Major conclusions Emerging evidence is revealing new roles for Mediator in nearly all stages of Pol II transcription, including initiation, promoter escape, elongation, pre-mRNA processing, and termination. General significance Mediator plays a central role in the regulation of gene expression by impacting nearly all stages of mRNA synthesis. PMID:22983086

  17. Interactome analysis of transcriptional coactivator multiprotein bridging factor 1 unveils a yeast AP-1-like transcription factor involved in oxidation tolerance of mycopathogen Beauveria bassiana.

    PubMed

    Chu, Xin-Ling; Dong, Wei-Xia; Ding, Jin-Li; Feng, Ming-Guang; Ying, Sheng-Hua

    2018-02-01

    Oxidation tolerance is an important determinant to predict the virulence and biocontrol potential of Beauveria bassiana, a well-known entomopathogenic fungus. As a transcriptional coactivator, multiprotein bridging factor 1 mediates the activity of transcription factor in diverse physiological processes, and its homolog in B. bassiana (BbMBF1) contributes to fungal oxidation tolerance. In this study, the BbMBF1-interactomes under oxidative stress and normal growth condition were deciphered by mass spectrometry integrated with the immunoprecipitation. BbMBF1p factor has a broad interaction with proteins that are involved in various cellular processes, and this interaction is dynamically regulated by oxidative stress. Importantly, a B. bassiana homolog of yeast AP-1-like transcription factor (BbAP-1) was specifically associated with the BbMBF1-interactome under oxidation and significantly contributed to fungal oxidation tolerance. In addition, qPCR analysis revealed that several antioxidant genes are jointly controlled by BbAP-1 and BbMBF1. Conclusively, it is proposed that BbMBF1p protein mediates BbAP-1p factor to transcribe the downstream antioxidant genes in B. bassiana under oxidative stress. This study demonstrates for the first time a proteomic view of the MBF1-interactome in fungi, and presents an initial framework to probe the transcriptional mechanism involved in fungal response to oxidation, which will provide a new strategy to improve the biocontrol efficacy of B. bassiana.

  18. Novel kinase fusion transcripts found in endometrial cancer

    PubMed Central

    Tamura, Ryo; Yoshihara, Kosuke; Yamawaki, Kaoru; Suda, Kazuaki; Ishiguro, Tatsuya; Adachi, Sosuke; Okuda, Shujiro; Inoue, Ituro; Verhaak, Roel G. W.; Enomoto, Takayuki

    2015-01-01

    Recent advances in RNA-sequencing technology have enabled the discovery of gene fusion transcripts in the transcriptome of cancer cells. However, it remains difficult to differentiate the therapeutically targetable fusions from passenger events. We have analyzed RNA-sequencing data and DNA copy number data from 25 endometrial cancer cell lines to identify potential therapeutically targetable fusion transcripts, and have identified 124 high-confidence fusion transcripts, of which 69% are associated with gene amplifications. As targetable fusion candidates, we focused on three in-frame kinase fusion transcripts that retain a kinase domain (CPQ-PRKDC, CAPZA2-MET, and VGLL4-PRKG1). We detected only CPQ-PRKDC fusion transcript in three of 122 primary endometrial cancer tissues. Cell proliferation of the fusion-positive cell line was inhibited by knocking down the expression of wild-type PRKDC but not by blocking the CPQ-PRKDC fusion transcript expression. Quantitative real-time RT-PCR demonstrated that the expression of the CPQ-PRKDC fusion transcript was significantly lower than that of wild-type PRKDC, corresponding to a low transcript allele fraction of this fusion, based on RNA-sequencing read counts. In endometrial cancers, the CPQ-PRKDC fusion transcript may be a passenger aberration related to gene amplification. Our findings suggest that transcript allele fraction is a useful predictor to find bona-fide therapeutic-targetable fusion transcripts. PMID:26689674

  19. Novel kinase fusion transcripts found in endometrial cancer.

    PubMed

    Tamura, Ryo; Yoshihara, Kosuke; Yamawaki, Kaoru; Suda, Kazuaki; Ishiguro, Tatsuya; Adachi, Sosuke; Okuda, Shujiro; Inoue, Ituro; Verhaak, Roel G W; Enomoto, Takayuki

    2015-12-22

    Recent advances in RNA-sequencing technology have enabled the discovery of gene fusion transcripts in the transcriptome of cancer cells. However, it remains difficult to differentiate the therapeutically targetable fusions from passenger events. We have analyzed RNA-sequencing data and DNA copy number data from 25 endometrial cancer cell lines to identify potential therapeutically targetable fusion transcripts, and have identified 124 high-confidence fusion transcripts, of which 69% are associated with gene amplifications. As targetable fusion candidates, we focused on three in-frame kinase fusion transcripts that retain a kinase domain (CPQ-PRKDC, CAPZA2-MET, and VGLL4-PRKG1). We detected only CPQ-PRKDC fusion transcript in three of 122 primary endometrial cancer tissues. Cell proliferation of the fusion-positive cell line was inhibited by knocking down the expression of wild-type PRKDC but not by blocking the CPQ-PRKDC fusion transcript expression. Quantitative real-time RT-PCR demonstrated that the expression of the CPQ-PRKDC fusion transcript was significantly lower than that of wild-type PRKDC, corresponding to a low transcript allele fraction of this fusion, based on RNA-sequencing read counts. In endometrial cancers, the CPQ-PRKDC fusion transcript may be a passenger aberration related to gene amplification. Our findings suggest that transcript allele fraction is a useful predictor to find bona-fide therapeutic-targetable fusion transcripts.

  20. Molecular Phylogenetic and Expression Analysis of the Complete WRKY Transcription Factor Family in Maize

    PubMed Central

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-01-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of <15%. The remaining 29 transcripts produced by 25 WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance. PMID:22279089

  1. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize.

    PubMed

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-04-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of <15%. The remaining 29 transcripts produced by 25 WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance.

  2. Intra- and intermolecular nonenzymatic ligations occur within transcripts derived from the peach latent mosaic viroid.

    PubMed

    Lafontaine, D; Beaudry, D; Marquis, P; Perreault, J P

    1995-10-01

    We report here the nonenzymatic self-ligation of transcripts corresponding to the peach latent mosaic viroid (PLMVd). This is the first description of this process with viroid sequences, although it has been reported to occur with human hepatitis delta virus RNA. Self-ligation occurs when the 5'-hydroxyl and the 2',3'-cyclic phosphate termini produced by the hammerhead self-cleavage of the viroid RNA are juxtaposed by the viroid rod-like structure, and a phosphodiester bond is formed between the two following hydrolysis of the cyclic phosphate. Unit-length transcripts undergo intramolecular folding, and their subsequent self-ligation produces circular molecules. The self-ligation observed in vitro may contribute to PLMVd circularization during rolling circle replication; however, this does not exclude the possibility that a host RNA ligase catalyzes the ligation steps in vivo. Like self-cleavage, self-ligation is probably an ancestral reaction, and the enzyme-catalyzed ligation most likely evolved from this primitive mechanism. Furthermore, the intermolecular self-ligation of annealed transcripts derived from PLMVd is demonstrated, suggesting a possible mechanism for sequence reassortment in viroids.

  3. A Conserved Structural Module Regulates Transcriptional Responses to Diverse Stress Signals in Bacteria

    PubMed Central

    Campbell, Elizabeth A.; Greenwell, Roger; Anthony, Jennifer R.; Wang, Sheng; Lim, Lionel; Das, Kalyan; Sofia, Heidi J.; Donohue, Timothy J.; Darst, Seth A.

    2008-01-01

    SUMMARY A transcriptional response to singlet oxygen in Rhodobacter sphaeroides is controlled by the group IV σ factor σE and its cognate anti-σ ChrR. Crystal structures of the σE/ChrR complex reveal a modular, two-domain architecture for ChrR. The ChrR N-terminal anti-σ domain (ASD) binds a Zn2+ ion, contacts σE, and is sufficient to inhibit σE-dependent transcription. The ChrR C-terminal domain adopts a cupin fold, can coordinate an additional Zn2+, and is required for the transcriptional response to singlet oxygen. Structure-based sequence analyses predict that the ASD defines a common structural fold among predicted group IV antiσs. These ASDs are fused to diverse C-terminal domains that are likely involved in responding to specific environmental signals that control the activity of their cognate σ factor. PMID:17803943

  4. The yeast Hot1 transcription factor is critical for activating a single target gene, STL1

    PubMed Central

    Bai, Chen; Tesker, Masha; Engelberg, David

    2015-01-01

    Transcription factors are commonly activated by signal transduction cascades and induce expression of many genes. They therefore play critical roles in determining the cell's fate. The yeast Hog1 MAP kinase pathway is believed to control the transcription of hundreds of genes via several transcription factors. To identify the bona fide target genes of Hog1, we inducibly expressed the spontaneously active variant Hog1D170A+F318L in cells lacking the Hog1 activator Pbs2. This system allowed monitoring the effects of Hog1 by itself. Expression of Hog1D170A+F318L in pbs2∆ cells imposed induction of just 105 and suppression of only 26 transcripts by at least twofold. We looked for the Hog1-responsive element within the promoter of the most highly induced gene, STL1 (88-fold). A novel Hog1 responsive element (HoRE) was identified and shown to be the direct target of the transcription factor Hot1. Unexpectedly, we could not find this HoRE in any other yeast promoter. In addition, the only gene whose expression was abolished in hot1∆ cells was STL1. Thus Hot1 is essential for transcription of just one gene, STL1. Hot1 may represent a class of transcription factors that are essential for transcription of a very few genes or even just one. PMID:25904326

  5. saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription.

    PubMed

    Portnoy, Victoria; Lin, Szu Hua Sharon; Li, Kathy H; Burlingame, Alma; Hu, Zheng-Hui; Li, Hao; Li, Long-Cheng

    2016-03-01

    Small activating RNAs (saRNAs) targeting specific promoter regions are able to stimulate gene expression at the transcriptional level, a phenomenon known as RNA activation (RNAa). It is known that RNAa depends on Ago2 and is associated with epigenetic changes at the target promoters. However, the precise molecular mechanism of RNAa remains elusive. Using human CDKN1A (p21) as a model gene, we characterized the molecular nature of RNAa. We show that saRNAs guide Ago2 to and associate with target promoters. saRNA-loaded Ago2 facilitates the assembly of an RNA-induced transcriptional activation (RITA) complex, which, in addition to saRNA-Ago2 complex, includes RHA and CTR9, the latter being a component of the PAF1 complex. RITA interacts with RNA polymerase II to stimulate transcription initiation and productive elongation, accompanied by monoubiquitination of histone 2B. Our results establish the existence of a cellular RNA-guided genome-targeting and transcriptional activation mechanism and provide important new mechanistic insights into the RNAa process.

  6. Fructose bisphosphate aldolase is involved in the control of RNA polymerase III-directed transcription.

    PubMed

    Cieśla, Małgorzata; Mierzejewska, Jolanta; Adamczyk, Małgorzata; Farrants, Ann-Kristin Östlund; Boguta, Magdalena

    2014-06-01

    Yeast Fba1 (fructose 1,6-bisphosphate aldolase) is a glycolytic enzyme essential for viability. The overproduction of Fba1 enables overcoming of a severe growth defect caused by a missense mutation rpc128-1007 in a gene encoding the C128 protein, the second largest subunit of the RNA polymerase III complex. The suppression of the growth phenotype by Fba1 is accompanied by enhanced de novo tRNA transcription in rpc128-1007 cells. We inactivated residues critical for the catalytic activity of Fba1. Overproduction of inactive aldolase still suppressed the rpc128-1007 phenotype, indicating that the function of this glycolytic enzyme in RNA polymerase III transcription is independent of its catalytic activity. Yeast Fba1 was determined to interact with the RNA polymerase III complex by coimmunoprecipitation. Additionally, a role of aldolase in control of tRNA transcription was confirmed by ChIP experiments. The results indicate a novel direct relationship between RNA polymerase III transcription and aldolase. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. GGRNA: an ultrafast, transcript-oriented search engine for genes and transcripts

    PubMed Central

    Naito, Yuki; Bono, Hidemasa

    2012-01-01

    GGRNA (http://GGRNA.dbcls.jp/) is a Google-like, ultrafast search engine for genes and transcripts. The web server accepts arbitrary words and phrases, such as gene names, IDs, gene descriptions, annotations of gene and even nucleotide/amino acid sequences through one simple search box, and quickly returns relevant RefSeq transcripts. A typical search takes just a few seconds, which dramatically enhances the usability of routine searching. In particular, GGRNA can search sequences as short as 10 nt or 4 amino acids, which cannot be handled easily by popular sequence analysis tools. Nucleotide sequences can be searched allowing up to three mismatches, or the query sequences may contain degenerate nucleotide codes (e.g. N, R, Y, S). Furthermore, Gene Ontology annotations, Enzyme Commission numbers and probe sequences of catalog microarrays are also incorporated into GGRNA, which may help users to conduct searches by various types of keywords. GGRNA web server will provide a simple and powerful interface for finding genes and transcripts for a wide range of users. All services at GGRNA are provided free of charge to all users. PMID:22641850

  8. GGRNA: an ultrafast, transcript-oriented search engine for genes and transcripts.

    PubMed

    Naito, Yuki; Bono, Hidemasa

    2012-07-01

    GGRNA (http://GGRNA.dbcls.jp/) is a Google-like, ultrafast search engine for genes and transcripts. The web server accepts arbitrary words and phrases, such as gene names, IDs, gene descriptions, annotations of gene and even nucleotide/amino acid sequences through one simple search box, and quickly returns relevant RefSeq transcripts. A typical search takes just a few seconds, which dramatically enhances the usability of routine searching. In particular, GGRNA can search sequences as short as 10 nt or 4 amino acids, which cannot be handled easily by popular sequence analysis tools. Nucleotide sequences can be searched allowing up to three mismatches, or the query sequences may contain degenerate nucleotide codes (e.g. N, R, Y, S). Furthermore, Gene Ontology annotations, Enzyme Commission numbers and probe sequences of catalog microarrays are also incorporated into GGRNA, which may help users to conduct searches by various types of keywords. GGRNA web server will provide a simple and powerful interface for finding genes and transcripts for a wide range of users. All services at GGRNA are provided free of charge to all users.

  9. Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development

    PubMed Central

    Yan, Qin; Gong, Lili; Deng, Mi; Zhang, Lan; Sun, Shuming; Liu, Jiao; Ma, Haili; Yuan, Dan; Chen, Pei-Chao; Hu, Xiaohui; Liu, Jinping; Qin, Jichao; Xiao, Ling; Huang, Xiao-Qin; Zhang, Jian; Wan-Cheng Li, David

    2010-01-01

    Pax-6 is an evolutionarily conserved transcription factor regulating brain and eye development. Four Pax-6 isoforms have been reported previously. Although the longer Pax-6 isoforms (p46 and p48) bear two DNA-binding domains, the paired domain (PD) and the homeodomain (HD), the shorter Pax-6 isoform p32 contains only the HD for DNA binding. Although a third domain, the proline-, serine- and threonine-enriched activation (PST) domain, in the C termini of all Pax-6 isoforms mediates their transcriptional modulation via phosphorylation, how p32 Pax-6 could regulate target genes remains to be elucidated. In the present study, we show that sumoylation at K91 is required for p32 Pax-6 to bind to a HD-specific site and regulate expression of target genes. First, in vitro-synthesized p32 Pax-6 alone cannot bind the P3 sequence, which contains the HD recognition site, unless it is preincubated with nuclear extracts precleared by anti–Pax-6 but not by anti-small ubiquitin-related modifier 1 (anti-SUMO1) antibody. Second, in vitro-synthesized p32 Pax-6 can be sumoylated by SUMO1, and the sumoylated p32 Pax-6 then can bind to the P3 sequence. Third, Pax-6 and SUMO1 are colocalized in the embryonic optic and lens vesicles and can be coimmunoprecipitated. Finally, SUMO1-conjugated p32 Pax-6 exists in both the nucleus and cytoplasm, and sumoylation significantly enhances the DNA-binding ability of p32 Pax-6 and positively regulates gene expression. Together, our results demonstrate that sumoylation activates p32 Pax-6 in both DNA-binding and transcriptional activities. In addition, our studies demonstrate that p32 and p46 Pax-6 possess differential DNA-binding and regulatory activities. PMID:21084637

  10. The Intertwined Roles of Transcription and Repair Proteins

    PubMed Central

    Fong, Yick W.; Cattoglio, Claudia; Tjian, Robert

    2014-01-01

    Transcription is apparently risky business. Its intrinsic mutagenic potential must be kept in check by networks of DNA repair factors that monitor the transcription process to repair DNA lesions that could otherwise compromise transcriptional fidelity and genome integrity. Intriguingly, recent studies point to an even more direct function of DNA repair complexes as co-activators of transcription and the unexpected role of “scheduled” DNA damage/repair at gene promoters. Paradoxically, spontaneous DNA double-strand breaks also induce ectopic transcription that is essential for repair. Thus, transcription, DNA damage and repair may be more physically and functionally intertwined than previously appreciated. PMID:24207023

  11. NF-Y loss triggers p53 stabilization and apoptosis in HPV18-positive cells by affecting E6 transcription.

    PubMed

    Benatti, Paolo; Basile, Valentina; Dolfini, Diletta; Belluti, Silvia; Tomei, Margherita; Imbriano, Carol

    2016-07-19

    The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the transformation of epithelial cells, through the disruption of p53 and Rb function. The binding of cellular transcription factors to cis-regulatory elements in the viral Upstream Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 transcription through the transactivation of multiple cellular transcription factors. NF-YA depletion inhibits the expression of E6 and E7 genes and re-establishes functional p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging agent Doxorubicin, via p53-mediated transcriptional response.

  12. Transcription through enhancers suppresses their activity in Drosophila

    PubMed Central

    2013-01-01

    Background Enhancer elements determine the level of target gene transcription in a tissue-specific manner, providing for individual patterns of gene expression in different cells. Knowledge of the mechanisms controlling enhancer action is crucial for understanding global regulation of transcription. In particular, enhancers are often localized within transcribed regions of the genome. A number of experiments suggest that transcription can have both positive and negative effects on regulatory elements. In this study, we performed direct tests for the effect of transcription on enhancer activity. Results Using a transgenic reporter system, we investigated the relationship between the presence of pass-through transcription and the activity of Drosophila enhancers controlling the expression of the white and yellow genes. The results show that transcription from different promoters affects the activity of enhancers, counteracting their ability to activate the target genes. As expected, the presence of a transcriptional terminator between the inhibiting promoter and the affected enhancer strongly reduces the suppression. Moreover, transcription leads to dislodging of the Zeste protein that is responsible for the enhancer-dependent regulation of the white gene, suggesting a 'transcription interference’ mechanism for this regulation. Conclusions Our findings suggest a role for pass-through transcription in negative regulation of enhancer activity. PMID:24279291

  13. Nonproteolytic Roles of 19S ATPases in Transcription of CIITApIV Genes

    PubMed Central

    Maganti, Nagini; Moody, Tomika D.; Truax, Agnieszka D.; Thakkar, Meghna; Spring, Alexander M.; Germann, Markus W.; Greer, Susanna F.

    2014-01-01

    Accumulating evidence shows the 26S proteasome is involved in the regulation of gene expression. We and others have demonstrated that proteasome components bind to sites of gene transcription, regulate covalent modifications to histones, and are involved in the assembly of activator complexes in mammalian cells. The mechanisms by which the proteasome influences transcription remain unclear, although prior observations suggest both proteolytic and non-proteolytic activities. Here, we define novel, non-proteolytic, roles for each of the three 19S heterodimers, represented by the 19S ATPases Sug1, S7, and S6a, in mammalian gene expression using the inflammatory gene CIITApIV. These 19S ATPases are recruited to induced CIITApIV promoters and also associate with CIITA coding regions. Additionally, these ATPases interact with elongation factor PTEFb complex members CDK9 and Hexim-1 and with Ser5 phosphorylated RNA Pol II. Both the generation of transcripts from CIITApIV and efficient recruitment of RNA Pol II to CIITApIV are negatively impacted by siRNA mediated knockdown of these 19S ATPases. Together, these results define novel roles for 19S ATPases in mammalian gene expression and indicate roles for these ATPases in promoting transcription processes. PMID:24625964

  14. Short-term transcriptional response of microbial communities to N-fertilization in pine forest soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Michaeline Burr Nelson; Johansen, Renee; Lopez, Deanna

    Numerous studies have examined the long-term effect of experimental nitrogen (N) deposition in terrestrial ecosystems, however N-specific mechanistic markers are difficult to disentangle from responses to other environmental changes. The strongest picture of N-responsive mechanistic markers is likely to arise from measurements over a short (hours to days) timescale immediately after inorganic N deposition. Therefore, we assessed the short-term (3-day) transcriptional response of microbial communities in two soil strata from a pine forest to a high dose of N fertilization (c.a. 1mg/g of soil material) in laboratory microcosms. Here, we hypothesized that N fertilization would repress the expression of fungalmore » and bacterial genes linked to N-mining from plant litter. However, despite N-suppression of microbial respiration, the most pronounced differences in functional gene expression were between strata rather than in response to the N addition. Overall, ~4% of metabolic genes changed in expression with N addition, while three times as many (~12%) were significantly different across the different soil strata in the microcosms. In particular, we found little evidence of N changing expression levels of metabolic genes associated with complex carbohydrate degradation (CAZymes) or inorganic N utilization. This suggests that direct N repression of microbial functional gene expression is not the principle mechanism for reduced soil respiration immediately after N deposition. Instead, changes in expression with N addition occurred primarily in general cell maintenance areas, for example in ribosome-related transcripts. Transcriptional changes in functional gene abundance in response to N-addition observed in longer-term field studies likely results from changes in microbial composition.« less

  15. Short-term transcriptional response of microbial communities to N-fertilization in pine forest soil

    DOE PAGES

    Albright, Michaeline Burr Nelson; Johansen, Renee; Lopez, Deanna; ...

    2018-05-25

    Numerous studies have examined the long-term effect of experimental nitrogen (N) deposition in terrestrial ecosystems, however N-specific mechanistic markers are difficult to disentangle from responses to other environmental changes. The strongest picture of N-responsive mechanistic markers is likely to arise from measurements over a short (hours to days) timescale immediately after inorganic N deposition. Therefore, we assessed the short-term (3-day) transcriptional response of microbial communities in two soil strata from a pine forest to a high dose of N fertilization (c.a. 1mg/g of soil material) in laboratory microcosms. Here, we hypothesized that N fertilization would repress the expression of fungalmore » and bacterial genes linked to N-mining from plant litter. However, despite N-suppression of microbial respiration, the most pronounced differences in functional gene expression were between strata rather than in response to the N addition. Overall, ~4% of metabolic genes changed in expression with N addition, while three times as many (~12%) were significantly different across the different soil strata in the microcosms. In particular, we found little evidence of N changing expression levels of metabolic genes associated with complex carbohydrate degradation (CAZymes) or inorganic N utilization. This suggests that direct N repression of microbial functional gene expression is not the principle mechanism for reduced soil respiration immediately after N deposition. Instead, changes in expression with N addition occurred primarily in general cell maintenance areas, for example in ribosome-related transcripts. Transcriptional changes in functional gene abundance in response to N-addition observed in longer-term field studies likely results from changes in microbial composition.« less

  16. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA

    PubMed Central

    Hubin, Elizabeth A; Fay, Allison; Xu, Catherine; Bean, James M; Saecker, Ruth M; Glickman, Michael S; Darst, Seth A; Campbell, Elizabeth A

    2017-01-01

    RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the −10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD. DOI: http://dx.doi.org/10.7554/eLife.22520.001 PMID:28067618

  17. Functional Characterization of Alternate Optimal Solutions of Escherichia coli's Transcriptional and Translational Machinery

    PubMed Central

    Thiele, Ines; Fleming, Ronan M.T.; Bordbar, Aarash; Schellenberger, Jan; Palsson, Bernhard Ø.

    2010-01-01

    Abstract The constraint-based reconstruction and analysis approach has recently been extended to describe Escherichia coli's transcriptional and translational machinery. Here, we introduce the concept of reaction coupling to represent the dependency between protein synthesis and utilization. These coupling constraints lead to a significant contraction of the feasible set of steady-state fluxes. The subset of alternate optimal solutions (AOS) consistent with maximal ribosome production was calculated. The majority of transcriptional and translational reactions were active for all of these AOS, showing that the network has a low degree of redundancy. Furthermore, all calculated AOS contained the qualitative expression of at least 92% of the known essential genes. Principal component analysis of AOS demonstrated that energy currencies (ATP, GTP, and phosphate) dominate the network's capability to produce ribosomes. Additionally, we identified regulatory control points of the network, which include the transcription reactions of σ70 (RpoD) as well as that of a degradosome component (Rne) and of tRNA charging (ValS). These reactions contribute significant variance among AOS. These results show that constraint-based modeling can be applied to gain insight into the systemic properties of E. coli's transcriptional and translational machinery. PMID:20483314

  18. Transcriptional regulation of ceruloplasmin gene expression during inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitlin, J.D.

    1988-05-05

    Mixed sequence oligonucleotides were used to isolate a series of acute-phase human liver cDNA clones corresponding to the serum ..cap alpha../sub 2/-globulin ceruloplasmin. These clones were characterized, sequenced, and used to analyze changes in hepatic ceruloplasmin mRNA content during inflammation. In all species examined, hepatic ceruloplasmin mRNA content increased approximately 6-10-fold over control values within 24 h following the induction of inflammation. The mechanisms leading to this increase in hepatic ceruloplasmin mRNA content were studied following turpentine-induced inflammation in Syrian hamsters. Nuclear run-on assays demonstrated an increase in the relative rate of transcription of the ceruloplasmin gene within 3 hmore » following induction, reaching maximum values by 18 h. Hepatic ceruloplasmin mRNA content increased 2-fold within 12 h following induction, reached maximum values by 24 h, and returned to control within 72 h. In contrast, serum ceruloplasmin concentration did not increase until 36 h, reached maximal levels by 120 h, and remained elevated for the course of the study. These data indicate that inflammation leads to a rapid increase in hepatic ceruloplasmin mRNA content. This increase is largely the result of increased ceruloplasmin gene transcription, but comparison of the relative rate of transcription and mRNA accumulation suggests that changes in ceruloplasmin mRNA turnover are also involved. In addition, translational and/or post-translational mechanisms must account for the observed changes in serum ceruloplasmin concentration seen during inflammation.« less

  19. The transcriptional diversity of 25 Drosophila cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherbas, Lucy; Willingham, Aarron; Zhang, Dayu

    2010-12-22

    with emphasis on what those patterns reveal about the origins of the lines and the stability of spatial expression patterns. In addition, we offer an initial analysis of previously unannotated transcripts in the cell lines.« less

  20. Shift from posttranscriptional to predominant transcriptional control of the expression of the GM-CSF gene during activation of human Jurkat cells.

    PubMed

    Razanajaona, D; Maroc, C; Lopez, M; Mannoni, P; Gabert, J

    1992-05-01

    The expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene is differentially regulated in various cell types. We investigated the mechanisms controlling its expression in 12-O-tetradecanoylphorbol-13-acetate plus phytohemagglutinin-stimulated Jurkat cells, a human T-cell line. In unstimulated cells, GM-CSF mRNA was undetectable by Northern blot. Upon activation, it was detected from 3 h onward, with a progressive increase in the levels of the transcript up to 24 h of stimulation. Whereas cycloheximide treatment at the time of stimulation blocked mRNA induction, its addition at later times resulted in a marked increase in transcript levels. Run-on analysis showed that transcription of the GM-CSF gene was low to undetectable in unstimulated cells; stimulation led to transcriptional activation, which was weak at 6 h but had increased 16-fold at 24 h. In addition, the mRNA half-life decreased during activation, from 2.5 h at 6 h down to 45 min at 24 h. Cycloheximide treatment increased GM-CSF mRNA half-life (3- and 4-fold, respectively). Our results show: (a) both transcriptional and posttranscriptional signals regulate GM-CSF mRNA levels in activated Jurkat cells, (b) de novo protein synthesis is required for mRNA induction, whereas destabilizing labile proteins control the transcript stability, and (c) a shift from a posttranscriptional to a predominant transcriptional control of GM-CSF gene expression occurs during activation.

  1. Fatty Acid–Regulated Transcription Factors in the Liver

    PubMed Central

    Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.

    2014-01-01

    Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177

  2. Mathematics for the Elementary School, Unit 15, Addition and Linear Translations.

    ERIC Educational Resources Information Center

    Clark, Julia, Ed.; Myers, Donald E., Ed.

    The Minnesota School Mathematics and Science Teaching (MINNEMAST) Project is characterized by its emphasis on the coordination of mathematics and science in the elementary school curriculum. Units are planned to provide children with activities in which they learn various concepts from both subject areas. Each subject is used to support and…

  3. Repression of chimeric transcripts emanating from endogenous retrotransposons by a sequence-specific transcription factor

    PubMed Central

    2014-01-01

    Background Retroviral elements are pervasively transcribed and dynamically regulated during development. While multiple histone- and DNA-modifying enzymes have broadly been associated with their global silencing, little is known about how the many diverse retroviral families are each selectively recognized. Results Here we show that the zinc finger protein Krüppel-like Factor 3 (KLF3) specifically silences transcription from the ORR1A0 long terminal repeat in murine fetal and adult erythroid cells. In the absence of KLF3, we detect widespread transcription from ORR1A0 elements driven by the master erythroid regulator KLF1. In several instances these aberrant transcripts are spliced to downstream genic exons. One such chimeric transcript produces a novel, dominant negative isoform of PU.1 that can induce erythroid differentiation. Conclusions We propose that KLF3 ensures the integrity of the murine erythroid transcriptome through the selective repression of a particular retroelement and is likely one of multiple sequence-specific factors that cooperate to achieve global silencing. PMID:24946810

  4. USF-related transcription factor, HIV-TF1, stimulates transcription of human immunodeficiency virus-1.

    PubMed

    Maekawa, T; Sudo, T; Kurimoto, M; Ishii, S

    1991-09-11

    The transcription factor HIV-TF1, which binds to a region about 60 bp upstream from the enhancer of the human immunodeficiency virus-1 (HIV-1), was purified from human B cells. HIV-TF1 had a molecular weight of 39,000. Binding of HIV-TF1 to the HIV long terminal repeat (LTR) activated transcription from the HIV promoter in vitro. The HIV-TF1-binding site in HIV LTR was similar to the site recognized by upstream stimulatory factor (USF) in the adenovirus major late promoter. DNA-binding properties of HIV-TF1 suggested that HIV-TF1 might be identical or related to USF. Interestingly, treatment of purified HIV-TF1 by phosphatase greatly reduced its DNA-binding activity, suggesting that phosphorylation of HIV-TF1 was essential for DNA binding. The disruption of HIV-TF1-binding site induced a 60% decrease in the level of transcription from the HIV promoter in vivo. These results suggest that HIV-TF1 is involved in transcriptional regulation of HIV-1.

  5. 75 FR 29680 - Importation of Mexican Hass Avocados; Additional Shipping Options

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... Avocados; Additional Shipping Options AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... originating in Michoacan, Mexico, into the United States by adding the option to ship avocados to the United... additional options for shipping Hass avocados from Mexico to the United States and allow Mexican exporters to...

  6. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    PubMed

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  7. Convergent transcription in the butyrolactone regulon in Streptomyces coelicolor confers a bistable genetic switch for antibiotic biosynthesis.

    PubMed

    Chatterjee, Anushree; Drews, Laurie; Mehra, Sarika; Takano, Eriko; Kaznessis, Yiannis N; Hu, Wei-Shou

    2011-01-01

    cis-encoded antisense RNAs (cis asRNA) have been reported to participate in gene expression regulation in both eukaryotic and prokaryotic organisms. Its presence in Streptomyces coelicolor has also been reported recently; however, its role has yet to be fully investigated. Using mathematical modeling we explore the role of cis asRNA produced as a result of convergent transcription in scbA-scbR genetic switch. scbA and scbR gene pair, encoding repressor-amplifier proteins respectively, mediates the synthesis of a signaling molecule, the γ-butyrolactone SCB1 and controls the onset of antibiotic production. Our model considers that transcriptional interference caused by convergent transcription of two opposing RNA polymerases results in fatal collision and transcriptional termination, which suppresses transcription efficiency. Additionally, convergent transcription causes sense and antisense interactions between complementary sequences from opposing strands, rendering the full length transcript inaccessible for translation. We evaluated the role of transcriptional interference and the antisense effect conferred by convergent transcription on the behavior of scbA-scbR system. Stability analysis showed that while transcriptional interference affects the system, it is asRNA that confers scbA-scbR system the characteristics of a bistable switch in response to the signaling molecule SCB1. With its critical role of regulating the onset of antibiotic synthesis the bistable behavior offers this two gene system the needed robustness to be a genetic switch. The convergent two gene system with potential of transcriptional interference is a frequent feature in various genomes. The possibility of asRNA regulation in other such gene-pairs is yet to be examined.

  8. iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators and protein kinases

    USDA-ARS?s Scientific Manuscript database

    Transcription factors (TFs) are proteins that regulate the expression of target genes by binding to specific elements in their regulatory regions. Transcriptional regulators (TRs) also regulate the expression of target genes; however, they operate indirectly via interaction with the basal transcript...

  9. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription.

    PubMed

    Nadkarni, Aditi; Burns, John A; Gandolfi, Alberto; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E; Scicchitano, David A

    2016-01-08

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. New insights into transcription fidelity: thermal stability of non-canonical structures in template DNA regulates transcriptional arrest, pause, and slippage.

    PubMed

    Tateishi-Karimata, Hisae; Isono, Noburu; Sugimoto, Naoki

    2014-01-01

    The thermal stability and topology of non-canonical structures of G-quadruplexes and hairpins in template DNA were investigated, and the effect of non-canonical structures on transcription fidelity was evaluated quantitatively. We designed ten template DNAs: A linear sequence that does not have significant higher-order structure, three sequences that form hairpin structures, and six sequences that form G-quadruplex structures with different stabilities. Templates with non-canonical structures induced the production of an arrested, a slipped, and a full-length transcript, whereas the linear sequence produced only a full-length transcript. The efficiency of production for run-off transcripts (full-length and slipped transcripts) from templates that formed the non-canonical structures was lower than that from the linear. G-quadruplex structures were more effective inhibitors of full-length product formation than were hairpin structure even when the stability of the G-quadruplex in an aqueous solution was the same as that of the hairpin. We considered that intra-polymerase conditions may differentially affect the stability of non-canonical structures. The values of transcription efficiencies of run-off or arrest transcripts were correlated with stabilities of non-canonical structures in the intra-polymerase condition mimicked by 20 wt% polyethylene glycol (PEG). Transcriptional arrest was induced when the stability of the G-quadruplex structure (-ΔG°37) in the presence of 20 wt% PEG was more than 8.2 kcal mol(-1). Thus, values of stability in the presence of 20 wt% PEG are an important indicator of transcription perturbation. Our results further our understanding of the impact of template structure on the transcription process and may guide logical design of transcription-regulating drugs.

  11. New Insights into Transcription Fidelity: Thermal Stability of Non-Canonical Structures in Template DNA Regulates Transcriptional Arrest, Pause, and Slippage

    PubMed Central

    Tateishi-Karimata, Hisae; Isono, Noburu; Sugimoto, Naoki

    2014-01-01

    The thermal stability and topology of non-canonical structures of G-quadruplexes and hairpins in template DNA were investigated, and the effect of non-canonical structures on transcription fidelity was evaluated quantitatively. We designed ten template DNAs: A linear sequence that does not have significant higher-order structure, three sequences that form hairpin structures, and six sequences that form G-quadruplex structures with different stabilities. Templates with non-canonical structures induced the production of an arrested, a slipped, and a full-length transcript, whereas the linear sequence produced only a full-length transcript. The efficiency of production for run-off transcripts (full-length and slipped transcripts) from templates that formed the non-canonical structures was lower than that from the linear. G-quadruplex structures were more effective inhibitors of full-length product formation than were hairpin structure even when the stability of the G-quadruplex in an aqueous solution was the same as that of the hairpin. We considered that intra-polymerase conditions may differentially affect the stability of non-canonical structures. The values of transcription efficiencies of run-off or arrest transcripts were correlated with stabilities of non-canonical structures in the intra-polymerase condition mimicked by 20 wt% polyethylene glycol (PEG). Transcriptional arrest was induced when the stability of the G-quadruplex structure (−ΔGo 37) in the presence of 20 wt% PEG was more than 8.2 kcal mol−1. Thus, values of stability in the presence of 20 wt% PEG are an important indicator of transcription perturbation. Our results further our understanding of the impact of template structure on the transcription process and may guide logical design of transcription-regulating drugs. PMID:24594642

  12. The WRKY transcription factor family in Brachypodium distachyon

    PubMed Central

    2012-01-01

    Background A complete assembled genome sequence of wheat is not yet available. Therefore, model plant systems for wheat are very valuable. Brachypodium distachyon (Brachypodium) is such a system. The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating important agronomic traits. Studies of WRKY transcription factors in Brachypodium and wheat therefore promise to lead to new strategies for wheat improvement. Results We have identified and manually curated the WRKY transcription factor family from Brachypodium using a pipeline designed to identify all potential WRKY genes. 86 WRKY transcription factors were found, a total higher than all other current databases. We therefore propose that our numbering system (BdWRKY1-BdWRKY86) becomes the standard nomenclature. In the JGI v1.0 assembly of Brachypodium with the MIPS/JGI v1.0 annotation, nine of the transcription factors have no gene model and eleven gene models are probably incorrectly predicted. In total, twenty WRKY transcription factors (23.3%) do not appear to have accurate gene models. To facilitate use of our data, we have produced The Database of Brachypodium distachyon WRKY Transcription Factors. Each WRKY transcription factor has a gene page that includes predicted protein domains from MEME analyses. These conserved protein domains reflect possible input and output domains in signaling. The database also contains a BLAST search function where a large dataset of WRKY transcription factors, published genes, and an extensive set of wheat ESTs can be searched. We also produced a phylogram containing the WRKY transcription factor families from Brachypodium, rice, Arabidopsis, soybean, and Physcomitrella patens, together with published WRKY transcription factors from wheat. This phylogenetic tree provides evidence for orthologues, co-orthologues, and paralogues of Brachypodium WRKY transcription factors. Conclusions The description

  13. Monitoring transcription initiation activities in rat and dog.

    PubMed

    Lizio, Marina; Mukarram, Abdul Kadir; Ohno, Mizuho; Watanabe, Shoko; Itoh, Masayoshi; Hasegawa, Akira; Lassmann, Timo; Severin, Jessica; Harshbarger, Jayson; Abugessaisa, Imad; Kasukawa, Takeya; Hon, Chung Chau; Carninci, Piero; Hayashizaki, Yoshihide; Forrest, Alistair R R; Kawaji, Hideya

    2017-11-28

    The promoter landscape of several non-human model organisms is far from complete. As a part of FANTOM5 data collection, we generated 13 profiles of transcription initiation activities in dog and rat aortic smooth muscle cells, mesenchymal stem cells and hepatocytes by employing CAGE (Cap Analysis of Gene Expression) technology combined with single molecule sequencing. Our analyses show that the CAGE profiles recapitulate known transcription start sites (TSSs) consistently, in addition to uncover novel TSSs. Our dataset can be thus used with high confidence to support gene annotation in dog and rat species. We identified 28,497 and 23,147 CAGE peaks, or promoter regions, for rat and dog respectively, and associated them to known genes. This approach could be seen as a standard method for improvement of existing gene models, as well as discovery of novel genes. Given that the FANTOM5 data collection includes dog and rat matched cell types in human and mouse as well, this data would also be useful for cross-species studies.

  14. Method to determine transcriptional regulation pathways in organisms

    DOEpatents

    Gardner, Timothy S.; Collins, James J.; Hayete, Boris; Faith, Jeremiah

    2012-11-06

    The invention relates to computer-implemented methods and systems for identifying regulatory relationships between expressed regulating polypeptides and targets of the regulatory activities of such regulating polypeptides. More specifically, the invention provides a new method for identifying regulatory dependencies between biochemical species in a cell. In particular embodiments, provided are computer-implemented methods for identifying a regulatory interaction between a transcription factor and a gene target of the transcription factor, or between a transcription factor and a set of gene targets of the transcription factor. Further provided are genome-scale methods for predicting regulatory interactions between a set of transcription factors and a corresponding set of transcriptional target substrates thereof.

  15. Mutual interdependence of splicing and transcription elongation.

    PubMed

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  16. ANKRD1 Acts as a Transcriptional Repressor of MMP13 via the AP-1 Site

    PubMed Central

    Almodóvar-García, Karinna; Kwon, Minjae; Samaras, Susan E.

    2014-01-01

    The transcriptional cofactor ANKRD1 is sharply induced during wound repair, and its overexpression enhances healing. We recently found that global deletion of murine Ankrd1 impairs wound contraction and enhances necrosis of ischemic wounds. A quantitative PCR array of Ankrd1−/− (KO) fibroblasts indicated that ANKRD1 regulates MMP genes. Yeast two-hybrid and coimmunoprecipitation analyses associated ANKRD1 with nucleolin, which represses AP-1 activation of MMP13. Ankrd1 deletion enhanced both basal and phorbol 12-myristate 13-acetate (PMA)-induced MMP13 promoter activity; conversely, Ankrd1 overexpression in control cells decreased PMA-induced MMP13 promoter activity. Ankrd1 reconstitution in KO fibroblasts decreased MMP13 mRNA, while Ankrd1 knockdown increased these levels. MMP13 mRNA and protein were elevated in intact skin and wounds of KO versus Ankrd1fl/fl (FLOX) mice. Electrophoretic mobility shift assay gel shift patterns suggested that additional transcription factors bind to the MMP13 AP-1 site in the absence of Ankrd1, and this concept was reinforced by chromatin immunoprecipitation analysis as greater binding of c-Jun to the AP-1 site in extracts from FLOX versus KO fibroblasts. We propose that ANKRD1, in association with factors such as nucleolin, represses MMP13 transcription. Ankrd1 deletion additionally relieved MMP10 transcriptional repression. Nuclear ANKRD1 appears to modulate extracellular matrix remodeling by MMPs. PMID:24515436

  17. Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing

    PubMed Central

    Sánchez-León, Nidia; Arteaga-Vázquez, Mario; Alvarez-Mejía, César; Mendiola-Soto, Javier; Durán-Figueroa, Noé; Rodríguez-Leal, Daniel; Rodríguez-Arévalo, Isaac; García-Campayo, Vicenta; García-Aguilar, Marcelina; Olmedo-Monfil, Vianey; Arteaga-Sánchez, Mario; Martínez de la Vega, Octavio; Nobuta, Kan; Vemaraju, Kalyan; Meyers, Blake C.; Vielle-Calzada, Jean-Philippe

    2012-01-01

    The life cycle of flowering plants alternates between a predominant sporophytic (diploid) and an ephemeral gametophytic (haploid) generation that only occurs in reproductive organs. In Arabidopsis thaliana, the female gametophyte is deeply embedded within the ovule, complicating the study of the genetic and molecular interactions involved in the sporophytic to gametophytic transition. Massively parallel signature sequencing (MPSS) was used to conduct a quantitative large-scale transcriptional analysis of the fully differentiated Arabidopsis ovule prior to fertilization. The expression of 9775 genes was quantified in wild-type ovules, additionally detecting >2200 new transcripts mapping to antisense or intergenic regions. A quantitative comparison of global expression in wild-type and sporocyteless (spl) individuals resulted in 1301 genes showing 25-fold reduced or null activity in ovules lacking a female gametophyte, including those encoding 92 signalling proteins, 75 transcription factors, and 72 RNA-binding proteins not reported in previous studies based on microarray profiling. A combination of independent genetic and molecular strategies confirmed the differential expression of 28 of them, showing that they are either preferentially active in the female gametophyte, or dependent on the presence of a female gametophyte to be expressed in sporophytic cells of the ovule. Among 18 genes encoding pentatricopeptide-repeat proteins (PPRs) that show transcriptional activity in wild-type but not spl ovules, CIHUATEOTL (At4g38150) is specifically expressed in the female gametophyte and necessary for female gametogenesis. These results expand the nature of the transcriptional universe present in the ovule of Arabidopsis, and offer a large-scale quantitative reference of global expression for future genomic and developmental studies. PMID:22442422

  18. Additional Crime Scenes for Projectile Motion Unit

    NASA Astrophysics Data System (ADS)

    Fullerton, Dan; Bonner, David

    2011-12-01

    Building students' ability to transfer physics fundamentals to real-world applications establishes a deeper understanding of underlying concepts while enhancing student interest. Forensic science offers a great opportunity for students to apply physics to highly engaging, real-world contexts. Integrating these opportunities into inquiry-based problem solving in a team environment provides a terrific backdrop for fostering communication, analysis, and critical thinking skills. One such activity, inspired jointly by the museum exhibit "CSI: The Experience"2 and David Bonner's TPT article "Increasing Student Engagement and Enthusiasm: A Projectile Motion Crime Scene,"3 provides students with three different crime scenes, each requiring an analysis of projectile motion. In this lesson students socially engage in higher-order analysis of two-dimensional projectile motion problems by collecting information from 3-D scale models and collaborating with one another on its interpretation, in addition to diagramming and mathematical analysis typical to problem solving in physics.

  19. The Regulation of Transcription in Memory Consolidation

    PubMed Central

    Alberini, Cristina M.; Kandel, Eric R.

    2015-01-01

    De novo transcription of DNA is a fundamental requirement for the formation of long-term memory. It is required during both consolidation and reconsolidation, the posttraining and postreactivation phases that change the state of the memory from a fragile into a stable and long-lasting form. Transcription generates both mRNAs that are translated into proteins, which are necessary for the growth of new synaptic connections, as well as noncoding RNA transcripts that have regulatory or effector roles in gene expression. The result is a cascade of events that ultimately leads to structural changes in the neurons that mediate long-term memory storage. The de novo transcription, critical for synaptic plasticity and memory formation, is orchestrated by chromatin and epigenetic modifications. The complexity of transcription regulation, its temporal progression, and the effectors produced all contribute to the flexibility and persistence of long-term memory formation. In this article, we provide an overview of the mechanisms contributing to this transcriptional regulation underlying long-term memory formation. PMID:25475090

  20. Transcription and recombination: when RNA meets DNA.

    PubMed

    Aguilera, Andrés; Gaillard, Hélène

    2014-08-01

    A particularly relevant phenomenon in cell physiology and proliferation is the fact that spontaneous mitotic recombination is strongly enhanced by transcription. The most accepted view is that transcription increases the occurrence of double-strand breaks and/or single-stranded DNA gaps that are repaired by recombination. Most breaks would arise as a consequence of the impact that transcription has on replication fork progression, provoking its stalling and/or breakage. Here, we discuss the mechanisms responsible for the cross talk between transcription and recombination, with emphasis on (1) the transcription-replication conflicts as the main source of recombinogenic DNA breaks, and (2) the formation of cotranscriptional R-loops as a major cause of such breaks. The new emerging questions and perspectives are discussed on the basis of the interference between transcription and replication, as well as the way RNA influences genome dynamics. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  1. Evolution of UCP1 Transcriptional Regulatory Elements Across the Mammalian Phylogeny

    PubMed Central

    Gaudry, Michael J.; Campbell, Kevin L.

    2017-01-01

    Uncoupling protein 1 (UCP1) permits non-shivering thermogenesis (NST) when highly expressed in brown adipose tissue (BAT) mitochondria. Exclusive to placental mammals, BAT has commonly been regarded to be advantageous for thermoregulation in hibernators, small-bodied species, and the neonates of larger species. While numerous regulatory control motifs associated with UCP1 transcription have been proposed for murid rodents, it remains unclear whether these are conserved across the eutherian mammal phylogeny and hence essential for UCP1 expression. To address this shortcoming, we conducted a broad comparative survey of putative UCP1 transcriptional regulatory elements in 139 mammals (135 eutherians). We find no evidence for presence of a UCP1 enhancer in monotremes and marsupials, supporting the hypothesis that this control region evolved in a stem eutherian ancestor. We additionally reveal that several putative promoter elements (e.g., CRE-4, CCAAT) identified in murid rodents are not conserved among BAT-expressing eutherians, and together with the putative regulatory region (PRR) and CpG island do not appear to be crucial for UCP1 expression. The specificity and importance of the upTRE, dnTRE, URE1, CRE-2, RARE-2, NBRE, BRE-1, and BRE-2 enhancer elements first described from rats and mice are moreover uncertain as these motifs differ substantially—but generally remain highly conserved—in other BAT-expressing eutherians. Other UCP1 enhancer motifs (CRE-3, PPRE, and RARE-3) as well as the TATA box are also highly conserved in nearly all eutherian lineages with an intact UCP1. While these transcriptional regulatory motifs are generally also maintained in species where this gene is pseudogenized, the loss or degeneration of key basal promoter (e.g., TATA box) and enhancer elements in other UCP1-lacking lineages make it unlikely that the enhancer region is pleiotropic (i.e., co-regulates additional genes). Importantly, differential losses of (or mutations within

  2. MCAT elements and the TEF-1 family of transcription factors in muscle development and disease.

    PubMed

    Yoshida, Tadashi

    2008-01-01

    MCAT elements are located in the promoter-enhancer regions of cardiac, smooth, and skeletal muscle-specific genes including cardiac troponin T, beta-myosin heavy chain, smooth muscle alpha-actin, and skeletal alpha-actin, and play a key role in the regulation of these genes during muscle development and disease. The binding factors of MCAT elements are members of the transcriptional enhancer factor-1 (TEF-1) family. However, it has not been fully understood how these transcription factors confer cell-specific expression in muscle, because their expression patterns are relatively broad. Results of recent studies revealed multiple mechanisms whereby TEF-1 family members control MCAT element-dependent muscle-specific gene expression, including posttranslational modifications of TEF-1 family members, the presence of muscle-selective TEF-1 cofactors, and cell-selective control of TEF-1 accessibility to MCAT elements. In addition, of particular interest, recent studies regarding MCAT element-dependent transcription of the myocardin gene and the smooth muscle alpha-actin gene in muscle provide evidence for the transcriptional diversity among distinct cell types and subtypes. This article summarizes the role of MCAT elements and the TEF-1 family of transcription factors in muscle development and disease, and reviews recent progress in our understanding of the transcriptional regulatory mechanisms involved in MCAT element-dependent muscle-specific gene expression.

  3. A new paradigm for transcription factor TFIIB functionality

    PubMed Central

    Gelev, Vladimir; Zabolotny, Janice M.; Lange, Martin; Hiromura, Makoto; Yoo, Sang Wook; Orlando, Joseph S.; Kushnir, Anna; Horikoshi, Nobuo; Paquet, Eric; Bachvarov, Dimcho; Schaffer, Priscilla A.; Usheva, Anny

    2014-01-01

    Experimental and bioinformatic studies of transcription initiation by RNA polymerase II (RNAP2) have revealed a mechanism of RNAP2 transcription initiation less uniform across gene promoters than initially thought. However, the general transcription factor TFIIB is presumed to be universally required for RNAP2 transcription initiation. Based on bioinformatic analysis of data and effects of TFIIB knockdown in primary and transformed cell lines on cellular functionality and global gene expression, we report that TFIIB is dispensable for transcription of many human promoters, but is essential for herpes simplex virus-1 (HSV-1) gene transcription and replication. We report a novel cell cycle TFIIB regulation and localization of the acetylated TFIIB variant on the transcriptionally silent mitotic chromatids. Taken together, these results establish a new paradigm for TFIIB functionality in human gene expression, which when downregulated has potent anti-viral effects. PMID:24441171

  4. 29 CFR 417.21 - Transcript.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Transcript. 417.21 Section 417.21 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF LABOR LABOR-MANAGEMENT STANDARDS... hearings. In the event he does so require, copies of the official transcript shall be made available upon...

  5. 12 CFR 261b.11 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... minutes. (a) The agency will maintain a complete transcript or electronic recording or transcription... § 261b.5 of this part. Transcriptions of recordings will disclose the identity of each speaker. (b) The agency will maintain either such a transcript, recording or transcription thereof, or a set of minutes...

  6. 41 CFR 60-30.22 - Official transcript.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Official transcript. 60-30.22 Section 60-30.22 Public Contracts and Property Management Other Provisions Relating to Public... ORDER 11246 Hearings and Related Matters § 60-30.22 Official transcript. The official transcripts of...

  7. 41 CFR 60-30.22 - Official transcript.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Official transcript. 60-30.22 Section 60-30.22 Public Contracts and Property Management Other Provisions Relating to Public... ORDER 11246 Hearings and Related Matters § 60-30.22 Official transcript. The official transcripts of...

  8. NAC transcription factor speedy hyponastic growth regulates flooding-induced leaf movement in Arabidopsis.

    PubMed

    Rauf, Mamoona; Arif, Muhammad; Fisahn, Joachim; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2013-12-01

    In rosette plants, root flooding (waterlogging) triggers rapid upward (hyponastic) leaf movement representing an important architectural stress response that critically determines plant performance in natural habitats. The directional growth is based on localized longitudinal cell expansion at the lower (abaxial) side of the leaf petiole and involves the volatile phytohormone ethylene (ET). We report the existence of a transcriptional core unit underlying directional petiole growth in Arabidopsis thaliana, governed by the NAC transcription factor speedy hyponastic growth (SHYG). Overexpression of SHYG in transgenic Arabidopsis thaliana enhances waterlogging-triggered hyponastic leaf movement and cell expansion in abaxial cells of the basal petiole region, while both responses are largely diminished in shyg knockout mutants. Expression of several expansin and xyloglucan endotransglycosylase/hydrolase genes encoding cell wall-loosening proteins was enhanced in SHYG overexpressors but lowered in shyg. We identified ACC oxidase5 (ACO5), encoding a key enzyme of ET biosynthesis, as a direct transcriptional output gene of SHYG and found a significantly reduced leaf movement in response to root flooding in aco5 T-DNA insertion mutants. Expression of SHYG in shoot tissue is triggered by root flooding and treatment with ET, constituting an intrinsic ET-SHYG-ACO5 activator loop for rapid petiole cell expansion upon waterlogging.

  9. Beyond Transcription Factors: The Role of Chromatin Modifying Enzymes in Regulating Transcription Required for Memory

    ERIC Educational Resources Information Center

    Barrett, Ruth M.; Wood, Marcelo A.

    2008-01-01

    One of the alluring aspects of examining chromatin modifications in the role of modulating transcription required for long-term memory processes is that these modifications may provide transient and potentially stable epigenetic marks in the service of activating and/or maintaining transcriptional processes. These, in turn, may ultimately…

  10. Modelling reveals kinetic advantages of co-transcriptional splicing.

    PubMed

    Aitken, Stuart; Alexander, Ross D; Beggs, Jean D

    2011-10-01

    Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.

  11. Coupled Evolution of Transcription and mRNA Degradation

    PubMed Central

    Dori-Bachash, Mally; Shema, Efrat; Tirosh, Itay

    2011-01-01

    mRNA levels are determined by the balance between transcription and mRNA degradation, and while transcription has been extensively studied, very little is known regarding the regulation of mRNA degradation and its coordination with transcription. Here we examine the evolution of mRNA degradation rates between two closely related yeast species. Surprisingly, we find that around half of the evolutionary changes in mRNA degradation were coupled to transcriptional changes that exert opposite effects on mRNA levels. Analysis of mRNA degradation rates in an interspecific hybrid further suggests that opposite evolutionary changes in transcription and in mRNA degradation are mechanistically coupled and were generated by the same individual mutations. Coupled changes are associated with divergence of two complexes that were previously implicated both in transcription and in mRNA degradation (Rpb4/7 and Ccr4-Not), as well as with sequence divergence of transcription factor binding motifs. These results suggest that an opposite coupling between the regulation of transcription and that of mRNA degradation has shaped the evolution of gene regulation in yeast. PMID:21811398

  12. 20 CFR 655.154 - Additional positive recruitment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Section 655.154 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY EMPLOYMENT OF FOREIGN WORKERS IN THE UNITED STATES Labor Certification Process for Temporary Agricultural Employment in the United States (H-2A Workers) Post-Acceptance Requirements § 655.154 Additional positive...

  13. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii.

    PubMed

    Ma, Jun; Wang, Qinglian; Sun, Runrun; Xie, Fuliang; Jones, Don C; Zhang, Baohong

    2014-10-16

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play versatile functions in multiple aspects of plant growth and development. However, no systematical study has been performed in cotton. In this study, we performed for the first time the genome-wide identification and expression analysis of the TCP transcription factor family in Gossypium raimondii. A total of 38 non-redundant cotton TCP encoding genes were identified. The TCP transcription factors were divided into eleven subgroups based on phylogenetic analysis. Most TCP genes within the same subfamily demonstrated similar exon and intron organization and the motif structures were highly conserved among the subfamilies. Additionally, the chromosomal distribution pattern revealed that TCP genes were unevenly distributed across 11 out of the 13 chromosomes; segmental duplication is a predominant duplication event for TCP genes and the major contributor to the expansion of TCP gene family in G. raimondii. Moreover, the expression profiles of TCP genes shed light on their functional divergence.

  14. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii

    PubMed Central

    Ma, Jun; Wang, Qinglian; Sun, Runrun; Xie, Fuliang; Jones, Don C.; Zhang, Baohong

    2014-01-01

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play versatile functions in multiple aspects of plant growth and development. However, no systematical study has been performed in cotton. In this study, we performed for the first time the genome-wide identification and expression analysis of the TCP transcription factor family in Gossypium raimondii. A total of 38 non-redundant cotton TCP encoding genes were identified. The TCP transcription factors were divided into eleven subgroups based on phylogenetic analysis. Most TCP genes within the same subfamily demonstrated similar exon and intron organization and the motif structures were highly conserved among the subfamilies. Additionally, the chromosomal distribution pattern revealed that TCP genes were unevenly distributed across 11 out of the 13 chromosomes; segmental duplication is a predominant duplication event for TCP genes and the major contributor to the expansion of TCP gene family in G. raimondii. Moreover, the expression profiles of TCP genes shed light on their functional divergence. PMID:25322260

  15. Characterization of three types of human alpha s1-casein mRNA transcripts.

    PubMed Central

    Johnsen, L B; Rasmussen, L K; Petersen, T E; Berglund, L

    1995-01-01

    Here we report the molecular cloning and sequencing of three types of human alpha s1-casein transcripts and present evidence indicating that exon skipping is responsible for deleted mRNA transcripts. The largest transcript comprised 981 bp encoding a signal peptide of 15 amino acids followed by the mature alpha s1-casein sequence of 170 amino acids. Human alpha s1-casein has been reported to exist naturally as a multimer in complex with kappa-casein in mature human milk, thereby being unique among alpha s1-caseins [Rasmussen, Due and Petersen (1995) Comp. Biochem. Physiol., in the press]. The present demonstration of three cysteines in the mature protein provides a molecular explanation of the interactions in this complex. Tissue-specific expression of human alpha s1-casein was indicated by Northern-blot analysis. In addition, two cryptic exons were localized in the bovine alpha s1-casein gene. Images Figure 3 PMID:7619062

  16. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... on the remote afterloader unit, on the control console, and in the facility; (3) Viewing and intercom... monitors used to indicate room exposures; (6) Source positioning (accuracy); and (7) Radiation monitors...

  17. RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis.

    PubMed

    Liu, Wanlu; Duttke, Sascha H; Hetzel, Jonathan; Groth, Martin; Feng, Suhua; Gallego-Bartolome, Javier; Zhong, Zhenhui; Kuo, Hsuan Yu; Wang, Zonghua; Zhai, Jixian; Chory, Joanne; Jacobsen, Steven E

    2018-03-01

    Small RNAs regulate chromatin modifications such as DNA methylation and gene silencing across eukaryotic genomes. In plants, RNA-directed DNA methylation (RdDM) requires 24-nucleotide small interfering RNAs (siRNAs) that bind to ARGONAUTE 4 (AGO4) and target genomic regions for silencing. RdDM also requires non-coding RNAs transcribed by RNA polymerase V (Pol V) that probably serve as scaffolds for binding of AGO4-siRNA complexes. Here, we used a modified global nuclear run-on protocol followed by deep sequencing to capture Pol V nascent transcripts genome-wide. We uncovered unique characteristics of Pol V RNAs, including a uracil (U) common at position 10. This uracil was complementary to the 5' adenine found in many AGO4-bound 24-nucleotide siRNAs and was eliminated in a siRNA-deficient mutant as well as in the ago4/6/9 triple mutant, suggesting that the +10 U signature is due to siRNA-mediated co-transcriptional slicing of Pol V transcripts. Expression of wild-type AGO4 in ago4/6/9 mutants was able to restore slicing of Pol V transcripts, but a catalytically inactive AGO4 mutant did not correct the slicing defect. We also found that Pol V transcript slicing required SUPPRESSOR OF TY INSERTION 5-LIKE (SPT5L), an elongation factor whose function is not well understood. These results highlight the importance of Pol V transcript slicing in RNA-mediated transcriptional gene silencing, which is a conserved process in many eukaryotes.

  18. Transcription coactivator SAYP combines chromatin remodeler Brahma and transcription initiation factor TFIID into a single supercomplex

    PubMed Central

    Vorobyeva, Nadezhda E.; Soshnikova, Nataliya V.; Nikolenko, Julia V.; Kuzmina, Julia L.; Nabirochkina, Elena N.; Georgieva, Sofia G.; Shidlovskii, Yulii V.

    2009-01-01

    Transcription activation by RNA polymerase II is a complicated process driven by combined, precisely coordinated action of a wide array of coactivator complexes, which carry out chromatin-directed activities and nucleate the assembly of the preinitiation complex on the promoter. Using various techniques, we have shown the existence of a stable coactivator supercomplex consisting of the chromatin-remodeling factor Brahma (SWI/SNF) and the transcription initiation factor TFIID, named BTFly (Brahma and TFIID in one assembly). The coupling of Brahma and TFIID is mediated by the SAYP factor, whose evolutionarily conserved activation domain SAY can directly bind to both BAP170 subunit of Brahma and TAF5 subunit of TFIID. The integrity of BTFly is crucial for its ability to activate transcription. BTFly is distributed genome-wide and appears to be a means of effective transcription activation. PMID:19541607

  19. 29 CFR 1627.7 - Transcriptions and reports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Transcriptions and reports. 1627.7 Section 1627.7 Labor... § 1627.7 Transcriptions and reports. Every person required to maintain records under the Act shall make such extension, recomputation or transcriptions of his records and shall submit such reports concerning...

  20. 29 CFR 1627.7 - Transcriptions and reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Transcriptions and reports. 1627.7 Section 1627.7 Labor... § 1627.7 Transcriptions and reports. Every person required to maintain records under the Act shall make such extension, recomputation or transcriptions of his records and shall submit such reports concerning...