What are you trying to learn? Study designs and the appropriate analysis for your research question
USDA-ARS?s Scientific Manuscript database
One fundamental necessity in the entire process of a well-performed study is the experimental design. A well-designed study can help researchers understand and have confidence in their results and analyses, and additionally the agreement or disagreement with the stated hypothesis. This well-designed...
ERIC Educational Resources Information Center
Switalski, Sarah O'Neill
2012-01-01
This study examined the additive benefit of parent dialogic reading techniques in older, high-risk preschool children using multiple baseline design across participants, a single subject research design, as was as well as pre-test and post-test measures. Five preschoolers age-eligible to begin kindergarten the following school year participated.…
STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS
This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...
ERIC Educational Resources Information Center
Gruenbaum, Thelma
Designed for use at the elementary level, this study guide accompanies a short history of the life and culture of the Massachusetts Bay Colony prior to the American Revolution (see related document, ED 108 997). The guide provides additional material as well as a series of study questions, suggestions for additional reading, and field trips within…
Composite Gypsum Binders with Silica-containing Additives
NASA Astrophysics Data System (ADS)
Chernysheva, N. V.; Lesovik, V. S.; Drebezgova, M. Yu; Shatalova, S. V.; Alaskhanov, A. H.
2018-03-01
New types of fine mineral additives are proposed for designing water-resistant Composite Gypsum Binders (CGB); these additives significantly differ from traditional quartz feed: wastes from wet magnetic separation of Banded Iron Formation (BIF WMS waste), nanodispersed silica powder (NSP), chalk. Possibility of their combined use has been studied as well.
2017-12-01
This is an examination of the research, execution, and follow- on developments supporting the Design Thinking event explored through Case Study ...research, execution, and follow- on developments supporting the Design Thinking event explored through case study methods. Additionally, the lenses of...total there have been two Naval Postgraduate School (NPS) case study theses on U.S. Navy innovation events as well as other works examining the
NASA transmission research and its probable effects on helicopter transmission design
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.; Coy, J. J.; Townsend, D. P.
1983-01-01
Transmissions studied for application to helicopters in addition to the more conventional geared transmissions include hybrid (traction/gear), bearingless planetary, and split torque transmissions. Research is being performed to establish the validity of analysis and computer codes developed to predict the performance, efficiency, life, and reliability of these transmissions. Results of this research should provide the transmission designer with analytical tools to design for minimum weight and noise with maximum life and efficiency. In addition, the advantages and limitations of drive systems as well as the more conventional systems will be defined.
NASA transmission research and its probable effects on helicopter transmission design
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.; Coy, J. J.; Townsend, D. P.
1984-01-01
Transmissions studied for application to helicopters in addition to the more conventional geared transmissions include hybrid (traction/gear), bearingless planetary, and split torque transmissions. Research is being performed to establish the validity of analysis and computer codes developed to predict the performance, efficiency, life, and reliability of these transmissions. Results of this research should provide the transmission designer with analytical tools to design for minimum weight and noise with maximum life and efficiency. In addition, the advantages and limitations of drive systems as well as the more conventional systems will be defined.
40 CFR 799.9380 - TSCA reproduction and fertility effects.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 31 2010-07-01 2010-07-01 true TSCA reproduction and fertility effects...-generation reproduction testing and is designed to provide general information concerning the effects of a... subsequent tests. Additionally, since the study design includes in utero as well as postnatal exposure, this...
2015 Summer Design Challenge: Team A&E (2241) Additively Manufactured Discriminator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Sarah E.; Moore, Brandon James
Current discriminator designs are based on historical designs and traditional manufacturing methods. The goal of this project was to form non-traditional groups to create novel discriminator designs by taking advantage of additive manufacturing. These designs would expand current discriminator designs and provide insight on the applicability of additive manufacturing for future projects. Our design stretched the current abilities of additive manufacturing and noted desired improvements for the future. Through collaboration with NSC, we noted several additional technologies which work well with additive manufacturing such as topology optimization and CT scanning and determined how these technologies could be improved to bettermore » combine with additive manufacturing.« less
Dynamic response analysis of a 24-story damped steel structure
NASA Astrophysics Data System (ADS)
Feng, Demin; Miyama, Takafumi
2017-10-01
In Japanese and Chinese building codes, a two-stage design philosophy, damage limitation (small earthquake, Level 1) and life safety (extreme large earthquake, Level 2), is adopted. It is very interesting to compare the design method of a damped structure based on the two building codes. In the Chinese code, in order to be consistent with the conventional seismic design method, the damped structure is also designed at the small earthquake level. The effect of damper systems is considered by the additional damping ratio concept. The design force will be obtained from the damped design spectrum considering the reduction due to the additional damping ratio. The additional damping ratio by the damper system is usually calculated by a time history analysis method at the small earthquake level. The velocity dependent type dampers such as viscous dampers can function well even in the small earthquake level. But, if steel damper is used, which usually remains elastic in the small earthquake, there will be no additional damping ratio achieved. On the other hand, a time history analysis is used in Japan both for small earthquake and extreme large earthquake level. The characteristics of damper system and ductility of the structure can be modelled well. An existing 24-story steel frame is modified to demonstrate the design process of the damped structure based on the two building codes. Viscous wall type damper and low yield steel panel dampers are studied as the damper system.
NASA Technical Reports Server (NTRS)
1977-01-01
Multiple access techniques (FDMA, CDMA, TDMA) for the mobile user and attempts to identify the current best technique are discussed. Traffic loading is considered as well as voice and data modulation and spacecraft and system design. Emphasis is placed on developing mobile terminal cost estimates for the selected design. In addition, design examples are presented for the alternative techniques of multiple access in order to compare with the selected technique.
variety of arrays appropriate for a wide breadth of study design needs. Genomic coverage of many of the chromosomal anomalies are services offered at NO ADDITIONAL COST to study investigators with GWAS projects be submitted for both the initial GWAS study as well as replication using our custom SNP service
Bayesian Chance-Constrained Hydraulic Barrier Design under Geological Structure Uncertainty.
Chitsazan, Nima; Pham, Hai V; Tsai, Frank T-C
2015-01-01
The groundwater community has widely recognized geological structure uncertainty as a major source of model structure uncertainty. Previous studies in aquifer remediation design, however, rarely discuss the impact of geological structure uncertainty. This study combines chance-constrained (CC) programming with Bayesian model averaging (BMA) as a BMA-CC framework to assess the impact of geological structure uncertainty in remediation design. To pursue this goal, the BMA-CC method is compared with traditional CC programming that only considers model parameter uncertainty. The BMA-CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from salt water intrusion in the "1500-foot" sand and the "1700-foot" sand of the Baton Rouge area, southeastern Louisiana. To address geological structure uncertainty, three groundwater models based on three different hydrostratigraphic architectures are developed. The results show that using traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from the connector wells is higher than the total pumpage of the protected public supply wells. While reducing the injection rate can be achieved by reducing the reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station may not be economically attractive. © 2014, National Ground Water Association.
APPROACHES TO GEOMETRIC DATA ANALYSIS ON BIG AREA ADDITIVELY MANUFACTURED (BAAM) PARTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreifus, Gregory D; Ally, Nadya R; Post, Brian K
The promise of additive manufacturing is that a user can design and print complex geometries that are very difficult, if not impossible, to machine. The capabilities of 3D printing are restricted by a number of factors, including properties of the build material, time constraints, and geometric design restrictions. In this paper, a thorough accounting and study of the geometric restrictions that exist in the current iteration of additive manufacturing (AM) fused deposition modeling (FDM) technologies are discussed. Offline and online methodologies for collecting data sets for qualitative analysis of large scale AM, in particular Oak Ridge National Laboratory s (ORNL)more » big area additive manufacturing (BAAM) system, are summarized. In doing so, a survey of tools for designers and software developers is provided. In particular, strategies in which geometric data can be used as training sets for smarter AM technologies in the future are explained as well.« less
Booster propulsion/vehicle impact study
NASA Technical Reports Server (NTRS)
Weldon, Vincent; Dunn, Michael; Fink, Lawrence; Phillips, Dwight; Wetzel, Eric
1988-01-01
The use of hydrogen RP-1, propane, and methane as fuels for booster engines of launch vehicles is discussed. An automated procedure for integrated launch vehicle, engine sizing, and design optimization was used to define two stage and single stage concepts for minimum dry weight. The two stage vehicles were unmanned and used a flyback booster and partially reusable orbiter. The single stage designs were fully reusable, manned flyback vehicles. Comparisons of these vehicle designs, showing the effects of using different fuels, as well as sensitivity and trending data, are presented. In addition, the automated design technique utilized for the study is described.
SRB ascent aerodynamic heating design criteria reduction study, volume 1
NASA Technical Reports Server (NTRS)
Crain, W. K.; Frost, C. L.; Engel, C. D.
1989-01-01
An independent set of solid rocket booster (SRB) convective ascent design environments were produced which would serve as a check on the Rockwell IVBC-3 environments used to design the ascent phase of flight. In addition, support was provided for lowering the design environments such that Thermal Protection System (TPS), based on conservative estimates, could be removed leading to a reduction in SRB refurbishment time and cost. Ascent convective heating rates and loads were generated at locations in the SRB where lowering the thermal environment would impact the TPS design. The ascent thermal environments are documented along with the wind tunnel/flight test data base used as well as the trajectory and environment generation methodology. Methodology, as well as, environment summaries compared to the 1980 Design and Rockwell IVBC-3 Design Environment are presented in this volume, 1.
USDA-ARS?s Scientific Manuscript database
Inferences about lactation responses to diet have been hypothesized to be affected by the use of change-over instead of continuous experimental designs. A direct test of this hypothesis has not been well studied. Additionally, when dietary protein level is changed it must occur through dilution with...
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2014-01-01
A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.
Modeling of mixing in 96-well microplates observed with fluorescence indicators.
Weiss, Svenja; John, Gernot T; Klimant, Ingo; Heinzle, Elmar
2002-01-01
Mixing in 96-well microplates was studied using soluble pH indicators and a fluorescence pH sensor. Small amounts of alkali were added with the aid of a multichannel pipet, a piston pump, and a piezoelectric actuator. Mixing patterns were observed visually using a video camera. Addition of drops each of about 1 nL with the piezoelectric actuator resulted in umbrella and double-disklike shapes. Convective mixing was mainly observed in the upper part of the well, whereas the lower part was only mixed quickly when using the multichannel pipet and the piston pump with an addition volume of 5 microL or larger. Estimated mixing times were between a few seconds and several minutes. Mixing by liquid dispensing was much more effective than by shaking. A mixing model consisting of 21 elements could describe mixing dynamics observed by the dissolved fluorescence dye and by the optical immobilized pH sensor. This model can be applied for designing pH control in microplates or for design of kinetic experiments with liquid addition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel A. Riza
The goals of the first six months of this project were to lay the foundations for both the SiC front-end optical chip fabrication as well as the free-space laser beam interferometer designs and preliminary tests. In addition, a Phase I goal was to design and experimentally build the high temperature and pressure infrastructure and test systems that will be used in the next 6 months for proposed sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the opticalmore » systems are provided. In addition, photographs of the fabricated SiC optical chips, the high temperature & pressure test chamber instrument, the optical interferometer, the SiC sample chip holder, and signal processing data are provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature optical sensor technology. The goals of the second six months of this project were to conduct high temperature sensing tests using the test chamber and optical sensing instrument designs developed in the first part of the project. In addition, a Phase I goal was to develop the basic processing theory and physics for the proposed first sensor experimentation and data processing. All these goals have been achieved and are described in detail. Both optical experimental design process and sensed temperature are provided. In addition, photographs of the fabricated SiC optical chips after deployment in the high temperature test chamber are shown from a material study point-of-view.« less
Design of a 32-Channel EEG System for Brain Control Interface Applications
Wang, Ching-Sung
2012-01-01
This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design. PMID:22778545
Design of a 32-channel EEG system for brain control interface applications.
Wang, Ching-Sung
2012-01-01
This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... Various Forms of Agreements That Are in the Manual, as Well as Some Additional New Rules That Make... in the Manual, as well as some additional new rules that make explicit existing Exchange policies... agreements that are in the Manual, as well as some additional new rules that make explicit existing Exchange...
NASA Astrophysics Data System (ADS)
McCune, Robert C.; Upadhyay, Vinod; Wang, Yar-Ming; Battocchi, Dante
The potential utility of AC-DC-AC electrochemical methods in comparative measures of corrosion-resisting coating system performance for magnesium alloys under consideration for the USAMP "Magnesium Front End Research and Development" project was previously shown in this forum [1]. Additional studies of this approach using statistically-designed experiments have been conducted with focus on alloy types, pretreatment, topcoat material and topcoat thickness as the variables. Additionally, sample coupons made for these designed experiments were also subjected to a typical automotive cyclic corrosion test cycle (SAE J2334) as well as ASTM B117 for comparison of relative performance. Results of these studies are presented along with advantages and limitations of the proposed methodology.
Engineered Barrier System performance requirements systems study report. Revision 02
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balady, M.A.
This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS includemore » the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken.« less
Halogenation of Hydraulic Fracturing Additives in the Shale Well Parameter Space
NASA Astrophysics Data System (ADS)
Sumner, A. J.; Plata, D.
2017-12-01
Horizontal Drilling and Hydraulic fracturing (HDHF) involves the deep-well injection of a `fracking fluid' composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. The potential impacts of HDHF operations on water resources and ecosystems are numerous, and analyses of flowback samples revealed organic compounds from both geogenic and anthropogenic sources. Furthermore, halogenated chemicals were also detected, and these compounds are rarely disclosed, suggesting the in situ halogenation of reactive additives. To test this transformation hypothesis, we designed and operated a novel high pressure and temperature reactor system to simulate the shale well parameter space and investigate the chemical reactivity of twelve commonly disclosed and functionally diverse HDHF additives. Early results revealed an unanticipated halogenation pathway of α-β unsaturated aldehyde, Cinnamaldehyde, in the presence of oxidant and concentrated brine. Ongoing experiments over a range of parameters informed a proposed mechanism, demonstrating the role of various shale-well specific parameters in enabling the demonstrated halogenation pathway. Ultimately, these results will inform a host of potentially unintended interactions of HDHF additives during the extreme conditions down-bore of a shale well during HDHF activities.
Anthropometric Accommodation in Space Suit Design
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar; Thaxton, Sherry
2007-01-01
Design requirements for next generation hardware are in process at NASA. Anthropometry requirements are given in terms of minimum and maximum sizes for critical dimensions that hardware must accommodate. These dimensions drive vehicle design and suit design, and implicitly have an effect on crew selection and participation. At this stage in the process, stakeholders such as cockpit and suit designers were asked to provide lists of dimensions that will be critical for their design. In addition, they were asked to provide technically feasible minimum and maximum ranges for these dimensions. Using an adjusted 1988 Anthropometric Survey of U.S. Army (ANSUR) database to represent a future astronaut population, the accommodation ranges provided by the suit critical dimensions were calculated. This project involved participation from the Anthropometry and Biomechanics facility (ABF) as well as suit designers, with suit designers providing expertise about feasible hardware dimensions and the ABF providing accommodation analysis. The initial analysis provided the suit design team with the accommodation levels associated with the critical dimensions provided early in the study. Additional outcomes will include a comparison of principal components analysis as an alternate method for anthropometric analysis.
Medical simulation in interventional cardiology: "More research is needed".
Tajti, Peter; Brilakis, Emmanouil S
2018-05-01
Medical simulation is being used for training fellows to perform coronary angiography. Medical simulation training was associated with 2 min less fluoroscopy time per case after adjustment. Whether medical simulation really works needs to be evaluated in additional, well-designed and executed clinical studies. © 2018 Wiley Periodicals, Inc.
A Wellness Program for University Faculty and Staff.
ERIC Educational Resources Information Center
Tishler, J. Ward
A program designed to provide physical fitness, assessment, prescription, and training was developed in a university setting. In addition, health education was provided to participants concerning nutrition and stress management. A study sought to determine whether the health of professionals enrolled in the program could be significantly improved.…
ERIC Educational Resources Information Center
Marraccini, Marisa E.; Weyandt, Lisa L.; Rossi, Joseph S.
2015-01-01
Objective: This study developed and examined the psychometric properties of a newly formed measure designed to assess professor/instructor bullying, as well as teacher bullying occurring prior to college. Additionally, prevalence of instructor bullying and characteristics related to victims of instructor bullying were examined. Participants:…
Shape Optimization by Bayesian-Validated Computer-Simulation Surrogates
NASA Technical Reports Server (NTRS)
Patera, Anthony T.
1997-01-01
A nonparametric-validated, surrogate approach to optimization has been applied to the computational optimization of eddy-promoter heat exchangers and to the experimental optimization of a multielement airfoil. In addition to the baseline surrogate framework, a surrogate-Pareto framework has been applied to the two-criteria, eddy-promoter design problem. The Pareto analysis improves the predictability of the surrogate results, preserves generality, and provides a means to rapidly determine design trade-offs. Significant contributions have been made in the geometric description used for the eddy-promoter inclusions as well as to the surrogate framework itself. A level-set based, geometric description has been developed to define the shape of the eddy-promoter inclusions. The level-set technique allows for topology changes (from single-body,eddy-promoter configurations to two-body configurations) without requiring any additional logic. The continuity of the output responses for input variations that cross the boundary between topologies has been demonstrated. Input-output continuity is required for the straightforward application of surrogate techniques in which simplified, interpolative models are fitted through a construction set of data. The surrogate framework developed previously has been extended in a number of ways. First, the formulation for a general, two-output, two-performance metric problem is presented. Surrogates are constructed and validated for the outputs. The performance metrics can be functions of both outputs, as well as explicitly of the inputs, and serve to characterize the design preferences. By segregating the outputs and the performance metrics, an additional level of flexibility is provided to the designer. The validated outputs can be used in future design studies and the error estimates provided by the output validation step still apply, and require no additional appeals to the expensive analysis. Second, a candidate-based a posteriori error analysis capability has been developed which provides probabilistic error estimates on the true performance for a design randomly selected near the surrogate-predicted optimal design.
The Implications of Encoder/Modulator/ Phased Array Designs for Future Broadband LEO Communications
NASA Technical Reports Server (NTRS)
Vanderaar, Mark; Jensen, Chris A.; Terry, John D.
1997-01-01
In this paper we summarize the effects of modulation and channel coding on the design of wide angle scan, broadband, phased army antennas. In the paper we perform several trade studies. First, we investigate the amplifier back-off requirement as a function of variability of modulation envelope. Specifically, we contrast constant and non-constant envelope modulations, as well as single and multiple carrier schemes. Additionally, we address the issues an(f concerns of using pulse shaping filters with the above modulation types. Second, we quantify the effects of beam steering on the quality of data, recovery using selected modulation techniques. In particular, we show that the frequency response of the array introduces intersymbol interference for broadband signals and that the mode of operation for the beam steering controller may introduce additional burst or random errors. Finally, we show that the encoder/modulator design must be performed in conjunction with the phased array antenna design.
Review of high fidelity imaging spectrometer design for remote sensing
NASA Astrophysics Data System (ADS)
Mouroulis, Pantazis; Green, Robert O.
2018-04-01
We review the design and assessment techniques that underlie a number of successfully deployed space and airborne imaging spectrometers that have been demonstrated to achieve demanding specifications in terms of throughput and response uniformity. The principles are illustrated with telescope designs as well as spectrometer examples from the Offner and Dyson families. We also show how the design space can be extended with the use of freeform surfaces and provide additional design examples with grating as well as prism dispersive elements.
Optimal observation network design for conceptual model discrimination and uncertainty reduction
NASA Astrophysics Data System (ADS)
Pham, Hai V.; Tsai, Frank T.-C.
2016-02-01
This study expands the Box-Hill discrimination function to design an optimal observation network to discriminate conceptual models and, in turn, identify a most favored model. The Box-Hill discrimination function measures the expected decrease in Shannon entropy (for model identification) before and after the optimal design for one additional observation. This study modifies the discrimination function to account for multiple future observations that are assumed spatiotemporally independent and Gaussian-distributed. Bayesian model averaging (BMA) is used to incorporate existing observation data and quantify future observation uncertainty arising from conceptual and parametric uncertainties in the discrimination function. In addition, the BMA method is adopted to predict future observation data in a statistical sense. The design goal is to find optimal locations and least data via maximizing the Box-Hill discrimination function value subject to a posterior model probability threshold. The optimal observation network design is illustrated using a groundwater study in Baton Rouge, Louisiana, to collect additional groundwater heads from USGS wells. The sources of uncertainty creating multiple groundwater models are geological architecture, boundary condition, and fault permeability architecture. Impacts of considering homoscedastic and heteroscedastic future observation data and the sources of uncertainties on potential observation areas are analyzed. Results show that heteroscedasticity should be considered in the design procedure to account for various sources of future observation uncertainty. After the optimal design is obtained and the corresponding data are collected for model updating, total variances of head predictions can be significantly reduced by identifying a model with a superior posterior model probability.
Tan, Ziwen; Qin, Guoyou; Zhou, Haibo
2016-01-01
Outcome-dependent sampling (ODS) designs have been well recognized as a cost-effective way to enhance study efficiency in both statistical literature and biomedical and epidemiologic studies. A partially linear additive model (PLAM) is widely applied in real problems because it allows for a flexible specification of the dependence of the response on some covariates in a linear fashion and other covariates in a nonlinear non-parametric fashion. Motivated by an epidemiological study investigating the effect of prenatal polychlorinated biphenyls exposure on children's intelligence quotient (IQ) at age 7 years, we propose a PLAM in this article to investigate a more flexible non-parametric inference on the relationships among the response and covariates under the ODS scheme. We propose the estimation method and establish the asymptotic properties of the proposed estimator. Simulation studies are conducted to show the improved efficiency of the proposed ODS estimator for PLAM compared with that from a traditional simple random sampling design with the same sample size. The data of the above-mentioned study is analyzed to illustrate the proposed method. PMID:27006375
NASA Astrophysics Data System (ADS)
Fetisov, K. V.; Maksimov, P. V.
2018-05-01
The paper presents the application of topology optimization and laser additive manufacturing in the design of lightweight aerospace parts. At the beginning a brief overview of the topology optimization algorithm SIMP is given, one of the most commonly used algorithm in FEA software. After that, methodology of parts design with using topology optimization is discussed as well as issues related to designing for additive manufacturing. In conclusion, the practical application of the proposed methodologies is presented using the example of one complex assembly unit. As a result of the new design approach, the mass of product was reduced five times, and twenty parts were replaced by one.
Reactor design and integration into a nuclear electric spacecraft
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Koenig, D. R.
1978-01-01
One of the well-defined applications for nuclear power in space is nuclear electric propulsion (NEP). Mission studies have identified the optimum power level (400 kWe). A single Shuttle launch requirement and science-package integration have added additional constraints to the design. A reactor design which will meet these constraints has been studied. The reactor employs 90 fuel elements, each heat pipe cooled. Reactor control is obtained with BeO/B4C drums in a BeO reflector. The balance of the spacecraft is shielded from the reactor with LiH. Power conditioning and reactor control drum drives are located behind the LiH with the power conditioning. Launch safety, mechanical design and integration with the power conversion subsystem are discussed.
Implementation of improved underbalanced drilling in AbuDhabi onshore field
NASA Astrophysics Data System (ADS)
Alhammadi, Adel Mohammed
Abu Dhabi Company for Onshore Oil Operations (ADCO) is considering Underbalanced Drilling (UBD) as a means to develop lower permeability units in its fields. In addition to productivity and recovery gains, ADCO also expects reservoir characterization benefits from UBD. Reservoir screening studies were carried out on all of ADCO's reservoirs to determine their applicability for UBD. The primary business benefits of UBD were determined to be reservoir characterization, damage Mitigation, and rate of Penetration "ROP" Improvement. Apart from the primary benefits, some of the secondary benefits of UBD that were identified beforehand included rig performance. Since it's a trial wells, the challenge was to drill these wells safely, efficiently and of course meeting well objectives. Many operators worldwide drill these well in underbalanced mode but complete it overbalanced. In our case the plan was to drill and complete these wells in underbalanced condition. But we had to challenge most operators and come up with special and unique casing hanger design to ensure well control barriers exists while fishing the control line of the Downhole Deployment Valve "DDV". After intensive studies and planning, the hanger was designed as per our recommendations and found to be effective equipment that optimized the operational time and the cost as well. This report will provide better understanding of UBD technique in general and shade on the special designed casing hanger compared to conventional or what's most used worldwide. Even thought there were some issues while running the casing hanger prior drilling but managed to capture the learning's from each well and re-modified the hanger and come up with better deign for the future wells. Finally, the new design perform a good performance of saving the operation time and assisting the project to be done in a safe and an easy way without a major impact on the well cost. This design helped to drill and complete these wells safely with requirement to kill the wells and this ensured least reservoir damage.
Lorber, M.; Johnson, Kevin; Kross, B.; Pinsky, P.; Burmeister, L.; Thurman, M.; Wilkins, A.; Hallberg, G.
1997-01-01
In 1988, the Iowa Department of Natural Resources, along with the University of Iowa conducted the Statewide Rural Well Water Survey, commonly known as SWRL. A total of 686 private rural drinking water wells was selected by use of a probability sample and tested for pesticides and nitrates. Sixty-eight of these wells, the '10% repeat' wells, were additionally sampled in October, 1990 and June, 1991. Starting in November, 1991, the University of Iowa, with sponsorship from the United States Environmental Protection Agency, revisited these wells to begin a study of the temporal variability of atrazine and nitrates in wells. Other wells, which had originally tested positive for atrazine in SWRL but were not in the 10% repeat population, were added to the study population. Temporal sampling for a year-long period began in February of 1992 and concluded in January of 1993. All wells were sampled monthly, one subset was sampled weekly, and a second subset was sampled for 14-day consecutive periods. Two unique aspects of this study were the use of an immunoassay technique to screen for triazines before gas chromatography/mass spectrometry (GC/MS) analysis and quantification of atrazine, and the use of well owners to sample the wells. A total of 1771 samples from 83 wells are in the final data base for this study. This paper reviews the study design, the analytical methodologies, and development of the data base. A companion paper discusses the analysis of the data from this survey.
Ergonomics intervention on an alternative design of a spinal board.
Zadry, Hilma Raimona; Susanti, Lusi; Rahmayanti, Dina
2017-09-01
A spinal board is the evacuation tool of first aid to help the injured spinal cord. The existing spinal board has several weaknesses, both in terms of user comfort and the effectiveness and efficiency of the evacuation process. This study designs an ergonomic spinal board using the quality function deployment approach. A preliminary survey was conducted through direct observation and interviews with volunteers from the Indonesian Red Cross. Data gathered were translated into a questionnaire and answered by 47 participants in West Sumatra. The results indicate that the selection of materials, the application of strap systems as well as the addition of features are very important in designing an ergonomic spinal board. The data were used in designing an ergonomic spinal board. The use of anthropometric data ensures that this product can accommodate safety and comfort when immobilized, as well as the flexibility and speed of the rescue evacuation process.
Improving Conceptual Understanding and Representation Skills Through Excel-Based Modeling
NASA Astrophysics Data System (ADS)
Malone, Kathy L.; Schunn, Christian D.; Schuchardt, Anita M.
2018-02-01
The National Research Council framework for science education and the Next Generation Science Standards have developed a need for additional research and development of curricula that is both technologically model-based and includes engineering practices. This is especially the case for biology education. This paper describes a quasi-experimental design study to test the effectiveness of a model-based curriculum focused on the concepts of natural selection and population ecology that makes use of Excel modeling tools (Modeling Instruction in Biology with Excel, MBI-E). The curriculum revolves around the bio-engineering practice of controlling an invasive species. The study takes place in the Midwest within ten high schools teaching a regular-level introductory biology class. A post-test was designed that targeted a number of common misconceptions in both concept areas as well as representational usage. The results of a post-test demonstrate that the MBI-E students significantly outperformed the traditional classes in both natural selection and population ecology concepts, thus overcoming a number of misconceptions. In addition, implementing students made use of more multiple representations as well as demonstrating greater fascination for science.
Additively Manufactured and Surface Biofunctionalized Porous Nitinol.
Gorgin Karaji, Z; Speirs, M; Dadbakhsh, S; Kruth, J-P; Weinans, H; Zadpoor, A A; Amin Yavari, S
2017-01-18
Enhanced bone tissue regeneration and improved osseointegration are among the most important goals in design of multifunctional orthopedic biomaterials. In this study, we used additive manufacturing (selective laser melting) to develop multifunctional porous nitinol that combines superelasticity with a rationally designed microarchitecture and biofunctionalized surface. The rational design based on triply periodic minimal surfaces aimed to properly adjust the pore size, increase the surface area (thereby amplifying the effects of surface biofunctionalization), and resemble the curvature characteristics of trabecular bone. The surface of additively manufactured (AM) porous nitinol was biofunctionalized using polydopamine-immobilized rhBMP2 for better control of the release kinetics. The actual morphological properties of porous nitinol measured by microcomputed tomography (e.g., open/close porosity, and surface area) closely matched the design values. The superelasticity originated from the austenite phase formed in the nitinol porous structure at room temperature. Polydopamine and rhBMP2 signature peaks were confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy tests. The release of rhBMP2 continued until 28 days. The early time and long-term release profiles were found to be adjustable independent of each other. In vitro cell culture showed improved cell attachment, cell proliferation, cell morphology (spreading, spindle-like shape), and cell coverage as well as elevated levels of ALP activity and increased calcium content for biofunctionalized surfaces as compared to as-manufactured specimens. The demonstrated functionalities of porous nitinol could be used as a basis for deployable orthopedic implants with rationally designed microarchitectures that maximize bone tissue regeneration performance by release of biomolecules with adjustable and well-controlled release profiles.
Energy absorption in aluminum extrusions for a spaceframe chassis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, R.W.; Perfect, S.A.; Parkinson, R.D.
1994-09-19
This work describes the design, finite-element analysis, and verifications performed by LLNL and Kaiser Aluminum for the prototype design of the CALSTART Running Chassis purpose-built electric vehicle. Component level studies, along with our previous experimental and finite-element works, provided the confidence to study the crashworthiness of a complete aluminum spaceframe. Effects of rail geometry, size, and thickness were studied in order to achieve a controlled crush of the front end structure. These included the performance of the spaceframe itself, and the additive effects of the powertrain cradle and powertrain (motor/controller in this case) as well as suspension. Various design iterationsmore » for frontal impact at moderate and high speed are explored.« less
Mazaheri, Hossein; Lee, Keat Teong; Bhatia, Subhash; Mohamed, Abdul Rahman
2010-12-01
Thermal decomposition of oil palm fruit press fiber (FPF) into a liquid product (LP) was achieved using subcritical water treatment in the presence of sodium hydroxide in a high pressure batch reactor. This study uses experimental design and process optimisation tools to maximise the LP yield using response surface methodology (RSM) with central composite rotatable design (CCRD). The independent variables were temperature, residence time, particle size, specimen loading, and additive loading. The mathematical model that was developed fit the experimental results well for all of the response variables that were studied. The optimal conditions were found to be a temperature of 551 K, a residence time of 40 min, a particle size of 710-1000 microm, a specimen loading of 5 g, and a additive loading of 9 wt.% to achieve a LP yield of 76.16%. 2010 Elsevier Ltd. All rights reserved.
Spronk, Inge; Burgers, Jako S; Schellevis, François G; van Vliet, Liesbeth M; Korevaar, Joke C
2018-05-11
Shared decision-making (SDM) in the management of metastatic breast cancer care is associated with positive patient outcomes. In daily clinical practice, however, SDM is not fully integrated yet. Initiatives to improve the implementation of SDM would be helpful. The aim of this review was to assess the availability and effectiveness of tools supporting SDM in metastatic breast cancer care. Literature databases were systematically searched for articles published since 2006 focusing on the development or evaluation of tools to improve information-provision and to support decision-making in metastatic breast cancer care. Internet searches and experts identified additional tools. Data from included tools were extracted and the evaluation of tools was appraised using the GRADE grading system. The literature search yielded five instruments. In addition, two tools were identified via internet searches and consultation of experts. Four tools were specifically developed for supporting SDM in metastatic breast cancer, the other three tools focused on metastatic cancer in general. Tools were mainly applicable across the care process, and usable for decisions on supportive care with or without chemotherapy. All tools were designed for patients to be used before a consultation with the physician. Effects on patient outcomes were generally weakly positive although most tools were not studied in well-designed studies. Despite its recognized importance, only two tools were positively evaluated on effectiveness and are available to support patients with metastatic breast cancer in SDM. These tools show promising results in pilot studies and focus on different aspects of care. However, their effectiveness should be confirmed in well-designed studies before implementation in clinical practice. Innovation and development of SDM tools targeting clinicians as well as patients during a clinical encounter is recommended.
New ideas for shallow gas well control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourgoyne, A.T.; Kelly, O.A.; Sandoz, C.L.
1996-06-01
Flow from an unexpected shallow gas sand is one of the most difficult well control problems faced by oil and gas well operators during drilling operations. Current well control practice for bottom-supported marine rigs usually calls for shutting in the well when a kick is detected, if sufficient casing has been set to keep any flow underground. However, when shallow gas is encountered, casing may not be set deep enough to keep the underground flow from broaching to surface near the platform foundations. Once the flow reaches surface, craters are sometimes formed which can lead to loss of the rigmore » and associated marine structures. This short article overviews an ongoing study by Louisiana State University of the breakdown resistance of shallow marine sediments, using leak-off test data and geotechnical reports provided by Unocal. Such study is important for improving the characterization of shallow marine sediments to allow more reliable shallow casing designs, as the authors will conclude. This study has already proven that sediment failure mechanisms that lead to cratering have been poorly understood. In addition, there has been considerable uncertainty as to the best choices of well design parameters and well control contingency plans that will minimize risks associated with a shallow gas flow.« less
Research on hypnosis as an adjunct to cognitive-behavioral psychotherapy.
Schoenberger, N E
2000-04-01
There is a growing body of research evaluating the use of hypnosis with cognitive-behavioral techniques in the treatment of psychological disorders. The central question for research is whether the addition of hypnosis enhances the efficacy of cognitive-behavioral treatments. Overall, studies demonstrate a substantial benefit from the addition of hypnosis; however, the number of published studies is relatively small, and many of them have methodological limitations. For cognitive-behavioral hypnotherapies to be recognized as empirically supported treatments, a number of well-designed, randomized clinical trials are necessary. Currently, the efficacy of hypnosis as an adjunctive treatment remains unresolved.
Livingood, Wiliiam C; Coughlin, Susan; Bowman, Walter; Bryant, Thomas; Goldhagen, Jeffrey
2007-01-01
Public health systems are stressed by increasing demands and inadequate resources. This study was designed to demonstrate how economic impact analysis can estimate the economic value of a local public health system's infrastructure as well as the economic assets of an "Academic Health Department" model. This study involved the secondary analysis of publicly available data on health department finances and employment using proprietary software specifically designed to assess economic impacts. The health department's impact on the local community was estimated at over 100 million dollars, exceeding the economic impact of other recently studied local industries with no additional costs to local taxpayers.
Alassane-Kpembi, Imourana; Schatzmayr, Gerd; Taranu, Ionelia; Marin, Daniela; Puel, Olivier; Oswald, Isabelle Paule
2017-11-02
Mycotoxins are secondary fungal metabolites produced mainly by Aspergillus, Penicillium, and Fusarium. As evidenced by large-scale surveys, humans and animals are simultaneously exposed to several mycotoxins. Simultaneous exposure could result in synergistic, additive or antagonistic effects. However, most toxicity studies addressed the effects of mycotoxins separately. We present the experimental designs and we discuss the conclusions drawn from in vitro experiments exploring toxicological interactions of mycotoxins. We report more than 80 publications related to mycotoxin interactions. The studies explored combinations involving the regulated groups of mycotoxins, especially aflatoxins, ochratoxins, fumonisins, zearalenone and trichothecenes, but also the "emerging" mycotoxins beauvericin and enniatins. Over 50 publications are based on the arithmetic model of additivity. Few studies used the factorial designs or the theoretical biology-based models of additivity. The latter approaches are gaining increased attention. These analyses allow determination of the type of interaction and, optionally, its magnitude. The type of interaction reported for mycotoxin combinations depended on several factors, in particular cell models and the tested dose ranges. However, synergy among Fusarium toxins was highlighted in several studies. This review indicates that well-addressed in vitro studies remain valuable tools for the screening of interactive potential in mycotoxin mixtures.
Integration of a UV curable polymer lens and MUMPs structures on a SOI optical bench
NASA Astrophysics Data System (ADS)
Hsieh, Jerwei; Hsiao, Sheng-Yi; Lai, Chun-Feng; Fang, Weileun
2007-08-01
This work presents the design concept of integrating a polymer lens, poly-Si MUMPs and single-crystal-silicon HARM structures on a SOI wafer to form a silicon optical bench. This approach enables the monolithic integration of various optical components on the wafer so as to improve the design flexibility of the silicon optical bench. Fabrication processes, including surface and bulk micromachining on the SOI wafer, have been established to realize bi-convex spherical polymer lenses with in-plane as well as out-of-plane optical axes. In addition, a micro device consisting of an in-plane polymer lens, a thick fiber holder and a mechanical shutter driven by an electrothermal actuator is also demonstrated using the present approach. In summary, this study significantly improves the design flexibility as well as the functions of SiOBs.
ERIC Educational Resources Information Center
Güler Yildiz, Tülin; Özdemir Simsek, Pinar; Eren, Saliha; Aydos, Emine Hande
2017-01-01
This study aims at uncovering the views of children 48-66 months old regarding sustainable development (SD), as well as the attitudes of their parents and teachers. Additionally, it seeks to identify activities related to SD that are promoted in homes by parents and in schools by teachers. The study was designed as a case study, with participants…
NASA Astrophysics Data System (ADS)
Conant, David A.
2005-04-01
The Stata Center for Computer, Information and Intelligence Sciences, recently opened at the Massachusetts Institute of Technology, includes a variety of oddly-shaped seminar rooms in addition to lecture spaces of somewhat more conventional form. The architects design approach prohibited following conventional, well understood room-acoustical behavior yet MIT and the design team were keenly interested in ensuring that these spaces functioned exceptionally well, acoustically. CATT-Acoustic room modeling was employed to assess RASTI through multiple design iterations for all these spaces. Presented here are computational and descriptive results achieved for these rooms which are highly-regarded by faculty. They all sound peculiarly good, given their unusual form. In addition, binaural auralizations for selected spaces are provided.
Hybrid PV/diesel solar power system design using multi-level factor analysis optimization
NASA Astrophysics Data System (ADS)
Drake, Joshua P.
Solar power systems represent a large area of interest across a spectrum of organizations at a global level. It was determined that a clear understanding of current state of the art software and design methods, as well as optimization methods, could be used to improve the design methodology. Solar power design literature was researched for an in depth understanding of solar power system design methods and algorithms. Multiple software packages for the design and optimization of solar power systems were analyzed for a critical understanding of their design workflow. In addition, several methods of optimization were studied, including brute force, Pareto analysis, Monte Carlo, linear and nonlinear programming, and multi-way factor analysis. Factor analysis was selected as the most efficient optimization method for engineering design as it applied to solar power system design. The solar power design algorithms, software work flow analysis, and factor analysis optimization were combined to develop a solar power system design optimization software package called FireDrake. This software was used for the design of multiple solar power systems in conjunction with an energy audit case study performed in seven Tibetan refugee camps located in Mainpat, India. A report of solar system designs for the camps, as well as a proposed schedule for future installations was generated. It was determined that there were several improvements that could be made to the state of the art in modern solar power system design, though the complexity of current applications is significant.
In vivo determination of total knee arthroplasty kinematics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komistek, Richard D; Mahfouz, Mohamed R; Bertin, Kim
2008-01-01
The objective of this study was to determine if consistent posterior femoral rollback of an asymmetrical posterior cruciate retaining (PCR) total knee arthroplasty was mostly influenced by the implant design, surgical technique, or presence of a well-functioning posterior cruciate ligament (PCL). Three-dimensional femorotibial kinematics was determined for 80 subjects implanted by 3 surgeons, and each subject was evaluated under fluoroscopic surveillance during a deep knee bend. All subjects in this present study having an intact PCL had a well-functioning PCR knee and experienced normal kinematic patterns, although less in magnitude than the normal knee. In addition, a surprising finding wasmore » that, on average, subjects without a PCL still achieved posterior femoral rollback from full extension to maximum knee flexion. The findings in this study revealed that implant design did contribute to the normal kinematics demonstrated by subjects having this asymmetrical PCR total knee arthroplasty.« less
Fujihara, Yuki; Saito, Taichi; Huetteman, Helen E; Sterbenz, Jennifer M; Chung, Kevin C
2018-04-01
A well-organized, thoughtful study design is essential for creating an impactful study. However, pressures promoting high output from researchers can lead to rushed study proposals that overlook critical weaknesses in the study design that can affect the validity of the conclusions. Researchers can benefit from thorough review of past failed proposals when crafting new research ideas. Conceptual frameworks and root cause analysis are two innovative techniques that can be used during study development to identify flaws and prevent study failures. In addition, conceptual frameworks and root cause analysis can be combined to complement each other to provide both a big picture and detailed view of a study proposal. This article describes these two common analytical methods and provides an example of how they can be used to evaluate and improve a study design by critically examining a previous failed research idea.
Sumner, Andrew J; Plata, Desiree L
2018-02-21
Hydraulic fracturing coupled with horizontal drilling (HDHF) involves the deep-well injection of a fracturing fluid composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. Analyses of flowback wastewaters have revealed organic contamination from both geogenic and anthropogenic sources. The additional detections of undisclosed halogenated chemicals suggest unintended in situ transformation of reactive additives, but the formation pathways for these are unclear in subsurface brines. To develop an efficient experimental framework for investigating the complex shale-well parameter space, we have reviewed and synthesized geospatial well data detailing temperature, pressure, pH, and halide ion values as well as industrial chemical disclosure and concentration data. Our findings showed subsurface conditions can reach pressures up to 4500 psi (310 bars) and temperatures up to 95 °C, while at least 588 unique chemicals have been disclosed by industry, including reactive oxidants and acids. Given the extreme conditions necessary to simulate the subsurface, we briefly highlighted existing geochemical reactor systems rated to the necessary pressures and temperatures, identifying throughput as a key limitation. In response, we designed and developed a custom reactor system capable of achieving 5000 psi (345 bars) and 90 °C at low cost with 15 individual reactors that are readily turned over. To demonstrate the system's throughput, we simultaneously tested 12 disclosed HDHF chemicals against a radical initiator compound in simulated subsurface conditions, ruling out a dozen potential transformation pathways in a single experiment. This review outlines the dynamic and diverse parameter range experienced by HDHF chemical additives and provides an optimized framework and novel reactor system for the methodical study of subsurface transformation pathways. Ultimately, enabling such studies will provide urgently needed clarity for water treatment downstream or releases to the environment.
Zhong, Jia; Agha, Golareh; Baccarelli, Andrea A
2016-01-08
Epidemiological studies have demonstrated that genetic, environmental, behavioral, and clinical factors contribute to cardiovascular disease development. How these risk factors interact at the cellular level to cause cardiovascular disease is not well known. Epigenetic epidemiology enables researchers to explore critical links between genomic coding, modifiable exposures, and manifestation of disease phenotype. One epigenetic link, DNA methylation, is potentially an important mechanism underlying these associations. In the past decade, there has been a significant increase in the number of epidemiological studies investigating cardiovascular risk factors and outcomes in relation to DNA methylation, but many gaps remain in our understanding of the underlying cause and biological implications. In this review, we provide a brief overview of the biology and mechanisms of DNA methylation and its role in cardiovascular disease. In addition, we summarize the current evidence base in epigenetic epidemiology studies relevant to cardiovascular health and disease and discuss the limitations, challenges, and future directions of the field. Finally, we provide guidelines for well-designed epigenetic epidemiology studies, with particular focus on methodological aspects, study design, and analytical challenges. © 2016 American Heart Association, Inc.
Performance of Oil Pumping Rings: An Analytical and Experimental Study
NASA Technical Reports Server (NTRS)
Eusepi, M. W.; Walowit, J. A.; Pinkus, O.; Holmes, P.
1986-01-01
A steady-state design computer program was developed to predict the performance of pumping rings as functions of geometry, applied loading, speed, ring modulus, and fluid viscosity. Additional analyses were developed to predict transient behavior of the ring and the effects of temperature rises occurring in the hydrodynamic film between the ring and shaft. The analysis was initially compared with previous experimental data and then used to design additional rings for further testing. Tests were performed with Rulon, carbon-graphite, and babbit rings. The design analysis was used to size all of the rings and to select the ranges of clearances, thickness, and loading. Although full quantitative agreement was lacking, relative agreement existed in that rings that were predicted to perform well theoretically, generally performed well experimentally. Some causes for discrepanices between theory and experiment are believed to be due to starvation, leakage past the secondary seal at high pressures, and uncertainties in the small clearances and local inlet temperatures to the pumping ring. A separate preliminary analysis was performed for a pumping Leningrader seal. This anlaysis can be used to predict the film thickness and flow rate thr ough the seal as a function of pressure, speed, loading, and geometry.
Integrated mixed signal control IC for 500-kHz switching frequency buck regulator
NASA Astrophysics Data System (ADS)
Chen, Keng; Zhang, Hong
2015-12-01
The main purpose for this work is to study the challenges of designing a digital buck regulator using pipelined analog to digital converter (ADC). Although pipelined ADC can achieve high sampling speed, it will introduce additional phase lag to the buck circuit. Along with the latency brought by processing time of additional digital circuits, as well as the time delay associated with the switching frequency, the closed loop will be unstable; moreover, raw ADC outputs have low signal-to-noise ratio, which usually need back-end calibration. In order to compensate these phase lag and make control loop unconditional stable, as well as boost up signal-to-noise ratio of the ADC block with cost-efficient design, a finite impulse response filter followed by digital proportional-integral-derivative blocks were designed. All these digital function blocks were optimised with processing speed. In the system simulation, it can be found that this controller achieved output regulation within 10% of nominal 5 V output voltage under 1 A/µs load transient condition; moreover, with the soft-start method, there is no turn-on overshooting. The die size of this controller is controlled within 3 mm2 by using 180 nm CMOS technology.
Exploring self-compassion and eudaimonic well-being in young women athletes.
Ferguson, Leah J; Kowalski, Kent C; Mack, Diane E; Sabiston, Catherine M
2014-04-01
Using a mixed methods research design, we explored self-compassion and eudaimonic well-being in young women athletes. In a quantitative study (n = 83), we found that self-compassion and eudaimonic well-being were positively related (r = .76, p < .01). A model of multiple mediation was proposed, with self-compassion, passivity, responsibility, initiative, and self-determination accounting for 83% of the variance in eudaimonic well-being. In a qualitative study (n = 11), we explored when and how self-compassion might be useful in striving to reach one's potential in sport. Self-compassion was described as advantageous in difficult sport-specific situations by increasing positivity, perseverance, and responsibility, as well as decreasing rumination. Apprehensions about fully embracing a self-compassionate mindset in sport warrant additional research to explore the seemingly paradoxical role of self-compassion in eudaimonic well-being.
Liravi, Farzad; Vlasea, Mihaela
2018-06-01
The data included in this article provides additional supporting information on our recent publication (Liravi et al., 2018 [1]) on a novel hybrid additive manufacturing (AM) method for fabrication of three-dimensional (3D) structures from silicone powder. A design of experiments (DoE) study has been carried out to optimize the geometrical fidelity of AM-made parts. This manuscript includes the details of a multi-level factorial DOE and the response optimization results. The variation in the temperature of powder-bed when exposed to heat is plotted as well. Furthermore, the effect of blending ratio of two parts of silicone binder on its curing speed was investigated by conducting DSC tests on a silicone binder with 100:2 precursor to curing agent ratio. The hardness of parts fabricated with non-optimum printing conditions are included and compared.
Space shuttle Ku-band integrated rendezvous radar/communications system study
NASA Technical Reports Server (NTRS)
1976-01-01
The results are presented of work performed on the Space Shuttle Ku-Band Integrated Rendezvous Radar/Communications System Study. The recommendations and conclusions are included as well as the details explaining the results. The requirements upon which the study was based are presented along with the predicted performance of the recommended system configuration. In addition, shuttle orbiter vehicle constraints (e.g., size, weight, power, stowage space) are discussed. The tradeoffs considered and the operation of the recommended configuration are described for an optimized, integrated Ku-band radar/communications system. Basic system tradeoffs, communication design, radar design, antenna tradeoffs, antenna gimbal and drive design, antenna servo design, and deployed assembly packaging design are discussed. The communications and radar performance analyses necessary to support the system design effort are presented. Detailed derivations of the communications thermal noise error, the radar range, range rate, and angle tracking errors, and the communications transmitter distortion parameter effect on crosstalk between the unbalanced quadriphase signals are included.
Analytic study of the conditions required for longitudinal stability of dual-wing aircraft
Andrews, Stephen Arthur; Perez, Ruben E.
2017-05-11
Recent studies of new, fuel-efficient transport aircraft have considered designs, which make use of two principal lifting surfaces to provide the required lift as well as trim and static stability. Such designs include open tandem-wings as well as closed joined and box-wings. As a group, these aircraft can be termed dual-wing designs. Our study developed a new analytic model, which takes into account the downwash from the two main wings and is sensitive to three important design variables: the relative areas of each wing, the streamwise separation of the wings, and the center of gravity position. This model was usedmore » to better understand trends in the dual-wing geometry on the stability, maneuverability, and lift-to-drag ratio of the aircraft. Dual-wing aircraft have been shown to have reduced the induced drag compared to the conventional designs. In addition, further drag reductions can be realized as the horizontal tail can be removed if the dual-wings have sufficient streamwise stagger to provide the moments necessary for trim and longitudinal stability. As both wings in a dual-wing system carry a significant fraction of the total lift, trends in such designs that led to longitudinal stability can differ from those of the conventional aircraft and have not been the subject of detailed investigation. Results from the analytic model showed that the longitudinal stability required either a reduction of the fore wing area or shifting the center of gravity forward from the midpoint of both wings' aerodynamic centers. Additionally, for wing configurations of approximately equal fore and aft wing areas, increasing the separation between the two wings decreased the stability of the aircraft. The source of this unusual behavior was the asymmetric distribution of downwash upstream and downstream of the wing. These relationships between dual-wing geometry and stability will provide initial guidance on the conceptual design of dual-wing aircraft and aid in the understanding of the results of more complex studies of such designs, furthering the development of future transport aircraft.« less
Analytic study of the conditions required for longitudinal stability of dual-wing aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Stephen Arthur; Perez, Ruben E.
Recent studies of new, fuel-efficient transport aircraft have considered designs, which make use of two principal lifting surfaces to provide the required lift as well as trim and static stability. Such designs include open tandem-wings as well as closed joined and box-wings. As a group, these aircraft can be termed dual-wing designs. Our study developed a new analytic model, which takes into account the downwash from the two main wings and is sensitive to three important design variables: the relative areas of each wing, the streamwise separation of the wings, and the center of gravity position. This model was usedmore » to better understand trends in the dual-wing geometry on the stability, maneuverability, and lift-to-drag ratio of the aircraft. Dual-wing aircraft have been shown to have reduced the induced drag compared to the conventional designs. In addition, further drag reductions can be realized as the horizontal tail can be removed if the dual-wings have sufficient streamwise stagger to provide the moments necessary for trim and longitudinal stability. As both wings in a dual-wing system carry a significant fraction of the total lift, trends in such designs that led to longitudinal stability can differ from those of the conventional aircraft and have not been the subject of detailed investigation. Results from the analytic model showed that the longitudinal stability required either a reduction of the fore wing area or shifting the center of gravity forward from the midpoint of both wings' aerodynamic centers. Additionally, for wing configurations of approximately equal fore and aft wing areas, increasing the separation between the two wings decreased the stability of the aircraft. The source of this unusual behavior was the asymmetric distribution of downwash upstream and downstream of the wing. These relationships between dual-wing geometry and stability will provide initial guidance on the conceptual design of dual-wing aircraft and aid in the understanding of the results of more complex studies of such designs, furthering the development of future transport aircraft.« less
NASA Technical Reports Server (NTRS)
Sergeyevsky, A. B.; Snyder, G. C.
1982-01-01
Graphical data necessary for the preliminary design of ballistic missions to Jupiter are provided. Contours of launch energy requirements, as well as many other launch and Jupiter arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1985 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Jupiter probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations relating various parameters.
NASA Technical Reports Server (NTRS)
Sergeyevsky, A. B.; Snyder, G. C.; Cunniff, R. A.
1983-01-01
Graphical data necessary for the preliminary design of ballistic missions to Mars are provided. Contours of launch energy requirements, as well as many other launch and Mars arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1990 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Mars probe and orbiter arrival design, utilizing the graphical data as well as numerous equations relating various parameters.
Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Liang, Albert K; Zhao, Qihua
2017-07-01
Active matrix flat-panel imagers, which typically incorporate a pixelated array with one a-Si:H thin-film transistor (TFT) per pixel, have become ubiquitous by virtue of many advantages, including large monolithic construction, radiation tolerance, and high DQE. However, at low exposures such as those encountered in fluoroscopy, digital breast tomosynthesis and breast computed tomography, DQE is degraded due to the modest average signal generated per interacting x-ray relative to electronic additive noise levels of ~1000 e, or greater. A promising strategy for overcoming this limitation is to introduce an amplifier into each pixel, referred to as the active pixel (AP) concept. Such circuits provide in-pixel amplification prior to readout as well as facilitate correlated multiple sampling, enhancing signal-to-noise and restoring DQE at low exposures. In this study, a methodology for theoretically investigating the signal and noise performance of imaging array designs is introduced and applied to the case of AP circuits based on low-temperature polycrystalline silicon (poly-Si), a semiconductor suited to manufacture of large area, radiation tolerant arrays. Computer simulations employing an analog circuit simulator and performed in the temporal domain were used to investigate signal characteristics and major sources of electronic additive noise for various pixel amplifier designs. The noise sources include photodiode shot noise and resistor thermal noise, as well as TFT thermal and flicker noise. TFT signal behavior and flicker noise were parameterized from fits to measurements performed on individual poly-Si test TFTs. The performance of three single-stage and three two-stage pixel amplifier designs were investigated under conditions relevant to fluoroscopy. The study assumes a 20 × 20 cm 2 , 150 μm pitch array operated at 30 fps and coupled to a CsI:Tl x-ray converter. Noise simulations were performed as a function of operating conditions, including sampling mode, of the designs. The total electronic additive noise included noise contributions from each circuit component. The total noise results were found to exhibit a strong dependence on circuit design and operating conditions, with TFT flicker noise generally found to be the dominant noise contributor. For the single-stage designs, significantly increasing the size of the source-follower TFT substantially reduced flicker noise - with the lowest total noise found to be ~574 e [rms]. For the two-stage designs, in addition to tuning TFT sizes and introducing a low-pass filter, replacing a p-type TFT with a resistor (under the assumption in the study that resistors make no flicker noise contribution) resulted in significant noise reduction - with the lowest total noise found to be ~336 e [rms]. A methodology based on circuit simulations which facilitates comprehensive explorations of signal and noise characteristics has been developed and applied to the case of poly-Si AP arrays. The encouraging results suggest that the electronic additive noise of such devices can be substantially reduced through judicious circuit design, signal amplification, and multiple sampling. This methodology could be extended to explore the noise performance of arrays employing other pixel circuitry such as that for photon counting as well as other semiconductor materials such as a-Si:H and a-IGZO. © 2017 American Association of Physicists in Medicine.
Effect of filter designs on hydraulic properties and well efficiency.
Kim, Byung-Woo
2014-09-01
To analyze the effect of filter pack arrangement on the hydraulic properties and the well efficiency of a well design, a step drawdown was conducted in a sand-filled tank model. Prior to the test, a single filter pack (SFP), granule only, and two dual filter packs (DFPs), type A (granule-pebble) and type B (pebble-granule), were designed to surround the well screen. The hydraulic properties and well efficiencies related to the filter packs were evaluated using the Hazen's, Eden-Hazel's, Jacob's, and Labadie-Helweg's methods. The results showed that the hydraulic properties and well efficiency of the DFPs were higher than those of a SFP, and the clogging effect and wellhead loss related to the aquifer material were the lowest owing to the grain size and the arrangement of the filter pack. The hydraulic conductivity of the DFPs types A and B was about 1.41 and 6.43 times that of a SFP, respectively. In addition, the well efficiency of the DFPs types A and B was about 1.38 and 1.60 times that of the SFP, respectively. In this study, hydraulic property and well efficiency changes were observed according to the variety of the filter pack used. The results differed from the predictions of previous studies on the grain-size ratio. Proper pack-aquifer ratios and filter pack arrangements are primary factors in the construction of efficient water wells, as is the grain ratio, intrinsic permeability (k), and hydraulic conductivity (K) between the grains of the filter packs and the grains of the aquifer. © 2014, National Ground Water Association.
Lantieri, Francesca; Malacarne, Michela; Gimelli, Stefania; Santamaria, Giuseppe; Coviello, Domenico; Ceccherini, Isabella
2017-01-01
The presence of false positive and false negative results in the Array Comparative Genomic Hybridization (aCGH) design is poorly addressed in literature reports. We took advantage of a custom aCGH recently carried out to analyze its design performance, the use of several Agilent aberrations detection algorithms, and the presence of false results. Our study provides a confirmation that the high density design does not generate more noise than standard designs and, might reach a good resolution. We noticed a not negligible presence of false negative and false positive results in the imbalances call performed by the Agilent software. The Aberration Detection Method 2 (ADM-2) algorithm with a threshold of 6 performed quite well, and the array design proved to be reliable, provided that some additional filters are applied, such as considering only intervals with average absolute log2ratio above 0.3. We also propose an additional filter that takes into account the proportion of probes with log2ratio exceeding suggestive values for gain or loss. In addition, the quality of samples was confirmed to be a crucial parameter. Finally, this work raises the importance of evaluating the samples profiles by eye and the necessity of validating the imbalances detected. PMID:28287439
NASA Astrophysics Data System (ADS)
El-Wardany, Tahany; Lynch, Mathew; Gu, Wenjiong; Hsu, Arthur; Klecka, Michael; Nardi, Aaron; Viens, Daniel
This paper proposes an optimization framework enabling the integration of multi-scale / multi-physics simulation codes to perform structural optimization design for additively manufactured components. Cold spray was selected as the additive manufacturing (AM) process and its constraints were identified and included in the optimization scheme. The developed framework first utilizes topology optimization to maximize stiffness for conceptual design. The subsequent step applies shape optimization to refine the design for stress-life fatigue. The component weight was reduced by 20% while stresses were reduced by 75% and the rigidity was improved by 37%. The framework and analysis codes were implemented using Altair software as well as an in-house loading code. The optimized design was subsequently produced by the cold spray process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel A. Riza
The goals of the first six months of this project were to lay the foundations for both the SiC front-end optical chip fabrication as well as the free-space laser beam interferometer designs and preliminary tests. In addition, a Phase I goal was to design and experimentally build the high temperature and pressure infrastructure and test systems that will be used in the next 6 months for proposed sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the opticalmore » systems are provided. In addition, photographs of the fabricated SiC optical chips, the high temperature & pressure test chamber instrument, the optical interferometer, the SiC sample chip holder, and signal processing data are provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature optical sensor technology.« less
Teratology studies in the rat.
Leroy, Mariline; Allais, Linda
2013-01-01
The rat is the rodent species of choice for the regulatory safety testing of xenobiotics, such as medicinal products, food additives, and other chemicals. Many decades of experience and extensive data have accumulated for both general and developmental toxicology investigations in this species. The high fertility and large litter size of the rat are advantages for teratogenicity testing. The study designs are well defined in the regulatory guidelines and are relatively standardized between testing laboratories across the world. Teratology studies address maternal- and embryo-toxicity following exposure during the period of organogenesis. This chapter describes the design and conduct of a teratology study in the rat in compliance with the regulatory guidelines. The procedures for the handling and housing of the pregnant animals, the caesarean examinations and the sampling of fetuses for morphological examinations are described. The utility and design of preliminary studies and the inclusion of satellite animals in the main study for toxicokinetic sampling are discussed.
NASA Astrophysics Data System (ADS)
Dassekpo, Jean-Baptiste Mawulé; Zha, Xiaoxiong; Zhan, Jiapeng; Ning, Jiaqian
Geopolymer is an energy efficient and sustainable material that is currently used in construction industry as an alternative for Portland cement. As a new material, specific mix design method is essential and efforts have been made to develop a mix design procedure with the main focus on achieving better compressive strength and economy. In this paper, a sequential addition of synthesis parameters such as fly ash-sand, alkaline liquids, plasticizer and additional water at well-defined time intervals was investigated. A total of 4 mix procedures were used to study the compressive performance on fly ash-based geopolymer mortar and the results of each method were analyzed and discussed. Experimental results show that the sequential addition of sodium hydroxide (NaOH), sodium silicate (Na2SiO3), plasticizer (PL), followed by adding water (WA) increases considerably the compressive strengths of the geopolymer-based mortar. These results clearly demonstrate the high significant influence of sequential addition of synthesis parameters on geopolymer materials compressive properties, and also provide a new mixing method for the preparation of geopolymer paste, mortar and concrete.
Hedayati, R; Ahmadi, S M; Lietaert, K; Pouran, B; Li, Y; Weinans, H; Rans, C D; Zadpoor, A A
2018-03-01
In this study, we tried to quantify the isolated and modulated effects of topological design and material type on the mechanical properties of AM porous biomaterials. Towards this aim, we assembled a large dataset comprising the mechanical properties of AM porous biomaterials with different topological designs (i.e. different unit cell types and relative densities) and material types. Porous structures were additively manufactured from Co-Cr using a selective laser melting (SLM) machine and tested under quasi-static compression. The normalized mechanical properties obtained from those structures were compared with mechanical properties available from our previous studies for porous structures made from Ti-6Al-4V and pure titanium as well as with analytical solutions. The normalized values of elastic modulus and yield stress were found to be relatively close to each other as well as in agreement with analytical solutions regardless of material type. However, the material type was found to systematically affect the mechanical properties of AM porous biomaterials in general and the post-elastic/post-yield range (plateau stress and energy absorption capacity) in particular. To put this in perspective, topological design could cause up to 10-fold difference in the mechanical properties of AM porous biomaterials while up to 2-fold difference was observed as a consequence of changing the material type. Copyright © 2017 Elsevier Ltd. All rights reserved.
Report of the Acquisition Cycle Task Force. 1977 Summer Study
1978-03-15
selection and a decision to change from pressure-fired to conventional boilers . These delays extended into the building period and resulted in additional...delays in the program. The acquisition plan was standard for the era. De- lays were caused by decisions made to change the sonar and the boiler design...design changes in the sonar and boiler installation, as well as L C -34 In. V1 CD In - .5 -~j S~ cx cn~~~4 u- L n 1 . WI8 PAG. IS MT QUALtTY PUZCA=LX C-35
ERIC Educational Resources Information Center
Andaya, Abegail A.; Arredondo, Elva M.; Alcaraz, John E.; Lindsay, Suzanne P.; Elder, John P.
2011-01-01
Objective: Examine the relationship of family meals to children's consumption of fruit and vegetables as well as soda and chips. Additionally, to assess the relationship between viewing TV during family meals and children's diet. Design: Cross-sectional study that used a questionnaire completed by parents. Setting: Thirteen schools in San Diego,…
Guidelines and Suggestions for Balloon Gondola Design
NASA Technical Reports Server (NTRS)
Franco, Hugo
2016-01-01
The Columbia Scientific Balloon Facility is responsible for ensuring that science payloads meet the appropriate design requirements. The ultimate goal is to ensure that payloads stay within the allowable launch limits as well as survive the termination event. The purpose of this presentation is to provide some general guidelines for Gondola Design. These include rules and reasons on why CSBF has a certain preference and location for certain components within the gondola as well as other suggestions. Additionally, some recommendations are given on how to avoid common pitfalls.
Schaafsma, Anne; Deurenberg, Paul; Calame, Wim; van den Heuvel, Ellen G H M; van Beusekom, Christien; Hautvast, Jo; Sandjaja; Bee Koon, Poh; Rojroongwasinkul, Nipa; Le Nguyen, Bao Khanh; Parikh, Panam; Khouw, Ilse
2013-09-01
Nutrition is a well-known factor in the growth, health and development of children. It is also acknowledged that worldwide many people have dietary imbalances resulting in over- or undernutrition. In 2009, the multinational food company FrieslandCampina initiated the South East Asian Nutrition Survey (SEANUTS), a combination of surveys carried out in Indonesia, Malaysia, Thailand and Vietnam, to get a better insight into these imbalances. The present study describes the general study design and methodology, as well as some problems and pitfalls encountered. In each of these countries, participants in the age range of 0·5-12 years were recruited according to a multistage cluster randomised or stratified random sampling methodology. Field teams took care of recruitment and data collection. For the health status of children, growth and body composition, physical activity, bone density, and development and cognition were measured. For nutrition, food intake and food habits were assessed by questionnaires, whereas in subpopulations blood and urine samples were collected to measure the biochemical status parameters of Fe, vitamins A and D, and DHA. In Thailand, the researchers additionally studied the lipid profile in blood, whereas in Indonesia iodine excretion in urine was analysed. Biochemical data were analysed in certified laboratories. Study protocols and methodology were aligned where practically possible. In December 2011, data collection was finalised. In total, 16,744 children participated in the present study. Information that will be very relevant for formulating nutritional health policies, as well as for designing innovative food and nutrition research and development programmes, has become available.
Gould, Douglas J.; Terrell, Mark A.; Fleming, Jo
2015-01-01
This usability study evaluated users’ perceptions of a multimedia prototype for a new e-learning tool: Anatomy of the Central Nervous System: A Multimedia Course. Usability testing is a collection of formative evaluation methods that inform the developmental design of e-learning tools to maximize user acceptance, satisfaction, and adoption. Sixty-two study participants piloted the prototype and completed a usability questionnaire designed to measure two usability properties: program need and program applicability. Statistical analyses were used to test the hypothesis that the multimedia prototype was well designed and highly usable, it was perceived as: 1) highly needed across a spectrum of educational contexts, 2) highly applicable in supporting the pedagogical processes of teaching and learning neuroanatomy, and 3) was highly usable by all types of users. Three independent variables represented user differences: level of expertise (faculty vs. student), age, and gender. Analysis of the results supports the research hypotheses that the prototype was designed well for different types of users in various educational contexts and for supporting the pedagogy of neuroanatomy. In addition, the results suggest that the multimedia program will be most useful as a neuroanatomy review tool for health-professions students preparing for licensing or board exams. This study demonstrates the importance of integrating quality properties of usability with principles of human learning during the instructional design process for multimedia products. PMID:19177405
Post Flight Analysis of Optical Specimens from MISSE7
NASA Technical Reports Server (NTRS)
Stewart, Alan F.; Finckenor, Miria
2012-01-01
More than 100 optical specimens were flown on the MISSE7 platform. These included bare substrates in addition to coatings designed to exhibit clearly defined or enhanced sensitivity to the accumulation of contamination. Measurements were performed using spectrophotometers operating from the UV through the IR as well as ellipsometry. Results will be presented in addition to discussion of the best options for design of samples for future exposure experiments.
Recent Advances in Traditional Chinese Medicine for Kidney Disease.
Zhong, Yifei; Menon, Madhav C; Deng, Yueyi; Chen, Yiping; He, John Cijiang
2015-09-01
Because current treatment options for chronic kidney disease (CKD) are limited, many patients seek out alternative therapies such as traditional Chinese medicine. However, there is a lack of evidence from large clinical trials to support the use of traditional medicines in patients with CKD. Many active components of traditional medicine formulas are undetermined and their toxicities are unknown. Therefore, there is a need for research to identify active compounds from traditional medicines and understand the mechanisms of action of these compounds, as well as their potential toxicity, and subsequently perform well-designed, randomized, controlled, clinical trials to study the efficacy and safety of their use in patients with CKD. Significant progress has been made in this field within the last several years. Many active compounds have been identified by applying sophisticated techniques such as mass spectrometry, and more mechanistic studies of these compounds have been performed using both in vitro and in vivo models. In addition, several well-designed, large, randomized, clinical trials have recently been published. We summarize these recent advances in the field of traditional medicines as they apply to CKD. In addition, current barriers for further research are also discussed. Due to the ongoing research in this field, we believe that stronger evidence to support the use of traditional medicines for CKD will emerge in the near future. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Kirkpatrick, Beth D; Colgate, E Ross; Mychaleckyj, Josyf C; Haque, Rashidul; Dickson, Dorothy M; Carmolli, Marya P; Nayak, Uma; Taniuchi, Mami; Naylor, Caitlin; Qadri, Firdausi; Ma, Jennie Z; Alam, Masud; Walsh, Mary Claire; Diehl, Sean A; Petri, William A
2015-04-01
Oral vaccines appear less effective in children in the developing world. Proposed biologic reasons include concurrent enteric infections, malnutrition, breast milk interference, and environmental enteropathy (EE). Rigorous study design and careful data management are essential to begin to understand this complex problem while assuring research subject safety. Herein, we describe the methodology and lessons learned in the PROVIDE study (Dhaka, Bangladesh). A randomized clinical trial platform evaluated the efficacy of delayed-dose oral rotavirus vaccine as well as the benefit of an injectable polio vaccine replacing one dose of oral polio vaccine. This rigorous infrastructure supported the additional examination of hypotheses of vaccine underperformance. Primary and secondary efficacy and immunogenicity measures for rotavirus and polio vaccines were measured, as well as the impact of EE and additional exploratory variables. Methods for the enrollment and 2-year follow-up of a 700 child birth cohort are described, including core laboratory, safety, regulatory, and data management practices. Intense efforts to standardize clinical, laboratory, and data management procedures in a developing world setting provide clinical trials rigor to all outcomes. Although this study infrastructure requires extensive time and effort, it allows optimized safety and confidence in the validity of data gathered in complex, developing country settings. © The American Society of Tropical Medicine and Hygiene.
Liquid belt radiator design study
NASA Technical Reports Server (NTRS)
Teagan, W. P.; Fitzgerald, K. F.
1986-01-01
The Liquid Belt Radiator (LBR) is an advanced concept developed to meet the needs of anticipated future space missions. A previous study documented the advantages of this concept as a lightweight, easily deployable alternative to present day space heat rejection systems. The technical efforts associated with this study concentrate on refining the concept of the LBR as well as examining the issues of belt dynamics and potential application of the LBR to intermediate and high temperature heat rejection applications. A low temperature point design developed in previous work is updated assuming the use of diffusion pump oil, Santovac-6, as the heat transfer media. Additional analytical and design effort is directed toward determining the impact of interface heat exchanger, fluid bath sealing, and belt drive mechanism designs on system performance and mass. The updated design supports the earlier result by indicating a significant reduction in system specific system mass as compared to heat pipe or pumped fluid radiator concepts currently under consideration (1.3 kg/sq m versus 5 kg/sq m).
Kaul, Goldi; Huang, Jun; Chatlapalli, Ramarao; Ghosh, Krishnendu; Nagi, Arwinder
2011-12-01
The role of poloxamer 188, water and binder addition rate, on retarding dissolution in immediate-release tablets of a model drug from BCS class II was investigated by means of multivariate data analysis (MVDA) combined with design of experiments (DOE). While the DOE analysis yielded important clues into the cause-and-effect relationship between the responses and design factors, multivariate data analysis of the 40+ variables provided additional information on slowdown in tablet dissolution. A steep dependence of both tablet dissolution and disintegration on the poloxamer and less so on other design variables was observed. Poloxamer was found to increase dissolution rates in granules as expected of surfactants in general but retard dissolution in tablets. The unexpected effect of poloxamer in tablets was accompanied by an increase in tablet-disintegration-time-mediated slowdown of tablet dissolution and by a surrogate binding effect of poloxamer at higher concentrations. It was additionally realized through MVDA that poloxamer in tablets either acts as a binder by itself or promotes binder action of the binder povidone resulting in increased intragranular cohesion. Additionally, poloxamer was found to mediate tablet dissolution on stability as well. In contrast to tablet dissolution at release (time zero), poloxamer appeared to increase tablet dissolution in a concentration-dependent manner on accelerated open-dish stability. Substituting polysorbate 80 as an alternate surfactant in place of poloxamer in the formulation was found to stabilize tablet dissolution.
Construction and Utilization of a Beowulf Computing Cluster: A User's Perspective
NASA Technical Reports Server (NTRS)
Woods, Judy L.; West, Jeff S.; Sulyma, Peter R.
2000-01-01
Lockheed Martin Space Operations - Stennis Programs (LMSO) at the John C Stennis Space Center (NASA/SSC) has designed and built a Beowulf computer cluster which is owned by NASA/SSC and operated by LMSO. The design and construction of the cluster are detailed in this paper. The cluster is currently used for Computational Fluid Dynamics (CFD) simulations. The CFD codes in use and their applications are discussed. Examples of some of the work are also presented. Performance benchmark studies have been conducted for the CFD codes being run on the cluster. The results of two of the studies are presented and discussed. The cluster is not currently being utilized to its full potential; therefore, plans are underway to add more capabilities. These include the addition of structural, thermal, fluid, and acoustic Finite Element Analysis codes as well as real-time data acquisition and processing during test operations at NASA/SSC. These plans are discussed as well.
NASA Astrophysics Data System (ADS)
Treichel, A.; Huisman, J. A.; Zhao, Y.; Zimmermann, E.; Esser, O.; Kemna, A.; Vereecken, H.
2012-12-01
Geophysical measurements within a borehole are typically affected by the presence of the borehole. The focus of the current study is to quantify the effect of borehole design on broadband electrical impedance tomography (EIT) measurements within boreholes. Previous studies have shown that effects on the real part of the electrical resistivity are largest for boreholes with large diameters and for materials with a large formation factor. However, these studies have not considered the effect of the well casing and the filter gravel on the measurement of the real part of the electrical resistivity. In addition, the effect of borehole design on the imaginary part of the electrical resistivity has not been investigated yet. Therefore, the aim of this study is to investigate the effect of borehole design on the complex electrical resistivity using laboratory measurements and numerical simulations. In order to do so, we developed a high resolution two dimensional axisymmetric finite element model (FE) that enables us to simulate the effects of several key borehole design parameters (e.g. borehole diameter, thickness of PVC well casing) on the measurement process. For the material surrounding the borehole, realistic values for complex resistivity were obtained from a database of laboratory measurements of complex resistivity from the test site Krauthausen (Germany). The slotted PVC well casing is represented by an effective resistivity calculated from the water-filled slot volume and the PVC volume. Measurements with and without PVC well casing were made with a four-electrode EIT logging tool in a water-filled rain barrel. The initial comparison for the case that the logging tool was inserted in the PVC well casing showed a considerable mismatch between measured and modeled values. It was required to consider a complete electrode model instead of point electrodes to remove this mismatch. This validated model was used to investigate in detail how complex resistivity measurements with different electrode configurations are affected by borehole design. Finally, the plausibility of our results was verified by comparing the simulation results with borehole EIT measurements made at the test site Krauthausen.
Benefits of sensory garden and horticultural activities in dementia care: a modified scoping review.
Gonzalez, Marianne T; Kirkevold, Marit
2014-10-01
To provide a review on the benefits associated with the use of sensory gardens and horticultural activities in dementia care. Maintaining quality of life is important in dementia care. Sensory gardens and horticultural activities are increasingly used in dementia care, yet their benefits are uncertain. A modified scoping review with descriptive analysis of selected empirical studies. Systematic searches in Amed, CINAHL, MEDLINE, ISI Web of Science, Embase and Scopus were used. Search terms were the free-text concepts 'healing garden', 'horticultural therapy', 'restorative garden' and 'wander garden' which were combined with dementia and Alzheimer. Sixteen studies were included with included participants ranging from eight to 129 participants. Research designs were case studies (n = 2), survey (n = 1), intervention studies with pretest/post-test design (n = 11) and randomised controlled studies (n = 2). Of these 16 studies, eight examined the benefits of sensory gardens, seven examined horticultural therapy or therapeutic horticulture and one examined the use of plants indoors. This study offers a review of the research addressing benefits of sensory gardens, therapeutic horticulture, horticultural therapy and other purposeful use of plants in dementia care. The reported findings are mainly on issues related to behaviour, affect and well-being. The findings are in general mutually supportive, however, with some contradictory findings. In addition, sleep pattern, well-being and functional level seem to improve. These types of nonpharmacological interventions may improve well-being and affect and reduce the occurrence of disruptive behaviour. Additionally, the use of psychotropic drugs, incidents of serious falls, sleep and sleep pattern also seem to improve. To further improve the use of the existing or planned gardens, an educational programme for staff that also includes skill training is recommended. © 2013 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Zachary, A. T.
1973-01-01
Analysis and design of an optimum LO2/LH2, combustion topping cycle, 88,964 Newtons (20,000-pound) thrust, liquid rocket engine was conducted. The design selected is well suited to high-energy, upper-stage engine applications such as the Space Tug and embodies features directed toward optimization of vehicle performance. A configuration selection was conducted based on prior Air Force Contracts, and additional criteria for optimum stage performance. Following configuration selection, analyses and design of the major components and engine systems were conducted to sufficient depth to provide layout drawings suitable for subsequent detailing. In addition, engine packaging to a common interface and a retractable nozzle concept were defined. Alternative development plans and related costs were also established. The design embodies high-performance, low-weight, low NPSH requirements (saturated propellant inlet conditions at start), idle-mode operation, and autogenous pressurization. The design is the result of the significant past and current LO2/LH2 technology efforts of the NASA centers and the Air Force, as well as company-funded programs.
NASA Technical Reports Server (NTRS)
Monk, Kevin J.; Roberts, Zachary
2017-01-01
In order to support the future expansion and integration of Unmanned Aircraft Systems (UAS), ongoing research efforts have sought to produce findings that inform the minimum display information elements required for acceptable UAS pilot response times and traffic avoidance. Previous simulations have revealed performance benefits associated with DAA displays containing predictive information and suggestive maneuver guidance tools in the form of banding. The present study investigated the impact of various maneuver guidance display configurations on detect-and-avoid (DAA) task performance in a simulated airspace environment. UAS pilots ability to maintain DAA well clear was compared between displays with either the presence or absence of green DAA bands, which indicated conflict-free flight regions. Additional display comparisons assessed pilots ability to regain DAA well clear with two different guidance presentations designed to aid in DAA well clear recovery during critical encounters. Performance implications and display considerations for future UAS DAA systems are discussed.
Szulc, Alicja; Ambrożewicz, Damian; Sydow, Mateusz; Ławniczak, Łukasz; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Chrzanowski, Łukasz
2014-01-01
The study focused on assessing the influence of bioaugmentation and addition of rhamnolipids on diesel oil biodegradation efficiency during field studies. Initial laboratory studies (measurement of emitted CO2 and dehydrogenase activity) were carried out in order to select the consortium for bioaugmentation as well as to evaluate the most appropriate concentration of rhamnolipids. The selected consortium consisted of following bacterial taxa: Aeromonas hydrophila, Alcaligenes xylosoxidans, Gordonia sp., Pseudomonas fluorescens, Pseudomonas putida, Rhodococcus equi, Stenotrophomonas maltophilia, Xanthomonas sp. It was established that the application of rhamnolipids at 150 mg/kg of soil was most appropriate in terms of dehydrogenase activity. Based on the obtained results, four treatment methods were designed and tested during 365 days of field studies: I) natural attenuation; II) addition of rhamnolipids; III) bioaugmentation; IV) bioaugmentation and addition of rhamnolipids. It was observed that bioaugmentation contributed to the highest diesel oil biodegradation efficiency, whereas the addition of rhamnolipids did not notably influence the treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Simulation of Attitude and Trajectory Dynamics and Control of Multiple Spacecraft
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.
2009-01-01
Agora software is a simulation of spacecraft attitude and orbit dynamics. It supports spacecraft models composed of multiple rigid bodies or flexible structural models. Agora simulates multiple spacecraft simultaneously, supporting rendezvous, proximity operations, and precision formation flying studies. The Agora environment includes ephemerides for all planets and major moons in the solar system, supporting design studies for deep space as well as geocentric missions. The environment also contains standard models for gravity, atmospheric density, and magnetic fields. Disturbance force and torque models include aerodynamic, gravity-gradient, solar radiation pressure, and third-body gravitation. In addition to the dynamic and environmental models, Agora supports geometrical visualization through an OpenGL interface. Prototype models are provided for common sensors, actuators, and control laws. A clean interface accommodates linking in actual flight code in place of the prototype control laws. The same simulation may be used for rapid feasibility studies, and then used for flight software validation as the design matures. Agora is open-source and portable across computing platforms, making it customizable and extensible. It is written to support the entire GNC (guidance, navigation, and control) design cycle, from rapid prototyping and design analysis, to high-fidelity flight code verification. As a top-down design, Agora is intended to accommodate a large range of missions, anywhere in the solar system. Both two-body and three-body flight regimes are supported, as well as seamless transition between them. Multiple spacecraft may be simultaneously simulated, enabling simulation of rendezvous scenarios, as well as formation flying. Built-in reference frames and orbit perturbation dynamics provide accurate modeling of precision formation control.
Advanced designs for non-imaging submillimeter-wave Winston cone concentrators
NASA Astrophysics Data System (ADS)
Nelson, A. O.; Grossman, E. N.
2014-05-01
We describe the design and simulation of several non-imaging concentrators designed to couple submillimeter wavelength radiation from free space into highly overmoded, rectangular, WR-10 waveguide. Previous designs are altered to improve the uniformity of efficiency rather than the efficiency itself. The concentrators are intended for use as adapters between instruments using overmoded WR-10 waveguide as input or output and sources propagating through free space. Previous simulation and measurement have shown that the angular response is primarily determined by the Winston cone and is well predicted by geometric optics theory while the efficiencies are primarily determined by the transition section. Additionally, previous work has shown insensitivity to polarization, orientation and beam size. Several separate concentrator designs are studied, all of which use a Winston cone (also known as a compound parabolic concentrator) with an input diameter ranging from 4 mm to 16 mm, and "throat" diameters of less than 0.5 mm to 4 mm as the initial interface. The use of various length adiabatic circular-to-rectangular transition sections is investigated, along with the effect of an additional, 25 mm waveguide section designed to model the internal waveguide of the power meter. Adapters without a transition section and a rectangular Winston cone throat aperture and double cone configurations are also studied. Adapters are analyzed in simulation for consistent efficiency across the opening aperture.
A design study to develop young children's understanding of multiplication and division
NASA Astrophysics Data System (ADS)
Bicknell, Brenda; Young-Loveridge, Jenny; Nguyen, Nhung
2016-12-01
This design study investigated the use of multiplication and division problems to help 5-year-old children develop an early understanding of multiplication and division. One teacher and her class of 15 5-year-old children were involved in a collaborative partnership with the researchers. The design study was conducted over two 4-week periods in May-June and October-November. The focus in this article is on three key aspects of classroom teaching: instructional tasks, the use of representations, and discourse, including the mathematics register. Results from selected pre- and post-assessment tasks within a diagnostic interview showed that there were improvements in addition and subtraction as well as multiplication and division, even though the teaching had used multiplication and division problems. Students made progress on all four operational domains, with effect sizes ranging from approximately two thirds of a standard deviation to 2 standard deviations. Most of the improvement in students' number strategies was in moving from `counting all' to `counting on' and `skip counting'. The findings challenge the idea that learning experiences in addition and subtraction should precede those in multiplication and division as suggested in some curriculum documents.
Well-planning programs give students field-like experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sifferman, T.R.; Chapman, L.
1983-01-01
The University of Tulsa recently was given a package of computer well planning and drilling programs that will enable petroleum engineering students to gain valuable experience in designing well programs while still in school. Comprehensive homework assignments are now given in areas of drilling fluids programing, hydraulics, directional wells and surveying. Additional programs are scheduled for next semester.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovic, Bojan; Maldonado, Ivan
2016-04-14
The research performed in this project addressed the issue of low heavy metal loading and the resulting reduced cycle length with increased refueling frequency, inherent to all FHR designs with solid, non-movable fuel based on TRISO particles. Studies performed here focused on AHTR type of reactor design with plate (“plank”) fuel. Proposal to FY12 NEUP entitled “Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors” was selected for award, and the 3-year project started in August 2012. A 4-month NCE was granted and the project completed onmore » December 31, 2015. The project was performed by Georgia Tech (Prof. Bojan Petrovic, PI) and University of Tennessee (Prof. Ivan Maldonado, Co-PI), with a total funding of $758,000 over 3 years. In addition to two Co-PIs, the project directly engaged 6 graduate students (at doctoral or MS level) and 2 postdoctoral researchers. Additionally, through senior design projects and graduate advanced design projects, another 23 undergraduate and 12 graduate students were exposed to and trained in the salt reactor technology. We see this as one of the important indicators of the project’s success and effectiveness. In the process, 1 journal article was published (with 3 journal articles in preparation), together with 8 peer-reviewed full conference papers, 8 peer-reviewed extended abstracts, as well as 1 doctoral dissertation and 2 master theses. The work included both development of models and methodologies needed to adequately analyze this type of reactor, fuel, and its fuel cycle, as well as extensive analyses and optimization of the fuel and core design.« less
Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram
2014-01-10
Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs' structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al., J. Control. Release 160 (2012) 147-157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-Nearest Neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used by us in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. © 2013.
Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram
2014-01-01
Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs’ structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al, Journal of Controlled Release, 160(2012) 14–157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-nearest neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. PMID:24184343
Experimental design and statistical analysis for three-drug combination studies.
Fang, Hong-Bin; Chen, Xuerong; Pei, Xin-Yan; Grant, Steven; Tan, Ming
2017-06-01
Drug combination is a critically important therapeutic approach for complex diseases such as cancer and HIV due to its potential for efficacy at lower, less toxic doses and the need to move new therapies rapidly into clinical trials. One of the key issues is to identify which combinations are additive, synergistic, or antagonistic. While the value of multidrug combinations has been well recognized in the cancer research community, to our best knowledge, all existing experimental studies rely on fixing the dose of one drug to reduce the dimensionality, e.g. looking at pairwise two-drug combinations, a suboptimal design. Hence, there is an urgent need to develop experimental design and analysis methods for studying multidrug combinations directly. Because the complexity of the problem increases exponentially with the number of constituent drugs, there has been little progress in the development of methods for the design and analysis of high-dimensional drug combinations. In fact, contrary to common mathematical reasoning, the case of three-drug combinations is fundamentally more difficult than two-drug combinations. Apparently, finding doses of the combination, number of combinations, and replicates needed to detect departures from additivity depends on dose-response shapes of individual constituent drugs. Thus, different classes of drugs of different dose-response shapes need to be treated as a separate case. Our application and case studies develop dose finding and sample size method for detecting departures from additivity with several common (linear and log-linear) classes of single dose-response curves. Furthermore, utilizing the geometric features of the interaction index, we propose a nonparametric model to estimate the interaction index surface by B-spine approximation and derive its asymptotic properties. Utilizing the method, we designed and analyzed a combination study of three anticancer drugs, PD184, HA14-1, and CEP3891 inhibiting myeloma H929 cell line. To our best knowledge, this is the first ever three drug combinations study performed based on the original 4D dose-response surface formed by dose ranges of three drugs.
Guo, Wei; Zheng, Qing; An, Weijin; Peng, Wei
2017-09-01
Collaborative innovation (co-innovation) community emerges as a new product design platform where companies involve users in the new product development (NPD) process. Large numbers of users participate and contribute to the process voluntarily. This exploratory study investigates the heterogeneous roles of users based on a global co-innovation project in online community. Content analysis, social network analysis and cluster method are employed to measure user behaviors, distinguish user roles, and analyze user contributions. The study identifies six user roles that emerge during the NPD process in co-innovation community: project leader, active designer, generalist, communicator, passive designer, and observer. The six user roles differ in their contribution forms and quality. This paper contributes to research on co-innovation in online communities, including design team structure, user roles and their contribution to design task and solution, as well as user value along the process. In addition, the study provides practices guidance on implementing project, attracting users, and designing platform for co-innovation community practitioners. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pediatric cardiovascular safety: challenges in drug and device development and clinical application.
Bates, Katherine E; Vetter, Victoria L; Li, Jennifer S; Cummins, Susan; Aguel, Fernando; Almond, Christopher; Dubin, Anne M; Elia, Josephine; Finkle, John; Hausner, Elizabeth A; Joseph, Francesca; Karkowsky, Abraham M; Killeen, Matthew; Lemacks, Jodi; Mathis, Lisa; McMahon, Ann W; Pinnow, Ellen; Rodriguez, Ignacio; Stockbridge, Norman L; Stockwell, Margaret; Tassinari, Melissa; Krucoff, Mitchell W
2012-10-01
Development of pediatric medications and devices is complicated by differences in pediatric physiology and pathophysiology (both compared with adults and within the pediatric age range), small patient populations, and practical and ethical challenges to designing clinical trials. This article summarizes the discussions that occurred at a Cardiac Safety Research Consortium-sponsored Think Tank convened on December 10, 2010, where members from academia, industry, and regulatory agencies discussed important issues regarding pediatric cardiovascular safety of medications and cardiovascular devices. Pediatric drug and device development may use adult data but often requires additional preclinical and clinical testing to characterize effects on cardiac function and development. Challenges in preclinical trials include identifying appropriate animal models, clinically relevant efficacy end points, and methods to monitor cardiovascular safety. Pediatric clinical trials have different ethical concerns from adult trials, including consideration of the subjects' families. Clinical trial design in pediatrics should assess risks and benefits as well as incorporate input from families. Postmarketing surveillance, mandated by federal law, plays an important role in both drug and device safety assessment and becomes crucial in the pediatric population because of the limitations of premarketing pediatric studies. Solutions for this wide array of issues will require collaboration between academia, industry, and government as well as creativity in pediatric study design. Formation of various epidemiologic tools including registries to describe outcomes of pediatric cardiac disease and its treatment as well as cardiac effects of noncardiovascular medications, should inform preclinical and clinical development and improve benefit-risk assessments for the patients. The discussions in this article summarize areas of emerging consensus and other areas in which consensus remains elusive and provide suggestions for additional research to further our knowledge and understanding of this topic. Copyright © 2012 Mosby, Inc. All rights reserved.
Spacecraft Conceptual Design Compared to the Apollo Lunar Lander
NASA Technical Reports Server (NTRS)
Young, C.; Bowie, J.; Rust, R.; Lenius, J.; Anderson, M.; Connolly, J.
2011-01-01
Future human exploration of the Moon will require an optimized spacecraft design with each sub-system achieving the required minimum capability and maintaining high reliability. The objective of this study was to trade capability with reliability and minimize mass for the lunar lander spacecraft. The NASA parametric concept for a 3-person vehicle to the lunar surface with a 30% mass margin totaled was considerably heavier than the Apollo 15 Lunar Module "as flown" mass of 16.4 metric tons. The additional mass was attributed to mission requirements and system design choices that were made to meet the realities of modern spaceflight. The parametric tool used to size the current concept, Envision, accounts for primary and secondary mass requirements. For example, adding an astronaut increases the mass requirements for suits, water, food, oxygen, as well as, the increase in volume. The environmental control sub-systems becomes heavier with the increased requirements and more structure was needed to support the additional mass. There was also an increase in propellant usage. For comparison, an "Apollo-like" vehicle was created by removing these additional requirements. Utilizing the Envision parametric mass calculation tool and a quantitative reliability estimation tool designed by Valador Inc., it was determined that with today?s current technology a Lunar Module (LM) with Apollo capability could be built with less mass and similar reliability. The reliability of this new lander was compared to Apollo Lunar Module utilizing the same methodology, adjusting for mission timeline changes as well as component differences. Interestingly, the parametric concept's overall estimated risk for loss of mission (LOM) and loss of crew (LOC) did not significantly improve when compared to Apollo.
Goyette, Sharon Ramos; McCoy, John G; Kennedy, Ashley; Sullivan, Meghan
2012-02-28
It has been well-established that men outperform women on some spatial tasks. The tools commonly used to demonstrate this difference (e.g. The Mental Rotations Task) typically involve problems and solutions that are presented in a context devoid of referents. The study presented here assessed whether the addition of referents (or "landmarks") would attenuate the well-established sex difference on the judgment of line orientation task (JLOT). Three versions of the JLOT were presented in a within design. The first iteration contained the original JLOT (JLOT 1). JLOT 2 contained three "landmarks" or referents and JLOT 3 contained only one landmark. The sex difference on JLOT 1 was completely negated by the addition of three landmarks on JLOT 2 or the addition of one landmark on JLOT3. In addition, salivary testosterone was measured. In men, gains in performance on the JLOT due to the addition of landmarks were positively correlated with testosterone levels. This suggests that men with the highest testosterone levels benefited the most from the addition of landmarks. These data help to highlight different strategies used by men and women to solve spatial tasks. Copyright © 2011 Elsevier Inc. All rights reserved.
Bilastine: in allergic rhinitis and urticaria.
Carter, Natalie J
2012-06-18
Bilastine is an orally administered, second-generation antihistamine used in the symptomatic treatment of seasonal or perennial allergic rhinoconjunctivitis and urticaria. In two well designed phase III trials, 14 days' treatment with bilastine was associated with a significantly lower area under the effect curve (AUEC) for the reflective total symptom score (TSS) than placebo in patients with symptomatic seasonal allergic rhinitis. Additionally, reflective nasal symptom scores were significantly lower in bilastine than placebo recipients in patients with a history of seasonal allergic rhinitis who were challenged with grass pollen allergen in a single-centre, phase II study. Neither bilastine nor cetirizine was effective in the treatment of perennial allergic rhinitis with regard to the mean AUEC for reflective TSS in another well designed phase III trial. However, results may have been altered by differences in some baseline characteristics and placebo responses between study countries. In another well designed phase III trial, compared with placebo, bilastine was associated with a significantly greater change from baseline to day 28 in the mean reflective daily urticaria symptom score in patients with chronic urticaria. There were no significant differences in primary endpoint results between bilastine and any of the active comparators used in these trials (i.e. cetirizine, levocetirizine and desloratadine). Bilastine was generally well tolerated, with a tolerability profile that was generally similar to that of the other second-generation antihistamines included in phase III clinical trials.
The choice of the energy embedding law in the design of heavy ionic fusion cylindrical targets
NASA Astrophysics Data System (ADS)
Dolgoleva, GV; Zykova, A. I.
2017-10-01
The paper considers the numerical design of heavy ion fusion (FIHIF) targets, which is one of the branches of controlled thermonuclear fusion (CTF). One of the important tasks in the targets design for controlled thermonuclear fusion is the energy embedding selection whereby it is possible to obtain “burning” (the presence of thermonuclear reactions) of the working DT region. The work is devoted to the rapid ignition of FIHIF targets by means of an additional short-term energy contribution to the DT substance already compressed by massively more longer by energy embedding. This problem has been fairly well studied for laser targets, but this problem is new for heavy ion fusion targets. Maximum momentum increasing is very technically difficult and expensive on modern FIHIF installations. The work shows that the additional energy embedding (“igniting” impulse) reduces the requirements to the maximum impulse. The purpose of this work is to research the ignition impulse effect on the FIHIF target parameters.
NASA Technical Reports Server (NTRS)
Sergeyevsky, A. B.; Snyder, G. C.
1981-01-01
Graphical data necessary for the preliminary design of ballistic missions to Saturn are provided. Contours of launch energy requirements as well as many other launch and Saturn arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1985 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Saturn probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations elating various parameters. This is the first of a planned series of mission design documents which will apply to all planets and some other bodies in the solar system.
A novel design for scintillator-based neutron and gamma imaging in inertial confinement fusion
NASA Astrophysics Data System (ADS)
Geppert-Kleinrath, Verena; Cutler, Theresa; Danly, Chris; Madden, Amanda; Merrill, Frank; Tybo, Josh; Volegov, Petr; Wilde, Carl
2017-10-01
The LANL Advanced Imaging team has been providing reliable 2D neutron imaging of the burning fusion fuel at NIF for years, revealing possible multi-dimensional asymmetries in the fuel shape, and therefore calling for additional views. Adding a passive imaging system using image plate techniques along a new polar line of sight has recently demonstrated the merit of 3D neutron image reconstruction. Now, the team is in the process of designing a new active neutron imaging system for an additional equatorial view. The design will include a gamma imaging system as well, to allow for the imaging of carbon in the ablator of the NIF fuel capsules, constraining the burning fuel shape even further. The selection of ideal scintillator materials for a position-sensitive detector system is the key component for the new design. A comprehensive study of advanced scintillators has been carried out at the Los Alamos Neutron Science Center and the OMEGA Laser Facility in Rochester, NY. Neutron radiography using a fast-gated CCD camera system delivers measurements of resolution, light output and noise characteristics. The measured performance parameters inform the novel design, for which we conclude the feasibility of monolithic scintillators over pixelated counterparts.
Experimental investigation of terahertz quantum cascade laser with variable barrier heights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Aiting; Vijayraghavan, Karun; Belkin, Mikhail A., E-mail: mbelkin@ece.utexas.edu
2014-04-28
We report an experimental study of terahertz quantum cascade lasers with variable barrier heights based on the Al{sub x}Ga{sub 1–x}As/GaAs material system. Two new designs are developed based on semiclassical ensemble Monte Carlo simulations using state-of-the-art Al{sub 0.15}Ga{sub 0.85}As/GaAs three-quantum-well resonant phonon depopulation active region design as a reference. The new designs achieved maximum lasing temperatures of 188 K and 172 K, as compared to the maximum lasing temperature of 191 K for the reference structure. These results demonstrate that terahertz quantum cascade laser designs with variable barrier heights provide a viable alternative to the traditional active region designs with fixed barrier composition.more » Additional design space offered by using variable barriers may lead to future improvements in the terahertz quantum cascade laser performance.« less
Targeted Structural Optimization with Additive Manufacturing of Metals
NASA Technical Reports Server (NTRS)
Burt, Adam; Hull, Patrick
2015-01-01
The recent advances in additive manufacturing (AM) of metals have now improved the state-of-the-art such that traditionally non-producible parts can be readily produced in a cost-effective way. Because of these advances in manufacturing technology, structural optimization techniques are well positioned to supplement and advance this new technology. The goal of this project is to develop a structural design, analysis, and optimization framework combined with AM to significantly light-weight the interior of metallic structures while maintaining the selected structural properties of the original solid. This is a new state-of-the-art capability to significantly reduce mass, while maintaining the structural integrity of the original design, something that can only be done with AM. In addition, this framework will couple the design, analysis, and fabrication process, meaning that what has been designed directly represents the produced part, thus closing the loop on the design cycle and removing human iteration between design and fabrication. This fundamental concept has applications from light-weighting launch vehicle components to in situ resource fabrication.
Optimal design in pediatric pharmacokinetic and pharmacodynamic clinical studies.
Roberts, Jessica K; Stockmann, Chris; Balch, Alfred; Yu, Tian; Ward, Robert M; Spigarelli, Michael G; Sherwin, Catherine M T
2015-03-01
It is not trivial to conduct clinical trials with pediatric participants. Ethical, logistical, and financial considerations add to the complexity of pediatric studies. Optimal design theory allows investigators the opportunity to apply mathematical optimization algorithms to define how to structure their data collection to answer focused research questions. These techniques can be used to determine an optimal sample size, optimal sample times, and the number of samples required for pharmacokinetic and pharmacodynamic studies. The aim of this review is to demonstrate how to determine optimal sample size, optimal sample times, and the number of samples required from each patient by presenting specific examples using optimal design tools. Additionally, this review aims to discuss the relative usefulness of sparse vs rich data. This review is intended to educate the clinician, as well as the basic research scientist, whom plan on conducting a pharmacokinetic/pharmacodynamic clinical trial in pediatric patients. © 2015 John Wiley & Sons Ltd.
Two is better than one; toward a rational design of combinatorial therapy.
Chen, Sheng-Hong; Lahav, Galit
2016-12-01
Drug combination is an appealing strategy for combating the heterogeneity of tumors and evolution of drug resistance. However, the rationale underlying combinatorial therapy is often not well established due to lack of understandings of the specific pathways responding to the drugs, and their temporal dynamics following each treatment. Here we present several emerging trends in harnessing properties of biological systems for the optimal design of drug combinations, including the type of drugs, specific concentration, sequence of addition and the temporal schedule of treatments. We highlight recent studies showing different approaches for efficient design of drug combinations including single-cell signaling dynamics, adaption and pathway crosstalk. Finally, we discuss novel and feasible approaches that can facilitate the optimal design of combinatorial therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alhaddad, Mahmoud S; Abdallah, Qasem M; Alshakhsheer, Sami M; Alosaimi, Salman B; Althmali, Ahmed R; Alahmari, Solaiman A
2014-06-01
To measure general public knowledge, source of knowledge, preferred dosage forms, and beliefs toward medicines. A cross-sectional study design using convenience-sampling technique was used. A pre-validated questionnaire was designed and distributed to the general public through face-to-face interviews. All data were analyzed, and p-values less than 0.05 were considered significant. The study took place in the Clinical Pharmacy Department, Taif University, Taif, Kingdom of Saudi Arabia between August 2012 and February 2013 RESULTS: Nine hundred participants successfully responded to this study. Males represented two-thirds of the respondents (66.8%). In addition, 52% of respondents were of high education level. Modern (74.2%) and alternative medicines (88.7%) were understood by most respondents. Tablets (69.6%) and capsules (37.6%) represented the highest preferred dosage forms. In addition, physicians (66.6%) and pharmacists (46.2%) were the main sources of information regarding medicines. In terms of beliefs, respondents showed wrong beliefs in many statements used in this study. There is a need to improve public knowledge and beliefs toward medicines as well as utilizing public preferred dosage forms. In addition, pharmacists should play a major role in these programs since they are experts on medicines and play a more active role in patient education and counseling.
Controller design for wind turbine load reduction via multiobjective parameter synthesis
NASA Astrophysics Data System (ADS)
Hoffmann, A. F.; Weiβ, F. A.
2016-09-01
During the design process for a wind turbine load reduction controller many different, sometimes conflicting requirements must be fulfilled simultaneously. If the requirements can be expressed as mathematical criteria, such a design problem can be solved by a criterion-vector and multi-objective design optimization. The software environment MOPS (Multi-Objective Parameter Synthesis) supports the engineer for such a design optimization. In this paper MOPS is applied to design a multi-objective load reduction controller for the well-known DTU 10 MW reference wind turbine. A significant reduction in the fatigue criteria especially the blade damage can be reached by the use of an additional Individual Pitch Controller (IPC) and an additional tower damper. This reduction is reached as a trade-off with an increase of actuator load.
A case study on topology optimized design for additive manufacturing
NASA Astrophysics Data System (ADS)
Gebisa, A. W.; Lemu, H. G.
2017-12-01
Topology optimization is an optimization method that employs mathematical tools to optimize material distribution in a part to be designed. Earlier developments of topology optimization considered conventional manufacturing techniques that have limitations in producing complex geometries. This has hindered the topology optimization efforts not to fully be realized. With the emergence of additive manufacturing (AM) technologies, the technology that builds a part layer upon a layer directly from three dimensional (3D) model data of the part, however, producing complex shape geometry is no longer an issue. Realization of topology optimization through AM provides full design freedom for the design engineers. The article focuses on topologically optimized design approach for additive manufacturing with a case study on lightweight design of jet engine bracket. The study result shows that topology optimization is a powerful design technique to reduce the weight of a product while maintaining the design requirements if additive manufacturing is considered.
Macromolecular Crystal Growth by Means of Microfluidics
NASA Technical Reports Server (NTRS)
vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)
2002-01-01
We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.
The top cited articles in occupational therapy: a citation analysis study.
Nowrouzi-Kia, Behdin; Chidu, Carla; Carter, Lorraine; McDougall, Alicia; Casole, Jennifer
2018-01-01
The purpose of this study was to identify and review the most cited articles in the occupational therapy field. Using the multi-disciplinary Publish or Perish software to extract data, the top 50 lifetime and annual cited articles were examined. Studies were organized according to the following: year of publication, design, topic, number of authors, country of publication, and number of citations for each cohort. We found that randomized control trials were the dominant design type used in papers with the most lifetime (36.0%) and annual (26.0%) citations. Additionally, in both groups, the most frequently cited articles investigated predictors of functional outcome for patients. This comprehensive citation analysis will inform future research through its identification of major trends and well-established areas of study.
2018-01-01
Background Low-income Caribbean transmigrant women face unique health challenges during pregnancy that set forth multidimensional implications for the design of mobile health (mHealth). Acknowledgment of the unique health needs of low-income Caribbean immigrant women in the United States and what that entails regarding technology design remains rarely examined in the literature of mHealth technologies. Objective The goal of this study was to reveal the needs and gaps in mHealth interventions for pregnant immigrant women not yet realized in this field. These understandings reveal design opportunities for mHealth. Methods The use of the qualitative participatory action research approach of codesign workshops in this study resulted in design solutions by the participants after reflecting on their earlier focus group discussions. The highlights are not the resulting designs per se but rather the inferences derived from the researcher reflecting on these designs. Results The designs exposed two themes relevant to this paper. First, the participants desired the inclusion and rebuilding of social and organizational relationships in mHealth. The resulting designs formulate an understanding of the women’s health-related social support needs and how technology can facilitate them. Second, the participants wanted entertainment with an element of social participation incorporated in mHealth pregnancy management interventions. This brings attention to the role entertainment can add to the impact mHealth can deliver for pregnancy well-being. Conclusions The study concluded with an examination of social and entertainment design implications that reveal pregnant immigrant women’s virtual health-related sharing habits, choice of sharing interaction scenarios during pregnancy (eg, local, long distance, one-way, two-way, and many-many), and choice of sharing media (eg, text, voice, and video). Additionally, the study revealed exclusions to social sharing capabilities in health technologies for these women. PMID:29653919
AlJaberi, Hana
2018-04-13
Low-income Caribbean transmigrant women face unique health challenges during pregnancy that set forth multidimensional implications for the design of mobile health (mHealth). Acknowledgment of the unique health needs of low-income Caribbean immigrant women in the United States and what that entails regarding technology design remains rarely examined in the literature of mHealth technologies. The goal of this study was to reveal the needs and gaps in mHealth interventions for pregnant immigrant women not yet realized in this field. These understandings reveal design opportunities for mHealth. The use of the qualitative participatory action research approach of codesign workshops in this study resulted in design solutions by the participants after reflecting on their earlier focus group discussions. The highlights are not the resulting designs per se but rather the inferences derived from the researcher reflecting on these designs. The designs exposed two themes relevant to this paper. First, the participants desired the inclusion and rebuilding of social and organizational relationships in mHealth. The resulting designs formulate an understanding of the women's health-related social support needs and how technology can facilitate them. Second, the participants wanted entertainment with an element of social participation incorporated in mHealth pregnancy management interventions. This brings attention to the role entertainment can add to the impact mHealth can deliver for pregnancy well-being. The study concluded with an examination of social and entertainment design implications that reveal pregnant immigrant women's virtual health-related sharing habits, choice of sharing interaction scenarios during pregnancy (eg, local, long distance, one-way, two-way, and many-many), and choice of sharing media (eg, text, voice, and video). Additionally, the study revealed exclusions to social sharing capabilities in health technologies for these women. ©Hana AlJaberi. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 13.04.2018.
Application of allflex conservation buffer in illumina genotyping.
de Groot, M; Ras, T; van Haeringen, W A
2016-12-01
This experiment was designed to study if liquid conservation buffer used in the novel Tissue Sampling Technology (TST) from Allflex can be used for Illumina BeadChip genotyping. Ear punches were collected from 6 bovine samples, using both the Tissue Sampling Unit (TSU) as well as the Total Tagger Universal (TTU) collection system. The stability of the liquid conservation buffer was tested by genotyping samples on Illumina BeadChips, incubated at 0, 3, 15, 24, 48, 72, 168, 336, 720 h after sample collection. Additionally, a replenishment study was designed to test how often the liquid conservation buffer could be completely replenished before a significant call rate drop could be observed. Results from the stability study showed an average call rate of 0.993 for samples collected with the TSU system and 0.953 for samples collected with the TTU system, both exceeding the inclusion threshold call rate of 0.85. As an additional control, the identity of the individual animals was confirmed using the International Society of Animal Genetics (ISAG) recommended SNP panel. The replenishment study revealed a slight drop in the sample call rate after replenishing the conservation buffer for the fourth time for the TSU as well as the TTU samples. In routine analysis, this application allows for multiple experiments to be performed on the liquid conservation buffer, while maintaining the tissue samples for future use. The data collected in this study shows that the liquid conservation buffer used in the TST system can be used for Illumina BeadChip genotyping applications.
Kinsey, Willie B.; Johnson, Mark V.; Gronberg, JoAnn M.
2005-01-01
This report contains pesticide, volatile organic compound, major ion, nutrient, tritium, stable isotope, organic carbon, and trace-metal data collected from 149 ground-water wells, and pesticide data collected from 39 surface-water stream sites in the San Joaquin Valley of California. Included with the ground-water data are field measurements of pH, specific conductance, alkalinity, temperature, and dissolved oxygen. This report describes data collection procedures, analytical methods, quality assurance, and quality controls used by the National Water-Quality Assessment Program to ensure data reliability. Data contained in this report were collected during a four year period by the San Joaquin?Tulare Basins Study Unit of the United States Geological Survey's National Water-Quality Assessment Program. Surface-water-quality data collection began in April 1992, with sampling done three times a week at three sites as part of a pilot study conducted to provide background information for the surface-water-study design. Monthly samples were collected at 10 sites for major ions and nutrients from January 1993 to March 1995. Additional samples were collected at four of these sites, from January to December 1993, to study spatial and temporal variability in dissolved pesticide concentrations. Samples for several synoptic studies were collected from 1993 to 1995. Ground-water-quality data collection was restricted to the eastern alluvial fans subarea of the San Joaquin Valley. Data collection began in 1993 with the sampling of 21 wells in vineyard land-use settings. In 1994, 29 wells were sampled in almond land-use settings and 9 in vineyard land-use settings; an additional 11 wells were sampled along a flow path in the eastern Fresno County vineyard land-use area. Among the 79 wells sampled in 1995, 30 wells were in the corn, alfalfa, and vegetable land-use setting, and 1 well was in the vineyard land-use setting; an additional 20 were flow-path wells. Also sampled in 1995 were 28 wells used for a regional assessment of ground-water quality in the eastern San Joaquin Valley.
Optimized, Budget-constrained Monitoring Well Placement Using DREAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonkofski, Catherine M. R.; Davidson, Casie L.; Rodriguez, Luke R.
Defining the ideal suite of monitoring technologies to be deployed at a carbon capture and storage (CCS) site presents a challenge to project developers, financers, insurers, regulators and other stakeholders. The monitoring, verification, and accounting (MVA) toolkit offers a suite of technologies to monitor an extensive range of parameters across a wide span of spatial and temporal resolutions, each with their own degree of sensitivity to changes in the parameter being monitored. Understanding how best to optimize MVA budgets to minimize the time to leak detection could help to address issues around project risks, and in turn help support broadmore » CCS deployment. This paper presents a case study demonstrating an application of the Designs for Risk Evaluation and Management (DREAM) tool using an ensemble of CO 2 leakage scenarios taken from a previous study on leakage impacts to groundwater. Impacts were assessed and monitored as a function of pH, total dissolved solids (TDS), and trace metal concentrations of arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb). Using output from the previous study, DREAM was used to optimize monitoring system designs based on variable sampling locations and parameters. The algorithm requires the user to define a finite budget to limit the number of monitoring wells and technologies deployed, and then iterates well placement and sensor type and location until it converges on the configuration with the lowest time to first detection of the leak averaged across all scenarios. To facilitate an understanding of the optimal number of sampling wells, DREAM was used to assess the marginal utility of additional sampling locations. Based on assumptions about monitoring costs and replacement costs of degraded water, the incremental cost of each additional sampling well can be compared against its marginal value in terms of avoided aquifer degradation. Applying this method, DREAM identified the most cost-effective ensemble with 14 monitoring locations. Here, while this preliminary study applied relatively simplistic cost and technology assumptions, it provides an exciting proof-of-concept for the application of DREAM to questions of cost-optimized MVA system design that are informed not only by site-specific costs and technology options, but also by reservoir simulation results developed during site characterization and operation.« less
Optimized, Budget-constrained Monitoring Well Placement Using DREAM
Yonkofski, Catherine M. R.; Davidson, Casie L.; Rodriguez, Luke R.; ...
2017-08-18
Defining the ideal suite of monitoring technologies to be deployed at a carbon capture and storage (CCS) site presents a challenge to project developers, financers, insurers, regulators and other stakeholders. The monitoring, verification, and accounting (MVA) toolkit offers a suite of technologies to monitor an extensive range of parameters across a wide span of spatial and temporal resolutions, each with their own degree of sensitivity to changes in the parameter being monitored. Understanding how best to optimize MVA budgets to minimize the time to leak detection could help to address issues around project risks, and in turn help support broadmore » CCS deployment. This paper presents a case study demonstrating an application of the Designs for Risk Evaluation and Management (DREAM) tool using an ensemble of CO 2 leakage scenarios taken from a previous study on leakage impacts to groundwater. Impacts were assessed and monitored as a function of pH, total dissolved solids (TDS), and trace metal concentrations of arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb). Using output from the previous study, DREAM was used to optimize monitoring system designs based on variable sampling locations and parameters. The algorithm requires the user to define a finite budget to limit the number of monitoring wells and technologies deployed, and then iterates well placement and sensor type and location until it converges on the configuration with the lowest time to first detection of the leak averaged across all scenarios. To facilitate an understanding of the optimal number of sampling wells, DREAM was used to assess the marginal utility of additional sampling locations. Based on assumptions about monitoring costs and replacement costs of degraded water, the incremental cost of each additional sampling well can be compared against its marginal value in terms of avoided aquifer degradation. Applying this method, DREAM identified the most cost-effective ensemble with 14 monitoring locations. Here, while this preliminary study applied relatively simplistic cost and technology assumptions, it provides an exciting proof-of-concept for the application of DREAM to questions of cost-optimized MVA system design that are informed not only by site-specific costs and technology options, but also by reservoir simulation results developed during site characterization and operation.« less
Evaluation of agile designs in first-in-human (FIH) trials--a simulation study.
Perlstein, Itay; Bolognese, James A; Krishna, Rajesh; Wagner, John A
2009-12-01
The aim of the investigation was to evaluate alternatives to standard first-in-human (FIH) designs in order to optimize the information gained from such studies by employing novel agile trial designs. Agile designs combine adaptive and flexible elements to enable optimized use of prior information either before and/or during conduct of the study to seamlessly update the study design. A comparison of the traditional 6 + 2 (active + placebo) subjects per cohort design with alternative, reduced sample size, agile designs was performed by using discrete event simulation. Agile designs were evaluated for specific adverse event models and rates as well as dose-proportional, saturated, and steep-accumulation pharmacokinetic profiles. Alternative, reduced sample size (hereafter referred to as agile) designs are proposed for cases where prior knowledge about pharmacokinetics and/or adverse event relationships are available or appropriately assumed. Additionally, preferred alternatives are proposed for a general case when prior knowledge is limited or unavailable. Within the tested conditions and stated assumptions, some agile designs were found to be as efficient as traditional designs. Thus, simulations demonstrated that the agile design is a robust and feasible approach to FIH clinical trials, with no meaningful loss of relevant information, as it relates to PK and AE assumptions. In some circumstances, applying agile designs may decrease the duration and resources required for Phase I studies, increasing the efficiency of early clinical development. We highlight the value and importance of useful prior information when specifying key assumptions related to safety, tolerability, and PK.
Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment overmore » exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explore these topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help inform design standards and criteria.« less
Microbial fuel cells as an alternative energy source: current status.
Javed, Muhammad Mohsin; Nisar, Muhammad Azhar; Ahmad, Muhammad Usman; Yasmeen, Nighat; Zahoor, Sana
2018-06-22
Microbial fuel cell (MFC) technology is an emerging area for alternative renewable energy generation and it offers additional opportunities for environmental bioremediation. Recent scientific studies have focused on MFC reactor design as well as reactor operations to increase energy output. The advancement in alternative MFC models and their performance in recent years reflect the interests of scientific community to exploit this technology for wider practical applications and environmental benefit. This is reflected in the diversity of the substrates available for use in MFCs at an economically viable level. This review provides an overview of the commonly used MFC designs and materials along with the basic operating parameters that have been developed in recent years. Still, many limitations and challenges exist for MFC development that needs to be further addressed to make them economically feasible for general use. These include continued improvements in fuel cell design and efficiency as well scale-up with economically practical applications tailored to local needs.
NASA-JSC antenna near-field measurement system
NASA Technical Reports Server (NTRS)
Cooke, W. P.; Friederich, P. G.; Jenkins, B. M.; Jameson, C. R.; Estrada, J. P.
1988-01-01
Work was completed on the near-field range control software. The capabilities of the data processing software were expanded with the addition of probe compensation. In addition, the user can process the measured data from the same computer terminal used for range control. The design of the laser metrology system was completed. It provides precise measruement of probe location during near-field measurements as well as position data for control of the translation beam and probe cart. A near-field range measurement system was designed, fabricated, and tested.
Moench, Allen F.; Garabedian, Stephen P.; LeBlanc, Denis R.
2001-01-01
An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table.
An Additive Manufacturing Test Artifact
Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan
2014-01-01
A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039
Designing PISA-Like Mathematics Tasks In Indonesia: Experiences and Challenges
NASA Astrophysics Data System (ADS)
Zulkardi, Z.; Kohar, A. W.
2018-01-01
The insignificant improvement of Indonesian students in PISA mathematics survey triggered researchers in Indonesia to develop PISA-like mathematics tasks. Some development studies have been conducted to produce valid and practical PISA-like problems that potentially effect on improving students’ mathematical literacy. This article describes the experiences of Indonesian task designers in developing PISA-like mathematics tasks as well as the potential future studies regarding to mathematical literacy as challenges for policy makers, researchers, and practitioners to improve students’ mathematical literacy in Indonesia. The results of this research indicate the task designers to consider domains of PISA like: context, mathematical content, and process as the first profiles of their missions. Our analysis shows that the designers mostly experienced difficulties regarding to the authenticity of context use and language structure. Interestingly, many of them used a variety of local wisdom in Indonesia as contexts for designing PISA-like tasks. In addition, the products developed were reported to be potentially effects on students’ interest and elicit students’ mathematical competencies as mentioned in PISA framework. Finally, this paper discusses future studies such as issues in bringing PISA task into an instructional practice.
Sørensen, By Ole H
2016-10-01
Organizational-level occupational health interventions have great potential to improve employees' health and well-being. However, they often compare unfavourably to individual-level interventions. This calls for improving methods for designing, implementing and evaluating organizational interventions. This paper presents and discusses the regression discontinuity design because, like the randomized control trial, it is a strong summative experimental design, but it typically fits organizational-level interventions better. The paper explores advantages and disadvantages of a regression discontinuity design with an embedded randomized control trial. It provides an example from an intervention study focusing on reducing sickness absence in 196 preschools. The paper demonstrates that such a design fits the organizational context, because it allows management to focus on organizations or workgroups with the most salient problems. In addition, organizations may accept an embedded randomized design because the organizations or groups with most salient needs receive obligatory treatment as part of the regression discontinuity design. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
The Crucial Role of Additive Manufacturing at NASA
NASA Technical Reports Server (NTRS)
Vickers, John
2016-01-01
At NASA, the first steps of the Journey to Mars are well underway with the development of NASA's next generation launch system and investments in research and technologies that should increase the affordability, capability, and safety of exploration activities. Additive Manufacturing presents a disruptive opportunity for NASA to design and manufacture hardware with new materials at dramatically reduced cost and schedule. Opportunities to incorporate additive manufacturing align very well with NASA missions and with most NASA programs related to space, science, and aeronautics. The Agency also relies on many partnerships with other government agencies, industry and academia.
NASA Technical Reports Server (NTRS)
Vickers, John
2017-01-01
At NASA, the first steps of the Journey to Mars are well underway with the development of NASA's next generation launch system and investments in research and technologies that should increase the affordability, capability, and safety of exploration activities. Additive Manufacturing presents a disruptive opportunity for NASA to design and manufacture hardware with new materials at dramatically reduced cost and schedule. Opportunities to incorporate additive manufacturing align very well with NASA missions and with most NASA programs related to space, science, and aeronautics. The Agency also relies on many partnerships with other government agencies, industry and academia.
A real-time spectrum acquisition system design based on quantum dots-quantum well detector
NASA Astrophysics Data System (ADS)
Zhang, S. H.; Guo, F. M.
2016-01-01
In this paper, we studied the structure characteristics of quantum dots-quantum well photodetector with response wavelength range from 400 nm to 1000 nm. It has the characteristics of high sensitivity, low dark current and the high conductance gain. According to the properties of the quantum dots-quantum well photodetectors, we designed a new type of capacitive transimpedence amplifier (CTIA) readout circuit structure with the advantages of adjustable gain, wide bandwidth and high driving ability. We have implemented the chip packaging between CTIA-CDS structure readout circuit and quantum dots detector and tested the readout response characteristics. According to the timing signals requirements of our readout circuit, we designed a real-time spectral data acquisition system based on FPGA and ARM. Parallel processing mode of programmable devices makes the system has high sensitivity and high transmission rate. In addition, we realized blind pixel compensation and smoothing filter algorithm processing to the real time spectrum data by using C++. Through the fluorescence spectrum measurement of carbon quantum dots and the signal acquisition system and computer software system to realize the collection of the spectrum signal processing and analysis, we verified the excellent characteristics of detector. It meets the design requirements of quantum dot spectrum acquisition system with the characteristics of short integration time, real-time and portability.
Additive Manufacturing: Unlocking the Evolution of Energy Materials
Zhakeyev, Adilet; Wang, Panfeng; Shu, Wenmiao; Wang, Huizhi
2017-01-01
Abstract The global energy infrastructure is undergoing a drastic transformation towards renewable energy, posing huge challenges on the energy materials research, development and manufacturing. Additive manufacturing has shown its promise to change the way how future energy system can be designed and delivered. It offers capability in manufacturing complex 3D structures, with near‐complete design freedom and high sustainability due to minimal use of materials and toxic chemicals. Recent literatures have reported that additive manufacturing could unlock the evolution of energy materials and chemistries with unprecedented performance in the way that could never be achieved by conventional manufacturing techniques. This comprehensive review will fill the gap in communicating on recent breakthroughs in additive manufacturing for energy material and device applications. It will underpin the discoveries on what 3D functional energy structures can be created without design constraints, which bespoke energy materials could be additively manufactured with customised solutions, and how the additively manufactured devices could be integrated into energy systems. This review will also highlight emerging and important applications in energy additive manufacturing, including fuel cells, batteries, hydrogen, solar cell as well as carbon capture and storage. PMID:29051861
Additive Manufacturing: Unlocking the Evolution of Energy Materials.
Zhakeyev, Adilet; Wang, Panfeng; Zhang, Li; Shu, Wenmiao; Wang, Huizhi; Xuan, Jin
2017-10-01
The global energy infrastructure is undergoing a drastic transformation towards renewable energy, posing huge challenges on the energy materials research, development and manufacturing. Additive manufacturing has shown its promise to change the way how future energy system can be designed and delivered. It offers capability in manufacturing complex 3D structures, with near-complete design freedom and high sustainability due to minimal use of materials and toxic chemicals. Recent literatures have reported that additive manufacturing could unlock the evolution of energy materials and chemistries with unprecedented performance in the way that could never be achieved by conventional manufacturing techniques. This comprehensive review will fill the gap in communicating on recent breakthroughs in additive manufacturing for energy material and device applications. It will underpin the discoveries on what 3D functional energy structures can be created without design constraints, which bespoke energy materials could be additively manufactured with customised solutions, and how the additively manufactured devices could be integrated into energy systems. This review will also highlight emerging and important applications in energy additive manufacturing, including fuel cells, batteries, hydrogen, solar cell as well as carbon capture and storage.
Planning for Long-Term Follow-Up: Strategies Learned from Longitudinal Studies.
Hill, Karl G; Woodward, Danielle; Woelfel, Tiffany; Hawkins, J David; Green, Sara
2016-10-01
Preventive interventions are often designed and tested with the immediate program period in mind, and little thought that the intervention sample might be followed up for years or even decades beyond the initial trial. However, depending on the type of intervention and the nature of the outcomes, long-term follow-up may well be appropriate. The advantages of long-term follow-up of preventive interventions are discussed and include the capacity to examine program effects across multiple later life outcomes, the ability to examine the etiological processes involved in the development of the outcomes of interest, and the ability to provide more concrete estimates of the relative benefits and costs of an intervention. In addition, researchers have identified potential methodological risks of long-term follow-up such as inflation of type 1 error through post hoc selection of outcomes, selection bias, and problems stemming from attrition over time. The present paper presents a set of seven recommendations for the design or evaluation of studies for potential long-term follow-up organized under four areas: Intervention Logic Model, Developmental Theory and Measurement Issues; Design for Retention; Dealing with Missing Data; and Unique Considerations for Intervention Studies. These recommendations include conceptual considerations in the design of a study, pragmatic concerns in the design and implementation of the data collection for long-term follow-up, as well as criteria to be considered for the evaluation of an existing intervention for potential for long-term follow-up. Concrete examples from existing intervention studies that have been followed up over the long term are provided.
Planning for Long-Term Follow-up: Strategies Learned from Longitudinal Studies
Hill, Karl G.; Woodward, Danielle; Woelfel, Tiffany; Hawkins, J. David; Green, Sara
2017-01-01
Preventive interventions are often designed and tested with the immediate program period in mind, and little thought that the intervention sample might be followed up for years, or even decades beyond the initial trial. However, depending on the type of intervention and the nature of the outcomes, long-term follow-up may well be appropriate. The advantages of long-term follow-up of preventive interventions are discussed, and include the capacity to examine program effects across multiple later life outcomes, the ability to examine the etiological processes involved in the development of the outcomes of interest and the ability to provide more concrete estimates of the relative benefits and costs of an intervention. In addition, researchers have identified potential methodological risks of long-term follow-up such as inflation of type 1 error through post-hoc selection of outcomes, selection bias and problems stemming from attrition over time. The present paper presents a set of seven recommendations for the design or evaluation of studies for potential long-term follow-up organized under four areas: Intervention Logic Model, Developmental Theory and Measurement Issues; Design for Retention; Dealing with Missing Data; and Unique Considerations for Intervention Studies. These recommendations include conceptual considerations in the design of a study, pragmatic concerns in the design and implementation of the data collection for long-term follow-up, as well as criteria to be considered for the evaluation of an existing intervention for potential for long-term follow-up. Concrete examples from existing intervention studies that have been followed up over the long-term are provided. PMID:26453453
Vaccine stability study design and analysis to support product licensure.
Schofield, Timothy L
2009-11-01
Stability evaluation supporting vaccine licensure includes studies of bulk intermediates as well as final container product. Long-term and accelerated studies are performed to support shelf life and to determine release limits for the vaccine. Vaccine shelf life is best determined utilizing a formal statistical evaluation outlined in the ICH guidelines, while minimum release is calculated to help assure adequate potency through handling and storage of the vaccine. In addition to supporting release potency determination, accelerated stability studies may be used to support a strategy to recalculate product expiry after an unintended temperature excursion such as a cold storage unit failure or mishandling during transport. Appropriate statistical evaluation of vaccine stability data promotes strategic stability study design, in order to reduce the uncertainty associated with the determination of the degradation rate, and the associated risk to the customer.
Elsäßer, Amelie; Regnstrom, Jan; Vetter, Thorsten; Koenig, Franz; Hemmings, Robert James; Greco, Martina; Papaluca-Amati, Marisa; Posch, Martin
2014-10-02
Since the first methodological publications on adaptive study design approaches in the 1990s, the application of these approaches in drug development has raised increasing interest among academia, industry and regulators. The European Medicines Agency (EMA) as well as the Food and Drug Administration (FDA) have published guidance documents addressing the potentials and limitations of adaptive designs in the regulatory context. Since there is limited experience in the implementation and interpretation of adaptive clinical trials, early interaction with regulators is recommended. The EMA offers such interactions through scientific advice and protocol assistance procedures. We performed a text search of scientific advice letters issued between 1 January 2007 and 8 May 2012 that contained relevant key terms. Letters containing questions related to adaptive clinical trials in phases II or III were selected for further analysis. From the selected letters, important characteristics of the proposed design and its context in the drug development program, as well as the responses of the Committee for Human Medicinal Products (CHMP)/Scientific Advice Working Party (SAWP), were extracted and categorized. For 41 more recent procedures (1 January 2009 to 8 May 2012), additional details of the trial design and the CHMP/SAWP responses were assessed. In addition, case studies are presented as examples. Over a range of 5½ years, 59 scientific advices were identified that address adaptive study designs in phase II and phase III clinical trials. Almost all were proposed as confirmatory phase III or phase II/III studies. The most frequently proposed adaptation was sample size reassessment, followed by dropping of treatment arms and population enrichment. While 12 (20%) of the 59 proposals for an adaptive clinical trial were not accepted, the great majority of proposals were accepted (15, 25%) or conditionally accepted (32, 54%). In the more recent 41 procedures, the most frequent concerns raised by CHMP/SAWP were insufficient justifications of the adaptation strategy, type I error rate control and bias. For the majority of proposed adaptive clinical trials, an overall positive opinion was given albeit with critical comments. Type I error rate control, bias and the justification of the design are common issues raised by the CHMP/SAWP.
NASA Astrophysics Data System (ADS)
Taheri, H.; Koester, L.; Bigelow, T.; Bond, L. J.
2018-04-01
Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.
ITER Magnet Feeder: Design, Manufacturing and Integration
NASA Astrophysics Data System (ADS)
CHEN, Yonghua; ILIN, Y.; M., SU; C., NICHOLAS; BAUER, P.; JAROMIR, F.; LU, Kun; CHENG, Yong; SONG, Yuntao; LIU, Chen; HUANG, Xiongyi; ZHOU, Tingzhi; SHEN, Guang; WANG, Zhongwei; FENG, Hansheng; SHEN, Junsong
2015-03-01
The International Thermonuclear Experimental Reactor (ITER) feeder procurement is now well underway. The feeder design has been improved by the feeder teams at the ITER Organization (IO) and the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in the last 2 years along with analyses and qualification activities. The feeder design is being progressively finalized. In addition, the preparation of qualification and manufacturing are well scheduled at ASIPP. This paper mainly presents the design, the overview of manufacturing and the status of integration on the ITER magnet feeders. supported by the National Special Support for R&D on Science and Technology for ITER (Ministry of Public Security of the People's Republic of China-MPS) (No. 2008GB102000)
Saxagliptin: A Review in Type 2 Diabetes.
Dhillon, Sohita
2015-10-01
Saxagliptin (Onglyza(®)) is a highly potent, reversible, competitive dipeptidyl peptidase-4 inhibitor indicated for the treatment of patients with type 2 diabetes. Numerous well-designed clinical studies and their extensions showed that saxagliptin as monotherapy or as dual or triple combination therapy with other antihyperglycaemics improved glycaemic control and was generally well tolerated in patients with type 2 diabetes during ≤2 years' therapy. Saxagliptin was generally weight-neutral and had a low risk of hypoglycaemia (unless coadministered with agents that may be associated with hypoglycaemia, such as sulfonylureas or insulin). In addition, at a median follow-up of 2.1 years in the large SAVOR-TIMI 53 study, with the exception of a 27 % greater risk of hospitalization for heart failure, the addition of saxagliptin to standard of care neither reduced nor increased the rate of ischemic cardiovascular events in at-risk patients. Although further long-term data will be beneficial, current evidence indicates that saxagliptin is a useful option for the treatment of patients with type 2 diabetes.
Design and additive manufacture for flow chemistry.
Capel, Andrew J; Edmondson, Steve; Christie, Steven D R; Goodridge, Ruth D; Bibb, Richard J; Thurstans, Matthew
2013-12-07
We review the use of additive manufacturing (AM) as a novel manufacturing technique for the production of milli-scale reactor systems. Five well-developed additive manufacturing techniques: stereolithography (SL), multi-jet modelling (MJM), selective laser melting (SLM), laser sintering (LS) and fused deposition modelling (FDM) were used to manufacture a number of miniaturised reactors which were tested using a range of organic and inorganic reactions.
Elders' Life Stories: Impact on the Next Generation of Health Professionals
2013-01-01
The purpose of this study was to pilot an enhanced version of the “Share your Life Story” life review writing workshop. The enhanced version included the addition of an intergenerational exchange, based on the content of seniors' writings, with students planning careers in the health sciences. The researcher employed a mixed methods design. Preliminary results using descriptive analysis revealed an increase in positive images of aging and a decrease in negative images of aging among the five student participants. Qualitative results revealed six themes that illuminate the hows and whys of the quantitative results as well as additional program benefits. Feedback from students and seniors helped to refine the intergenerational protocol for a larger scale study. PMID:24027579
Evaluation of Market Design Agents: The Mertacor Perspective
NASA Astrophysics Data System (ADS)
Stavrogiannis, Lampros C.; Mitkas, Pericles A.
The annual Trading Agent Competition for Market Design, CAT, provides a testbed to study the mechanisms that modern stock exchanges use in their effort to attract potential traders while maximizing their profit. This paper presents an evaluation of the agents that participated in the 2008 competition. The evaluation is based on the analysis of the CAT finals as well as on the results obtained from post-tournament experiments. We present Mertacor, our entrant for 2008, and compare it with the other available agents. In addition, we introduce a simple yet effective way of computing the global competitive equilibrium that Mertacor utilizes and discuss its importance for the game.
Training in patient navigation: A review of the research literature
Ustjanauskas, Amy E.; Bredice, Marissa; Nuhaily, Sumayah; Kath, Lisa; Wells, Kristen J.
2016-01-01
Despite the proliferation of patient navigation programs designed to increase timely receipt of health care, little is known about the content and delivery of patient navigation training, or best practices in this arena. The current study begins to address these gaps in understanding, as it is the first study to comprehensively review descriptions of patient navigation training in the peer-reviewed research literature. Seventy-five patient navigation efficacy studies published since 1995, identified through PubMed and by the authors, were included in this narrative review. Fifty-nine of the included studies (79%) mentioned patient navigation training, and fifty-five of these studies additionally provided a description of training. Most studies did not thoroughly document patient navigation training practices. Additionally, several topics integral to the role of patient navigators, as well as components of training central to successful adult learning, were not commonly described in the research literature. Descriptions of training also varied widely across studies in terms of duration, location, format, learning strategies employed, occupation of trainer, and content. These findings demonstrate the need for established standards of navigator training as well as future research on the optimal delivery and content of patient navigation training. PMID:26656600
Training in Patient Navigation: A Review of the Research Literature.
Ustjanauskas, Amy E; Bredice, Marissa; Nuhaily, Sumayah; Kath, Lisa; Wells, Kristen J
2016-05-01
Despite the proliferation of patient navigation programs designed to increase timely receipt of health care, little is known about the content and delivery of patient navigation training, or best practices in this arena. The current study begins to address these gaps in understanding, as it is the first study to comprehensively review descriptions of patient navigation training in the peer-reviewed research literature. Seventy-five patient navigation efficacy studies published since 1995, identified through PubMed and by the authors, were included in this narrative review. Fifty-nine of the included studies (79%) mentioned patient navigation training, and 55 of these studies additionally provided a description of training. Most studies did not thoroughly document patient navigation training practices. Additionally, several topics integral to the role of patient navigators, as well as components of training central to successful adult learning, were not commonly described in the research literature. Descriptions of training also varied widely across studies in terms of duration, location, format, learning strategies employed, occupation of trainer, and content. These findings demonstrate the need for established standards of navigator training as well as for future research on the optimal delivery and content of patient navigation training. © 2015 Society for Public Health Education.
Applicability of Monte-Carlo Simulation to Equipment Design of Radioactive Noble Gas Monitor
NASA Astrophysics Data System (ADS)
Sakai, Hirotaka; Hattori, Kanako; Umemura, Norihiro
In the nuclear facilities, radioactive noble gas is continuously monitored by using the radioactive noble gas monitor with beta-sensitive plastic scintillation radiation detector. The detection efficiency of the monitor is generally calibrated by using a calibration loop and standard radioactive noble gases such as 85Kr. In this study, the applicability of PHITS to the equipment design of the radioactive noble gas monitor was evaluated by comparing the calculated results to the test results obtained by actual calibration loop tests to simplify the radiation monitor design evaluation. It was confirmed that the calculated results were well matched to the test results of the monitor after the modeling. In addition, the key parameters for equipment design, such as thickness of detector window or depth of the sampler, were also specified and evaluated.
Daniels, Stijn; Vanrie, Jan; Dreesen, An; Brijs, Tom
2010-05-01
Although speed limits are indicated by road signs, road users are not always aware, while driving, of the actual speed limit on a given road segment. The Roads and Traffic Agency developed additional road markings in order to support driver decisions on speed on 70 km/h roads in Flanders-Belgium. In this paper the results are presented of two evaluation studies, both a field study and a simulator study, on the effects of the additional road markings on speed behaviour. The results of the field study showed no substantial effect of the markings on speed behaviour. Neither did the simulator study, with slightly different stimuli. Nevertheless an effect on lateral position was noticed in the simulator study, showing at least some effect of the markings. The role of conspicuity of design elements and expectations towards traffic environments is discussed. Both studies illustrate well some strengths and weaknesses of observational field studies compared to experimental simulator studies. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Design of stand-alone brackish water desalination wind energy system for Jordan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habali, S.M.; Saleh, I.A.
1994-06-01
More than 100 underground water wells drilled in Jordan are known to have brackish water with total desolved solids (TDS) over 1500 ppm but not greater than 4000 ppm. The world standard for potable water limits the TDS count to 500 ppm in addition to being free from live microorganisms or dangerous mineral and organic substances. A reverse osmosis desalination scheme powered by a stand-alone wind energy converter (WEC) is proposed to produce fresh water water from wells located in potentially high-wind sites. The purpose of this study if to present the main design parameters and economic estimates of amore » wind-assisted RO system using a diesel engine as the baseline energy source and an electric wind turbine for the wind energy source. It is found that brackish water pumping and desalinating using WECs costs 0.67 to 1.16 JD/m[sup 3] (JD = Jordanian Dinar, 1US$ = 0.68 JD), which is less than using conventional diesel engines especially in remote areas. In addition, the wind-reverse osmosis system becomes more economically feasible for higher annual production rates or in good wind regimes.« less
Behaviour of reinforced concrete slabs with steel fibers
NASA Astrophysics Data System (ADS)
Baarimah, A. O.; Syed Mohsin, S. M.
2017-11-01
This paper investigates the potential effect of steel fiber added into reinforced concrete slabs. Four-point bending test is conducted on six slabs to investigate the structural behaviour of the slabs by considering two different parameters; (i) thickness of slab (ii) volume fraction of steel fiber. The experimental work consists of six slabs, in which three slabs are designed in accordance to Eurocode 2 to fulfil shear capacity characteristic, whereas, the other three slabs are designed with 17% less thickness, intended to fail in shear. Both series of slabs are added with steel fiber with a volume fraction of Vf = 0%, Vf = 1% and Vf = 2% in order to study the effect and potential of fiber to compensate the loss in shear capacity. The slab with Vf = 0% steel fiber and no reduction in thickness is taken as the control slab. The experimental result suggests promising improvement of the load carrying capacity (up to 32%) and ductility (up to 87%) as well as delayed in crack propagation for the slabs with Vf = 2%. In addition, it is observed that addition of fibers compensates the reduction in the slab thickness as well as changes the failure mode of the slab from brittle to a more ductile manner.
Burkovskiy, I; Lehmann, C; Jiang, C; Zhou, J
2016-11-01
Intravital microscopy of the intestine is a sophisticated technique that allows qualitative and quantitative in vivo observation of dynamic cellular interactions and blood flow at a high resolution. Physiological conditions of the animal and in particular of the observed organ, such as temperature and moisture are crucial for intravital imaging. Often, the microscopy stage with the animal or the organ of interest imposes limitations on how well the animal can be maintained. In addition, the access for additional oxygen supply or drug administration during the procedure is rather restricted. To address these limitations, we developed a novel intravital microscopy platform, allowing us to have improved access to the animal during the intravital microscopy procedure, as well as improved microenvironmental maintenance. The production process of this prototype platform is based on 3D printing of device parts in a single-step process. The simplicity of production and the advantages of this versatile and customizable design are shown and discussed in this paper. Our design potentially represents a major step forward in facilitating intestinal intravital imaging using fluorescent microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
D-optimal experimental designs to test for departure from additivity in a fixed-ratio mixture ray.
Coffey, Todd; Gennings, Chris; Simmons, Jane Ellen; Herr, David W
2005-12-01
Traditional factorial designs for evaluating interactions among chemicals in a mixture may be prohibitive when the number of chemicals is large. Using a mixture of chemicals with a fixed ratio (mixture ray) results in an economical design that allows estimation of additivity or nonadditive interaction for a mixture of interest. This methodology is extended easily to a mixture with a large number of chemicals. Optimal experimental conditions can be chosen that result in increased power to detect departures from additivity. Although these designs are used widely for linear models, optimal designs for nonlinear threshold models are less well known. In the present work, the use of D-optimal designs is demonstrated for nonlinear threshold models applied to a fixed-ratio mixture ray. For a fixed sample size, this design criterion selects the experimental doses and number of subjects per dose level that result in minimum variance of the model parameters and thus increased power to detect departures from additivity. An optimal design is illustrated for a 2:1 ratio (chlorpyrifos:carbaryl) mixture experiment. For this example, and in general, the optimal designs for the nonlinear threshold model depend on prior specification of the slope and dose threshold parameters. Use of a D-optimal criterion produces experimental designs with increased power, whereas standard nonoptimal designs with equally spaced dose groups may result in low power if the active range or threshold is missed.
HSCT Sector Combustor Hardware Modifications for Improved Combustor Design
NASA Technical Reports Server (NTRS)
Greenfield, Stuart C.; Heberling, Paul V.; Moertle, George E.
2005-01-01
An alternative to the stepped-dome design for the lean premixed prevaporized (LPP) combustor has been developed. The new design uses the same premixer types as the stepped-dome design: integrated mixer flameholder (IMFH) tubes and a cyclone swirler pilot. The IMFH fuel system has been taken to a new level of development. Although the IMFH fuel system design developed in this Task is not intended to be engine-like hardware, it does have certain characteristics of engine hardware, including separate fuel circuits for each of the fuel stages. The four main stage fuel circuits are integrated into a single system which can be withdrawn from the combustor as a unit. Additionally, two new types of liner cooling have been designed. The resulting lean blowout data was found to correlate well with the Lefebvre parameter. As expected, CO and unburned hydrocarbons emissions were shown to have an approximately linear relationship, even though some scatter was present in the data, and the CO versus flame temperature data showed the typical cupped shape. Finally, the NOx emissions data was shown to agree well with a previously developed correlation based on emissions data from Configuration 3 tests performed at GEAE. The design variations of the cyclone swirler pilot that were investigated in this study did not significantly change the NOx emissions from the baseline design (GEAE Configuration 3) at supersonic cruise conditions.
Exoskeletal Engine Concept: Feasibility Studies for Medium and Small Thrust Engines
NASA Technical Reports Server (NTRS)
Halliwell, Ian
2001-01-01
The exoskeletal engine concept is one in which the shafts and disks are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Omission of the shafts and disks leads to an open channel at the engine centerline. This has immense potential for reduced jet noise and for the accomodation of an alternative form of thruster for use in a combined cycle. The use of ceramic composite materials has the potential for significantly reduced weight as well as higher working temperatures without cooling air. The exoskeletal configuration is also a natural stepping-stone to complete counter-rotating turbomachinery. Ultimately this will lead to reductions in weight, length, parts count and improved efficiency. The feasibility studies are in three parts. Part I-Systems and Component Requirements addressed the mechanical aspects of components from a functionality perspective. This effort laid the groundwork for preliminary design studies. Although important, it is not felt to be particularly original, and has therefore not been included in the current overview. Part 2-Preliminary Design Studies turned to some of the cycle and performance issues inherent in an exoskeletal configuration and some initial attempts at preliminary design of turbomachinery were described. Twin-spoon and single-spool 25.800-lbf-thrust turbofans were used as reference vehicles in a mid-size commercial subsonic category in addition to a single-spool 5,000-lbf-thrust turbofan that represented a general aviation application. The exoskeletal engine, with its open centerline, has tremendous potential for noise suppression and some preliminary analysis was done which began to quantify the benefits. Part 3-Additional Preliminary Design Studies revisited the design of single-spool 25,800-lbf-thrust turbofan configurations, but in addition to the original FPR = 1.6 and BPR = 5.1 reference engine, two additional configurations used FPR = 2.4 and BPR = 3.0 and FPR = 3.2 and BPR = 2.0 were investigated. The single-spool 5,000-lbf-thrust turbofan was refined and the small engine study was extended to include a 2,000-lbf-thrust turbojet. More attention was paid to optimizing the turbomachinery. Turbine cooling flows were eliminated, in keeping with the use of uncooled CMC material in exoskeletal engines. The turbine performance parameters moved much closer to the nominal target values, demonstrating the great benefits to the cycle of uncooled turbines.
Exoskeletal Engine Concept: Feasibility Studies for Medium and Small Thrust Engines
NASA Technical Reports Server (NTRS)
Halliwell, Ian
2001-01-01
The exoskeletal engine concept is one in which the shafts and disks are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Omission of the shafts and disks leads to an open channel at the engine centerline. This has immense potential for reduced jet noise and for the accommodation of an alternative form of thruster for use in a combined cycle. The use of ceramic composite materials has the potential for significantly reduced weight as well as higher working temperatures without cooling air. The exoskeletal configuration is also a natural stepping-stone to complete counter-rotating turbomachinery. Ultimately this will lead to reductions in weight, length, parts count and improved efficiency. The feasibility studies are in three parts. Part 1: Systems and Component Requirements addressed the mechanical aspects of components from a functionality perspective. This effort laid the groundwork for preliminary design studies. Although important, it is not felt to be particularly original, and has therefore not been included in the current overview. Part 2: Preliminary Design Studies turned to some of the cycle and performance issues inherent in an exoskeletal configuration and some initial attempts at preliminary design of turbomachinery were described. Twin-spoon and single-spool 25,800-lbf-thrust turbofans were used as reference vehicles in a mid-size commercial subsonic category in addition to a single-spool 5,000-lbf-thrust turbofan that represented a general aviation application. The exoskeletal engine, with its open centerline, has tremendous potential for noise suppression and some preliminary analysis was done which began to quantify the benefits. Part 3: Additional Preliminary Design Studies revisited the design of single-spool 25,800-lbf-thrust turbofan configurations, but in addition to the original FPR = 1.6 and BPR = 5.1 reference engine. two additional configurations used FPR = 2.4 and BPR = 3.0 and FPR = 3.2 and BPR = 2.0 were investigated. The single-spool 5.000-lbf-thrust turbofan was refined and the small engine study was extended to include a 2,000-lbf-thrust turbojet. More attention was paid to optimizing the turbomachinery. Turbine cooling flows were eliminated, in keeping with the use of uncooled CMC materials in exoskeletal engines. The turbine performance parameters moved much closer to the nominal target values, demonstrating the great benefits to the cycle of uncooled turbines.
Planning and setting objectives in field studies: Chapter 2
Fisher, Robert N.; Dodd, C. Kenneth
2016-01-01
This chapter enumerates the steps required in designing and planning field studies on the ecology and conservation of reptiles, as these involve a high level of uncertainty and risk. To this end, the chapter differentiates between goals (descriptions of what one intends to accomplish) and objectives (the measurable steps required to achieve the established goals). Thus, meeting a specific goal may require many objectives. It may not be possible to define some of them until certain experiments have been conducted; often evaluations of sampling protocols are needed to increase certainty in the biological results. And if sampling locations are fixed and sampling events are repeated over time, then both study-specific covariates and sampling-specific covariates should exist. Additionally, other critical design considerations for field study include obtaining permits, as well as researching ethics and biosecurity issues.
Shuttle Case Study Collection Website Development
NASA Technical Reports Server (NTRS)
Ransom, Khadijah S.; Johnson, Grace K.
2012-01-01
As a continuation from summer 2012, the Shuttle Case Study Collection has been developed using lessons learned documented by NASA engineers, analysts, and contractors. Decades of information related to processing and launching the Space Shuttle is gathered into a single database to provide educators with an alternative means to teach real-world engineering processes. The goal is to provide additional engineering materials that enhance critical thinking, decision making, and problem solving skills. During this second phase of the project, the Shuttle Case Study Collection website was developed. Extensive HTML coding to link downloadable documents, videos, and images was required, as was training to learn NASA's Content Management System (CMS) for website design. As the final stage of the collection development, the website is designed to allow for distribution of information to the public as well as for case study report submissions from other educators online.
Toxicity testing of chemical mixtures: some general aspects and need of international guidelines.
Kappus, H; Yang, R S
1996-01-01
The topics discussed by the Working Group on Toxicity Testing of Chemical Mixtures included the following (1) the study designs and results from two real-life exposure scenarios as additional information to the various investigations reported at the conference; (2) the need to take into consideration low-level, long-term exposure (i.e. mimicking human exposure conditions) as well as the issue of limited resources in experimental toxicology studies; (3) the importance of exploring alternative and predictive toxicology methodologies to minimize animal use and to conserve resources; (4) the realization that interactive toxicity should include the consideration of physical and biological agents in addition to chemicals. Two specific studies reported at the conference were also discussed. A number of recommendations were made concerning the planning and implementation of toxicology studies on chemical mixtures.
High frequency power distribution system
NASA Technical Reports Server (NTRS)
Patel, Mikund R.
1986-01-01
The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.
Murphy, Colleen; Gardoni, Paolo
2017-07-18
The development of the curriculum for engineering education (course requirements as well as extra-curricular activities like study abroad and internships) should be based on a comprehensive understanding of engineers' responsibilities. The responsibilities that are constitutive of being an engineer include striving to fulfill the standards of excellence set by technical codes; to improve the idealized models that engineers use to predict, for example, the behavior of alternative designs; and to achieve the internal goods such as safety and sustainability as they are reflected in the design codes. Globalization has implications for these responsibilities and, in turn, for engineering education, by, for example, modifying the collection of possible solutions recognized for existing problems. In addition, international internships can play an important role in fostering the requisite moral imagination of engineering students.
NASA Astrophysics Data System (ADS)
Ye, Z.; Meng, Q.; Mohamadian, H. P.; Wang, J. T.; Chen, L.; Zhu, L.
2007-06-01
The formation of SI engine combustion deposits is a complex phenomenon which depends on various factors of fuel, oil, additives, and engine. The goal of this study is to examine the effects of operating conditions, gasoline, lubricating oil, and additives on deposit formation. Both an experimental investigation and theoretical analysis are conducted on a single cylinder engine. As a result, the impact of deposits on engine performance and exhaust emissions (HC, NO x ) has been indicated. Using samples from a cylinder head and exhaust pipe as well as switching gases via the dual-gas method (N2, O2), the deposit formation mechanism is thoroughly investigated via the thermogravity analysis approach, where the roles of organic, inorganic, and volatile components of fuel, additives, and oil on deposit formation are identified from thermogravity curves. Sustainable feedback control design is then proposed for potential emission control and performance optimization
Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques.
Mohammed, Muzaffer; Clement, Travis C; Aslan, Kadir
2014-12-02
In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400-800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72-24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally.
Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques
Mohammed, Muzaffer; Clement, Travis C.; Aslan, Kadir
2014-01-01
In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400–800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72–24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally. PMID:25568813
LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor Wong; Tian Tian; Luke Moughon
2005-09-30
This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, withmore » full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.« less
Ângelo, R P; Chambel, M J
2015-04-01
The paradigm of this study is positive occupational psychology, with the job demands-resources model as the research model and the Conservation of Resources theory as the general stress theory. The research design analyses the job demands-resources model's dynamic nature with normal and reversed causation effects between work characteristics and psychological well-being among Portuguese firefighters. In addition, we analyse a positive (engagement) dimension and a negative (burnout) dimension in the firefighters' well-being, because previously, studies have merely focused on the strain or stress of these professionals. The research questionnaire was distributed to a sample of 651 firefighters, and a two-wave full panel design was used. Cross-lagged panel analyses indicated that the causal direction of the relationship between organizational demands and burnout is reciprocal. Also, we found that the reciprocal model, including cross-lagged reciprocal relationships between organizational demands/supervisory support and burnout/engagement, respectively, is what fits the data best. Practical implications to develop organizational change programmes and suggestions for future research regarding the promotion of occupational health are discussed. Copyright © 2013 John Wiley & Sons, Ltd.
Engineering design: A cognitive process approach
NASA Astrophysics Data System (ADS)
Strimel, Greg Joseph
The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.
The Study of Health Coaching: The Ithaca Coaching Project, Research Design, and Future Directions
2013-01-01
Health coaching (HC) is a process holding tremendous potential as a complementary medical intervention to shape healthy behavior change and affect rates of chronic lifestyle diseases. Empirical knowledge of effectiveness for the HC process, however, is lacking. The purposes of this paper are to present the study protocol for the Ithaca Coaching Project while also addressing research design, methodological issues, and directions for HC research. This is one of the first large-scale, randomized control trials of HC for primary prevention examining impact on physical and emotional health status in an employee population. An additional intent for the project is to investigate self-determination theory as a theoretical framework for the coaching process. Participants (n=300) are recruited as part of a campus-wide wellness initiative and randomly assigned to one of three levels of client-centered HC or a control with standard wellness program care. Repeated measures analyses of covariance will be used to examine coaching effectiveness while path analyses will be used to examine relationships between coaching processes, self-determination variables, and health outcomes. There is a great need for well-designed HC studies that define coaching best practices, examine intervention effectiveness, provide cost:benefit analysis, and address scope of practice. This information will allow a clearer definition of HC to emerge and determination of if, and how, HC fits in modern-day healthcare. This is an exciting but critical time for HC research and for the practice of HC. PMID:24416673
The study of health coaching: the ithaca coaching project, research design, and future directions.
Sforzo, Gary A
2013-05-01
Health coaching (HC) is a process holding tremendous potential as a complementary medical intervention to shape healthy behavior change and affect rates of chronic lifestyle diseases. Empirical knowledge of effectiveness for the HC process, however, is lacking. The purposes of this paper are to present the study protocol for the Ithaca Coaching Project while also addressing research design, methodological issues, and directions for HC research. This is one of the first large-scale, randomized control trials of HC for primary prevention examining impact on physical and emotional health status in an employee population. An additional intent for the project is to investigate self-determination theory as a theoretical framework for the coaching process. Participants (n=300) are recruited as part of a campus-wide wellness initiative and randomly assigned to one of three levels of client-centered HC or a control with standard wellness program care. Repeated measures analyses of covariance will be used to examine coaching effectiveness while path analyses will be used to examine relationships between coaching processes, self-determination variables, and health outcomes. There is a great need for well-designed HC studies that define coaching best practices, examine intervention effectiveness, provide cost:benefit analysis, and address scope of practice. This information will allow a clearer definition of HC to emerge and determination of if, and how, HC fits in modern-day healthcare. This is an exciting but critical time for HC research and for the practice of HC.
Short-term memory and strategy use in children with insulin-dependent diabetes mellitus.
Wolters, C A; Yu, S L; Hagen, J W; Kail, R
1996-12-01
The present study was designed to examine recall and rehearsal in short-term memory among children with insulin-dependent diabetes mellitus (IDDM). Children with onset of IDDM before age 5 years, children with onset after 5 years, and children without IDDM were administered a measure of short-term memory that provides information about rehearsal as well as level of recall. Children with later onset of diabetes and children without IDDM were expected to recall more words and use more effective rehearsal strategies than children with early onset of diabetes. Results indicate that children diagnosed with IDDM early in life used similar rehearsal strategies but recalled fewer words than children with later onset of diabetes and children without IDDM. In addition, results provide evidence that children who are in poor control of their diabetes did not use strategies designed to increase recall as often, or as well as, children in better control of their diabetes.
NASA Astrophysics Data System (ADS)
Enin, S. S.; Omelchenko, E. Y.; Fomin, N. V.; Beliy, A. V.
2018-03-01
The paper has a description of a computer model of an overhead crane system. The designed overhead crane system consists of hoisting, trolley and crane mechanisms as well as a payload two-axis system. With the help of the differential equation of specified mechanisms movement derived through Lagrange equation of the II kind, it is possible to build an overhead crane computer model. The computer model was obtained using Matlab software. Transients of coordinate, linear speed and motor torque of trolley and crane mechanism systems were simulated. In addition, transients of payload swaying were obtained with respect to the vertical axis. A trajectory of the trolley mechanism with simultaneous operation with the crane mechanism is represented in the paper as well as a two-axis trajectory of payload. The designed computer model of an overhead crane is a great means for studying positioning control and anti-sway control systems.
Harnessing the polariton drag effect to design an electrically controlled optical switch.
Berman, Oleg L; Kezerashvili, Roman Ya; Kolmakov, German V
2014-10-28
We propose a design of a Y-shaped electrically controlled optical switch based on the studies of propagation of an exciton-polariton condensate in a patterned optical microcavity with an embedded quantum well. The polaritons are driven by a time-independent force due to the microcavity wedge shape and by a time-dependent drag force owing to the interaction of excitons in a quantum well and the electric current running in a neighboring quantum well. It is demonstrated that by applying the drag force one can direct more than 90% of the polariton flow toward the desired branch of the switch with no hysteresis. By considering the transient dynamics of the polariton condensate, we estimate the response speed of the switch as 9.1 GHz. We also propose a design of the polariton switch in a flat microcavity based on the geometrically identical Y-shaped quantum wells where the polariton flow is only induced by the drag force. The latter setup enables one to design a multiway switch that can act as an electrically controlled optical transistor with on and off functions. Finally, we performed the simulations for a microcavity with an embedded gapped graphene layer and demonstrated that in this case the response speed of the switch can be increased up to 14 GHz for the same switch size. The simulations also show that the energy gap in the quasiparticle spectrum in graphene can be utilized as an additional parameter that controls the propagation of the signals in the switch.
Long-term efficacy of rasagiline in early Parkinson's disease.
Lew, Mark F; Hauser, Robert A; Hurtig, Howard I; Ondo, William G; Wojcieszek, Joanne; Goren, Tamar; Fitzer-Attas, Cheryl J
2010-06-01
This study was designed to follow the long-term efficacy, safety, and tolerability of rasagiline for Parkinson's disease (PD) with data collected from all patients who had ever taken rasagiline during the 12-month TEMPO monotherapy trial (N = 398) and subsequent open-label extension. Patients were followed for up to 6.5 years with a mean of 3.5 +/- 2.1 years. After 12 months, additional PD medications were added as required. Of patients remaining in the trial at 2 years, 46% were maintained on rasagiline monotherapy. The majority of patients received a dopamine agonist prior to levodopa as the first additional dopaminergic agent. Analysis using a Kaplan-Meier method indicated that by 5.4 years only 25% of patients progressed to Hoehn & Yahr stage III. Rasagiline was well tolerated, with 11.3% of patients (45/398) withdrawing because of an adverse event. Rasagiline therapy for PD was effective, well tolerated, and safe in this long-term trial.
Converse, S.J.; Kendall, W.L.; Doherty, P.F.; Naughton, M.B.; Hines, J.E.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.
2009-01-01
For many animal populations, one or more life stages are not accessible to sampling, and therefore an unobservable state is created. For colonially-breeding populations, this unobservable state could represent the subset of adult breeders that have foregone breeding in a given year. This situation applies to many seabird populations, notably albatrosses, where skipped breeders are either absent from the colony, or are present but difficult to capture or correctly assign to breeding state. Kendall et al. have proposed design strategies for investigations of seabird demography where such temporary emigration occurs, suggesting the use of the robust design to permit the estimation of time-dependent parameters and to increase the precision of estimates from multi-state models. A traditional robust design, where animals are subject to capture multiple times in a sampling season, is feasible in many cases. However, due to concerns that multiple captures per season could cause undue disturbance to animals, Kendall et al. developed a less-invasive robust design (LIRD), where initial captures are followed by an assessment of the ratio of marked-to-unmarked birds in the population or sampled plot. This approach has recently been applied in the Northwestern Hawaiian Islands to populations of Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses. In this paper, we outline the LIRD and its application to seabird population studies. We then describe an approach to determining optimal allocation of sampling effort in which we consider a non-robust design option (nRD), and variations of both the traditional robust design (RD), and the LIRD. Variations we considered included the number of secondary sampling occasions for the RD and the amount of total effort allocated to the marked-to-unmarked ratio assessment for the LIRD. We used simulations, informed by early data from the Hawaiian study, to address optimal study design for our example cases. We found that the LIRD performed as well or nearly as well as certain variations of the RD in terms of root mean square error, especially when relatively little of the total effort was allocated to the assessment of the marked-to-unmarked ratio versus to initial captures. For the RD, we found no clear benefit of using 2, 4, or 6 secondary sampling occasions per year, though this result will depend on the relative effort costs of captures versus recaptures and on the length of the study. We also found that field-readable bands, which may be affixed to birds in addition to standard metal bands, will be beneficial in longer-term studies of albatrosses in the Northwestern Hawaiian Islands. Field-readable bands reduce the effort cost of recapturing individuals, and in the long-term this cost reduction can offset the additional effort expended in affixing the bands. Finally, our approach to determining optimal study design can be generally applied by researchers, with little seed data, to design their studies at the outset.
User interface design principles for the SSM/PMAD automated power system
NASA Technical Reports Server (NTRS)
Jakstas, Laura M.; Myers, Chris J.
1991-01-01
Martin Marietta has developed a user interface for the space station module power management and distribution (SSM/PMAD) automated power system testbed which provides human access to the functionality of the power system, as well as exemplifying current techniques in user interface design. The testbed user interface was designed to enable an engineer to operate the system easily without having significant knowledge of computer systems, as well as provide an environment in which the engineer can monitor and interact with the SSM/PMAD system hardware. The design of the interface supports a global view of the most important data from the various hardware and software components, as well as enabling the user to obtain additional or more detailed data when needed. The components and representations of the SSM/PMAD testbed user interface are examined. An engineer's interactions with the system are also described.
Saviano, Alessandro Morais; Francisco, Fabiane Lacerda; Ostronoff, Celina Silva; Lourenço, Felipe Rebello
2015-01-01
The aim of this study was to develop, optimize, and validate a microplate bioassay for relative potency determination of linezolid in pharmaceutical samples using quality-by-design and design space approaches. In addition, a procedure is described for estimating relative potency uncertainty based on microbiological response variability. The influence of culture media composition was studied using a factorial design and a central composite design was adopted to study the influence of inoculum proportion and triphenyltetrazolium chloride in microbial growth. The microplate bioassay was optimized regarding the responses of low, medium, and high doses of linezolid, negative and positive controls, and the slope, intercept, and correlation coefficient of dose-response curves. According to optimization results, design space ranges were established using: (a) low (1.0 μg/mL), medium (2.0 μg/mL), and high (4.0 μg/mL) doses of pharmaceutical samples and linezolid chemical reference substance; (b) Staphylococcus aureus ATCC 653 in an inoculum proportion of 10%; (c) antibiotic No. 3 culture medium pH 7.0±0.1; (d) 6 h incubation at 37.0±0.1ºC; and (e) addition of 50 μL of 0.5% (w/v) triphenyltetrazolium chloride solution. The microplate bioassay was linear (r2=0.992), specific, precise (repeatability RSD=2.3% and intermediate precision RSD=4.3%), accurate (mean recovery=101.4%), and robust. The overall measurement uncertainty was reasonable considering the increased variability inherent in microbiological response. Final uncertainty was comparable with those obtained with other microbiological assays, as well as chemical methods.
Knopman, Debra S.; Voss, Clifford I.; Garabedian, Stephen P.
1991-01-01
Tests of a one-dimensional sampling design methodology on measurements of bromide concentration collected during the natural gradient tracer test conducted by the U.S. Geological Survey on Cape Cod, Massachusetts, demonstrate its efficacy for field studies of solute transport in groundwater and the utility of one-dimensional analysis. The methodology was applied to design of sparse two-dimensional networks of fully screened wells typical of those often used in engineering practice. In one-dimensional analysis, designs consist of the downstream distances to rows of wells oriented perpendicular to the groundwater flow direction and the timing of sampling to be carried out on each row. The power of a sampling design is measured by its effectiveness in simultaneously meeting objectives of model discrimination, parameter estimation, and cost minimization. One-dimensional models of solute transport, differing in processes affecting the solute and assumptions about the structure of the flow field, were considered for description of tracer cloud migration. When fitting each model using nonlinear regression, additive and multiplicative error forms were allowed for the residuals which consist of both random and model errors. The one-dimensional single-layer model of a nonreactive solute with multiplicative error was judged to be the best of those tested. Results show the efficacy of the methodology in designing sparse but powerful sampling networks. Designs that sample five rows of wells at five or fewer times in any given row performed as well for model discrimination as the full set of samples taken up to eight times in a given row from as many as 89 rows. Also, designs for parameter estimation judged to be good by the methodology were as effective in reducing the variance of parameter estimates as arbitrary designs with many more samples. Results further showed that estimates of velocity and longitudinal dispersivity in one-dimensional models based on data from only five rows of fully screened wells each sampled five or fewer times were practically equivalent to values determined from moments analysis of the complete three-dimensional set of 29,285 samples taken during 16 sampling times.
Blumenfeld, Andrew; Silberstein, Stephen D; Dodick, David W; Aurora, Sheena K; Turkel, Catherine C; Binder, William J
2010-10-01
Chronic migraine (CM) is a prevalent and disabling neurological disorder. Few prophylactic treatments for CM have been investigated. OnabotulinumtoxinA, which inhibits the release of nociceptive mediators, such as glutamate, substance P, and calcitonin gene-related peptide, has been evaluated in randomized, placebo-controlled studies for the preventive treatment of a variety of headache disorders, including CM. These studies have yielded insight into appropriate patient selection, injection sites, dosages, and technique. Initial approaches used a set of fixed sites for the pericranial injections. However, the treatment approach evolved to include other sites that corresponded to the location of pain and tenderness in the individual patient in addition to the fixed sites. The Phase III REsearch Evaluating Migraine Prophylaxis Therapy (PREEMPT) injection paradigm uses both fixed and follow-the-pain sites, with additional specific follow-the-pain sites considered depending on individual symptoms. The PREEMPT paradigm for injecting onabotulinumtoxinA has been shown to be safe, well-tolerated, and effective in well-designed, controlled clinical trials and is the evidence-based approach recommended to optimize clinical outcomes for patients with CM. © 2010 American Headache Society.
Epidemiological study air disaster in Amsterdam (ESADA): study design.
Slottje, Pauline; Huizink, Anja C; Twisk, Jos W R; Witteveen, Anke B; van der Ploeg, Henk M; Bramsen, Inge; Smidt, Nynke; Bijlsma, Joost A; Bouter, Lex M; van Mechelen, Willem; Smid, Tjabe
2005-05-30
In 1992, a cargo aircraft crashed into apartment buildings in Amsterdam, killing 43 victims and destroying 266 apartments. In the aftermath there were speculations about the cause of the crash, potential exposures to hazardous materials due to the disaster and the health consequences. Starting in 2000, the Epidemiological Study Air Disaster in Amsterdam (ESADA) aimed to assess the long-term health effects of occupational exposure to this disaster on professional assistance workers. Epidemiological study among all the exposed professional fire-fighters and police officers who performed disaster-related task(s), and hangar workers who sorted the wreckage of the aircraft, as well as reference groups of their non-exposed colleagues who did not perform any disaster-related tasks. The study took place, on average, 8.5 years after the disaster. Questionnaires were used to assess details on occupational exposure to the disaster. Health measures comprised laboratory assessments in urine, blood and saliva, as well as self-reported current health measures, including health-related quality of life, and various physical and psychological symptoms. In this paper we describe and discuss the design of the ESADA. The ESADA will provide additional scientific knowledge on the long-term health effects of technological disasters on professional workers.
Closed cycle electric discharge laser design investigation
NASA Technical Reports Server (NTRS)
Baily, P. K.; Smith, R. C.
1978-01-01
Closed cycle CO2 and CO electric discharge lasers were studied. An analytical investigation assessed scale-up parameters and design features for CO2, closed cycle, continuous wave, unstable resonator, electric discharge lasing systems operating in space and airborne environments. A space based CO system was also examined. The program objectives were the conceptual designs of six CO2 systems and one CO system. Three airborne CO2 designs, with one, five, and ten megawatt outputs, were produced. These designs were based upon five minute run times. Three space based CO2 designs, with the same output levels, were also produced, but based upon one year run times. In addition, a conceptual design for a one megawatt space based CO laser system was also produced. These designs include the flow loop, compressor, and heat exchanger, as well as the laser cavity itself. The designs resulted in a laser loop weight for the space based five megawatt system that is within the space shuttle capacity. For the one megawatt systems, the estimated weight of the entire system including laser loop, solar power generator, and heat radiator is less than the shuttle capacity.
Optimal designs based on the maximum quasi-likelihood estimator
Shen, Gang; Hyun, Seung Won; Wong, Weng Kee
2016-01-01
We use optimal design theory and construct locally optimal designs based on the maximum quasi-likelihood estimator (MqLE), which is derived under less stringent conditions than those required for the MLE method. We show that the proposed locally optimal designs are asymptotically as efficient as those based on the MLE when the error distribution is from an exponential family, and they perform just as well or better than optimal designs based on any other asymptotically linear unbiased estimators such as the least square estimator (LSE). In addition, we show current algorithms for finding optimal designs can be directly used to find optimal designs based on the MqLE. As an illustrative application, we construct a variety of locally optimal designs based on the MqLE for the 4-parameter logistic (4PL) model and study their robustness properties to misspecifications in the model using asymptotic relative efficiency. The results suggest that optimal designs based on the MqLE can be easily generated and they are quite robust to mis-specification in the probability distribution of the responses. PMID:28163359
Martínez-Cifuentes, Maximiliano; Weiss-López, Boris; Araya-Maturana, Ramiro
2016-12-02
In this work, a computational study of a series of N -substitued-4-piperidones curcumin analogues is presented. The molecular structure of the neutral molecules and their radical anions, as well as their reactivity, are investigated. N -substituents include methyl and benzyl groups, while substituents on the aromatic rings cover electron-donor and electron-acceptor groups. Substitutions at the nitrogen atom do not significantly affect the geometry and frontier molecular orbitals (FMO) energies of these molecules. On the other hand, substituents on the aromatic rings modify the distribution of FMO. In addition, they influence the capability of these molecules to attach an additional electron, which was studied through adiabatic (AEA) and vertical electron affinities (VEA), as well as vertical detachment energy (VDE). To study electrophilic properties of these structures, local reactivity indices, such as Fukui ( f ⁺) and Parr ( P ⁺) functions, were calculated, and show the influence of the aromatic rings substituents on the reactivity of α,β-unsaturated ketones towards nucleophilic attack. This study has potential implications for the design of curcumin analogues based on a 4-piperidone core with desired reactivity.
Basic principles of stability.
Egan, William; Schofield, Timothy
2009-11-01
An understanding of the principles of degradation, as well as the statistical tools for measuring product stability, is essential to management of product quality. Key to this is management of vaccine potency. Vaccine shelf life is best managed through determination of a minimum potency release requirement, which helps assure adequate potency throughout expiry. Use of statistical tools such a least squares regression analysis should be employed to model potency decay. The use of such tools provides incentive to properly design vaccine stability studies, while holding stability measurements to specification presents a disincentive for collecting valuable data. The laws of kinetics such as Arrhenius behavior help practitioners design effective accelerated stability programs, which can be utilized to manage stability after a process change. Design of stability studies should be carefully considered, with an eye to minimizing the variability of the stability parameter. In the case of measuring the degradation rate, testing at the beginning and the end of the study improves the precision of this estimate. Additional design considerations such as bracketing and matrixing improve the efficiency of stability evaluation of vaccines.
Newberry Well 55-29 Stimulation Data 2014
Trenton T. Cladouhos
2015-09-03
The Newberry Volcano EGS Demonstration in central Oregon, a 5 year project begun in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to run for weeks and deliver large volumes of water at moderate well-head pressure. Second, to stimulate multiple zones, AltaRock developed thermo-degradable zonal isolation materials (TZIMs) to seal off fractures in a geothermal well to stimulate secondary and tertiary fracture zones. The TZIMs degrade within weeks, resulting in an optimized injection/ production profile of the entire well. Third, the project followed a project-specific Induced Seismicity Mitigation Plan (ISMP) to evaluate, monitor for, and mitigate felt induced seismicity. An initial stimulation was conducted in 2012 and continued for 7 weeks, with over 41,000 m3 of water injected. Further analysis indicated a shallow casing leak and an unstable formation in the open hole. The well was repaired with a shallow casing tieback and perforated liner in the open hole and re-stimulated in 2014. The second stimulation started September 23rd, 2014 and continued for 3 weeks with over 9,500 m3 of water injected. The well was treated with several batches of newly tested TZIM diverter materials and a newly designed Diverter Injection Vessel Assembly (DIVA), which was the main modification to the original injection system design used in 2012. A second round of stimulation that included two perforation shots and additional batches of TZIM was conducted on November 11th, 2014 for 9 days with an additional 4,000 m3 of water injected. The stimulations resulted in a 3-4 fold increase in injectivity, and PTS data indicates partial blocking and creation of flow zones near the bottom of the well.
Understanding children: a qualitative study on health assets of the Internet in Spain.
Hernán-García, Mariano; Botello-Díaz, Blanca; Marcos-Marcos, Jorge; Toro-Cárdenas, Silvia; Gil-García, Eugenia
2015-02-01
This research was designed to explore the opinions held by primary school pupils about the Internet as a source of assets for health and well-being. A qualitative study was carried out based on 8 focus groups comprising 64 pupils from 8 primary schools in Spain. Our findings describe the Internet as a tool for learning, communication, fun and health care. In addition, they reveal how children understand influences on health and well-being in relation to their view of the Internet. The results are discussed in terms of the public-health implications of digital literacy, as well as its connection to well-being, especially in relation to health assets. The Internet is an important resource for children's health and well-being, which, through learning, communication, fun and health care, encourages them to make use of it. Digital and health literacy constitutes the foundation required for browsing the Internet in a positive way, as identified by the children interviewed in this study, and especially in relation to the health assets that the Internet can contain.
NASA Astrophysics Data System (ADS)
Fomina, E. V.; Kozhukhova, N. I.; Sverguzova, S. V.; Fomin, A. E.
2018-05-01
In this paper, the regression equations method for design of construction material was studied. Regression and polynomial equations representing the correlation between the studied parameters were proposed. The logic design and software interface of the regression equations method focused on parameter optimization to provide the energy saving effect at the stage of autoclave aerated concrete design considering the replacement of traditionally used quartz sand by coal mining by-product such as argillite. The mathematical model represented by a quadric polynomial for the design of experiment was obtained using calculated and experimental data. This allowed the estimation of relationship between the composition and final properties of the aerated concrete. The surface response graphically presented in a nomogram allowed the estimation of concrete properties in response to variation of composition within the x-space. The optimal range of argillite content was obtained leading to a reduction of raw materials demand, development of target plastic strength of aerated concrete as well as a reduction of curing time before autoclave treatment. Generally, this method allows the design of autoclave aerated concrete with required performance without additional resource and time costs.
The Science Manager's Guide to Case Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branch, Kristi M.; Peffers, Melissa S.; Ruegg, Rosalie T.
2001-09-24
This guide takes the science manager through the steps of planning, implementing, validating, communicating, and using case studies. It outlines the major methods of analysis, describing their relative merits and applicability while providing relevant examples and sources of additional information. Well-designed case studies can provide a combination of rich qualitative and quantitative information, offering valuable insights into the nature, outputs, and longer-term impacts of the research. An objective, systematic, and credible approach to the evaluation of U.S. Department of Energy Office of Science programs adds value to the research process and is the subject of this guide.
Team Expo: A State-of-the-Art JSC Advanced Design Team
NASA Technical Reports Server (NTRS)
Tripathi, Abhishek
2001-01-01
In concert with the NASA-wide Intelligent Synthesis Environment Program, the Exploration Office at the Johnson Space Center has assembled an Advanced Design Team. The purpose of this team is two-fold. The first is to identify, use, and develop software applications, tools, and design processes that streamline and enhance a collaborative engineering environment. The second is to use this collaborative engineering environment to produce conceptual, system-level-of-detail designs in a relatively short turnaround time, using a standing team of systems and integration experts. This includes running rapid trade studies on varying mission architectures, as well as producing vehicle and/or subsystem designs. The standing core team is made up of experts from all of the relevant engineering divisions (e.g. Power, Thermal, Structures, etc.) as well as representatives from Risk and Safety, Mission Operations, and Crew Life Sciences among others. The Team works together during 2- hour sessions in the same specially enhanced room to ensure real-time integration/identification of cross-disciplinary issues and solutions. All subsystem designs are collectively reviewed and approved during these same sessions. In addition there is an Information sub-team that captures and formats all data and makes it accessible for use by the following day. The result is Team Expo: an Advanced Design Team that is leading the change from a philosophy of "over the fence" design to one of collaborative engineering that pushes the envelope to achieve the next-generation analysis and design environment.
Spilling over strain between elders and their caregivers in Hong Kong.
Cheung, Chau-Kiu; Chow, Esther Oi-wah
2006-01-01
According to the dialectical model, the well-being of the older care recipient, the informal caregiver, and the professional care provider mutually affect each other. Particularly, the caregiver's strain can affect the care recipient's well-being both positively and negatively. Moreover, the task-specific model suggests that as social workers are responsible for maintaining elders' well-being, the workers' strain would be particularly influential on the elders' well-being. To clarify these dialectic relationships, the present study surveyed the three parties involved in home help or home care services in Hong Kong over two successive waves using a panel design. This study reveals the significant negative effect the professional care provider's earlier strain has on the elder's later well-being. Moreover, the social worker's earlier strain was particularly detrimental to the elder's later well-being. In contrast, the effect of the informal caregiver's earlier strain was not significant. Additionally, the elder's well-being had no significant impact on the strain of either the professional care provider or the informal caregiver. Findings of this study support the qualification of the dialectical model by the task-specific model to yield a model of channeled spillover. Accordingly, dialectical influence requires a channel to materialize the spillover effect.
A Review of User-Centered Design for Diabetes-Related Consumer Health Informatics Technologies
LeRouge, Cynthia; Wickramasinghe, Nilmini
2013-01-01
User-centered design (UCD) is well recognized as an effective human factor engineering strategy for designing ease of use in the total customer experience with products and information technology that has been applied specifically to health care information technology systems. We conducted a literature review to analyze the current research regarding the use of UCD methods and principles to support the development or evaluation of diabetes-related consumer health informatics technology (CHIT) initiatives. Findings indicate that (1) UCD activities have been applied across the technology development life cycle stages, (2) there are benefits to incorporating UCD to better inform CHIT development in this area, and (3) the degree of adoption of the UCD process is quite uneven across diabetes CHIT studies. In addition, few to no studies report on methods used across all phases of the life cycle with process detail. To address that void, the Appendix provides an illustrative case study example of UCD techniques across development stages. PMID:23911188
ERIC Educational Resources Information Center
Clark, Lindie; Rowe, Anna; Cantori, Alex; Bilgin, Ayse; Mukuria, Valentine
2016-01-01
Work-integrated learning (WIL) courses can be more time consuming and resource intensive to design, teach, administer and support than classroom-based courses, as they generally require different curricula and pedagogical approaches as well as additional administrative and pastoral responsibilities. Workload and resourcing issues are reported as…
Study of design constraints on helicopter noise
NASA Technical Reports Server (NTRS)
Sternfeld, H., Jr.; Wiedersum, C. W.
1979-01-01
A means of estimating the noise generated by a helicopter main rotor using information which is generally available during the preliminary design phase of aircraft development is presented. The method utilizes design charts and tables which do not require an understanding of acoustical theory or computational procedures in order to predict the perceived noise level, a weighted sound pressure level, or C weighted sound pressure level of a single hovering rotor. A method for estimating the effective perceived noise level in forward flight is also included. In order to give the designer an assessment of the relative rotor performance, which may be traded off against noise, an additional chart for estimating the percent of available rotor thrust which must be expended in lifting the rotor and drive system, is included as well as approach for comparing the subjective acceptability of various rotors once the absolute sound pressure levels are predicted.
Houkes, Inge; Janssen, Peter P M; de Jonge, Jan; Bakker, Arnold B
2003-01-01
This study tested the longitudinal influence of personality (measured by the characteristics growth need strength, negative affectivity [NA], and upward striving) on 3 psychological outcomes (intrinsic work motivation, emotional exhaustion, and turnover intention), using a pattern of specific relationships between work characteristics and these outcomes as a framework. The study hypotheses were tested in a multioccupational sample consisting of bank employees and teachers, using a 2-wave panel design with a 1-year time interval and structural equation modeling. NA had a cross-lagged direct and additive relationship with emotional exhaustion and also moderated the relationship between Time 1 workload and Time 2 emotional exhaustion. The authors concluded that NA may have multiple effects on emotional exhaustion that persist over time.
MASTOS: Mammography Simulation Tool for design Optimization Studies.
Spyrou, G; Panayiotakis, G; Tzanakos, G
2000-01-01
Mammography is a high quality imaging technique for the detection of breast lesions, which requires dedicated equipment and optimum operation. The design parameters of a mammography unit have to be decided and evaluated before the construction of such a high cost of apparatus. The optimum operational parameters also must be defined well before the real breast examination. MASTOS is a software package, based on Monte Carlo methods, that is designed to be used as a simulation tool in mammography. The input consists of the parameters that have to be specified when using a mammography unit, and also the parameters specifying the shape and composition of the breast phantom. In addition, the input may specify parameters needed in the design of a new mammographic apparatus. The main output of the simulation is a mammographic image and calculations of various factors that describe the image quality. The Monte Carlo simulation code is PC-based and is driven by an outer shell of a graphical user interface. The entire software package is a simulation tool for mammography and can be applied in basic research and/or in training in the fields of medical physics and biomedical engineering as well as in the performance evaluation of new designs of mammography units and in the determination of optimum standards for the operational parameters of a mammography unit.
Graphical user interface for a robotic workstation in a surgical environment.
Bielski, A; Lohmann, C P; Maier, M; Zapp, D; Nasseri, M A
2016-08-01
Surgery using a robotic system has proven to have significant potential but is still a highly challenging task for the surgeon. An eye surgery assistant has been developed to eliminate the problem of tremor caused by human motions endangering the outcome of ophthalmic surgery. In order to exploit the full potential of the robot and improve the workflow of the surgeon, providing the ability to change control parameters live in the system as well as the ability to connect additional ancillary systems is necessary. Additionally the surgeon should always be able to get an overview over the status of all systems with a quick glance. Therefore a workstation has been built. The contribution of this paper is the design and the implementation of an intuitive graphical user interface for this workstation. The interface has been designed with feedback from surgeons and technical staff in order to ensure its usability in a surgical environment. Furthermore, the system was designed with the intent of supporting additional systems with minimal additional effort.
Plasmonic Bowtie Antenna Nanolaser
2014-05-06
designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research ...successfully achieved this goal using the semiconductor-metal core-shell design . A secondary goal is to achieve an output power of 2 microwatts under the above...next few months, well within the period of no-cost extension. In addition, many other novel device designs and 1. REPORT DATE (DD-MM-YYYY) 4. TITLE
When Playing Meets Learning: Methodological Framework for Designing Educational Games
NASA Astrophysics Data System (ADS)
Linek, Stephanie B.; Schwarz, Daniel; Bopp, Matthias; Albert, Dietrich
Game-based learning builds upon the idea of using the motivational potential of video games in the educational context. Thus, the design of educational games has to address optimizing enjoyment as well as optimizing learning. Within the EC-project ELEKTRA a methodological framework for the conceptual design of educational games was developed. Thereby state-of-the-art psycho-pedagogical approaches were combined with insights of media-psychology as well as with best-practice game design. This science-based interdisciplinary approach was enriched by enclosed empirical research to answer open questions on educational game-design. Additionally, several evaluation-cycles were implemented to achieve further improvements. The psycho-pedagogical core of the methodology can be summarized by the ELEKTRA's 4Ms: Macroadaptivity, Microadaptivity, Metacognition, and Motivation. The conceptual framework is structured in eight phases which have several interconnections and feedback-cycles that enable a close interdisciplinary collaboration between game design, pedagogy, cognitive science and media psychology.
Mechanics of additively manufactured biomaterials.
Zadpoor, Amir A
2017-06-01
Additive manufacturing (3D printing) has found many applications in healthcare including fabrication of biomaterials as well as bioprinting of tissues and organs. Additively manufactured (AM) biomaterials may possess arbitrarily complex micro-architectures that give rise to novel mechanical, physical, and biological properties. The mechanical behavior of such porous biomaterials including their quasi-static mechanical properties and fatigue resistance is not yet well understood. It is particularly important to understand the relationship between the designed micro-architecture (topology) and the resulting mechanical properties. The current special issue is dedicated to understanding the mechanical behavior of AM biomaterials. Although various types of AM biomaterials are represented in the special issue, the primary focus is on AM porous metallic biomaterials. As a prelude to this special issue, this editorial reviews some of the latest findings in the mechanical behavior of AM porous metallic biomaterials so as to describe the current state-of-the-art and set the stage for the other studies appearing in the issue. Some areas that are important for future research are also briefly mentioned. Copyright © 2017 Elsevier Ltd. All rights reserved.
The 20 GHz circularly polarized, high temperature superconducting microstrip antenna array
NASA Technical Reports Server (NTRS)
Morrow, Jarrett D.; Williams, Jeffery T.; Long, Stuart A.; Wolfe, John C.
1994-01-01
The primary goal was to design and characterize a four-element, 20 GHz, circularly polarized microstrip patch antenna fabricated from YBa2Cu3O(x) superconductor. The purpose is to support a high temperature superconductivity flight communications experiment between the space shuttle orbiter and the ACTS satellite. This study is intended to provide information into the design, construction, and feasibility of a circularly polarized superconducting 20 GHz downlink or cross-link antenna. We have demonstrated that significant gain improvements can be realized by using superconducting materials for large corporate fed array antennas. In addition, we have shown that when constructed from superconducting materials, the efficiency, and therefore the gain, of microstrip patches increases if the substrate is not so thick that the dominant loss mechanism for the patch is radiation into the surface waves of the conductor-backed substrate. We have considered two design configurations for a superconducting 20 GHz four-element circularly polarized microstrip antenna array. The first is the Huang array that uses properly oriented and phased linearly polarized microstrip patch elements to realize a circularly polarized pattern. The second is a gap-coupled array of circularly polarized elements. In this study we determined that although the Huang array operates well on low dielectric constant substrates, its performance becomes extremely sensitive to mismatches, interelement coupling, and design imperfections for substrates with high dielectric constants. For the gap-coupled microstrip array, we were able to fabricate and test circularly polarized elements and four-element arrays on LaAlO3 using sputtered copper films. These antennas were found to perform well, with relatively good circular polarization. In addition, we realized a four-element YBa2Cu3O(x) array of the same design and measured its pattern and gain relative to a room temperature copper array. The patterns were essentially the same as that for the copper array. The measured gain of the YBCO antenna was greater than that for the room temperature copper design at temperatures below 82K, reaching a value of 3.4 dB at the lowest temperatures.
2014-01-01
Background Obesity and stress are among the most common lifestyle-related health problems. Most of the current disease prevention and management models are not satisfactorily cost-effective and hardly reach those who need them the most. Therefore, novel evidence-based controlled interventions are necessary to evaluate models for prevention and treatment based on self-management. This randomized controlled trial examines the effectiveness, applicability, and acceptability of different lifestyle interventions with individuals having symptoms of metabolic syndrome and psychological distress. The offered interventions are based on cognitive behavioral approaches, and are designed for enhancing general well-being and supporting personalized lifestyle changes. Methods/Design 339 obese individuals reporting stress symptoms were recruited and randomized to either (1) a minimal contact web-guided Cognitive Behavioral Therapy-based (CBT) intervention including an approach of health assessment and coaching methods, (2) a mobile-guided intervention comprising of mindfulness, acceptance and value-based exercises, (3) a face-to-face group intervention using mindfulness, acceptance and value-based approach, or (4) a control group. The participants were measured three times during the study (pre = week 0, post = week 10, and follow-up = week 36). Psychological well-being, lifestyles and habits, eating behaviors, and user experiences were measured using online surveys. Laboratory measurements for physical well-being and general health were performed including e.g. liver function, thyroid glands, kidney function, blood lipids and glucose levels and body composition analysis. In addition, a 3-day ambulatory heart rate and 7-day movement data were collected for analyzing stress, recovery, physical activity, and sleep patterns. Food intake data were collected with a 48 -hour diet recall interview via telephone. Differences in the effects of the interventions would be examined using multiple-group modeling techniques, and effect-size calculations. Discussion This study will provide additional knowledge about the effects of three low intensity interventions for improving general well-being among individuals with obesity and stress symptoms. The study will show effects of two technology guided self-help interventions as well as effect of an acceptance and value–based brief group intervention. Those who might benefit from the aforesaid interventions will increase knowledge base to better understand what mechanisms facilitate effects of the interventions. Trial registration Current Clinical Trials NCT01738256, Registered 17 August, 2012. PMID:24708617
Tomayko, Emily J; Prince, Ronald J; Cronin, Kate A; Parker, Tassy; Kim, KyungMann; Grant, Vernon M; Sheche, Judith N; Adams, Alexandra K
2017-01-01
Background/Aims Few obesity prevention trials have focused on young children and their families in the home environment, particularly in underserved communities. Healthy Children, Strong Families 2 (HCSF2) is a randomized controlled trial of a healthy lifestyle intervention for American Indian children and their families, a group at very high risk of obesity. The study design resulted from our long-standing engagement with American Indian communities, and few collaborations of this type resulting in the development and implementation of an RCT have been described. Methods HCSF2 is a lifestyle intervention targeting increased fruit and vegetable intake, decreased sugar intake, increased physical activity, decreased TV/screen time, and two lesser-studied risk factors: stress and sleep. Families with young children from five American Indian communities nationwide were randomly assigned to a healthy lifestyles intervention (Wellness Journey) augmented with social support (Facebook and text messaging) or a child safety control group (Safety Journey) for one year. After Year 1, families in the Safety Journey receive the Wellness Journey, and families in the Wellness Journey start the Safety Journey with continued wellness-focused social support based on communities’ request that all families receive the intervention. Primary (adult body mass index and child body mass index z-score) and secondary (health behaviors) outcomes are assessed after Year 1 with additional analyses planned after Year 2. Results To date, 450 adult/child dyads have been enrolled (100% target enrollment). Statistical analyses await trial completion in 2017. Lessons Learned Conducting a community-partnered randomized controlled trial requires significant formative work, relationship building, and ongoing flexibility. At the communities’ request, the study involved minimal exclusion criteria, focused on wellness rather than obesity, and included an active control group and a design allowing all families to receive the intervention. This collective effort took additional time but was critical to secure community engagement. Hiring and retaining qualified local site coordinators was a challenge but was strongly related to successful recruitment and retention of study families. Local infrastructure has also been critical to project success. Other challenges included geographic dispersion of study communities and providing appropriate incentives to retain families in a two-year study. Conclusions This multi-site intervention addresses key gaps regarding family/home-based approaches for obesity prevention in American Indian communities. HCSF2’s innovative aspects include substantial community input, inclusion of both traditional (diet/activity) and lesser-studied obesity risk factors (stress/sleep), measurement of both adult and child outcomes, social networking support for geographically dispersed households, and a community selected active control group. Our data will address a literature gap regarding multiple risk factors and their relationship to health outcomes in American Indian families. PMID:28064525
Tomayko, Emily J; Prince, Ronald J; Cronin, Kate A; Parker, Tassy; Kim, Kyungmann; Grant, Vernon M; Sheche, Judith N; Adams, Alexandra K
2017-04-01
Background/Aims Few obesity prevention trials have focused on young children and their families in the home environment, particularly in underserved communities. Healthy Children, Strong Families 2 is a randomized controlled trial of a healthy lifestyle intervention for American Indian children and their families, a group at very high risk of obesity. The study design resulted from our long-standing engagement with American Indian communities, and few collaborations of this type resulting in the development and implementation of a randomized clinical trial have been described. Methods Healthy Children, Strong Families 2 is a lifestyle intervention targeting increased fruit and vegetable intake, decreased sugar intake, increased physical activity, decreased TV/screen time, and two less-studied risk factors: stress and sleep. Families with young children from five American Indian communities nationwide were randomly assigned to a healthy lifestyle intervention ( Wellness Journey) augmented with social support (Facebook and text messaging) or a child safety control group ( Safety Journey) for 1 year. After Year 1, families in the Safety Journey receive the Wellness Journey, and families in the Wellness Journey start the Safety Journey with continued wellness-focused social support based on communities' request that all families receive the intervention. Primary (adult body mass index and child body mass index z-score) and secondary (health behaviors) outcomes are assessed after Year 1 with additional analyses planned after Year 2. Results To date, 450 adult/child dyads have been enrolled (100% target enrollment). Statistical analyses await trial completion in 2017. Lessons learned Conducting a community-partnered randomized controlled trial requires significant formative work, relationship building, and ongoing flexibility. At the communities' request, the study involved minimal exclusion criteria, focused on wellness rather than obesity, and included an active control group and a design allowing all families to receive the intervention. This collective effort took additional time but was critical to secure community engagement. Hiring and retaining qualified local site coordinators was a challenge but was strongly related to successful recruitment and retention of study families. Local infrastructure has also been critical to project success. Other challenges included geographic dispersion of study communities and providing appropriate incentives to retain families in a 2-year study. Conclusion This multisite intervention addresses key gaps regarding family/home-based approaches for obesity prevention in American Indian communities. Healthy Children, Strong Families 2's innovative aspects include substantial community input, inclusion of both traditional (diet/activity) and less-studied obesity risk factors (stress/sleep), measurement of both adult and child outcomes, social networking support for geographically dispersed households, and a community selected active control group. Our data will address a literature gap regarding multiple risk factors and their relationship to health outcomes in American Indian families.
Designing and validation of a yoga-based intervention for schizophrenia.
Govindaraj, Ramajayam; Varambally, Shivarama; Sharma, Manjunath; Gangadhar, Bangalore Nanjundaiah
2016-06-01
Schizophrenia is a chronic mental illness which causes significant distress and dysfunction. Yoga has been found to be effective as an add-on therapy in schizophrenia. Modules of yoga used in previous studies were based on individual researcher's experience. This study aimed to develop and validate a specific generic yoga-based intervention module for patients with schizophrenia. The study was conducted at NIMHANS Integrated Centre for Yoga (NICY). A yoga module was designed based on traditional and contemporary yoga literature as well as published studies. The yoga module along with three case vignettes of adult patients with schizophrenia was sent to 10 yoga experts for their validation. Experts (n = 10) gave their opinion on the usefulness of a yoga module for patients with schizophrenia with some modifications. In total, 87% (13 of 15 items) of the items in the initial module were retained, with modification in the remainder as suggested by the experts. A specific yoga-based module for schizophrenia was designed and validated by experts. Further studies are needed to confirm efficacy and clinical utility of the module. Additional clinical validation is suggested.
Peng, Weijun; Yang, Jingjing; Yang, Bo; Wang, Lexing; Xiong, Xin-gui; Liang, Qinghua
2014-01-01
The efficacy of statin treatment on cognitive decline is controversial, and the effect of statins on cognitive deficits in individuals with traumatic brain injury (TBI) has yet to be investigated. Therefore, we systematically reviewed the effect of statins on cognitive deficits in adult male rodents after TBI. After identifying eligible studies by searching four electronic databases on February 28, 2014, we assessed study quality, evaluated the efficacy of statin treatment, and performed stratified metaregression and metaregression to assess the influence of study design on statin efficacy. Eleven studies fulfilled our inclusion criteria from a total of 183 publications. The overall methodological quality of these studies was poor. Meta-analysis showed that statins exert statistically significant positive effects on cognitive performance after TBI. Stratified analysis showed that atorvastatin has the greatest effect on acquisition memory, simvastatin has the greatest effect on retention memory, and statin effects on acquisition memory are higher in closed head injury models. Metaregression analysis further showed that that animal species, study quality, and anesthetic agent impact statin effects on retention memory. We conclude that statins might reduce cognitive deficits after TBI. However, additional well-designed and well-reported animal studies are needed to inform further clinical study.
Open Rotor Tone Shielding Methods for System Noise Assessments Using Multiple Databases
NASA Technical Reports Server (NTRS)
Bahr, Christopher J.; Thomas, Russell H.; Lopes, Leonard V.; Burley, Casey L.; Van Zante, Dale E.
2014-01-01
Advanced aircraft designs such as the hybrid wing body, in conjunction with open rotor engines, may allow for significant improvements in the environmental impact of aviation. System noise assessments allow for the prediction of the aircraft noise of such designs while they are still in the conceptual phase. Due to significant requirements of computational methods, these predictions still rely on experimental data to account for the interaction of the open rotor tones with the hybrid wing body airframe. Recently, multiple aircraft system noise assessments have been conducted for hybrid wing body designs with open rotor engines. These assessments utilized measured benchmark data from a Propulsion Airframe Aeroacoustic interaction effects test. The measured data demonstrated airframe shielding of open rotor tonal and broadband noise with legacy F7/A7 open rotor blades. Two methods are proposed for improving the use of these data on general open rotor designs in a system noise assessment. The first, direct difference, is a simple octave band subtraction which does not account for tone distribution within the rotor acoustic signal. The second, tone matching, is a higher-fidelity process incorporating additional physical aspects of the problem, where isolated rotor tones are matched by their directivity to determine tone-by-tone shielding. A case study is conducted with the two methods to assess how well each reproduces the measured data and identify the merits of each. Both methods perform similarly for system level results and successfully approach the experimental data for the case study. The tone matching method provides additional tools for assessing the quality of the match to the data set. Additionally, a potential path to improve the tone matching method is provided.
Additive manufacturing of tunable lenses
NASA Astrophysics Data System (ADS)
Schlichting, Katja; Novak, Tobias; Heinrich, Andreas
2017-02-01
Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.
Process characterization and Design Space definition.
Hakemeyer, Christian; McKnight, Nathan; St John, Rick; Meier, Steven; Trexler-Schmidt, Melody; Kelley, Brian; Zettl, Frank; Puskeiler, Robert; Kleinjans, Annika; Lim, Fred; Wurth, Christine
2016-09-01
Quality by design (QbD) is a global regulatory initiative with the goal of enhancing pharmaceutical development through the proactive design of pharmaceutical manufacturing process and controls to consistently deliver the intended performance of the product. The principles of pharmaceutical development relevant to QbD are described in the ICH guidance documents (ICHQ8-11). An integrated set of risk assessments and their related elements developed at Roche/Genentech were designed to provide an overview of product and process knowledge for the production of a recombinant monoclonal antibody (MAb). This chapter describes the tools used for the characterization and validation of MAb manufacturing process under the QbD paradigm. This comprises risk assessments for the identification of potential Critical Process Parameters (pCPPs), statistically designed experimental studies as well as studies assessing the linkage of the unit operations. Outcome of the studies is the classification of process parameters according to their criticality and the definition of appropriate acceptable ranges of operation. The process and product knowledge gained in these studies can lead to the approval of a Design Space. Additionally, the information gained in these studies are used to define the 'impact' which the manufacturing process can have on the variability of the CQAs, which is used to define the testing and monitoring strategy. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Kalantari, Saleh; Snell, Robin
2017-07-01
This study was a post-occupancy evaluation (POE) to examine the effectiveness of three specific design innovations in a mental healthcare facility. In addition to collecting data about the impact of these specific designs, the study provides a model for the broader implementation of POE approaches in the mental healthcare context. POEs in general healthcare settings have been shown to lead to better work environments and better outcomes for patients. Despite growing evidence of the value provided by POE studies, the industry has been somewhat slow to adopt their regular use, in part due to unfamiliarity with the POE process. This is particularly true in mental healthcare contexts, where POE studies remain virtually nonexistent. In-depth interviews and a widely distributed, anonymous survey were used to collect hospital staff perceptions and feedback regarding the impact of specific design features. The hospital staff were quite enthusiastic about two of the design innovations studied here (a new wayfinding strategy and the use of vibrant colors in specific areas of the facility). The third innovation, open-style communication centers, elicited more mixed evaluations. The results include extensive hypothesis testing about the effects of each innovation as well as narrative discussions of their pros and cons. The study generated new knowledge about three specific mental healthcare design innovations and provides a model for the practical implementation of a POE approach in mental healthcare contexts. The results are particularly relevant for designers who are considering innovative strategies in future mental healthcare facilities.
Lee, Jiwon
2013-11-01
Having children with developmental disabilities (DDs) requires a high level of caregiving responsibilities, and existing studies support that mothers of children with DDs experience high levels of maternal stress as well as poor sleep and well-being. Given the fact that the number of children with DDs has increased, an up-to-date literature review is necessary to identify factors associated with maternal stress, sleep, and well-being. In addition, understanding these factors and their relationships may provide better strategies in designing effective interventions that can reduce the burden in mothers of children with DDs. This review summarized 28 scientific research papers that examined maternal stress, sleep, and well-being in mothers of children with DDs in past 12 years. The study findings indicate that mothers of children with DDs experience higher levels of stress than mothers of typically developing children, and it remains high over time. In addition, these mothers often encounter depressive symptoms as well as poor sleep quality. The study results also reveal that there is a bidirectional relationship between maternal stress and depressive symptoms as well as between poor sleep quality and depressive symptoms. For example, higher stress mothers experienced more depressive symptoms. Mothers of children with DDs with poor sleep quality are significantly associated with more depressive symptoms. Child behavior problems were significantly associated with both maternal stress and depressive symptoms, but cautious interpretation is warranted due to the shared variance between child behavior problems, maternal stress, and depressive symptoms. Methodological guidelines for future research involve the use of reliable and valid instruments for the measurement of child behavior problems, maternal stress, and sleep. Recommendations for future research are included. Copyright © 2013 Elsevier Ltd. All rights reserved.
Simple methods to reduce patient exposure during scoliosis radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, P.F.; Thomas, A.W.; Thompson, W.E.
1986-05-01
Radiation exposure to the breasts of adolescent females can be reduced significantly through the use of one or all of the following methods: fast, rare-earth screen-film combinations; specially designed compensating filters; and breast shielding. The importance of exposure reduction during scoliosis radiography as well as further details on the above described methods are discussed. In addition, the early results of a Center for Devices and Radiological Health study, which recorded exposure and technique data for scoliosis radiography, is presented.
Community Environmental Response Facilitation ACT (CERFA) Report, Fort Benjamin Harrison, Indiana
1994-04-01
identified at FBH. Wood’s sedge is designated a state species of special concern or "rare" species. Pink turtlehead, goldenseal, and ginseng are... effects of past use on site soils and ground water using soil borings and monitoring wells (ERC, 1991). The study indicated the presence of contaminant...war camp, and an Army disciplinary barracks. An additional 50 acres of land was purchased in 1941 along the eastern side of the reservation, and a
Voros, Szilard; Maurovich-Horvat, Pal; Marvasty, Idean B; Bansal, Aruna T; Barnes, Michael R; Vazquez, Gustavo; Murray, Sarah S; Voros, Viktor; Merkely, Bela; Brown, Bradley O; Warnick, G Russell
2014-01-01
Complex biological networks of atherosclerosis are largely unknown. The main objective of the Genetic Loci and the Burden of Atherosclerotic Lesions study is to assemble comprehensive biological networks of atherosclerosis using advanced cardiovascular imaging for phenotyping, a panomic approach to identify underlying genomic, proteomic, metabolomic, and lipidomic underpinnings, analyzed by systems biology-driven bioinformatics. By design, this is a hypothesis-free unbiased discovery study collecting a large number of biologically related factors to examine biological associations between genomic, proteomic, metabolomic, lipidomic, and phenotypic factors of atherosclerosis. The Genetic Loci and the Burden of Atherosclerotic Lesions study (NCT01738828) is a prospective, multicenter, international observational study of atherosclerotic coronary artery disease. Approximately 7500 patients are enrolled and undergo non-contrast-enhanced coronary calcium scanning by CT for the detection and quantification of coronary artery calcium, as well as coronary artery CT angiography for the detection and quantification of plaque, stenosis, and overall coronary artery disease burden. In addition, patients undergo whole genome sequencing, DNA methylation, whole blood-based transcriptome sequencing, unbiased proteomics based on mass spectrometry, as well as metabolomics and lipidomics on a mass spectrometry platform. The study is analyzed in 3 subsequent phases, and each phase consists of a discovery cohort and an independent validation cohort. For the primary analysis, the primary phenotype will be the presence of any atherosclerotic plaque, as detected by cardiac CT. Additional phenotypic analyses will include per patient maximal luminal stenosis defined as 50% and 70% diameter stenosis. Single-omic and multi-omic associations will be examined for each phenotype; putative biomarkers will be assessed for association, calibration, discrimination, and reclassification. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Multimode analysis of highly tunable, quantum cascade powered, circular graphene spaser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasekara, Charith, E-mail: charith.jayasekara@monash.edu; Premaratne, Malin; Stockman, Mark I.
2015-11-07
We carried out a detailed analysis of a circular graphene spaser made of a circular graphene flake and a quantum cascade well structure. Owing to unique properties of graphene and quantum cascade well structure, the proposed design shows high mechanical and thermal stability and low optical losses. Additionally, operation characteristics of the model are analysed and tunability of the device is demonstrated. Some advantages of the proposed design include compact size, lower power operation, and the ability to set the operating wavelength over a wide range from Mid-IR to Near-IR. Thus, it can have wide spread applications including designing ofmore » ultracompact and ultrafast devices, nanoscopy and biomedical applications.« less
Developmental Neurotoxicity of Pyrethroid Insecticides: Critical Review and Future Research Needs
Shafer, Timothy J.; Meyer, Douglas A.; Crofton, Kevin M.
2005-01-01
Pyrethroid insecticides have been used for more than 40 years and account for 25% of the worldwide insecticide market. Although their acute neurotoxicity to adults has been well characterized, information regarding the potential developmental neurotoxicity of this class of compounds is limited. There is a large age dependence to the acute toxicity of pyrethroids in which neonatal rats are at least an order of magnitude more sensitive than adults to two pyrethroids. There is no information on age-dependent toxicity for most pyrethroids. In the present review we examine the scientific data related to potential for age-dependent and developmental neurotoxicity of pyrethroids. As a basis for understanding this neurotoxicity, we discuss the heterogeneity and ontogeny of voltage-sensitive sodium channels, a primary neuronal target of pyrethroids. We also summarize 22 studies of the developmental neurotoxicity of pyrethroids and review the strengths and limitations of these studies. These studies examined numerous end points, with changes in motor activity and muscarinic acetylcholine receptor density the most common. Many of the developmental neurotoxicity studies suffer from inadequate study design, problematic statistical analyses, use of formulated products, and/or inadequate controls. These factors confound interpretation of results. To better understand the potential for developmental exposure to pyrethroids to cause neurotoxicity, additional, well-designed and well-executed developmental neurotoxicity studies are needed. These studies should employ state-of-the-science methods to promote a greater understanding of the mode of action of pyrethroids in the developing nervous system. PMID:15687048
Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs.
Shafer, Timothy J; Meyer, Douglas A; Crofton, Kevin M
2005-02-01
Pyrethroid insecticides have been used for more than 40 years and account for 25% of the worldwide insecticide market. Although their acute neurotoxicity to adults has been well characterized, information regarding the potential developmental neurotoxicity of this class of compounds is limited. There is a large age dependence to the acute toxicity of pyrethroids in which neonatal rats are at least an order of magnitude more sensitive than adults to two pyrethroids. There is no information on age-dependent toxicity for most pyrethroids. In the present review we examine the scientific data related to potential for age-dependent and developmental neurotoxicity of pyrethroids. As a basis for understanding this neurotoxicity, we discuss the heterogeneity and ontogeny of voltage-sensitive sodium channels, a primary neuronal target of pyrethroids. We also summarize 22 studies of the developmental neurotoxicity of pyrethroids and review the strengths and limitations of these studies. These studies examined numerous end points, with changes in motor activity and muscarinic acetylcholine receptor density the most common. Many of the developmental neurotoxicity studies suffer from inadequate study design, problematic statistical analyses, use of formulated products, and/or inadequate controls. These factors confound interpretation of results. To better understand the potential for developmental exposure to pyrethroids to cause neurotoxicity, additional, well-designed and well-executed developmental neurotoxicity studies are needed. These studies should employ state-of-the-science methods to promote a greater understanding of the mode of action of pyrethroids in the developing nervous system.
DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems
NASA Technical Reports Server (NTRS)
Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.
1989-01-01
This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
... well-implemented experimental or quasi-experimental studies that demonstrate the program has a sizeable... study or well- designed and well-implemented quasi-experimental study that supports the effectiveness of... moderate evidence: (1) At least one well-designed and well-implemented experimental or quasi-experimental...
The Future of Additive Manufacturing in Air Force Acquisition
2017-03-22
manufacturing data - Designing and deploying a virtual aircraft fleet for future conflict - Space-based satellite production for defense capabilities via...changing system design via lower production costs, enhanced performance possibilities, and rapid replenishment. In the Technology Maturation and Risk... manufacturing as well as major cost savings via reduction of required materials, unique tooling, specialized production plans, and segments of the
2012-01-01
Background The last decades, the prevalence of childhood obesity has increased. Apart from other lifestyle factors, the effect of chronic psychosocial stress on the development of obesity has been recognized. However, more research is needed into the influence of chronic stress on appetite regulation, energy balance and body composition, as well as on the interaction with physical activity/sedentary behavior, diet and sleep in children. In this regard, the ChiBS study (Children’s Body composition and Stress) was designed at the Ghent University. Within this paper, we describe the aims, design, methods, participation and population characteristics of the ChiBS study. Methods The influence of chronic stress on changes in body composition is investigated over a two-year follow-up period (February-June 2010, 2011 and 2012) in primary-school children between 6 and 12 years old in the city Aalter (Flanders, Belgium). Stress is measured by child- and parent-reported stress-questionnaires, as well as by objective stress biomarkers (serum, salivary and hair cortisol) and heart rate variability. Body composition is evaluated using basic anthropometric measurements and air displacement plethysmography. Additional information on socio-economic status, medical history, physical activity, dietary intake and sleep are obtained by questionnaires, and physical activity by accelerometers. Results The participation percentage was 68.7% (N = 523/761), with 71.3% of the children willing to participate in the first follow-up survey. Drop-out proportions were highest for serum sampling (12.1%), salivary sampling (8.3%) and heart rate variability measurements (7.4%). Discussion The ChiBS project is unique in its setting: its standardized and longitudinal approach provides valuable data and new insights into the relationship between stress and changes in body composition in a large cohort of young children. In addition, this study allows an in-depth investigation of the validity of the different methods that were used to assess stress levels in children. PMID:22958377
Endoscopic and Photodynamic Therapy of Cholangiocarcinoma
Meier, Benjamin; Caca, Karel
2016-01-01
Background Most patients with cholangiocarcinoma (CCA) have unresectable disease. Endoscopic bile duct drainage is one of the major objectives of palliation of obstructive jaundice. Methods/Results Stent implantation using endoscopic retrograde cholangiography is considered to be the standard technique. Unilateral versus bilateral stenting is associated with different advantages and disadvantages; however, a standard approach is still not defined. As there are various kinds of stents, there is an ongoing discussion on which stent to use in which situation. Palliation of obstructive jaundice can be augmented through the use of photodynamic therapy (PDT). Studies have shown a prolonged survival for the combinations of PDT and different stent applications as well as combinations of PDT and additional systemic chemotherapy. Conclusion More well-designed studies are needed to better evaluate and standardize endoscopic treatment of unresectable CCA. PMID:28229075
Endoscopic and Photodynamic Therapy of Cholangiocarcinoma.
Meier, Benjamin; Caca, Karel
2016-12-01
Most patients with cholangiocarcinoma (CCA) have unresectable disease. Endoscopic bile duct drainage is one of the major objectives of palliation of obstructive jaundice. Stent implantation using endoscopic retrograde cholangiography is considered to be the standard technique. Unilateral versus bilateral stenting is associated with different advantages and disadvantages; however, a standard approach is still not defined. As there are various kinds of stents, there is an ongoing discussion on which stent to use in which situation. Palliation of obstructive jaundice can be augmented through the use of photodynamic therapy (PDT). Studies have shown a prolonged survival for the combinations of PDT and different stent applications as well as combinations of PDT and additional systemic chemotherapy. More well-designed studies are needed to better evaluate and standardize endoscopic treatment of unresectable CCA.
Adaptation of exercise-induced stress in well-trained healthy young men.
JanssenDuijghuijsen, Lonneke M; Keijer, Jaap; Mensink, Marco; Lenaerts, Kaatje; Ridder, Lars; Nierkens, Stefan; Kartaram, Shirley W; Verschuren, Martie C M; Pieters, Raymond H H; Bas, Richard; Witkamp, Renger F; Wichers, Harry J; van Norren, Klaske
2017-01-01
What is the central question of this study? Exercise is known to induce stress-related physiological responses, such as changes in intestinal barrier function. Our aim was to determine the test-retest repeatability of these responses in well-trained individuals. What is the main finding and its importance? Responses to strenuous exercise, as indicated by stress-related markers such as intestinal integrity markers and myokines, showed high test-retest variation. Even in well-trained young men an adapted response is seen after a single repetition after 1 week. This finding has implications for the design of studies aimed at evaluating physiological responses to exercise. Strenuous exercise induces different stress-related physiological changes, potentially including changes in intestinal barrier function. In the Protégé Study (ISRCTN14236739; www.isrctn.com), we determined the test-retest repeatability in responses to exercise in well-trained individuals. Eleven well-trained men (27 ± 4 years old) completed an exercise protocol that consisted of intensive cycling intervals, followed by an overnight fast and an additional 90 min cycling phase at 50% of maximal workload the next morning. The day before (rest), and immediately after the exercise protocol (exercise) a lactulose and rhamnose solution was ingested. Markers of energy metabolism, lactulose-to-rhamnose ratio, several cytokines and potential stress-related markers were measured at rest and during exercise. In addition, untargeted urine metabolite profiles were obtained. The complete procedure (Test) was repeated 1 week later (Retest) to assess repeatability. Metabolic effect parameters with regard to energy metabolism and urine metabolomics were similar for both the Test and Retest period, underlining comparable exercise load. Following exercise, intestinal permeability (1 h plasma lactulose-to-rhamnose ratio) and the serum interleukin-6, interleukin-10, fibroblast growth factor-21 and muscle creatine kinase concentrations were significantly increased compared with rest only during the first test and not when the test was repeated. Responses to strenuous exercise in well-trained young men, as indicated by intestinal markers and myokines, show adaptation in Test-Retest outcome. This might be attributable to a carry-over effect of the defense mechanisms triggered during the Test. This finding has implications for the design of studies aimed at evaluating physiological responses to exercise. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Mechanical Engineering Design Project report: Enabler control systems
NASA Technical Reports Server (NTRS)
Cullen, Christian; Delvecchio, Dave; Scarborough, Alan; Havics, Andrew A.
1992-01-01
The Controls Group was assigned the responsibility for designing the Enabler's control system. The requirement for the design was that the control system must provide a simple user interface to control the boom articulation joints, chassis articulation joints, and the wheel drive. The system required controlling hydraulic motors on the Enabler by implementing 8-bit microprocessor boards. In addition, feedback to evaluate positions and velocities must be interfaced to provide the operator with confirmation as well as control.
McDonald, Richard R.; Nelson, Jonathan M.; Fosness, Ryan L.; Nelson, Peter O.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan
2016-01-01
Two- and three-dimensional morphodynamic simulations are becoming common in studies of channel form and process. The performance of these simulations are often validated against measurements from laboratory studies. Collecting channel change information in natural settings for model validation is difficult because it can be expensive and under most channel forming flows the resulting channel change is generally small. Several channel restoration projects designed in part to armor large meanders with several large spurs constructed of wooden piles on the Kootenai River, ID, have resulted in rapid bed elevation change following construction. Monitoring of these restoration projects includes post- restoration (as-built) Digital Elevation Models (DEMs) as well as additional channel surveys following high channel forming flows post-construction. The resulting sequence of measured bathymetry provides excellent validation data for morphodynamic simulations at the reach scale of a real river. In this paper we test the performance a quasi-three-dimensional morphodynamic simulation against the measured elevation change. The resulting simulations predict the pattern of channel change reasonably well but many of the details such as the maximum scour are under predicted.
Wiedner, Eric; Linehan, John
2018-06-06
Molecular catalysts for hydrogenation of CO₂ are widely studied as a means of chemical hydrogen storage. Catalysts are traditionally designed from the perspective of controlling the ligands bound to the metal. In recent years, studies have shown that the solvent can also play a key role in the mechanism of CO₂ hydrogenation. A prominent example is the impact of the solvent on the thermodynamic hydride donor ability, or hydricity, of metal hydride complexes relative to the hydride acceptor ability of CO₂. In some cases, simply changing from an organic solvent to water can reverse the direction of hydride transfer between a metal hydride and CO₂. Additionally, the solvent can impact catalysis by converting CO₂ into carbonate species, as well as activate intermediate products for hydrogenation to more reduced products. By understanding the substrate and product speciation, as well as the reactivity of the catalyst towards the substrate, the solvent can be used as a central design component for the rational development of new catalytic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alqahtani, Jobran M
2015-01-01
Epilepsy is a very common chronic neurological disorder in children throughout the world. This study was conducted to assess Saudi male schoolteachers' knowledge of epilepsy and practice in Southern Saudi Arabia. A cross-sectional descriptive study was conducted among male teachers; 315 teachers filled a well-designed and pretested self administered questionnaire. Approximately three-quarters (72.7%) of the schoolteachers had witnessed epileptic fits. Forty-six percent believed that epilepsy was caused by electrical discharges. Most of the school teachers (79.7%) disagreed with the idea of teaching children with epilepsy separately, or preventing them from sporting activity (50.5%). In addition, 94.9% disagreed with the idea that epilepsy was shameful. Unfortunately, 64.1% of the teachers who were exposed to cases of seizures were not able to provide first aid to students having epileptic fits (P = 0.03). The schoolteachers were generally knowledgeable about epilepsy. This fact can be used to design a national program through which teachers can help to bring about a well-informed and tolerant community toward epileptics.
Alqahtani, Jobran M.
2015-01-01
Objectives: Epilepsy is a very common chronic neurological disorder in children throughout the world. This study was conducted to assess Saudi male schoolteachers’ knowledge of epilepsy and practice in Southern Saudi Arabia. Subjects and Methods: A cross-sectional descriptive study was conducted among male teachers; 315 teachers filled a well-designed and pretested self administered questionnaire. Results: Approximately three-quarters (72.7%) of the schoolteachers had witnessed epileptic fits. Forty-six percent believed that epilepsy was caused by electrical discharges. Most of the school teachers (79.7%) disagreed with the idea of teaching children with epilepsy separately, or preventing them from sporting activity (50.5%). In addition, 94.9% disagreed with the idea that epilepsy was shameful. Unfortunately, 64.1% of the teachers who were exposed to cases of seizures were not able to provide first aid to students having epileptic fits (P = 0.03). Conclusions: The schoolteachers were generally knowledgeable about epilepsy. This fact can be used to design a national program through which teachers can help to bring about a well-informed and tolerant community toward epileptics. PMID:26392797
High Energy Astronomy Observatory (HEAO)
1982-01-01
This artist's conception depicts the High Energy Astronomy Observatory (HEAO)-1 in orbit. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit. The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. Hardware support for the imaging instruments was provided by American Science and Engineeing. The HEAO spacecraft were built by TRW, Inc. under project management of the Marshall Space Flight Center.
Seismic design of passive tuned mass damper parameters using active control algorithm
NASA Astrophysics Data System (ADS)
Chang, Chia-Ming; Shia, Syuan; Lai, Yong-An
2018-07-01
Tuned mass dampers are a widely-accepted control method to effectively reduce the vibrations of tall buildings. A tuned mass damper employs a damped harmonic oscillator with specific dynamic characteristics, thus the response of structures can be regulated by the additive dynamics. The additive dynamics are, however, similar to the feedback control system in active control. Therefore, the objective of this study is to develop a new tuned mass damper design procedure based on the active control algorithm, i.e., the H2/LQG control. This design facilitates the similarity of feedback control in the active control algorithm to determine the spring and damper in a tuned mass damper. Given a mass ratio between the damper and structure, the stiffness and damping coefficient of the tuned mass damper are derived by minimizing the response objective function of the primary structure, where the structural properties are known. Varying a single weighting in this objective function yields the optimal TMD design when the minimum peak in the displacement transfer function of the structure with the TMD is met. This study examines various objective functions as well as derives the associated equations to compute the stiffness and damping coefficient. The relationship between the primary structure and optimal tuned mass damper is parametrically studied. Performance is evaluated by exploring the h2-and h∞-norms of displacements and accelerations of the primary structure. In time-domain analysis, the damping effectiveness of the tune mass damper controlled structures is investigated under impulse excitation. Structures with the optimal tuned mass dampers are also assessed under seismic excitation. As a result, the proposed design procedure produces an effective tuned mass damper to be employed in a structure against earthquakes.
Design of well and groove microchannel bioreactors for cell culture.
Korin, Natanel; Bransky, Avishay; Khoury, Maria; Dinnar, Uri; Levenberg, Shulamit
2009-03-01
Microfluidic bioreactors have been shown valuable for various cellular applications. The use of micro-wells/grooves bioreactors, in which micro-topographical features are used to protect sensitive cells from the detrimental effects of fluidic shear stress, is a promising approach to culture sensitive cells in these perfusion microsystems. However, such devices exhibit substantially different fluid dynamics and mass transport characteristics compared to conventional planar microchannel reactors. In order to properly design and optimize these systems, fluid and mass transport issues playing a key role in microscale bioreactors should be adequately addressed. The present work is a parametric study of micro-groove/micro-well microchannel bioreactors. Operation conditions and design parameters were theoretically examined via a numerical model. The complex flow pattern obtained at grooves of various depths was studied and the shear protection factor compared to planar microchannels was evaluated. 3D flow simulations were preformed in order to examine the shear protection factor in micro-wells, which were found to have similar attributes as the grooves. The oxygen mass transport problem, which is coupled to the fluid mechanics problem, was solved for various groove geometries and for several cell types, assuming a defined shear stress limitation. It is shown that by optimizing the groove depth, the groove bioreactor may be used to effectively maximize the number of cells cultured within it or to minimize the oxygen gradient existing in such devices. Moreover, for sensitive cells having a high oxygen demand (e.g., hepatocytes) or low endurance to shear (e.g., human embryonic stem cells), results show that the use of grooves is an enabling technology, since under the same physical conditions the cells cannot be cultured for long periods of time in a planar microchannel. In addition to the theoretical model findings, the culture of human foreskin fibroblasts in groove (30 microm depth) and well bioreactors (35 microm depth) was experimentally examined at various flow rates of medium perfusion and compared to cell culture in regular flat microchannels. It was shown that the wells and the grooves enable a one order of magnitude increase in the maximum perfusion rate compared to planar microchannels. Altogether, the study demonstrates that the proper design and use of microgroove/well bioreactors may be highly beneficial for cell culture assays.
What learning theories can teach us in designing neurofeedback treatments
Strehl, Ute
2014-01-01
Popular definitions of neurofeedback point out that neurofeedback is a process of operant conditioning which leads to self-regulation of brain activity. Self-regulation of brain activity is considered to be a skill. The aim of this paper is to clarify that not only operant conditioning plays a role in the acquisition of this skill. In order to design the learning process additional references have to be derived from classical conditioning, two-process-theory and in particular from skill learning and research into motivational aspects. The impact of learning by trial and error, cueing of behavior, feedback, reinforcement, and knowledge of results as well as transfer of self-regulation skills into everyday life will be analyzed in this paper. In addition to these learning theory basics this paper tries to summarize the knowledge about acquisition of self-regulation from neurofeedback studies with a main emphasis on clinical populations. As a conclusion it is hypothesized that learning to self-regulate has to be offered in a psychotherapeutic, i.e., behavior therapy framework. PMID:25414659
Development of an Unstructured, Three-Dimensional Material Response Design Tool
NASA Technical Reports Server (NTRS)
Schulz, Joseph; Stern, Eric; Palmer, Grant; Muppidi, Suman; Schroeder, Olivia
2017-01-01
A preliminary verification and validation of a new material response model is presented. This model, Icarus, is intended to serve as a design tool for the thermal protection systems of re-entry vehicles. Currently, the capability of the model is limited to simulating the pyrolysis of a material as a result of the radiative and convective surface heating imposed on the material from the surrounding high enthalpy gas. Since the major focus behind the development of Icarus has been model extensibility, the hope is that additional physics can be quickly added. The extensibility is critical since thermal protection systems are becoming increasing complex, e.g. woven carbon polymers. Additionally, as a three-dimensional, unstructured, finite-volume model, Icarus is capable of modeling complex geometries as well as multi-dimensional physics, which have been shown to be important in some scenarios and are not captured by one-dimensional models. In this paper, the mathematical and numerical formulation is presented followed by a discussion of the software architecture and some preliminary verification and validation studies.
What learning theories can teach us in designing neurofeedback treatments.
Strehl, Ute
2014-01-01
Popular definitions of neurofeedback point out that neurofeedback is a process of operant conditioning which leads to self-regulation of brain activity. Self-regulation of brain activity is considered to be a skill. The aim of this paper is to clarify that not only operant conditioning plays a role in the acquisition of this skill. In order to design the learning process additional references have to be derived from classical conditioning, two-process-theory and in particular from skill learning and research into motivational aspects. The impact of learning by trial and error, cueing of behavior, feedback, reinforcement, and knowledge of results as well as transfer of self-regulation skills into everyday life will be analyzed in this paper. In addition to these learning theory basics this paper tries to summarize the knowledge about acquisition of self-regulation from neurofeedback studies with a main emphasis on clinical populations. As a conclusion it is hypothesized that learning to self-regulate has to be offered in a psychotherapeutic, i.e., behavior therapy framework.
Evidence-Based Psychosocial Treatments for Adolescents with Disruptive Behavior
McCart, Michael R.; Sheidow, Ashli J.
2016-01-01
Objective This article updates the earlier reviews of evidence-based psychosocial treatments for disruptive behavior in adolescents (Brestan & Eyberg, 1998; Eyberg, Nelson, & Boggs, 2008), focusing primarily on the treatment literature published from 2007 to 2014. Method Studies were identified through an extensive literature search and evaluated using Journal of Clinical Child and Adolescent Psychology (JCCAP) level of support criteria, which classify studies as well established, probably efficacious, possibly efficacious, experimental, or of questionable efficacy based on existing evidence. The JCCAP criteria have undergone modest changes in recent years. Thus, in addition to evaluating new studies from 2007–2014 for this update, all adolescent-focused articles that had been included in the 1998 and 2008 reviews were re-examined. In total, 86 empirical papers published over a 48-year period and covering 50 unique treatment protocols were identified and coded. Results Two multicomponent treatments that integrate strategies from family, behavioral, and cognitive-behavioral therapy met criteria as well established. Summaries are provided for those treatments, as well as for two additional multicomponent treatments and two cognitive-behavioral treatments that met criteria as probably efficacious. Treatments designated as possibly efficacious, experimental, or of questionable efficacy are listed. Additionally, moderator/mediator research is summarized. Conclusions Results indicate that since the prior reviews, there has been a noteworthy expansion of research on treatments for adolescent disruptive behavior, particularly treatments that are multicomponent in nature. Despite these advances, more research is needed to address key gaps in the field. Implications of the findings for future science and clinical practice are discussed. PMID:27152911
Teratology studies in the rabbit.
Allais, Linda; Reynaud, Lucie
2013-01-01
The rabbit is generally the non-rodent species or second species after the rat recommended by the regulatory authorities and is part of the package of regulatory reproductive studies for the detection of potential embryotoxic and/or teratogenic effects of pharmaceuticals, chemicals, food additives, and other compounds, including vaccines (see Chapters 1-7).Its availability, practicality in housing and in mating as well as its large size makes the rabbit the preferred choice as a non-rodent species. The study protocols are essentially similar to those established for the rat (Chapter 9), with some particularities. The study designs are well defined in guidelines and are relatively standardized between testing laboratories across the world.As for the rat, large litter sizes and extensive background data in the rabbit are valuable criteria for an optimal assessment of in utero development of the embryo or fetus and for the detection of potential external or internal fetal malformations.
Methodological proposal for the remediation of a site affected by phosphogypsum deposits
NASA Astrophysics Data System (ADS)
Martínez-Sanchez, M. J.; Perez-Sirvent, C.; Bolivar, J. P.; Garcia-Tenorio, R.
2012-04-01
The accumulation of phosphogysum (PY) produces a well known environmental problems. The proposals for the remediation of these sites require multidisciplinary and very specific studies. Since they cover large areas a sampling design specifically outlined for each case is necessary in order the contaminants, transfer pathways and particular processes can be correctly identified. In addition to a suitable sampling of the soil, aquatic medium and biota, appropriate studies of the space-temporal variations by means of control samples are required. Two different stages should be considered: 1.- Diagnostic stage This stage includes preliminary studies, identification of possible sources of radiosotopes, design of the appropriate sampling plan, hydrogeological study, characterization and study of the space-temporal variability of radioisotopes and other contaminants, as well as the risk assessement for health and ecosystems, that depends on the future use of the site. 2.- Remediation proposal stage It comprises the evaluation and comparison of the different procedures for the decontamination/remediation, including models experiments at the laboratory. To this respect, the preparation and detailed study of a small scale pilot project is a task of particular relevance. In this way the suitability of the remediating technology can be checked, and its performance optimized. These two stages allow a technically well-founded proposal to be presented to the Organisms or Institutions in charge of the problem and facilitate decision-making. It both stages be included in a social communication campaign in order the final proposal be accepted by stakeholders.
Experimental Characterization of Cryogenic Helium Pulsating Heat Pipes
NASA Astrophysics Data System (ADS)
Fonseca Flores, Luis Diego
This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets in MRI systems. In addition, the same approach can be used for exploring other low temperature applications such as cooling space instrumentation. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K at 1 W via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, the thermal performance for the presented design remained unchanged when increasing the adiabatic length from 300 mm to 1000 mm. Finally a spring mass damper model has been developed and proven to predict well the experimental data, such models should be used as tool to design and manufacturer PHP prototypes.
Centrifugal slurry pump wear and hydraulic studies. Phase II report. Experimental studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, D.; Cooper, P.; Biswas, C.
1983-01-01
This report describes the work performed by Ingersoll-Rand Research, Inc., under Phase II, Experimental Studies for the contract entitled, Centrifugal Slurry Pump Wear and Hydraulic Studies. This work was carried out for the US Department of Energy under Contract No. DE-AC-82PC50035. The basic development approach pursued this phase is presented, followed by a discussion on wear relationships. The analysis, which resulted in the development of a mathematical wear model relating pump life to some of the key design and operating parameters, is presented. The results, observations, and conclusions of the experimental investigation on small scale pumps that led to themore » selected design features for the prototype pump are discussed. The material investigation was performed at IRRI, ORNL and Battelle. The rationale for selecting the materials for testing, the test methods and apparatus used, and the results obtained are presented followed by a discussion on materials for a prototype pump. In addition, the prototype pump test facility description, as well as the related design and equipment details, are presented. 20 references, 53 figures, 13 tables.« less
Jung, Kyung-Won; Hwang, Min-Jin; Yun, Yeo-Myeong; Cha, Min-Jung; Ahn, Kyu-Hong
2014-09-01
In this current study, we present a modified hydrodynamic cavitation device that combines an electric field to substitute for the chemical addition. A modified HC system is basically an orifice plate and crisscross pipe assembly, in which the crisscross pipe imparts some turbulence, which creates collision events. This study shows that for maximizing disintegration, combining HC system, which called electric field-assisted modified orifice plate hydrodynamic cavitation (EFM-HC) in this study, with an electric field is important. Various HC systems were compared in terms of disintegration of WAS, and, among them, the EFM-HC system exhibited the best performance with the highest disintegration efficiency of 47.0±2.0% as well as the destruction of WAS morphological characteristics. The experimental results clearly show that a conventional HC system was successfully modified. In addition, electric field has a great potential for efficient disintegration of WAS for as a additional option in a combination treatment. This study suggests continued research in this field may lead to an appropriate design for commercial use. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Borkin, Michelle A.
Visualization is a powerful tool for data exploration and analysis. With data ever-increasing in quantity and becoming integrated into our daily lives, having effective visualizations is necessary. But how does one design an effective visualization? To answer this question we need to understand how humans perceive, process, and understand visualizations. Through visualization evaluation studies we can gain deeper insight into the basic perception and cognition theory of visualizations, both through domain-specific case studies as well as generalized laboratory experiments. This dissertation presents the results of four evaluation studies, each of which contributes new knowledge to the theory of perception and cognition of visualizations. The results of these studies include a deeper clearer understanding of how color, data representation dimensionality, spatial layout, and visual complexity affect a visualization's effectiveness, as well as how visualization types and visual attributes affect the memorability of a visualization. We first present the results of two domain-specific case study evaluations. The first study is in the field of biomedicine in which we developed a new heart disease diagnostic tool, and conducted a study to evaluate the effectiveness of 2D versus 3D data representations as well as color maps. In the second study, we developed a new visualization tool for filesystem provenance data with applications in computer science and the sciences more broadly. We additionally developed a new time-based hierarchical node grouping method. We then conducted a study to evaluate the effectiveness of the new tool with its radial layout versus the conventional node-link diagram, and the new node grouping method. Finally, we discuss the results of two generalized studies designed to understand what makes a visualization memorable. In the first evaluation we focused on visualization memorability and conducted an online study using Amazon's Mechanical Turk with hundreds of users and thousands of visualizations. For the second evaluation we designed an eye-tracking laboratory study to gain insight into precisely which elements of a visualization contribute to memorability as well as visualization recognition and recall.
Advantages of a Web-Based Real-Time Bed-Management System for Hospital Admission Monitoring in Iran.
Abedian, Somayeh; Bitaraf, Ehsan; Askari, Marjan
2018-01-01
Lack of up-to-date information of hospitals beds, specifically in emergencies, is a significant problem in many large countries; The Ministry of Health and Medical Education of Iran (MOHME) designed and implemented a dynamic system that reports the status of beds in 2012. This system created great opportunities for national bed management, including real-time hospital admission monitoring, especially for emergency departments, ICUs and CCUs. Therefore, an additional online system was planned to be implemented for monitoring hospital admissions, including a national alert system. Prior to the design of this system, a study was done using literature study and expert opinion to investigate the advantages and features that this monitoring system was required to have. We used the MoSCoW method to prioritize the requirements of the system. This system was designed to have the following advantages, among other things: the hospitals as well as government should be able to track the patients, manage patient distribution in healthcare centers, and make policy for supplying extra beds. It should also be possible for the hospitals executive board, as well as the government, to monitor the performance of the hospitals regarding patient admissions (i.e., the rate of rejection of patients with severe conditions).
The expert site visitor chairperson: supportive, effective, efficient.
Wawrzynski, Mary; Davidhizar, Ruth
2004-01-01
In much of nursing academe the words "self-study" and "accreditation site visit" are enough to squeeze the coronary arteries of nurse administrators and faculty. Such words conjure up images of months of labor intensive work, anxiety and concerns that all might not go well and that the program's accreditation will be placed in jeopardy. Both the completion of a self-study, designed as a self-assessment of program strengths and weaknesses, and preparation for the on-site visit are an addition to the normal tasks of nurse administrators and thus often result in overtaxing resources allotted to maintenance of the program.
Scrivani, Peter V; Erb, Hollis N
2013-01-01
High quality clinical research is essential for advancing knowledge in the areas of veterinary radiology and radiation oncology. Types of clinical research studies may include experimental studies, method-comparison studies, and patient-based studies. Experimental studies explore issues relative to pathophysiology, patient safety, and treatment efficacy. Method-comparison studies evaluate agreement between techniques or between observers. Patient-based studies investigate naturally acquired disease and focus on questions asked in clinical practice that relate to individuals or populations (e.g., risk, accuracy, or prognosis). Careful preplanning and study design are essential in order to achieve valid results. A key point to planning studies is ensuring that the design is tailored to the study objectives. Good design includes a comprehensive literature review, asking suitable questions, selecting the proper sample population, collecting the appropriate data, performing the correct statistical analyses, and drawing conclusions supported by the available evidence. Most study designs are classified by whether they are experimental or observational, longitudinal or cross-sectional, and prospective or retrospective. Additional features (e.g., controlled, randomized, or blinded) may be described that address bias. Two related challenging aspects of study design are defining an important research question and selecting an appropriate sample population. The sample population should represent the target population as much as possible. Furthermore, when comparing groups, it is important that the groups are as alike to each other as possible except for the variables of interest. Medical images are well suited for clinical research because imaging signs are categorical or numerical variables that might be predictors or outcomes of diseases or treatments. © 2013 Veterinary Radiology & Ultrasound.
Kuo, Feng-Yang; Tseng, Chih-Yi; Tseng, Fan-Chuan; Lin, Cathy S
2013-09-01
Affordances refer to how interface features of an IT artifact, perceived by its users in terms of their potentials for action, may predict the intensity of usage. This study investigates three social information affordances for expressive information control, privacy information control, and image information control in Facebook. The results show that the three affordances can significantly explain how Facebook's interface designs facilitate users' self-presentation activities. In addition, the findings reveal that males are more engaged in expressing information than females, while females are more involved in privacy control than males. A practical application of our study is to compare and contrast the level of affordances offered by various social network sites (SNS) like Facebook and Twitter, as well as differences in online self-presentations across cultures. Our approach can therefore be useful to investigate how SNS design features can be tailored to specific gender and culture needs.
Ming, Dengming; Chen, Rui; Huang, He
2018-05-10
Optimizing amino-acid mutations in enzyme design has been a very challenging task in modern bio-industrial applications. It is well known that many successful designs often hinge on extensive correlations among mutations at different sites within the enzyme, however, the underpinning mechanism for these correlations is far from clear. Here, we present a topology-based model to quantitively characterize non-additive effects between mutations. The method is based on the molecular dynamic simulations and the amino-acid network clique analysis. It examines if the two mutation sites of a double-site mutation fall into to a 3-clique structure, and associates such topological property of mutational site spatial distribution with mutation additivity features. We analyzed 13 dual mutations of T4 phage lysozyme and found that the clique-based model successfully distinguishes highly correlated or non-additive double-site mutations from those additive ones whose component mutations have less correlation. We also applied the model to protein Eglin c whose structural topology is significantly different from that of T4 phage lysozyme, and found that the model can, to some extension, still identify non-additive mutations from additive ones. Our calculations showed that mutation non-additive effects may heavily depend on a structural topology relationship between mutation sites, which can be quantitatively determined using amino-acid network k -cliques. We also showed that double-site mutation correlations can be significantly altered by exerting a third mutation, indicating that more detailed physicochemical interactions should be considered along with the network clique-based model for better understanding of this elusive mutation-correlation principle.
High Energy Astronomy Observatory (HEAO)
1977-01-01
This photograph shows the High Energy Astronomy Observatory (HEAO)-1 being assembled at TRW Systems of Redondo Beach, California. The HEAO was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit.
2016-09-01
the UAV’s reliability in fulfilling the mission as well as the build- time of the UAV. 14. SUBJECT TERMS design , print and operate, DPO...previously. There are opportunities to work on the design of the UAV to reduce the cognitive workload of the service member and time required to “print” and...the need arises to tailor the UAV for the specific mission. The modification of an existing design is expected to take a much shorter time than the
Introduction to Building Systems Performance: Houses That Work II. Revised February 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-03-01
Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.
Effects of a preceptorship programme on turnover rate, cost, quality and professional development.
Lee, Tso-Ying; Tzeng, Wen-Chii; Lin, Chia-Huei; Yeh, Mei-Ling
2009-04-01
The purpose of the present study was to design a preceptorship programme and to evaluate its effects on turnover rate, turnover cost, quality of care and professional development. A high turnover rate of nurses is a common global problem. How to improve nurses' willingness to stay in their jobs and reduce the high turnover rate has become a focus. Well-designed preceptorship programmes could possibly decrease turnover rates and improve professional development. A quasi-experimental research design was used. First, a preceptorship programme was designed to establish the role and responsibilities of preceptors in instructing new nurses. Second, a quasi-experimental design was used to evaluate the preceptorship programme. Data on new nurses' turnover rate, turnover cost, quality of nursing care, satisfaction of preceptor's teaching and preceptor's perception were measured. After conducting the preceptorship programme, the turnover rate was 46.5% less than the previous year. The turnover cost was decreased by US$186,102. Additionally, medication error rates made by new nurses dropped from 50-0% and incident rates of adverse events and falls decreased. All new nurses were satisfied with preceptor guidance. The preceptorship programme effectively lowered the turnover rate of new nurses, reduced turnover costs and enhanced the quality of nursing care, especially by reducing medication error incidents. Positive feedback about the programme was received from new nurses. Study findings may offer healthcare administrators another option for retaining new nurses, controlling costs, improving quality and fostering professional development. In addition, incentives and effective support from the organisation must be considered when preceptors perform preceptorship responsibilities.
NASA Astrophysics Data System (ADS)
Kumbhar, N. N.; Mulay, A. V.
2016-08-01
The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.
Sample design effects in landscape genetics
Oyler-McCance, Sara J.; Fedy, Bradley C.; Landguth, Erin L.
2012-01-01
An important research gap in landscape genetics is the impact of different field sampling designs on the ability to detect the effects of landscape pattern on gene flow. We evaluated how five different sampling regimes (random, linear, systematic, cluster, and single study site) affected the probability of correctly identifying the generating landscape process of population structure. Sampling regimes were chosen to represent a suite of designs common in field studies. We used genetic data generated from a spatially-explicit, individual-based program and simulated gene flow in a continuous population across a landscape with gradual spatial changes in resistance to movement. Additionally, we evaluated the sampling regimes using realistic and obtainable number of loci (10 and 20), number of alleles per locus (5 and 10), number of individuals sampled (10-300), and generational time after the landscape was introduced (20 and 400). For a simulated continuously distributed species, we found that random, linear, and systematic sampling regimes performed well with high sample sizes (>200), levels of polymorphism (10 alleles per locus), and number of molecular markers (20). The cluster and single study site sampling regimes were not able to correctly identify the generating process under any conditions and thus, are not advisable strategies for scenarios similar to our simulations. Our research emphasizes the importance of sampling data at ecologically appropriate spatial and temporal scales and suggests careful consideration for sampling near landscape components that are likely to most influence the genetic structure of the species. In addition, simulating sampling designs a priori could help guide filed data collection efforts.
A guide to structural factors for advanced composites used on spacecraft
NASA Technical Reports Server (NTRS)
Vanwagenen, Robert
1989-01-01
The use of composite materials in spacecraft systems is constantly increasing. Although the areas of composite design and fabrication are maturing, they remain distinct from the same activities performed using conventional materials and processes. This has led to some confusion regarding the precise meaning of the term 'factor of safety' as it applies to these structures. In addition, composite engineering introduces terms such as 'knock-down factors' to further modify material properties for design purposes. This guide is intended to clarify these terms as well as their use in the design of composite structures for spacecraft. It is particularly intended to be used by the engineering community not involved in the day-to-day composites design process. An attempt is also made to explain the wide range of factors of safety encountered in composite designs as well as their relationship to the 1.4 factor of safety conventionally applied to metallic structures.
Sizing and Lifecycle Cost Analysis of an Ares V Composite Interstage
NASA Technical Reports Server (NTRS)
Mann, Troy; Smeltzer, Stan; Grenoble, Ray; Mason, Brian; Rosario, Sev; Fairbairn, Bob
2012-01-01
The Interstage Element of the Ares V launch vehicle was sized using a commercially available structural sizing software tool. Two different concepts were considered, a metallic design and a composite design. Both concepts were sized using similar levels of analysis fidelity and included the influence of design details on each concept. Additionally, the impact of the different manufacturing techniques and failure mechanisms for composite and metallic construction were considered. Significant details were included in analysis models of each concept, including penetrations for human access, joint connections, as well as secondary loading effects. The designs and results of the analysis were used to determine lifecycle cost estimates for the two Interstage designs. Lifecycle cost estimates were based on industry provided cost data for similar launch vehicle components. The results indicated that significant mass as well as cost savings are attainable for the chosen composite concept as compared with a metallic option.
NASA Astrophysics Data System (ADS)
Hull, Anthony B.; Barentine, J.; Legters, S.
2012-01-01
The same technology and analytic approaches that led to cost-effective unmitigated successes for the spaceborne Kepler and WISE telescopes are now being applied to meter-class to 4-meter-class ground telescopes, providing affordable solutions to ground astronomy, with advanced features as needed for the application. The range of optical and mechanical performance standards and features that can be supplied for ground astronomy shall be described. Both classical RC designs, as well as unobscured designs are well represented in the IOS design library, allowing heritage designs for both night time and day time operations, the latter even in the proximity of the sun. In addition to discussing this library of mature features, we will also describe a process for working with astronomers early in the definition process to provide the best-value solution. Solutions can include remote operation and astronomical data acquisition and transmission.
2013-01-01
Background It is well-known that health care workers in today’s general hospitals have to deal with high levels of job demands, which could have negative effects on their health, well-being, and job performance. A way to reduce job-related stress reactions and to optimize positive work-related outcomes is to raise the level of specific job resources and opportunities to recover from work. However, the question remains how to translate the optimization of the balance between job demands, job resources, and recovery opportunities into effective workplace interventions. The aim of the DISCovery project is to develop and implement tailored work-oriented interventions to improve health, well-being, and performance of health care personnel. Methods/Design A quasi-experimental field study with a non-equivalent control group pretest-posttest design will be conducted in a top general hospital. Four existing organizational departments will provide both an intervention and a comparison group. Two types of research methods are used: (1) a longitudinal web-based survey study, and (2) a longitudinal daily diary study. After base-line measures of both methods, existing and yet to be developed interventions will be implemented within the experimental groups. Follow-up measurements will be taken one and two years after the base-line measures to analyze short-term and long-term effects of the interventions. Additionally, a process evaluation and a cost-effectiveness analysis will be carried out. Discussion The DISCovery project fulfills a strong need for theory-driven and scientifically well-performed research on job stress and performance interventions. It will provide insight into (1) how a balance between job demands, job resources, and recovery from work can be optimized, (2) the short-term and long-term effects of tailored work-oriented effects, and (3) indicators for successful or unsuccessful implementation of interventions. PMID:23421647
Mars Exploration Rover Six-Degree-Of-Freedom Entry Trajectory Analysis
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Schoenenberger, Mark; Cheatwood, F. M.
2003-01-01
The Mars Exploration Rover mission will be the next opportunity for surface exploration of Mars in January 2004. Two rovers will be delivered to the surface of Mars using the same entry, descent, and landing scenario that was developed and successfully implemented by Mars Pathfinder. This investigation describes the trajectory analysis that was performed for the hypersonic portion of the MER entry. In this analysis, a six-degree-of-freedom trajectory simulation of the entry is performed to determine the entry characteristics of the capsules. In addition, a Monte Carlo analysis is also performed to statistically assess the robustness of the entry design to off-nominal conditions to assure that all entry requirements are satisfied. The results show that the attitude at peak heating and parachute deployment are well within entry limits. In addition, the parachute deployment dynamics pressure and Mach number are also well within the design requirements.
A Time of Flight Fast Neutron Imaging System Design Study
NASA Astrophysics Data System (ADS)
Canion, Bonnie; Glenn, Andrew; Sheets, Steven; Wurtz, Ron; Nakae, Les; Hausladen, Paul; McConchie, Seth; Blackston, Matthew; Fabris, Lorenzo; Newby, Jason
2017-09-01
LLNL and ORNL are designing an active/passive fast neutron imaging system that is flexible to non-ideal detector positioning. It is often not possible to move an inspection object in fieldable imager applications such as safeguards, arms control treaty verification, and emergency response. Particularly, we are interested in scenarios which inspectors do not have access to all sides of an inspection object, due to interfering objects or walls. This paper will present the results of a simulation-based design parameter study, that will determine the optimum system design parameters for a fieldable system to perform time-of-flight based imaging analysis. The imaging analysis is based on the use of an associated particle imaging deuterium-tritium (API DT) neutron generator to get the time-of-flight of radiation induced within an inspection object. This design study will investigate the optimum design parameters for such a system (e.g. detector size, ideal placement, etc.), as well as the upper and lower feasible design parameters that the system can expect to provide results within a reasonable amount of time (e.g. minimum/maximum detector efficiency, detector standoff, etc.). Ideally the final prototype from this project will be capable of using full-access techniques, such as transmission imaging, when the measurement circumstances allow, but with the additional capability of producing results at reduced accessibility.
Melancon, D; Bagheri, Z S; Johnston, R B; Liu, L; Tanzer, M; Pasini, D
2017-11-01
Porous biomaterials can be additively manufactured with micro-architecture tailored to satisfy the stringent mechano-biological requirements imposed by bone replacement implants. In a previous investigation, we introduced structurally porous biomaterials, featuring strength five times stronger than commercially available porous materials, and confirmed their bone ingrowth capability in an in vivo canine model. While encouraging, the manufactured biomaterials showed geometric mismatches between their internal porous architecture and that of its as-designed counterpart, as well as discrepancies between predicted and tested mechanical properties, issues not fully elucidated. In this work, we propose a systematic approach integrating computed tomography, mechanical testing, and statistical analysis of geometric imperfections to generate statistical based numerical models of high-strength additively manufactured porous biomaterials. The method is used to develop morphology and mechanical maps that illustrate the role played by pore size, porosity, strut thickness, and topology on the relations governing their elastic modulus and compressive yield strength. Overall, there are mismatches between the mechanical properties of ideal-geometry models and as-manufactured porous biomaterials with average errors of 49% and 41% respectively for compressive elastic modulus and yield strength. The proposed methodology gives more accurate predictions for the compressive stiffness and the compressive strength properties with a reduction of the average error to 11% and 7.6%. The implications of the results and the methodology here introduced are discussed in the relevant biomechanical and clinical context, with insight that highlights promises and limitations of additively manufactured porous biomaterials for load-bearing bone replacement implants. In this work, we perform mechanical characterization of load-bearing porous biomaterials for bone replacement over their entire design space. Results capture the shift in geometry and mechanical properties between as-designed and as-manufactured biomaterials induced by additive manufacturing. Characterization of this shift is crucial to ensure appropriate manufacturing of bone replacement implants that enable biological fixation through bone ingrowth as well as mechanical property harmonization with the native bone tissue. In addition, we propose a method to include manufacturing imperfections in the numerical models that can reduce the discrepancy between predicted and tested properties. The results give insight into the use of structurally porous biomaterials for the design and additive fabrication of load-bearing implants for bone replacement. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Yuen, Hon Keung; Mueller, Kris; Mayor, Ellise; Azuero, Andres
2011-12-01
The purpose of this mixed methods study was to evaluate the effect of participation in the "Seasoned Arts At the Samford for You" (SAASY) programme, which included a 6-week acting class and four public performances, on the psychological well-being and health-related quality of life of older adults. Twelve older adults with chronic conditions from a low-income senior apartment and a senior living community participated in the programme. The acting class, led by two professional artists, met for a 2-hour class weekly for six weeks. Participants completed the General Well-being Schedule (GWBS) and the 36-Item Short-Form Health Survey (SF-36) both at the beginning of the programme and one month after the programme ended. In addition, participants were individually interviewed to explore the perceived impact of the theatre programme on their well-being. Participants reported a significantly higher score in the GWBS and on the physical but not on the mental component summary of the SF-36 at post-SAASY programme. Content analysis of the interview transcripts revealed that participants attained an improved sense of self-worth and self-advocacy and overcame self-imposed limitations. Results showed improvement in psychological well-being and health-related quality of life, most notably in the physical health component of SF-36 after participating in the programme. Practice implications for occupational therapists using drama as a creative leisure occupation to promote health among older adults with chronic conditions may involve analysis of participants' occupational profile, identification of deficit areas and adaptation of the acting programme content to meet specific needs and goals. The present study used a pretest and post test one group design that has numerous inherent limitations that affect the ability to make valid inferences from study findings. A more rigorous research design with a wait-listed control group and collection of outcome measures immediately after the acting class as well as at three months follow-up is essential in validating the present findings. Outcome measures used in future studies to evaluate the health benefits of a theatre programme should focus on ameliorating the effects of disease on disability (such as functional mobility, everyday cognitive function and activities of daily living) in addition to prevention. Copyright © 2011 John Wiley & Sons, Ltd.
Improving Memory and Cognition in Individuals with Down Syndrome.
Rafii, Michael S
2016-07-01
Down syndrome (DS), often due to trisomy 21, is the most common genetic cause of intellectual disability (ID). In addition, virtually all individuals with DS develop the neuropathology of Alzheimer's disease (AD) by the age of 40 years and almost 60 % will manifest symptoms of AD dementia by the age of 65 years. Currently, there are no pharmacological treatments available for ID in individuals with DS and only limited symptomatic treatments for AD dementia. Advances in our understanding in both the molecular basis of ID and the pathogenesis of AD have created opportunities to study potential therapeutic targets. Recent studies in animal models of DS continue to provide a rational basis for translating specific compounds into human clinical trials. However, target and compound selection are only initial steps in the drug development pathway. Other necessary considerations include appropriate study designs to assess efficacy in the DS population, as well as operational aspects specifically tailored to assess cognition in this population. We discuss recent progress in the development of compounds for both ID and AD in individuals with DS, as well as concepts for the design and conduct of clinical trials with such compounds.
Hypnosis and movement disorders: State of the art and perspectives.
Flamand-Roze, C; Célestin-Lhopiteau, I; Roze, E
Hypnosis might represent an interesting complementary therapeutic approach to movement disorders, as it takes into account not only symptoms, but also well-being, and empowers patients to take a more active role in their treatment. Our review of the literature on the use of hypnosis to treat movement disorders was done by systematically searching the PubMed database for reports published between 1984 and November 2015. The following variables were extracted from each selected paper: study design; sample size; type of movement disorder; hypnotic procedure; treatment duration; and efficacy. Thirteen papers were selected for detailed analysis. Most concerned tremor in Parkinson's disease and tics in Gilles de la Tourette syndrome. Although promising, the data were insufficient to allow conclusions to be drawn on the efficacy of hypnosis in movement disorders or to recommend its use in this setting. Well-designed studies taking into account some specific methodological challenges are needed to determine the possible therapeutic utility of hypnosis in movement disorders. In addition to the potential benefits for such patients, hypnosis might also be useful for studying the neuroanatomical and functional underpinnings of normal and abnormal movements. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
X-Ray Spectrometer For ROSAT II (SPECTROSAT)
NASA Astrophysics Data System (ADS)
Predehl, Peter; Brauninger, Heinrich
1986-01-01
The objective transmission grating was one of the earliest inventions in the field of X-ray astronomy and has been incorporated into Skylab, HERO-P, and EXOTAT. In recent years there have been advances in grating technology and spectrometer design. A high precision mechanical ruling and replication process for manufacturing large self-supporting transmission gratings has been developed by an industrial manufacturer in cooperation with the Max-Planck-Institute (MPI). Theoretical analyses have determined the optimum configuration of the grating facets and the grating surface in order to correct third order aberations and obtain maximum resolving power. We have verified experimentally that the predicted efficiencies may be achieved. In addition, an experimental study of large grating assemblies for space telescopes was made in industry with scientific guidance by MPI. Main objectives of this study were the determination of mechanical loads during launch, as well as the design, construction and fabrication of a representative model of a ROSAT grating ring. Performancy studies including instrument pro-perties as well as the simulated radiation from hot plasmas have shown the ability of SPECTROSAT to perform high efficiency, high resolution line-spectroscopy on a wide variety of cosmic X-ray sources.
Statins for the prevention of contrast-induced acute kidney injury.
Vanmassenhove, Jill; Vanholder, Raymond; Lameire, Norbert
2016-11-01
To highlight the most recently published meta-analyses on the role of statins in the prevention of contrast-induced acute kidney injury (CI-AKI) and to formulate recommendations for clinical practice. Nine meta-analyses were published on this topic from January 2015 to April 2016. Significant clinical heterogeneity between studies, regarding study population, treatment protocol, concomitant preventive strategies or dosage and duration of statin therapy was observed. In addition, the definition of CI-AKI was not uniform throughout all studies, and a number of other clinically meaningful endpoints, such as length of hospital stay in patients who developed CI-AKI, as well as adverse events, were rarely analyzed. Despite some promising results, it is premature to adapt the existing guidelines and implement the preprocedural use of statins in daily clinical practice. At present, low volumes of iso-osmolar or low-osmolar intravascular contrast and adequate intravascular hydration in high-risk patients remain the cornerstone for the prevention of CI-AKI. There is a need for additional well designed randomized controlled trials to clarify these issues and assess the risk vs benefit of statin use for the purpose of CI-AKI prevention.
Multiple-Purpose Subsonic Naval Aircraft (MPSNA): Multiple Application Propfan Study (MAPS)
NASA Technical Reports Server (NTRS)
Engelbeck, R. M.; Havey, C. T.; Klamka, A.; Mcneil, C. L.; Paige, M. A.
1986-01-01
Study requirements, assumptions and guidelines were identified regarding carrier suitability, aircraft missions, technology availability, and propulsion considerations. Conceptual designs were executed for two missions, a full multimission aircraft and a minimum mission aircraft using three different propulsion systems, the UnDucted Fan (UDF), the Propfan and an advanced Turbofan. Detailed aircraft optimization was completed on those configurations yielding gross weight performance and carrier spot factors. Propfan STOVL conceptual designs were exercised also to show the effects of STOVL on gross weight, spot factor and cost. An advanced technology research plan was generated to identify additional investigation opportunities from an airframe contractors standpoint. Life cycle cost analysis was accomplished yielding a comparison of the UDF and propfan configurations against each other as well as against a turbofan with equivalent state of the art turbo-machinery.
2017-01-01
Functional or secondary tricuspid regurgitation (TR) has seen increased attention in recent times as relationships with clinically-relevant outcomes have come to light. Despite the association of increased mortality with significant TR, the disease remains under-recognized and thus relatively untreated. In addition, the disease itself has not been extensively studied and the interactions between annular dilatation, right heart disease and pulmonary hypertension are poorly understood. However, the high mortality and recurrence rate with current surgical replacement or repair techniques is well recognised, opening the door to transcatheter therapies for functional TR. The current perspective reviews the rationale for transcatheter solutions, describes some of the current approaches and discusses the ongoing questions of a poorly-studied condition which may limit the design of clinical trials for this disease. PMID:28706866
Reduction from cost-sensitive ordinal ranking to weighted binary classification.
Lin, Hsuan-Tien; Li, Ling
2012-05-01
We present a reduction framework from ordinal ranking to binary classification. The framework consists of three steps: extracting extended examples from the original examples, learning a binary classifier on the extended examples with any binary classification algorithm, and constructing a ranker from the binary classifier. Based on the framework, we show that a weighted 0/1 loss of the binary classifier upper-bounds the mislabeling cost of the ranker, both error-wise and regret-wise. Our framework allows not only the design of good ordinal ranking algorithms based on well-tuned binary classification approaches, but also the derivation of new generalization bounds for ordinal ranking from known bounds for binary classification. In addition, our framework unifies many existing ordinal ranking algorithms, such as perceptron ranking and support vector ordinal regression. When compared empirically on benchmark data sets, some of our newly designed algorithms enjoy advantages in terms of both training speed and generalization performance over existing algorithms. In addition, the newly designed algorithms lead to better cost-sensitive ordinal ranking performance, as well as improved listwise ranking performance.
Hunsucker, Kelli Z; Vora, Gary J; Hunsucker, J Travis; Gardner, Harrison; Leary, Dagmar H; Kim, Seongwon; Lin, Baochuan; Swain, Geoffrey
2018-02-01
Grooming is a proactive method to keep a ship's hull free of fouling. This approach uses a frequent and gentle wiping of the hull surface to prevent the recruitment of fouling organisms. A study was designed to compare the community composition and the drag associated with biofilms formed on a groomed and ungroomed fouling release coating. The groomed biofilms were dominated by members of the Gammaproteobacteria and Alphaproteobacteria as well the diatoms Navicula, Gomphonemopsis, Cocconeis, and Amphora. Ungroomed biofilms were characterized by Phyllobacteriaceae, Xenococcaceae, Rhodobacteraceae, and the pennate diatoms Cyclophora, Cocconeis, and Amphora. The drag forces associated with a groomed biofilm (0.75 ± 0.09 N) were significantly less than the ungroomed biofilm (1.09 ± 0.06 N). Knowledge gained from this study has helped the design of additional testing which will improve grooming tool design, minimizing the growth of biofilms and thus lowering the frictional drag forces associated with groomed surfaces.
Kauffman, Tia L; Wilfond, Benjamin S; Jarvik, Gail P; Leo, Michael C; Lynch, Frances L; Reiss, Jacob A; Richards, C Sue; McMullen, Carmit; Nickerson, Deborah; Dorschner, Michael O; Goddard, Katrina A B
2017-02-01
Population-based carrier screening is limited to well-studied or high-impact genetic conditions for which the benefits may outweigh the associated harms and costs. As the cost of genome sequencing declines and availability increases, the balance of risks and benefits may change for a much larger number of genetic conditions, including medically actionable additional findings. We designed an RCT to evaluate genomic clinical sequencing for women and partners considering a pregnancy. All results are placed into the medical record for use by healthcare providers. Through quantitative and qualitative measures, including baseline and post result disclosure surveys, post result disclosure interviews, 1-2year follow-up interviews, and team journaling, we are obtaining data about the clinical and personal utility of genomic carrier screening in this population. Key outcomes include the number of reportable carrier and additional findings, and the comparative cost, utilization, and psychosocial impacts of usual care vs. genomic carrier screening. As the study progresses, we will compare the costs of genome sequencing and usual care as well as the cost of screening, pattern of use of genetic or mental health counseling services, number of outpatient visits, and total healthcare costs. This project includes novel investigation into human reactions and responses from would-be parents who are learning information that could both affect a future pregnancy and their own health. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
30 CFR 250.411 - What information must I submit with my application?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.411 What information must I submit with my application? In addition to... proposed well § 250.412 (b) Design criteria used for the proposed well § 250.413 (c) Drilling prognosis...
76 FR 184 - Notice of Buy American Waiver Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
... a system that is built into a vessel's hull to reduce rolling motion when operating at sea. DATES... vessel to periodically work well beyond the Arctic waters that the hull was initially optimized for. At that time, the design of the ARRV was fairly well advanced. Besides the addition of hull length to...
Huber, Alexandra; Webb, Dave; Höfer, Stefan
2017-01-01
Theoretical perspectives in positive psychology have considered the possession and use of strengths equally but in applied research more studies focused on having them, probably due to the absence of psychometrically adequate scales. Therefore, the aim of this study was to assess the psychometric characteristics of the German language version of the Strengths Use Scale (SUS) and to explore relationships between strengths use and several indicator measures of well-being: the presence of positive and the absence of negative affect, self-esteem as identity aspect, vitality as self-regulatory resource, and stress for capturing the evaluation of difficulties and obstacles impinging on well-being. The original English version of the SUS was translated following recommended independent forward-backward translation techniques. Exploratory and confirmatory factor analyses were conducted, including a German-speaking convenience sample of university students ( N = 374). Additionally, the relations of strengths use and well-being indicators were analyzed. Factorial validity revealed a single-factor structure of the German version of the SUS, explaining 58.4% variance (factor loadings: 0.58 to 0.86), approving the scale's design and showing high internal consistency (Cronbach's α 0.95). The hypothesized positive relationships of strengths use with positive affect, self-esteem, and vitality were confirmed as well as the negative relationships with negative affect and stress. The German version of the SUS is psychometrically sound and data indicate that individual strengths use and well-being related measures interact. The instrument can be recommended for future research questions such as if and how the promotion of applying individual strengths during education enhances levels of well-being, or how the implementation of strengths use in job-design guidelines or working conditions can result in higher levels of well-being or healthiness.
Huber, Alexandra; Webb, Dave; Höfer, Stefan
2017-01-01
Theoretical perspectives in positive psychology have considered the possession and use of strengths equally but in applied research more studies focused on having them, probably due to the absence of psychometrically adequate scales. Therefore, the aim of this study was to assess the psychometric characteristics of the German language version of the Strengths Use Scale (SUS) and to explore relationships between strengths use and several indicator measures of well-being: the presence of positive and the absence of negative affect, self-esteem as identity aspect, vitality as self-regulatory resource, and stress for capturing the evaluation of difficulties and obstacles impinging on well-being. The original English version of the SUS was translated following recommended independent forward-backward translation techniques. Exploratory and confirmatory factor analyses were conducted, including a German-speaking convenience sample of university students (N = 374). Additionally, the relations of strengths use and well-being indicators were analyzed. Factorial validity revealed a single-factor structure of the German version of the SUS, explaining 58.4% variance (factor loadings: 0.58 to 0.86), approving the scale’s design and showing high internal consistency (Cronbach’s α 0.95). The hypothesized positive relationships of strengths use with positive affect, self-esteem, and vitality were confirmed as well as the negative relationships with negative affect and stress. The German version of the SUS is psychometrically sound and data indicate that individual strengths use and well-being related measures interact. The instrument can be recommended for future research questions such as if and how the promotion of applying individual strengths during education enhances levels of well-being, or how the implementation of strengths use in job-design guidelines or working conditions can result in higher levels of well-being or healthiness. PMID:28496424
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilies, Monica; Di Costanzo, Luigi; Dowling, Daniel P.
Arginase is a binuclear manganese metalloenzyme that hydrolyzes L-arginine to form L-ornithine and urea, and aberrant arginase activity is implicated in various diseases such as erectile dysfunction, asthma, atherosclerosis, and cerebral malaria. Accordingly, arginase inhibitors may be therapeutically useful. Continuing our efforts to expand the chemical space of arginase inhibitor design and inspired by the binding of 2-(difluoromethyl)-L-ornithine to human arginase I, we now report the first study of the binding of {alpha},{alpha}-disubstituted amino acids to arginase. Specifically, we report the design, synthesis, and assay of racemic 2-amino-6-borono-2-methylhexanoic acid and racemic 2-amino-6-borono-2-(difluoromethyl)hexanoic acid. X-ray crystal structures of human arginase Imore » and Plasmodium falciparum arginase complexed with these inhibitors reveal the exclusive binding of the L-stereoisomer; the additional {alpha}-substituent of each inhibitor is readily accommodated and makes new intermolecular interactions in the outer active site of each enzyme. Therefore, this work highlights a new region of the protein surface that can be targeted for additional affinity interactions, as well as the first comparative structural insights on inhibitor discrimination between a human and a parasitic arginase.« less
Design research and the globalization of healthcare environments.
Shepley, Mardelle McCuskey; Song, Yilin
2014-01-01
Global healthcare practice has expanded in the past 20 years. At the same time the incorporation of research into the design process has gained prominence as a best practice among architects. The authors of this study investigated the status of design research in a variety of international settings. We intended to answer the question, "how pervasive is healthcare design research outside of the United States?" The authors reviewed the international literature on the design of healthcare facilities. More than 500 international studies and conference proceedings were incorporated in this literature review. A team of five research assistants searched multiple databases comparing approximately 16 keywords to geographic location. Some of those keywords included: evidence-based design, salutogenic design, design research, and healthcare environment. Additional articles were gathered by contacting prominent researchers and asking for their personal assessment of local health design research studies. While there are design researchers in most parts of the world, the majority of studies focus on the needs of populations in developed countries and generate guidelines that have significant cost and cultural implications that prohibit their implementation in developing countries. Additionally, the body of literature discussing the role of culture in healthcare environments is extremely limited. Design researchers must address the cultural implications of their studies. Additionally, we need to expand our research objectives to address healthcare design in countries that have not been previous considered. © 2014 Vendome Group, LLC.
21 CFR 514.117 - Adequate and well-controlled studies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... experimental units. When the effect of such variables is accounted for by an appropriate design, and when... and well-controlled study should provide sufficient details of study design, conduct, and analysis to... the new animal drug used in the study. (4) The study uses a design that permits a valid comparison...
21 CFR 514.117 - Adequate and well-controlled studies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... experimental units. When the effect of such variables is accounted for by an appropriate design, and when... and well-controlled study should provide sufficient details of study design, conduct, and analysis to... the new animal drug used in the study. (4) The study uses a design that permits a valid comparison...
21 CFR 514.117 - Adequate and well-controlled studies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... experimental units. When the effect of such variables is accounted for by an appropriate design, and when... and well-controlled study should provide sufficient details of study design, conduct, and analysis to... the new animal drug used in the study. (4) The study uses a design that permits a valid comparison...
21 CFR 514.117 - Adequate and well-controlled studies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... experimental units. When the effect of such variables is accounted for by an appropriate design, and when... and well-controlled study should provide sufficient details of study design, conduct, and analysis to... the new animal drug used in the study. (4) The study uses a design that permits a valid comparison...
21 CFR 514.117 - Adequate and well-controlled studies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... experimental units. When the effect of such variables is accounted for by an appropriate design, and when... and well-controlled study should provide sufficient details of study design, conduct, and analysis to... the new animal drug used in the study. (4) The study uses a design that permits a valid comparison...
Thomson, R L; Buckley, J D; Brinkworth, G D
2011-05-01
Polycystic ovary syndrome (PCOS) is characterized by the presence of polycystic ovaries, menstrual dysfunction, infertility and biochemical and clinical hyperandrogenism and is associated with an increased prevalence of cardiometabolic risk factors and psychological problems. Despite the well-established benefits of exercise training and its recommendation as a cornerstone of PCOS management, few well-controlled randomized studies have been conducted evaluating the benefits of exercise training and specific exercise regimes in women with PCOS. From the limited studies there appears to be a beneficial effect of exercise either alone or in combination with energy restriction has shown to improve fitness, cardiovascular, hormonal, reproductive and psychological outcomes. While the addition of regular exercise to energy restriction appears to only have additional benefits for improving body composition, these greater improvements are likely to have long-term implications. While lifestyle modification including regular exercise appears to be an effective strategy for the management of overweight PCOS women, methodological limitations in the studies limit the generalizability of the findings. Future research with rigorous study designs is needed to determine specific exercise guidelines that will provide the greatest benefit for these women. © 2010 The Authors. obesity reviews © 2010 International Association for the Study of Obesity.
Structural design of liquid oxygen/liquid methane robotic lander JANUS
NASA Astrophysics Data System (ADS)
Chaidez, Mariana
As the attempt to send humans to Mars has gained momentum in the last decade, the need to find alternative propellants that are safer, less toxic, and yields a better performance has become apparent [1]. Liquid methane and oxygen have emerged as a suitable alternative. In addition, the incorporation of liquid methane/liquid oxygen into the propulsion system has demonstrated an increase in engine performance, as well as a reduction in the volume, size and complexity of the propulsion system. In an attempt to further understand the technologies that are possible to develop using liquid oxygen (LO 2) and liquid methane (LCH4), a preliminary design of a robotic lander JANUS is being completed by the Center for Space Exploration and Technology Research (cSTER). The structural design of the vehicle is important because it acts as the skeleton of the vehicle and dictates the maneuverability of the robotic lander. To develop the structure of the robotic lander, six different design vehicle concepts with varying tank configurations were considered. Finite Element Analysis (FEA) was completed on each model to optimize each vehicle. Trade studies were completed to choose the best design for JANUS. Upon completion of the trade studies the design for the first prototype of JANUS was initiated in which the tank and thrust modules were designed. This thesis will describe the design process for the structural design of the JANUS.
NASA Astrophysics Data System (ADS)
Halbe, Johannes; Pahl-Wostl, Claudia; Adamowski, Jan
2018-01-01
Multiple barriers constrain the widespread application of participatory methods in water management, including the more technical focus of most water agencies, additional cost and time requirements for stakeholder involvement, as well as institutional structures that impede collaborative management. This paper presents a stepwise methodological framework that addresses the challenges of context-sensitive initiation, design and institutionalization of participatory modeling processes. The methodological framework consists of five successive stages: (1) problem framing and stakeholder analysis, (2) process design, (3) individual modeling, (4) group model building, and (5) institutionalized participatory modeling. The Management and Transition Framework is used for problem diagnosis (Stage One), context-sensitive process design (Stage Two) and analysis of requirements for the institutionalization of participatory water management (Stage Five). Conceptual modeling is used to initiate participatory modeling processes (Stage Three) and ensure a high compatibility with quantitative modeling approaches (Stage Four). This paper describes the proposed participatory model building (PMB) framework and provides a case study of its application in Québec, Canada. The results of the Québec study demonstrate the applicability of the PMB framework for initiating and designing participatory model building processes and analyzing barriers towards institutionalization.
Bhat, Shirish; Motz, Louis H; Pathak, Chandra; Kuebler, Laura
2015-01-01
A geostatistical method was applied to optimize an existing groundwater-level monitoring network in the Upper Floridan aquifer for the South Florida Water Management District in the southeastern United States. Analyses were performed to determine suitable numbers and locations of monitoring wells that will provide equivalent or better quality groundwater-level data compared to an existing monitoring network. Ambient, unadjusted groundwater heads were expressed as salinity-adjusted heads based on the density of freshwater, well screen elevations, and temperature-dependent saline groundwater density. The optimization of the numbers and locations of monitoring wells is based on a pre-defined groundwater-level prediction error. The newly developed network combines an existing network with the addition of new wells that will result in a spatial distribution of groundwater monitoring wells that better defines the regional potentiometric surface of the Upper Floridan aquifer in the study area. The network yields groundwater-level predictions that differ significantly from those produced using the existing network. The newly designed network will reduce the mean prediction standard error by 43% compared to the existing network. The adoption of a hexagonal grid network for the South Florida Water Management District is recommended to achieve both a uniform level of information about groundwater levels and the minimum required accuracy. It is customary to install more monitoring wells for observing groundwater levels and groundwater quality as groundwater development progresses. However, budget constraints often force water managers to implement cost-effective monitoring networks. In this regard, this study provides guidelines to water managers concerned with groundwater planning and monitoring.
Vargas-Murga, Liliana; Garcia-Alvarez, Alicia; Roman-Viñas, Blanca; Ngo, Joy; Ribas-Barba, Lourdes; van den Berg, Suzanne J P L; Williamson, Gary; Serra-Majem, Lluis
2011-12-01
The popularity of herbal products, especially plant food supplements (PFS) and herbal medicine is on the rise in Europe and other parts of the world, with increased use in the general population as well as among specific subgroups encompassing children, women or those suffering from diseases such as cancer. The aim of this paper is to examine the PFS market structures in European Community (EC) Member States as well as to examine issues addressing methodologies and consumption data relating to PFS use in Europe. A revision of recent reports on market data, trends and main distribution channels, in addition an example of the consumption of PFS in Spain, is presented. An overview of the methods and administration techniques used to assess individual food consumption as a starting point, including their uses and limitations, as well as some examples of studies that collect Food Supplement (FS) information, including herbal/botanical/plant-derived products are also discussed. Additionally, the intake estimation process of food nutrients is described and used to propose the PFS ingredients intake estimation process. Nationally representative PFS consumption data is scarce in Europe. The majority of studies have been conducted in Scandinavia and the UK. However the heterogeneity of definitions, study design and objectives make it difficult to compare results and extrapolate conclusions.
Habitable exoplanet imaging mission (HabEx): initial flight system design
NASA Astrophysics Data System (ADS)
Alibay, Farah; Kuan, Gary M.; Warfield, Keith R.
2017-09-01
The Habitable Exoplanet Imaging Mission (HabEx) is a concept for a mission to directly image planetary systems around Sun-like stars and to perform general astrophysics investigations being studied as part of a number of mission concepts for the upcoming 2020 Astrophysics Decadal Survey. HabEx would help assess the prevalence of habitable planets in our galaxy, searching in particular for potential biosignatures in the atmospheres of planets in habitable zones. More generally, HabEx would image our neighboring solar systems and characterize the variety of planets that inhabits them. Its direct imaging capability would also enable the mission to study the structure and evolution of debris disks around nearby stars, and their dynamical interaction with planets. Additionally, it will explore a number of more general astrophysics phenomena in our solar system, galaxy, and beyond, in the UV through NIR range. The exoplanet science goals lead to a mission concept with requirements for high contrast imaging and the continuous spectral coverage. The baseline for HabEx is a 4-meter diameter off-axis telescope designed to both search for habitable planets and perform general astrophysics observations, possibly combined with a starshade. In this paper, the initial flight system design for both the telescope and the starshade are presented, focusing on the key and driving requirements and subsystems, as well as the trajectory and station keeping and formation flying technique. Furthermore, some of the initial design trades undergone are described, as well as the key challenges and enablers. Finally, some of the future design and architecture trades to be performed within the flight systems as part of the continuing effort in the HabEx study are discussed.
An exploratory study of organization design configurations in health care delivery organizations.
Sheppeck, Mick; Militello, Jack
2014-01-01
Organizations are configurations of variables that support each other to achieve customer satisfaction. Based on Treacy and Wiersema (1995), we predicted the emergence of two configurations, one supporting a product leadership stance and one predicting the customer intimate approach from a set of 73 for profit health care clinics. In addition, we predicted the emergence of a configuration where the scores on most variables were near the mean for each variable. Using cluster analysis and discriminant function analysis, we identified three configurations: one a "master of two" strategy, one "stuck-in-the-middle," and one showing scores well below the mean on most variables. The implications for organization design and manager actions in the health care industry are discussed.
Csipke, Emese; Papoulias, Constantina; Vitoratou, Silia; Williams, Paul; Rose, Diana; Wykes, Til
2016-01-01
Psychiatric ward design may make an important contribution to patient outcomes and well-being. However, research is hampered by an inability to assess its effects robustly. This paper reports on a study which deployed innovative methods to capture service user and staff perceptions of ward design. User generated measures of the impact of ward design were developed and tested on four acute adult wards using participatory methodology. Additionally, inpatients took photographs to illustrate their experience of the space in two wards. Data were compared across wards. Satisfactory reliability indices emerged based on both service user and staff responses. Black and minority ethnic (BME) service users and those with a psychosis spectrum diagnosis have more positive views of the ward layout and fixtures. Staff members have more positive views than service users, while priorities of staff and service users differ. Inpatient photographs prioritise hygiene, privacy and control and address symbolic aspects of the ward environment. Participatory and visual methodologies can provide robust tools for an evaluation of the impact of psychiatric ward design on users.
Strategic Design and Fabrication of Engineered Scaffolds for Articular Cartilage Repair
Izadifar, Zohreh; Chen, Xiongbiao; Kulyk, William
2012-01-01
Damage to articular cartilage can eventually lead to osteoarthritis (OA), a debilitating, degenerative joint disease that affects millions of people around the world. The limited natural healing ability of cartilage and the limitations of currently available therapies make treatment of cartilage defects a challenging clinical issue. Hopes have been raised for the repair of articular cartilage with the help of supportive structures, called scaffolds, created through tissue engineering (TE). Over the past two decades, different designs and fabrication techniques have been investigated for developing TE scaffolds suitable for the construction of transplantable artificial cartilage tissue substitutes. Advances in fabrication technologies now enable the strategic design of scaffolds with complex, biomimetic structures and properties. In particular, scaffolds with hybrid and/or biomimetic zonal designs have recently been developed for cartilage tissue engineering applications. This paper reviews critical aspects of the design of engineered scaffolds for articular cartilage repair as well as the available advanced fabrication techniques. In addition, recent studies on the design of hybrid and zonal scaffolds for use in cartilage tissue repair are highlighted. PMID:24955748
Csipke, Emese; Papoulias, Constantina; Vitoratou, Silia; Williams, Paul; Rose, Diana; Wykes, Til
2016-01-01
Abstract Background: Psychiatric ward design may make an important contribution to patient outcomes and well-being. However, research is hampered by an inability to assess its effects robustly. This paper reports on a study which deployed innovative methods to capture service user and staff perceptions of ward design. Method: User generated measures of the impact of ward design were developed and tested on four acute adult wards using participatory methodology. Additionally, inpatients took photographs to illustrate their experience of the space in two wards. Data were compared across wards. Results: Satisfactory reliability indices emerged based on both service user and staff responses. Black and minority ethnic (BME) service users and those with a psychosis spectrum diagnosis have more positive views of the ward layout and fixtures. Staff members have more positive views than service users, while priorities of staff and service users differ. Inpatient photographs prioritise hygiene, privacy and control and address symbolic aspects of the ward environment. Conclusions: Participatory and visual methodologies can provide robust tools for an evaluation of the impact of psychiatric ward design on users. PMID:26886239
Friberg, B; Lindgren, M; Karlsson, C; Bergström, A; Friberg, S
2002-04-01
A mobile screen (0.5 x 0.4 m) producing ultra-clean exponential LAF (air-flow central zone 0.6 m/s and peripheral zone 0.4 m/s) was investigated as an addition to conventional turbulent/mixing operating room ventilation. The evaluation was performed during strictly standardized sham operations reflecting conditions during major surgery. The study consisted of a pilot experiment designed to give high counts of sedimenting aerobic colony forming units (cfu). In a second main study, recording dust particles, air-borne and sedimenting aerobic cfu, the screen was associated with optimal operating room clothing. In the pilot experiment the use of the screen resulted in a substantial reduction of sedimenting bacteria from 3835-4940 to 0-390 cfu/m(2)/h. In the main study, the use of the additional LAF reduced the surface contamination from 416-329 to 7-78 cfu/m(2)/h up to 1.6 m from the screen (P=0.001-0.0001). Measured in the wound area the screen reduced the air counts of bacteria from 9-14 to 0.2-0.4 cfu/m(3) (P=0.008-0.0001) and a marked reduction of air-borne dust particles was recorded (P=0.007-0.009). In conclusion, the additional mobile LAF screen reduced the counts of aerobic air-borne and sedimenting bacteria-carrying particles as well as dust particles to the levels gained with complete ultra-clean LAF room ventilation. Thus, the screen might prove a valuable addition to operating room ventilation as well as in other areas where asepsis is essential. Copyright 2002 The Hospital Infection Society.
Eleazer, Courtney D; Scopa Kelso, Rebecca
2018-01-04
Many pre-health professional programs require completion of an undergraduate anatomy course with a laboratory component, yet grades in these courses are often low. Many students perceive anatomy as a more challenging subject than other coursework, and the resulting anxiety surrounding this perception may be a significant contributor to poor performance. Well-planned and deliberate guidance from instructors, as well as thoughtful course design, may be necessary to assist students in finding the best approach to studying for anatomy. This article assesses which study habits are associated with course success and whether course design influences study habits. Surveys (n = 1,274) were administered to students enrolled in three undergraduate human anatomy laboratory courses with varying levels of cooperative learning and structured guidance. The surveys collected information on potential predictors of performance, including student demographics, educational background, self-assessment ability, and study methods (e.g., flashcards, textbooks, diagrams). Compared to low performers, high performers perceive studying in laboratory, asking the instructor questions, quizzing alone, and quizzing others as more effective for learning. Additionally, students co-enrolled in a flipped, active lecture anatomy course achieve higher grades and find active learning activities (e.g., quizzing alone and in groups) more helpful for their learning in the laboratory. These results strengthen previous research suggesting that student performance is more greatly enhanced by an active classroom environment that practices successful study strategies rather than one that simply encourages students to employ such strategies inside and outside the classroom. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.
Making Boundaries Great Again: Essentialism and Support for Boundary-Enhancing Initiatives.
Roberts, Steven O; Ho, Arnold K; Rhodes, Marjorie; Gelman, Susan A
2017-12-01
Psychological essentialism entails a focus on category boundaries (e.g., categorizing people as men or women) and an increase in the conceptual distance between those boundaries (e.g., accentuating the differences between men and women). Across eight studies, we demonstrate that essentialism additionally entails an increase in support for boundary-enhancing legislation, policies, and social services, and that it does so under conditions that disadvantage social groups, as well as conditions that benefit them. First, individual differences in essentialism were associated with support for legislation mandating that transgender people use restrooms corresponding with their biological sex, and with support for the boundary-enhancing policies of the 2016 then-presumptive Republican presidential nominee (i.e., Donald Trump). Second, essentialism was associated with support for same-gender classrooms designed to promote student learning, as well as support for services designed to benefit LGBTQ (lesbian, gay, bisexual, transgender, queer) individuals. These findings demonstrate the boundary-enhancing implications of essentialism and their social significance.
The US Orphan Drug Act: rare disease research stimulator or commercial opportunity?
Wellman-Labadie, Olivier; Zhou, Youwen
2010-05-01
This study investigates issues associated with the United States Orphan Drug Act. A comprehensive orphan drug database was compiled from FDA data and corporate annual reports of major pharmaceutical companies. Analysis allowed the generation of a descriptive orphan drug portrait as well as documentation of orphan drugs along their lifecycle. Currently, 2002 products have obtained orphan drug designation with 352 drugs obtaining FDA approval. Approximately 33% of orphan drugs are oncology products. On average, products obtain 1.7 orphan designations with approximately 70% obtaining a single designation. At least 9% of orphan drugs have reached blockbuster status with two-thirds having two or more designations. An additional 25 orphan drugs had sales exceeding US$ 100 million in 2008 alone. Since 1983, at least 14 previously discontinued products have been recycled as orphan drugs. The United States Orphan Drug Act has created issues which, in some cases, have led to commercial and ethical abuses. Orphan Drug Act reform is necessary but current incentives, including 7 year market exclusivity, should be maintained in order to favour patients as well as economic prosperity. Suggested reforms include price regulation, subsidy paybacks for profitable drugs and the establishment of an International Orphan Drug Office. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Teaching Design in Middle-School: Instructors' Concerns and Scaffolding Strategies
NASA Astrophysics Data System (ADS)
Bamberger, Yael M.; Cahill, Clara S.
2013-04-01
This study deals with engineering education in the middle-school level. Its focus is instructors' concerns in teaching design, as well as scaffolding strategies that can help teachers deal with these concerns. Through participatory action research, nine instructors engaged in a process of development and instruction of a curriculum about energy along with engineering design. A 50-h curriculum was piloted during a summer camp for 38 middle-school students. Data was collected through instructors' materials: observation field notes, daily reflections and post-camp discussions. In addition, students' artifacts and planning graphical models were collected in order to explore how instructors' concerns were aligned with students' learning. Findings indicate three main tensions that reflect instructors' main concerns: how to provide sufficient scaffolding yet encourage creativity, how to scaffold hands-on experiences that promote mindful planning, and how to scaffold students' modeling practices. Pedagogical strategies for teaching design that developed through this work are described, as well as the ways they address the National Research Council (A framework for K-12 science education: practices, crosscutting concepts, and core ideas. National Academies Press, Washington, DC, 2011) core ideas of engineering education and the International Technological Literacy standards (ITEA in Standards for technological literacy, 3rd edn. International Technology education Association, Reston, VA, 2007).
Corrugated and Composite Nozzle-Inlets for Thrust and Noise Benefits
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Blankson, I. M.; Gromov, V. G.; Sakharov, V. I.
2004-01-01
The following research results are based on development of an approach previously proposed and investigated in for optimum nozzle design to obtain maximum thrust. The design was denoted a Telescope nozzle. A Telescope nozzle contains one or several internal designs, which are inserted at certain locations into a divergent conical or planar main nozzle near its exit. Such a design provides additional thrust augmentation over 20% by comparison with the optimum single nozzle of equivalent lateral area, What is more, experimental acoustic tests have discovered an essential noise reduction due to application of Telescope nozzles. In this paper, some additional theoretical results are presented for Telescope nozzles and a similar approach is applied for aero-performance improvement of a supersonic inlet. Numerical simulations were conducted for supersonic flow into the divergent portion of a 2D or axisymmetric nozzle with several plane or conical designs as well as into a 2D or axisymmetric supersonic inlet with a forebody. The Kryko-Godunov marching numerical scheme for inviscid supersonic flows was used. Several cases were tested using the NASA CFL3d and IM/MSU Russian codes based on the full Navier-Stokes equations. Numerical simulations were conducted for non reacting flows (both codes) as well as for real high temperature gas flows with non-equilibrium chemical reactions (the latter code). In general, these simulations have confirmed essential benefits of Telescope design applications in propulsion system. Some preliminary numerical simulations of several typical inlet designs were conducted with the goal of inlet design optimization for maneuvering flight conditions.
Tatem, Kathleen S; Quinn, James L; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina
2014-09-29
The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial.
Vanniyasingam, Thuva; Daly, Caitlin; Jin, Xuejing; Zhang, Yuan; Foster, Gary; Cunningham, Charles; Thabane, Lehana
2018-06-01
This study reviews simulation studies of discrete choice experiments to determine (i) how survey design features affect statistical efficiency, (ii) and to appraise their reporting quality. Statistical efficiency was measured using relative design (D-) efficiency, D-optimality, or D-error. For this systematic survey, we searched Journal Storage (JSTOR), Since Direct, PubMed, and OVID which included a search within EMBASE. Searches were conducted up to year 2016 for simulation studies investigating the impact of DCE design features on statistical efficiency. Studies were screened and data were extracted independently and in duplicate. Results for each included study were summarized by design characteristic. Previously developed criteria for reporting quality of simulation studies were also adapted and applied to each included study. Of 371 potentially relevant studies, 9 were found to be eligible, with several varying in study objectives. Statistical efficiency improved when increasing the number of choice tasks or alternatives; decreasing the number of attributes, attribute levels; using an unrestricted continuous "manipulator" attribute; using model-based approaches with covariates incorporating response behaviour; using sampling approaches that incorporate previous knowledge of response behaviour; incorporating heterogeneity in a model-based design; correctly specifying Bayesian priors; minimizing parameter prior variances; and using an appropriate method to create the DCE design for the research question. The simulation studies performed well in terms of reporting quality. Improvement is needed in regards to clearly specifying study objectives, number of failures, random number generators, starting seeds, and the software used. These results identify the best approaches to structure a DCE. An investigator can manipulate design characteristics to help reduce response burden and increase statistical efficiency. Since studies varied in their objectives, conclusions were made on several design characteristics, however, the validity of each conclusion was limited. Further research should be conducted to explore all conclusions in various design settings and scenarios. Additional reviews to explore other statistical efficiency outcomes and databases can also be performed to enhance the conclusions identified from this review.
NASA Astrophysics Data System (ADS)
Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander
2015-11-01
Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.
Expert Meeting Report: Cladding Attachment Over Exterior Insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, P.
The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on thestructure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exteriormore » insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explorethese topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help informdesign standards and criteria.« less
Structural Design Strategies for Improved Small Overlap Crashworthiness Performance.
Mueller, Becky C; Brethwaite, Andrew S; Zuby, David S; Nolan, Joseph M
2014-11-01
In 2012, the Insurance Institute for Highway Safety (IIHS) began a 64 km/h small overlap frontal crash test consumer information test program. Thirteen automakers already have redesigned models to improve test performance. One or more distinct strategies are evident in these redesigns: reinforcement of the occupant compartment, use of energy-absorbing fender structures, and the addition of engagement structures to induce vehicle lateral translation. Each strategy influences vehicle kinematics, posing additional challenges for the restraint systems. The objective of this two-part study was to examine how vehicles were modified to improve small overlap test performance and then to examine how these modifications affect dummy response and restraint system performance. Among eight models tested before and after design changes, occupant compartment intrusion reductions ranged from 6 cm to 45 cm, with the highest reductions observed in models with the largest number of modifications. All redesigns included additional occupant compartment reinforcement, one-third added structures to engage the barrier, and two modified a shotgun load path. Designs with engagement structures produced greater glance-off from the barrier and exhibited lower delta Vs but experienced more lateral outboard motion of the dummy. Designs with heavy reinforcement of the occupant compartment had higher vehicle accelerations and delta V. In three cases, these apparent trade-offs were not well addressed by concurrent changes in restraint systems and resulted in increased injury risk compared with the original tests. Among the 36 models tested after design changes, the extent of design changes correlated to structural performance. Half of the vehicles with the lowest intrusion levels incorporated aspects of all three design strategies. Vehicle kinematics and dummy and restraint system characteristics were similar to those observed in the before/after pairs. Different combinations of structural improvement strategies for improving small overlap test performance were found to be effective in reducing occupant compartment intrusion and improving dummy kinematics in the IIHS small overlap test with modest weight increase.
Impact of an irregular friction formulation on dynamics of a minimal model for brake squeal
NASA Astrophysics Data System (ADS)
Stender, Merten; Tiedemann, Merten; Hoffmann, Norbert; Oberst, Sebastian
2018-07-01
Friction-induced vibrations are of major concern in the design of reliable, efficient and comfortable technical systems. Well-known examples for systems susceptible to self-excitation can be found in fluid structure interaction, disk brake squeal, rotor dynamics, hip implants noise and many more. While damping elements and amplitude reduction are well-understood in linear systems, nonlinear systems and especially self-excited dynamics still constitute a challenge for damping element design. Additionally, complex dynamical systems exhibit deterministic chaotic cores which add severe sensitivity to initial conditions to the system response. Especially the complex friction interface dynamics remain a challenging task for measurements and modeling. Today, mostly simple and regular friction models are investigated in the field of self-excited brake system vibrations. This work aims at investigating the effect of high-frequency irregular interface dynamics on the nonlinear dynamical response of a self-excited structure. Special focus is put on the characterization of the system response time series. A low-dimensional minimal model is studied which features self-excitation, gyroscopic effects and friction-induced damping. Additionally, the employed friction formulation exhibits temperature as inner variable and superposed chaotic fluctuations governed by a Lorenz attractor. The time scale of the irregular fluctuations is chosen one order smaller than the overall system dynamics. The influence of those fluctuations on the structural response is studied in various ways, i.e. in time domain and by means of recurrence analysis. The separate time scales are studied in detail and regimes of dynamic interactions are identified. The results of the irregular friction formulation indicate dynamic interactions on multiple time scales, which trigger larger vibration amplitudes as compared to regular friction formulations conventionally studied in the field of friction-induced vibrations.
An update on the relationship between statins and physical activity.
Panza, Gregory A; Taylor, Beth A; Thompson, Paul D
2016-09-01
This review examined studies published within the last 16 months that investigated the relationship between statins and physical activity. These recent studies suggest that statins do not adversely affect cardiorespiratory fitness, muscle strength, athletic performance, or physical activity adherence. One recent study comparing patients with statin-associated myalgia and nonstatin-using controls did report that statins are associated with a slowing of time to peak power output, increased abdominal adiposity, and insulin resistance. Statin users also had different muscle gene expression than controls, but conclusions are limited by the design of that study. Previous reports suggest that statin-associated muscle symptoms such as myalgia, cramps, and weakness occur more frequently in physically active individuals, but the recent studies we reviewed do not provide additional support for this possibility. Well-designed clinical trials are needed to determine whether different statins or statin doses evoke statin-associated muscle symptoms or muscle damage that may reduce cardiorespiratory fitness and adherence to physical activity.
Pisanti, Renato; van der Doef, Margot; Maes, Stan; Lombardo, Caterina; Lazzari, David; Violani, Cristiano
2015-01-01
Aim: The main purpose of the present study was to extend the Job Demand Control Support (JDCS) model analyzing the direct and interactive role of occupational coping self-efficacy (OCSE) beliefs. Background: OCSE refers to an individual’s beliefs about their ability to cope with occupational stressors. The interplay between occupational stressors, job resources, and self-efficacy beliefs is poorly investigated. The present research attempts to address this gap. Design: Cross-sectional survey. Method: Questionnaire data from 1479 nurses (65% response) were analyzed. Hierarchical regression analyses were used to test the direct and moderating role of OCSE in conjunction with job demands (i.e., time pressure), and two job resources: job control (i.e., decision latitude and skill discretion) and social support (i.e., supervisor support and coworker support) in predicting psychological distress and well-being. Results: Our findings indicated that high demands, low job control, and low social support additively predicted the distress/well-being outcomes (job satisfaction, emotional exhaustion, depersonalization, psychological distress, and somatic complaints). Beyond the main effects, no significant interactive effects of demands, control, and support were found. OCSE accounted for an additional 1–4% of the variance in the outcomes, after controlling for the JDCS variables. In addition, the results indicate that OCSE buffers the association between low job control and the distress dimensions emotional exhaustion, depersonalization, and psychological distress. Low control was detrimental only for nurses with low OCSE. Conclusion: Our results suggest expanding the JDCS model incorporating individual characteristics such as OCSE beliefs, for predicting psychological distress and well-being. Limitations of the study and practical implications are discussed. PMID:26300827
Prospects of application of additive technologies for increasing the efficiency of impeller machines
NASA Astrophysics Data System (ADS)
Belova, O. V.; Borisov, Yu. A.
2017-08-01
Impeller machine is a device in which the flow path carries out the supply (or retraction) of mechanical energy to the flow of a working fluid passing through the machine. To increase the efficiency of impeller machines, it is necessary to use design modern technologies, namely the use of numerical methods for conducting research in the field of gas dynamics, as well as additive manufacturing (AM) for the of both prototypes and production model. AM technologies are deservedly rightly called revolutionary because they give unique possibility for manufacturing products, creating perfect forms, both light and durable. The designers face the challenge of developing a new design methodology, since AM allows the use of the concept of "Complexity For Free". The "Complexity For Free" conception is based on: complexity of the form; hierarchical complexity; complexity of the material; functional complexity. The new technical items design method according to a functional principle is also investigated.
Pesch, Megan H; Lumeng, Julie C
2017-12-15
Behavioral coding of videotaped eating and feeding interactions can provide researchers with rich observational data and unique insights into eating behaviors, food intake, food selection as well as interpersonal and mealtime dynamics of children and their families. Unlike self-report measures of eating and feeding practices, the coding of videotaped eating and feeding behaviors can allow for the quantitative and qualitative examinations of behaviors and practices that participants may not self-report. While this methodology is increasingly more common, behavioral coding protocols and methodology are not widely shared in the literature. This has important implications for validity and reliability of coding schemes across settings. Additional guidance on how to design, implement, code and analyze videotaped eating and feeding behaviors could contribute to advancing the science of behavioral nutrition. The objectives of this narrative review are to review methodology for the design, operationalization, and coding of videotaped behavioral eating and feeding data in children and their families, and to highlight best practices. When capturing eating and feeding behaviors through analysis of videotapes, it is important for the study and coding to be hypothesis driven. Study design considerations include how to best capture the target behaviors through selection of a controlled experimental laboratory environment versus home mealtime, duration of video recording, number of observations to achieve reliability across eating episodes, as well as technical issues in video recording and sound quality. Study design must also take into account plans for coding the target behaviors, which may include behavior frequency, duration, categorization or qualitative descriptors. Coding scheme creation and refinement occur through an iterative process. Reliability between coders can be challenging to achieve but is paramount to the scientific rigor of the methodology. Analysis approach is dependent on the how data were coded and collapsed. Behavioral coding of videotaped eating and feeding behaviors can capture rich data "in-vivo" that is otherwise unobtainable from self-report measures. While data collection and coding are time-intensive the data yielded can be extremely valuable. Additional sharing of methodology and coding schemes around eating and feeding behaviors could advance the science and field.
Roncati, Marisa; Gariffo, Annalisa
2014-04-01
The aims of this study were (1) to conduct a literature search and systematically evaluate the additional therapeutic effects of pulsed Nd:YAG or diode laser use in patients with periodontitis, (2) to assess evidence supporting the additional benefit of laser-mediated periodontal treatment in conjunction with scaling and root planning (SRP) (not as monotherapy), and (3) to interpret the evidence presented in retrieved publications. Opinions about the additional use of diode lasers in the nonsurgical treatment of plaque-induced periodontal lesions are conflicting. The April 2011 American Academy of Periodontology's "Statement on the Efficacy of Lasers in the Non-Surgical Treatment of Inflammatory Periodontal Disease" asserted that the use of a laser as monotherapy or in addition to nonsurgical periodontal instrumentation conveyed no advantage. After initial screening, 23/77 potentially relevant articles and abstracts identified through electronic and manual searches of the MEDLINE(®)/PubMed database and the Cochrane Central Register of Controlled Trials (1990-2012) were included in this review. A meta-analysis could be performed. The results indicate that Nd:YAG or diode laser, used in an adjunctive capacity to SRP, may provide some additional benefit, in 6 month studies, compared with mechanical debridement. The results show the adjunctive benefits that diode laser treatment can provide when it is used as an adjunct to nonsurgical periodontal treatment in adults with chronic periodontitis. Further long-term, well-designed, parallel randomized clinical trials are needed to assess the effectiveness of the adjunctive use of the diode laser, as well as the appropriate dosimetry and laser settings.
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1998-05-01
Increased demands on the performance and efficiency of mechanical components impose challenges on their engineering design and optimization, especially when new and more demanding applications must be developed in relatively short periods of time while satisfying design objectives, as well as cost and manufacturability. In addition, reliability and durability must be taken into consideration. As a consequence, effective quantitative methodologies, computational and experimental, should be applied in the study and optimization of mechanical components. Computational investigations enable parametric studies and the determination of critical engineering design conditions, while experimental investigations, especially those using optical techniques, provide qualitative and quantitative information on the actual response of the structure of interest to the applied load and boundary conditions. We discuss a hybrid experimental and computational approach for investigation and optimization of mechanical components. The approach is based on analytical, computational, and experimental resolutions methodologies in the form of computational, noninvasive optical techniques, and fringe prediction analysis tools. Practical application of the hybrid approach is illustrated with representative examples that demonstrate the viability of the approach as an effective engineering tool for analysis and optimization.
The S2 UAS, a Modular Platform for Atmospheric Science
NASA Astrophysics Data System (ADS)
Elston, J. S.; Stachura, M.; Bland, G.
2017-12-01
Black Swift Technologies, LLC (BST) developed and refined the S2 in partnership with NASA. The S2 is a novel small Unmanned Aircraft System (sUAS) specifically designed to meet the needs of atmospheric and earth observing scientific field campaigns. This tightly integrated system consists of an airframe, avionics, and sensors designed to measure atmospheric parameters (e.g., temperature, pressure, humidity, and 3D winds) and well as carry up to 2.3kg (5lbs) of additional payload. At the core of the sensing suite is a custom designed multi-hole-probe being developed to provide accurate measurements in u, v and w while remaining simple to integrate as well as low-cost. The S2 relies on the commercially-available SwiftCore Flight Management System (FMS), which has been proven in the field to provide a cost-effective, powerful, and easy-to-operate solution to meet the demanding requirements of nomadic scientific field campaigns. The airframe capabilities are currently being expanded to achieve high altitude flights through strong winds and damaging airborne particulates. Additionally, the well-documented power and data interfaces of the S2 will be employed to integrate the sensors required for the measurement of soil moisture content, atmospheric volcanic phenomenon, fire weather, as well as provide satellite calibration via multispectral cameras. Extensive flight testing has been planned to validate the S2 system's ability to operate in difficult terrain including mountainside takeoff and recovery and flights up to 6000m above sea level.
Adolfsson, Annsofie; Linden, Karolina; Sparud-Lundin, Carina; Larsson, Per-Göran; Berg, Marie
2014-12-29
Women with type 1 diabetes face particular demands in their lives in relation to childbearing. During pregnancy, in order to optimize the probability of giving birth to a healthy child, their blood glucose levels need to be as normal as possible. After childbirth, they experience a 'double stress': in addition to the ordinary challenges they face as new mothers, they also need to focus on getting their blood glucose levels normal. To improve self-management of diabetes and overall well-being in women with type 1 diabetes, a person-centered web-based support was designed to be tested in a randomized controlled trial (RCT) to be used during pregnancy and early motherhood. This protocol outlines the design of this RCT, which will evaluate the effectiveness of the specially designed web-based support for mothers with type 1 diabetes in Sweden. The study is designed as an RCT. The web support consists of three parts: 1) evidence-based information, 2) a self-care diary, and 3) communication with peers. The primary outcome is general well-being evaluated with the Well-Being Questionnaire short version (W-BQ12) and diabetes management evaluated with the Diabetes Empowerment Scale, short version (SWE-DES). Women attending six hospital-based antenatal care centers in Sweden are invited to participate. The inclusion period is November 2011 to late 2014. The allocation of participants to web support (intervention group) and to usual care (control group) is equal (1:1). In total, 68 participants in each group will be needed to reach a statistical power of 80% with significance level 0.05. The web support is expected to strengthen the women's personal capacity and autonomy during pregnancy, breastfeeding, and early motherhood, leading to optimal well-being and diabetes management. ClinicalTrials.gov: NCT01565824 (registration date March 27th 2012).
NASA Astrophysics Data System (ADS)
Lu, Jintao; Yang, Zhen; Zhao, Xinbao; Yan, Jingbo; Gu, Y.
A new kind of Ni-Fe-based superalloy is designed recently for 750 °C-class A-USC boiler tube. The oxidation behavior of the designed alloys with various combinations of anti-oxidation additions, Cr, Al and Si, was investigated at 750 °C and 850 °C, respectively. The results indicated that the oxidation rate of tested alloys decreased with the increase of the sum of additions. Cr addition may drop the relative constant of parabolic rate greatly when temperature is raised. But the oxide scale, mainly consisted of NiCr spinel at 750 °C and NiCrMn spinel at 850 °C, was similar while the Cr content is in a range of 20-25 wt.% at tested temperatures. Al addition, however, showed the best effective to reduce the oxidation rates. Internal Al-rich oxide was observed at the scale/metal interface for alloys added with high content of Al and was increased with Al content increase. Very tiny difference between the oxide scales of the Si-added alloys was identified when Si content varies among 0.02-0.05 wt.%. Basing on these results, this presentation discussed the optimum combination of anti-oxidation additions as well as oxidation mechanisms in the designed Ni-Fe-base superalloy.
Construction of Low Dissipative High Order Well-Balanced Filter Schemes for Non-Equilibrium Flows
NASA Technical Reports Server (NTRS)
Wang, Wei; Yee, H. C.; Sjogreen, Bjorn; Magin, Thierry; Shu, Chi-Wang
2009-01-01
The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. [26] to a class of low dissipative high order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. The class of filter schemes developed by Yee et al. [30], Sjoegreen & Yee [24] and Yee & Sjoegreen [35] consist of two steps, a full time step of spatially high order non-dissipative base scheme and an adaptive nonlinear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e., choosing a well-balanced base scheme with a well-balanced filter (both with high order). A typical class of these schemes shown in this paper is the high order central difference schemes/predictor-corrector (PC) schemes with a high order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady state solutions exactly; it is able to capture small perturbations, e.g., turbulence fluctuations; it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.
Simplified Technique for Predicting Offshore Pipeline Expansion
NASA Astrophysics Data System (ADS)
Seo, J. H.; Kim, D. K.; Choi, H. S.; Yu, S. Y.; Park, K. S.
2018-06-01
In this study, we propose a method for estimating the amount of expansion that occurs in subsea pipelines, which could be applied in the design of robust structures that transport oil and gas from offshore wells. We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines. Due to the effects of high pressure and high temperature, the production of fluid from offshore wells is typically caused by physical deformation of subsea structures, e.g., expansion and contraction during the transportation process. In severe cases, vertical and lateral buckling occurs, which causes a significant negative impact on structural safety, and which is related to on-bottom stability, free-span, structural collapse, and many other factors. In addition, these factors may affect the production rate with respect to flow assurance, wax, and hydration, to name a few. In this study, we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage, which can lead to savings in both cost and computation time. As such, in this paper, we propose an applicable diagram, which we call the standard dimensionless ratio (SDR) versus virtual anchor length (L A ) diagram, that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios. With this user guideline, offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation, design, and maintenance of the subsea pipeline.
NASA Technical Reports Server (NTRS)
1982-01-01
The basic design of the fleet satellite communication spacecraft (FLTSATCOM) can easily accommodate any of the three payload options for the ocean dynamic topography experiment (TOPEX). The principal mission requirements as well as the payload accommodations and communications systems needed for launching this payload are reviewed. The existing FLTSATCOM satellite design is identified and the approaches for the proposed propulsion system are described in addition to subsystems for mechanical; power; attitude and velocity control; and telemetry, tracking and control are described. The compatability of FLTSATCOM with the launch vehicle is examined and its capabilities vs TOPEX requirements are summarized. Undetermined changes needed to meet data storage, thermal control, and area to mass ratio requirements are discussed. Cost estimates are included for budgetary and planning purposes. The availability of the described design is assessed based on the continuing production of FLTSATCOM spacecraft during the schedule span planned for TOPEX.
New research opportunities for roadside safety barriers improvement
NASA Astrophysics Data System (ADS)
Cantisani, Giuseppe; Di Mascio, Paola; Polidori, Carlo
2017-09-01
Among the major topics regarding the protection of roads, restraint systems still represent a big opportunity in order to increase safety performances. When accidents happen, in fact, the infrastructure can substantially contribute to the reduction of consequences if its marginal spaces are well designed and/or effective restraint systems are installed there. Nevertheless, basic concepts and technology of road safety barriers have not significantly changed for the last two decades. The paper proposes a new approach to the study aimed to define possible enhancements of restraint safety systems performances, by using new materials and defining innovative design principles. In particular, roadside systems can be developed with regard to vehicle-barrier interaction, vehicle-oriented design (included low-mass and extremely low-mass vehicles), traffic suitability, user protection, working width reduction. In addition, thanks to sensors embedded into the barriers, it is also expected to deal with new challenges related to the guidance of automatic vehicles and I2V communication.
Case Managers for High-Risk, High-Cost Patients as Agents and Street-Level Bureaucrats.
Swanson, Jeffrey; Weissert, William G
2017-08-01
Case management programs often designate a nurse or social worker to take responsibility for guiding care when patients are expected to be expensive or risk a major decline. We hypothesized that though an intuitively appealing idea, careful program design and faithful implementation are essential if case management programs are to succeed. We employed two theory perspectives, principal-agent framework and street-level bureaucratic theory to describe the relationship between program designers (principals) and case managers (agents/street-level bureaucrats) to review 65 case management studies. Most programs were successful in limited program-specific process and outcome goals. But there was much less success in cost-saving or cost-effectiveness-the original and overarching goal of case management. Cost results might be improved if additional ideas of agency and street-level theory were adopted, specifically, incentives, as well as "green tape," clear rules, guidelines, and algorithms relating to resource allocation among patients.
Robust stabilization of underactuated nonlinear systems: A fast terminal sliding mode approach.
Khan, Qudrat; Akmeliawati, Rini; Bhatti, Aamer Iqbal; Khan, Mahmood Ashraf
2017-01-01
This paper presents a fast terminal sliding mode based control design strategy for a class of uncertain underactuated nonlinear systems. Strategically, this development encompasses those electro-mechanical underactuated systems which can be transformed into the so-called regular form. The novelty of the proposed technique lies in the hierarchical development of a fast terminal sliding attractor design for the considered class. Having established sliding mode along the designed manifold, the close loop dynamics become finite time stable which, consequently, result in high precision. In addition, the adverse effects of the chattering phenomenon are reduced via strong reachability condition and the robustness of the system against uncertainties is confirmed theoretically. A simulation as well as experimental study of an inverted pendulum is presented to demonstrate the applicability of the proposed technique. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Josefsson, Torbjörn; Ivarsson, Andreas; Lindwall, Magnus; Gustafsson, Henrik; Stenling, Andreas; Böröy, Jan; Mattsson, Emil; Carnebratt, Jakob; Sevholt, Simon; Falkevik, Emil
2017-01-01
The main objective of the project was to examine a proposed theoretical model of mindfulness mechanisms in sports. We conducted two studies (the first study using a cross-sectional design and the second a longitudinal design) to investigate if rumination and emotion regulation mediate the relation between dispositional mindfulness and sport-specific coping. Two hundred and forty-two young elite athletes, drawn from various sports, were recruited for the cross-sectional study. For the longitudinal study, 65 elite athletes were recruited. All analyses were performed using Bayesian statistics. The path analyses showed credible indirect effects of dispositional mindfulness on coping via rumination and emotion regulation in both the cross-sectional study and the longitudinal study. Additionally, the results in both studies showed credible direct effects of dispositional mindfulness on rumination and emotion regulation. Further, credible direct effects of emotion regulation as well as rumination on coping were also found in both studies. Our findings support the theoretical model, indicating that rumination and emotion regulation function as essential mechanisms in the relation between dispositional mindfulness and sport-specific coping skills. Increased dispositional mindfulness in competitive athletes (i.e. by practicing mindfulness) may lead to reductions in rumination, as well as an improved capacity to regulate negative emotions. By doing so, athletes may improve their sport-related coping skills, and thereby enhance athletic performance.
Pikora, Terri J; Braham, Rebecca; Mills, Christina
2012-01-01
The objective of this review was to summarize the epidemiological literature for surfboard riding (surfing), kite surfing and personal watercraft (PWC) riding injuries and describe the incidence and nature of these injuries, common risk factors, and strategies for prevention. The databases searched for relevant publications included Medline, ScienceDirect, ProQuest International, PubMed, Academic Search Premier as well as Google Scholar to identify additional, non-indexed studies. Overall, there was a lack of good quality descriptive studies for these three sports and many of the studies reviewed involved the use of administrative datasets or case-series designs. Among the few studies to provide incidence estimates, there were inconsistencies in how injury was defined, the inclusion criteria, and the reporting of incidence rates, making comparisons within and between the sports difficult. While the reported incidence rates were generally low, head and lower extremity injuries were common across all three sports. Only two studies reported evidence for postulated risk factors. Bigger waves and surfing over rock or reef sea floor increased the risk of injury among competitive surfers, while older age and having more experience increased the risk of significant injuries among recreational surfers. No evaluations of preventative measures were identified. This review demonstrates the need for well-designed epidemiological research, especially studies that focus on the accurate measurement and description of incidence, nature, severity and circumstances of injuries. Once this has occurred, interventions targeted at reducing the incidence of injuries among these sports can be designed, implemented and evaluated. Copyright © 2012 S. Karger AG, Basel.
Angus, Robert B; Angus, Elizabeth M; Jia, Fenglong; Chen, Zhen-Ning; Zhang, Ying
2015-01-01
A lectotype is designated for the Tibetan species Deronectesemmerichi Falkenström, 1936 (Currently Boreonectesemmerichi (Falkenström)), and its habitus, as well as the median lobe and parameres of its aedeagus, are figured along with additional comparative material. Material of Boreonectesemmerichi from Sikkim (BMNH) represents the first record of a Boreonectes Angus, 2010 species from India. The karyotype of Boreonectesemmerichi is described as having 26 pairs of autosomes plus sex chromosomes which are X0 (♂), XX (♀). The karyotype is most like that of Boreonectesmacedonicus (Géuorguiev, 1959), but with slight differences. Additional chromosomal information is given for Boreonectesgriseostriatusgriseostriatus (De Geer, 1774) in the French Alps, Boreonectesgriseostriatusstrandi (Brinck, 1943) on the Kola Peninsula, Boreonectesmultilineatus (Falkenström, 1922) in the Pyrenees and Boreonectesibericus (Dutton & Angus, 2007) in the Spanish Picos de Europa.
Usman Amin, Muhammad; Khurram, Muhammad; Khan, Taj Ali; Faidah, Hani S.; Ullah Shah, Zia; Ur Rahman, Shafiq; Haseeb, Abdul; Ilyas, Muhammad; Ullah, Naseem; Umar Khayam, Sahibzada Muhammad; Iriti, Marcello
2016-01-01
The present study was designed to evaluate the effects of flavonoids luteolin (L) and quercetin + luteolin (Q + L) in combination with commonly used antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates and S. aureus (ATCC 43300). Minimum inhibitory concentrations (MICs) of L and Q + L, as well as the MICs of flavonoids in combination with antibiotics were determined and results showed an increased activity of flavonoids with antibiotics. The synergistic, additive, or antagonistic relationships between flavonoids (L and Q + L) and antibiotics were also evaluated, and additive and synergistic effects were observed for some antibiotic + flavonoid combinations. In addition, some combinations were also found to damage the bacterial cytoplasmic membrane, as assessed through potassium leakage assay. The effects of flavonoids and flavonoids + antibiotics on mecA gene mutations were also tested, and no functional variation was detected in the coding region. PMID:27879665
Vocational High School Students’ Creativity in Food Additives with Problem Based Learning Approach
NASA Astrophysics Data System (ADS)
Ratnasari, D.; Supriyanti, T.; Rosbiono, M.
2017-09-01
The aim of this study is to verify the creativity of vocational students through Problem Based Learning approach in the food additives. The method which used quasi-experiment with one group posttest design. The research subjects were 32 students in grade XII of a vocational high school students courses chemical analysis in Bandung city. Instrument of creativity were essay, Student Worksheet, and observation sheets. Creativity measured include creative thinking skills and creative act skills. The results showed creative thinking skills and creative act skills are good. Research showed that the problem based learning approach can be applied to develop creativity of vocational students in the food additives well, because the students are given the opportunity to determine their own experiment procedure that will be used. It is recommended to often implement Problem Based Learning approach in other chemical concepts so that students’ creativity is sustainable.
NASA Astrophysics Data System (ADS)
Kong, Changduk; Lee, Kyungsun
2013-03-01
In this study, aerodynamic and structural design of the composite propeller blade for a regional turboprop aircraft is performed. The thin and wide chord propeller blade of high speed turboprop aircraft should have proper strength and stiffness to carry various kinds of loads such as high aerodynamic bending and twisting moments and centrifugal forces. Therefore the skin-spar-foam sandwich structure using high strength and stiffness carbon/epoxy composite materials is used to improve the lightness. A specific design procedure is proposed in this work as follows; firstly the aerodynamic configuration design, which is acceptable for the design requirements, is carried out using the in-house code developed by authors, secondly the structure design loads are determined through the aerodynamic load case analysis, thirdly the spar flange and the skin are preliminarily sized by consideration of major bending moments and shear forces using both the netting rule and the rule of mixture, and finally, the stress analysis is performed to confirm the structural safety and stability using finite element analysis commercial code, MSC. NASTRAN/PATRAN. Furthermore the additional analysis is performed to confirm the structural safety due to bird strike impact on the blade during flight operation using a commercial code, ANSYS. To realize the proposed propeller design, the prototype blades are manufactured by the following procedure; the carbon/epoxy composite fabric prepregs are laid up for skin and spar on a mold using the hand lay-up method and consolidated with a proper temperature and vacuum in the oven. To finalize the structural design, the full-scale static structural test is performed under the simulated aerodynamic loads using 3 point loading method. From the experimental results, it is found that the designed blade has a good structural integrity, and the measured results agree well with the analytical results as well.
NASA Astrophysics Data System (ADS)
Park, Yoon-Hee; Jeong, Sang Hoon; Yi, Sang Min; Hyeok Choi, Byeong; Kim, Yu-Ri; Kim, In-Kyoung; Kim, Meyoung-Kon; Son, Sang Wook
2011-07-01
The human skin equivalent model (HSEM) is well known as an attractive alternative model for evaluation of dermal toxicity. However, only limited data are available on the usefulness of an HSEM for nanotoxicity testing. This study was designed to investigate cutaneous toxicity of polystyrene and TiO2 nanoparticles using cultured keratinocytes, an HSEM, and an animal model. In addition, we also evaluated the skin sensitization potential of nanoparticles using a local lymph node assay with incorporation of BrdU. Findings from the present study indicate that polystyrene and TiO2 nanoparticles do not induce phototoxicity, acute cutaneous irritation, or skin sensitization. Results from evaluation of the HSEMs correspond well with those from animal models. Our findings suggest that the HSEM might be a useful alternative model for evaluation of dermal nanotoxicity.
NASA Astrophysics Data System (ADS)
Ribeiro, Eduardo Afonso; Lopes, Eduardo Márcio de Oliveira; Bavastri, Carlos Alberto
2017-12-01
Viscoelastic materials have played an important role in passive vibration control. Nevertheless, the use of such materials in supports of rotating machines, aiming at controlling vibration, is more recent, mainly when these supports present additional complexities like multiple degrees of freedom and require accurate models to predict the dynamic behavior of viscoelastic materials working in a broad band of frequencies and temperatures. Previously, the authors propose a methodology for an optimal design of viscoelastic supports (VES) for vibration suppression in rotordynamics, which improves the dynamic prediction accuracy, the speed calculation, and the modeling of VES as complex structures. However, a comprehensive numerical study of the dynamics of rotor-VES systems, regarding the types and combinations of translational and rotational degrees of freedom (DOFs), accompanied by the corresponding experimental validation, is still lacking. This paper presents such a study considering different types and combinations of DOFs in addition to the simulation of their number of additional masses/inertias, as well as the kind and association of the applied viscoelastic materials (VEMs). The results - regarding unbalance frequency response, transmissibility and displacement due to static loads - lead to: 1) considering VES as complex structures which allow improving the efficacy in passive vibration control; 2) acknowledging the best configuration concerning DOFs and VEM choice and association for a practical application concerning passive vibration control and load resistance. The specific outcomes of the conducted experimental validation attest the accuracy of the proposed methodology.
Transitioning to a New Facility: The Crucial Role of Employee Engagement.
Slosberg, Meredith; Nejati, Adeleh; Evans, Jennie; Nanda, Upali
Transitioning to a new facility can be challenging for employees and detrimental to operations. A key aspect of the transition is employee understanding of, and involvement in, the design of the new facility. The literature lacks a comprehensive study of the impact of change engagement throughout the design, construction, and activation of a project as well as how that can affect perceptions, expectations, and, eventually, satisfaction of employees. The purpose of this research was to examine employee perceptions and satisfaction throughout a hospital design, construction, and activation process. Three pulse-point surveys were administered throughout the transition of a children's hospital emergency department and neonatal intensive care unit to a new facility. We also administered a postoccupancy survey 3 months after the move into the new facility. We received 544 responses and analyzed them to assess the relationship between involvement in design or change engagement initiatives and overall perceptions. The results revealed a strong relationship between employee engagement and their level of preparedness to move, readiness to adapt, and satisfaction. Early involvement in the design of a facility or new processes can significantly affect staff preparedness and readiness to adapt as well as employees' overall satisfaction with the building after occupancy. In addition, our findings suggest that keeping a finger on the pulse of employee perceptions and expectations throughout the design, construction, and activation phase is critical to employee preparedness and satisfaction in transitioning to a new facility.
Prebiotics and synbiotics: dietary strategies for improving gut health.
Krumbeck, Janina A; Maldonado-Gomez, Maria X; Ramer-Tait, Amanda E; Hutkins, Robert W
2016-03-01
A wide range of dietary carbohydrates, including prebiotic food ingredients, fermentable fibers, and milk oligosaccharides, are able to produce significant changes in the intestinal microbiota. These shifts in the microbial community are often characterized by increased levels of bifidobacteria and lactobacilli. More recent studies have revealed that species of Faecalibacterium, Akkermansia, and other less well studied members may also be enriched. We review the implications of these recent studies on future design of prebiotics and synbiotics to promote gastrointestinal health. Investigations assessing the clinical outcomes associated with dietary modification of the gut microbiota have shown systemic as well as specific health benefits. Both prebiotic oligosaccharides comprised of a linear arrangement of simple sugars, as well as fiber-rich foods containing complex carbohydrates, have been used in these trials. However, individual variability and nonresponding study participants can make the outcome of dietary interventions less predictable. In contrast, synergistic synbiotics containing prebiotics that specifically stimulate a cognate probiotic provide additional options for personalized gut therapies. This review describes recent research on how prebiotics and fermentable fibers can influence the gut microbiota and result in improvements to human health.
Jiang, Shaohai
2017-03-01
In the United States, levels of emotional well-being remain low, with 40% of American adults reporting the experience of daily stress and excessive anxiety. The doctor-patient communication during medical encounters may play a significant role in improving people's emotional well-being. Based on Street and his colleagues' (2009) pathway mediation model linking communication to health outcomes, this paper illustrates a mechanism that underlies how patient-centered communication improves emotional well-being. The results showed that patient-centered communication had direct effects on emotional well-being. In addition to the direct effects, patient-centered communication also indirectly influenced emotional well-being, mediated by patient satisfaction and emotion management, supporting the partial mediation. The findings provide additional empirical evidence to the pathways from communication to health outcomes, one of the least developed areas of communication research, and also offer significant implications for the design of interventions to improve patients' emotional well-being.
Lappalainen, Raimo; Sairanen, Essi; Järvelä, Elina; Rantala, Sanni; Korpela, Riitta; Puttonen, Sampsa; Kujala, Urho M; Myllymäki, Tero; Peuhkuri, Katri; Mattila, Elina; Kaipainen, Kirsikka; Ahtinen, Aino; Karhunen, Leila; Pihlajamäki, Jussi; Järnefelt, Heli; Laitinen, Jaana; Kutinlahti, Eija; Saarelma, Osmo; Ermes, Miikka; Kolehmainen, Marjukka
2014-04-04
Obesity and stress are among the most common lifestyle-related health problems. Most of the current disease prevention and management models are not satisfactorily cost-effective and hardly reach those who need them the most. Therefore, novel evidence-based controlled interventions are necessary to evaluate models for prevention and treatment based on self-management. This randomized controlled trial examines the effectiveness, applicability, and acceptability of different lifestyle interventions with individuals having symptoms of metabolic syndrome and psychological distress. The offered interventions are based on cognitive behavioral approaches, and are designed for enhancing general well-being and supporting personalized lifestyle changes. 339 obese individuals reporting stress symptoms were recruited and randomized to either (1) a minimal contact web-guided Cognitive Behavioral Therapy-based (CBT) intervention including an approach of health assessment and coaching methods, (2) a mobile-guided intervention comprising of mindfulness, acceptance and value-based exercises, (3) a face-to-face group intervention using mindfulness, acceptance and value-based approach, or (4) a control group. The participants were measured three times during the study (pre = week 0, post = week 10, and follow-up = week 36). Psychological well-being, lifestyles and habits, eating behaviors, and user experiences were measured using online surveys. Laboratory measurements for physical well-being and general health were performed including e.g. liver function, thyroid glands, kidney function, blood lipids and glucose levels and body composition analysis. In addition, a 3-day ambulatory heart rate and 7-day movement data were collected for analyzing stress, recovery, physical activity, and sleep patterns. Food intake data were collected with a 48 -hour diet recall interview via telephone. Differences in the effects of the interventions would be examined using multiple-group modeling techniques, and effect-size calculations. This study will provide additional knowledge about the effects of three low intensity interventions for improving general well-being among individuals with obesity and stress symptoms. The study will show effects of two technology guided self-help interventions as well as effect of an acceptance and value-based brief group intervention. Those who might benefit from the aforesaid interventions will increase knowledge base to better understand what mechanisms facilitate effects of the interventions. Current Clinical Trials NCT01738256, Registered 17 August, 2012.
Rapid and highly integrated FPGA-based Shack-Hartmann wavefront sensor for adaptive optics system
NASA Astrophysics Data System (ADS)
Chen, Yi-Pin; Chang, Chia-Yuan; Chen, Shean-Jen
2018-02-01
In this study, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) programmed on LabVIEW can be highly integrated into customized applications such as adaptive optics system (AOS) for performing real-time wavefront measurement. Further, a Camera Link frame grabber embedded with FPGA is adopted to enhance the sensor speed reacting to variation considering its advantage of the highest data transmission bandwidth. Instead of waiting for a frame image to be captured by the FPGA, the Shack-Hartmann algorithm are implemented in parallel processing blocks design and let the image data transmission synchronize with the wavefront reconstruction. On the other hand, we design a mechanism to control the deformable mirror in the same FPGA and verify the Shack-Hartmann sensor speed by controlling the frequency of the deformable mirror dynamic surface deformation. Currently, this FPGAbead SHWS design can achieve a 266 Hz cyclic speed limited by the camera frame rate as well as leaves 40% logic slices for additionally flexible design.
Simulations for designing and interpreting intervention trials in infectious diseases.
Halloran, M Elizabeth; Auranen, Kari; Baird, Sarah; Basta, Nicole E; Bellan, Steven E; Brookmeyer, Ron; Cooper, Ben S; DeGruttola, Victor; Hughes, James P; Lessler, Justin; Lofgren, Eric T; Longini, Ira M; Onnela, Jukka-Pekka; Özler, Berk; Seage, George R; Smith, Thomas A; Vespignani, Alessandro; Vynnycky, Emilia; Lipsitch, Marc
2017-12-29
Interventions in infectious diseases can have both direct effects on individuals who receive the intervention as well as indirect effects in the population. In addition, intervention combinations can have complex interactions at the population level, which are often difficult to adequately assess with standard study designs and analytical methods. Herein, we urge the adoption of a new paradigm for the design and interpretation of intervention trials in infectious diseases, particularly with regard to emerging infectious diseases, one that more accurately reflects the dynamics of the transmission process. In an increasingly complex world, simulations can explicitly represent transmission dynamics, which are critical for proper trial design and interpretation. Certain ethical aspects of a trial can also be quantified using simulations. Further, after a trial has been conducted, simulations can be used to explore the possible explanations for the observed effects. Much is to be gained through a multidisciplinary approach that builds collaborations among experts in infectious disease dynamics, epidemiology, statistical science, economics, simulation methods, and the conduct of clinical trials.
Analysis of Potential Energy Corridors Proposed by the Western Electricity Coordinating Council
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuiper, James A.; Cantwell, Brian J.; Hlava, Kevin J.
2014-02-24
This report, Analysis of Potential Energy Corridors Proposed by the Western Electricity Coordinating Council (WECC), was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). The intent of WECC’s work was to identify planning-level energy corridors that the Department of Energy (DOE) and its affiliates could study in greater detail. Argonne was tasked by DOE to analyze the WECC Proposed Energy Corridors in five topic areas for use in reviewing and revising existing corridors, as well as designating additional energy corridors in the 11 western states. In compliance with Section 368 of the Energy Policy Act of 2005more » (EPAct), the Secretaries of Energy, Agriculture, and the Interior (Secretaries) published a Programmatic Environmental Impact Statement in 2008 to address the proposed designation of energy transport corridors on federal lands in the 11 western states. Subsequently, Records of Decision designating the corridors were issued in 2009 by the Bureau of Land Management (BLM) and the U.S. Forest Service (USFS). The 2012 settlement of a lawsuit, brought by The Wilderness Society and others against the United States, which identified environmental concerns for many of the corridors requires, among other things, periodic reviews of the corridors to assess the need for revisions, deletions, or additions. A 2013 Presidential Memorandum requires the Secretaries to undertake a continuing effort to identify and designate energy corridors. The WECC Proposed Energy Corridors and their analyses in this report provide key information for reviewing and revising existing corridors, as well as designating additional energy corridors in the 11 western states. Load centers and generation hubs identified in the WECC analysis, particularly as they reflect renewable energy development, would be useful in reviewing and potentially updating the designated Section 368 corridor network. Argonne used Geographic Information System (GIS) technology to analyze the proposed energy corridors in the WECC report in five topic areas: Federal land jurisdiction, Existing Section 368 corridors, Existing transmission lines, Previously studied corridor locations, and Protected areas. Analysis methods are explained and tables and maps are provided to describe the results of the analyses in all five topic areas. WECC used a rational approach to connecting the hubs it identified, although there may be opportunities for adapting some of the proposed WECC routes to previously designated Section 368 corridors, for example: The WECC proposed energy corridors are in fact centerlines of proposed routes connecting hubs of various descriptions related to electric energy transmission. Although the centerlines were sited to avoid sensitive areas, infrastructure proposed within actual pathways or corridors defined by the centerlines would sometimes affect lands where such development would not normally be allowed, such as National Parks and Monuments, National Wildlife Refuges, and Wilderness Areas. Many WECC proposed energy corridors are sited along centerlines of existing roads, including Interstate Highways, where in some cases additional width to accommodate energy transmission infrastructure may not be available. Examples include the WECC Proposed Corridor along Interstate 70 through Glenwood Canyon in Colorado, and along U.S. Highway 89 across Glen Canyon Dam in Arizona. Several WECC proposed energy corridors are parallel to designated Section 368 corridors that have already cleared the preliminary steps to right-of-way approval. In many of these cases, the WECC hub connection objectives can be met more efficiently by routing on the designated Section 368 corridors.« less
Adrian Grant's pioneering use of evidence synthesis in perinatal medicine, 1980-1992.
Chalmers, Iain
2018-05-15
Systematic reviews of existing research are needed to help reduce the enormous amount of wasted resources in biomedical research. Whether already available or needed but unavailable, systematic reviews are a key element in prioritising questions for new research, and for informing the design of additional studies. One of the most important of Adrian Grant's many contributions was to recognise this a decade before it began to become more widely accepted. In this sphere, as well as in many others, he was a real pioneer.
Normal-hearing listener preferences of music as a function of signal-to-noise-ratio
NASA Astrophysics Data System (ADS)
Barrett, Jillian G.
2005-04-01
Optimal signal-to-noise ratios (SNR) for speech discrimination are well-known, well-documented phenomena. Discrimination preferences and functions have been studied for both normal-hearing and hard-of-hearing populations, and information from these studies has provided clearer indices on additional factors affecting speech discrimination ability and SNR preferences. This knowledge lends itself to improvements in hearing aids and amplification devices, telephones, television and radio transmissions, and a wide arena of recorded media such as movies and music. This investigation was designed to identify the preferred signal-to-background ratio (SBR) of normal-hearing listeners in a musical setting. The signal was the singer's voice, and music was considered the background. Subjects listened to an unfamiliar ballad with a female singer, and rated seven different SBR treatments. When listening to melodic motifs with linguistic content, results indicated subjects preferred SBRs similar to those in conventional speech discrimination applications. However, unlike traditional speech discrimination studies, subjects did not prefer increased levels of SBR. Additionally, subjects had a much larger acceptable range of SBR in melodic motifs where the singer's voice was not intended to communicate via linguistic means, but by the pseudo-paralinguistic means of vocal timbre and harmonic arrangements. Results indicate further studies investigating perception of singing are warranted.
Monitoring system for the quality assessment in additive manufacturing
NASA Astrophysics Data System (ADS)
Carl, Volker
2015-03-01
Additive Manufacturing (AM) refers to a process by which a set of digital data -representing a certain complex 3dim design - is used to grow the respective 3dim real structure equal to the corresponding design. For the powder-based EOS manufacturing process a variety of plastic and metal materials can be used. Thereby, AM is in many aspects a very powerful tool as it can help to overcome particular limitations in conventional manufacturing. AM enables more freedom of design, complex, hollow and/or lightweight structures as well as product individualisation and functional integration. As such it is a promising approach with respect to the future design and manufacturing of complex 3dim structures. On the other hand, it certainly calls for new methods and standards in view of quality assessment. In particular, when utilizing AM for the design of complex parts used in aviation and aerospace technologies, appropriate monitoring systems are mandatory. In this respect, recently, sustainable progress has been accomplished by joining the common efforts and concerns of a manufacturer Additive Manufacturing systems and respective materials (EOS), along with those of an operator of such systems (MTU Aero Engines) and experienced application engineers (Carl Metrology), using decent know how in the field of optical and infrared methods regarding non-destructive-examination (NDE). The newly developed technology is best described by a high-resolution layer by layer inspection technique, which allows for a 3D tomography-analysis of the complex part at any time during the manufacturing process. Thereby, inspection costs are kept rather low by using smart image-processing methods as well as CMOS sensors instead of infrared detectors. Moreover, results from conventional physical metallurgy may easily be correlated with the predictive results of the monitoring system which not only allows for improvements of the AM monitoring system, but finally leads to an optimisation of the quality and insurance of material security of the complex structure being manufactured. Both, our poster and our oral presentation will explain the data flow between the above mentioned parties involved. A suitable monitoring system for Additive Manufacturing will be introduced, along with a presentation of the respective high resolution data acquisition, as well as the image processing and the data analysis allowing for a precise control of the 3dim growth-process.
Monitoring system for the quality assessment in additive manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carl, Volker, E-mail: carl@t-zfp.de
Additive Manufacturing (AM) refers to a process by which a set of digital data -representing a certain complex 3dim design - is used to grow the respective 3dim real structure equal to the corresponding design. For the powder-based EOS manufacturing process a variety of plastic and metal materials can be used. Thereby, AM is in many aspects a very powerful tool as it can help to overcome particular limitations in conventional manufacturing. AM enables more freedom of design, complex, hollow and/or lightweight structures as well as product individualisation and functional integration. As such it is a promising approach with respectmore » to the future design and manufacturing of complex 3dim structures. On the other hand, it certainly calls for new methods and standards in view of quality assessment. In particular, when utilizing AM for the design of complex parts used in aviation and aerospace technologies, appropriate monitoring systems are mandatory. In this respect, recently, sustainable progress has been accomplished by joining the common efforts and concerns of a manufacturer Additive Manufacturing systems and respective materials (EOS), along with those of an operator of such systems (MTU Aero Engines) and experienced application engineers (Carl Metrology), using decent know how in the field of optical and infrared methods regarding non-destructive-examination (NDE). The newly developed technology is best described by a high-resolution layer by layer inspection technique, which allows for a 3D tomography-analysis of the complex part at any time during the manufacturing process. Thereby, inspection costs are kept rather low by using smart image-processing methods as well as CMOS sensors instead of infrared detectors. Moreover, results from conventional physical metallurgy may easily be correlated with the predictive results of the monitoring system which not only allows for improvements of the AM monitoring system, but finally leads to an optimisation of the quality and insurance of material security of the complex structure being manufactured. Both, our poster and our oral presentation will explain the data flow between the above mentioned parties involved. A suitable monitoring system for Additive Manufacturing will be introduced, along with a presentation of the respective high resolution data acquisition, as well as the image processing and the data analysis allowing for a precise control of the 3dim growth-process.« less
Hedman, Anders; Feng, Shuo; Li, Haibo; Osika, Walter
2017-01-01
Background During the past decade, there has been a rapid increase of interactive apps designed for health and well-being. Yet, little research has been published on developing frameworks for design and evaluation of digital mindfulness facilitating technologies. Moreover, many existing digital mindfulness applications are purely software based. There is room for further exploration and assessment of designs that make more use of physical qualities of artifacts. Objective The study aimed to develop and test a new physical digital mindfulness prototype designed for stress reduction. Methods In this case study, we designed, developed, and evaluated HU, a physical digital mindfulness prototype designed for stress reduction. In the first phase, we used vapor and light to support mindful breathing and invited 25 participants through snowball sampling to test HU. In the second phase, we added sonification. We deployed a package of probes such as photos, diaries, and cards to collect data from users who explored HU in their homes. Thereafter, we evaluated our installation using both self-assessed stress levels and heart rate (HR) and heart rate variability (HRV) measures in a pilot study, in order to measure stress resilience effects. After the experiment, we performed a semistructured interview to reflect on HU and investigate the design of digital mindfulness apps for stress reduction. Results The results of the first phase showed that 22 of 25 participants (88%) claimed vapor and light could be effective ways of promoting mindful breathing. Vapor could potentially support mindful breathing better than light (especially for mindfulness beginners). In addition, a majority of the participants mentioned sound as an alternative medium. In the second phase, we found that participants thought that HU could work well for stress reduction. We compared the effect of silent HU (using light and vapor without sound) and sonified HU on 5 participants. Subjective stress levels were statistically improved with both silent and sonified HU. The mean value of HR using silent HU was significantly lower than resting baseline and sonified HU. The mean value of root mean square of differences (RMSSD) using silent HU was significantly higher than resting baseline. We found that the differences between our objective and subjective assessments were intriguing and prompted us to investigate them further. Conclusions Our evaluation of HU indicated that HU could facilitate relaxed breathing and stress reduction. There was a difference in outcome between the physiological measures of stress and the subjective reports of stress, as well as a large intervariability among study participants. Our conclusion is that the use of stress reduction tools should be customized and that the design work of mindfulness technology for stress reduction is a complex process, which requires cooperation of designers, HCI (Human-Computer Interaction) experts and clinicians. PMID:28615157
2015-02-27
cubesats. The CINEMA (Cubesat for Ions Neutrals Electrons and Magnetic 1 Approved for public release; distribution is unlimited. fields) was the primary...intended host for STEIN. Additionally some calibration efforts were performed with the CINEMA spacecraft as an element of the readout. This resulted...designed to accept a clock from its host spacecraft (as was the design case for CINEMA ) of 8.38MHz (specifically 2^23 Hz). As well as a spacecraft
Terrier Black Brant VC design characteristics and program status. [rocket development
NASA Technical Reports Server (NTRS)
Payne, B. R.; Mayo, E. E.
1979-01-01
In the present paper, the design analysis of the Terrier-Black Brant VC, representing the latest addition to the Black Brant rocket family, is discussed, including the aerodynamic, structural, thermal, and operational aspects. An appreciable increase in apogee, as compared to the BBVC and Nike/BBVC, is achieved without any modifications to the well-proven BBV motor or degradation of the thermal or dynamic flight environment.
PubMed on Tap: discovering design principles for online information delivery to handheld computers.
Hauser, Susan E; Demner-Fushman, Dina; Ford, Glenn; Thoma, George R
2004-01-01
Online access to biomedical information from handheld computers will be a valuable adjunct to other popular medical applications if information delivery systems are designed with handheld computers in mind. The goal of this project is to discover design principles to facilitate practitioners' access to online medical information at the point-of-care. A prototype system was developed to serve as a testbed for this research. Using the testbed, an initial evaluation has yielded several user interface design principles. Continued research is expected to discover additional user interface design principles as well as guidelines for results organization and system performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2004-04-01
Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.
The scope of additive manufacturing in cryogenics, component design, and applications
NASA Astrophysics Data System (ADS)
Stautner, W.; Vanapalli, S.; Weiss, K.-P.; Chen, R.; Amm, K.; Budesheim, E.; Ricci, J.
2017-12-01
Additive manufacturing techniques using composites or metals are rapidly gaining momentum in cryogenic applications. Small or large, complex structural components are now no longer limited to mere design studies but can now move into the production stream thanks to new machines on the market that allow for light-weight, cost optimized designs with short turnaround times. The potential for cost reductions from bulk materials machined to tight tolerances has become obvious. Furthermore, additive manufacturing opens doors and design space for cryogenic components that to date did not exist or were not possible in the past, using bulk materials along with elaborate and expensive machining processes, e.g. micromachining. The cryogenic engineer now faces the challenge to design toward those new additive manufacturing capabilities. Additionally, re-thinking designs toward cost optimization and fast implementation also requires detailed knowledge of mechanical and thermal properties at cryogenic temperatures. In the following we compile the information available to date and show a possible roadmap for additive manufacturing applications of parts and components typically used in cryogenic engineering designs.
Prinos, Scott T.
2013-01-01
The installation of drainage canals, poorly cased wells, and water-supply withdrawals have led to saltwater intrusion in the primary water-use aquifers in southwest Florida. Increasing population and water use have exacerbated this problem. Installation of water-control structures, well-plugging projects, and regulation of water use have slowed saltwater intrusion, but the chloride concentration of samples from some of the monitoring wells in this area indicates that saltwater intrusion continues to occur. In addition, rising sea level could increase the rate and extent of saltwater intrusion. The existing saltwater intrusion monitoring network was examined and found to lack the necessary organization, spatial distribution, and design to properly evaluate saltwater intrusion. The most recent hydrogeologic framework of southwest Florida indicates that some wells may be open to multiple aquifers or have an incorrect aquifer designation. Some of the sampling methods being used could result in poor-quality data. Some older wells are badly corroded, obstructed, or damaged and may not yield useable samples. Saltwater in some of the canals is in close proximity to coastal well fields. In some instances, saltwater occasionally occurs upstream from coastal salinity control structures. These factors lead to an incomplete understanding of the extent and threat of saltwater intrusion in southwest Florida. A proposed plan to improve the saltwater intrusion monitoring network in the South Florida Water Management District’s Big Cypress Basin describes improvements in (1) network management, (2) quality assurance, (3) documentation, (4) training, and (5) data accessibility. The plan describes improvements to hydrostratigraphic and geospatial network coverage that can be accomplished using additional monitoring, surface geophysical surveys, and borehole geophysical logging. Sampling methods and improvements to monitoring well design are described in detail. Geochemical analyses that provide insights concerning the sources of saltwater in the aquifers are described. The requirement to abandon inactive wells is discussed.
Health factors in the everyday life and work of public sector employees in Sweden.
Erlandsson, Lena-Karin; Carlsson, Gunilla; Horstmann, Vibeke; Gard, Gunvor; Holmström, Eva
2012-01-01
The aim was to explore aspects of everyday life in addition to established risk factors and their relationship to subjective health and well-being among public sector employees in Sweden. Gainful employment impact on employees' health and well-being, but work is only one part of everyday life and a broader perspective is essential in order to identify health-related factors. Data were obtained from employees at six Social Insurance Offices in Sweden, 250 women and 50 men. A questionnaire based on established instruments and questions specifically designed for this study was used. Relationships between five factors of everyday life, subjective health and well-being were investigated by means of multivariate logistic regression analysis. The final model revealed a limited importance of certain work-related factors. A general satisfaction with everyday activities, a stress-free environment and general control in addition to not having monotonous movements at work were found to be factors explaining 46.3% of subjective good health and well-being. A person's entire activity pattern, including work, is important, and strategies for promoting health should take into account the person's situation as a whole. The interplay between risk and health factors is not clear and further research is warranted.
Catt, Megan; Giridharan, Renganathan
2018-01-01
The study explored design for well-being within dementia care by investigating the adoption of well-being-focused design in real-world practice, through observing National Health Service (NHS) wards. Design for well-being is an approach that considers the psychological and physiological effects of architecture to improve health and well-being. The high psychological care requirement for dementia patients makes them a significant group to study in the evaluation of current hospital facilities. A literature review was conducted to frame the current theoretical perception of the key characteristics of a good environment for dementia care. A framework was generated to summarize and used as an assessment tool in a series of observational visits to NHS wards. Interviews with clinical staff focused on care outcomes and practicalities of implementing well-being-focused design, considering the historical and economical context. Key findings from the observations and interviews were analyzed for recurring themes. The ward observations and interviews provided insight into the current progression of well-being-led design in NHS hospitals in England. The research highlights key areas of success and factors that inhibit further progression. The case studies showed a good degree of ambition to utilize well-being-focused design, with belief among staff that the physical environment has a substantial role in the health and well-being of patients. Staff also felt that this approach is most effective for those in the less advanced stages of dementia. Despite the high level of support, the current degree of implementation appears to be varied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xiexiaomen; Tutuncu, Azra; Eustes, Alfred
Enhanced Geothermal Systems (EGS) could potentially use technological advancements in coupled implementation of horizontal drilling and multistage hydraulic fracturing techniques in tight oil and shale gas reservoirs along with improvements in reservoir simulation techniques to design and create EGS reservoirs. In this study, a commercial hydraulic fracture simulation package, Mangrove by Schlumberger, was used in an EGS model with largely distributed pre-existing natural fractures to model fracture propagation during the creation of a complex fracture network. The main goal of this study is to investigate optimum treatment parameters in creating multiple large, planar fractures to hydraulically connect a horizontal injectionmore » well and a horizontal production well that are 10,000 ft. deep and spaced 500 ft. apart from each other. A matrix of simulations for this study was carried out to determine the influence of reservoir and treatment parameters on preventing (or aiding) the creation of large planar fractures. The reservoir parameters investigated during the matrix simulations include the in-situ stress state and properties of the natural fracture set such as the primary and secondary fracture orientation, average fracture length, and average fracture spacing. The treatment parameters investigated during the simulations were fluid viscosity, proppant concentration, pump rate, and pump volume. A final simulation with optimized design parameters was performed. The optimized design simulation indicated that high fluid viscosity, high proppant concentration, large pump volume and pump rate tend to minimize the complexity of the created fracture network. Additionally, a reservoir with 'friendly' formation characteristics such as large stress anisotropy, natural fractures set parallel to the maximum horizontal principal stress (SHmax), and large natural fracture spacing also promote the creation of large planar fractures while minimizing fracture complexity.« less
Wide-field-of-view millimeter-wave telescope design with ultra-low cross-polarization
NASA Astrophysics Data System (ADS)
Bernacki, Bruce E.; Kelly, James F.; Sheen, David; Hatchell, Brian; Valdez, Patrick; Tedeschi, Jonathan; Hall, Thomas; McMakin, Douglas
2012-06-01
As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degrees of freedom that offer larger fields of view than possible with single-reflector designs. Dragone's graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone's geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone's design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low cross-polarization and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.
Hope, emotion regulation, and psychosocial well-being in patients newly diagnosed with cancer.
Peh, Chao Xu; Kua, Ee Heok; Mahendran, Rathi
2016-05-01
Patients newly diagnosed with cancer are often confronted with feelings of uncertainty and life threat. A significant proportion may report impairments in psychosocial well-being. Previous studies examining protective psychological factors such as hope and emotion regulation (ER) have yet to investigate these processes concurrently within a common self-regulation framework and/or focus on newly diagnosed patients. The present study aimed to examine how hope and ER may relate to psychosocial outcomes of patients newly diagnosed with cancer. The present study used a cross-sectional design with self-report questionnaires. Participants were newly diagnosed patients (N = 101) recruited from three cancer therapy clinics in a hospital. Patients completed measures of hope, ER (cognitive reappraisal and expressive suppression), and psychosocial well-being (life satisfaction and negative affectivity). Findings showed that (1) hope and reappraisal, but not suppression, were associated with well-being and (2) the interaction between hope and reappraisal was associated with well-being; reappraisal was not associated with well-being in high hope patients, while high reappraisal was associated with better well-being in low hope patients. Individual differences in hope and reappraisal appeared to be associated with psychosocial outcomes in newly diagnosed cancer patients. Hopeful thinking appeared to benefit patients' psychosocial well-being. In addition, an interaction effect between hope and reappraisal suggested that reappraisal as an ER strategy may be particularly adaptive for patients with low hope.
Statistical inference for the additive hazards model under outcome-dependent sampling.
Yu, Jichang; Liu, Yanyan; Sandler, Dale P; Zhou, Haibo
2015-09-01
Cost-effective study design and proper inference procedures for data from such designs are always of particular interests to study investigators. In this article, we propose a biased sampling scheme, an outcome-dependent sampling (ODS) design for survival data with right censoring under the additive hazards model. We develop a weighted pseudo-score estimator for the regression parameters for the proposed design and derive the asymptotic properties of the proposed estimator. We also provide some suggestions for using the proposed method by evaluating the relative efficiency of the proposed method against simple random sampling design and derive the optimal allocation of the subsamples for the proposed design. Simulation studies show that the proposed ODS design is more powerful than other existing designs and the proposed estimator is more efficient than other estimators. We apply our method to analyze a cancer study conducted at NIEHS, the Cancer Incidence and Mortality of Uranium Miners Study, to study the risk of radon exposure to cancer.
Statistical inference for the additive hazards model under outcome-dependent sampling
Yu, Jichang; Liu, Yanyan; Sandler, Dale P.; Zhou, Haibo
2015-01-01
Cost-effective study design and proper inference procedures for data from such designs are always of particular interests to study investigators. In this article, we propose a biased sampling scheme, an outcome-dependent sampling (ODS) design for survival data with right censoring under the additive hazards model. We develop a weighted pseudo-score estimator for the regression parameters for the proposed design and derive the asymptotic properties of the proposed estimator. We also provide some suggestions for using the proposed method by evaluating the relative efficiency of the proposed method against simple random sampling design and derive the optimal allocation of the subsamples for the proposed design. Simulation studies show that the proposed ODS design is more powerful than other existing designs and the proposed estimator is more efficient than other estimators. We apply our method to analyze a cancer study conducted at NIEHS, the Cancer Incidence and Mortality of Uranium Miners Study, to study the risk of radon exposure to cancer. PMID:26379363
Making intelligent systems team players: Additional case studies
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schreckenghost, Debra L.; Rhoads, Ron W.
1993-01-01
Observations from a case study of intelligent systems are reported as part of a multi-year interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. A series of studies were conducted to investigate issues in designing intelligent fault management systems in aerospace applications for effective human-computer interaction. The results of the initial study are documented in two NASA technical memoranda: TM 104738 Making Intelligent Systems Team Players: Case Studies and Design Issues, Volumes 1 and 2; and TM 104751, Making Intelligent Systems Team Players: Overview for Designers. The objective of this additional study was to broaden the investigation of human-computer interaction design issues beyond the focus on monitoring and fault detection in the initial study. The results of this second study are documented which is intended as a supplement to the original design guidance documents. These results should be of interest to designers of intelligent systems for use in real-time operations, and to researchers in the areas of human-computer interaction and artificial intelligence.
Lipid lowering with dietary supplements: focus on diabetes.
Rudkowska, Iwona
2012-06-01
Cardiovascular disease (CVD) is the predominant cause of mortality in type 2 diabetic (T2DM) patients. Dyslipidemia is a modifiable risk factor that should be treated early for CVD prevention. Further, dietary supplement intake is increasing in popularity worldwide. This review examines the recent meta-analyses and clinical studies on dietary supplements, specifically psyllium, garlic and green tea, on plasma lipids levels and glycemic control, as well as other potential CVD risk factors in T2DM patients. Generally, results demonstrate that psyllium supplements improve lipid profiles as well as glycemic control beyond a traditional diet in patients with T2DM. On the other hand, the results on the usefulness of garlic and green tea supplementation for dyslipidemia and hyperglycemia are uncertain. Overall, the addition of dietary supplements may be a therapeutic alternative to lower CVD risk factors in T2DM; however, more well-designed intervention studies are needed to assess the benefit of these dietary supplements. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Walczak, Adam; Butow, Phyllis N; Bu, Stella; Clayton, Josephine M
2016-01-01
To identify and synthesise evidence for interventions targeting end-of-life communication. Database, reference list and author searches were conducted to identify evaluations of end-of-life communication-focussed interventions. Data were extracted, synthesised and QUALSYST quality analyses were performed. Forty-five studies met inclusion criteria. Interventions targeted patients (n=6), caregivers (n=3), healthcare professionals (HCPs n=24) and multiple stakeholders (n=12). Interventions took various forms including communication skills training, education, advance care planning and structured practice changes. Substantial heterogeneity in study designs, outcomes, settings and measures was apparent and study quality was variable. A substantial number of end-of-life communication interventions have been evaluated. Interventions have particularly targeted HCPs in cancer settings, though patient, caregiver and multi-focal interventions have also been evaluated. While some interventions were efficacious in well-designed RCTs, most evidence was from less robust studies. While additional interventions targeting patients and caregivers are needed, multi-focal interventions may more effectively remove barriers to end-of-life communication. Despite the limitations evident in the existing literature, healthcare professionals may still derive useful insights into effective approaches to end-of-life communication if appropriate caution is exercised. However, additional RCTs, implementation studies and cost-benefit analyses are required to bolster arguments for implementing and resourcing communication interventions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
RANDELL, HEATHER
2017-01-01
Summary Displacement due to development projects such as dams, mines, and urban infrastructure often leads to livelihood decline among affected communities. The challenge, therefore, lies in implementing projects that achieve national or regional development goals while also generating positive social and economic outcomes for displaced populations. This paper uses a longitudinal, mixed-methods design to understand the short-term changes in wealth and subjective well-being of households displaced due to construction of the Belo Monte Dam in the Brazilian Amazon. The households were compensated by either cash or credit for their lost land and assets, and were then responsible for finding and purchasing new property. Using pre- and post-displacement household survey and semi-structured interview data, as well as data from a small comparison group, I find that wealth increased for the majority of the study population and that socioeconomic inequality decreased, as poorer households experienced greater improvements in housing conditions, assets, and property ownership. In addition, subjective well-being improved for most households, particularly among those who did not own land at baseline, those who gained assets such as vehicles, those who remained closer to the original study area, and those who remained in close proximity to other households from the study population. Moving to an urban destination was strongly associated with declines in well-being, as was moving far from family or friends. These results suggest that investing sufficient resources in a compensation-based resettlement program can benefit households displaced by large infrastructure projects in the short term, but additional data collection is needed after the completion of dam construction to determine whether these benefits are sustained over the longer term. PMID:28316364
Schneider, Anna; Weigl, Matthias
2018-01-01
Emergency departments (ED) are complex and dynamic work environments with various psychosocial work stressors that increase risks for providers' well-being. Yet, no systematic review is available which synthesizes the current research base as well as quantitatively aggregates data on associations between ED work factors and provider well-being outcomes. We aimed at synthesizing the current research base on quantitative associations between psychosocial work factors (classified into patient-/ task-related, organizational, and social factors) and mental well-being of ED providers (classified into positive well-being outcomes, affective symptoms and negative psychological functioning, cognitive-behavioural outcomes, and psychosomatic health complaints). A systematic literature search in eight databases was conducted in December 2017. Original studies were extracted following a stepwise procedure and predefined inclusion criteria. A standardized assessment of methodological quality and risk of bias was conducted for each study with the Quality Assessment Tool for Quantitative Studies from the Effective Public Health Practice Project. In addition to a systematic compilation of included studies, frequency and strength of quantitative associations were synthesized by means of harvest plots. Subgroup analyses for ED physicians and nurses were conducted. N = 1956 records were retrieved. After removal of duplicates, 1473 records were screened for titles and abstracts. 199 studies were eligible for full-text review. Finally, 39 original studies were included whereof 37 reported cross-sectional surveys. Concerning the methodological quality of included studies, the majority was evaluated as weak to moderate with considerable risk of bias. Most frequently surveyed provider outcomes were affective symptoms (e.g., burnout) and positive well-being outcomes (e.g., job satisfaction). 367 univariate associations and 370 multivariate associations were extracted with the majority being weak to moderate. Strong associations were mostly reported for social and organizational work factors. To the best of our knowledge, this review is the first to provide a quantitative summary of the research base on associations of psychosocial ED work factors and provider well-being. Conclusive results reveal that peer support, well-designed organizational structures, and employee reward systems balance the negative impact of adverse work factors on ED providers' well-being. This review identifies avenues for future research in this field including methodological advances by using quasi-experimental and prospective designs, representative samples, and adequate confounder control. Protocol registration number: PROSPERO 2016 CRD42016037220.
Designing novel Sn-Bi, Si-C and Ge-C nanostructures, using simple theoretical chemical similarities
NASA Astrophysics Data System (ADS)
Zdetsis, Aristides D.
2011-04-01
A framework of simple, transparent and powerful concepts is presented which is based on isoelectronic (or isovalent) principles, analogies, regularities and similarities. These analogies could be considered as conceptual extensions of the periodical table of the elements, assuming that two atoms or molecules having the same number of valence electrons would be expected to have similar or homologous properties. In addition, such similar moieties should be able, in principle, to replace each other in more complex structures and nanocomposites. This is only partly true and only occurs under certain conditions which are investigated and reviewed here. When successful, these concepts are very powerful and transparent, leading to a large variety of nanomaterials based on Si and other group 14 elements, similar to well known and well studied analogous materials based on boron and carbon. Such nanomaterias designed in silico include, among many others, Si-C, Sn-Bi, Si-C and Ge-C clusters, rings, nanowheels, nanorodes, nanocages and multidecker sandwiches, as well as silicon planar rings and fullerenes similar to the analogous sp2 bonding carbon structures. It is shown that this pedagogically simple and transparent framework can lead to an endless variety of novel and functional nanomaterials with important potential applications in nanotechnology, nanomedicine and nanobiology. Some of the so called predicted structures have been already synthesized, not necessarily with the same rational and motivation. Finally, it is anticipated that such powerful and transparent rules and analogies, in addition to their predictive power, could also lead to far-reaching interpretations and a deeper understanding of already known results and information.
Designing novel Sn-Bi, Si-C and Ge-C nanostructures, using simple theoretical chemical similarities.
Zdetsis, Aristides D
2011-04-27
A framework of simple, transparent and powerful concepts is presented which is based on isoelectronic (or isovalent) principles, analogies, regularities and similarities. These analogies could be considered as conceptual extensions of the periodical table of the elements, assuming that two atoms or molecules having the same number of valence electrons would be expected to have similar or homologous properties. In addition, such similar moieties should be able, in principle, to replace each other in more complex structures and nanocomposites. This is only partly true and only occurs under certain conditions which are investigated and reviewed here. When successful, these concepts are very powerful and transparent, leading to a large variety of nanomaterials based on Si and other group 14 elements, similar to well known and well studied analogous materials based on boron and carbon. Such nanomaterias designed in silico include, among many others, Si-C, Sn-Bi, Si-C and Ge-C clusters, rings, nanowheels, nanorodes, nanocages and multidecker sandwiches, as well as silicon planar rings and fullerenes similar to the analogous sp2 bonding carbon structures. It is shown that this pedagogically simple and transparent framework can lead to an endless variety of novel and functional nanomaterials with important potential applications in nanotechnology, nanomedicine and nanobiology. Some of the so called predicted structures have been already synthesized, not necessarily with the same rational and motivation. Finally, it is anticipated that such powerful and transparent rules and analogies, in addition to their predictive power, could also lead to far-reaching interpretations and a deeper understanding of already known results and information.
Billings, John; Georghiou, Theo; Blunt, Ian; Bardsley, Martin
2013-01-01
Objectives To test the performance of new variants of models to identify people at risk of an emergency hospital admission. We compared (1) the impact of using alternative data sources (hospital inpatient, A&E, outpatient and general practitioner (GP) electronic medical records) (2) the effects of local calibration on the performance of the models and (3) the choice of population denominators. Design Multivariate logistic regressions using person-level data adding each data set sequentially to test value of additional variables and denominators. Setting 5 Primary Care Trusts within England. Participants 1 836 099 people aged 18–95 registered with GPs on 31 July 2009. Main outcome measures Models to predict hospital admission and readmission were compared in terms of the positive predictive value and sensitivity for various risk strata and with the receiver operating curve C statistic. Results The addition of each data set showed moderate improvement in the number of patients identified with little or no loss of positive predictive value. However, even with inclusion of GP electronic medical record information, the algorithms identified only a small number of patients with no emergency hospital admissions in the previous 2 years. The model pooled across all sites performed almost as well as the models calibrated to local data from just one site. Using population denominators from GP registers led to better case finding. Conclusions These models provide a basis for wider application in the National Health Service. Each of the models examined produces reasonably robust performance and offers some predictive value. The addition of more complex data adds some value, but we were unable to conclude that pooled models performed less well than those in individual sites. Choices about model should be linked to the intervention design. Characteristics of patients identified by the algorithms provide useful information in the design/costing of intervention strategies to improve care coordination/outcomes for these patients. PMID:23980068
Different Evolutionary Modifications as a Guide to Rewire Two-Component Systems
Krueger, Beate; Friedrich, Torben; Förster, Frank; Bernhardt, Jörg; Gross, Roy; Dandekar, Thomas
2012-01-01
Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases. PMID:22586357
[The Murcia Twin Registry. A resource for research on health-related behaviour].
Ordoñana, Juan R; Sánchez Romera, Juan F; Colodro-Conde, Lucía; Carrillo, Eduvigis; González-Javier, Francisca; Madrid-Valero, Juan J; Morosoli-García, José J; Pérez-Riquelme, Francisco; Martínez-Selva, José M
Genetically informative designs and, in particular, twin studies, are the most widely used methodology to analyse the relative contribution of genetic and environmental factors to inter-individual variability. These studies basically compare the degree of phenotypical similarity between monozygotic and dizygotic twin pairs. In addition to the traditional estimate of heritability, this kind of registry enables a wide variety of analyses which are unique due to the characteristics of the sample. The Murcia Twin Registry is population-based and focused on the analysis of health-related behaviour. The observed prevalence of health problems is comparable to that of other regional and national reference samples, which guarantees its representativeness. Overall, the characteristics of the Registry facilitate developing various types of research as well as genetically informative designs, and collaboration with different initiatives and consortia. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Allen, John M.; Elbasiouny, Sherif M.
2018-06-01
Objective. Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. Approach. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Main results. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Significance. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.
Allen, John M; Elbasiouny, Sherif M
2018-06-01
Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.
Parametric Instability of Static Shafts-Disk System Using Finite Element Method
NASA Astrophysics Data System (ADS)
Wahab, A. M.; Rasid, Z. A.; Abu, A.
2017-10-01
Parametric instability condition is an important consideration in design process as it can cause failure in machine elements. In this study, parametric instability behaviour was studied for a simple shaft and disk system that was subjected to axial load under pinned-pinned boundary condition. The shaft was modelled based on the Nelson’s beam model, which considered translational and rotary inertias, transverse shear deformation and torsional effect. The Floquet’s method was used to estimate the solution for Mathieu equation. Finite element codes were developed using MATLAB to establish the instability chart. The effect of additional disk mass on the stability chart was investigated for pinned-pinned boundary conditions. Numerical results and illustrative examples are given. It is found that the additional disk mass decreases the instability region during static condition. The location of the disk as well has significant effect on the instability region of the shaft.
Information Systems at Enterprise. Design of Secure Network of Enterprise
NASA Astrophysics Data System (ADS)
Saigushev, N. Y.; Mikhailova, U. V.; Vedeneeva, O. A.; Tsaran, A. A.
2018-05-01
No enterprise and company can do without designing its own corporate network in today's information society. It accelerates and facilitates the work of employees at any level, but contains a big threat to confidential information of the company. In addition to the data theft attackers, there are plenty of information threats posed by modern malware effects. In this regard, the computational security of corporate networks is an important component of modern information technologies of computer security for any enterprise. This article says about the design of the protected corporate network of the enterprise that provides the computers on the network access to the Internet, as well interoperability with the branch. The access speed to the Internet at a high level is provided through the use of high-speed access channels and load balancing between devices. The security of the designed network is performed through the use of VLAN technology as well as access lists and AAA server.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malobabic, Sina; Jupe, Marco; Ristau, Detlev
Nowadays, Ion Beam Sputter (IBS) processes are very well optimized on an empirical basis. To achieve further progresses, a modification of the IBS process by guiding the coating material using an axial magnetic field and an additional electrical field has been studied. The electro-magnetic (EM) field leads to a significant change in plasma properties and deposition rate distributions, whereas an increase in deposition rate along the centerline of the axial EM field around 150% was observed. These fundamental studies on the prototype are the basis for the development of an applicable and workable design of a separation device.
NEON, Establishing a Standardized Network for Groundwater Observations
NASA Astrophysics Data System (ADS)
Fitzgerald, M.; Schroeter, N.; Goodman, K. J.; Roehm, C. L.
2013-12-01
The National Ecological Observatory Network (NEON) is establishing a standardized set of data collection systems comprised of in-situ sensors and observational sampling to obtain data fundamental to the analysis of environmental change at a continental scale. NEON will be collecting aquatic, terrestrial, and atmospheric data using Observatory-wide standardized designs and methods via a systems engineering approach. This approach ensures a wealth of high quality data, data algorithms, and models that will be freely accessible to all communities such as academic researchers, policy makers, and the general public. The project is established to provide 30 years of data which will enable prediction and forecasting of drivers and responses of ecological change at scales ranging from localized responses through regional gradients and up to the continental scale. The Observatory is a distributed system of sites spread across the United States, including Alaska, Hawaii, and Puerto Rico, which is subdivided into 20 statistically unique domains, based on a set of 18 ecologically important parameters. Each domain contains at least one core aquatic and terrestrial site which are located in unmanaged lands, and up to 2 additional sites selected to study domain specific questions such as nitrogen deposition gradients and responses of land use change activities on the ecosystem. Here, we present the development of NEON's groundwater observation well network design and the timing strategy for sampling groundwater chemistry. Shallow well networks, up to 100 feet in depth, will be installed at NEON aquatic sites and will allow for observation of localized ecohydrologic site conditions, by providing basic spatio-temporal near-real time data on groundwater parameters (level, temperature, conductivity) collected from in situ high-resolution instrumentation positioned in each well; and biannual sampling of geochemical and nutrient (N and P) concentrations in a subset of wells for each site. These data will be used to calculate several higher level data products such as hydrologic gradients which drive nutrient fluxes and their change over time. When coupled with other NEON data products, these data will allow for examining surface water/groundwater interactions as well as additional terrestrial and aquatic linkages, such as riparian vegetation response to changing ecohydrologic conditions (i.e. groundwater withdraw for irrigation, land use change) and natural sources (i.e. drought and changing precipitation patterns). This work will present the well network arrays designed for the different types of aquatic sites (1st/2nd order streams, larger rivers, and lakes) including variations on the well network designs for sites where physical constraints hinder a consistent design due to topographic (steep topography, wetlands) or physical constraints (such as permafrost). A generalized sampling strategy for each type of environment will also be detailed indicating the time of year, largely governed by hydrologic conditions, when sampling should take place to provide consistent groundwater chemistry data to allow for analyzing geochemical trends spatially across the network and through time.
Verma, Arjun; Fratto, Brian E.; Privman, Vladimir; Katz, Evgeny
2016-01-01
We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed. PMID:27399702
Hodek, Ondřej; Křížek, Tomáš; Coufal, Pavel; Ryšlavá, Helena
2017-03-01
In this study, we optimized a method for the determination of free amino acids in Nicotiana tabacum leaves. Capillary electrophoresis with contactless conductivity detector was used for the separation of 20 proteinogenic amino acids in acidic background electrolyte. Subsequently, the conditions of extraction with HCl were optimized for the highest extraction yield of the amino acids because sample treatment of plant materials brings some specific challenges. Central composite face-centered design with fractional factorial design was used in order to evaluate the significance of selected factors (HCl volume, HCl concentration, sonication, shaking) on the extraction process. In addition, the composite design helped us to find the optimal values for each factor using the response surface method. The limits of detection and limits of quantification for the 20 proteinogenic amino acids were found to be in the order of 10 -5 and 10 -4 mol l -1 , respectively. Addition of acetonitrile to the sample was tested as a method commonly used to decrease limits of detection. Ambiguous results of this experiment pointed out some features of plant extract samples, which often required specific approaches. Suitability of the method for metabolomic studies was tested by analysis of a real sample, in which all amino acids, except for L-methionine and L-cysteine, were successfully detected. The optimized extraction process together with the capillary electrophoresis method can be used for the determination of proteinogenic amino acids in plant materials. The resulting inexpensive, simple, and robust method is well suited for various metabolomic studies in plants. As such, the method represents a valuable tool for research and practical application in the fields of biology, biochemistry, and agriculture.
Status and Plan for The Upgrade of The CMS Pixel Detector
NASA Astrophysics Data System (ADS)
Lu, Rong-Shyang; CMS Collaboration
2016-04-01
The silicon pixel detector is the innermost component of the CMS tracking system and plays a crucial role in the all-silicon CMS tracker. While the current pixel tracker is designed for and performing well at an instantaneous luminosity of up to 1 ×1034cm-2s-1, it can no longer be operated efficiently at significantly higher values. Based on the strong performance of the LHC accelerator, it is anticipated that peak luminosities of two times the design luminosity are likely to be reached before 2018 and perhaps significantly exceeded in the running period until 2022, referred to as LHC Run 3. Therefore, an upgraded pixel detector, referred to as the phase 1 upgrade, is planned for the year-end technical stop in 2016. With a new pixel readout chip (ROC), an additional fourth layer, two additional endcap disks, and a significantly reduced material budget the upgraded pixel detector will be able to sustain the efficiency of the pixel tracker at the increased requirements imposed by high luminosities and pile-up. The main new features of the upgraded pixel detector will be an ultra-light mechanical design, a digital readout chip with higher rate capability and a new cooling system. These and other design improvements, along with results of Monte Carlo simulation studies for the expected performance of the new pixel detector, will be discussed and compared to those of the current CMS detector.
Mohammadi-Abdar, Hassan; Ridgel, Angela L.; Discenzo, Fred M.; Loparo, Kenneth A.
2016-01-01
Recent studies in rehabilitation of Parkinson’s disease (PD) have shown that cycling on a tandem bike at a high pedaling rate can reduce the symptoms of the disease. In this research, a smart motorized bicycle has been designed and built for assisting Parkinson’s patients with exercise to improve motor function. The exercise bike can accurately control the rider’s experience at an accelerated pedaling rate while capturing real-time test data. Here, the design and development of the electronics and hardware as well as the software and control algorithms are presented. Two control algorithms have been developed for the bike; one that implements an inertia load (static mode) and one that implements a speed reference (dynamic mode). In static mode the bike operates as a regular exercise bike with programmable resistance (load) that captures and records the required signals such as heart rate, cadence and power. In dynamic mode the bike operates at a user-selected speed (cadence) with programmable variability in speed that has been shown to be essential to achieving the desired motor performance benefits for PD patients. In addition, the flexible and extensible design of the bike permits readily changing the control algorithm and incorporating additional I/O as needed to provide a wide range of riding experiences. Furthermore, the network-enabled controller provides remote access to bike data during a riding session. PMID:27298575
NASA Astrophysics Data System (ADS)
Ryczko, K.; Sek, G.; Misiewicz, J.
2013-12-01
Band structure properties of the type-II W-design AlSb/InAs/GaIn(As)Sb/InAs/AlSb quantum wells have been investigated theoretically in a systematic manner and with respect to their use in the active region of interband cascade laser for a broad range of emission in mid infrared between below 3 to beyond 10 μm. Eight-band k.p approach has been utilized to calculate the electronic subbands. The fundamental optical transition energy and the corresponding oscillator strength have been determined in function of the thickness of InAs and GaIn(As)Sb layers and the composition of the latter. There have been considered active structures on two types of relevant substrates, GaSb and InAs, introducing slightly modified strain conditions. Additionally, the effect of external electric field has been taken into account to simulate the conditions occurring in the operational devices. The results show that introducing arsenic as fourth element into the valence band well of the type-II W-design system, and then altering its composition, can efficiently enhance the transition oscillator strength and allow additionally increasing the emission wavelength, which makes this solution prospective for improved performance and long wavelength interband cascade lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryczko, K.; Sęk, G.; Misiewicz, J.
Band structure properties of the type-II W-design AlSb/InAs/GaIn(As)Sb/InAs/AlSb quantum wells have been investigated theoretically in a systematic manner and with respect to their use in the active region of interband cascade laser for a broad range of emission in mid infrared between below 3 to beyond 10 μm. Eight-band k·p approach has been utilized to calculate the electronic subbands. The fundamental optical transition energy and the corresponding oscillator strength have been determined in function of the thickness of InAs and GaIn(As)Sb layers and the composition of the latter. There have been considered active structures on two types of relevant substrates, GaSbmore » and InAs, introducing slightly modified strain conditions. Additionally, the effect of external electric field has been taken into account to simulate the conditions occurring in the operational devices. The results show that introducing arsenic as fourth element into the valence band well of the type-II W-design system, and then altering its composition, can efficiently enhance the transition oscillator strength and allow additionally increasing the emission wavelength, which makes this solution prospective for improved performance and long wavelength interband cascade lasers.« less
Optimal design of focused experiments and surveys
NASA Astrophysics Data System (ADS)
Curtis, Andrew
1999-10-01
Experiments and surveys are often performed to obtain data that constrain some previously underconstrained model. Often, constraints are most desired in a particular subspace of model space. Experiment design optimization requires that the quality of any particular design can be both quantified and then maximized. This study shows how the quality can be defined such that it depends on the amount of information that is focused in the particular subspace of interest. In addition, algorithms are presented which allow one particular focused quality measure (from the class of focused measures) to be evaluated efficiently. A subclass of focused quality measures is also related to the standard variance and resolution measures from linearized inverse theory. The theory presented here requires that the relationship between model parameters and data can be linearized around a reference model without significant loss of information. Physical and financial constraints define the space of possible experiment designs. Cross-well tomographic examples are presented, plus a strategy for survey design to maximize information about linear combinations of parameters such as bulk modulus, κ =λ+ 2μ/3.
Hierarchical Bayesian Model Averaging for Chance Constrained Remediation Designs
NASA Astrophysics Data System (ADS)
Chitsazan, N.; Tsai, F. T.
2012-12-01
Groundwater remediation designs are heavily relying on simulation models which are subjected to various sources of uncertainty in their predictions. To develop a robust remediation design, it is crucial to understand the effect of uncertainty sources. In this research, we introduce a hierarchical Bayesian model averaging (HBMA) framework to segregate and prioritize sources of uncertainty in a multi-layer frame, where each layer targets a source of uncertainty. The HBMA framework provides an insight to uncertainty priorities and propagation. In addition, HBMA allows evaluating model weights in different hierarchy levels and assessing the relative importance of models in each level. To account for uncertainty, we employ a chance constrained (CC) programming for stochastic remediation design. Chance constrained programming was implemented traditionally to account for parameter uncertainty. Recently, many studies suggested that model structure uncertainty is not negligible compared to parameter uncertainty. Using chance constrained programming along with HBMA can provide a rigorous tool for groundwater remediation designs under uncertainty. In this research, the HBMA-CC was applied to a remediation design in a synthetic aquifer. The design was to develop a scavenger well approach to mitigate saltwater intrusion toward production wells. HBMA was employed to assess uncertainties from model structure, parameter estimation and kriging interpolation. An improved harmony search optimization method was used to find the optimal location of the scavenger well. We evaluated prediction variances of chloride concentration at the production wells through the HBMA framework. The results showed that choosing the single best model may lead to a significant error in evaluating prediction variances for two reasons. First, considering the single best model, variances that stem from uncertainty in the model structure will be ignored. Second, considering the best model with non-dominant model weight may underestimate or overestimate prediction variances by ignoring other plausible propositions. Chance constraints allow developing a remediation design with a desirable reliability. However, considering the single best model, the calculated reliability will be different from the desirable reliability. We calculated the reliability of the design for the models at different levels of HBMA. The results showed that by moving toward the top layers of HBMA, the calculated reliability converges to the chosen reliability. We employed the chance constrained optimization along with the HBMA framework to find the optimal location and pumpage for the scavenger well. The results showed that using models at different levels in the HBMA framework, the optimal location of the scavenger well remained the same, but the optimal extraction rate was altered. Thus, we concluded that the optimal pumping rate was sensitive to the prediction variance. Also, the prediction variance was changed by using different extraction rate. Using very high extraction rate will cause prediction variances of chloride concentration at the production wells to approach zero regardless of which HBMA models used.
Relevance and reliability of experimental data in human health risk assessment of pesticides.
Kaltenhäuser, Johanna; Kneuer, Carsten; Marx-Stoelting, Philip; Niemann, Lars; Schubert, Jens; Stein, Bernd; Solecki, Roland
2017-08-01
Evaluation of data relevance, reliability and contribution to uncertainty is crucial in regulatory health risk assessment if robust conclusions are to be drawn. Whether a specific study is used as key study, as additional information or not accepted depends in part on the criteria according to which its relevance and reliability are judged. In addition to GLP-compliant regulatory studies following OECD Test Guidelines, data from peer-reviewed scientific literature have to be evaluated in regulatory risk assessment of pesticide active substances. Publications should be taken into account if they are of acceptable relevance and reliability. Their contribution to the overall weight of evidence is influenced by factors including test organism, study design and statistical methods, as well as test item identification, documentation and reporting of results. Various reports make recommendations for improving the quality of risk assessments and different criteria catalogues have been published to support evaluation of data relevance and reliability. Their intention was to guide transparent decision making on the integration of the respective information into the regulatory process. This article describes an approach to assess the relevance and reliability of experimental data from guideline-compliant studies as well as from non-guideline studies published in the scientific literature in the specific context of uncertainty and risk assessment of pesticides. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Heat pipe cooled power magnetics
NASA Technical Reports Server (NTRS)
Chester, M. S.
1979-01-01
A high frequency, high power, low specific weight (0.57 kg/kW) transformer developed for space use was redesigned with heat pipe cooling allowing both a reduction in weight and a lower internal temperature rise. The specific weight of the heat pipe cooled transformer was reduced to 0.4 kg/kW and the highest winding temperature rise was reduced from 40 C to 20 C in spite of 10 watts additional loss. The design loss/weight tradeoff was 18 W/kg. Additionally, allowing the same 40 C winding temperature rise as in the original design, the KVA rating is increased to 4.2 KVA, demonstrating a specific weight of 0.28 kg/kW with the internal loss increased by 50W. This space environment tested heat pipe cooled design performed as well electrically as the original conventional design, thus demonstrating the advantages of heat pipes integrated into a high power, high voltage magnetic. Another heat pipe cooled magnetic, a 3.7 kW, 20A input filter inductor was designed, developed, built, tested, and described. The heat pipe cooled magnetics are designed to be Earth operated in any orientation.
Li, Shi; Batterman, Stuart; Wasilevich, Elizabeth; Wahl, Robert; Wirth, Julie; Su, Feng-Chiao; Mukherjee, Bhramar
2011-11-01
Asthma morbidity has been associated with ambient air pollutants in time-series and case-crossover studies. In such study designs, threshold effects of air pollutants on asthma outcomes have been relatively unexplored, which are of potential interest for exploring concentration-response relationships. This study analyzes daily data on the asthma morbidity experienced by the pediatric Medicaid population (ages 2-18 years) of Detroit, Michigan and concentrations of pollutants fine particles (PM2.5), CO, NO2 and SO2 for the 2004-2006 period, using both time-series and case-crossover designs. We use a simple, testable and readily implementable profile likelihood-based approach to estimate threshold parameters in both designs. Evidence of significant increases in daily acute asthma events was found for SO2 and PM2.5, and a significant threshold effect was estimated for PM2.5 at 13 and 11 μg m(-3) using generalized additive models and conditional logistic regression models, respectively. Stronger effect sizes above the threshold were typically noted compared to standard linear relationship, e.g., in the time series analysis, an interquartile range increase (9.2 μg m(-3)) in PM2.5 (5-day-moving average) had a risk ratio of 1.030 (95% CI: 1.001, 1.061) in the generalized additive models, and 1.066 (95% CI: 1.031, 1.102) in the threshold generalized additive models. The corresponding estimates for the case-crossover design were 1.039 (95% CI: 1.013, 1.066) in the conditional logistic regression, and 1.054 (95% CI: 1.023, 1.086) in the threshold conditional logistic regression. This study indicates that the associations of SO2 and PM2.5 concentrations with asthma emergency department visits and hospitalizations, as well as the estimated PM2.5 threshold were fairly consistent across time-series and case-crossover analyses, and suggests that effect estimates based on linear models (without thresholds) may underestimate the true risk. Copyright © 2011 Elsevier Inc. All rights reserved.
Using Set Model for Learning Addition of Integers
ERIC Educational Resources Information Center
Lestari, Umi Puji; Putri, Ratu Ilma Indra; Hartono, Yusuf
2015-01-01
This study aims to investigate how set model can help students' understanding of addition of integers in fourth grade. The study has been carried out to 23 students and a teacher of IVC SD Iba Palembang in January 2015. This study is a design research that also promotes PMRI as the underlying design context and activity. Results showed that the…
Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)
NASA Astrophysics Data System (ADS)
Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.
2017-12-01
Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.
Designing a Polymerase Chain Reaction Device Working with Radiation and Convection Heat Transfer
NASA Astrophysics Data System (ADS)
Madadelahi, M.; Kalan, K.; Shamloo, A.
2018-05-01
Gene proliferation is vital for infectious and genetic diseases diagnosis from a blood sample, even before birth. In addition, DNA sequencing, genetic finger-print analyzing, and genetic mutation detecting can be mentioned as other procedures requiring gene reproduction. Polymerase chain reaction, briefly known as PCR, is a convenient and effective way to accomplish this task; where the DNA containing sample faces three temperature phases alternatively. These phases are known as denaturation, annealing, and elongation/extension which in this study -regarding the type of the primers and the target DNA sequence- are set to occur at 95, 58, and 72 degrees of Celsius. In this study, a PCR device has been designed and fabricated which uses radiation and convection heat transfer at the same time to set and control the mentioned thermal sections. A 300W incandescent light bulb able to immediately turn off and on along with two 8×8 cm DC fans, controlled by a microcontroller as well as PID and PD controller codes are used to monitor the applied thermal cycles. In designing the controller codes it has been concerned that they not only control the temperature over the set-points as well as possible, but also increase the temperature variation rate between each two phases. The temperature data were plotted and DNA samples were used to assess the device function.
Guterman, Neil B; Bellamy, Jennifer L; Banman, Aaron
2018-02-01
Despite mounting evidence on the importance of fathers in children's development, evidence-based perinatal home visitation programs have largely overlooked fathers in the design and delivery of services. This paper describes the design, development, and pilot testing of the "Dads Matter" enhancement to standard home visiting services. Dads Matter is a manualized intervention package designed to fully incorporate fathers into perinatal home visiting services. Twenty-four families were enrolled in a pilot study to assess the feasibility, acceptability, and preliminary outcomes of the intervention. Using a quasi-experimental time-lagged design, 12 families received standard home visiting services and completed baseline and four-month post-tests. Home visitor staff were then trained and supervised to implement the Dads Matter enhancement in addition to standard services. Twelve additional families were then enrolled and completed baseline and four-month post-tests. Implementation data indicated that Dads Matter was implemented as planned. Cohen's d scores on outcome measures indicate positive trends associated with Dads Matter in the quality of the mother-father relationship, perceived stress reported by both parents, fathers' involvement with the child, maltreatment indicators, and fathers' verbalizations toward the infant. Effect sizes generally ranged from moderate to large in magnitude and were larger than overall effect sizes of home visitation services alone reported in prior meta-analyses. Dads Matter appears to be a feasible, acceptable, and promising approach to improving fathers' engagement in home visiting services and promoting family and child well-being. Copyright © 2017. Published by Elsevier Ltd.
Designing SoTL Studies--Part II: Practicality
ERIC Educational Resources Information Center
Bartsch, Robert A.
2013-01-01
This chapter suggests solutions to common practical problems in designing SoTL studies. In addition, the advantages and disadvantages of different types of designs are discussed. [Part I available at EJ1029363.
Resnik, Linda; Patel, Tarpit; Cooney, Shane G; Crisco, Joseph J; Fantini, Christopher
2016-01-01
This case study compares the impact of two prosthetic socket designs, a "traditional" transhumeral (TH) socket design and a Compression Released Stabilized (CRS) socket. A CRS socket was compared to the existing socket of two persons with transhumeral amputation. Comparisons included assessments of patient comfort and satisfaction with fit, as well as dynamic kinematic assessment using a novel high-speed, high-resolution, bi-plane video radiography system (XROMM, for X-ray Reconstruction of Moving Morphology). Subjects were more satisfied with the comfort of the traditional sockets, although they had positive impressions about aspects of the fit and style of the CRS socket, and thought that it provided better control. Dynamic kinematic assessment revealed that the CRS socket provided better control of the residual limb within the socket, and had less slippage as compared to a traditional TH socket design. The TH CRS socket provided better control of the residual limb within the socket, and had less slippage. However, participants were less satisfied with the comfort and overall utility of the CRS socket, and stated that additional fitting visits/modifications to the CRS socket were needed. It is possible that satisfaction with the CRS socket may have improved with prosthetic adjustment and more acclimation time. Implications for Rehabilitation A comfortable, good fitting prosthetic socket is the key factor in determining how long (or if) an upper limb amputee can tolerate wearing a prosthesis. This case series was a comparison of two socket designs, a 'traditional' socket design and a Compression Released Stabilized (CRS) socket design in persons with transhumeral amputation. The CRS socket provided better control of the residual limb within the socket, and had less slippage. However, its tightness made it more difficult to don. Both subjects were less satisfied with the comfort and overall utility of the CRS socket. However, satisfaction might have been improved with additional fitting visits and more acclimation time.
Yoga therapy for promoting emotional sensitivity in University students.
Ganpat, Tikhe Sham; Dash, Sasmita; Ramarao, Nagendra Hongasandra
2014-01-01
Students need emotional intelligence (EI) for their better academic excellence. There are three important psychological dimensions of EI: Emotional sensitivity (ES), emotional maturity (EM) and emotional competency (EC), which motivate students to recognize truthfully, interpret honestly and handle tactfully the dynamics of their behavioral pattern. The study was designed to assess ES in the students undergoing yoga therapy program in the form of yoga instructor's course (YIC) module. One hundred and eighty four YIC students with 25.77 ± 4.85 years of mean age participated in this study of 21 days duration (a single group pre-post design). The ES data was collected before (pre) and after (post) YIC module using Emotional Quotient test developed by Dr Dalip Singh and Dr N K Chadha. Means, standard deviations, Kolmogorov-Smirnov test, and Wilcoxon signed rank test were used for analyzing the data with the help of SPSS 16. The data analysis showed 3.63% significant increase (P < 0.01) in ES. The present study suggests that YIC module can result in improvement of ES among university students, thus paving the way for their academic success. Additional well-designed studies are needed before a strong recommendation can be made.
Bardoel, J W; Stadelmann, W K; Perez-Abadia, G A; Galandiuk, S; Zonnevijlle, E D; Maldonado, C; Stremel, R W; Tobin, G R; Kon, M; Barker, J H
2001-02-01
Fecal stomal incontinence is a problem that continues to defy surgical treatment. Previous attempts to create continent stomas using dynamic myoplasty have had limited success due to denervation atrophy of the muscle flap used in the creation of the sphincter and because of muscle fatigue resulting from continuous electrical stimulation. To address the problem of denervation atrophy, a stomal sphincter was designed using the most caudal segment of the rectus abdominis muscle, preserving its intercostal innervation as well as its vascular supply. The purpose of the present study was to determine whether this rectus abdominis muscle island flap sphincter design could maintain stomal continence acutely. In this experiment, six dogs were used to create eight rectus abdominis island flap stoma sphincters around a segment of distal ileum. Initially, the intraluminal stomal pressures generated by the sphincter using different stimulation frequencies were determined. The ability of this stomal sphincter to generate continence at different intraluminal bowel pressures was then assessed. In all cases, the rectus abdominis muscle sphincter generated peak pressures well above those needed to maintain stomal continence (60 mmHg). In addition, each sphincter was able to maintain stomal continence at all intraluminal bowel pressures tested.
A study of the temporal variability of atrazine in private well water. part ii: analysis of data
Pinsky, Paul; Lorber, Matthew; Johnson, Kent; Kross, Burton; Burmeister, Leon; Wilkins, Amina; Hallberg, George
1997-01-01
In 1988, the Iowa Department of Natural Resources, along withthe University of Iowa, conducted the Statewide Rural WellWater Survey, commonly known as SWRL. A total of 686private rural drinking water wells was selected by use of aprobability sample and tested for pesticides and nitrate. A subsetof these wells, the 10% repeat wells, were additionally sampledin October, 1990 and June, 1991. Starting in November, 1991,the University of Iowa, with sponsorship from the United StatesEnvironmental Protection Agency, revisited the 10% repeat wellsto begin a study of the temporal variability of atrazine and nitratein wells. Other wells, which had originally tested positive foratrazine in SWRL but were not in the 10% population, wereadded to the study population. Temporal sampling for a year-long period began in February of 1992 and concluded in Januaryof 1993. All wells were sampled monthly, a subset was sampledweekly, and a second subset was sampled for 14 day consecutiveperiods. Of the 67 wells in the 10% population tested monthly,7 (10.4%) tested positive for atrazine at least once during theyear, and 3 (4%) were positive each of the 12 months. Theaverage concentration in the 7 wells was 0.10 µg/L. Fornitrate, 15 (22%) wells in the 10% repeat population monthlysampling were above the Maximum Contaminant Level of 10 mg/L at least once. This paper, the second of two papers on thisstudy, describes the analysis of data from the survey. The firstpaper (Lorber et al., 1997) reviews the study design, theanalytical methodologies, and development of the data base.
Moreno-Hay, I; Okeson, J P
2015-11-01
The purpose of this review was to present a comprehensive review of the scientific evidence available in the literature regarding the effect of altering the occlusal vertical dimens-ion (OVD) on producing temporomandibular disorders. The authors conducted a PubMed search with the following search terms 'temporoman-dibular disorders', 'occlusal vertical dimension', 'stomatognatic system', 'masticatory muscles' and 'skeletal muscle'. Bibliographies of all retrieved articles were consulted for additional publications. Hand-searched publications from 1938 were included. The literature review revealed a lack of well-designed studies. Traditional beliefs have been based on case reports and anecdotal opinions rather than on well-controlled clinical trials. The available evidence is weak and seems to indicate that the stomatognathic system has the ability to adapt rapidly to moderate changes in occlusal vertical dimension (OVD). Nevertheless, it should be taken into consideration that in some patients mild transient symptoms may occur, but they are most often self-limiting and without major consequence. In conclusion, there is no indication that permanent alteration in the OVD will produce long-lasting TMD symptoms. However, additional studies are needed. © 2015 John Wiley & Sons Ltd.
Public health protection through bank filtration - Kearney Nebraska case study
NASA Astrophysics Data System (ADS)
Esseks, E.; Bellamy, W.; Heinemann, T.; Stocker, K.
2003-04-01
The investigation of Kearney's bank filtration system provides further evidence of this technology's capability to assist in providing public health protection, as it relates to drinking water. The results of hydrogeologic and treatment studies demonstrate the capabilities of the Platte River aquifer materials, in this locale, to remove pathogens and their surrogates. Continual monitoring and evaluations will establish the system’s longevity and continued treatment efficacy. The City of Kearney is located in south central Nebraska. The City owns and operates a public water system that serves approximately 24,889 people. The water system includes 12 wells located on Killgore Island in the Platte River. In 1994, the Nebraska Department of Health and Human Services System (Department) determined that 3 wells in the wellfield serving the City of Kearney were ground water under the direct influence of surface water. This determination was based on results of microscopic particulate analysis (MPA). The City of Kearney undertook the natural bank filtration study to determine whether natural bank filtration was occurring at the site and if the filtration was sufficient to meet pathogen treatment requirements designed to protect public health. A preliminary study was undertaken from June through October 1995. This coincided with the City’s peak pumping time, which may be the time when the influence of the River is greatest on the wellfield wells. Hydrogeologic studies assisted in selecting wells that were at highest risk based on shortest travel times and greatest differential head. Data collected included particle counts, MPAs, turbidity, coliform, centrifugate pellet evaluation (CPE) volumes, pH, conductivity, and temperature. Following analysis of data collected during the preliminary 18-week study the Department granted conditional approval of 2-log credit for removal of Giardia lamblia and 1-log credit for removal of viruses through bank filtration, pending the results of an additional 12-month study. Additional monitoring took place from October 1997 to October 1998. Results of the second study supported the findings of the original 18-week study. The Department finalized approval of the removal credits on December 16, 1999. This paper discusses the 2 studies, ongoing monitoring, decisions made by the Department, and issues the City and the Department have addressed and will be addressing with the addition of new treatment requirements to surface water treatment rules. In addition, this paper examines features of the Island wellfield that may explain the documented bank filtration treatment efficiencies.
Additive Manufacturing and High-Performance Computing: a Disruptive Latent Technology
NASA Astrophysics Data System (ADS)
Goodwin, Bruce
2015-03-01
This presentation will discuss the relationship between recent advances in Additive Manufacturing (AM) technology, High-Performance Computing (HPC) simulation and design capabilities, and related advances in Uncertainty Quantification (UQ), and then examines their impacts upon national and international security. The presentation surveys how AM accelerates the fabrication process, while HPC combined with UQ provides a fast track for the engineering design cycle. The combination of AM and HPC/UQ almost eliminates the engineering design and prototype iterative cycle, thereby dramatically reducing cost of production and time-to-market. These methods thereby present significant benefits for US national interests, both civilian and military, in an age of austerity. Finally, considering cyber security issues and the advent of the ``cloud,'' these disruptive, currently latent technologies may well enable proliferation and so challenge both nuclear and non-nuclear aspects of international security.
Chen, Tinggui; Xiao, Renbin
2014-01-01
Due to fierce market competition, how to improve product quality and reduce development cost determines the core competitiveness of enterprises. However, design iteration generally causes increases of product cost and delays of development time as well, so how to identify and model couplings among tasks in product design and development has become an important issue for enterprises to settle. In this paper, the shortcomings existing in WTM model are discussed and tearing approach as well as inner iteration method is used to complement the classic WTM model. In addition, the ABC algorithm is also introduced to find out the optimal decoupling schemes. In this paper, firstly, tearing approach and inner iteration method are analyzed for solving coupled sets. Secondly, a hybrid iteration model combining these two technologies is set up. Thirdly, a high-performance swarm intelligence algorithm, artificial bee colony, is adopted to realize problem-solving. Finally, an engineering design of a chemical processing system is given in order to verify its reasonability and effectiveness.
Integrating FMEA in a Model-Driven Methodology
NASA Astrophysics Data System (ADS)
Scippacercola, Fabio; Pietrantuono, Roberto; Russo, Stefano; Esper, Alexandre; Silva, Nuno
2016-08-01
Failure Mode and Effects Analysis (FMEA) is a well known technique for evaluating the effects of potential failures of components of a system. FMEA demands for engineering methods and tools able to support the time- consuming tasks of the analyst. We propose to make FMEA part of the design of a critical system, by integration into a model-driven methodology. We show how to conduct the analysis of failure modes, propagation and effects from SysML design models, by means of custom diagrams, which we name FMEA Diagrams. They offer an additional view of the system, tailored to FMEA goals. The enriched model can then be exploited to automatically generate FMEA worksheet and to conduct qualitative and quantitative analyses. We present a case study from a real-world project.
Ares V: Shifting the Payload Design Paradigm
NASA Technical Reports Server (NTRS)
Sumrall, Phil; Creech, Steve; Cockrell, Charles E.
2009-01-01
NASA is designing the Ares V heavy-lift cargo launch vehicle to send more crew and cargo to more places on the lunar surface than the 1960s-era Saturn V and to provide ongoing support for a permanent lunar outpost. This uncrewed cargo vehicle is designed to operate together with the Ares I crew vehicle (Figure 1). In addition to this role, however, its unmatched mass and volume capability represent a national asset for exploration, science, and commerce. The Ares V also enables or significantly enhances a large class of space missions not thought possible by scientists and engineers since the Saturn V program ended over 30 years ago. Compared to current systems, it will offer approximately five times the mass and volume to most orbits and locations. This should allow prospective mission planners to build robust payloads with margins that are three to five times the industry norm. The space inside the planned payload shroud has enough usable volume to launch the volumetric equivalent of approximately 10 Apollo Lunar Modules or approximately five equivalent Hubble Space Telescopes. This mass and volume capability to low-Earth orbit (LEO) enables a host of new scientific and observation platforms, such as telescopes, satellites, planetary and solar missions, as well as being able to provide the lift for future large in-space infrastructure missions, such as space based solar power and mining, Earth asteroid defense, propellant depots, etc. In addition, payload designers may also have the option of simplifying their designs or employing Ares V s payload as dumb mass to reduce technical and operational risk. The Ares V team is engaging the potential payload community now, two to three years before System Requirements Review (SRR), in order to better understand the additional requirements from the payload community that could be accommodated in the Ares V design in its conceptual phase. This paper will discuss the Ares V reference mission and capability, as well as its potential to perform other missions in the future.
Bluth, Karen; Roberson, Patricia N E; Gaylord, Susan A
2015-01-01
In this pilot study, we sought to investigate the effects of a mindfulness intervention for adolescents on a community sample of teens. Specifically, we explored the effects of mindfulness training on emotional well-being outcomes. Also, we examined the relationship between mindfulness and self-compassion at baseline-predicted outcome measures. This design was a pre-/post-pilot intervention study. Paired t-tests were conducted to examine change in outcome measures before and after the mindfulness intervention. Multiple regression was also conducted to investigate the influence of baseline mindfulness and self-compassion on outcome measures. The study took place after school in a classroom at a local university. Overall 28 adolescents age 10-18 years from two different cohorts participated in this study. Learning to BREATHE, a mindfulness curriculum designed specifically for adolescents and taught in six 1.5h sessions, was implemented. The outcome measures, life satisfaction and perceived stress, were included in an online survey before and after the mindfulness intervention. Results indicated that mindfulness, self-compassion, perceived stress, and life satisfaction improved from pre-intervention to post-intervention. Further, self-compassion (taught within the mindfulness intervention) was negatively related to perceived stress post-intervention while controlling for baseline stress. These findings suggest that mindfulness may be an effective intervention for improving indicators of emotional well-being among an adolescent population. Additionally, self-compassion may be a pathway through which youth can lower stress. Future research should examine self-compassion as a potential factor in promoting emotional well-being. Copyright © 2015 Elsevier Inc. All rights reserved.
A review of stairway falls and stair negotiation: Lessons learned and future needs to reduce injury.
Jacobs, Jesse V
2016-09-01
Stairways are a common location for falls, and they result in a disproportionate risk of death or severe injury. Stairway falls are a significant problem across the lifespan and are often coincident with risky behaviors during stair use. The mechanics of successful stair negotiation for healthy young and older adults have been well described. These studies imply that current stair design does not offer an optimal universal design to meet the needs of older adults or people with health conditions. In addition, impaired stair negotiation associates with more than impaired strength, including functional impairments of cognitive load, sensory function and central motor coordination. Identification of behavioral strategies or stairway environments that assist or hinder recovery from a loss of balance on stairs remains incomplete. Therefore, future studies should investigate the mechanisms of balance recovery on stairs as well as the effectiveness of environmental interventions to mitigate stairway falls and injuries. Potential areas for evaluation may include modifying stair dimensions, surfaces, handrails, visual cues, and removing distractors of attention. Studies should also evaluate combinatorial interventions on person-related factors, such as behavioral interventions to decrease risky behaviors during stair use as well as interventions on cognitive, sensory, and motor functions relevant to stair use. Moreover, future studies should take advantage of new technologies to record stair use outside the laboratory in order to identify people or locations at risk for stairway falls. Such studies would inform the potential for broad-spectrum programs that decrease the risk of stairway falls and injuries. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.
Optimizing conceptual aircraft designs for minimum life cycle cost
NASA Technical Reports Server (NTRS)
Johnson, Vicki S.
1989-01-01
A life cycle cost (LCC) module has been added to the FLight Optimization System (FLOPS), allowing the additional optimization variables of life cycle cost, direct operating cost, and acquisition cost. Extensive use of the methodology on short-, medium-, and medium-to-long range aircraft has demonstrated that the system works well. Results from the study show that optimization parameter has a definite effect on the aircraft, and that optimizing an aircraft for minimum LCC results in a different airplane than when optimizing for minimum take-off gross weight (TOGW), fuel burned, direct operation cost (DOC), or acquisition cost. Additionally, the economic assumptions can have a strong impact on the configurations optimized for minimum LCC or DOC. Also, results show that advanced technology can be worthwhile, even if it results in higher manufacturing and operating costs. Examining the number of engines a configuration should have demonstrated a real payoff of including life cycle cost in the conceptual design process: the minimum TOGW of fuel aircraft did not always have the lowest life cycle cost when considering the number of engines.
An Evaluation of Wellness Assessment Visualizations for Older Adults
Reeder, Blaine; Yoo, Daisy; Aziz, Rafae; Thompson, Hilaire J.; Demiris, George
2015-01-01
Abstract Background Smart home technologies provide a valuable resource to unobtrusively monitor health and wellness within an older adult population. However, the breadth and density of data available along with aging associated decreases in working memory, prospective memory, spatial cognition, and processing speed can make it challenging to comprehend for older adults. We developed visualizations of smart home health data integrated into a framework of wellness. We evaluated the visualizations through focus groups with older adults and identified recommendations to guide the future development of visualizations. Materials and Methods We conducted four focus groups with older adult participants (n=31) at an independent retirement community. Participants were presented with three different visualizations from a wellness pilot study. A qualitative descriptive analysis was conducted to identify thematic content. Results We identified three themes related to processing and application of visualizations: (1) values of visualizations for wellness assessment, (2) cognitive processing approaches to visualizations, and (3) integration of health data for visualization. In addition, the focus groups highlighted key design considerations of visualizations important towards supporting decision-making and evaluation assessments within integrated health displays. Conclusions Participants found inherent value in having visualizations available to proactively engage with their healthcare provider. Integrating the visualizations into a wellness framework helped reduce the complexity of raw smart home data. There has been limited work on health visualizations from a consumer perspective, in particular for an older adult population. Creating appropriately designed visualizations is valuable towards promoting consumer involvement within the shared decision-making process of care. PMID:25401414
WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings
Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender
2015-01-01
Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance. PMID:25946630
WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings.
Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender
2015-05-04
Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance.
Statistical issues on the analysis of change in follow-up studies in dental research.
Blance, Andrew; Tu, Yu-Kang; Baelum, Vibeke; Gilthorpe, Mark S
2007-12-01
To provide an overview to the problems in study design and associated analyses of follow-up studies in dental research, particularly addressing three issues: treatment-baselineinteractions; statistical power; and nonrandomization. Our previous work has shown that many studies purport an interacion between change (from baseline) and baseline values, which is often based on inappropriate statistical analyses. A priori power calculations are essential for randomized controlled trials (RCTs), but in the pre-test/post-test RCT design it is not well known to dental researchers that the choice of statistical method affects power, and that power is affected by treatment-baseline interactions. A common (good) practice in the analysis of RCT data is to adjust for baseline outcome values using ancova, thereby increasing statistical power. However, an important requirement for ancova is there to be no interaction between the groups and baseline outcome (i.e. effective randomization); the patient-selection process should not cause differences in mean baseline values across groups. This assumption is often violated for nonrandomized (observational) studies and the use of ancova is thus problematic, potentially giving biased estimates, invoking Lord's paradox and leading to difficulties in the interpretation of results. Baseline interaction issues can be overcome by use of statistical methods; not widely practiced in dental research: Oldham's method and multilevel modelling; the latter is preferred for its greater flexibility to deal with more than one follow-up occasion as well as additional covariates To illustrate these three key issues, hypothetical examples are considered from the fields of periodontology, orthodontics, and oral implantology. Caution needs to be exercised when considering the design and analysis of follow-up studies. ancova is generally inappropriate for nonrandomized studies and causal inferences from observational data should be avoided.
DESIGN AND OPERATION OF A HORIZONTAL WELL, IN SITU BIOREMEDIATION SYSTEM
A large field demonstration using nutrient addition to stimulate insitu anaerobic bioremediation of chlorinated solvent contaminated soil and ground water was performed at the former U.S. Department of Energy Pinellas Plant in Largo, Florida, from January through June, 1997. Ins...
Focused and Steady-State Characteristics of Shaped Sonic Boom Signatures: Prediction and Analysis
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Bobbitt, Percy J.; Massey, Steven J.; Plotkin, Kenneth J.; Kandil, Osama A.; Zheng, Xudong
2011-01-01
The objective of this study is to examine the effect of flight, at off-design conditions, on the propagated sonic boom pressure signatures of a small "low-boom" supersonic aircraft. The amplification, or focusing, of the low magnitude "shaped" signatures produced by maneuvers such as the accelerations from transonic to supersonic speeds, climbs, turns, pull-up and pushovers is the concern. To analyze these effects, new and/or improved theoretical tools have been developed, in addition to the use of existing methodology. Several shaped signatures are considered in the application of these tools to the study of selected maneuvers and off-design conditions. The results of these applications are reported in this paper as well as the details of the new analytical tools. Finally, the magnitude of the focused boom problem for "low boom" supersonic aircraft designs has been more accurately quantified and potential "mitigations" suggested. In general, "shaped boom" signatures, designed for cruise flight, such as asymmetric and symmetric flat-top and initial-shock ramp waveforms retain their basic shape during transition flight. Complex and asymmetric and symmetric initial shock ramp waveforms provide lower magnitude focus boom levels than N-waves or asymmetric and symmetric flat-top signatures.
Process development for green part printing using binder jetting additive manufacturing
NASA Astrophysics Data System (ADS)
Miyanaji, Hadi; Orth, Morgan; Akbar, Junaid Muhammad; Yang, Li
2018-05-01
Originally developed decades ago, the binder jetting additive manufacturing (BJ-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compatibility and technological expandability. However, the adoption of BJ-AM has been limited by the lack of knowledge with the fundamental understanding of the process principles and characteristics, as well as the relatively few systematic design guideline that are available. In this work, the process design considerations for BJ-AM in green part fabrication were discussed in detail in order to provide a comprehensive perspective of the design for additive manufacturing for the process. Various process factors, including binder saturation, in-process drying, powder spreading, powder feedstock characteristics, binder characteristics and post-process curing, could significantly affect the printing quality of the green parts such as geometrical accuracy and part integrity. For powder feedstock with low flowability, even though process parameters could be optimized to partially offset the printing feasibility issue, the qualities of the green parts will be intrinsically limited due to the existence of large internal voids that are inaccessible to the binder. In addition, during the process development, the balanced combination between the saturation level and in-process drying is of critical importance in the quality control of the green parts.
Allareddy, Veerasathpurush; Lee, Min Kyeong; Shah, Andrea; Elangovan, Satheesh; Lin, Chin-Yu
2012-01-01
The scientific community views meta-analyses and systematic reviews, in addition to well-designed randomized controlled clinical trials, as the highest echelon in the continuum of hierarchy of evidence. The objective of this study was to examine the association between different study designs and citation counts of articles published in the American Journal of Orthodontics and Dentofacial Orthopedics and Angle Orthodontist. All articles, excluding editorial comments, letters to the editor, commentaries, and special articles, that were published in the American Journal of Orthodontics and Dentofacial Orthopedics and Angle Orthodontist during the years 2004 and 2005 were examined in this study. The number of times an article was cited in the first 24 months after its publication was computed. The PubMed database was used to index the study design of the articles. The association between study design and citation counts was examined using the Kruskal-Wallis test. A multivariable negative binomial regression model was used to examine the association between citation count and study design along with several other confounding variables. A total of 624 articles were selected for analysis. Of these, there were 25 meta-analyses or review articles, 42 randomized clinical trials, 59 clinical trials, 48 animal studies, 64 case reports, and 386 quasiexperimental/miscellaneous study designs. The mean ± SD citation count was 1.04 ± 1.46. Nearly half of the articles (n = 311) were not cited even once during the observation period. Case reports were cited less frequently than meta-analyses or reviews (incident risk ratio, 0.37; 95% confidence interval, 0.19 to 0.72; P = .003), even after adjusting for other independent variables. Among various study designs, meta-analyses and review articles are more likely to be cited in the first 24 months after publication. This study demonstrates the importance of publishing more meta-analyses and review articles for quicker dissemination of research findings.
Trunk muscle activity during bridging exercises on and off a Swissball
Lehman, Gregory J; Hoda, Wajid; Oliver, Steven
2005-01-01
Background A Swiss ball is often incorporated into trunk strengthening programs for injury rehabilitation and performance conditioning. It is often assumed that the use of a Swiss ball increases trunk muscle activity. The aim of this study was to determine whether the addition of a Swiss ball to trunk bridging exercises influences trunk muscle activity. Methods Surface electrodes recorded the myoelectric activity of trunk muscles during bridging exercises. Bridging exercises were performed on the floor as well as on a labile surface (Swiss ball). Results and Discussion During the prone bridge the addition of an exercise ball resulted in increased myoelectric activity in the rectus abdominis and external oblique. The internal oblique and erector spinae were not influenced. The addition of a swiss ball during supine bridging did not influence trunk muscle activity for any muscles studied. Conclusion The addition of a Swiss ball is capable of influencing trunk muscle activity in the rectus abdominis and external oblique musculature during prone bridge exercises. Modifying common bridging exercises can influence the amount of trunk muscle activity, suggesting that exercise routines can be designed to maximize or minimize trunk muscle exertion depending on the needs of the exercise population. PMID:16053529
McNeely, ME; Duncan, RP; Earhart, GM
2015-01-01
Evidence indicates exercise is beneficial for motor and non-motor function in older adults and people with chronic diseases including Parkinson disease (PD). Dance may be a relevant form of exercise in PD and older adults due to social factors and accessibility. People with PD experience motor and non-motor symptoms, but treatments, interventions, and assessments often focus more on motor symptoms. Similar non-motor symptoms also occur in older adults. While it is well-known that dance may improve motor outcomes, it is less clear how dance affects non-motor symptoms. This review aims to describe the effects of dance interventions on non-motor symptoms in older adults and PD, highlights limitations of the literature, and identifies opportunities for future research. Overall, intervention parameters, study designs, and outcome measures differ widely, limiting comparisons across studies. Results are mixed in both populations, but evidence supports the potential for dance to improve mood, cognition, and quality of life in PD and healthy older adults. Participation and non-motor symptoms like sleep disturbances, pain, and fatigue have not been measured in older adults. Additional well-designed studies comparing dance and exercise interventions are needed to clarify the effects of dance on non-motor function and establish recommendations for these populations. PMID:26318265
Bacon, Thomas; Doughty, Caitriona; Summers, Andrew; Wiffen, Benjamin; Stanley, Zoe; McAlpine, Susan
2018-06-01
To examine the effectiveness of a new, six-session emotion regulation group intervention designed for the secondary care setting: The Emotional Resources Group (ERG). In this pilot study, participants were recruited by referral from secondary care mental health services. Forty-seven individuals participated in the study. Participants who attended the ERG were compared on measures of emotion regulation, well-being, and self-efficacy, pre- and post-intervention. Intent-to-treat analyses indicated highly statistically significant improvements in measures of emotion regulation, well-being, and self-efficacy, accompanied by large effect sizes. In addition, improvements in emotion regulation produced good rates of both reliable and clinically significant change. The ERG may be an effective, brief intervention to improve emotion regulation in the secondary care setting, worthy of further evaluation. Clinical implications Emotion regulation may be an appropriate treatment target to improve well-being and self-efficacy in a transdiagnostic population. The ERG may be effective as a brief emotion regulation intervention for secondary care mental health settings. Outcomes of the ERG appear to be equivalent to other more intensive group-based emotion regulation interventions. The ERG's tailored design may be responsible for positive outcomes. Limitations There was a small sample size. There was no control group. There was no follow-up data. © 2018 The British Psychological Society.
Petting away pre-exam stress: The effect of therapy dog sessions on student well-being.
Ward-Griffin, Emma; Klaiber, Patrick; Collins, Hanne K; Owens, Rhea L; Coren, Stanley; Chen, Frances S
2018-03-12
Recently, many universities have implemented programmes in which therapy dogs and their handlers visit college campuses. Despite the immense popularity of therapy dog sessions, few randomized studies have empirically tested the efficacy of such programmes. The present study evaluates the efficacy of such a therapy dog programme in improving the well-being of university students. This research incorporates two components: (a) a pre/post within-subjects design, in which 246 participants completed a brief questionnaire immediately before and after a therapy dog session and (b) an experimental design with a delayed-treatment control group, in which all participants completed baseline measures and follow-up measures approximately 10 hr later. Only participants in the experimental condition experienced the therapy dog session in between the baseline and follow-up measures. Analyses of pre/post data revealed that the therapy dog sessions had strong immediate benefits, significantly reducing stress and increasing happiness and energy levels. In addition, participants in the experimental group reported a greater improvement in negative affect, perceived social support, and perceived stress compared with those in the delayed-treatment control group. Our results suggest that single, drop-in, therapy dog sessions have large and immediate effects on students' well-being, but also that the effects after several hours are small. Copyright © 2018 John Wiley & Sons, Ltd.
Enhanced sensitivity of CpG island search and primer design based on predicted CpG island position.
Park, Hyun-Chul; Ahn, Eu-Ree; Jung, Ju Yeon; Park, Ji-Hye; Lee, Jee Won; Lim, Si-Keun; Kim, Won
2018-05-01
DNA methylation has important biological roles, such as gene expression regulation, as well as practical applications in forensics, such as in body fluid identification and age estimation. DNA methylation often occurs in the CpG site, and methylation within the CpG islands affects various cellular functions and is related to tissue-specific identification. Several programs have been developed to identify CpG islands; however, the size, location, and number of predicted CpG islands are not identical due to different search algorithms. In addition, they only provide structural information for predicted CpG islands without experimental information, such as primer design. We developed an analysis pipeline package, CpGPNP, to integrate CpG island prediction and primer design. CpGPNP predicts CpG islands more accurately and sensitively than other programs, and designs primers easily based on the predicted CpG island locations. The primer design function included standard, bisulfite, and methylation-specific PCR to identify the methylation of particular CpG sites. In this study, we performed CpG island prediction on all chromosomes and compared CpG island search performance of CpGPNP with other CpG island prediction programs. In addition, we compared the position of primers designed for a specific region within the predicted CpG island using other bisulfite PCR primer programs. The primers designed by CpGPNP were used to experimentally verify the amplification of the target region of markers for body fluid identification and age estimation. CpGPNP is freely available at http://forensicdna.kr/cpgpnp/. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of Caring for an Abusive Parent on Mental Health: The Mediating Role of Self-Esteem.
Kong, Jooyoung
2018-05-08
This study examines a sample of filial caregivers to investigate whether and how a history of childhood abuse is associated with caregivers' mental health (i.e., depressed affect, psychological well-being, and life satisfaction). This study also investigates the mediational role of self-esteem between caring for an abusive parent and the mental health outcomes. Using the 2004-2006 National Survey of Midlife Development in the United States, data from 219 filial caregivers were analyzed. A series of ordinary least squares (OLS) regression and mediational analyses were conducted to estimate the direct and indirect effects of providing care to an abusive parent on negative affect, psychological well-being, and levels of life satisfaction. Key results showed that providing care to an abusive parent was associated with greater depressed affect and lower levels of life satisfaction. In addition, self-esteem served as a significant mediator: providing care to an abusive parent was associated with lower self-esteem, which was, in turn, ultimately associated with greater depressed affect, diminished psychological well-being, and lower levels of life satisfaction. Filial caregivers with a history of childhood abuse should be acknowledged as a high-risk group of caregivers so that they can gain attention and support for targeted interventions. Additionally, evidence-based intervention programs (e.g., improving self-esteem issues) should be designed and implemented to address this group's unique challenges and concerns.
Weng, Wei; Quan, Peng; Liu, Chao; Zhao, Hanqing; Fang, Liang
2016-10-01
The purpose of this work was to develop and design an appropriate drug-in-adhesive patch for transdermal delivery of risperidone (RISP). Various formulation factors were investigated by in vitro permeation study using excised rabbit skin. Increasing the drug concentration in the pressure sensitive adhesive (PSA) was used to enhance the drug permeation. To overcome the high crystallization tendency of the patch, several crystallization inhibitors such as PVP, PEG, and surfactants and fatty acids were evaluated by microscopy study. The mechanism of crystallization inhibition was investigated by differential scanning calorimetry, nuclear magnetic resonance spectrometer, and FT-IR studies. RISP and its active metabolite were determined after topical application of the optimized transdermal patch, and the in vivo pharmacokinetic parameters were compared with the intravenous administration group. The microscopy study indicated that fatty acid greatly inhibited the crystallization of RISP in PSA. The inhibition was attributed to the drug-additive interaction between amino group of RISP and the carboxyl group of fatty acid which was further confirmed by (1)H-NMR and FT-IR studies. The optimal permeation profile was obtained with the patches containing 5% RISP and 5% oleic acid in Duro-Tak(®) 87-2287. The in vivo pharmacokinetic study exhibited a sustained absorption and metabolism profile and well correlated with the in vitro permeation data. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Building Design Guidelines for Solar Energy Technologies
DOE R&D Accomplishments Database
Givoni, B.
1989-01-01
There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.
Advances in multi-scale modeling of solidification and casting processes
NASA Astrophysics Data System (ADS)
Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang
2011-04-01
The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.
Mohanty, Jayashree
2013-02-01
Positive identity development during adolescence in general is a complex process and may pose additional challenges for adolescents adopted from a different culture. Using a web-based survey design with a sample of 100 internationally adopted Asian adolescent and young adults, the present study examined the mediating role of multiple identities (i.e., ethnic, adoptive and interpersonal ego identities) in explaining the relationship between ethnic and racial socializations, ethnic neighborhood, and self-esteem. The results showed that (a) adoptive identity mediated the influence of racial socialization on psychological well-being, and (b) ethnic affirmation mediated the influence of ethnic socialization on adoptees' well-being. This study illustrates the importance of providing supportive counseling services for adoptees who are exploring their adoptive identity. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Hartley, Sigan L; Seltzer, Marsha Mailick; Head, Lara; Abbeduto, Leonard
2012-04-01
The psychological well-being of fathers of children with developmental disabilities remains poorly understood. The present study examined depressive symptoms, pessimism, and coping in fathers of adolescents and young adults with Down syndrome (DS; n = 59), autism spectrum disorders (ASDs; n = 135), and fragile X syndrome (FXS; n = 46) Fathers of sons/daughters with ASDs reported a higher level of depressive symptoms than the other groups of fathers. Fathers of sons/daughters with DS reported a lower level of pessimism than the other groups of fathers. There were no group differences in paternal coping style. Group differences in paternal depressive symptoms and pessimism were, in part, related to differences in paternal age, the child's behavior problems, risk of having additional children with a disability, and maternal depressive symptoms. Findings from this study can be used to educate providers and design services for fathers during the later parenting years.
Yang, Yang; Song, Xuan; Li, Xiangjia; Chen, Zeyu; Zhou, Chi; Zhou, Qifa; Chen, Yong
2018-06-19
Nature has developed high-performance materials and structures over millions of years of evolution and provides valuable sources of inspiration for the design of next-generation structural materials, given the variety of excellent mechanical, hydrodynamic, optical, and electrical properties. Biomimicry, by learning from nature's concepts and design principles, is driving a paradigm shift in modern materials science and technology. However, the complicated structural architectures in nature far exceed the capability of traditional design and fabrication technologies, which hinders the progress of biomimetic study and its usage in engineering systems. Additive manufacturing (three-dimensional (3D) printing) has created new opportunities for manipulating and mimicking the intrinsically multiscale, multimaterial, and multifunctional structures in nature. Here, an overview of recent developments in 3D printing of biomimetic reinforced mechanics, shape changing, and hydrodynamic structures, as well as optical and electrical devices is provided. The inspirations are from various creatures such as nacre, lobster claw, pine cone, flowers, octopus, butterfly wing, fly eye, etc., and various 3D-printing technologies are discussed. Future opportunities for the development of biomimetic 3D-printing technology to fabricate next-generation functional materials and structures in mechanical, electrical, optical, and biomedical engineering are also outlined. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design and fabrication of an energy-harvesting device using vibration absorber
NASA Astrophysics Data System (ADS)
Heidari, Hamidreza; Afifi, Arash
2017-05-01
Energy-harvesting devices collect energy that is being wasted and convert to the electrical energy. For this reason, this type of devices is considered as a convenient alternative to traditional batteries. In this paper, experimental examinations were performed to investigate the application of harvesting device for the reduction of the vibration amplitude in a vibration system and also increase the efficiency of energy-harvesting device. This study focuses on the energy-harvesting device as both producing electrical device and a vibration disabled absorber. In this regard, a motion-based energy-harvesting device is designed to produce electrical energy and also eliminate vibrations of a two joint-end beam which is located under the harmonic excitation force. Then, the governing equations of the forced motion on the main beam are derived and energy-harvesting system are simulated. In addition, the system designed by MATLAB simulation is explained and its results are expressed. Finally, a prototype of the system was made and the ability of the energy-harvesting device to absorb the original system vibrations, as well as parameters impact on the efficiency of energy harvesting is investigated. Experimental results show that the energy-harvesting device, in addition to producing electric current with a maximum value of 1.5V, reduces 94% of the original system vibrations.
Positive psychology interventions: a meta-analysis of randomized controlled studies
2013-01-01
Background The use of positive psychological interventions may be considered as a complementary strategy in mental health promotion and treatment. The present article constitutes a meta-analytical study of the effectiveness of positive psychology interventions for the general public and for individuals with specific psychosocial problems. Methods We conducted a systematic literature search using PubMed, PsychInfo, the Cochrane register, and manual searches. Forty articles, describing 39 studies, totaling 6,139 participants, met the criteria for inclusion. The outcome measures used were subjective well-being, psychological well-being and depression. Positive psychology interventions included self-help interventions, group training and individual therapy. Results The standardized mean difference was 0.34 for subjective well-being, 0.20 for psychological well-being and 0.23 for depression indicating small effects for positive psychology interventions. At follow-up from three to six months, effect sizes are small, but still significant for subjective well-being and psychological well-being, indicating that effects are fairly sustainable. Heterogeneity was rather high, due to the wide diversity of the studies included. Several variables moderated the impact on depression: Interventions were more effective if they were of longer duration, if recruitment was conducted via referral or hospital, if interventions were delivered to people with certain psychosocial problems and on an individual basis, and if the study design was of low quality. Moreover, indications for publication bias were found, and the quality of the studies varied considerably. Conclusions The results of this meta-analysis show that positive psychology interventions can be effective in the enhancement of subjective well-being and psychological well-being, as well as in helping to reduce depressive symptoms. Additional high-quality peer-reviewed studies in diverse (clinical) populations are needed to strengthen the evidence-base for positive psychology interventions. PMID:23390882
Positive psychology interventions: a meta-analysis of randomized controlled studies.
Bolier, Linda; Haverman, Merel; Westerhof, Gerben J; Riper, Heleen; Smit, Filip; Bohlmeijer, Ernst
2013-02-08
The use of positive psychological interventions may be considered as a complementary strategy in mental health promotion and treatment. The present article constitutes a meta-analytical study of the effectiveness of positive psychology interventions for the general public and for individuals with specific psychosocial problems. We conducted a systematic literature search using PubMed, PsychInfo, the Cochrane register, and manual searches. Forty articles, describing 39 studies, totaling 6,139 participants, met the criteria for inclusion. The outcome measures used were subjective well-being, psychological well-being and depression. Positive psychology interventions included self-help interventions, group training and individual therapy. The standardized mean difference was 0.34 for subjective well-being, 0.20 for psychological well-being and 0.23 for depression indicating small effects for positive psychology interventions. At follow-up from three to six months, effect sizes are small, but still significant for subjective well-being and psychological well-being, indicating that effects are fairly sustainable. Heterogeneity was rather high, due to the wide diversity of the studies included. Several variables moderated the impact on depression: Interventions were more effective if they were of longer duration, if recruitment was conducted via referral or hospital, if interventions were delivered to people with certain psychosocial problems and on an individual basis, and if the study design was of low quality. Moreover, indications for publication bias were found, and the quality of the studies varied considerably. The results of this meta-analysis show that positive psychology interventions can be effective in the enhancement of subjective well-being and psychological well-being, as well as in helping to reduce depressive symptoms. Additional high-quality peer-reviewed studies in diverse (clinical) populations are needed to strengthen the evidence-base for positive psychology interventions.
Macken, Ailbhe; Le Page, Gareth; Hayfield, Amanda; Williams, Timothy D; Brown, Rebecca J
2012-09-01
Potamopyrgus antipodarum is a candidate for a standardized mollusk partial life-cycle study. This is a comparative study of two test designs (microplate and beaker), with additional endpoints to the proposed guideline methods, for example, tracking of continuous reproductive output over 28 d and attributing it to individual female snails. In addition, an investigation of the effects of temperature (16, 20, and 25°C) on reproduction was also conducted employing the microplate design. Copyright © 2012 SETAC.
Beauvais, Audrey M; Stewart, Julie G; DeNisco, Susan; Beauvais, John E
2014-06-01
The current rise in employment is improving forecasts for the future supply of registered nurses; however sizeable shortages are still projected. With the intention of improving academic success in nursing students, related factors need to be better understood. The purpose of the correlational study was to describe the relationship between emotional intelligence, psychological empowerment, resilience, spiritual well-being, and academic success in undergraduate and graduate nursing students. A descriptive correlational design was utilized. The study was set in a private Catholic university. There were 124 participants. There were 59% undergraduate and 41% graduate students. Background data, in addition to the Spreitzer Psychological Empowerment Scale, the Wagnild and Young Resilience Scale, and the Spiritual Well-Being Scale and the Mayer-Salovey-Caruso Emotional Intelligence Test, was collected from students who met study criteria. In a combined sample, academic success was correlated with overall spiritual well-being, empowerment and resilience. Although academic success was not correlated with overall emotional intelligence, it was correlated with the emotional intelligence branch four (managing emotions) score. When undergraduate and graduate students were considered separately, only one correlation was found to be significantly related to academic success in the undergraduate sample, namely, emotional intelligence branch one (perceiving emotions). When examining the data from just graduate level nurses, significant relationships were found between total emotional intelligence with academic success, resilience with academic success, and psychological empowerment with academic success. The significant relationship between psychological empowerment, resilience, spiritual well-being and academic success in this study supports the statements in the literature that these concepts may play an important role in persistence through the challenges of nursing education. Research is needed to examine if strategies to enhance empowerment, resilience, and spiritual well-being can increase academic success in a test-retest design. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shuttle considerations for the design of large space structures
NASA Technical Reports Server (NTRS)
Roebuck, J. A., Jr.
1980-01-01
Shuttle related considerations (constraints and guidelines) are compiled for use by designers of a potential class of large space structures which are transported to orbit and, deployed, fabricated or assembled in space using the Space Shuttle Orbiter. Considerations of all phases of shuttle operations from launch to ground turnaround operations are presented. Design of large space structures includes design of special construction fixtures and support equipment, special stowage cradles or pallets, special checkout maintenance, and monitoring equipment, and planning for packaging into the orbiter of all additional provisions and supplies chargeable to payload. Checklists of design issues, Shuttle capabilities constraints and guidelines, as well as general explanatory material and references to source documents are included.
Electromigration failures under bidirectional current stress
NASA Astrophysics Data System (ADS)
Tao, Jiang; Cheung, Nathan W.; Hu, Chenming
1998-01-01
Electromigration failure under DC stress has been studied for more than 30 years, and the methodologies for accelerated DC testing and design rules have been well established in the IC industry. However, the electromigration behavior and design rules under time-varying current stress are still unclear. In CMOS circuits, as many interconnects carry pulsed-DC (local VCC and VSS lines) and bidirectional AC current (clock and signal lines), it is essential to assess the reliability of metallization systems under these conditions. Failure mechanisms of different metallization systems (Al-Si, Al-Cu, Cu, TiN/Al-alloy/TiN, etc.) and different metallization structures (via, plug and interconnect) under AC current stress in a wide frequency range (from mHz to 500 MHz) has been study in this paper. Based on these experimental results, a damage healing model is developed, and electromigration design rules are proposed. It shows that in the circuit operating frequency range, the "design-rule current" is the time-average current. The pure AC component of the current only contributes to self-heating, while the average (DC component) current contributes to electromigration. To ensure longer thermal-migration lifetime under high frequency AC stress, an additional design rule is proposed to limit the temperature rise due to self-joule heating.
Teacher knowledge, instructional expertise, and the development of reading proficiency.
Reid Lyon, G; Weiser, Beverly
2009-01-01
Teacher knowledge and instructional expertise have been found in correlational and pre- and posttest studies to be related to student reading achievement. This article summarizes data presented in this special issue and additional research to address four questions: (a) What do expert reading teachers know? (b) Why do teachers need to acquire this knowledge? (c) Do teachers believe they have this knowledge? and (d) Are teachers being adequately prepared to teach reading? Well-designed studies relevant to this topic have been sparse with a noticeable lack of attention given to identifying specific causal links between teacher knowledge, teaching expertise, and student reading achievement. Until the appropriate research designs and methodologies are applied to address the question of causal effects, conclusions about the specific content that teachers must know and the instructional practices that are most beneficial in presenting this content are preliminary at best. Future studies of the effect of essential reading content knowledge must be extended beyond word-level skills to vocabulary, reading comprehension, and writing.
Biomedical and Human Factors Requirements for a Manned Earth Orbiting Station
NASA Technical Reports Server (NTRS)
Benjamin, F.; Helvey, W. M.; Martell, C.; Peters, J.; Rosenthal, G.
1964-01-01
This report is the result of a study conducted by Republic Aviation Corporation in conjunction with Spacelabs, Inc.,in a team effort in which Republic Aviation Corporation was prime contractor. In order to determine the realistic engineering design requirements associated with the medical and human factors problems of a manned space station, an interdisciplinary team of personnel from the Research and Space Divisions was organized. This team included engineers, physicians, physiologists, psychologists, and physicists. Recognizing that the value of the study is dependent upon medical judgments as well as more quantifiable factors (such as design parameters) a group of highly qualified medical consultants participated in working sessions to determine which medical measurements are required to meet the objectives of the study. In addition, various Life Sciences personnel from NASA (Headquarters, Langley, MSC) participated in monthly review sessions. The organization, team members, consultants, and some of the part-time contributors are shown in Figure 1. This final report embodies contributions from all of these participants.
2015-01-01
With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD), to maximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE) model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO) technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT), potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM) for a specific patient. The integration of digitalized modeling, computational optimization, and free-form fabrication enables more efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption. PMID:26161878
ERIC Educational Resources Information Center
Parker, Amy T.; Grimmett, Eric S.; Summers, Sharon
2008-01-01
This review examines practices for building effective communication strategies for children with visual impairments, including those with additional disabilities, that have been tested by single-subject design methodology. The authors found 30 studies that met the search criteria and grouped intervention strategies to align any evidence of the…
An analysis of the benefits of ethnography design methods for product modelling
NASA Astrophysics Data System (ADS)
Butlewski, M.; Misztal, A.; Belu, N.
2016-08-01
The essence of modelling is to reflect the studied piece of reality in such a way that best describes the selected elements of the designed system. A model is used in design to optimize the structure and parameters of the constructed object and is a tool for assessing the quality of construction, eliminating weak links and ensuring adequate safety components. In view of the aim of modelling, it can be divided into functional modelling, showing the complexity of the object, and reliability modelling, specifying its states at variable threshold values. In design, modelling allows for significant savings in resources that would otherwise be spent because of problems appearing at the prototype stage, but also during production or in the course of using the product. In the practice of ergonomic design many problems could be avoided if early enough in the design process the values of parameters and their relations would be taken into account through modelling. On the other hand, the modelling process can be costly and time-consuming to carry out, and against the currently pervasive lean production it is a highly undesirable factor. Therefore, the modelling process should be supported with the use of appropriate cognitive techniques namely ethnography design, which would determine inadequacies of existing models as well as indicate the equivalent conditions for modelling. The justification of the use of this technique results both from the possibility of providing additional information, as well as the opportunity to “test” the phenomena affecting the design process. Ergonomic modelling tests developed solutions towards their adaptation to users’ anthropometric, biomechanical and psychomotor characteristics, as well as behaviour patterns. However, knowledge of the latter and achieving a sufficient ergonomic and functional quality of proposed solutions often requires the use of the ethnography design approach. The aim of this article is to test the practical application of ethnography design methodology in product design and to analyse the benefits of its use. The analysis is based on effects of its application with the support of product design from various industries, along with a discussion of the method's limitations. Among benefits of ethnography design, the greatest proved to be providing knowledge of nonspecific user behaviour previously unknown to designers, which when rendered by models allowed to develop innovative solutions.
Design of a flow perfusion bioreactor system for bone tissue-engineering applications.
Bancroft, Gregory N; Sikavitsas, Vassilios I; Mikos, Antonios G
2003-06-01
Several different bioreactors have been investigated for tissue-engineering applications. Among these bioreactors are the spinner flask and the rotating wall vessel reactor. In addition, a new type of culture system has been developed and investigated, the flow perfusion culture bioreactor. Flow perfusion culture offers several advantages, notably the ability to mitigate both external and internal diffusional limitations as well as to apply mechanical stress to the cultured cells. For such investigation, a flow perfusion culture system was designed and built. This design is the outgrowth of important design requirements and incorporates features crucial to successful experimentation with such a system.
Congruency of scapula locking plates: implications for implant design.
Park, Andrew Y; DiStefano, James G; Nguyen, Thuc-Quyen; Buckley, Jenni M; Montgomery, William H; Grimsrud, Chris D
2012-04-01
We conducted a study to evaluate the congruency of fit of current scapular plate designs. Three-dimensional image-processing and -analysis software, and computed tomography scans of 12 cadaveric scapulae were used to generate 3 measurements: mean distance from plate to bone, maximum distance, and percentage of plate surface within 2 mm of bone. These measurements were used to quantify congruency. The scapular spine plate had the most congruent fit in all 3 measured variables. The lateral border and glenoid plates performed statistically as well as the scapular spine plate in at least 1 of the measured variables. The medial border plate had the least optimal measurements in all 3 variables. With locking-plate technology used in a wide variety of anatomical locations, the locking scapula plate system can allow for a fixed-angle construct in this region. Our study results showed that the scapular spine, glenoid, and lateral border plates are adequate in terms of congruency. However, design improvements may be necessary for the medial border plate. In addition, we describe a novel method for quantifying hardware congruency, a method that can be applied to any anatomical location.
Muizzuddin, Neelam; Ingrassia, Michael; Marenus, Kenneth D; Maes, Daniel H; Mammone, Thomas
2013-01-01
Human skin maintains an optimal permeability barrier function in a terrestrial environment that varies considerably in humidity. Cells cultured under hyperosmotic stress accumulate osmolytes including sorbitol. Epidermal keratinocytes experience similar high osmolality under dry environmental conditions because of increased transepidermal water loss (TEWL) and concomitant drying of the skin. This study was designed to determine if epidermal keratinocytes, in vitro, could be protected from high osmotic stress, with the exogenous addition of sorbitol. In addition, we evaluated the effect of a formulation containing topical sorbitol on skin barrier and moisturization of subjects living in arid and humid regions in summer as well as in winter. Results from in vitro experiments showed that 50 mM sorbitol protected epidermal keratinocytes from osmotic toxicity induced by sodium chloride. Clinical studies indicated that skin chronically exposed to hot, dry environment appeared to exhibit stronger skin barrier and a lower baseline TEWL. In addition, skin barrier was stronger in summer than in winter. Sorbitol exhibited significant improvement in both barrier repair and moisturization, especially in individuals subjected to arid environmental conditions.
Pesticides in U.S. streams and groundwater
Gilliom, Robert J.
2007-01-01
A 10-year study by the U.S. Geological Survey’s (USGS’s) National Water-Quality Assessment (NAWQA) Program provides a national-scale view of pesticide occurrence in streams and groundwater. The 1992-2001 study builds upon a preliminary analysis from NAWQA’s first phase of studies during 1992-1996 (1, 2). Pesticide data available from various studies prior to 1992 did not allow national assessment because of limited and variable geographic coverage (usually focusing on individual states or regions), sparse and inconsistent inclusion of pesticides in use, and variable sampling designs (3-5). The expanded geographic coverage and improved data following 10 years of study (Figure 1) confirm and reinforce previously reported findings and enable more detailed analyses of each topic. This article summarizes selected findings from a comprehensive report (6), with a focus on the nature of pesticide occurrence and potential significance to human health and stream ecosystems. Information on study design and methods as well as additional analysis of geographic patterns and trends in relation to use and management practices are available in the full report (6).
Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) concept definition study
NASA Technical Reports Server (NTRS)
Hughes, C. W.
1983-01-01
Studies were conducted by Hughes Helicopters, Inc. (HHI) for the Applied Technology Laboratory and Aeromechanics Laboratory, U.S. Army Research and Technology Laboratories (AVRADCOM) and the Ames Research Center, National Aeronautics and Space Administration (NASA). Results of predesign studies of advanced main rotor hubs, including bearingless designs, are presented in this report. In addition, the Government's rotor design goals and specifications were reviewed and evaluated. Hub concepts were designed and qualitatively evaluated in order to select the two most promising concepts for further development. Various flexure designs, control systems, and pitchcase designs were investigated during the initial phases of this study. The two designs selected for additional development were designated the V-strap and flat-strap cruciform hubs. These hubs were designed for a four bladed rotor and were sized for 18,400 pounds gross weight with the same diameter (62 feet) and solidity (23 inch chord) as the existing rotor on the Rotor Systems Research Aircraft (RSRA).
Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors
NASA Astrophysics Data System (ADS)
Liu, Dong; Fu, Yong-Qi; Yang, Le-Chen; Zhang, Bao-Shun; Li, Hai-Jun; Fu, Kai; Xiong, Min
2012-06-01
To improve absorption of quantum well infrared photodetectors (QWIPs), a coupling layer with metallic grating is designed and fabricated above the quantum well. The metal grating is composed of 100 nm Au film on top, and a 20-nm Ti thin layer between the Au film and the sapphire substrate is coated as an adhesion/buffer layer. To protect the photodetector from oxidation and to decrease leakage, a SiO2 film is deposited by means of plasma-enhanced chemical vapor deposition. A value of about 800 nm is an optimized thickness for the SiO2 applied in the metallic grating-based mid-infrared QWIP. In addition, a QWIP passivation layer is studied experimentally. The results demonstrate that the contribution from the layer is positive for metal grating coupling with the quantum well. The closer the permittivity of the two dielectric layers (SiO2 and the passivation layers), and the closer the two transmission peaks, the greater the QWIP enhancement will be.
Al Mortadi, Noor; Eggbeer, Dominic; Lewis, Jeffrey; Williams, Robert J
2013-04-01
The aim of this study was to analyze the latest innovations in additive manufacture techniques and uniquely apply them to dentistry, to build a sleep apnea device requiring rotating hinges. Laser scanning was used to capture the three-dimensional topography of an upper and lower dental cast. The data sets were imported into an appropriate computer-aided design software environment, which was used to design a sleep apnea device. This design was then exported as a stereolithography file and transferred for three-dimensional printing by an additive manufacture machine. The results not only revealed that the novel computer-based technique presented provides new design opportunities but also highlighted limitations that must be addressed before the techniques can become clinically viable.
Jiang, Yuan; Liese, Eric; Zitney, Stephen E.; ...
2018-02-25
This paper presents a baseline design and optimization approach developed in Aspen Custom Modeler (ACM) for microtube shell-and-tube exchangers (MSTEs) used for high- and low-temperature recuperation in a 10 MWe indirect supercritical carbon dioxide (sCO 2) recompression closed Brayton cycle (RCBC). The MSTE-type recuperators are designed using one-dimensional models with thermal-hydraulic correlations appropriate for sCO 2 and properties models that capture considerable nonlinear changes in CO 2 properties near the critical and pseudo-critical points. Using the successive quadratic programming (SQP) algorithm in ACM, optimal recuperator designs are obtained for either custom or industry-standard microtubes considering constraints based on current advancedmore » manufacturing techniques. The three decision variables are the number of tubes, tube pitch-to-diameter ratio, and tube diameter. Five different objective functions based on different key design measures are considered: minimization of total heat transfer area, heat exchanger volume, metal weight, thermal residence time, and maximization of compactness. Sensitivities studies indicate the constraint on the maximum number of tubes per shell does affect the number of parallel heat exchanger trains but not the tube selection, total number of tubes, tube length and other key design measures in the final optimal design when considering industry-standard tubes. In this study, the optimally designed high- and low-temperature recuperators have 47,000 3/32 inch tubes and 63,000 1/16 inch tubes, respectively. In addition, sensitivities to the design temperature approach and maximum allowable pressure drop are studied, since these specifications significantly impact the optimal design of the recuperators as well as the thermal efficiency and the economic performance of the entire sCO 2 Brayton cycle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yuan; Liese, Eric; Zitney, Stephen E.
This paper presents a baseline design and optimization approach developed in Aspen Custom Modeler (ACM) for microtube shell-and-tube exchangers (MSTEs) used for high- and low-temperature recuperation in a 10 MWe indirect supercritical carbon dioxide (sCO 2) recompression closed Brayton cycle (RCBC). The MSTE-type recuperators are designed using one-dimensional models with thermal-hydraulic correlations appropriate for sCO 2 and properties models that capture considerable nonlinear changes in CO 2 properties near the critical and pseudo-critical points. Using the successive quadratic programming (SQP) algorithm in ACM, optimal recuperator designs are obtained for either custom or industry-standard microtubes considering constraints based on current advancedmore » manufacturing techniques. The three decision variables are the number of tubes, tube pitch-to-diameter ratio, and tube diameter. Five different objective functions based on different key design measures are considered: minimization of total heat transfer area, heat exchanger volume, metal weight, thermal residence time, and maximization of compactness. Sensitivities studies indicate the constraint on the maximum number of tubes per shell does affect the number of parallel heat exchanger trains but not the tube selection, total number of tubes, tube length and other key design measures in the final optimal design when considering industry-standard tubes. In this study, the optimally designed high- and low-temperature recuperators have 47,000 3/32 inch tubes and 63,000 1/16 inch tubes, respectively. In addition, sensitivities to the design temperature approach and maximum allowable pressure drop are studied, since these specifications significantly impact the optimal design of the recuperators as well as the thermal efficiency and the economic performance of the entire sCO 2 Brayton cycle.« less
49 CFR 1549.107 - Security coordinators.
Code of Federal Regulations, 2014 CFR
2014-10-01
... and designated alternate Security Coordinator appointed at the corporate level. In addition, each... corporate level, as well as the facility Security Coordinator and alternate, must be available on a 24-hour... 49 Transportation 9 2014-10-01 2014-10-01 false Security coordinators. 1549.107 Section 1549.107...
49 CFR 1549.107 - Security coordinators.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and designated alternate Security Coordinator appointed at the corporate level. In addition, each... corporate level, as well as the facility Security Coordinator and alternate, must be available on a 24-hour... 49 Transportation 9 2010-10-01 2010-10-01 false Security coordinators. 1549.107 Section 1549.107...
49 CFR 1549.107 - Security coordinators.
Code of Federal Regulations, 2011 CFR
2011-10-01
... and designated alternate Security Coordinator appointed at the corporate level. In addition, each... corporate level, as well as the facility Security Coordinator and alternate, must be available on a 24-hour... 49 Transportation 9 2011-10-01 2011-10-01 false Security coordinators. 1549.107 Section 1549.107...
49 CFR 1549.107 - Security coordinators.
Code of Federal Regulations, 2012 CFR
2012-10-01
... and designated alternate Security Coordinator appointed at the corporate level. In addition, each... corporate level, as well as the facility Security Coordinator and alternate, must be available on a 24-hour... 49 Transportation 9 2012-10-01 2012-10-01 false Security coordinators. 1549.107 Section 1549.107...
49 CFR 1549.107 - Security coordinators.
Code of Federal Regulations, 2013 CFR
2013-10-01
... and designated alternate Security Coordinator appointed at the corporate level. In addition, each... corporate level, as well as the facility Security Coordinator and alternate, must be available on a 24-hour... 49 Transportation 9 2013-10-01 2013-10-01 false Security coordinators. 1549.107 Section 1549.107...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This is a Spanish-language handbook designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.
77 FR 33269 - Designation of Product Categories for Federal Procurement
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... under such a contract.'' Thus, Federal contractors, as well as Federal agencies, are expressly subject... generally to procure such a product composed of the highest percentage of recovered materials content... those product categories that contain the highest biobased content. In addition, as the program matures...
Review of recent studies on interventions for cognitive deficits in patients with cancer.
Gehring, Karin; Roukema, Jan Anne; Sitskoorn, Margriet M
2012-02-01
Research has demonstrated that patients with cancer experience cognitive deficits, often due to aggressive anticancer treatments. In this article, we critically review the interventional studies that have been conducted to investigate beneficial effects on cognitive function in cancer patients. Pharmacological agents that have been studied include psychostimulants, such as methylphenidate and modafinil, erythropoietin, and hormonal (supplement) treatments for patients who receive hormonal suppression therapy. In addition, several cognitive rehabilitation programs have been evaluated in cancer patients. Recently, the approach of physical exercise to treat cognitive deficits has received great interest, and findings from novel studies are keenly anticipated. Although, in general, the studies reviewed were well designed, future studies may wish to include larger sample sizes and pay more attention to the accurate assessment of cognitive function.
Shanafelt, Tait D; West, Colin; Zhao, Xinghua; Novotny, Paul; Kolars, Joseph; Habermann, Thomas; Sloan, Jeff
2005-01-01
BACKGROUND While resident distress and its potential to negatively effect patient care have been well documented, little is known bout resident well-being or its potential to enhance care. OBJECTIVE We measured resident well-being and explored its relationship with empathy. DESIGN Anonymous, cross-sectional survey. PARTICIPANTS Internal medicine residents at Mayo Clinic Rochester (n=165, summer 2003). MEASUREMENTS Well-being was measured using the previously validated Medical Outcomes Study 8-item Short Form (SF-8). Empathy was measured using the previously validated Perspective Taking (PT) and Empathetic Concerns (EC) Sub-scales of the Interpersonal Reactivity Index (IRI). RESULTS Eighty-three (50%) residents responded to the survey. Mean scores for well-being as measured by the SF-8 were comparable to the general population, and empathy scores on the IRI were similar to other resident samples. Resident empathy on both the cognitive (PT) and emotive (EC) sub-scales of the IRI was higher for residents with higher mental well-being on the SF-8; however, this difference was statistically significant only for the cognitive sub-scale. The importance of a number of personal wellness promotion strategies differed for residents with higher mental well-being on the SF-8. CONCLUSIONS High mental well-being was associated with enhanced resident empathy in this cross-sectional survey. Future studies need to explore the potential for high resident well-being to enhance medical care and competency in addition to exploring the negative consequences of resident distress. Studies investigating how to promote resident well-being are needed. PMID:16050855
Internal Designs Application for Inlet and Nozzle Aeroperformance Improvement
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Blankson, I. M.
2000-01-01
The following research results are based on development of an approach previously proposed by the authors for optimum nozzle design to obtain maximum thrust. The design was denoted a Telescope nozzle. A Telescope nozzle contains one or several internal designs of certain location, which are inserted at certain locations into a divergent conical or planar main nozzle near its exit. Such a design provides additional thrust augmentation over 20% by comparison with the optimum single nozzle of equivalent lateral area. What is more, recent experimental acoustic tests have discovered an essential noise reduction due to Telescope nozzles application. In this paper, some additional theoretical results are presented for Telescope nozzles and a similar approach is applied for aeroperformance improvement of a supersonic inlet. In addition, a classic gas dynamics problem of a similar supersonic flow into a plate has been analyzed. In some particular cases, new exact analytical solutions are obtained for a flow into a wedge with an oblique shock wave. Numerical simulations were conducted for supersonic flow into a divergent portion of a 2D or axisymmetric nozzle with several plane or conical designs as well as into a 2D or axisymmetric supersonic inlet with a forebody. The 1st order Kryko-Godunov march- ing numerical scheme for inviscid supersonic flows was used. Several cases were tested using the NASA CFL3d code based on full Navier-Stokes equations. Numerical simulation results have confirmed essential benefits of Telescope design applications in propulsion systems.
Internal Designs Application for Inlet and Nozzle Aeroperformance Improvement
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Blankson, I. M.
2000-01-01
The following research results are based on development of an approach previously proposed by the authors for optimum nozzle design to obtain maximum thrust. The design was denoted a Telescope nozzle. A Telescope nozzle contains one or several internal designs of certain location, which are inserted at certain locations into a divergent conical or planar main nozzle near its exit. Such a design provides additional thrust augmentation over 20% by comparison with the optimum single nozzle of equivalent lateral area. What is more, recent experimental acoustic tests have discovered an essential noise reduction due to Telescope nozzles application. In this paper, some additional theoretical results are presented for Telescope nozzles and a similar approach is applied for aeroperformance improvement of a supersonic inlet. In addition, a classic gas dynamics problem of a similar supersonic flow into a plate has been analyzed. In some particular cases, new exact analytical solutions are obtained for a flow into a wedge with an oblique shock wave. Numerical simulations were conducted for supersonic flow into a divergent portion of a 2D or axisymmetric nozzle with several plane or conuical designs as well as into a 2D or axisymmetric supersonic inlet with a forebody. The 1st order Kryko-Godunov marching numerical scheme for inviscid supersonic flows was used. Several cases were tested using the NASA CFL3d code based on full Navier-Stokes equations. Numerical simulation results have confirmed essential benefits of Telescope design applications in propulsion systems.
Internal Designs Application for Inlet and Nozzle Aeroperformance Improvement
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Blankson, I. M.
2000-01-01
The following research results are based on development of an approach previously proposed by the authors for optimum nozzle design to obtain maximum thrust. The design was denoted a Telescope nozzle. A Telescope nozzle contains one or several internal designs of certain location, which are inserted at certain locations into a divergent conical or planar main nozzle near its exit. Such a design provides additional thrust augmentation over 20% by comparison with the optimum single nozzle of equivalent lateral area. What is more, recent experimental acoustic tests have discovered an essential noise reduction due to Telescope nozzles application. In this paper, some additional theoretical results are presented for Telescope nozzles and a similar approach is applied for aeroperformance improvement of a supersonic inlet. In addition, a classic gas dynamics problem of a similar supersonic flow into a plate has been analyzed. In some particular cases, new exact analytical solutions are obtained for a flow into a wedge with an oblique shock wave. Numerical simulations were conducted for supersonic flow into a divergent portion of a 2D or axisymmetric nozzle with several plane or conical designs as well as into a 2D or axisymmetric supersonic inlet with a forebody. The 1st order Kryko-Godunov marching numerical scheme for inviscid supersonic flows was used. Several cases were tested using the NASA CFL3d code based on full Navier-Stokes equations. Numerical simulation results have confirmed essential benefits of Telescope design applications in propulsion systems.
Wide-Field-of-View Millimeter-Wave Telescope Design with Ultra-Low Cross-Polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.
2012-05-01
As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since most millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degreesmore » of freedom that offer larger fields of view than possible with single-reflector designs. Dragone’s graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone’s geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone’s design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low polarization crosstalk and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.« less
Shuttle/tethered satellite system conceptual design study
NASA Technical Reports Server (NTRS)
1976-01-01
A closed-loop control system was added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system is used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from space shuttle orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.
Gould, A Lawrence; Koglin, Joerg; Bain, Raymond P; Pinto, Cathy-Anne; Mitchel, Yale B; Pasternak, Richard C; Sapre, Aditi
2009-08-01
Studies measuring progression of carotid artery intima-media thickness (cIMT) have been used to estimate the effect of lipid-modifying therapies cardiovascular event risk. The likelihood that future cIMT clinical trials will detect a true treatment effect is estimated by leveraging results from prior studies. The present analyses assess the impact of between- and within-study variability based on currently published data from prior clinical studies on the likelihood that ongoing or future cIMT trials will detect the true treatment effect of lipid-modifying therapies. Published data from six contemporary cIMT studies (ASAP, ARBITER 2, RADIANCE 1, RADIANCE 2, ENHANCE, and METEOR) including data from a total of 3563 patients were examined. Bayesian and frequentist methods were used to assess the impact of between study variability on the likelihood of detecting true treatment effects on 1-year cIMT progression/regression and to provide a sample size estimate that would specifically compensate for the effect of between-study variability. In addition to the well-described within-study variability, there is considerable between-study variability associated with the measurement of annualized change in cIMT. Accounting for the additional between-study variability decreases the power for existing study designs. In order to account for the added between-study variability, it is likely that future cIMT studies would require a large increase in sample size in order to provide substantial probability (> or =90%) to have 90% power of detecting a true treatment effect.Limitation Analyses are based on study level data. Future meta-analyses incorporating patient-level data would be useful for confirmation. Due to substantial within- and between-study variability in the measure of 1-year change of cIMT, as well as uncertainty about progression rates in contemporary populations, future study designs evaluating the effect of new lipid-modifying therapies on atherosclerotic disease progression are likely to be challenged by large sample sizes in order to demonstrate a true treatment effect.
JoVE: the Journal of Visualized Experiments.
Vardell, Emily
2015-01-01
The Journal of Visualized Experiments (JoVE) is the world's first scientific video journal and is designed to communicate research and scientific methods in an innovative, intuitive way. JoVE includes a wide range of biomedical videos, from biology to immunology and bioengineering to clinical and translation medicine. This column describes the browsing and searching capabilities of JoVE, as well as its additional features (including the JoVE Scientific Education Database designed for students in scientific fields).
Vibration Interaction in a Multiple Flywheel System
2011-03-01
IP/IT ) t time x x−axis y y−axis z z−axis κ rotational spring stiffness ρ radial distance between flywheel center of mass and shaft center θ axial...they may be a viable alternative for the satellite designer . One additional benefit of flywheel-based energy storage is its inherent ability to control...rotating wheels it can change the satellite’s attitude by exchanging momentum between flywheels and 2 the spacecraft. Thus an IPACS, if well designed
Design of complex bone internal structure using topology optimization with perimeter control.
Park, Jaejong; Sutradhar, Alok; Shah, Jami J; Paulino, Glaucio H
2018-03-01
Large facial bone loss usually requires patient-specific bone implants to restore the structural integrity and functionality that also affects the appearance of each patient. Titanium alloys (e.g., Ti-6Al-4V) are typically used in the interfacial porous coatings between the implant and the surrounding bone to promote stability. There exists a property mismatch between the two that in general leads to complications such as stress-shielding. This biomechanical discrepancy is a hurdle in the design of bone replacements. To alleviate the mismatch, the internal structure of the bone replacements should match that of the bone. Topology optimization has proven to be a good technique for designing bone replacements. However, the complex internal structure of the bone is difficult to mimic using conventional topology optimization methods without additional restrictions. In this work, the complex bone internal structure is recovered using a perimeter control based topology optimization approach. By restricting the solution space by means of the perimeter, the intricate design complexity of bones can be achieved. Three different bone regions with well-known physiological loadings are selected to illustrate the method. Additionally, we found that the target perimeter value and the pattern of the initial distribution play a vital role in obtaining the natural curvatures in the bone internal structures as well as avoiding excessive island patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wind-tunnel free-flight investigation of a supersonic persistence fighter
NASA Technical Reports Server (NTRS)
Hahne, David E.; Wendel, Thomas R.; Boland, Joseph R.
1993-01-01
Wind-tunnel free-flight tests have been conducted in the Langley 30- by 60-Foot Wind Tunnel to examine the high-angle-of-attack stability and control characteristics and control law design of a supersonic persistence fighter (SSPF) at 1 g flight conditions. In addition to conventional control surfaces, the SSPF incorporated deflectable wingtips (tiperons) and pitch and yaw thrust vectoring. A direct eigenstructure assignment technique was used to design control laws to provide good flying characteristics well into the poststall angle-of-attack region. Free-flight tests indicated that it was possible to blend effectively conventional and unconventional control surfaces to achieve good flying characteristics well into the poststall angle-of-attack region.
Development, implementation, and experimentation of parametric routing protocol for sensor networks
NASA Astrophysics Data System (ADS)
Nassr, Matthew S.; Jun, Jangeun; Eidenbenz, Stephan J.; Frigo, Janette R.; Hansson, Anders A.; Mielke, Angela M.; Smith, Mark C.
2006-09-01
The development of a scalable and reliable routing protocol for sensor networks is traced from a theoretical beginning to positive simulation results to the end of verification experiments in large and heavily loaded networks. Design decisions and explanations as well as implementation hurdles are presented to give a complete picture of protocol development. Additional software and hardware is required to accurately test the performance of our protocol in field experiments. In addition, the developed protocol is tested in TinyOS on Mica2 motes against well-established routing protocols frequently used in sensor networks. Our protocol proves to outperform the standard (MINTRoute) and the trivial (Gossip) in a variety of different scenarios.
Assessing the Power of Exome Chips.
Page, Christian Magnus; Baranzini, Sergio E; Mevik, Bjørn-Helge; Bos, Steffan Daniel; Harbo, Hanne F; Andreassen, Bettina Kulle
2015-01-01
Genotyping chips for rare and low-frequent variants have recently gained popularity with the introduction of exome chips, but the utility of these chips remains unclear. These chips were designed using exome sequencing data from mainly American-European individuals, enriched for a narrow set of common diseases. In addition, it is well-known that the statistical power of detecting associations with rare and low-frequent variants is much lower compared to studies exclusively involving common variants. We developed a simulation program adaptable to any exome chip design to empirically evaluate the power of the exome chips. We implemented the main properties of the Illumina HumanExome BeadChip array. The simulated data sets were used to assess the power of exome chip based studies for varying effect sizes and causal variant scenarios. We applied two widely-used statistical approaches for rare and low-frequency variants, which collapse the variants into genetic regions or genes. Under optimal conditions, we found that a sample size between 20,000 to 30,000 individuals were needed in order to detect modest effect sizes (0.5% < PAR > 1%) with 80% power. For small effect sizes (PAR <0.5%), 60,000-100,000 individuals were needed in the presence of non-causal variants. In conclusion, we found that at least tens of thousands of individuals are necessary to detect modest effects under optimal conditions. In addition, when using rare variant chips on cohorts or diseases they were not originally designed for, the identification of associated variants or genes will be even more challenging.
Mitigating cold flow problems of biodiesel: Strategies with additives
NASA Astrophysics Data System (ADS)
Mohanan, Athira
The present thesis explores the cold flow properties of biodiesel and the effect of vegetable oil derived compounds on the crystallization path as well as the mechanisms at play at different stages and length scales. Model systems including triacylglycerol (TAG) oils and their derivatives, and a polymer were tested with biodiesel. The goal was to acquire the fundamental knowledge that would help design cold flow improver (CFI) additives that would address effectively and simultaneously the flow problems of biodiesel, particularly the cloud point (CP) and pour point (PP). The compounds were revealed to be fundamentally vegetable oil crystallization modifiers (VOCM) and the polymer was confirmed to be a pour point depressant (PPD). The results obtained with the VOCMs indicate that two cis-unsaturated moieties combined with a trans-/saturated fatty acid is a critical structural architecture for depressing the crystallization onset by a mechanism wherein while the straight chain promotes a first packing with the linear saturated FAMEs, the kinked moieties prevent further crystallization. The study of model binary systems made of a VOCM and a saturated FAME with DSC, XRD and PLM provided a complete phase diagram including the thermal transformation lines, crystal structure and microstructure that impact the phase composition along the different crystallization stages, and elicited the competing effects of molecular mass, chain length mismatch and isomerism. The liquid-solid boundary is discussed in light of a simple thermodynamic model based on the Hildebrand equation and pair interactions. In order to test for synergies, the PP and CP of a biodiesel (Soy1500) supplemented with several VOCM and PLMA binary cocktails were measured using a specially designed method inspired by ASTM standards. The results were impressive, the combination of additives depressed CP and PP better than any single additive. The PLM and DSC results suggest that the cocktail additives are most effective when the right molecular structure and optimal concentration are provided. The cocktail mixture achieves then tiny crystals that are prevented from aggregating for an extended temperature range. The results of the study can be directly used for the design of functional and economical CFI from vegetable oils and their derivatives.
Cell biology, biophysics, and mechanobiology: From the basics to Clinics.
Zeng, Y
2017-04-29
Cell biology, biomechanics and biophysics are the key subjects that guide our understanding in diverse areas of tissue growth, development, remodeling and homeostasis. Novel discoveries such as molecular mechanism, and mechanobiological mechanism in cell biology, biomechanics and biophysics play essential roles in our understanding of the pathogenesis of various human diseases, as well as in designing the treatment of these diseases. In addition, studies in these areas will also facilitate early diagnostics of human diseases, such as cardiovascular diseases and cancer. In this special issue, we collected 10 original research articles and 1 review...
A planar reacting shear layer system for the study of fluid dynamics-combustion interaction
NASA Technical Reports Server (NTRS)
Marek, C. J.; Chang, C. T.; Ghorashi, B.; Wey, C. C.; Wey, C.; Mularz, E. J.
1989-01-01
A versatile planar reacting shear layer facility is constructed at NASA-Lewis. The research objectives, as well as design, instrumentations and the operational procedures developed for the system are described. The fundamental governing equations and the type of quantitative information that are needed from experiments are described. Additionally, a review of earlier work is presented. Whenever appropriate, comparisons are made with similar systems in other facilities and the main differences are described. Finally, the nonintrusive measurement techniques (PLIF, PMS, LDV, and Schlieren photography) and the type of experiments that are planned are described.
Suppressing Nonradiative Recombination in Crown-Shaped Quantum Wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kwangwook; Ju, Gunwu; Na, Byung Hoon
We examined the structural and optical properties of a crown-shaped quantum well (CSQW) to suppress nonradiative recombination. To reduce carrier loss in defect traps at the well/barrier interface, the CSQW was designed to concentrate carriers in the central region by tailoring the bandgap energy. Temperature-dependent photoluminescence measurements showed that the CSQW had a high activation energy and low potential fluctuation. In addition, the long carrier lifetime of the CSQW at high temperatures can be interpreted as indicating a decrease in carrier loss at defect traps.
Development of dapivirine vaginal ring for HIV prevention.
Devlin, Bríd; Nuttall, Jeremy; Wilder, Susan; Woodsong, Cynthia; Rosenberg, Zeda
2013-12-01
In the continuing effort to develop effective HIV prevention methods for women, a vaginal ring containing the non-nucleoside reverse transcriptase inhibitor dapivirine is currently being tested in two safety and efficacy trials. This paper reviews dapivirine ring's pipeline development process, including efforts to determine safe and effective dosing levels as well as identify delivery platforms with the greatest likelihood of success for correct and consistent use. Dapivirine gel and other formulations were developed and tested in preclinical and clinical studies. Multiple vaginal ring prototypes were also tested, resulting in the current ring design as well as additional designs under consideration for future testing. Efficacy results from clinical trials are expected in 2015. Through ongoing consultations with national regulatory authorities, licensure requirements for dapivirine vaginal ring approval have been defined. This article is based on a presentation at the "Product Development Workshop 2013: HIV and Multipurpose Prevention Technologies," held in Arlington, Virginia on February 21-22, 2013. It forms part of a special supplement to Antiviral Research. Copyright © 2013 Elsevier B.V. All rights reserved.
Separation and purification of fructooligosaccharides on a zeolite fixed-bed column.
Kuhn, Raquel Cristine; Mazutti, Marcio Antonio; Maugeri Filho, Francisco
2014-04-01
Fructooligosaccharides (FOS), a well-known prebiotic product, are obtained by enzymatic synthesis and consist of a mixture of mono- and disaccharides. In this work, a methodology for their separation and purification was developed using a zeolite fixed-bed column. The effects of column temperature (40-60°C), eluent flow rate (0.10-0.14 mL/min), injected to bed volume percent ratio (2.6-5.1%), and ethanol concentration in the eluent (40-60%, v/v) were investigated using a fractionary factorial design (2(4-1)), having the separation efficiency and purity as target responses. Additional experiments were performed as well, where the temperature and ethanol concentration were studied in a central composite design (2(2)). In this work, the zeolite fixed-bed column was shown to be a good alternative for FOS purification, allowing a FOS purity of 90% and separation efficiency of 6.86 between FOS and glucose, using an eluent at 45°C with 60% ethanol concentration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Connor, Carol McDonald; Phillips, Beth M.; Kaschak, Michael; Apel, Kenn; Kim, Young-Suk; Al Otaiba, Stephanie; Crowe, Elizabeth C.; Thomas-Tate, Shurita; Johnson, Lakeisha Cooper; Lonigan, Christopher J.
2015-01-01
This paper describes the theoretical framework, as well as the development and testing of the intervention, Comprehension Tools for Teachers (CTT), which is composed of eight component interventions targeting malleable language and reading comprehension skills that emerging research indicates contribute to proficient reading for understanding for prekindergarteners through fourth graders. Component interventions target processes considered largely automatic as well as more reflective processes, with interacting and reciprocal effects. Specifically, we present component interventions targeting cognitive, linguistic, and text-specific processes, including morphological awareness, syntax, mental-state verbs, comprehension monitoring, narrative and expository text structure, enacted comprehension, academic knowledge, and reading to learn from informational text. Our aim was to develop a tool set composed of intensive meaningful individualized small group interventions. We improved feasibility in regular classrooms through the use of design-based iterative research methods including careful lesson planning, targeted scripting, pre- and postintervention proximal assessments, and technology. In addition to the overall framework, we discuss seven of the component interventions and general results of design and efficacy studies. PMID:26500420
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ke; Zhao, Chonghang; Lin, Cheng-Hung
Conductive metal sulfides are promising multi-functional additives for future lithium-sulfur (Li-S) batteries. These can increase the sulfur cathode’s electrical conductivity to improve the battery’s power capability, as well as contribute to the overall cell-discharge capacity. This multi-functional electrode design showed initial promise; however, complicated interactions at the system level are accompanied by some detrimental side effects. The metal sulfide additives with a chemical conversion as the reaction mechanism, e.g., CuS and FeS 2, can increase the theoretical capacity of the Li-S system. However, these additives may cause undesired parasitic reactions, such as the dissolution of the additive in the electrolyte.more » Studying such complex reactions presents a challenge because it requires experimental methods that can track the chemical and structural evolution of the system during an electrochemical process. To address the fundamental mechanisms in these systems, we employed an operando multimodal x-ray characterization approach to study the structural and chemical evolution of the metal sulfide—utilizing powder diffraction and fluorescence imaging to resolve the former and absorption spectroscopy the latter—during lithiation and de-lithiation of a Li-S battery with CuS as the multi-functional cathode additive. The resulting elucidation of the structural and chemical evolution of the system leads to a new description of the reaction mechanism.« less
Sun, Ke; Zhao, Chonghang; Lin, Cheng-Hung; ...
2017-10-11
Conductive metal sulfides are promising multi-functional additives for future lithium-sulfur (Li-S) batteries. These can increase the sulfur cathode’s electrical conductivity to improve the battery’s power capability, as well as contribute to the overall cell-discharge capacity. This multi-functional electrode design showed initial promise; however, complicated interactions at the system level are accompanied by some detrimental side effects. The metal sulfide additives with a chemical conversion as the reaction mechanism, e.g., CuS and FeS 2, can increase the theoretical capacity of the Li-S system. However, these additives may cause undesired parasitic reactions, such as the dissolution of the additive in the electrolyte.more » Studying such complex reactions presents a challenge because it requires experimental methods that can track the chemical and structural evolution of the system during an electrochemical process. To address the fundamental mechanisms in these systems, we employed an operando multimodal x-ray characterization approach to study the structural and chemical evolution of the metal sulfide—utilizing powder diffraction and fluorescence imaging to resolve the former and absorption spectroscopy the latter—during lithiation and de-lithiation of a Li-S battery with CuS as the multi-functional cathode additive. The resulting elucidation of the structural and chemical evolution of the system leads to a new description of the reaction mechanism.« less
Yoo, Dongjin
2012-07-01
Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Development of Simple Designs of Multitip Probe Diagnostic Systems for RF Plasma Characterization
Naz, M. Y.; Shukrullah, S.; Ghaffar, A.; Rehman, N. U.
2014-01-01
Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures. PMID:24683326
Study of 3D printing method for GRIN micro-optics devices
NASA Astrophysics Data System (ADS)
Wang, P. J.; Yeh, J. A.; Hsu, W. Y.; Cheng, Y. C.; Lee, W.; Wu, N. H.; Wu, C. Y.
2016-03-01
Conventional optical elements are based on either refractive or reflective optics theory to fulfill the design specifications via optics performance data. In refractive optical lenses, the refractive index of materials and radius of curvature of element surfaces determine the optical power and wavefront aberrations so that optical performance can be further optimized iteratively. Although gradient index (GRIN) phenomenon in optical materials is well studied for more than a half century, the optics theory in lens design via GRIN materials is still yet to be comprehensively investigated before realistic GRIN lenses are manufactured. In this paper, 3D printing method for manufacture of micro-optics devices with special features has been studied based on methods reported in the literatures. Due to the additive nature of the method, GRIN lenses in micro-optics devices seem to be readily achievable if a design methodology is available. First, derivation of ray-tracing formulae is introduced for all possible structures in GRIN lenses. Optics simulation program is employed for characterization of GRIN lenses with performance data given by aberration coefficients in Zernike polynomial. Finally, a proposed structure of 3D printing machine is described with conceptual illustration.
Phthalates and other additives in plastics: human exposure and associated health outcomes
Meeker, John D.; Sathyanarayana, Sheela; Swan, Shanna H.
2009-01-01
Concern exists over whether additives in plastics to which most people are exposed, such as phthalates, bisphenol A or polybrominated diphenyl ethers, may cause harm to human health by altering endocrine function or through other biological mechanisms. Human data are limited compared with the large body of experimental evidence documenting reproductive or developmental toxicity in relation to these compounds. Here, we discuss the current state of human evidence, as well as future research trends and needs. Because exposure assessment is often a major weakness in epidemiological studies, and in utero exposures to reproductive or developmental toxicants are important, we also provide original data on maternal exposure to phthalates during and after pregnancy (n = 242). Phthalate metabolite concentrations in urine showed weak correlations between pre- and post-natal samples, though the strength of the relationship increased when duration between the two samples decreased. Phthalate metabolite levels also tended to be higher in post-natal samples. In conclusion, there is a great need for more human studies of adverse health effects associated with plastic additives. Recent advances in the measurement of exposure biomarkers hold much promise in improving the epidemiological data, but their utility must be understood to facilitate appropriate study design. PMID:19528058
Development and fabrication of patient-specific knee implant using additive manufacturing techniques
NASA Astrophysics Data System (ADS)
Zammit, Robert; Rochman, Arif
2017-10-01
Total knee replacement is the most effective treatment to relief pain and restore normal function in a diseased knee joint. The aim of this research was to develop a patient-specific knee implant which can be fabricated using additive manufacturing techniques and has reduced wear rates using a highly wear resistant materials. The proposed design was chosen based on implant requirements, such as reduction in wear rates as well as strong fixation. The patient-specific knee implant improves on conventional knee implants by modifying the articulating surfaces and bone-implant interfaces. Moreover, tribological tests of different polymeric wear couples were carried out to determine the optimal materials to use for the articulating surfaces. Finite element analysis was utilized to evaluate the stresses sustained by the proposed design. Finally, the patient-specific knee implant was successfully built using additive manufacturing techniques.
Evans, Richard Mark; Scholze, Martin; Kortenkamp, Andreas
2012-01-01
A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX) and cell proliferation (ESCREEN) endpoints. Two mixture designs were used: 1) a 'balanced' design with components present in proportion to a common effect concentration (e.g. an EC(10)) and 2) a 'non-balanced' design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity) to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate) the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential modulators. Successful prediction of the effects of diverse chemical combinations might be more likely if chemical profiling included consideration of effect modulation.
Evans, Richard Mark; Scholze, Martin; Kortenkamp, Andreas
2012-01-01
A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX) and cell proliferation (ESCREEN) endpoints. Two mixture designs were used: 1) a ‘balanced’ design with components present in proportion to a common effect concentration (e.g. an EC10) and 2) a ‘non-balanced’ design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity) to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate) the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential modulators. Successful prediction of the effects of diverse chemical combinations might be more likely if chemical profiling included consideration of effect modulation. PMID:22912892
Scientific white paper on concentration-QTc modeling.
Garnett, Christine; Bonate, Peter L; Dang, Qianyu; Ferber, Georg; Huang, Dalong; Liu, Jiang; Mehrotra, Devan; Riley, Steve; Sager, Philip; Tornoe, Christoffer; Wang, Yaning
2018-06-01
The International Council for Harmonisation revised the E14 guideline through the questions and answers process to allow concentration-QTc (C-QTc) modeling to be used as the primary analysis for assessing the QTc interval prolongation risk of new drugs. A well-designed and conducted QTc assessment based on C-QTc modeling in early phase 1 studies can be an alternative approach to a thorough QT study for some drugs to reliably exclude clinically relevant QTc effects. This white paper provides recommendations on how to plan and conduct a definitive QTc assessment of a drug using C-QTc modeling in early phase clinical pharmacology and thorough QT studies. Topics included are: important study design features in a phase 1 study; modeling objectives and approach; exploratory plots; the pre-specified linear mixed effects model; general principles for model development and evaluation; and expectations for modeling analysis plans and reports. The recommendations are based on current best modeling practices, scientific literature and personal experiences of the authors. These recommendations are expected to evolve as their implementation during drug development provides additional data and with advances in analytical methodology.
Mesoscopic structure conditions the emergence of cooperation on social networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozano, S.; Arenas, A.; Sanchez, A.
We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data. We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement withmore » the observations in both real substrates. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.« less
Zhu, Bin; Hedman, Anders; Feng, Shuo; Li, Haibo; Osika, Walter
2017-06-14
During the past decade, there has been a rapid increase of interactive apps designed for health and well-being. Yet, little research has been published on developing frameworks for design and evaluation of digital mindfulness facilitating technologies. Moreover, many existing digital mindfulness applications are purely software based. There is room for further exploration and assessment of designs that make more use of physical qualities of artifacts. The study aimed to develop and test a new physical digital mindfulness prototype designed for stress reduction. In this case study, we designed, developed, and evaluated HU, a physical digital mindfulness prototype designed for stress reduction. In the first phase, we used vapor and light to support mindful breathing and invited 25 participants through snowball sampling to test HU. In the second phase, we added sonification. We deployed a package of probes such as photos, diaries, and cards to collect data from users who explored HU in their homes. Thereafter, we evaluated our installation using both self-assessed stress levels and heart rate (HR) and heart rate variability (HRV) measures in a pilot study, in order to measure stress resilience effects. After the experiment, we performed a semistructured interview to reflect on HU and investigate the design of digital mindfulness apps for stress reduction. The results of the first phase showed that 22 of 25 participants (88%) claimed vapor and light could be effective ways of promoting mindful breathing. Vapor could potentially support mindful breathing better than light (especially for mindfulness beginners). In addition, a majority of the participants mentioned sound as an alternative medium. In the second phase, we found that participants thought that HU could work well for stress reduction. We compared the effect of silent HU (using light and vapor without sound) and sonified HU on 5 participants. Subjective stress levels were statistically improved with both silent and sonified HU. The mean value of HR using silent HU was significantly lower than resting baseline and sonified HU. The mean value of root mean square of differences (RMSSD) using silent HU was significantly higher than resting baseline. We found that the differences between our objective and subjective assessments were intriguing and prompted us to investigate them further. Our evaluation of HU indicated that HU could facilitate relaxed breathing and stress reduction. There was a difference in outcome between the physiological measures of stress and the subjective reports of stress, as well as a large intervariability among study participants. Our conclusion is that the use of stress reduction tools should be customized and that the design work of mindfulness technology for stress reduction is a complex process, which requires cooperation of designers, HCI (Human-Computer Interaction) experts and clinicians. ©Bin Zhu, Anders Hedman, Shuo Feng, Haibo Li, Walter Osika. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 14.06.2017.
Horner, Janice K; Piercy, Brigit S; Eure, Lois; Woodard, Elizabeth K
2014-08-01
The purpose of the Mindful Nursing Pilot Study was to explore the impact of mindfulness training for nursing staff on levels of mindfulness, compassion satisfaction, burnout, and stress. In addition, the study attempted to determine the impact on patient satisfaction scores. The pilot was designed as a quasi-experimental research study; staff on one nursing unit participated in the 10-week mindfulness training program while another, similar nursing unit served as the control group. The intervention group showed improvement in levels of mindfulness, burnout, and stress as well as patient satisfaction while the control group remained largely the same. This pilot provides encouraging results that suggest that replication and further study of mindfulness in the workplace would be beneficial. Copyright © 2014 Elsevier Inc. All rights reserved.
Barsi, Alpar; Jager, Tjalling; Collinet, Marc; Lagadic, Laurent; Ducrot, Virginie
2014-07-01
Toxicokinetic-toxicodynamic (TKTD) modeling offers many advantages in the analysis of ecotoxicity test data. Calibration of TKTD models, however, places different demands on test design compared with classical concentration-response approaches. In the present study, useful complementary information is provided regarding test design for TKTD modeling. A case study is presented for the pond snail Lymnaea stagnalis exposed to the narcotic compound acetone, in which the data on all endpoints were analyzed together using a relatively simple TKTD model called DEBkiss. Furthermore, the influence of the data used for calibration on accuracy and precision of model parameters is discussed. The DEBkiss model described toxic effects on survival, growth, and reproduction over time well, within a single integrated analysis. Regarding the parameter estimates (e.g., no-effect concentration), precision rather than accuracy was affected depending on which data set was used for model calibration. In addition, the present study shows that the intrinsic sensitivity of snails to acetone stays the same across different life stages, including the embryonic stage. In fact, the data on egg development allowed for selection of a unique metabolic mode of action for the toxicant. Practical and theoretical considerations for test design to accommodate TKTD modeling are discussed in the hope that this information will aid other researchers to make the best possible use of their test animals. © 2014 SETAC.
Ormes, James D; Zhang, Dan; Chen, Alex M; Hou, Shirley; Krueger, Davida; Nelson, Todd; Templeton, Allen
2013-02-01
There has been a growing interest in amorphous solid dispersions for bioavailability enhancement in drug discovery. Spray drying, as shown in this study, is well suited to produce prototype amorphous dispersions in the Candidate Selection stage where drug supply is limited. This investigation mapped the processing window of a micro-spray dryer to achieve desired particle characteristics and optimize throughput/yield. Effects of processing variables on the properties of hypromellose acetate succinate were evaluated by a fractional factorial design of experiments. Parameters studied include solid loading, atomization, nozzle size, and spray rate. Response variables include particle size, morphology and yield. Unlike most other commercial small-scale spray dryers, the ProCepT was capable of producing particles with a relatively wide mean particle size, ca. 2-35 µm, allowing material properties to be tailored to support various applications. In addition, an optimized throughput of 35 g/hour with a yield of 75-95% was achieved, which affords to support studies from Lead-identification/Lead-optimization to early safety studies. A regression model was constructed to quantify the relationship between processing parameters and the response variables. The response surface curves provide a useful tool to design processing conditions, leading to a reduction in development time and drug usage to support drug discovery.
Heerwagen, J H; Heubach, J G; Montgomery, J; Weimer, W C
1995-09-01
The physical environment can be an important contributor to occupational stress. Factors that contribute to stress and other negative outcomes include: lack of control over the environment, distractions from coworkers, lack of privacy, noise, crowding, and environmental deprivations (such as lack of windows and aesthetic impoverishment). The design of "salutogenic" environments requires not only the elimination of negative stress inducing features, but also the addition of environmental enhancements, including such factors as increased personal control, contact with nature and daylight, aesthetically pleasing spaces, and spaces for relaxation alone or with others. Salutogenic environments also take into consideration positive psychosocial "fit," as well as functional fit between people and environments. At the heart of the current interest in the work environment are two major concerns: organizational productivity and employee well being.
Self-transcendence, spiritual well-being, and spiritual practices of women with breast cancer.
Thomas, Jeani C; Burton, Mattie; Griffin, Mary T Quinn; Fitzpatrick, Joyce J
2010-06-01
As women recover from the experience of breast cancer and its treatment, it is important for them to find meaning in their lives and to understand their experiences from a holistic perspective. This study was designed to provide additional information about how women and their experiences recovering from breast cancer. The specific purpose was to describe the relationship between self-transcendence and spiritual well-being, and to identify the spiritual practices used by older women recovering from breast cancer. The theoretical framework for this study was Reed's theory of self-transcendence. A total of 87 community-residing women who had been diagnosed with breast cancer within the past 5 years participated in the study. There was a significant positive relationship between self-transcendence and spiritual well-being. The women used a mean of 9.72 spiritual practices with the most frequent being exercise, visiting a house of worship, and praying alone. The study results provide further support for the theory of self-transcendence. Future research recommendations are to expand the research to include a larger, more diverse group of women of all ages and backgrounds who have been diagnosed with breast cancer.
NASA Technical Reports Server (NTRS)
Glaab, Louis J.
1999-01-01
An initial assessment of a proposed High-Speed Civil Transport (HSCT) was conducted in the fall of 1995 at the NASA Langley Research Center. This configuration, known as the Industry Reference-H (Ref.-H), was designed by the Boeing Aircraft Company as part of their work in the High Speed Research program. It included a conventional tail, a cranked-arrow wing, four mixed-flow turbofan engines, and capacity for transporting approximately 300 passengers. The purpose of this assessment was to evaluate and quantify operational aspects of the Reference-H configuration from a pilot's perspective with the additional goal of identifying design strengths as well as any potential configuration deficiencies. This study was aimed at evaluating the Ref.-H configuration at many points of the aircraft's envelope to determine the suitability of the vehicle to accomplish typical mission profiles as well as emergency or envelope-limit conditions. Pilot-provided Cooper-Harper ratings and comments constituted the primary vehicle evaluation metric. The analysis included simulated real-time piloted evaluations, performed in a 6 degree of freedom motion base NASA Langley Visual-Motion Simulator, combined with extensive bath analysis. The assessment was performed using the third major release of the simulation data base (known as Ref.-H cycle 2B).
Missed or Delayed Medical Care Appointments by Older Users of Nonemergency Medical Transportation
MacLeod, Kara E.; Ragland, David R.; Prohaska, Thomas R.; Smith, Matthew Lee; Irmiter, Cheryl; Satariano, William A.
2015-01-01
Purpose of the Study: This study identified factors associated with canceling nonemergency medical transportation appointments among older adult Medicaid patients. Design and Methods: Data from 125,913 trips for 2,913 Delaware clients were examined. Mediation analyses, as well as, multivariate logistic regressions were conducted. Results: Over half of canceled trips were attributed to client reasons (e.g., no show, refusal). Client characteristics (e.g., race, sex, functional status) were associated with cancelations; however, these differed based on the cancelation reason. Regularly scheduled trips were less likely to be canceled. Implications: The evolving American health care system may increase service availability. Additional policies can improve service accessibility and overcome utilization barriers. PMID:24558264
Bed inventory overturn in a circulating fluid bed riser with pant-leg structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jinjing Li; Wei Wang; Hairui Yang
2009-05-15
The special phenomenon, nominated as bed inventory overturn, in circulating fluid bed (CFB) riser with pant-leg structure was studied with model calculation and experimental work. A compounded pressure drop mathematic model was developed and validated with the experimental data in a cold experimental test rig. The model calculation results agree well with the measured data. In addition, the intensity of bed inventory overturn is directly proportional to the fluidizing velocity and is inversely proportional to the branch point height. The results in the present study provide significant information for the design and operation of a CFB boiler with pant-leg structure.more » 15 refs., 10 figs., 1 tab.« less
Teacher Modeling Using Complex Informational Texts
ERIC Educational Resources Information Center
Fisher, Douglas; Frey, Nancy
2015-01-01
Modeling in complex texts requires that teachers analyze the text for factors of qualitative complexity and then design lessons that introduce students to that complexity. In addition, teachers can model the disciplinary nature of content area texts as well as word solving and comprehension strategies. Included is a planning guide for think aloud.
Indexing Learning Objects: Vocabularies and Empirical Investigation of Consistency
ERIC Educational Resources Information Center
Kabel, Suzanne; De Hoog, Robert; Wielinga, Bob; Anjewierden, Anjo
2004-01-01
In addition to the LOM standard and instructional design specifications, as well as domain specific indexing vocabularies, a structured indexing vocabulary for the more elementary learning objects is advisable in order to support retrieval tasks of developers. Furthermore, because semantic indexing is seen as a difficult task, three issues…
Staubach, Maria
2009-09-01
This study aims to identify factors which influence and cause errors in traffic accidents and to use these as a basis for information to guide the application and design of driver assistance systems. A total of 474 accidents were examined in depth for this study by means of a psychological survey, data from accident reports, and technical reconstruction information. An error analysis was subsequently carried out, taking into account the driver, environment, and vehicle sub-systems. Results showed that all accidents were influenced by errors as a consequence of distraction and reduced activity. For crossroad accidents, there were further errors resulting from sight obstruction, masked stimuli, focus errors, and law infringements. Lane departure crashes were additionally caused by errors as a result of masked stimuli, law infringements, expectation errors as well as objective and action slips, while same direction accidents occurred additionally because of focus errors, expectation errors, and objective and action slips. Most accidents were influenced by multiple factors. There is a safety potential for Advanced Driver Assistance Systems (ADAS), which support the driver in information assimilation and help to avoid distraction and reduced activity. The design of the ADAS is dependent on the specific influencing factors of the accident type.
Seo, Minseok; Heo, Jaeyoung; Yoon, Joon; Kim, Se-Young; Kang, Yoon-Mo; Yu, Jihyun; Cho, Seoae; Kim, Heebal
2017-01-01
The aim of this study was to investigate which of the gut microbes respond to probiotic intervention, as well as study whether they are associated with gastrointestinal symptoms in a healthy adult human. For the experimental purpose, twenty-one healthy adults were recruited and received probiotic mixture, which is composed of five Lactobacilli strains and two Bifidobacteria strains, once a day for 60 days. Defecation survey and Bioelectrical Impedance Analysis were conducted pre- and post-administration to measure phenotypic differences. Stool samples of the subjects were collected twice. The statistical analysis was performed for pair designed metagenome data with 11 phenotypic records of the bioelectrical impedance body composition analyzer and 6 responses of the questionnaires about gastrointestinal symptom. Furthemore, correlation-based network analysis was conducted for exploring complex relationships among microbiome communities. The abundances of Citrobacter, Klebsiella, and Methanobrevibacter were significantly reduced, which are strong candidates to be highly affected by the probiotic administration. In addition, interaction effects were observed between flatulence symptom attenuation and decreasing patterns of the Methanobrevibacter abundance. These results reveal that probiotic intervention modulated the composition of gut microbiota and reduced the abundance of potential pathogens (i.e. Citrobacter and Klebsiella). In addition, methanogens (i.e. Methanobrevibacter) associated with the gastrointestinal symptom in an adult human.
Job design, employment practices and well-being: a systematic review of intervention studies.
Daniels, Kevin; Gedikli, Cigdem; Watson, David; Semkina, Antonina; Vaughn, Oluwafunmilayo
2017-09-01
There is inconsistent evidence that deliberate attempts to improve job design realise improvements in well-being. We investigated the role of other employment practices, either as instruments for job redesign or as instruments that augment job redesign. Our primary outcome was well-being. Where studies also assessed performance, we considered performance as an outcome. We reviewed 33 intervention studies. We found that well-being and performance may be improved by: training workers to improve their own jobs; training coupled with job redesign; and system wide approaches that simultaneously enhance job design and a range of other employment practices. We found insufficient evidence to make any firm conclusions concerning the effects of training managers in job redesign and that participatory approaches to improving job design have mixed effects. Successful implementation of interventions was associated with worker involvement and engagement with interventions, managerial commitment to interventions and integration of interventions with other organisational systems. Practitioner Summary: Improvements in well-being and performance may be associated with system-wide approaches that simultaneously enhance job design, introduce a range of other employment practices and focus on worker welfare. Training may have a role in initiating job redesign or augmenting the effects of job design on well-being.
Effectiveness of a vegetable dental chew on periodontal disease parameters in toy breed dogs.
Clarke, D E; Kelman, M; Perkins, N
2011-01-01
Sixteen toy breed dogs completed a parallel, 70-day two-period, cross-over design clinical study to determine the effect of a vegetable dental chew on gingivitis, halitosis, plaque, and calculus accumulations. The dogs were randomly assigned into two groups. During one study period the dogs were fed a non-dental dry diet only and during the second study period were fed the same dry diet supplemented by the daily addition of a vegetable dental chew. Daily administration of the dental chew was shown to reduce halitosis, as well as, significantly reduce gingivitis, plaque and calculus accumulation and therefore may play a significant role in the improvement of canine oral health over the long-term.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-14
...] Guidance for Industry: Studies To Evaluate the Utility of Anti- Salmonella Chemical Food Additives in Feeds... Industry: Studies to Evaluate the Utility of Anti-Salmonella Chemical Food Additives in Feeds,'' and is... of Anti-Salmonella Chemical Food Additives in Feeds (GFI 80) is to help sponsors design efficacy...
Thermal/Structural Tailoring of Engine Blades (T/STAEBL) User's manual
NASA Technical Reports Server (NTRS)
Brown, K. W.
1994-01-01
The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a computer code that is able to perform numerical optimizations of cooled jet engine turbine blades and vanes. These optimizations seek an airfoil design of minimum operating cost that satisfies realistic design constraints. This report documents the organization of the T/STAEBL computer program, its design and analysis procedure, its optimization procedure, and provides an overview of the input required to run the program, as well as the computer resources required for its effective use. Additionally, usage of the program is demonstrated through a validation test case.
Thermal/Structural Tailoring of Engine Blades (T/STAEBL): User's manual
NASA Astrophysics Data System (ADS)
Brown, K. W.
1994-03-01
The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a computer code that is able to perform numerical optimizations of cooled jet engine turbine blades and vanes. These optimizations seek an airfoil design of minimum operating cost that satisfies realistic design constraints. This report documents the organization of the T/STAEBL computer program, its design and analysis procedure, its optimization procedure, and provides an overview of the input required to run the program, as well as the computer resources required for its effective use. Additionally, usage of the program is demonstrated through a validation test case.
Design and development of a multibeam 1.4 GHz pushbroom microwave radiometer
NASA Technical Reports Server (NTRS)
Lawrence, R. W.; Bailey, M. C.; Harrington, R. F.; Hearn, C. P.; Wells, J. G.; Stanley, W. D.
1986-01-01
The design and operation of a multiple beam, digital signal processing radiometer are discussed. The discussion includes a brief description of each major subsystem and an overall explanation of the hardware requirements and operation. A series of flight tests was conducted in which sea-truth sites, as well as an existing radiometer were used to verify the Pushbroom Radiometer performance. The results of these tests indicate that the Pushbroom Radiometer did meet the sensitivity design goal of 1.0 kelvin, and exceeded the accuracy requirement of 2.0 kelvin. Additional performance characteristics and test results are also presented.
Machine-Learning Approach for Design of Nanomagnetic-Based Antennas
NASA Astrophysics Data System (ADS)
Gianfagna, Carmine; Yu, Huan; Swaminathan, Madhavan; Pulugurtha, Raj; Tummala, Rao; Antonini, Giulio
2017-08-01
We propose a machine-learning approach for design of planar inverted-F antennas with a magneto-dielectric nanocomposite substrate. It is shown that machine-learning techniques can be efficiently used to characterize nanomagnetic-based antennas by accurately mapping the particle radius and volume fraction of the nanomagnetic material to antenna parameters such as gain, bandwidth, radiation efficiency, and resonant frequency. A modified mixing rule model is also presented. In addition, the inverse problem is addressed through machine learning as well, where given the antenna parameters, the corresponding design space of possible material parameters is identified.
Oluyomi, Abiodun O; Byars, Allison; Byrd-Williams, Courtney; Sharma, Shreela V; Durand, Casey; Hoelscher, Deanna M; Butte, Nancy F; Kelder, Steven H
2015-02-01
The Texas Childhood Obesity Research Demonstration project (TX CORD) uses a systems-oriented approach to address obesity that includes individual and family interventions, community-level action, as well as environmental and policy initiatives. Given that randomization is seldom possible in community-level intervention studies, TX CORD uses a quasi-experimental design. Comparable intervention and comparison study sites are needed to address internal validity bias. TX CORD was designed to be implemented in low-income, ethnically diverse communities in Austin and Houston, Texas. A three-stage Geographical Information System (GIS) methodology was used to establish and ascertain the comparability of the intervention and comparison study sites. Census tract (stage 1) and school (stage 2) data were used to identify spatially exclusive geographic areas that were comparable. In stage 3, study sites were compared on demographic characteristics, socioeconomic status (SES), food assets, and physical activity (PA) assets. Student's t-test was used to examine significant differences between the selected sites. The methodology that was used resulted in the selection of catchment areas with demographic and socioeconomic characteristics that fit the target population: ethnically diverse population; lower-median household income; and lower home ownership rates. Additionally, the intervention and comparison sites were statistically comparable on demographic and SES variables, as well as food assets and PA assets. This GIS approach can provide researchers, program evaluators, and policy makers with useful tools for both research and practice. Area-level information that allows for robust understanding of communities can enhance analytical procedures in community health research and offer significant contributions in terms of community assessment and engagement.
When Theater Comes to Engineering Design: Oh How Creative They Can Be.
Pfeiffer, Ferris M; Bauer, Rachel E; Borgelt, Steve; Burgoyne, Suzanne; Grant, Sheila; Hunt, Heather K; Pardoe, Jennie J; Schmidt, David C
2017-07-01
The creative process is fun, complex, and sometimes frustrating, but it is critical to the future of our nation and progress in science, technology, engineering, mathematics (STEM), as well as other fields. Thus, we set out to see if implementing methods of active learning typical to the theater department could impact the creativity of senior capstone design students in the bioengineering (BE) department. Senior bioengineering capstone design students were allowed to self-select into groups. Prior to the beginning of coursework, all students completed a validated survey measuring engineering design self-efficacy. The control and experimental groups both received standard instruction, but in addition the experimental group received 1 h per week of creativity training developed by a theater professor. Following the semester, the students again completed the self-efficacy survey. The surveys were examined to identify differences in the initial and final self-efficacy in the experimental and control groups over the course of the semester. An analysis of variance was used to compare the experimental and control groups with p < 0.05 considered significant. Students in the experimental group reported more than a twofold (4.8 (C) versus 10.9 (E)) increase of confidence. Additionally, students in the experimental group were more motivated and less anxious when engaging in engineering design following the semester of creativity instruction. The results of this pilot study indicate that there is a significant potential to improve engineering students' creative self-efficacy through the implementation of a "curriculum of creativity" which is developed using theater methods.
Harkness, Mark; Fisher, Angela; Lee, Michael D; Mack, E Erin; Payne, Jo Ann; Dworatzek, Sandra; Roberts, Jeff; Acheson, Carolyn; Herrmann, Ronald; Possolo, Antonio
2012-04-01
A large, multi-laboratory microcosm study was performed to select amendments for supporting reductive dechlorination of high levels of trichloroethylene (TCE) found at an industrial site in the United Kingdom (UK) containing dense non-aqueous phase liquid (DNAPL) TCE. The study was designed as a fractional factorial experiment involving 177 bottles distributed between four industrial laboratories and was used to assess the impact of six electron donors, bioaugmentation, addition of supplemental nutrients, and two TCE levels (0.57 and 1.90 mM or 75 and 250 mg/L in the aqueous phase) on TCE dechlorination. Performance was assessed based on the concentration changes of TCE and reductive dechlorination degradation products. The chemical data was evaluated using analysis of variance (ANOVA) and survival analysis techniques to determine both main effects and important interactions for all the experimental variables during the 203-day study. The statistically based design and analysis provided powerful tools that aided decision-making for field application of this technology. The analysis showed that emulsified vegetable oil (EVO), lactate, and methanol were the most effective electron donors, promoting rapid and complete dechlorination of TCE to ethene. Bioaugmentation and nutrient addition also had a statistically significant positive impact on TCE dechlorination. In addition, the microbial community was measured using phospholipid fatty acid analysis (PLFA) for quantification of total biomass and characterization of the community structure and quantitative polymerase chain reaction (qPCR) for enumeration of Dehalococcoides organisms (Dhc) and the vinyl chloride reductase (vcrA) gene. The highest increase in levels of total biomass and Dhc was observed in the EVO microcosms, which correlated well with the dechlorination results. Copyright © 2012 Elsevier B.V. All rights reserved.
Filipovic, M; Lukic, M; Djordjevic, S; Krstonosic, V; Pantelic, I; Vuleta, G; Savic, S
2017-10-01
Consumers' demand for improved products' performance, alongside with the obligation of meeting the safety and efficacy goals, presents a key reason for the reformulation, as well as a challenging task for formulators. Any change of the formulation, whether it is wanted - in order to innovate the product (new actives and raw materials) or necessary - due to, for example legislative changes (restriction of ingredients), ingredients market unavailability, new manufacturing equipment, may have a number of consequences, desired or otherwise. The aim of the study was to evaluate the influence of multiple factors - variations of the composition, manufacturing conditions and their interactions, on emulsion textural and rheological characteristics, applying the general experimental factorial design and, subsequently, to establish the approach that could replace, to some extent, certain expensive and time-consuming tests (e.g. certain sensory analysis), often required, partly or completely, after the reformulation. An experimental design strategy was utilized to reveal the influence of reformulation factors (addition of new actives, preparation method change) on textural and rheological properties of cosmetic emulsions, especially those linked to certain sensorial attributes, and droplet size. The general experimental factorial design revealed a significant direct effect of each factor, as well as their interaction effects, on certain characteristics of the system and provided some valuable information necessary for fine-tuning reformulation conditions. Upon addition of STEM-liposomes, consistency, index of viscosity, firmness and cohesiveness were decreased, as along with certain rheology parameters (elastic and viscous modulus), whereas maximal and minimal apparent viscosities and droplet size were increased. The presence of an emollient (squalene) affected all the investigated parameters in a concentration-dependent manner. Modification of the preparation method (using Ultra Turrax instead of a propeller stirrer) produced emulsions with higher firmness and maximal apparent viscosity, but led to a decrease in minimal apparent viscosity, hysteresis loop area, all monitored parameters of oscillatory rheology and droplet size. The study showed that the established approach which combines a general experimental design and instrumental, rheological and textural measurements could be appropriate, more objective, repeatable and time and money-saving step towards developing cosmetic emulsions with satisfying, improved or unchanged, consumer-acceptable performance during the reformulation. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Leveraging natural dynamical structures to explore multi-body systems
NASA Astrophysics Data System (ADS)
Bosanac, Natasha
Multi-body systems have become the target of an increasing number of mission concepts and observations, supplying further information about the composition, origin and dynamical environment of bodies within the solar system and beyond. In many of these scenarios, identification and characterization of the particular solutions that exist in a circular restricted three-body model is valuable. This insight into the underlying natural dynamical structures is achieved via the application of dynamical systems techniques. One application of such analysis is trajectory design for CubeSats, which are intended to explore cislunar space and other planetary systems. These increasingly complex mission objectives necessitate innovative trajectory design strategies for spacecraft within our solar system, as well as the capability for rapid and well-informed redesign. Accordingly, a trajectory design framework is constructed using dynamical systems techniques and demonstrated for the Lunar IceCube mission. An additional application explored in this investigation involves the motion of an exoplanet near a binary star system. Due to the strong gravitational field near a binary star, physicists have previously leveraged these systems as testbeds for examining the validity of gravitational and relativistic theories. In this investigation, a preliminary analysis into the effect of an additional three-body interaction on the dynamical environment near a large mass ratio binary system is conducted. As demonstrated through both of these sample applications, identification and characterization of the natural particular solutions that exist within a multi-body system supports a well-informed and guided analysis.
Modular optical detector system
Horn, Brent A [Livermore, CA; Renzi, Ronald F [Tracy, CA
2006-02-14
A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.