Science.gov

Sample records for additive flame retardants

  1. A polymeric flame retardant additive for rubbers

    SciTech Connect

    Ghosh, S.N.; Maiti, S.

    1993-12-31

    Synthesis of a polyphosphonate by the interfacial polymerization of bisphenol-A (BPA) and dichloro-phenyl phosphine oxide (DCPO) using cetyltrimethyl ammonium chloride (TMAC) as phase transfer catalyst (PTC) was reported. The polyphosphonate was characterized by elemental analysis, IR, TGA, DSC and 1H-NMR spectroscopy. The flame retardancy of the polymer was done by OI study. The polymer was used as a fire retardant additive to rubbers such as natural rubber (NR), styrene-butadiene rubber(SBR), nitrile rubber (NBR) and chloroprene rubber (CR). The efficiency of the fire retardant property of this additive was determined by LOI measurements of the various rubber samples.

  2. Flame retardant spandex type polyurethanes

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1978-01-01

    Flame retardant elastomeric compositions were developed, comprised of: (1) spandex type polyurethane having incorporated into the polymer chain, halogen containing polyols; (2) conventional spandex type polyurethanes in physical admixture flame retardant additives; and (3) fluoroelastomeric resins in physical admixture with flame retardant additives. Methods of preparing fibers of the flame retardant elastomeric materials are presented and articles of manufacture comprised of the elastomeric materials are mentioned.

  3. Lithium-Ion Electrolytes Containing Flame Retardant Additives for Increased Safety Characteristics

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Smith, Kiah A. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick Charles (Inventor)

    2014-01-01

    The invention discloses various embodiments of Li-ion electrolytes containing flame retardant additives that have delivered good performance over a wide temperature range, good cycle life characteristics, and improved safety characteristics, namely, reduced flammability. In one embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a fluorinated co-solvent, a flame retardant additive, and a lithium salt. In another embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a flame retardant additive, a solid electrolyte interface (SEI) film forming agent, and a lithium salt.

  4. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  5. Brominated Flame Retardants

    EPA Science Inventory

    Brominated flame retardants (BFRs) belong to a large class of compounds known as organohalogens. BFRs are currently the largest marketed flame retardant group due to their high performance efficiency and low cost. In the commercial market, more than 75 different BFRs are recogniz...

  6. Effect of Nitrogen Additives on Flame Retardant Action of Tributyl Phosphate: Phosphorus – Nitrogen Synergism

    SciTech Connect

    Gaan, Sabyasachi; Sun, Gang; Hutches, Katherine; Engelhard, Mark H.

    2008-01-01

    The effect of nitrogen additives like urea, guanidine carbonate and melamine formaldehyde on the flame retardant efficacy of tributyl phosphate (TBP) has been investigated. From the LOI tests on treated cotton it is clear that the nitrogen additives have synergistic action. Estimation of activation energy of decomposition of treated cotton indicated that nitrogen additives enhance the thermal stability during the burning process. SEM pictures of chars formed after LOI test showed the formation of protective polymeric coating on the surface. The surface of chars formed were evaluated using FTIR-ATR and XPS analysis which showed that the coating was composed of Phosphorus-Nitrogen-Oxygen containing species. Formation of this coating during the burning process could lead to the synergistic interaction of phosphorus and nitrogen. Based on the experimental data we have further proposed several reaction mechanisms which could contribute to synergistic action and formation of protective coating on the surface of char.

  7. Lithium-Ion Electrolytes Containing Phosphorous-Based, Flame-Retardant Additives

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Smith, Kiah A.; Bugga, Ratnakumar V.; Prakash, G. K. Surya

    2010-01-01

    Future NASA missions aimed at exploring Mars, the Moon, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications. In addition, many of these applications will require improved safety, due to their use by humans. Currently, the state-of-the-art lithium-ion (Li-ion) system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, abuse conditions can often lead to cell rupture and fire. The nature of the electrolyte can greatly affect the propensity of the cell/battery to catch fire, given the flammability of the organic solvents used within. Li-ion electrolytes have been developed that contain a flame-retardant additive in conjunction with fluorinated co-solvents to provide a safe system with a wide operating temperature range. Previous work incorporated fluorinated esters into multi-component electrolyte formulations, which were demonstrated to cover a temperature range from 60 to +60 C. This work was described in Fluoroester Co-Solvents for Low-Temperature Li+ Cells (NPO-44626), NASA Tech Briefs, Vol. 33, No. 9 (September 2009), p. 37; and Optimized Li-Ion Electrolytes Con tain ing Fluorinated Ester Co-Solvents (NPO-45824), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 48. Other previous work improved the safety characteristics of the electrolytes by adding flame-retardant additives such as triphenyl phosphate (TPhPh), tri-butyl phosphate (TBuPh), triethyl phosphate (TEtPh), and bis(2,2,2-trifluoroethyl) methyl phosphonate (TFMPo). The current work involves further investigation of other types of flame-retardant additives, including tris(2,2,2-trifluoroethyl) phosphate, tris(2,2,2-trifluoroethyl) phosphite, triphenylphosphite, diethyl ethylphosphonate, and diethyl phenylphosphonate added to an electrolyte composition intended for wide operating temperatures. In general, many of the formulations investigated in this

  8. Polyfunctional epoxies - Different molecular weights of brominated polymeric additives as flame retardants in graphite composites

    NASA Technical Reports Server (NTRS)

    Nir, Z.; Gilwee, W. J.; Kourtides, D. A.; Parker, J. A.

    1983-01-01

    The imparting of flame retardancy to graphite-reinforced composites without incurring mechanical property deterioration is investigated for the case of an experimental, trifunctional epoxy resin incorporating brominated polymeric additives (BPAs) of the diglycidyl type. Such mechanical properties as flexural strength and modulus, and short beam shear strength, were measured in dry and in hot/wet conditions, and the glass transition temperature, flammability, and water absorption were measured and compared with nonbromilated systems. Another comparison was made with a tetrafunctional epoxy system. The results obtained are explained in terms of differences in the polymeric backbone length of the bromine carrier polymer. BPAs are found to be a reliable bromine source for fire inhibition in carbon-reinforced composites without compromise of mechanical properties.

  9. Flame retardant polymeric materials

    SciTech Connect

    Lewin, M.; Atlas, S.M.; Pearce, E.M.

    1982-01-01

    The flame retardation of polyolefins is the focus of this volume. Methods for reduction of smoke and experimental evaluation of flammability parameters for polymeric materials are discussed. The flammability evaluation methods for textiles and the use of mass spectrometry for analysis of polymers and their degradation products are also presented.

  10. Flame retardancy and thermal stability of polyurethane foam composites containing carbon additives

    NASA Astrophysics Data System (ADS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Lee, Geesoo; Han, San Wook; Kim, Hyunchul; Lee, Ki-Dong; Han, Joo-Kwon

    2016-03-01

    Polyurethane (PU) is an important class of polymers that have wide application in a number of different industrial sectors. The goal of this work was the synthesis of flame-retarded PU foam with expandable graphite (EG) or commercial graphene. The flame retardancy and thermal stability of the foams has been studied through cone calorimeter analysis, the limited oxygen index and thermal conductivity. The presence of expandable graphite brings an improvement in fire behavior. In particular, the limited oxygen index increases in a linear way and the highest limited oxygen index values are obtained for EG-PU foams. The results from the cone calorimeter are in agreement with those of oxygen index; EG filled foams show a considerable decrease of maximum-heat release rate (M-HRR) with respect to unfilled foams. The results of thermal conductivity show that an increase in expandable graphite amount in PU foams lead to an increased conductivity.

  11. A new brominated polymeric additive for flame retardant glass-filled polybutylene terephthalate

    NASA Technical Reports Server (NTRS)

    Nir, Z.; Kourtides, D. A.; Parker, J. A.; Bar-Yaacov, Y.; Minke, R.; Touval, I.

    1982-01-01

    Attention is called to the undesirable effects (poor ultraviolet light stability and blooming) sometimes introduced by brominated flame retarders. A brominated polymeric additive (BPA) with little or none of these undesirable side effects is compared with decabromobiphenyl oxide (DBBPO). The additive bears the product name F-2300. It is found to be more easily dispersed than DBBPO. The F-2300 is as effective as the DBBPO in the oxygen index test. The improved efficiency of the F-2300 may be explained by its better dispersion in polybutylene terephthalate (PBT). Glass-filled PBT containing F-2300 is found to be more resistant to UV degradation than DBBPO-containing formulas. Formulations with F-2300 therefore have a longer useful outdoor life. F-2300 is a diglycidyl-type polymer containing 50 percent aromatically bound bromine. Its melting point is 112 C, and it is stable up to 372 C. It is pointed out that since its melts at a relatively low temperature, it can be introduced into the formulation as a large agglomerate and still be dispersed evenly throughout the polymer.

  12. Optimized Li-Ion Electrolytes Containing Triphenyl Phosphate as a Flame-Retardant Additive

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.; Prakash, G. K. Surya; Krause, Frederick C.

    2011-01-01

    A number of future NASA missions involving the exploration of the Moon and Mars will be human-rated and thus require high-specific-energy rechargeable batteries that possess enhanced safety characteristics. Given that Li-ion technology is the most viable rechargeable energy storage device for near-term applications, effort has been devoted to improving the safety characteristics of this system. There is also a strong desire to develop Li-ion batteries with improved safety characteristics for terrestrial applications, most notably for hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) automotive applications. Therefore, extensive effort has been devoted recently to developing non-flammable electrolytes to reduce the flammability of the cells/battery. A number of electrolyte formulations have been developed, including systems that (1) incorporate greater concentrations of the flame-retardant additive (FRA); (2) use di-2,2,2-trifluoroethyl carbonate (DTFEC) as a co-solvent; (3) use 2,2,2- trifluoroethyl methyl carbonate (TFEMC); (4) use mono-fluoroethylene carbonate (FEC) as a co-solvent and/or a replacement for ethylene carbonate in the electrolyte mixture; and (5) utilize vinylene carbonate as a "SEI promoting" electrolyte additive, to build on the favorable results previously obtained. To extend the family of electrolytes developed under previous work, a number of additional electrolyte formulations containing FRAs, most notably triphenyl phosphate (TPP), were investigated and demonstrated in experimental MCMB (mesocarbon micro beads) carbon- LiNi(0.8)Co(0.2)O2 cells. The use of higher concentrations of the FRA is known to reduce the flammability of the electrolyte solution, thus, a concentration range was investigated (i.e., 5 to 20 percent by volume). The desired concentration of the FRA is the highest amount tolerable without adversely affecting the performance in terms of reversibility, ability to operate over a wide temperature range, and

  13. Flame retarded asphalt blend composition

    SciTech Connect

    Walters, R.B.

    1987-04-21

    This patent describes a flame retarded asphalt composition consisting essentially of a blend of: (a) thermoplastic elastomer modified bitumen; (b) 20-30 wt % inert filler; (c) 1-20 wt % of at least one halogenated flame retardant; and (d) 1-5 wt % of at least one inorganic phosphorus containing compound selected from the group consisting of ammonium phosphate compounds and red phosphorus.

  14. INTRODUCTION TO BROMINATED FLAME RETARDANTS

    EPA Science Inventory

    Brominated flame retardants (BFRs) are a large and diverse class of major industrial products used to provide fire safety. Tetrabromobisphenol A (TBBPA), Hexabromocylocodecane (HBCD), and Polybrominated Diphenyl Ethers (PBDEs) are the major commercial compounds. TBBPA is a react...

  15. Neurotoxicity of brominated flame retardants

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs) have been commonly used as commercial flame retardants in a variety of products including plastics and textiles. Despite their decreasing usage worldwide, congeners continue to accumulate in the environment, including soil, dust, food, anima...

  16. Firefighters and flame retardant activism.

    PubMed

    Cordner, Alissa; Rodgers, Kathryn M; Brown, Phil; Morello-Frosch, Rachel

    2015-02-01

    In the past decade, exposure to flame retardant chemicals has become a pressing health concern and widely discussed topic of public safety for firefighters in the United States. Working through local, state, and national unions and independent health and advocacy organizations, firefighters have made important contributions to efforts to restrict the use of certain flame retardants. Firefighters are key members in advocacy coalitions dedicated to developing new environmental health regulations and reforming flammability standards to reflect the best available fire science. Their involvement has been motivated by substantiated health concerns and critiques of deceptive lobbying practices by the chemical industry. Drawing on observations and interviews with firefighters, fire safety experts, and other involved stakeholders, this article describes why firefighters are increasingly concerned about their exposure to flame retardant chemicals in consumer products, and analyzes their involvement in state and national environmental health coalitions.

  17. Flame Retardants Used in Flexible Polyurethane Foam

    EPA Pesticide Factsheets

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  18. Non-flammable elastomeric fiber from a fluorinated elastomer and containing an halogenated flame retardant

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S. G.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1976-01-01

    Flame retardant elastomeric compositions are described comprised of either spandex type polyurethane having incorporated into the polymer chain halogen containing polyols, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives. Methods are described for preparing fibers of the flame retardant elastomeric materials and articles of manufacture comprised of the flame retardant clastomeric materials and non elastic materials such as polybenzimidazoles, fiberglass, nylons, etc.

  19. TG-FTIR characterization of flame retardant polyurethane foams materials

    NASA Astrophysics Data System (ADS)

    Liu, W.; Tang, Y.; Li, F.; Ge, X. G.; Zhang, Z. J.

    2016-07-01

    Dimethyl methylphosphonate (DMMP) and trichloroethyl phosphtate (TCEP) have been used to enhance the flame retardancy of polyurethane foams materials (PUF). Flame retardancy and thermal degradation of PUF samples have been investigated by the LOI tests and thermal analysis. The results indicate that the excellent flame retardancy can be achieved due to the presence of the flame retardant system containing DMMP and TCEP. TG-FTIR reveals that the addition of DMMP/TCEP can not only improve the thermal stability of PUF samples but can also affect the gaseous phase at high temperature.

  20. The Evaluation of Triphenyl Phosphate as a Flame Retardant Additive to Improve the Safety of Lithium-Ion Battery Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; West, W. C.; Soler, J.; Prakash, G. K. S.; Ratnakumar, B. V.

    2011-01-01

    With the intent of improving the safety characteristics of lithium ion cells, electrolytes containing flame retardant additives have been investigated. A number of triphenyl phosphate-containing electrolytes were evaluated in both coin cells and experimental three electrode lithium-ion cells (containing reference electrodes). A number of chemistries were investigated, including MCMB carbon/LiNi(0.8)Co(0.2)O2 (NCO), graphite/LiNi(0.8)Co(0.15)Al(0.05)O2 (NCA), Li/Li(Li(0.17)Ni(0.25)Mn(0.58))O2, Li/LiNiMnCoO2 (NMC) and graphite/LiNiMnCoO2 (NMC), to study the effect that different electrolyte compositions have upon performance. A wide range of TPP-containing electrolytes were demonstrated to have good compatibility with the C/NCO, C/NCA, and Li/NMC systems, however, poor performance was initially observed with the high voltage C/NMC system. This necessitated the development of improved electrolytes with stabilizing additives, leading to formulations containing lithium bis(oxalato)borate (LiBOB) that displayed substantially improved performance.

  1. Flame retardant polyphosphazenes

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Karle, D. W.; Kratzer, R. H.

    1973-01-01

    Six polyphosphazene compositions were prepared by reaction of three bis-tertiary phosphines with two phenyl-s-triazine derived diazides. All six polyphosphazenes produced were completely characterized, four of them were furthermore subjected to isothermal gravimetric analysis, smoke density measurements, flammability and oxidative thermal degradation testing. The results of the characterization studies indicate that only low molecular weight oligomers, possibly of a cyclic structure, were obtained in the polymerization reactions. Despite this, however, two of the materials showed no weight loss after 96 hr at 200 C, one did not autoignite at 500 C in air, and all four self extinguished when exposed to a flame as soon as contact between flame and resin was lost. The only toxic decomposition products to be concerned about were found to be hydrogen cyanide and benzene. Under the conditions employed it was proven, however, that the quantities of toxic products are greatly reduced if no ignition takes place, e.g., if thermal decomposition proceeds at a sufficiently low rate.

  2. Effect of flame-retarding additives on surface chemistry in Li-ion batteries

    SciTech Connect

    Nam, N.D.; Park, I.J.; Kim, J.G.; Kim, H.S.

    2012-10-15

    This study examined the properties of 1 wt.% vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and diphenyl octyl phosphate (DPOF) additive electrolytes as a promising way of beneficially improving the surface and cell resistance of Li-ion batteries. Surface film formation on the negative and positive electrodes was analyzed by electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM). In conclusion, EIS, FT-IR spectroscopy and SEM results confirmed that DPOF is an excellent additive to the electrolyte in the Li-ion batteries due to the improved co-intercalation of the solvent molecules.

  3. Flame Retardant Applications in Camping Tents and Potential Exposure

    PubMed Central

    2015-01-01

    Concern has mounted over health effects caused by exposure to flame retardant additives used in consumer products. Significant research efforts have focused particularly on exposure to polybrominated diphenyl ethers (PBDEs) used in furniture and electronic applications. However, little attention has focused on applications in textiles, particularly textiles meeting a flammability standard known as CPAI-84. In this study, we investigated flame retardant applications in camping tents that met CPAI-84 standards by analyzing 11 samples of tent fabrics for chemical flame retardant additives. Furthermore, we investigated potential exposure by collecting paired samples of tent wipes and hand wipes from 27 individuals after tent setup. Of the 11 fabric samples analyzed, 10 contained flame retardant additives, which included tris(1,3-dichloroisopropyl) phosphate (TDCPP), decabromodiphenyl ether (BDE-209), triphenyl phosphate, and tetrabromobisphenol-A. Flame retardant concentrations were discovered to be as high as 37.5 mg/g (3.8% by weight) in the tent fabric samples, and TDCPP and BDE-209 were the most frequently detected in these samples. We also observed a significant association between TDCPP levels in tent wipes and those in paired hand wipes, suggesting that human contact with the tent fabric material leads to the transfer of the flame retardant to the skin surface and human exposure. These results suggest that direct contact with flame retardant-treated textiles may be a source of exposure. Future studies will be needed to better characterize exposure, including via inhalation and dermal sorption from air. PMID:24804279

  4. Flame Retardant Applications in Camping Tents and Potential Exposure.

    PubMed

    Keller, Alexander S; Raju, Nikhilesh P; Webster, Thomas F; Stapleton, Heather M

    2014-02-11

    Concern has mounted over health effects caused by exposure to flame retardant additives used in consumer products. Significant research efforts have focused particularly on exposure to polybrominated diphenyl ethers (PBDEs) used in furniture and electronic applications. However, little attention has focused on applications in textiles, particularly textiles meeting a flammability standard known as CPAI-84. In this study, we investigated flame retardant applications in camping tents that met CPAI-84 standards by analyzing 11 samples of tent fabrics for chemical flame retardant additives. Furthermore, we investigated potential exposure by collecting paired samples of tent wipes and hand wipes from 27 individuals after tent setup. Of the 11 fabric samples analyzed, 10 contained flame retardant additives, which included tris(1,3-dichloroisopropyl) phosphate (TDCPP), decabromodiphenyl ether (BDE-209), triphenyl phosphate, and tetrabromobisphenol-A. Flame retardant concentrations were discovered to be as high as 37.5 mg/g (3.8% by weight) in the tent fabric samples, and TDCPP and BDE-209 were the most frequently detected in these samples. We also observed a significant association between TDCPP levels in tent wipes and those in paired hand wipes, suggesting that human contact with the tent fabric material leads to the transfer of the flame retardant to the skin surface and human exposure. These results suggest that direct contact with flame retardant-treated textiles may be a source of exposure. Future studies will be needed to better characterize exposure, including via inhalation and dermal sorption from air.

  5. Process for spinning flame retardant elastomeric compositions. [fabricating synthetic fibers for high oxygen environments

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1978-01-01

    Flame retardant elastomeric compositions comprised of either spandex type polyurethane having halogen containing polyols incorporated into the polymer chain, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives were developed. Methods are described for preparing fibers of the flame retardant elastomeric materials and manufactured articles as well as nonelastic materials such as polybenzimidazoles, fiberglass, and nylons, for high oxygen environments.

  6. Sorption of Organophosphorus Flame Retardants (OPFRs) on Settled Dust

    EPA Science Inventory

    Organophosphorus flame retardants (OPFRs) are widely used as additives in industrial and consumer products such as electrical and electronic products, furniture, plastics, textiles, and building/construction materials. Due to human exposure and potential health effects, OPFRs inc...

  7. Sorption of Organophosphorus Flame-Retardants on Settled Dust

    EPA Science Inventory

    Dust is an important sink for indoor air pollutants, such as organophosphorus flame-retardants (OPFRs) that are used as additives in industrial and consumer products including electrical and electronic products, furniture, plastics, textile, and building/construction materials. T...

  8. Public health implications of components of plastics manufacture. Flame retardants.

    PubMed Central

    Pearce, E M; Liepins, R

    1975-01-01

    The four processes involved in the flammability of materials are described and related to the various flame retardance mechanisms that may operate. Following this the four practical approaches used in improving flame retardance of materials are described. Each approach is illustrated with a number of typical examples of flame retardants or synthetic procedures used. This overview of flammability, flame retardance, and flame retardants used is followed by a more detailed examination of most of the plastics manufactured in the United States during 1973, their consumption patterns, and the primary types of flame retardants used in the flame retardance of the most used plastics. The main types of flame retardants are illustrated with a number of typical commercial examples. Statistical data on flame retardant market size, flame retardant growth in plastics, and price ranges of common flame retardants are presented. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. PMID:1175568

  9. Halogenated flame retardants in the Great Lakes environment.

    PubMed

    Venier, Marta; Salamova, Amina; Hites, Ronald A

    2015-07-21

    Flame retardants are widely used industrial chemicals that are added to polymers, such as polyurethane foam, to prevent them from rapidly burning if exposed to a small flame or a smoldering cigarette. Flame retardants, especially brominated flame retardants, are added to many polymeric products at percent levels and are present in most upholstered furniture and mattresses. Most of these chemicals are so-called "additive" flame retardants and are not chemically bound to the polymer; thus, they migrate from the polymeric materials into the environment and into people. As a result, some of these chemicals have become widespread pollutants, which is a concern given their possible adverse health effects. Perhaps because of their environmental ubiquity, the most heavily used group of brominated flame retardants, the polybrominated diphenyl ethers (PBDEs), was withdrawn from production and use during the 2004-2013 period. This led to an increasing demand for other flame retardants, including other brominated aromatics and organophosphate esters. Although little is known about the use or production volumes of these newer flame retardants, it is evident that some of these chemicals are also becoming pervasive in the environment and in humans. In this Account, we describe our research on the occurrence of halogenated and organophosphate flame retardants in the environment, with a specific focus on the Great Lakes region. This Account starts with a short introduction to the first generation of brominated flame retardants, the polybrominated biphenyls, and then presents our measurements of their replacement, the PBDEs. We summarize our data on PBDE levels in babies, bald eagles, and in air. Once these compounds came off the market, we began to measure several of the newer flame retardants in air collected on the shores of the Great Lakes once every 12 days. These new measurements focus on a tetrabrominated benzoate, a tetrabrominated phthalate, a hexabrominated diphenoxyethane

  10. Brominated Flame Retardants and Perfluorinated Chemicals

    EPA Science Inventory

    Brominated flame retardants (BFRs) and perfluorinated chemicals (PFCs) belong to a large class of chemicals known as organohalogens. It is believed that both BFRs and PFCs saved lives by reducing flammability of materials commonly used and bactericidal (biocidal) properties. Thes...

  11. PCBs, PBBs and Brominated Flame Retardants

    EPA Science Inventory

    This chapter introduces selected organohalogen chemicals such as polychlorinated biphenyls (PCB5), polychiorinated biphenyls (PBBs), and brominated flame retardants (BFRs) with emphasis on the background, physicochemical properties, environmental levels, health effects and possib...

  12. Flame retardant exposure among collegiate United States gymnasts.

    PubMed

    Carignan, Courtney C; Heiger-Bernays, Wendy; McClean, Michael D; Roberts, Simon C; Stapleton, Heather M; Sjödin, Andreas; Webster, Thomas F

    2013-12-03

    Gymnastics training facilities contain large volumes of polyurethane foam, a material that often contains additive flame retardants such as PentaBDE. While investigations of human exposure to flame retardants have focused on the general population, potentially higher than background exposures may occur in gymnasts and certain occupational groups. Our objectives were to compare PentaBDE body burden among gymnasts to the general United States population and characterize flame retardants levels in gym equipment, air, and dust. We recruited 11 collegiate female gymnasts (ages 18-22) from one gym in the eastern United States. The geometric mean (GM) concentration of BDE-153 in gymnast sera (32.5 ng/g lipid) was 4-6.5 times higher than in the general United States population groups. Median concentrations of PentaBDE, TBB, and TBPH in paired handwipe samples were 2-3 times higher after practice compared to before, indicating the gymnasts contacted these flame retardants during practice. GM concentrations of PentaBDE, TBB, and TBPH were 1-3 orders of magnitude higher in gym air and dust than in residences. Our findings suggest that these collegiate gymnasts experienced higher exposures to PentaBDE flame retardants compared to the general United States population and that gymnasts may also have increased exposure to other additive flame retardants used in polyurethane foam such as TBB and TBPH.

  13. Flame Retardant Exposure among Collegiate U.S. Gymnasts

    PubMed Central

    Carignan, Courtney C.; Heiger-Bernays, Wendy; McClean, Michael D.; Roberts, Simon C.; Stapleton, Heather M.; Sjödin, Andreas; Webster, Thomas F.

    2013-01-01

    Gymnastics training facilities contain large volumes of polyurethane foam, a material that often contains additive flame retardants such as PentaBDE. While investigations of human exposure to flame retardants have focused on the general population, potentially higher than background exposures may occur in gymnasts and certain occupational groups. Our objectives were to compare PentaBDE body burden among gymnasts to the general U.S. population and characterize flame retardants levels in gym equipment, air and dust. We recruited 11 collegiate female gymnasts (ages 18–22) from one gym in the Eastern U.S. The geometric mean (GM) concentration of BDE-153 in gymnast sera (32.5 ng/g lipid) was 4–6.5 times higher than general U.S. population groups. Median concentrations of PentaBDE, TBB and TBPH in paired handwipe samples were 2–3 times higher after practice compared to before, indicating the gymnasts contacted these flame retardants during practice. GM concentrations of PentaBDE, TBB and TBPH were 1-3 orders of magnitude higher in gym air and dust than in residences. Our findings suggest that these collegiate gymnasts experienced higher exposures to PentaBDE flame retardants compared to the general U.S. population and that gymnasts may also have increased exposure to other additive flame retardants used in polyurethane foam such as TBB and TBPH. PMID:24195753

  14. A study of tetrabromobisphenol A (TBBA) as a flame retardant additive for Li-ion battery electrolytes

    NASA Astrophysics Data System (ADS)

    Belov, Dmitry G.; Shieh, D. T.

    2014-02-01

    Electrochemical behavior and flammability of tetrabromobisphenol A (TBBA)-mixed electrolyte solutions are investigated using 1 mol L-1 LiPF6-EC:EMC (1:2 vol.%) with 0 wt.% (reference electrolyte) and 1-3 wt.% of TBBA. The cycling performance (at room and elevated temperature) and rate capability of the 18650 cell (LiMn2O4:Li(Ni1/3Co1/3Mn1/3)O2 (8:2)/Li4Ti5O12) cell containing TBBA-mixed electrolyte is similar to that of cell containing the reference electrolyte. A detailed analysis of the surface on both the anode and the cathode electrodes via X-ray photoelectron spectroscopy (XPS) indicated that the cathode electrode contains more Br components than the anode electrode. Within the first few cycles, on the positive electrode, we observe competing redox processes between the cathode material containing Mn and TBBA, which generate hydroxy radicals and other by-products. This process and the electrochemical reductive decomposition of TBBA to HBr, Br2 and bisphenole A are responsible for the increased flame retardant properties of the electrolyte containing TBBA. Safety tests were performed using an 18650 cell showed that even 1 wt.% of TBBA in the electrolyte significantly reduces cell flammability.

  15. Flame retardant cotton barrier nonwovens for mattresses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    According to regulation CPSC 16 CFR 1633, every new residential mattress sold in the United States since July 2007 must resist ignition by open flame. An environmentally benign “green”, inexpensive way to meet this regulation is to use a low-cost flame retardant (FR) barrier fabric. In this study, a...

  16. Engineering Flame Retardant Biodegradable Nanocomposites

    NASA Astrophysics Data System (ADS)

    He, Shan; Yang, Kai; Guo, Yichen; Zhang, Linxi; Pack, Seongchan; Davis, Rachel; Lewin, Menahem; Ade, Harald; Korach, Chad; Kashiwagi, Takashi; Rafailovich, Miriam

    2013-03-01

    Cellulose-based PLA/PBAT polymer blends can potentially be a promising class of biodegradable nanocomposites. Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but homogeneously dispersing hydrophilic cellulose in the hydrophobic polymer matrix poses a significant challenge. We here show that resorcinol diphenyl phosphates (RDP) can be used to modify the surface energy, not only reducing phase separation between two polymer kinds but also allowing the cellulose particles and the Halloysite clay to be easily dispersed within polymer matrices to achieve synergy effect using melt blending. Here in this study we describe the use of cellulose fiber and Halloysite clay, coated with RDP surfactant, in producing the flame retardant polymer blends of PBAT(Ecoflex) and PLA which can pass the stringent UL-94 V0 test. We also utilized FTIR, SEM and AFM nanoindentation to elucidate the role RDP plays in improving the compatibility of biodegradable polymers, and to determine structure property of chars that resulted in composites that could have optimized mechanical and thermal properties. Supported by Garcia Polymer Center and NSF Foundation.

  17. Fire-Retardant Polymeric Additives

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Smith, Trent M.

    2011-01-01

    Polyhydroxyamide (PHA) and polymethoxyamide (PMeOA) are fire-retardant (FR) thermoplastic polymers and have been found to be useful as an additive for imparting fire retardant properties to other compatible, thermoplastic polymers (including some elastomers). Examples of compatible flammable polymers include nylons, polyesters, and acrylics. Unlike most prior additives, PHA and PMeOA do not appreciably degrade the mechanical properties of the matrix polymer; indeed, in some cases, mechanical properties are enhanced. Also, unlike some prior additives, PHA and PMeOA do not decompose into large amounts of corrosive or toxic compounds during combustion and can be processed at elevated temperatures. PMeOA derivative formulations were synthesized and used as an FR additive in the fabrication of polyamide (PA) and polystyrene (PS) composites with notable reduction (>30 percent for PS) in peak heat release rates compared to the neat polymer as measured by a Cone Calorimeter (ASTM E1354). Synergistic effects were noted with nanosilica composites. These nanosilica composites had more than 50-percent reduction in peak heat release rates. In a typical application, a flammable thermoplastic, thermoplastic blend, or elastomer that one seeks to render flame-retardant is first dry-mixed with PHA or PMeOA or derivative thereof. The proportion of PHA or PMeOA or derivative in the mixture is typically chosen to lie between 1 and 20 weight percent. The dry blend can then be melt-extruded. The extruded polymer blend can further be extruded and/or molded into fibers, pipes, or any other of a variety of objects that may be required to be fire-retardant. The physical and chemical mechanisms which impart flame retardancy of the additive include inhibiting free-radical oxidation in the vapor phase, preventing vaporization of fuel (the polymer), and cooling through the formation of chemical bonds in either the vapor or the condensed phase. Under thermal stress, the cyclic hydroxyl/ methoxy

  18. Exposure to flame retardant chemicals on commercial airplanes

    PubMed Central

    2013-01-01

    Background Flame retardant chemicals are used in materials on airplanes to slow the propagation of fire. These chemicals migrate from their source products and can be found in the dust of airplanes, creating the potential for exposure. Methods To characterize exposure to flame retardant chemicals in airplane dust, we collected dust samples from locations inside 19 commercial airplanes parked overnight at airport gates. In addition, hand-wipe samples were also collected from 9 flight attendants and 1 passenger who had just taken a cross-country (USA) flight. The samples were analyzed for a suite of flame retardant chemicals. To identify the possible sources for the brominated flame retardants, we used a portable XRF analyzer to quantify bromine concentrations in materials inside the airplanes. Results A wide range of flame retardant compounds were detected in 100% of the dust samples collected from airplanes, including BDEs 47, 99, 153, 183 and 209, tris(1,3-dichloro-isopropyl)phosphate (TDCPP), hexabromocyclododecane (HBCD) and bis-(2-ethylhexyl)-tetrabromo-phthalate (TBPH). Airplane dust contained elevated concentrations of BDE 209 (GM: 500 ug/g; range: 2,600 ug/g) relative to other indoor environments, such as residential and commercial buildings, and the hands of participants after a cross-country flight contained elevated BDE 209 concentrations relative to the general population. TDCPP, a known carcinogen that was removed from use in children’s pajamas in the 1970’s although still used today in other consumer products, was detected on 100% of airplanes in concentrations similar to those found in residential and commercial locations. Conclusion This study adds to the limited body of knowledge regarding exposure to flame retardants on commercial aircraft, an environment long hypothesized to be at risk for maximum exposures due to strict flame retardant standards for aircraft materials. Our findings indicate that flame retardants are widely used in many

  19. Use of nanoclay as an environmentally friendly flame retardant synergist in polyamide-6.

    PubMed

    Kaynak, Cevdet; Gunduz, Huseyin Ozgur; Isitman, Nihat Ali

    2010-11-01

    Due to their very high levels of flame retardancy, chlorinated and brominated flame retardants had been the most widely used flame retardant additives in plastics industry. However, these flame retardants lead to formation of very toxic volatiles and by-products during fire. Therefore, the recent trend is to replace all of them with non-halogenated flame retardants. In this respect, the use of nanoclays as a synergist flame retardant is becoming more and more important. Thus, the main aim of this work was to investigate the synergistic flame retardant effect of nanoclays with phosphorous compounds in polyamide-6 composites. For this purpose, exfoliated clay nanocomposites of flame retarded/glass fiber reinforced polyamide-6 were prepared by melt compounding. A flame retardant based on phosphorus compounds was used at various levels in glass fiber reinforced polyamide-6 and nanocomposites. Flammability and fire behaviors were evaluated by limiting oxygen index, UL94 and cone calorimeter tests. Substitution of a certain fraction of the flame retardant with nanoclays was found to significantly reduce the peak heat release rate and delay the ignition in cone calorimeter. Moreover, remarkable improvements were obtained in limiting oxygen index along with maintained UL94 ratings.

  20. Photochemical and microbial transformation of emerging flame retardants: cause for concern?

    PubMed

    Chen, Da; Hale, Robert C; Letcher, Robert J

    2015-04-01

    Among anthropogenic chemicals, flame retardants have attracted mounting environmental concerns. In recent years, an increasing number of studies have been conducted worldwide to investigate flame-retardant sources, environmental distribution, wildlife and human exposure, and toxicity. Data generated have demonstrated that some flame-retardant substances such as polybrominated diphenyl ethers (PBDE) are persistent, bioaccumulative, and toxic to exposed organisms. However, comparatively much less attention has been paid to the mechanisms and products of environmental transformation of flame retardants. This lack of information undermines our understanding of the environmental behavior and fate of flame retardants, as well as the associated risks to environmental and human health. Photochemical and microbial transformation of flame retardants in various matrices and environmental compartments can elevate the toxicological significance of flame retardant exposure, via the formation of, for example, lesser halogenated but more bioaccumulative degradation products and toxic radicals. Such pathways raise concerns related to the environmental safety of some alternative flame retardants that are presumably safe and used to replace PBDEs. To fully assess the environmental risks, more research is needed to investigate the environmental transformation potential of emerging flame retardants including polymeric flame retardants. Enhanced analytical efforts are needed to better characterize transformation products and transient radicals. Additional mesocosm and field studies are needed to elucidate transformation kinetics and consequences under environmentally relevant conditions.

  1. HEALTH EFFECTS OF BROMINATED FLAME RETARDANTS (BFRS)

    EPA Science Inventory

    Abstract Brominated flame retardant use has increased dramatically in order to provide fire safety to consumers. However, there is growing concern about widespread environmental contamination and potential health risks from some of these products. The most used products...

  2. BROMINATED FLAME RETARDANTS: CAUSE FOR CONCERN?

    EPA Science Inventory

    Brominated flame retardants (BFRs) have routinely been added to consumer products for several decades in a successful effort to reduce fire-related injury and property damage. Recently, concern for this emerging class of chemicals has risen due to the occurrence of several class...

  3. BROMINATED FLAME RETARDANTS: WHY DO WE CARE?

    EPA Science Inventory

    Brominated flame retardants (BFRs) save lives and property by preventing the spread of fires or delaying the time of flashover, enhancing the time people have to escape. The worldwide production of BFRs exceeded 200,000 metric tons in 2003 placing them in the high production vol...

  4. HEALTH ASPECTS OF BROMINATED FLAME RETARDANTS (BFRS)

    EPA Science Inventory

    In order to reduce the societal costs of fires, flammability standards have been set for consumer products and equipment. Flame retardants containing bromine have constituted the largest share of this market due both to their efficiency and cost. While there are at least 75 dif...

  5. Brominated flame retardants as food contaminants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter reviews analytical methods for the three major brominated flame retardant (BFR) classes in use today, tetrabromobisphenol-A (TBBP-A), hexabromocyclododecanes (HBCDs), and polybrominated diphenyl ethers (PBDEs), a "legacy" BFR no longer in use, polybrominated biphenyls (PBBs), and a...

  6. Chemistry and toxicity of flame retardants for plastics.

    PubMed Central

    Liepins, R; Pearce, E M

    1976-01-01

    An overview of commercially used flame retardants is give. The most used flame retardants are illustrated and the seven major markets, which use 96% of all flame-retarded polymers, are described. Annual flame retardant growth rate for each major market is also projected. Toxicity data are reviewed on only those compositions that are considered commercially significant today. This includes 18 compounds or families of compounds and four inherently flame-retarded polymers. Toxicological studies of flame retardants for most synthetic materials are of recent origin and only a few of the compounds have been evaluated in any great detail. Considerable toxicological problems may exist in the manufacturing of some flame retardants, their by-products, and possible decomposition products. PMID:1026419

  7. Brominated flame retardants: cause for concern?

    PubMed Central

    Birnbaum, Linda S; Staskal, Daniele F

    2004-01-01

    Brominated flame retardants (BFRs) have routinely been added to consumer products for several decades in a successful effort to reduce fire-related injury and property damage. Recently, concern for this emerging class of chemicals has risen because of the occurrence of several classes of BFRs in the environment and in human biota. The widespread production and use of BFRs; strong evidence of increasing contamination of the environment, wildlife, and people; and limited knowledge of potential effects heighten the importance of identifying emerging issues associated with the use of BFRs. In this article, we briefly review scientific issues associated with the use of tetrabromobisphenol A, hexabromocyclododecane, and three commercial mixtures of polybrominated diphenyl ethers and discuss data gaps. Overall, the toxicology database is very limited; the current literature is incomplete and often conflicting. Available data, however, raise concern over the use of certain classes of brominated flame retardants. PMID:14698924

  8. Organophosphate flame retardants and plasticisers in wastewater treatment plants.

    PubMed

    Meyer, J; Bester, K

    2004-07-01

    Previous studies have revealed that chlorinated and non-chlorinated organophosphorous flame retardants and plasticisers are important contaminants in German surface waters and it has been demonstrated that wastewater treatment plants contribute to the emission of these substances. In this study temporal development as well as elimination efficiency were determined in two wastewater treatment plants (STP) in the Ruhr/Rhine area at different stages of the wastewater treatment process. The samples were analysed for the non-chlorinated organophosphate esters tri-n-butylphosphate (TnBP), tri-iso-butylphosphate (TiBP), tris-(butoxyethyl)-phosphate (TBEP) and triphenylphosphate (TPP) and the chlorinated organophosphate esters tris-(2-chloro, 1-methylethyl)-phosphate (TCPP), tris-(2-chloro-, 1-chloromethylethyl)-phosphate (TDCP) and tris-(2-chloroethyl)-phosphate (TCEP). The study showed that there were significant differences in the elimination of chlorinated and non-chlorinated organophosphorous flame retardants. The elimination rates ranged from 57-86% for TiBP, TnBP and TBEP at both STP's. No elimination of the chlorinated flame retardants TCPP, TDCP and TCEP was observed in any of the sampled STPs. At both STPs the first treatment steps and the final filtration did not contribute to the elimination of the non-chlorinated organophosphorous flame retardants while the aeration step did. At both STPs the efficiency of the cleaning process concerning the flame retardants was comparable. Thus the type of construction of the STP was not relevant for the elimination of these substances. Additionally a strong day-to-day variation was observed, while in one STP a temporal trend for TCPP during the week was found.

  9. The research of far infrared flame retardant polyester staple fiber

    NASA Astrophysics Data System (ADS)

    Li, Qingshan; Zhang, Kaijun; Luo, Jinqong; Li, Ji’an; Jiang, Jian; Liang, Qianqian; Jin, Yongxia; Liu, Bing

    2017-01-01

    Far infrared flame retardant slices was prepared, fiber with far infrared flame retardant composite function was also prepared by the method of melt spinning. Scanning electron microscopy (SEM) was used to observe the fibrous microscopic structure. In the SEM images, functional ultrafine powder particle size and distribution in the fiber were visible. The results show that the functional ultrafine powder is evenly distributed on the fibrous surface, which is closely combined with fiber, and the far infrared emissivity is F, which is more than (8 to 14 microns) 0.88. Far infrared flame retardant polyester fiber has not only good flame retardant, but also environmental health effect: releasing negative ions and launch far-infrared, which shows wide application prospect. The fiber was processed into far-infrared flame retardant electric blanket, whose functional indicators and flame retardant properties are not reduced.

  10. EFFECT OF ORGANOPHOSPHORUS FLAME RETARDANTS ON NEURONAL DEVELOPMENT IN VITRO

    EPA Science Inventory

    The increased use of organophosphorus compounds as alternatives to brominated flame retardants (BFRs) has led to widespread human exposure, There is, however, limited information on their potential health effects. This study compared the effects of nii ne organophosphorus flame...

  11. Permanent flame retardant finishing of textiles by allyl-functionalized polyphosphazenes.

    PubMed

    Mayer-Gall, Thomas; Knittel, Dierk; Gutmann, Jochen S; Opwis, Klaus

    2015-05-13

    Despite their excellent flame retardant properties, polyphosphazenes are currently not used as flame retardant agents for textile finishing, because a permanent fixation on the substrate surface has failed so far. Here, we present the successful synthesis and characterization of a noncombustible and foam-forming polyphosphazene derivative, that can be immobilized durably on cotton and different cotton/polyester blended fabrics using photoinduced grafting reactions. The flame retardant properties are improved, a higher limiting oxygen index is found, and the modified textiles pass several standardized flammability tests. As flame retardant mechanism a synergistic effect between the immobilized polyphosphazene and the textile substrate was observed. The polyphosphazene finishing induces an earlier decomposition of the material with a reduced mass loss in thermogravimetric analysis. The decomposition of cotton and polyester leads to the formation of phosphorus oxynitride, which forms a protecting barrier layer on the fiber surface. In addition, the permanence of the flame retardant finishing was proven by laundry and abrasion tests.

  12. Nanotechnology finding its way into flame retardancy

    NASA Astrophysics Data System (ADS)

    Schartel, Bernhard

    2014-05-01

    Nanotechnology is one of the key technologies of the 21st century. The exploitation of "new" effects that arise from materials structured on the nano-scale has also been proposed successfully for flame retardancy of polymers since the end of the 90s. Of all of the approaches these include, at this time the use of nanocomposites offers the best potential for industrial application, also some other ideas are sketched, such as using electrospun nanofibers mats or layer-by-layer deposits as protection coatings, as well as sub-micrometer multilayer coatings as effective IR-mirrors. The general phenomena, inducing a flow limit in the pyrolysing melt and changing the fire residue, are identified in nanocomposites. Key experiments are performed such as quasi online investigation of the protection layer formation to understand what is going on in detail. The flame retardancy mechanisms are discussed and their impact on fire behaviour quantified. With the latter, the presentation pushes forward the state of the art. For instance, the heat shielding is experimentally quantified for a layered silicate epoxy resin nanocomposite proving that it is the only import mechanism controlling the reduction in peak heat release rate in the investigated system for different irradiations. The flame retardancy performance is assessed comprehensively illuminating not only the strengths but also the weak points of the concepts. Guidelines for materials development are deduced and discussed. Apart from inorganic fillers (layered silicate, boehmite, etc.) not only carbon nanoobjects such as multiwall carbon nanotubes, multilayer graphene and graphene are investigated, but also nanoparticles that are more reactive and harbor the potential for more beneficial interactions with the polymer matrix.

  13. Nanotechnology finding its way into flame retardancy

    SciTech Connect

    Schartel, Bernhard

    2014-05-15

    Nanotechnology is one of the key technologies of the 21{sup st} century. The exploitation of 'new' effects that arise from materials structured on the nano-scale has also been proposed successfully for flame retardancy of polymers since the end of the 90s. Of all of the approaches these include, at this time the use of nanocomposites offers the best potential for industrial application, also some other ideas are sketched, such as using electrospun nanofibers mats or layer-by-layer deposits as protection coatings, as well as sub-micrometer multilayer coatings as effective IR-mirrors. The general phenomena, inducing a flow limit in the pyrolysing melt and changing the fire residue, are identified in nanocomposites. Key experiments are performed such as quasi online investigation of the protection layer formation to understand what is going on in detail. The flame retardancy mechanisms are discussed and their impact on fire behaviour quantified. With the latter, the presentation pushes forward the state of the art. For instance, the heat shielding is experimentally quantified for a layered silicate epoxy resin nanocomposite proving that it is the only import mechanism controlling the reduction in peak heat release rate in the investigated system for different irradiations. The flame retardancy performance is assessed comprehensively illuminating not only the strengths but also the weak points of the concepts. Guidelines for materials development are deduced and discussed. Apart from inorganic fillers (layered silicate, boehmite, etc.) not only carbon nanoobjects such as multiwall carbon nanotubes, multilayer graphene and graphene are investigated, but also nanoparticles that are more reactive and harbor the potential for more beneficial interactions with the polymer matrix.

  14. Performance of carbon material derived from starch mixed with flame retardant as electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Tsubota, Toshiki; Morita, Masaki; Murakami, Naoya; Ohno, Teruhisa

    2014-12-01

    Carbon materials derived from starch with an added flame retardant, such as melamine polyphosphate, melamine sulfate, guanylurea phosphate, or guanidine phosphate, were synthesized for investigating the performance as the electrode of an electrochemical capacitor. The yield after the heat treatment of the carbonization reaction increased by the addition of these flame retardants up to 800 °C. Although both the specific surface area and electrical resistivity are almost independent of the addition of the flame retardants, the capacitance values are improved with the addition of the flame retardants. The nitrogen atoms derived from the flame retardants are introduced to some extent into the synthesized carbon material. Moreover, the phosphorous atoms or the sulfur atoms derived from the flame retardants are doped into the synthesized carbon material. The method applied in this study, that is, the addition of flame retardants before the carbonization process can be used for the doping of the hetero atom such as N, P and S into the carbon material.

  15. In vitro estrogenicity of polybrominated flame retardants.

    PubMed

    Nakari, Tarja; Pessala, Piia

    2005-09-10

    Estrogenicity of five brominated flame retardants (BFRs), namely BDE-47, BDE-99, BDE-205, PBB-153 and technical Firemaster BP-6, were assessed by in vitro assays developed to detect chemicals with estrogenic properties. Recombinant yeast cells containing a human estrogen receptor gene failed to give any response to the chemicals tested. However, the positive control compound, estradiol-17beta, showed that the yeast cell assays had worked properly. The freshly separated fish hepatocyte assay based on the synthesis and secretion of vitellogenin from the isolated liver cells produced a clear dose-response curve in the presence of all tested flame retardants except Firemaster BP-6. The toxicity of the BFRs was detected by determining the cell ethoxyresorufin-O-deethylase activity (EROD). The BFRs tested induced hepatic EROD activity at low test concentrations, but started to inhibit activity at higher concentrations. The decreased detoxification capacity of the hepatocytes resulted in a decrease in the vitellogenin production of the cells. The capability of in vitro assays to detect estrogenic properties of chemicals seems to vary. Thus, further work is needed to understand the mechanisms responsible for these reactions.

  16. Are brominated flame retardants endocrine disruptors?

    PubMed

    Legler, Juliette; Brouwer, Abraham

    2003-09-01

    Brominated flame retardants (BFRs) are a group of compounds that have received much attention recently due to their similarity with "old" classes of organohalogenated compounds such as polychlorinated biphenyls (PCBs), in terms of their fate, stability in the environment and accumulation in humans and wildlife. Toxic effects, including teratogenicity, carcinogenicity and neurotoxicity, have been observed for some BFR congeners, in particular the brominated diphenyl ethers (BDEs). This concise review focuses on the potency of BFRs and to disrupt endocrine systems, and attempts to answer the question whether or not BFRs are endocrine disruptors. Evidence is provided on the disruption of the thyroid hormone system by BFRs, with particular emphasis on the BDEs, as most recent data is available on this class of flame retardants. Similar to the hydroxylated PCBs, in vitro mechanistic studies as well as animal experiments have demonstrated the effects of BDEs on thyroid hormone transport and metabolism. An overview of possible effects of BFRs on the estrogen system is also provided. Research gaps are outlined, as well as ongoing and future studies in the European community aimed at contributing to comprehensive risk assessments based on the endocrine-disrupting effects of BFRs.

  17. Flame retardant antibacterial cotton high-loft nonwoven fabrics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flame retardant treated gray cotton fibers were blended with antibacterial treated gray cotton fibers and polyester/polyester sheath/core bicomponent fibers to form high-loft fabrics. The high flame retardancy (FR) and antibacterial property of these high lofts were evaluated by limiting oxygen inde...

  18. Novel phosphonates triazine derivative as economic flame retardant for cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorous-containing flame retardants are widely used in standard and engineering plastics, polyurethane foams, thermosets, coatings, and textiles. Organophosphorous flame retardants have been known to be more effective when used in conjunction with nitrogen-containing systems. Their mixture produ...

  19. IN VITRO DERMAL ABSORPTION OF FLAME RETARDANT CHEMICALS

    EPA Science Inventory

    ABSTRACT
    The use of flame retardant chemicals in furniture fabric could pose a potential health risk to consumers from dermal absorption of these compounds. The objective of this study was to examine the in vitro dermal absorption of two flame retardant chemicals, [14C]-d...

  20. Flame retardant properties of triazine phosphonates derivative with cotton fabric

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The flame retardant behavior of a cotton fabric treated with phosphorus-nitrogen containing triazine compound was evaluated. It was found that cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) is an excellent starting material for the preparation of phosphonates flame retardants that interacts wel...

  1. Identification of Flame Retardants in Polyurethane Foam Collected from Baby Products

    PubMed Central

    2011-01-01

    With the phase-out of PentaBDE in 2004, alternative flame retardants are being used in polyurethane foam to meet flammability standards. However, insufficient information is available on the identity of the flame retardants currently in use. Baby products containing polyurethane foam must meet California state furniture flammability standards, which likely affects the use of flame retardants in baby products throughout the U.S. However, it is unclear which products contain flame retardants and at what concentrations. In this study we surveyed baby products containing polyurethane foam to investigate how often flame retardants were used in these products. Information on when the products were purchased and whether they contained a label indicating that the product meets requirements for a California flammability standard were recorded. When possible, we identified the flame retardants being used and their concentrations in the foam. Foam samples collected from 101 commonly used baby products were analyzed. Eighty samples contained an identifiable flame retardant additive, and all but one of these was either chlorinated or brominated. The most common flame retardant detected was tris(1,3-dichloroisopropyl) phosphate (TDCPP; detection frequency 36%), followed by components typically found in the Firemaster550 commercial mixture (detection frequency 17%). Five samples contained PBDE congeners commonly associated with PentaBDE, suggesting products with PentaBDE are still in-use. Two chlorinated organophosphate flame retardants (OPFRs) not previously documented in the environment were also identified, one of which is commercially sold as V6 (detection frequency 15%) and contains tris(2-chloroethyl) phosphate (TCEP) as an impurity. As an addition to this study, we used a portable X-ray fluorescence (XRF) analyzer to estimate the bromine and chlorine content of the foam and investigate whether XRF is a useful method for predicting the presence of halogenated flame

  2. Assessing Pediatric Nurses' Knowledge About Chemical Flame Retardants.

    PubMed

    Distelhorst, Laura; Bieda, Amy; DiMarco, Marguerite; Tullai-McGuinness, Susan

    Chemical flame retardants are routinely applied to children's products and are harmful to their health. Pediatric nurses are in a key position to provide education to caregivers on methods to decrease their children's exposure to these harmful chemicals. However, a critical barrier is the absence of any program to educate nurses about chemical flame retardants. In order to overcome this barrier, we must first assess their knowledge. This article provides key highlights every pediatric nurse should know about chemical flame retardants and reports the results of a knowledge assessment study.

  3. Analysis of Ah receptor pathway activation by brominated flame retardants.

    PubMed

    Brown, David J; Van Overmeire, Ilse; Goeyens, Leo; Denison, Michael S; De Vito, Michael J; Clark, George C

    2004-06-01

    Brominated flame-retardants (BFRs) are used as additives in plastics to decrease the rate of combustion of these materials, leading to greater consumer safety. As the use of plastics has increased, the production and use of flame-retardants has also grown. Many BFRs are persistent and have been detected in environmental samples, raising concerns about the biological/toxicological risk associated with their use. Most BFRs appear to be non-toxic, however there is still some concern that these compounds, or possible contaminants in BFRs mixtures could interact with cellular receptors. In this study we have examined the interaction of decabromodiphenyl ether, Firemaster BP4A (tetrabromobisphenol A), Firemaster PHT4 (tetrabromophthalic anhydride), hexabromobenzene, pentabromotoluene, decabromobiphenyl, Firemaster BP-6 (2,2',4,4',5,5'-hexabromobiphenyl) and possible contaminants of BFR mixtures with the Ah receptor. Receptor binding and activation was examined using the Gel Retardation Assay and increased expression of dioxin responsive genes was detected using the reporter gene based CALUX assay. The results demonstrate the ability of BFRs to activate the AhR signal transduction pathway at moderate to high concentrations as assessed using both assays. AhR-dependent activation by BFRs may be due in part to contaminants present in commercial/technical mixtures. This was suggested by our comparative analysis of Firemaster BP-6 versus its primary component 2,2',4,4',5,5'-hexabromobiphenyl. Some technical mixtures of brominated flame-retardants contain brominated biphenyls, dioxins or dibenzofurans as contaminants. When tested in the CALUX assay these compounds were found to be equivalent to, or more active than their chlorinated analogues. Relative effective potency values were determined from dose response curves for these brominated HAHs.

  4. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate.

    PubMed

    Chen, Xilei; Jiang, Yufeng; Jiao, Chuanmei

    2014-02-15

    This article mainly studies smoke suppression properties and synergistic flame retardant effect of ferrite yellow (FeOOH) on flame retardant thermoplastic polyurethane (TPU) composites using ammonium polyphosphate (APP) as a flame retardant agent. Smoke suppression properties and synergistic flame retardant effect of FeOOH on flame retardant TPU composites were intensively investigated by smoke density test (SDT), cone calorimeter test (CCT), scanning electron microscopy (SEM), and thermal-gravimetric analysis (TGA). Remarkably, the SDT results show that FeOOH can effectively decrease the amount of smoke production with or without flame. On the other hand, the CCT data reveal that the addition of FeOOH can apparently reduce heat release rate (HRR), total heat release (THR), and total smoke release (TSR), etc. Here, FeOOH is considered to be an effective smoke suppression agent and a good synergism with APP in flame retardant TPU composites, which can greatly improve the structure of char residue realized by TGA and SEM results.

  5. Engineering Biodegradable Flame Retardant Wood-Plastic Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Linxi

    Wood-plastic composites (WPCs), which are produced by blending wood and polymer materials, have attracted increasing attentions in market and industry due to the low cost and excellent performance. In this research, we have successfully engineered WPC by melt blending Polylactic Acid (PLA) and Poly(butylene adipate-co-terphthalate) (PBAT) with recycled wood flour. The thermal property and flammability of the composite are significantly improved by introducing flame retardant agent resorcinol bis(biphenyl phosphate) (RDP). The mechanical and morphological properties are also investigated via multiple techniques. The results show that wood material has increased toughness and impact resistance of the PLA/PBAT polymer matrix. SEM images have confirmed that PLA and PBAT are immiscible, but the incompatibility is reduced by the addition of wood. RDP is initially dispersed in the blends evenly. It migrates to the surface of the sample after flame application, and serves as a barrier between the fire and underlying polymers and wood mixture. It is well proved in the research that RDP is an efficient flame retardant agent in the WPC system.

  6. Formulation of intumescent flame retardant coatings containing natural-based tea saponin.

    PubMed

    Qian, Wei; Li, Xiang-Zhou; Wu, Zhi-Ping; Liu, Yan-Xin; Fang, Cong-Cong; Meng, Wei

    2015-03-18

    Natural product tea saponin (TS), extracted from the nutshell of camellia (Camellia oleifera Abel, Theaceae), was introduced into intumescent flame retardant formulations as blowing agent and carbon source. The formulations of the flame retardant system were optimized to get the optimum proportion of TS, and intumescent flame retardant coatings containing tea saponin (TS-IFRCs) were then prepared. It was found that TS can significantly affect the combustion behavior and the thermal stability of TS-IFRCs evaluated by cone calorimetry and simultaneous thermal analyzer, respectively. It was shown that TS, degraded to water vapor and carbon at high temperatures, can combine with other components to form a well-developed char layer. The char layer was supposed to inhibit erosion upon exposure to heat and oxygen and enhance the flame retardancy of TS-IFRCs. In addition, the smoke release of TS-IFRCs was also studied, which provided a low amount of smoke production.

  7. Burning To Learn: An Introduction to Flame Retardants.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2001

    2001-01-01

    Presents an activity that demonstrates the effectiveness of flame retardants--substances added to combustible materials to slow down or hinder burning--that can be introduced when discussing combustion reactions or during a practical or everyday chemistry unit. (ASK)

  8. Environmental monitoring of brominated flame retardants

    NASA Astrophysics Data System (ADS)

    Vagula, Mary C.; Kubeldis, Nathan; Nelatury, Charles F.

    2011-06-01

    Brominated flame retardants (BFRs) are synthetic organobromide compounds which inhibit ignition and combustion processes. Because of their immense ability to retard fire and save life and property, they have been extensively used in many products such as TVs, computers, foam, plastics etc. The five major classes of BFRs are tetrabromobisphenol-A (TBBPA), hexabromocyclododecane (HBCD), pentabromodiphenyl ether, octabromodiphenyl ether, and decabromodiphenyl ether. The last three are also commonly called PBDEs. BDE-85 and BDE-209 are the two prominent congeners of PBDEs and this study reports the adverse effects of these congeners in rodents. Exposure of rat sciatic nerves to 5 μg/mL and 20 μg/mL of BDE-85 and BDE-209 respectively lead to significant, concentration dependent reduction in nerve conduction function. Glucose absorption in the rat intestinal segments exposed to 5 μg/mL of BDE-85 and BDE-209 was significantly reduced for both the compounds tested. Lastly, mice when exposed to 0.25 mg/kg body weight for four days showed a disruption in oxidant and antioxidant equilibrium. The tissues namely liver and brain have shown increase in the levels of lipid hydroperoxides indicating oxidative stress. Moreover, all the protective enzymes namely superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and glutathione S transferase (GST) have shown tissue specific alterations indicating the induction of damaging oxidative stress and setting in of lipid peroxidation in exposed animals. The results indicate monitoring of PBDEs in the environment is essential because levels as low as 5 μg/mL and 0.25 mg/kg body weight were able to cause damage to the functions of rodents.

  9. Brominated flame retardant exposure of aircraft personnel.

    PubMed

    Strid, Anna; Smedje, Greta; Athanassiadis, Ioannis; Lindgren, Torsten; Lundgren, Håkan; Jakobsson, Kristina; Bergman, Åke

    2014-12-01

    The use of brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in aircraft is the result of high fire safety demands. Personnel working in or with aircraft might therefore be exposed to several BFRs. Previous studies have reported PBDE exposure in flight attendants and in passengers. One other group that may be subjected to significant BFR exposure via inhalation, are the aircraft maintenance workers. Personnel exposure both during flights and maintenance of aircraft, are investigated in the present study. Several BFRs were present in air and dust sampled during both the exposure scenarios; PBDEs, hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and 1,2-bis (2,4,6-tribromophenoxy) ethane. PBDEs were also analyzed in serum from pilots/cabin crew, maintenance workers and from a control group of individuals without any occupational aircraft exposure. Significantly higher concentrations of PBDEs were found in maintenance workers compared to pilots/cabin crew and control subjects with median total PBDE concentrations of 19, 6.8 and 6.6 pmol g(-1) lipids, respectively. Pilots and cabin crew had similar concentrations of most PBDEs as the control group, except for BDE-153 and BDE-154 which were significantly higher. Results indicate higher concentrations among some of the pilots compared to the cabin crew. It is however, evident that the cabin personnel have lower BFR exposures compared to maintenance workers that are exposed to such a degree that their blood levels are significantly different from the control group.

  10. Inhalation a significant exposure route for chlorinated organophosphate flame retardants.

    PubMed

    Schreder, Erika D; Uding, Nancy; La Guardia, Mark J

    2016-05-01

    Chlorinated organophosphate flame retardants (ClOPFRs) are widely used as additive flame retardants in consumer products including furniture, children's products, building materials, and textiles. Tests of indoor media in homes, offices, and other environments have shown these compounds are released from products and have become ubiquitous indoor pollutants. In house dust samples from Washington State, U.S.A., ClOPFRs were the flame retardants detected in the highest concentrations. Two ClOPFRs, tris(1,3-dichloro-2-propyl)phosphate (TDCPP or TDCIPP) and tris(2-chloroethyl)phosphate (TCEP), have been designated as carcinogens, and there is growing concern about the toxicity of the homologue tris(1-chloro-2-propyl)phosphate (TCPP or TCIPP). In response to concerns about exposure to these compounds, the European Union and a number of U.S. states have taken regulatory action to restrict their use in certain product categories. To better characterize exposure to ClOPFRs, inhalation exposure was assessed using active personal air samplers in Washington State with both respirable and inhalable particulate fractions collected to assess the likelihood particles penetrate deep into the lungs. Concentrations of ∑ClOPFRs (respirable and inhalable) ranged from 97.1 to 1190 ng m(-3) (mean 426 ng m(-3)), with TCPP detected at the highest concentrations. In general, higher levels were detected in the inhalable particulate fraction. Total intake of ClOPFRs via the inhalation exposure route was estimated to exceed intake via dust ingestion, indicating that inhalation is an important route that should be taken into consideration in assessments of these compounds.

  11. Flame retardant exposures in California early childhood education environments.

    PubMed

    Bradman, Asa; Castorina, Rosemary; Gaspar, Fraser; Nishioka, Marcia; Colón, Maribel; Weathers, Walter; Egeghy, Peter P; Maddalena, Randy; Williams, Jeffery; Jenkins, Peggy L; McKone, Thomas E

    2014-12-01

    Infants and young children spend as much as 50h per week in child care and preschool. Although approximately 13 million children, or 65% of all U.S. children, spend some time each day in early childhood education (ECE) facilities, little information is available about environmental exposures in these environments. We measured flame retardants in air and dust collected from 40 California ECE facilities between May 2010 and May 2011. Low levels of six polybrominated diphenyl ether (PBDE) congeners and four non-PBDE flame retardants were present in air, including two constituents of Firemaster 550 and two tris phosphate compounds [tris (2-chloroethyl) phosphate (TCEP) and tris (1,3-dichloroisopropyl) phosphate (TDCIPP)]. Tris phosphate, Firemaster 550 and PBDE compounds were detected in 100% of the dust samples. BDE47, BDE99, and BDE209 comprised the majority of the PBDE mass measured in dust. The median concentrations of TCEP (319 ng g(-1)) and TDCIPP (2265 ng g(-1)) were similar to or higher than any PBDE congener. Levels of TCEP and TDCIPP in dust were significantly higher in facilities with napping equipment made out of foam (Mann-Whitney p-values<0.05). Child BDE99 dose estimates exceeded the RfD in one facility for children<3 years old. In 51% of facilities, TDCIPP dose estimates for children<6 years old exceeded age-specific "No Significant Risk Levels (NSRLs)" based on California Proposition 65 guidelines for carcinogens. Given the overriding interest in providing safe and healthy environments for young children, additional research is needed to identify strategies to reduce indoor sources of flame retardant chemicals.

  12. Development of fiber reactive, non-halogenated flame retardant on cotton fabrics and the enhanced flame retardancy by covalent bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US law requires flame resistant properties on apparel or house hold items to prevent or minimize the fire damage. The objective of this research was to develop a non-halogenated flame retardant for application onto cotton fabrics. These treated fabrics can then be used in clothes or beddings to ...

  13. Graphite oxide flame-retardant polymer nanocomposites.

    PubMed

    Higginbotham, Amanda L; Lomeda, Jay R; Morgan, Alexander B; Tour, James M

    2009-10-01

    Graphite oxide (GO) polymer nanocomposites were developed at 1, 5, and 10 wt % GO with polycarbonate (PC), acrylonitrile butadiene styrene, and high-impact polystyrene for the purpose of evaluating the flammability reduction and material properties of the resulting systems. The overall morphology and dispersion of GO within the polymer nanocomposites were studied by scanning electron microscopy and optical microscopy; GO was found to be well-dispersed throughout the matrix without the formation of large aggregates. Mechanical testing was performed using dynamic mechanical analysis to measure the storage modulus, which increased for all polymer systems with increased GO loading. Microscale oxygen consumption calorimetry revealed that the addition of GO reduced the total heat release and peak heat release rates in all systems, and GO-PC composites demonstrated very fast self-extinguishing times in vertical open flame tests, which are important to some regulatory fire safety applications.

  14. Shuttle Environmental Assurance: Brominated Flame Retardants - Concerns, Drivers, Potential Impacts and Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    2010-01-01

    Brominated Flame Retardants (BFRs) are widely used in the manufacture of electrical and electronic components and as additives in formulations for foams, plastics and rubbers. The United States (US) and the European Union (EU)have increased regulation and monitoring of of targeted BFRs, such as Polybrominated Diphenyl Ethers (PBDEs) due to the bioaccumulative effects in humans and animals. In response, manufacturers and vendors of BFR-containing materials are changing flame-retardant additives, sometimes without notifying BFR users. In some instances, Deca-bromodiphenylether (Deca-BDE) and other families of flame retardants are being used as replacement flame retardants for penta-BDE and octa-BDE. The reformulation of the BFR-containing material typically results in the removal of the targeted PBDE and replacement with a non-PBDE chemical or non-targeted PBDE. Many users of PBDE -based materials are concerned that vendors will perform reformulation and not inform the end user. Materials performance such as flammability, adhesion , and tensile strength may be altered due to reformulation. The requalification of newly formulated materials may be required, or replacement materials may have to be identified and qualified. The Shuttle Enviornmental Assurance (SEA) team indentified a risk to the Space Shuttle Program associated with the possibility that targeted PBDEs may be replaced without notification. Resultant decreases in flame retardancy, Liquid Oxygen (LOX) compatibility, or material performance could have serious consequences.

  15. Halogenated flame retardants in bobcats from the midwestern United States.

    PubMed

    Boyles, Esmarie; Tan, Hongli; Wu, Yan; Nielsen, Clayton K; Shen, Li; Reiner, Eric J; Chen, Da

    2017-02-01

    In response to the restrictions of polybrominated diphenyl ether (PBDE) flame retardants in various consumer products, alternative halogenated flame retardants have been subjected to increased use. Compared to aquatic ecosystems, relatively little information is available on the contamination of alternative flame retardants in terrestrial ecosystems, especially with regards to mammalian wildlife. In this study we used a top terrestrial carnivore, the bobcat (Lynx rufus), as a unique biomonitoring species for assessing flame retardant contamination in the Midwestern United States (U.S.) terrestrial ecosystems. Concentrations of ∑PBDEs (including all detectable PBDE congeners) ranged from 8.3 to 1920 ng/g lipid weight (median: 50.3 ng/g lw) in livers from 44 bobcats collected during 2013-2014 in Illinois. Among a variety of alternative flame retardants screened, Dechloranes (including anti- and syn-Dechlorane Plus and Dechlorane-602, 603, and 604), tetrabromo-o-chlorotoluene (TBCT), and hexabromocyclododecane (HBCD) were also frequently detected, with median concentrations of 28.7, 5.2, and 11.8 ng/g lw, respectively. Dechlorane analogue compositions in bobcats were different from what has been reported in other studies, suggesting species- or analogue-dependent bioaccumulation, biomagnification, or metabolism of Dechlorane chemicals in different food webs. Our findings, along with previously reported food web models, suggest Dechloranes may possess substantial bioaccumulation and biomagnification potencies in terrestrial mammalian food webs. Thus, attention should be given to these highly bioavailable flame retardants in future environmental biomonitoring and risk assessments in a post-PBDE era.

  16. Environmental impact of flame retardants (persistence and biodegradability).

    PubMed

    Segev, Osnat; Kushmaro, Ariel; Brenner, Asher

    2009-02-01

    Flame-retardants (FR) are a group of anthropogenic environmental contaminants used at relatively high concentrations in many applications. Currently, the largest market group of FRs is the brominated flame retardants (BFRs). Many of the BFRs are considered toxic, persistent and bioaccumulative. Bioremediation of contaminated water, soil and sediments is a possible solution for the problem. However, the main problem with this approach is the lack of knowledge concerning appropriate microorganisms, biochemical pathways and operational conditions facilitating degradation of these chemicals at an acceptable rate. This paper reviews and discusses current knowledge and recent developments related to the environmental fate and impact of FRs in natural systems and in engineered treatment processes.

  17. Urinary biomarkers of flame retardant exposure among collegiate U.S. gymnasts.

    PubMed

    Carignan, Courtney C; Fang, Mingliang; Stapleton, Heather M; Heiger-Bernays, Wendy; McClean, Michael D; Webster, Thomas F

    2016-09-01

    Flame retardants are widely used in polyurethane foam materials including gymnastics safety equipment such as pit cubes and landing mats. We previously reported elevated concentrations of flame retardants in the air and dust of a U.S. gymnastics training facility and elevated PentaBDE in the serum of collegiate gymnasts. Our objective in this pilot study was to compare urinary biomarkers of exposure to other flame retardants and additives of polyurethane foam including tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), triphenyl phosphate (TPHP) and 2-ethylhexyl- 2,3,4,5-tetrabromobenzoate (EH-TBB) in samples collected from 11 collegiate gymnasts before and after a gymnastics practice (n=53 urine samples total). We identified a 50% increase in the TPHP biomarker (p=0.03) from before to after practice, a non-significant 22% increase in the TDCIPP biomarker (p=0.14) and no change for the EH-TBB biomarker. These preliminary results indicate that the gymnastics training environment can be a source of recreational exposure to flame retardants. Such exposures are likely widespread, as we identified flame retardants in 89% of foam samples collected from gyms across the U.S.

  18. Exposures, Mechanisms, and Impacts of Endocrine-Active Flame Retardants

    PubMed Central

    Dishaw, Laura; Macaulay, Laura; Roberts, Simon C.; Stapleton, Heather M.

    2014-01-01

    This review summarizes the endocrine and neurodevelopmental effects of two current-use additive flame retardants (FRs), tris (1,3-dichloro-isopropyl) phosphate (TDCPP) and Firemaster® 550 (FM 550), and the recently phased-out polybrominated diphenyl ethers (PBDEs), all of which were historically or are currently used in polyurethane foam applications. Use of these chemicals in consumer products has led to widespread exposure in indoor environments. PBDEs and their hydroxylated metabolites appear to primarily target the thyroid system, likely due to their structural similarity to endogenous thyroid hormones. In contrast, much less is known about the toxicity of TDCPP and FM550. However, recent in vitro and in vivo studies suggest that both should be considered endocrine disruptors as studies have linked TDCPP exposure with changes in circulating hormone levels, and FM 550 exposure with changes in adipogenic and osteogenic pathways. PMID:25306433

  19. Exposures, mechanisms, and impacts of endocrine-active flame retardants.

    PubMed

    Dishaw, Laura V; Macaulay, Laura J; Roberts, Simon C; Stapleton, Heather M

    2014-12-01

    This review summarizes the endocrine and neurodevelopmental effects of two current-use additive flame retardants (FRs), tris (1,3-dichloro-isopropyl) phosphate (TDCPP) and Firemaster(®) 550 (FM 550), and the recently phased-out polybrominated diphenyl ethers (PBDEs), all of which were historically or are currently used in polyurethane foam applications. Use of these chemicals in consumer products has led to widespread exposure in indoor environments. PBDEs and their hydroxylated metabolites appear to primarily target the thyroid system, likely due to their structural similarity to endogenous thyroid hormones. In contrast, much less is known about the toxicity of TDCPP and FM 550. However, recent in vitro and in vivo studies suggest that both should be considered endocrine disruptors as studies have linked TDCPP exposure with changes in circulating hormone levels, and FM 550 exposure with changes in adipogenic and osteogenic pathways.

  20. Phosphorus Containing Flame Retardants and Their Textile Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we discuss the new challenge phosphorus containing flame retardant compounds and the properties for covalently bonded cotton’s surface. We showed the design, synthesis, and characterization of (2-methyl-oxiranylmethyl)-phosphonic acid dimethyl ester and [2-(dimethoxy-phosphorylmethyl)...

  1. Bioaccumulation and toxicity of the flame retardant TBPH or ...

    EPA Pesticide Factsheets

    The use of polybrominated diphenyl ethers as flame retardants in consumer products has been scrutinized increasingly due to their environmental persistence and potential toxicity; however, alternative replacement flame retardants may have similar drawbacks. The alternative brominated flame retardant bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) is a component of several commercial flame retardants, including Firemaster® 550, Firemaster® BZ-54 and DP-45. Here we investigate the bioaccumulation, bioenergetics and other adverse outcomes pathways (AOPs) predicted for dietary exposure to a carrier control, two levels of TBPH, or 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153, a well-studied compound acting as a positive control for some aspects of the study). The TBPH concentrations chosen were at or well above the environmental concentrations documented in the literature, but similar to those causing toxicity in a previous study. Our experimental model is a small estuarine fish, the mummichog (Fundulus heteroclitus), exposed as individually tagged fish held in small groups (2 male, 2 female) in replicate tanks and fed contaminated food from day 0-28, followed by uncontaminated food from day 29-42. Throughout the experiment, individual growth was measured weekly, and at various time points, fish from replicate tanks were sacrificed, measured and dissected. To support putative AOPs, samples were obtained for analysis of hormone levels and transcriptomic responses

  2. Innovative green technique for preparing of flame retardant cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to its environmentally benign character, microwave-assisted or supercritical carbon dioxide high pressure reactors are considered in green chemistry as a substitute for organic solvents in chemical reactions. In this paper, an innovative approach for preparation of flame retardant cotton fabric ...

  3. PBDE FLAME RETARDANTS: TOXICOLOGY, HEALTH EFFECTS, AND RISK ASSESSMENT

    EPA Science Inventory

    Polybrominated diphenyl ether (PBDE) flame retardants have been routinely added to consumer products for several decades in a successful effort to reduce fire-related injury and property damage. Global production of PBDEs has reached 67,000 metric tons per year. Recently concer...

  4. Neurotoxicity and risk assessment of brominated and alternative flame retardants.

    PubMed

    Hendriks, Hester S; Westerink, Remco H S

    2015-01-01

    Brominated flame retardants (BFRs) are widely used chemicals that prevent or slow the onset and spreading of fire. Unfortunately, many of these compounds pose serious threats for human health and the environment, indicating an urgent need for safe(r) and less persistent alternative flame retardants (AFRs). As previous research identified the nervous system as a sensitive target organ, the neurotoxicity of past and present flame retardants is reviewed. First, an overview of the neurotoxicity of BFRs in humans and experimental animals is provided, and some common in vitro neurotoxic mechanisms of action are discussed. The combined epidemiological and toxicological studies clearly underline the need for replacing BFRs. Many potentially suitable AFRs are already in use, despite the absence of a full profile of their environmental behavior and toxicological properties. To prioritize the suitability of some selected halogenated and non-halogenated organophosphorous flame retardants and inorganic halogen-free flame retardants, the available neurotoxic data of these AFRs are discussed. The suitability of the AFRs is rank-ordered and combined with human exposure data (serum concentrations, breast milk concentrations and house dust concentrations) and physicochemical properties (useful to predict e.g. bioavailability and persistence in the environment) for a first semi-quantitative risk assessment of the AFRs. As can be concluded from the reviewed data, several BFRs and AFRs share some neurotoxic effects and modes of action. Moreover, the available neurotoxicity data indicate that some AFRs may be suitable substitutes for BFRs. However, proper risk assessment is hampered by an overall scarcity of data, particularly regarding environmental persistence, human exposure levels, and the formation of breakdown products and possible metabolites as well as their toxicity. Until these data gaps in environmental behavioral and toxicological profiles are filled, large scale use of

  5. Part I. Improved flame retardant textiles. Part II. Novel approach to layer-by-layer processing for flame retardant textiles.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, new approaches for flame retardant textile by using supercritical carbon dioxide (scCO2) and layer-by-layer processing will be discussed. Due to its environmentally benign character, the scCO2 is considered in green chemistry as a substitute for organic solvents in chemical re...

  6. Part I. improve flame retardant textile. Part II. novel approach layer-by-layer processing for flame retardant textile.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, new approaches for flame retardant textile by using supercritical carbon dioxide (scCO2) and layer-by-layer processing will be discussed. Due to its environmentally benign character, the scCO2 is considered in green chemistry as a substitute for organic solvents in chemical rea...

  7. Effects of brominated flame retardants on calcium buffering mechanisms in rat brain in vitro.

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs; used as additive flame-retardants) have been detected in human blood, adipose tissue, and breast milk. Developmental and long-term exposures to these chemicals may pose a human health risk, especially to children. It has been demonstrated th...

  8. Toxicokinetics of the Flame Retardant Hexabromocylodecane alpha: Effect of dose, timing, route, repeated exposure and metabolism

    EPA Science Inventory

    Alpha-hexabromocyclododecane (a-HBCD) is an emerging persistent organic pollutant present in the hexabromocyclododecane (HBCD) commercial mixture. HBCD is used as an additive flame retardant in a wide variety of household consumer products. Three main stereoisomers, alpha (a), be...

  9. Toxicokinetics of the flame retardant hexabromocyclododecane alpha: effect of dose, timing, route, repeated exposure and metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hexabromocyclododecane (HBCD) is an additive flame retardant in many household products. Three stereoisomers, alpha (a), beta (b), and gamma (g), comprise roughly 10%, 10%, and 80% of the mixture, respectively. a-HBCD is the major stereoisomer found in biota, including breast milk and blood in Nor...

  10. Electrochemical performance evaluations and safety investigations of pentafluoro(phenoxy)cyclotriphosphazene as a flame retardant electrolyte additive for application in lithium ion battery systems using a newly designed apparatus for improved self-extinguishing time measurements

    NASA Astrophysics Data System (ADS)

    Dagger, Tim; Lürenbaum, Constantin; Schappacher, Falko M.; Winter, Martin

    2017-02-01

    A modified self-extinguishing time (SET) device which enhances the reproducibility of the results is presented. Pentafluoro(phenoxy)cyclotriphosphazene (FPPN) is investigated as flame retardant electrolyte additive for lithium ion batteries (LIBs) in terms of thermal stability and electrochemical performance. SET measurements and adiabatic reaction calorimetry are applied to determine the flammability and the reactivity of a standard LIB electrolyte containing 5% FPPN. The results reveal that the additive-containing electrolyte is nonflammable for 10 s whereas the commercially available reference electrolyte inflames instantaneously after 1 s of ignition. The onset temperature of the safety enhanced electrolyte is delayed by ≈ 21 °C. Compatibility tests in half cells show that the electrolyte is reductively stable while the cyclic voltammogram indicates oxidative decomposition during the first cycle. Cycling experiments in full cells show improved cycling performance and rate capability, which can be attributed to cathode passivation during the first cycle. Post-mortem analysis of the electrolyte by gas chromatography-mass spectrometry confirms the presence of the additive in high amounts after 501 cycles which ensures enhanced safety of the electrolyte. The investigations present FPPN as stable electrolyte additive that improves the intrinsic safety of the electrolyte and its cycling performance at the same time.

  11. Effects of TiO₂ and curing temperatures on flame retardant finishing of cotton.

    PubMed

    Poon, Chin-Kuen; Kan, Chi-Wai

    2015-05-05

    The performance of flame retardancy of cotton cellulose can be influenced by curing conditions. In this study, cotton cellulose was imparted durable flame retardant properties by a reaction between a flame retardant agent (Pyrovatex CP New) and a cross linking agent (Knittex CHN), in the presence of catalysts phosphoric acid and titanium dioxide (TiO2). After treating cotton fabrics at different curing temperatures for different curing time, its flame retardant performance was evaluated by 45° fabric flammability standard test method. For cotton fabrics cured at 150 and 170°C, good flame retardant characteristics were retained even after three home laundering cycles. The use of TiO2 as a co-catalyst in the treatment improved the flame retardant properties and reduced the loss of tearing strength of cotton fabrics. No significant negative effect in the whiteness index was observed, as compared with conventional flame retardant treatment.

  12. Plasma-enhanced synthesis of green flame retardant cellulosic materials

    NASA Astrophysics Data System (ADS)

    Totolin, Vladimir

    The natural fiber-containing fabrics and composites are more environmentally friendly, and are used in transportation (automobiles, aerospace), military applications, construction industries (ceiling paneling, partition boards), consumer products, etc. Therefore, the flammability characteristics of the composites based on polymers and natural fibers play an important role. This dissertation presents the development of plasma assisted - green flame retardant coatings for cellulosic substrates. The overall objective of this work was to generate durable flame retardant treatment on cellulosic materials. In the first approach sodium silicate layers were pre-deposited onto clean cotton substrates and cross linked using low pressure, non-equilibrium oxygen plasma. A statistical design of experiments was used to optimize the plasma parameters. The modified cotton samples were tested for flammability using an automatic 45° angle flammability test chamber. Aging tests were conducted to evaluate the coating resistance during the accelerated laundry technique. The samples revealed a high flame retardant behavior and good thermal stability proved by thermo-gravimetric analysis. In the second approach flame retardant cellulosic materials have been produced using a silicon dioxide (SiO2) network coating. SiO 2 network armor was prepared through hydrolysis and condensation of the precursor tetraethyl orthosilicate (TEOS), prior coating the substrates, and was cross linked on the surface of the substrates using atmospheric pressure plasma (APP) technique. Due to protection effects of the SiO2 network armor, the cellulosic based fibers exhibit enhanced thermal properties and improved flame retardancy. In the third approach, the TEOS/APP treatments were extended to linen fabrics. The thermal analysis showed a higher char content and a strong endothermic process of the treated samples compared with control ones, indicating a good thermal stability. Also, the surface analysis proved

  13. Encapsulation of flame retardants for application in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Pei-Hsuan; Chang, Shinn-Jen; Li, Chia-Chen

    2017-01-01

    In this investigation, improvements in the fire-extinguishing behavior of the cathode/electrolyte mixture are achieved using the lithium iron phosphate cathode with a pre-embedded flame retardant. To minimize the possible negative effects of the embedded retardant on the electrochemical properties of the cathode, two commercially available flame retardants, triphenyl phosphate (TPP) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO), are encapsulated by chemically stable poly(urea-formaldehyde) and denoted as en-TPP and en-DOPO, respectively. The additions of en-TPP and en-DOPO improve the dispersion of the cathode slurry, while the additions of bare TPP and DOPO cause severe powder aggregation and poor electrochemical conductivity. The self-extinguishing efficiency of the cathode/electrolyte mixture is greatly increased by 30%-40% without sacrificing the electrochemical performance of the cathodes when 15 wt% of en-TPP is added.

  14. Environmental Impact of Flame Retardants (Persistence and Biodegradability)

    PubMed Central

    Segev, Osnat; Kushmaro, Ariel; Brenner, Asher

    2009-01-01

    Flame-retardants (FR) are a group of anthropogenic environmental contaminants used at relatively high concentrations in many applications. Currently, the largest market group of FRs is the brominated flame retardants (BFRs). Many of the BFRs are considered toxic, persistent and bioaccumulative. Bioremediation of contaminated water, soil and sediments is a possible solution for the problem. However, the main problem with this approach is the lack of knowledge concerning appropriate microorganisms, biochemical pathways and operational conditions facilitating degradation of these chemicals at an acceptable rate. This paper reviews and discusses current knowledge and recent developments related to the environmental fate and impact of FRs in natural systems and in engineered treatment processes. PMID:19440395

  15. Graphene phosphonic acid as an efficient flame retardant.

    PubMed

    Kim, Min-Jung; Jeon, In-Yup; Seo, Jeong-Min; Dai, Liming; Baek, Jong-Beom

    2014-03-25

    We report the preparation of graphene phosphonic acid (GPA) via a simple and versatile method and its use as an efficient flame retardant. In order to covalently attach phosphorus to the edges of graphene nanoplatelets, graphite was ball-milled with red phosphorus. The cleavage of graphitic C-C bonds during mechanochemical ball-milling generates reactive carbon species, which react with phosphorus in a sealed ball-mill crusher to form graphene phosphorus. Subsequent opening of the crusher in air moisture leads to violent oxidation of graphene phosphorus into GPA (highest oxidation state). The GPA is readily dispersible in many polar solvents, including neutral water, allowing for solution (spray) coating for high-performance, nontoxic flame-retardant applications.

  16. Fabrication of cotton fabric with superhydrophobicity and flame retardancy.

    PubMed

    Zhang, Ming; Wang, Chengyu

    2013-07-25

    A simple and facile method for fabricating the cotton fabric with superhydrophobicity and flame retardancy is described in the present work. The cotton fabric with the maximal WCA of 160° has been prepared by the covalent deposition of amino-silica nanospheres and the further graft with (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The geometric microstructure of silica spheres was measured by transmission electron microscopy (TEM). The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, diverse performances of superhydrophobic cotton textiles have been evaluated as well. The results exhibited the outstanding superhydrophobicity, excellent waterproofing durability and flame retardancy of the cotton fabric after treatment, offering a good opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications.

  17. Comparison of the recyclability of flame-retarded plastics.

    PubMed

    Imai, Takaretu; Hamm, Stephan; Rothenbacher, Klaus P

    2003-02-01

    Mechanical recycling of plastics from waste from electrical and electronical equipment (WEEE) is increasingly expected by regulators and demanded by original equipment manufacturers (CEMs); however, mechanical recycling is generally recognized to be the most economically costly and technically challenging method of recovering WEEE plastics. With 12% of WEEE plastics requiring the use of flame-retardants in order to ensure appropriate levels of consumer fire safety, there is a distinct need for data from comparative tests on recyclability of various flame-retarded plastics. Ten commercially available flame-retarded plastic grades commonly used in electronic equipment (eight "halogen-free" grades and two grades containing brominated flame-retardants (BFRs)) were subjected to two different recycling scenarios. A standard recycling scenario was carried out by repeatedly extruding the materials and an accelerated hydrolysis scenario was carried out to study the influence of humidity from air during use on the process. Both, virgin and recycled materials were tested for a potential formation of polybrominated dibenzodioxins/furans (PBDD/Fs), their mechanical properties were assessed and the fire safety rating was determined. Results indicate that none of the tested materials showed a potential to form the PBDD/Fs regulated by the German Chemicals Banning Ordinance. The halogen-free plastic grades showed a significant deterioration of mechanical properties after recycling, whereas those plastics containing BFRs were able to pass all test criteria, thus maintaining their original properties. With respect to the fire safety rating, none of the eight tested halogen-free plastic grades could maintain their fire safety rating after five recycling loops, whereas both BFR plastics continued to achieve their fire safety ratings. Therefore the tested BFR containing plastic materials showed superior recycling properties compared to the tested halogen-free plastic grades with

  18. Assessing in-vitro estrogenic effects of currently-used flame retardants.

    PubMed

    Krivoshiev, Boris V; Dardenne, Freddy; Covaci, Adrian; Blust, Ronny; Husson, Steven J

    2016-06-01

    Flame retardants are chemicals that are added to nearly all manufactured materials. Additionally, there has been a steady increase in diseases resulting from endocrine-disruption with an aligned increase in use of chemicals. Given the persistence, potential bioaccumulation, limited toxicological understanding, and vast use of flame retardants, there is a need to investigate potential endocrine-disruptive activity associated with these compounds in an effort for better risk assessment. We therefore used the MCF-7 flow-cytometric proliferation assay in an effort to establish potential estrogen-disrupting effects of twelve currently-used flame retardants. Triphenyl phosphate, tris(1,3-dichloro-2-propyl) phosphate, tris(butyl) phosphate, hexabromocyclododecane, and tetrabromobisphenol A showed statistically significant estrogenic activity, with hexabromocyclododecane being the most potent of the five (EC20 of 5.5 μM). Tris(2-butoxyethyl) phosphate, tris(1,3-dichloro-2-propyl) phosphate, tri(2-chloroethyl) phosphate, tris(butyl) phosphate, hexabromocyclododecane, tetrabromobisphenol A, and tris(2,3,-dibromopropyl) isocyanurate harboured anti-estrogenic activity when co-treating with 17β-estradiol, with hexabromocyclododecane showing the highest potency (IC20 of 17.6 μM). Interestingly, some compounds showed both estrogenic and anti-estrogenic effects, indicating both receptor-dependant and -independent mechanisms attributed to some of these compounds, in line with other studies. Multiple currently-used flame retardants may therefore act as xenoestrogens and anti-estrogens, or alter estrogen homeostasis, which could affect endocrine function.

  19. Chemical regulation on fire: rapid policy advances on flame retardants.

    PubMed

    Cordner, Alissa; Mulcahy, Margaret; Brown, Phil

    2013-07-02

    Chemicals that are widely used in consumer products offer challenges to product manufacturers, risk managers, environmental regulators, environmental scientists, and the interested public. However, the factors that cause specific chemicals to rise to the level of regulatory, scientific, and social movement concern and scrutiny are not well documented, and scientists are frequently unclear about exactly how their research impacts policy. Through a case study of advocacy around flame retardant chemicals, this paper traces the pathways through which scientific evidence and concern is marshaled by both advocacy groups and media sources to affect policy change. We focus our analysis around a broad coalition of environmental and public health advocacy organizations and an investigative journalism series published in 2012 in the Chicago Tribune. We demonstrate that the Tribune series both brought the issue to a wider public audience and precipitated government action, including state policy revisions and federal Senate hearings. We also show how a broad and successful flame retardant coalition developed, leveraged a media event, and influenced policy at multiple institutional levels. The analysis draws on over 110 in-depth interviews, literature and Web site reviews, and observations at a flame retardant manufacturing company, government offices, and scientific and advocacy conferences.

  20. Flame retardants: Dust - And not food - Might be the risk.

    PubMed

    de Boer, J; Ballesteros-Gómez, A; Leslie, H A; Brandsma, S H; Leonards, P E G

    2016-05-01

    Flame retardants (FRs) are used to delay ignition of materials such as furniture and electric and electronic instruments. Many FRs are persistent and end up in the environment. Environmental studies on flame retardants (FRs) took off in the late 1990s. Polybrominated diphenylethers (PBDEs) appeared to be bioaccumulative and were found in many organisms all over the world. When PBDEs were banned or their production voluntarily terminated, alternatives appeared on the market that often had similar properties or were of more concern due to their toxicity such as halogenated phosphorus-based FRs. Here we show that in spite of the ban on PBDEs more brominated FRs are being produced, an increasing number of other FRs is being applied and FR levels in our homes are much higher than in the outdoor environment. While nowadays we live in better isolated houses and sit in front of the computer or television, on flame retarded upholstery, we are at risk due to the toxic effects of a suite of FRs. The high exposure to these substances indoors calls for better risk assessments that include mixture effects.

  1. Toxicity of new generation flame retardants to Daphnia magna.

    PubMed

    Waaijers, Susanne L; Hartmann, Julia; Soeter, A Marieke; Helmus, Rick; Kools, Stefan A E; de Voogt, Pim; Admiraal, Wim; Parsons, John R; Kraak, Michiel H S

    2013-10-01

    There is a tendency to substitute frequently used, but relatively hazardous brominated flame retardants (BFRs) with halogen-free flame retardants (HFFRs). Consequently, information on the persistence, bioaccumulation and toxicity (PBT) of these HFFRs is urgently needed, but large data gaps and inconsistencies exist. Therefore, in the present study the toxicity of a wide range of HFFRs to the water flea Daphnia magna was investigated. Our results revealed that four HFFRs were showing no effect at their Sw (saturated water concentration) and three had a low toxicity (EC50>10 mg L(-1)), suggesting that these compounds are not hazardous. Antimony trioxide had a moderate toxicity (EC50=3.01 mg L(-1), 95% CL: 2.76-3.25) and triphenyl phosphate and the brominated reference compound tetra bromobisphenol A were highly toxic to D. magna (EC50=0.55 mg L(-1), 95% CL: 0.53-0.55 and EC50=0.60 mg L(-1), 95% CL: 0.24-0.97 respectively). Aluminum trihydroxide and bisphenol A bis(diphenyl phosphate) caused limited mortality at Sw (26 and 25% respectively) and have a low solubility (<10 mg L(-1)). Hence, increased toxicity of these compounds may be observed when for instance decreasing pH could increase solubility. By testing all compounds under identical conditions we provided missing insights in the environmental hazards of new generation flame retardants and propose as best candidates for BFR replacements: APP, ALPI, DOPO, MHO, MPP, ZHS and ZS.

  2. Flame retardants and legacy chemicals in Great Lakes' water.

    PubMed

    Venier, Marta; Dove, Alice; Romanak, Kevin; Backus, Sean; Hites, Ronald

    2014-08-19

    The Great Lakes have been the focus of extensive environmental research, but recent data on the aquatic concentrations of emerging compounds, such as flame retardants, are scarce. Water samples from 18 stations on the five Great Lakes were collected in 2011 and 2012 using XAD-2 resin adsorption and analyzed for PCBs, organochlorine pesticides, PAHs, polybrominated diphenyl ethers (PBDEs), and emerging flame retardants, including organophosphate flame retardants (OPEs). Total PCB concentrations ranged from 117 ± 18 pg/L in Lake Superior to 623 ± 113 pg/L in Lake Ontario. Among the organochlorine pesticides, the most abundant was dieldrin, with the highest average concentration of 99 ± 26 pg/L in Lake Erie, followed by p,p'-DDD with an average concentration of 37 ± 8 pg/L in Lake Ontario. Total PAH concentrations were higher in Lakes Erie and Ontario than in Lakes Michigan, Huron, and Superior. Total PBDE concentrations were highest in Lake Ontario (227 ± 75 pg/L), and the most abundant congeners were BDE-47, BDE-99, and BDE-209. Total OPE concentrations ranged between 7.3 ± 4.5 ng/L in Lake Huron to 96 ± 43 ng/L in Lake Erie.

  3. Interlaboratory study of novel halogenated flame retardants: INTERFLAB.

    PubMed

    Melymuk, Lisa; Goosey, Emma; Riddell, Nicole; Diamond, Miriam L

    2015-09-01

    Flame retardants (FRs) have come under considerable scientific and public scrutiny over the past decade. A lack of reference materials and standardized analytical methods has resulted in questions regarding the variation of measurements from different studies. We evaluated this variation by performing an international interlaboratory study assessing analytical capabilities as well as the accuracy and precision of results for a range of flame retardants (International Flame Retardant Laboratory Study, INTERFLAB). Thirteen international research laboratories participated in a blind interlaboratory comparison of 24 FRs. Results demonstrate good precision within replicates of test mixtures from individual laboratories, but problematic accuracy for several FRs and laboratories. Large ranges in the values reported for decabromodiphenylethane (DBDPE), tris(1,3-dichloropropyl)phosphate (TDCIPP), tetrabromobisphenol-A (TBBPA), and hexabromocyclododecane (HBCD) (>50 % relative standard deviations among measured values) and large deviations from the reference values (>25 % bias in accuracy) suggest potential problems for comparability of results. DBDPE, HBCD, and TBBPA had significantly poorer accuracy and precision, suggesting that current analytical methods are not providing reliable results for these FRs.

  4. Catalytic degradation of brominated flame retardants by copper oxide nanoparticles.

    PubMed

    Yecheskel, Yinon; Dror, Ishai; Berkowitz, Brian

    2013-09-01

    The catalytic degradation of two brominated flame retardants (BFRs), tribromoneopentyl alcohol (TBNPA) and 2,4 dibromophenol (2,4-DBP) by copper oxide nanoparticles (nCuO) was investigated. The degradation kinetics, the debromination, and the formation of intermediates by nCuO catalysis were also compared to Fenton oxidation and nano zero-valent iron (nZVI) reduction methods. BFRs have been added to various products like plastic, textile, electronics and synthetic polymers at growing rates. In spite of the clear advantages of reducing fire damages, many of these BFRs may be released to the environment after their beneficial use and become contaminants. The two studied BFRs were fully degraded with sufficient time (hours to days) and oxidation agent (H2O2). Shorter reaction times showed differences in reaction pathway and kinetics. The 2,4-DBP showed faster degradation than TBNPA, by nCuO catalysis. Relatively high resistance to degradation was recorded for 2,4-DBP with nZVI, yielding 20% degradation after 24h, while the TBNPA was degraded by 85% within 12h. Electron Spin Resonance (ESR) measurements show generation of both hydroxyl and superoxide radicals. In addition, inhibition of 2,4-DBP degradation in the presence of spin traps implies a radical degradation mechanism. A catalytic mechanism for radical generation and BFR degradation by nCuO is proposed. It is further suggested that H2O2 plays an essential role in the activation of the catalyst.

  5. Flame Retardant Effect of Aerogel and Nanosilica on Engineered Polymers

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Smith, Trent M.; Roberson, Luke B.; Yang, Feng; Nelson, Gordon L.

    2010-01-01

    Aerogels are typically manufactured vIa high temperature and pressure-critical-point drying of a colloidal metal oxide gel filled with solvents. Aerogel materials derived from silica materials represent a structural morphology (amorphous, open-celled nanofoams) rather than a particular chemical constituency. Aerogel is not like conventional foams in that it is a porous material with extreme microporosity and composed of individual features only a few nanometers in length with a highly porous dendriticlike structure. This unique substance has unusual properties such as low thermal conductivity, refractive index and sound suppression; in addition to its exceptional ability to capture fast moving dust. The highly porous nature of the aerogel's structure provides large amounts of surface area per unit weight. For instance, a silica aerogel material with a density of 100 kilograms per cubic meters can have surface areas of around 800 to 1500 square meters per gram depending on the precursors and process utilized to produce it. To take advantage of the unique properties of silica aerogels, especially the ultra light weight and low thermal conductivity, their composites with various engineering polymers were prepared and their flammability was investigated by Cone Calorimetry. The flammability of various polystyrene/silica aerogel nanocomposites were measured. The combination of these nanocomposites with a NASA patented flame retardant SINK were also studied. The results were compared with the base polymer to show the differences between composites with different forms of silica.

  6. Statewide surveillance of halogenated flame retardants in fish in Illinois, USA.

    PubMed

    Widelka, Margaret; Lydy, Michael J; Wu, Yan; Chen, Da

    2016-07-01

    In order to better understand the exposure of aquatic systems to halogenated flame retardant contaminants, the present study investigated a variety of legacy and emerging flame retardants in common carp and largemouth bass collected from 58 stations across Illinois (United States). The data revealed that polybrominated diphenyl ethers (PBDEs) generally dominated the flame retardant residues in Illinois fish. Concentrations of ΣPBDEs (including all detectable PBDE congeners) ranged from 24.7 to 8270 ng/g lipid weight (median: 135 ng/g lw) in common carp and 15-3870 ng/g lw (median: 360 ng/g lw) in largemouth bass. In addition to PBDEs, Dechlorane analogues (i.e. Dec-603, Dec-604, and Chlordane Plus) were also frequently detected. Median concentrations of ΣDechloranes (including all detected Dechlorane analogues) were 34.4 and 23.3 ng/g lw in common carp and largemouth bass, respectively. Other emerging flame retardants, including tetrabromo-o-chlorotoluene (TBCT), hexabromobenzene (HBBZ), 2-ethylhexyltetrabromobenzoate (EH-TBB), and bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP), were also detected in 40-78% of the fish at the monitored stations. Spatial analysis revealed significantly greater PBDE concentrations in fish living in impaired urban streams and lakes compared to those from the impaired agricultural and unimpaired agricultural/urban waters, demonstrating a significant urban influence on PBDE contamination. Future studies and environmental monitoring are recommended to focus on temporal trends of PBDEs and alternative flame retardants, as well as human exposure risks via edible fishes, in the identified Areas of Concern within Illinois.

  7. Spectroscopic sensing of NH 3 emissions from flame retardants

    NASA Astrophysics Data System (ADS)

    Kantrowitz, Frank T.; Foreman, Dale U.; Gutman, William M.; Winkel, R. J.

    A Fourier transform spectrometer system housed in a four-wheel drive vehicle has been developed by the Army Research Laboratory, and recently was used to observe the smoke plume from a large brush fire in the Organ Mountains of south central New Mexico. The spectrometer was approximately 8 km from the fire during data acquisition. After processing, it was apparent that emission spectra from the plume contained ammonia emission lines. Ammonia is believed to have been released by the thermal decomposition of flame retardant chemicals that were being used to contain the fire.

  8. Discrimination of hexabromocyclododecane from new polymeric brominated flame retardant in polystyrene foam by nuclear magnetic resonance.

    PubMed

    Jeannerat, Damien; Pupier, Marion; Schweizer, Sébastien; Mitrev, Yavor Nikolaev; Favreau, Philippe; Kohler, Marcel

    2016-02-01

    Hexabromocyclododecane (HBCDD) is a brominated flame retardant (BFR) and major additive to polystyrene foam thermal insulation that has recently been listed as a persistent organic pollutant by the Stockholm Convention. During a 2013/2014 field analytical survey, we measured HBCDD content ranging from 0.2 to 2.4% by weight in 98 polystyrene samples. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses indicated that expandable (EPS) and extruded (XPS) polystyrene foams significantly differed in the α/γ HBCDD isomer ratio, with a majority of α and γ isomers in XPS and EPS, respectively. Interestingly, this technique indicated that some recent materials did not contain HBCDD, but demonstrated bromine content when analysed with X-ray fluorescence (XRF). Further investigation by Nuclear Magnetic Resonance (NMR) was able to discriminate between the BFRs present. In addition to confirming the absence or presence of HBCDD in polystyrene samples, high-field NMR spectroscopy provided evidence of the use of brominated butadiene styrene (BBS) as copolymer in the production of polystyrene. Use of this alternative flame retardant is expected to cause fewer health and environmental concerns. Our results highlight a trend towards the use of copolymerized BFRs as an alternative to HBCDD in polystyrene foam boards. In addition to providing a rapid NMR method to identify polymeric BFR, our analytical approach is a simple method to discriminate between flame-retardants in polystyrene foam insulating materials.

  9. DEVELOPMENTAL NEUROTOXICITY OF POLYBROMINATED DIPHENYL ETHER (PBDE) FLAME RETARDANTS

    PubMed Central

    Costa, Lucio G.; Giordano, Gennaro

    2007-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants used in a variety of consumer products. In the past 25 years, PBDEs have become ubiquitous environmental contaminants. They have been detected in soil, air, sediments, birds, marine species, fish, house dust, and human tissues, blood and breast milk. Diet and house dust appear to be the major sources of PBDE exposure in the general population, though occupational exposure can also occur. Levels of PBDEs in human tissues are particularly high in North America, compared to Asian and European countries, and have been increasing in the past 30 years. Concentrations of PBDEs are particularly high in breast milk, resulting in high exposure of infants. In addition, for toddlers, dust has been estimated to account for a large percentage of exposure. PBDEs can also cross the placenta, as they have been detected in fetal blood and liver. Tetra-, penta- and hexa BDEs are most commonly present in human tissues. The current greatest concern for potential adverse effects of PBDEs relates to their developmental neurotoxicity. Pre- or postnatal exposure of mice or rats to various PBDEs has been shown to cause long-lasting changes in spontaneous motor activity, mostly characterized as hyperactivity or decreased habituation, and to disrupt performance in learning and memory tests. While a reduction in circulating thyroid hormone (T4) may contribute to the developmental neurotoxicity of PBDEs, direct effects on the developing brain have also been reported. Among these, PBDEs have been shown to affect signal transduction pathways and to cause oxidative stress. Levels of PBDEs causing developmental neurotoxicity in animals are not much dissimilar from levels found in highly exposed infants and toddlers. PMID:17904639

  10. Exposure to flame retardants in electronics recycling sites.

    PubMed

    Rosenberg, Christina; Hämeilä, Mervi; Tornaeus, Jarkko; Säkkinen, Kirsi; Puttonen, Katriina; Korpi, Anne; Kiilunen, Mirja; Linnainmaa, Markku; Hesso, Antti

    2011-07-01

    Waste electrical and electronic equipment (WEEE) contains various hazardous substances such as flame retardants (FRs). Inhalation exposures to many FRs simultaneously among WEEE recycling site workers have been little studied previously. The breathing zone airborne concentrations of five brominated FR compounds tetrabromobisphenol-A (TBBP-A), decabromodiphenylethane (DBDPE), hexabromocyclododecane, 1,2-bis(2,4,6-tribromophenoxy)ethane, hexabromobenzene, and one chlorinated FR (Dechlorane Plus®) were measured at four electronics recycling sites in two consecutive years. In addition, concentrations of polybrominated diphenyl ethers (PBDEs) and polybrominated biphenyls were measured. The three most abundant FRs in personal air samples were PBDEs (comprising mostly of deca-BDE), TBBP-A, and DBDPE, with mean concentrations ranging from 21 to 2320 ng m(-)(3), from 8.7 to 430 ng m(-3), and from 3.5 to 360 ng m(-3), respectively. At two of the sites, the emission control actions (such as improvements in ventilation and its maintenance and changes in cleaning habits) proved successful, the mean levels of FRs in personal samples being 10-68 and 14-79% of those from the previous year or alternatively below the limit of quantification. At the two remaining sites, the reductions in FR exposures were less consistent. The concentrations reported may pose a health hazard to the workers, although evaluation of the association between FR exposure and adverse health effects is hampered by lacking occupational exposure limits. Therefore, the exposures should be minimized by adequate control measures and maintaining good occupational hygiene practice.

  11. Phosphoryl-rich flame-retardant ions (FRIONs): towards safer lithium-ion batteries.

    PubMed

    Rectenwald, Michael F; Gaffen, Joshua R; Rheingold, Arnold L; Morgan, Alexander B; Protasiewicz, John D

    2014-04-14

    The functionalized catecholate, tetraethyl (2,3-dihydroxy-1,4-phenylene)bis(phosphonate) (H2 -DPC), has been used to prepare a series of lithium salts Li[B(DPC)(oxalato)], Li[B(DPC)2], Li[B(DPC)F2], and Li[P(DPC)3]. The phosphoryl-rich character of these anions was designed to impart flame-retardant properties for their use as potential flame-retardant ions (FRIONs), additives, or replacements for other lithium salts for safer lithium-ion batteries. The new materials were fully characterized, and the single-crystal structures of Li[B(DPC)(oxalato)] and Li[P(DPC)3] have been determined. Thermogravimetric analysis of the four lithium salts show that they are thermally stable up to around 200 °C. Pyrolysis combustion flow calorimetry reveals that these salts produce high char yields upon combustion.

  12. Analysis and occurrence of emerging brominated flame retardants in the Llobregat River basin

    NASA Astrophysics Data System (ADS)

    Guerra, Paula; Eljarrat, Ethel; Barceló, Damià

    2010-03-01

    SummaryIn response to increasing international regulations on brominated flame retardants (BFR) formulations, alternative additive flame retardants for achieving commercial product fire safety standards are being developed and used. Some of these non-BDE (brominated diphenyl ethers) BFRs are pentabromoethylbenzene (PBEB), hexabromobenzene (hexaBBz), and decabromodiphenylethane (deBDethane). The present study investigated the occurrence of these emerging BFRs, together with 38 BDE congeners (from di- to deca-BDE) in sediments sampled from different points along Llobregat basin (Spain) in three different sampling campaigns between 2005 and 2006. Emerging BFRs were detected in all sediment samples analyzed, at concentrations ranging from 3.1 to 9.6 ng/g for PBEB, from 0.4 to 2.4 ng/g for hexaBBz and from 4.8 to 23 ng/g for deBDethane. These levels are lower than concentrations obtained for PBDEs (from nd to 82 ng/g).

  13. Catalytic degradation of brominated flame retardants by copper oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Dror, I.; Yecheskel, Y.; Berkowitz, B.

    2013-12-01

    Brominated flame retardants (BFRs) have been added to various products like plastic, textile, electronics and synthetic polymers at growing rates. In spite of the clear advantages of reducing fire damages, many of these BFRs may be released to the environment after their beneficial use which may lead to contamination of water resources. In this work we present the catalytic degradation of two brominated flame retardants (BFRs), tribromoneopentyl alcohol (TBNPA) and 2,4 dibromophenol (2,4-DBP) by copper oxide nanoparticles (nCuO) in aqueous solution. The degradation kinetics, the debromination, and the formation of intermediates by nCuO catalysis are compared to Fenton oxidation and to reduction by nano zero-valent iron (nZVI). The two studied BFRs are shown to degrade fully by the nCuO system within hours to days. Shorter reaction times showed differences in reaction pathways and kinetics for the two compounds. The 2,4-DBP showed faster degradation than TBNPA, by nCuO catalysis. Relatively high resistance to degradation was recorded for 2,4-DBP with nZVI, yielding 20% degradation after 24 h, while the TBNPA was degraded by 85% within 12 hours. A catalytic mechanism for radical generation and BFR degradation by nCuO is proposed. It is further suggested that H2O2 plays an essential role in the activation of the catalyst.

  14. Determination of flame-retardant hexabromocyclododecane diastereomers in textiles.

    PubMed

    Kajiwara, Natsuko; Sueoka, Minekazu; Ohiwa, Toshio; Takigami, Hidetaka

    2009-03-01

    To establish a concise and rapid procedure to analyze hexabromocyclododecane (HBCD) diastereomers in flame-retarded textiles, three different methods of extraction-Soxhlet, ultrasonic, and soaking extractions with toluene and dichloromethane (DCM)-were compared. During Soxhlet extraction using toluene, the percent contribution of alpha-HBCD to total HBCDs increased slightly and that of gamma-HBCD decreased, indicating that gamma-HBCD was isomerized to some extent at the boiling point of toluene (110.6 degrees C). For ultrasonic extraction, the temperature of the water bath can easily increase over time during the procedure, which might lead to undesirable effects. Therefore, we considered soaking extraction with DCM to be the most facile procedure to analyze HBCD diastereomers in textiles. Using the method established in this study, commercially available textiles in Japan (n=10) were analyzed to understand the actual composition of HBCD contents and its diastereomer profiles. With the exception of one textile sample, HBCDs were detected in all the samples analyzed, with concentrations ranging from 22000 to 43000 mg kg(-1) (i.e. 2.2-4.3%). We found a higher proportion of the alpha-diastereomer in most textile products compared with that of commercial HBCD mixtures, indicating that gamma-HBCD isomerized to alpha-diastereomer by heating processes to incorporate the commercial formulation into treated materials or that the alpha-diastereomer preferentially absorbed onto textile materials during the manufacturing of flame-retarded consumer products.

  15. Understanding the mechanism of action of triazine-phosphonate derivatives as flame retardants for cotton fabrics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Countless hours of research and studies on triazine, phosphonate and their combination have provided insightful information into their flame retardant properties on polymeric systems. However, only limited number of studies shed light on the mechanism of flame retardant cotton fabrics. The purpose...

  16. Synthesis of Novel Flame Retardant Organophosphorus Compounds for the Application to Cotton Textile

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flame retardancy of textiles is an important property in apparel, bedding, curtains, and other household items. Chemical treatment is one method to increase flame retardancy of textile such as cotton, linenes, and silks. Halogenated compounds (containing chlorine or bromine atoms) have been shown to...

  17. Novel Multifunctional Organic-Inorganic Hybrid Curing Agent with High Flame-Retardant Efficiency for Epoxy Resin.

    PubMed

    Tan, Yi; Shao, Zhu-Bao; Chen, Xue-Fang; Long, Jia-Wei; Chen, Li; Wang, Yu-Zhong

    2015-08-19

    A novel multifunctional organic-inorganic hybrid was designed and prepared based on ammonium polyphosphate (APP) by cation exchange with diethylenetriamine (DETA), abbreviated as DETA-APP. Then DETA-APP was used as flame-retardant curing agent for epoxy resin (EP). Curing behavior, including the curing kinetic parameters, was investigated by differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). The flame retardance and burning behavior of DETA-APP cured EP were also evaluated. The limiting oxygen index (LOI) value of DETA-APP/EP was enhanced to 30.5% with only 15 wt % of DETA-APP incorporated; and the UL-94 V-0 rating could be easily passed through with only 10 wt % of the hybrid. Compared with DETA/EP, the peak-heat release rate (PHRR), total heat release (THR), total smoke production (TSP), and peak-smoke production release (SPR) of DETA-APP/EP (15 wt % addition), obtained from cone calorimetry, were dropped by 68.3, 79.3, 79.0, and 30.0%, respectively, suggesting excellent flame-retardant and smoke suppression efficiency. The flame-retardant mechanism of DETA-APP/EP has been investigated comprehensively. The results of all the aforementioned studies distinctly confirmed that DETA-APP was an effective flame-retardant curing agent for EP.

  18. Rapid methodology to screen flame retardants in upholstered furniture for compliance with new California labeling law (SB 1019).

    PubMed

    Petreas, Myrto; Gill, Ranjit; Takaku-Pugh, Sayaka; Lytle, Eric; Parry, Emily; Wang, Miaomiao; Quinn, John; Park, June-Soo

    2016-06-01

    In response to concerns regarding the widespread use of flame retardants, the California Legislature passed a law (SB1019) requiring labels on furniture products to indicate whether they do or do not contain flame retardants. To support the enforcement of the new law, our laboratory developed a step-wise, screening approach to test for brominated (BFR) and phosphorus-based flame retardants (OPFRs) in several types of furniture components (foam, fabric, batting, plumage, etc.). We used X-Ray Fluorescence (XRF) to screen for the presence of Br (and other elements) and Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES) to identify and measure the concentration of P (and other elements). The same samples were also extracted by dichloromethane using sonication and analyzed by a single injection into a Gas Chromatograph - Tandem Mass Spectrometer to obtain concentrations of specific BFRs and OPFRs. Our approach showed excellent screening potential for Br and Sb by XRF and for P by ICP-OES, with both tests having predictive values of a negative equal to 1. To explore and screen for flame retardants in products not included in our current list of target chemicals, we used Liquid Chromatography/Time-of-Flight Mass Spectrometry operated with electrospray ionization, to identify additional flame retardants to be incorporated in quantitative methods. We are making all our methodologies public to facilitate simple and low cost methods that can help manufacturers and suppliers have their products tested and correctly labeled, ultimately benefitting the consumer.

  19. Editor's Highlight: Comparative Toxicity of Organophosphate Flame Retardants and Polybrominated Diphenyl Ethers to Caenorhabditis elegans.

    PubMed

    Behl, Mamta; Rice, Julie R; Smith, Marjo V; Co, Caroll A; Bridge, Matthew F; Hsieh, Jui-Hua; Freedman, Jonathan H; Boyd, Windy A

    2016-12-01

    With the phasing-out of the polybrominated diphenyl ether (PBDE) flame retardants due to concerns regarding their potential developmental toxicity, the use of replacement compounds such as organophosphate flame retardants (OPFRs) has increased. Limited toxicity data are currently available to estimate the potential adverse health effects of the OPFRs. The toxicological effects of 4 brominated flame retardants, including 3 PBDEs and 3,3',5,5'-tetrabromobisphenol A, were compared with 6 aromatic OPFRs and 2 aliphatic OPFRs. The effects of these chemicals were determined using 3 biological endpoints in the nematode Caenorhabditis elegans (feeding, larval development, and reproduction). Because C. elegans development was previously reported to be sensitive to mitochondrial function, results were compared with those from an in vitro mitochondrial membrane permeabilization (MMP) assay. Overall 11 of the 12 flame retardants were active in 1 or more C. elegans biological endpoints, with only tris(2-chloroethyl) phosphate inactive across all endpoints including the in vitro MMP assay. For 2 of the C. elegans endpoints, at least 1 OPFR had similar toxicity to the PBDEs: triphenyl phosphate (TPHP) inhibited larval development at levels comparable to the 3 PBDEs; whereas TPHP and isopropylated phenol phosphate (IPP) affected C. elegans reproduction at levels similar to the PBDE commercial mixture, DE-71. The PBDEs reduced C. elegans feeding at lower concentrations than any OPFR. In addition, 9 of the 11 chemicals that inhibited C. elegans larval development also caused significant mitochondrial toxicity. These results suggest that some of the replacement aromatic OPFRs may have levels of toxicity comparable to PBDEs.

  20. Measurement of flame retardants and triclosan in municipal sewage sludge and biosolids.

    PubMed

    Davis, Elizabeth F; Klosterhaus, Susan L; Stapleton, Heather M

    2012-04-01

    As polybrominated diphenyl ethers (PBDEs) face increasing restrictions worldwide, several alternate flame retardants are expected to see increased use as replacement compounds in consumer products. Chemical analysis of biosolids collected from wastewater treatment plants (WWTPs) can help determine whether these flame retardants are migrating from the indoor environment to the outdoor environment, where little is known about their ultimate fate and effects. The objective of this study was to measure concentrations of a suite of flame retardants, and the antimicrobial compound triclosan, in opportunistic samples of municipal biosolids and the domestic sludge Standard Reference Material (SRM) 2781. Grab samples of biosolids were collected from two WWTPs in North Carolina and two in California. Biosolids samples were also obtained during three subsequent collection events at one of the North Carolina WWTPs to evaluate fluctuations in contaminant levels within a given facility over a period of three years. The biosolids and SRM 2781 were analyzed for PBDEs, hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB), di(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), the chlorinated flame retardant Dechlorane Plus (syn- and anti-isomers), and the antimicrobial agent 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan). PBDEs were detected in every sample analyzed, and ΣPBDE concentrations ranged from 1750 to 6358ng/g dry weight. Additionally, the PBDE replacement chemicals TBB and TBPH were detected at concentrations ranging from 120 to 3749 ng/g dry weight and from 206 to 1631 ng/g dry weight, respectively. Triclosan concentrations ranged from 490 to 13,866 ng/g dry weight. The detection of these contaminants of emerging concern in biosolids suggests that these chemicals have the potential to migrate out of consumer products and enter the outdoor environment.

  1. New brominated flame retardants and their metabolites as activators of the pregnane X receptor.

    PubMed

    Gramec Skledar, Darja; Tomašič, Tihomir; Carino, Adriana; Distrutti, Eleonora; Fiorucci, Stefano; Peterlin Mašič, Lucija

    2016-09-30

    The present study investigated the activities on different nuclear receptors of the new brominated flame retardants 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB) and bis(2-ethylhexyl) 2,3,4,5-tetrabromophthalate (TBPH), and their main carboxylic acid metabolites 2,3,4,5-tetrabromobenzoic acid (TBBA) and mono(2-ethylhexyl) tetrabromophthalate (TBMEPH). None of selected chemicals exhibited marked activity towards PPARα and PPARγ by the use of transactivation assays in HepG2 cells transfected with peroxisome proliferator-activated receptors. In contrast, selected flame retardants all exhibited potent agonist activity on pregnane X receptor (PXR), with EC50 values of 5.5μM for TBPH and 2.0μM for its metabolite TBMEPH. Molecular docking of TBPH and TBMEPH to the PXR ligand binding site revealed similar interactions, with differences only for conformation and orientation of the alkyl chains. Additionally, TBPH showed antagonist activity on PXR (IC50, 13.9μM). Moreover, there was significant up-regulation of CYP3A4 expression via PXR activation for TBB and TBPH and their metabolites. Induction of CYP3A4 might cause undesired drug-drug interactions, lower bioavailability of pharmaceutical drugs, higher formation of reactive toxic metabolites, or enhanced elimination of endogenous hormones, such as T3/T4, to lead to endocrine disruption. These data provide new and important insights into the toxicity of these new polybrominated flame retardants, TBB and TBPH, and their metabolites.

  2. Elucidating toxicological mechanisms of current flame retardants using a bacterial gene profiling assay.

    PubMed

    Krivoshiev, Boris V; Dardenne, Freddy; Blust, Ronny; Covaci, Adrian; Husson, Steven J

    2015-12-01

    Flame retardants are ubiquitously used chemicals that have been shown to contaminate environments. Toxicological data is largely limited, with little insight into their molecular modes of action that may give rise to their toxic phenotypes. Such insight would aid more effective risk assessments concerning these compounds, while also improving molecular design. We therefore used a bacterial stress-gene profiling assay to screen twelve currently-used flame retardants to obtain mechanistic insights of toxicity. Both brominated and organophosphate flame retardants were tested. All compounds showed statistically significant inductions of several stress genes when compared to control treatments. Triphenyl phosphate, tris(2-butoxyethyl) phosphate, tris(1,3-dichloro-2-propyl)phosphate, tris(butyl)phosphate, and tetrabromobisphenol A elicited (at least) two-fold inductions for any of the stress genes. When looking at absolute induction levels, the promoters induced are indicative of protein perturbation, DNA integrity and membrane integrity. However, normalising for the different induction potentials of the different stress genes and clustering using hierarchical and k-means algorithms indicated that in addition to protein and DNA damage, some compounds also resulted in growth arrest and oxidative damage. This research shows that this assay allows for the determination of toxicological modes-of-action while clustering and accounting for induction potentials of the different genes aids better risk assessment.

  3. Effects of Several Flame Retardants and Curing Agents on the Fire and Mechanical Properties of Epoxy Resin

    NASA Astrophysics Data System (ADS)

    Li, Pei; Min, Yang; Ban, Da-Ming

    2016-05-01

    Effect of different flame retardant (FR) and curing agent on the epoxy resin was investigated by limiting oxygen index (LOI), mechanical properties and FTIR. The results show that flame retardant effect of PODOPP is better than PSDPP. The curing agent order is: m-phenylenediamine>ethanediamine> polyethylene polyamine. The effect of flame retardant behaviors better when synergist OMMT was added.

  4. Chemical alternatives assessment: the case of flame retardants.

    PubMed

    Howard, Gregory J

    2014-12-01

    Decisions on chemical substitution are made rapidly and by many stakeholders; these decisions may have a direct impact on consumer exposures, and, when a hazard exists, to consumer risks. Flame retardants (FRs) represent particular challenges, including very high production volumes, designed-in persistence, and often direct consumer exposure. Newer FR products, as with other industrial chemicals, typically lack data on hazard and exposure, and in many cases even basic information on structure and use in products is unknown. Chemical alternatives assessment (CAA) provides a hazard-focused approach to distinguishing between possible substitutions; variations on this process are used by several government and numerous corporate entities. By grouping chemicals according to functional use, some information on exposure potential can be inferred, allowing for decisions based on those hazard properties that are most distinguishing. This approach can help prevent the "regrettable substitution" of one chemical with another of equal, or even higher, risk.

  5. [ORGANOPHOSPHORUS FLAME RETARDANTS - TOXICITY AND INFLUENCE ON HUMAN HEALTH].

    PubMed

    Bruchajzer, Elżbieta; Frydrych, Barbara; Szymańska, Jadwiga Anna

    2015-01-01

    Organophosphorus flame retardants (flame retardants, FRs) have been used for several decades in many industries, including the production of dyes, varnishes, adhesives, synthetic resins, polyvinyl chloride, hydraulic fluids, plastics and textiles. Their importance in recent times has increased due to i.a., significantly reduced use of polybrominated diphenyl ethers (PBDEs) - persistent organic pollutants, dangerous for the environment. The aim of this study was to review the available literature data concerning phosphorous FRs primarily for neurotoxic, fertility, reproductive and carcinogenic effects. The analysis concerned the following most commonly used substances: tris(2-ethylhexyl)phosphate (TEHP), tris(2-butoxyethyl)phosphate (TBEP), triphenyl phosphate (TPP), tris(2-chloroethyl)phosphate (TCEP), tetrakis(hydroxymethyl)-phosphonium chloride (THPC), tributyl phosphate (TBP), tricresyl phosphate (TCP), tris(2-chloroisopropyl)phosphate (TCPP), tris(1,3-dichloroisopropyl)phosphate (TDCP) and tetrakis(hydroxymethyl)phosphonium sulphate (THPS). In animal studies neurotoxic effects were found after exposure to TBEP, THPC, TBP and TCP, while in humans they were observed only after exposure to TCP. TCEP, THPS, TBP, TCP and TDCP caused disorders in fertility and/or fetal development of animals. Adverse effects on reproduction in humans may be caused by TPP, TCP, and TDCP. In laboratory animals the development of tumors was observed after high doses of TEHP, TCEP, TBP and TDCP. None of these compounds is classified as a human carcinogen. The environmental toxicity of phosphate FRs is low (except for TPP, TCEP and TBEP). They are not stable compounds, in living organisms they are metabolised and quickly excreted. Therefore, they can be used as an alternative to PBDEs.

  6. Symptomatology during hypoxic exposure to flame-retardant chamber atmospheres.

    PubMed

    Knight, D R; Cymerman, A; Devine, J A; Burse, R L; Fulco, C S; Rock, P B; Tappan, D V; Messier, A A; Carhart, H

    1990-01-01

    Hypoxia was studied in 12 men during 63-h exposures to 17 and 13% O2, with the subjects serving as their own controls by repeating the measurements in 21% O2. All test atmospheres were contaminated with 0.9% CO2 to simulate the condition of living aboard submarines. The mean SaO2's were 97-98% in all conditions of 21% O2, 96% in 17% O2 (n.s.), and 92% in 13% O2 (P less than 0.05). The blood concentrations of 2,3-diphosphoglycerate were elevated in 13 and 17% O2 (P less than 0.05). Seventeen percent O2 did not cause significant symptoms of environmental stress; however, 13% O2 caused symptoms of acute mountain sickness in 5 of 12 men. In the last 7 h of exposure to 17% O2, reduction of the barometric pressure to 576 Torr reduced the ambient PO2 to 98 Torr (similar to the PO2 of 13% O2 at normobaric pressure). This induced symptoms of acute mountain sickness in 3 of 11 men. All symptomatology and physiologic changes were reversed during recovery in 21% O2. Monitoring devices indicated the presence of volatile organic contaminants at a mean concentration of 6.1 ppm in the chamber atmosphere. Combustion tests in the occupied chamber showed that flame propagation was retarded by lowering the O2 concentration from 21 to 13-17%. We conclude that men can live comfortably in a normobaric, flame-retardant atmosphere consisting of 17% O2-0.9% CO2-6.1 ppm volatile organic compounds-balance N2.

  7. Developmental neurotoxicity of organophosphate flame retardants in early life stages of Japanese medaka (Oryzias latipes).

    PubMed

    Sun, Liwei; Tan, Hana; Peng, Tao; Wang, Sisi; Xu, Wenbin; Qian, Haifeng; Jin, Yuanxiang; Fu, Zhengwei

    2016-12-01

    Because brominated flame retardants are being banned or phased out worldwide, organophosphate flame retardants have been used as alternatives on a large scale and have thus become ubiquitous environmental contaminants; this raises great concerns about their environmental health risk and toxicity. Considering that previous research has identified the nervous system as a sensitive target, Japanese medaka were used as an aquatic organism model to evaluate the developmental neurotoxicity of 4 organophosphate flame retardants: triphenyl phosphate, tri-n-butyl phosphate, tris(2-butoxyethyl) phosphate, and tris(2-chloroethyl) phosphate (TCEP). The embryo toxicity test showed that organophosphate flame retardant exposure could decrease hatchability, delay time to hatching, increase the occurrence of malformations, reduce body length, and slow heart rate. Regarding locomotor behavior, exposure to the tested organophosphate flame retardants (except TCEP) for 96 h resulted in hypoactivity for medaka larvae in both the free-swimming and the dark-to-light photoperiod stimulation test. Changes of acetylcholinesterase activity and transcriptional responses of genes related to the nervous system likely provide a reasonable explanation for the neurobehavioral disruption. Overall, the present study clearly demonstrates the developmental neurotoxicity of various organophosphate flame retardants with very different potency and contribute to the determination of which organophosphate flame retardants are appropriate substitutes, as well as the consideration of whether regulations are reasonable and required. Environ Toxicol Chem 2016;35:2931-2940. © 2016 SETAC.

  8. Organo-modified bentonites as new flame retardant fillers in epoxy resin nanocomposites

    NASA Astrophysics Data System (ADS)

    Benelli, Tiziana; D'Angelo, Emanuele; Mazzocchetti, Laura; Saraga, Federico; Sambri, Letizia; Franchini, Mauro Comes; Giorgini, Loris

    2016-05-01

    The present work deals with two organophilic bentonites, based on nitrogen-containing compounds: these organoclays were synthesized via an ion exchange process starting from pristine bentonite with 6-(4-butylphenyl)-1,3,5-triazine-2,4-diamine (BFTDA) and 11-amino-N-(pyridine-2yl)undecanamide (APUA) and then used for the production of epoxy-based flame retardant nanocomposites. The amount of organic modifier in the organoclays Bento-BFTDA and Bento-APUA was determined with a TGA analysis and is around 0.4mmol/g for both samples. The effect of the organoclays on a commercial epoxy resin nanocomposite's thermo-mechanical and flammability properties was investigated. Composites containing 3wt% and 5wt% of the nanofillers were prepared by solventless addition of each organoclay to the epoxy resin, followed by further addition of the hardener component. For the sake of comparison a similar nanocomposite with the plain unmodified bentonite was produced in similar condition. The nanocomposites's thermo-mechanical properties of all the produced samples were measured and they resulted slightly improved or practically unaffected. On the contrary, when the flame behaviour was assessed in the cone-calorimeter, an encouraging decrease of 17% in the peak heat released rate (pHRR) was obtained at 3wt% loading level with Bento-APUA. This is a promising result, assessing that the APUA modified organoclay might act as flame retardant.

  9. Further toxicologic studies with commercial and candidate flame retardant chemicals. Part II.

    PubMed

    Eldefrawi, A T; Mansour, N A; Brattsten, L B; Ahrens, V D; Lisk, D J

    1977-06-01

    A number of commercial and candidate flame retardants were studied with regard to their toxicity to goldfish, inhibition of cholinesterase, inhibition of acetyl choline binding to its receptor and insecticidal properties. Several of the flame retardants were notably toxic to fish. Some of the compounds showed modest inhibition of cholinesterase and/or microsomal oxidases, but none inhibited acetyl choline receptor binding. Whereas several of the flame retardants showed little or no insecticidal properties when added alone to a housefly diet, piperonyl butoxide greatly synergised their toxicity to houseflies.

  10. Improve the flame retardancy of cellulose fibers by grafting zinc ion.

    PubMed

    Zhang, KeKe; Zong, Lu; Tan, Yeqiang; Ji, Quan; Yun, Weicai; Shi, Ran; Xia, Yanzhi

    2016-01-20

    Zinc ion as the only flame retardant of cellulose fibers was successfully grafted onto cellulose fibers. Grafting maleic anhydride onto cellulose fibers via homogeneous acylation reaction between N,N-dimethyl formamide (DMF) as the first step. Then, graft zinc ion onto the formed cellulose fibers was conducted with zinc carbonate. The resulting copolymers were characterized by FTIR. Flame retardancy and thermal degradation of zinc-ion-modified cellulose fibers (cellulose-Zn fibers) was investigated by limiting oxygen index (LOI), cone calorimeter (CONE), XRD, TG and SEM. Zinc ion could effectively improve flame retardancy and thermal degradation when its content increases up to 4.96 wt%.

  11. Flame retardant polymeric foams: Manufacturing, applications, and hazards. July 1984-August 1989 (Citations from the Rubber and Plastics Research Association data base). Report for July 1984-August 1989

    SciTech Connect

    Not Available

    1989-09-01

    This bibliography contains citations concerning flame-retardant compositions and additives used in the manufacture of polymeric foams. Latex, polyurethane, polyether, silicone rubber, phenol formaldehyde, polyisocyanurate, polystyrene, PVC and polyphenylene ether are among the foam polymers discussed relative to tests performed to evaluate the toxicity of flame retardants in smoke and during manufacturing. Applications including public transportation, furniture, automotive, medical, and building materials are discussed. (This updated bibliography contains 303 citations, 61 of which are new entries to the previous edition.)

  12. BROMINATED FLAME RETARDANTS: WHAT WE KNOW, AND WHAT WE DON’T

    EPA Science Inventory

    Brominated flame retardants (BFRs) represent a large and diverse class of high volume industrial chemicals which have been developed to provide fire safety. There are many other BFRs which have been used and are under development. Historically, polybrominated biphenyls (PBBs) ...

  13. Migration of Organophosphate Flame Retardants from Closed Cell Foam to Settled Dust

    EPA Science Inventory

    Many industrial and consumer products, such as electrical and electronic products, furniture, plastics, textile, and building materials are manufactured with organophosphorus flame retardants (OPFRs). OPFRs can leach or diffuse out of the products and are released to the surround...

  14. Acute and Developmental Behavioral Effects of Flame Retardants and Related Chemicals in Zebrafish

    EPA Science Inventory

    As polybrominated diphenyl ethers are phased out, numerous compounds are emerging as potential replacement flame retardants for use in consumer and electronic products. Little is known, however, about the neurobehavioral toxicity of these replacements. This study evaluated the ne...

  15. Characterization of organophosphorus flame retardants' sorption on building materials and consumer products

    EPA Science Inventory

    Better understanding the transport mechanisms of organophosphorus flame-retardants (OPFRs) in the residential environment is important to more accurately estimate their indoor exposure and develop risk management strategies that protect human health. This study describes an impro...

  16. Alternatives Assessment: Partnership to Evaluate Flame Retardants in Printed Circuit Boards

    EPA Pesticide Factsheets

    The partnership project on flame retardants in printed circuit boards seeks to improve understanding of the environmental and human health impacts of new and current materials that can be used to meet fire safety standards

  17. Migration of Organophorus Flame Retardants From Closed cell form to Settled Dust

    EPA Science Inventory

    Many industrial and consumer products, such as electrical and electronic products, furniture, plastics, textile, and building materials are manufactured with organophosphorus flame retardants (OPFRs). OPFRs can leach or diffuse out of the products and are released to the surround...

  18. Acute Neurobehavorial Toxicity of Flame Retardant Replacement Compounds in Zebrafish Larvae

    EPA Science Inventory

    As polybrominated diphenyl ethers (PBDEs) are phased out, numerous compounds areemerging as potential replacement flame retardants for use in consumer and electronicproducts. Little is known, however, about the neurobehavioral toxicity of thesereplacements. This study evaluated t...

  19. Thermal and mechanical behavior of flame retardant epoxy-polyesterurethane blends

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Hirani, A. V.; Kachhia, P. H.

    2016-05-01

    Polyesterurethanes are used in different applications due to their unique combination of the properties like toughness, flexibility, solvent resistance, etc. Nowadays flame retardant properties of polymers are of commercial interest because of their potential use in high performance applications. In the present study attempts have been taken to improve the flame retardant properties of conventional epoxy resin by incorporating phosphorus based polyesterurethane. Polyesterurethane has been synthesized in the laboratory and characterized by chemical and instrumental analysis techniques. Thermal stability and char value of the blends have been determined using thermogravimetric analysis technique. Limiting Oxygen Index (LOI) and UL-94 test methods have been used to determine the flame retardant properties of neat polymer and their blends in film form. Mechanical properties like tensile strength, elongation and impact resistance of the blends have been found out. Polyblend of epoxy resin with phosphorus based polyesterurethane has improved flame retardant properties compare to neat epoxy resin.

  20. OVERVIEW AND EVALUATION OF NEUROBEHAVIORAL EFFECTS OF FLAME RETARDANTS IN LABORATORY ANIMALS.

    EPA Science Inventory

    Polybrominated diphenyl ether (PBDE) flame retardants are used worldwide and have been detected in numerous environmental, including human, samples. Concern has been raised regarding their potential developmental neurotoxic effects. There is an emerging literature on behavioral...

  1. Durable flame retardant finish for silk fabric using boron hybrid silica sol

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang-hua; Gu, Jiali; Chen, Guo-qiang; Xing, Tie-ling

    2016-11-01

    A hybrid silica sol was prepared via sol gel method using tetraethoxysilane (TEOS) as a precursor and boric acid (H3BO3) as flame retardant additive and then applied to silk fabric. In order to endow silk fabric with durable flame retardancy, 1,2,3,4-butanetetracarboxylic acid (BTCA) was used as cross-linking agent for the sake of strong linkage formation between the hybrid silica sol and silk fabric. The FT-IR and XPS analysis demonstrated the Si-O-B formation in the sol system, as well as the linkage between the sol and silk after the treatment. The limiting oxygen index (LOI) and smoke density test indicated good flame retardancy and smoke suppression of the treated silk fabrics. The micro calorimeter combustion (MCC) test and thermo gravimetric (TG) analysis showed that the treated samples had less weight loss in the high temperature and lower heat release rate when burning. The washing durability evaluation results indicated that there was a distinct improvement for the silk samples treated with BTCA even after 30 times washing. In addition, the influence of the processing order of BTCA and silica sol treatment on the limiting oxygen index (LOI) of the finished silk fabric was also investigated. And the results demonstrated that the sample treated with BTCA first and then with the silica sol exhibited better LOI value (32.3%) than that of the sample by the conversed treatment order. Moreover the tensile property of treated samples was nearly unchanged, but the handle of sol treated samples obviously decreased.

  2. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric.

    PubMed

    Chen, Shanshan; Li, Xiang; Li, Yang; Sun, Junqi

    2015-04-28

    Flame-retardant and self-healing superhydrophobic coatings are fabricated on cotton fabric by a convenient solution-dipping method, which involves the sequential deposition of a trilayer of branched poly(ethylenimine) (bPEI), ammonium polyphosphate (APP), and fluorinated-decyl polyhedral oligomeric silsesquioxane (F-POSS). When directly exposed to flame, such a trilayer coating generates a porous char layer because of its intumescent effect, successfully giving the coated fabric a self-extinguishing property. Furthermore, the F-POSS embedded in cotton fabric and APP/bPEI coating produces a superhydrophobic surface with a self-healing function. The coating can repetitively and autonomically restore the superhydrophobicity when the superhydrophobicity is damaged. The resulting cotton fabric, which is flame-resistant, waterproof, and self-cleaning, can be easily cleaned by simple water rinsing. Thus, the integration of self-healing superhydrophobicity with flame retardancy provides a practical way to resolve the problem of washing durability of the flame-retardant coatings. The flame-retardant and superhydrophobic fabric can endure more than 1000 cycles of abrasion under a pressure of 44.8 kPa without losing its flame retardancy and self-healing superhydrophobicity, showing potential applications as multifunctional advanced textiles.

  3. Influence of hydrophobic substance on enhancing washing durability of water soluble flame-retardant coating

    NASA Astrophysics Data System (ADS)

    Jindasuwan, Sunisa; Sukmanee, Nattinee; Supanpong, Chanida; Suwan, Mantana; Nimittrakoolchai, On-uma; Supothina, Sitthisuntorn

    2013-06-01

    Flame-retardant textiles are used in many consumer products. Among halogen-free flame retardant substances, inorganic flame retardants are mainly based on phosphorus, antimony, aluminum and boron-containing compounds. These coatings are soluble in water and therefore are not subjected to washing. In this study, washing durability of the inorganic flame retardant has been improved by incorporation of the hydrophobic substance to the coating. Composition of the coating which is the flame-retardant, monoammonium phosphate (MAP), and the hydrophobic substances, poly(methylhydrogen siloxane) (PMHS) and poly(dimethyl siloxane) (PDMS)), were varied to find the optimum coating solution. The results of SEM and TGA analysis, as well as the burning and washing tests, revealed that the coating solution consisting of MAP:PMHS:PDMS = 5:2:1 wt.% was the optimum condition. It showed the increased residue on the TGA profile compared to the uncoated sample, and self-extinguish after removal of the ignition source. The flame-retardant property can be maintained after washing, making it feasible for variety of applications.

  4. [Concentration and emission fluxes of halogenated flame retardants in sewage from sewage outlet in Dongjiang River].

    PubMed

    Zeng, Yan-Hong; Luo, Xiao-Jun; Sun, Yu-Xin; Yu, Le-Huan; Chen, She-Jun; Mai, Bi-Xian

    2011-10-01

    Fourteen sewage samples from sewage outlets in Dongjiang River were collected. Halogented flame retardants were extracted and purified using dichloromethane and alumina/silica-gel column, respectively. The concentrations of halogenated flame retardants were measured utilizing GC/MS, and the emission fluxes were estimated. Decabromodiphenyl ethane (DBDPE) was the predominant halogenated pollutant (accounting for 64%) in sewage with the concentration ranging from 9.1 ng/L to 990 ng/L. The concentrations of polybrominated biphenyl ether (PBDEs), dominated by BDE209, in the sewage ranged from 6.9 ng/L to 470 ng/L, accounting for 30% of total halogenated flame retardants. The concentrations of other flame retardants, such as dechlorane plus (DP), 1, 2-bis(2, 4, 6-tribromophenoxy) ethane (BTBPE), hexabromobenzene (HBB), and pentabromotoluene (PBT), were ranged within 0.17-23.6, nd-26.3, nd-1.45 and nd-0.45 ng/L, respectively. The concentrations of PBDEs in sewage of Dongjiang River were comparable to those in influent wastewater of sewage treatment plants of Guangzhou, suggesting that the wastewater was discharged directly into Dongjiang River without any treatment. The emission flux of halogenated flame retardants from sewage was 191 kg. Emission from industrial wastewater, contributed to 48%-91% of total emission, was the main source of halogenated flame retardants.

  5. Advanced morphological - behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants.

    PubMed

    Noyes, Pamela D; Haggard, Derik E; Gonnerman, Greg D; Tanguay, Robert L

    2015-05-01

    The increased use of flammable plastics and electronic devices along with stricter fire safety standards has led to the heavy use of flame retardant chemicals in many consumer, commercial, and industrial products. Although flame retardant use has increased, a great deal of uncertainty surrounds their safety with some evidence showing toxicity and risk to human and environmental health. Recent efforts have focused on designing high-throughput biological platforms with nonmammalian models to evaluate and prioritize chemicals with limited hazard information. To complement these efforts, this study used a new morphological and behavioral testing platform with embryonic zebrafish to characterize the developmental toxicity of 44 halogenated and organophosphate flame retardants, including several of their known metabolites. Zebrafish were exposed to flame retardants from 6 to 120 h post fertilization (hpf) across concentrations spanning 4 orders of magnitude (eg, 6.4 nM to 64 µM). Flame retardant effects on survival and development were evaluated at 24 and 120 hpf, and neurobehavioral changes were measured using 2 photomotor response (PMR) assays. Compared to controls, 93% (41/44) of flame retardants studied elicited adverse effects among one or more of the bioassays and concentrations tested with the aryl phosphate ester (APE)-based mono-isopropylated triaryl phosphate and the brominated-bisphenol-A analog tetrabromobisphenol-A producing the greatest array of malformations. Hierarchical clustering showed that APE flame retardants with isopropyl, butyl, and cresyl substituents on phenyl rings clustered tightly and were particularly potent. Both PMR assays were highly predictive of morphological defects supporting their use as nonlethal means of evaluating teratogenicity that could allow for additional evaluations of long-term or delayed effects in older animals. Taken together, evidence presented here indicates that zebrafish neurodevelopment is highly sensitive to

  6. Advanced Morphological — Behavioral Test Platform Reveals Neurodevelopmental Defects in Embryonic Zebrafish Exposed to Comprehensive Suite of Halogenated and Organophosphate Flame Retardants

    PubMed Central

    Noyes, Pamela D.; Haggard, Derik E.; Gonnerman, Greg D.; Tanguay, Robert L.

    2015-01-01

    The increased use of flammable plastics and electronic devices along with stricter fire safety standards has led to the heavy use of flame retardant chemicals in many consumer, commercial, and industrial products. Although flame retardant use has increased, a great deal of uncertainty surrounds their safety with some evidence showing toxicity and risk to human and environmental health. Recent efforts have focused on designing high-throughput biological platforms with nonmammalian models to evaluate and prioritize chemicals with limited hazard information. To complement these efforts, this study used a new morphological and behavioral testing platform with embryonic zebrafish to characterize the developmental toxicity of 44 halogenated and organophosphate flame retardants, including several of their known metabolites. Zebrafish were exposed to flame retardants from 6 to 120 h post fertilization (hpf) across concentrations spanning 4 orders of magnitude (eg, 6.4 nM to 64 µM). Flame retardant effects on survival and development were evaluated at 24 and 120 hpf, and neurobehavioral changes were measured using 2 photomotor response (PMR) assays. Compared to controls, 93% (41/44) of flame retardants studied elicited adverse effects among one or more of the bioassays and concentrations tested with the aryl phosphate ester (APE)-based mono-isopropylated triaryl phosphate and the brominated-bisphenol-A analog tetrabromobisphenol-A producing the greatest array of malformations. Hierarchical clustering showed that APE flame retardants with isopropyl, butyl, and cresyl substituents on phenyl rings clustered tightly and were particularly potent. Both PMR assays were highly predictive of morphological defects supporting their use as nonlethal means of evaluating teratogenicity that could allow for additional evaluations of long-term or delayed effects in older animals. Taken together, evidence presented here indicates that zebrafish neurodevelopment is highly sensitive to

  7. Development of the phosphorus and nitrogen containing flame retardant for value added cotton product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is our desire to develop new crosslinking agents for cotton textiles that afford useful flame protection regardless of fabric construction. Herein we present the synthesis and the application of the triazine and piperazine derivatives as flame retardant on cotton. Novel phosphorus-nitrogen contai...

  8. Piperazine-phosphonate derivatives: their flame retardant and thermal degradation properties on cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been known that phosphorus-nitrogen system shows greater flame resistance in cotton textiles at a lower level than phosphorus used alone. This research aims to compare the effectiveness of Tetraethyl piperazine-1,4-diyldiphosphonate (TEPP) as a flame retardant (FR) for cotton fabric to a prev...

  9. Synthesis, structural and flammability studies of novel phosphonates triazine derivative as economic flame retardant for cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organophosphorous flame retardants have been known to be more effective when used in conjunction with nitrogen-containing systems. Their mixture produces incombustible non-toxic gases which can dilute the concentration of the oxygen near the flame, and the charred layers become protective barriers t...

  10. Dechlorane Plus flame retardant in terrestrial raptors from northern China.

    PubMed

    Chen, Da; Wang, Yan; Yu, Lehuan; Luo, Xiaojun; Mai, Bixian; Li, Shaoshan

    2013-05-01

    While a number of studies have addressed the environmental presence and behavior of the Dechlorane Plus (DP) flame retardant, there is still a dearth of information in terrestrial ecosystems. The present study revealed that median ∑DP (including anti- and syn-DP isomers) concentrations ranged from 10 to 810 ng/g lipid weight in muscle and liver tissues of six terrestrial raptor species collected in 2004-2006 from Beijing, China. Some concentrations rival the greatest DP burdens ever reported in global wildlife. Significant, positive correlations were observed between fanti (concentration ratio of anti-isomer to ∑DP) and ∑DP concentrations in the Eurasian sparrowhawk (Accipiter nisus) tissues. These results suggested that the DP burdens could be substantially driven by the accumulation of the anti-isomer in terrestrial birds. The tissue-specific accumulation of DP further suggested that factors (e.g., hepatic binding enzymes) other than lipid solubility could be important in determining tissue deposition of DP.

  11. Occurrence of organophosphate flame retardants in drinking water from China.

    PubMed

    Li, Jun; Yu, Nanyang; Zhang, Beibei; Jin, Ling; Li, Meiying; Hu, Mengyang; Zhang, Xiaowei; Wei, Si; Yu, Hongxia

    2014-05-01

    Several organophosphate flame retardants (OPFRs) have been identified as known or suspected carcinogens or neurotoxic substances. Given the potential health risks of these compounds, we conducted a comprehensive survey of nine OPFRs in drinking water in China. We found total concentrations of OPFRs in tap water ranging from 85.1 ng/L to 325 ng/L, and tris(2-butoxyethyl) phosphate (TBEP), triphenyl phosphate (TPP), and tris(2-chloroisopropyl) phosphate (TCPP) were the most common components. Similar OPFR concentrations and profiles were observed in water samples processed through six different waterworks in Nanjing, China. However, boiling affected OPFR levels in drinking water by either increasing (e.g., TBEP) or decreasing (e.g., tributyl phosphate, TBP) concentrations depending on the particular compound and the state of the indoor environment. We also found that bottled water contained many of the same major OPFR compounds with concentrations 10-25% lower than those in tap water, although TBEP contamination in bottled water remained a concern. Finally, we concluded that the risk of ingesting OPFRs through drinking water was not a major health concern for either adults or children in China. Nevertheless, drinking water ingestion represents an important exposure pathway for OPFRs.

  12. Surface nanomodification of cotton fiber for flame retardant application.

    PubMed

    Paosawatyanyong, Boonchoat; Jermsutjarit, Piyarat; Bhanthumnavin, Worawan

    2012-01-01

    This paper presents efficient surface modification methodology to increase fire resistance properties of cotton by radio frequency (RF) plasma-induced graft copolymerization of vinyl phosphate ester as nanometer residue structure onto cotton surface. Methacryloyloxyethyl diphenyl phosphate (MEDP) monomer was synthesized and grafted onto the surface of cotton fabric by argon RF plasma at ambient temperature. Under optimum RF power (30 W), amounts of MEDP and N,N methylenebisacrylamide cross linking agent were varied to obtain optimum graft copolymerization conditions. Untreated and treated cotton were characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy to investigate their functional group characteristics. This showed a strong covalent attachment between the surface of cotton and flame retardant material as the carbonyl functionality of the MEDP was clearly observed in the spectra. Scanning electron microscopic (SEM) analysis also showed grafted material as nanometer residue on cotton surface. Thermogravimetric analysis (TGA) revealed that the decomposition of phosphorus compound which occurs at lower temperature than the cotton itself resulted in the formation of char which covers cotton surface. This protects the fabric surface from further burning, therefore, higher amounts of remaining materials were observed as char in all cases. Furthermore, limiting oxygen index (LOI) had increased from 19 in untreated to 28 in grafted cotton. Detailed analysis on structural and thermal properties as well as surface grafting efficiency are presented.

  13. Identification of the flame retardant decabromodiphenyl ethane in the environment.

    PubMed

    Kierkegaard, Amelie; Björklund, Jonas; Fridén, Ulrika

    2004-06-15

    The brominated flame retardant decabromodiphenyl ethane, DeBDethane, is marketed as an alternative to decabromodiphenyl ether, BDE209. There are currently no data available about the presence of DeBDethane in the environment. In this study, DeBDethane was positively identified by high-resolution mass spectrometry and quantified by low-resolution mass spectrometry with electron capture negative ionization in sewage sludge, sediment, and indoor air. It was found in 25 of the 50 Swedish sewage treatment plants investigated, with estimated levels up to about 100 ng/g dry weight. The concentration of DeBDethane in sediment from Western Scheldt in The Netherlands was 24 ng/g dry weight, and in an air sample from a Swedish electronics dismantling facility it was 0.6 ng/m3. DeBDethane was also found together with nonabromodiphenyl ethanes in water piping insulation. All samples contained BDE209 in higher concentrations as compared to DeBDethane (DeBDethane/BDE209 ratios ranging from 0.02 to 0.7), probably reflecting the higher and longer usage of BDE209. There is an ongoing risk assessment within the European Union regarding BDE209. Since DeBDethane has similar applications, it is important to investigate its environmental behavior before using it to replace BDE209.

  14. Brominated flame retardants and seafood safety: a review.

    PubMed

    Cruz, Rebeca; Cunha, Sara C; Casal, Susana

    2015-04-01

    Brominated flame retardants (BFRs), frequently applied to industrial and household products to make them less flammable, are highly persistent in the environment and cause multi-organ toxicity in human and wildlife. Based on the review of BFRs presence in seafood published from 2004 to 2014, it is clear that such pollutants are not ideally controlled as the surveys are too restricted, legislation inexistent for some classes, the analytical methodologies diversified, and several factors as food processing and eating habits are generally overlooked. Indeed, while a seafood rich diet presents plenty of nutritional benefits, it can also represent a potential source of these environmental contaminants. Since recent studies have shown that dietary intake constitutes a main route of human exposure to BFRs, it is of major importance to review and enhance these features, since seafood constitutes a chief pathway for human exposure and biomagnification of priority environmental contaminants. In particular, more objective studies focused on the variability factors behind contamination levels, and subsequent human exposure, are necessary to support the necessity for more restricted legislation worldwide.

  15. Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene.

    PubMed

    Gao, Yanshan; Zhang, Yu; Williams, Gareth R; O'Hare, Dermot; Wang, Qiang

    2016-10-18

    Aqueous miscible organic layered double hydroxides (AMO-LDHs) can act as organophilic inorganic flame retardant nanofillers for unmodified non-polar polymers. In this contribution, AMO [Mg3Al(OH)8](CO3)0.5·yH2O LDH-oxidized carbon nanotube (AMO-LDH-OCNT) hybrids are shown to perform better than the equivalent pure AMO-LDH. A synergistic effect between the AMO-LDH and OCNT was observed; this endows the hybrid material with enhanced flame retardancy, thermal stability, and mechanical properties. The thermal stability of polypropylene (PP) was significantly enhanced by adding AMO-LDH-OCNT hybrids. For PP mixed with AMO-LDH-OCNT hybrids to produce a composite with 10 wt% LDH and 2 wt% OCNT, the 50% weight loss temperature was increased by 43 °C. Further, a system with 10 wt% of AMO-LDH and 1 wt% OCNT showed a peak heat release rate (PHRR) reduction of 40%, greater than the PHRR reduction with PP/20 wt% AMO-LDH (31%). The degree of dispersion (mixability) between AMO-LDH and OCNT has a significant effect on the flame retardant performance of the hybrids. In addition, the incorporation of AMO-LDH-OCNT hybrids led to better mechanical properties, such as higher tensile strength (27.5 MPa) and elongation at break (17.9%), than those composites containing only AMO-LDH (25.6 MPa and 7.5%, respectively).

  16. Mimicking of Estradiol Binding by Flame Retardants and Their Metabolites: A Crystallographic Analysis

    PubMed Central

    Gosavi, Rajendrakumar A.; Knudsen, Gabriel A.; Birnbaum, Linda S.

    2013-01-01

    Background: Brominated flame retardants (BFRs), used in many types of consumer goods, are being studied because of concerns about possible health effects related to endocrine disruption, immunotoxicity, reproductive toxicity, and neurotoxicity. Tetrabromobisphenol A (TBBPA), the most widely used BFR, and human metabolites of certain congeners of polybrominated diphenyl ether (e.g., 3-OH-BDE-47) have been suggested to inhibit estrogen sulfotransferase, potentially affecting estrogen metabolism. Objectives: Our primary goal was to understand the structural mechanism for inhibition of the hormone-metabolizing enzyme estrogen sulfotransferase by certain BFRs. We also sought to understand various factors that facilitate the binding of flame retardants in the enzyme binding pocket. Methods: We used X-ray crystallography to obtain atomic detail of the binding modes of TBBPA and 3-OH-BDE-47 to estrogen sulfotransferase for comparison with binding of the endogenous substrate estradiol. Results: The crystal structures reveal how BFRs mimic estradiol binding as well as the various interactions between the compounds and protein residues that facilitate its binding. In addition, the structures provide insights into the ability of the sulfotransferase substrate binding pocket to accommodate a range of halogenated compounds that satisfy minimal structural criteria. Conclusions: Our results show how BFRs or their metabolites can bind to and inhibit a key hormone-metabolizing enzyme, potentially causing endocrine disruption. Citation: Gosavi RA, Knudsen GA, Birnbaum LS, Pedersen LC. 2013. Mimicking of estradiol binding by flame retardants and their metabolites: a crystallographic analysis. Environ Health Perspect 121:1194–1199; http://dx.doi.org/10.1289/ehp.1306902 PMID:23959441

  17. Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene

    NASA Astrophysics Data System (ADS)

    Gao, Yanshan; Zhang, Yu; Williams, Gareth R.; O’Hare, Dermot; Wang, Qiang

    2016-10-01

    Aqueous miscible organic layered double hydroxides (AMO-LDHs) can act as organophilic inorganic flame retardant nanofillers for unmodified non-polar polymers. In this contribution, AMO [Mg3Al(OH)8](CO3)0.5·yH2O LDH–oxidized carbon nanotube (AMO-LDH–OCNT) hybrids are shown to perform better than the equivalent pure AMO-LDH. A synergistic effect between the AMO-LDH and OCNT was observed; this endows the hybrid material with enhanced flame retardancy, thermal stability, and mechanical properties. The thermal stability of polypropylene (PP) was significantly enhanced by adding AMO-LDH–OCNT hybrids. For PP mixed with AMO-LDH–OCNT hybrids to produce a composite with 10 wt% LDH and 2 wt% OCNT, the 50% weight loss temperature was increased by 43 °C. Further, a system with 10 wt% of AMO-LDH and 1 wt% OCNT showed a peak heat release rate (PHRR) reduction of 40%, greater than the PHRR reduction with PP/20 wt% AMO-LDH (31%). The degree of dispersion (mixability) between AMO-LDH and OCNT has a significant effect on the flame retardant performance of the hybrids. In addition, the incorporation of AMO-LDH–OCNT hybrids led to better mechanical properties, such as higher tensile strength (27.5 MPa) and elongation at break (17.9%), than those composites containing only AMO-LDH (25.6 MPa and 7.5%, respectively).

  18. Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene

    PubMed Central

    Gao, Yanshan; Zhang, Yu; Williams, Gareth R.; O’Hare, Dermot; Wang, Qiang

    2016-01-01

    Aqueous miscible organic layered double hydroxides (AMO-LDHs) can act as organophilic inorganic flame retardant nanofillers for unmodified non-polar polymers. In this contribution, AMO [Mg3Al(OH)8](CO3)0.5·yH2O LDH–oxidized carbon nanotube (AMO-LDH–OCNT) hybrids are shown to perform better than the equivalent pure AMO-LDH. A synergistic effect between the AMO-LDH and OCNT was observed; this endows the hybrid material with enhanced flame retardancy, thermal stability, and mechanical properties. The thermal stability of polypropylene (PP) was significantly enhanced by adding AMO-LDH–OCNT hybrids. For PP mixed with AMO-LDH–OCNT hybrids to produce a composite with 10 wt% LDH and 2 wt% OCNT, the 50% weight loss temperature was increased by 43 °C. Further, a system with 10 wt% of AMO-LDH and 1 wt% OCNT showed a peak heat release rate (PHRR) reduction of 40%, greater than the PHRR reduction with PP/20 wt% AMO-LDH (31%). The degree of dispersion (mixability) between AMO-LDH and OCNT has a significant effect on the flame retardant performance of the hybrids. In addition, the incorporation of AMO-LDH–OCNT hybrids led to better mechanical properties, such as higher tensile strength (27.5 MPa) and elongation at break (17.9%), than those composites containing only AMO-LDH (25.6 MPa and 7.5%, respectively). PMID:27752096

  19. [Preparation of microencapsulated red phosphorus and its flame-retardant application in PP composites].

    PubMed

    Jiang, Wen-Jun; Li, Zhe-Zhao; Zhang, Chun-Xiang; Fang, Jin; Yang, Xu-Jie; Lu, Lu-De; Pu, Long-Juan

    2010-05-01

    In the present study, the melamine-formaldehyde prepolymer (MFP) was first synthesized at pH 8-8.5 under about 80 degrees C with melamine, formaldehyde, triethanolamine and methanol as the starting materials. Subsequently, the microencapsulated red phosphorus (MRP) was successfully prepared by in-situ polymerization at pH 5.5 under 65 degrees C, using MFP and red phosphorus (RP) powders as raw materials, and potassium persulphate (KPS) as catalyst. The obtained products were detected by differential scan calorimetry (DSC), scanning electron microscope (SEM), Fourier transform infrared (FTIR) and X-ray photo-electron spectroscopy (XPS). It was found that KPS is useful in enhancing the reaction activity of MFP, which can make RP be well encapsulated by melamine-formaldehyde resin (MF) and reduce the reaction time. The DSC, SEM and XPS results show that it won't get well-encapsulated MRP only under acidic condition and without any KPS. When a proper quantity of KPS is employed, the RP particles can be almost completely-encapsulated by MF and the peak temperature of oxidation reaction for MRP is 480 degrees C, which is much higher than that of RP, extending the applications for MRP. The FTIR spectrum demonstrates that the coating material on the surface of RP accurately is MF, in agreement with the reference. Polyproplene (PP) composites with different formulations were prepared by melt extrusion. It was shown that the flame-retardant efficiencies are very low when the PP composites only contain MRP or MH. However, the flame-retardant property can obviously improve if MRP and MH are both used in the PP composites. When PP : MRP: MH = 100 (phr) : 15 (phr) : 50 (phr), the limited oxygen index of the MRP/MH/PP composite is 26%, and vertical firing ranks UL-94 V-0. In addition, the possible flame-retardant mechanism of the PP composites has also been discussed, and further verified by FTIR and Raman spectroscopy.

  20. Screening for halogenated flame retardants in European consumer products, building materials and wastes.

    PubMed

    Vojta, Šimon; Bečanová, Jitka; Melymuk, Lisa; Komprdová, Klára; Kohoutek, Jiří; Kukučka, Petr; Klánová, Jana

    2017-02-01

    To fulfill national and international fire safety standards, flame retardants (FRs) are being added to a wide range of consumer products and building materials consisting of flammable materials like plastic, wood and textiles. While the FR composition of some products and materials has been identified in recent years, the limited global coverage of the data and the large diversity in consumer products necessitates more information for an overall picture of the FR composition in common products/materials. To address this issue, 137 individual samples of various consumer products, building materials and wastes were collected. To identify and characterize potential sources of FRs in indoor environment, all samples were analyzed for content of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDDs) and novel flame retardants (NFRs). The most frequently detected were HBCDDs (85%), with the highest median concentration of Σ4HBCDDs of 300 mg kg(-1) in polystyrenes. The highest median concentration of Σ10PBDEs was found in recycled plastic materials, reaching 4 mg kg(-1). The lowest concentrations were observed for NFRs, where the median of Σ12NFRs reached 0.4 mg kg(-1) in the group of electrical & electronic equipment wastes. This suggests that for consumer products and building materials that are currently in-use, legacy compounds still contribute to the overall burden of FRs. Additionally, contrasting patterns of FR composition in recycled and virgin plastics, revealed using principle component analysis (PCA), suggest that legacy flame retardants are reentering the market through recycled products, perpetuating the potential for emissions to indoor environments and thus for human exposure.

  1. Phosphorus-Doped Graphene Oxide Layer as a Highly Efficient Flame Retardant.

    PubMed

    Some, Surajit; Shackery, Iman; Kim, Sun Jun; Jun, Seong Chan

    2015-10-26

    A simple and easy process has been developed to efficiently dope phosphorus into a graphene oxide surface. Phosphorus-doped graphene oxide (PGO) is prepared by the treatment of polyphosphoric acid with phosphoric acid followed by addition of a graphene oxide solution while maintaining a pH of around 5 by addition of NaOH solution. The resulting materials are characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The as-made PGO solution-coated cloth exhibits excellent flame retardation properties. The PGO-coated cloth emits some smoke at the beginning without catching fire for more than 120 s and maintains its initial shape with little shrinkage. In contrast, the pristine cloth catches fire within 5 s and is completely burned within 25 s, leaving trace amounts of black residue. The simple technique of direct introduction of phosphorus into the graphene oxide surface to produce phosphorus-doped oxidized carbon nanoplatelets may be a general approach towards the low-cost mass production of PGO for many practical applications, including flame retardation.

  2. Flame retardation of cellulose-rich fabrics via a simplified layer-by-layer assembly.

    PubMed

    Yang, Jun-Chi; Liao, Wang; Deng, Shi-Bi; Cao, Zhi-Jie; Wang, Yu-Zhong

    2016-10-20

    Due to the high cellulose content of cotton (88.0-96.5%), the flame retardation of cotton fabrics can be achieved via an approach for the flame retardation of cellulose. In this work, a facile water-based flame retardant coating was deposited on cotton fabrics by a 'simplified' layer-by-layer (LbL) assembly. The novel coating solution was based on a mild reaction between ammonium polyphosphate (APP) and branched polyethyleneimine (BPEI), and the reaction mechanism was studied. TGA results showed that the char residues of coated fabrics were remarkably increased. The fabric with only 5wt% coating showed self-extinguishing in the horizontal flame test, and the peak heat release rate (pHRR) in cone calorimeter test decreased by 51%. Furthermore, this coating overcame a general drawback of flame-retardant LbL assembly which was easily washed away. Therefore, the simplified LbL method provides a fast, low-cost, eco-friendly and wash-durable flame-retardant finishing for the cellulose-rich cotton fabrics.

  3. Method for producing flame retardant porous products and products produced thereby

    DOEpatents

    Salyer, I.O.

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame. 1 fig.

  4. Method for Producing Flame Retardant Porous Products and Products Produced Thereby

    DOEpatents

    Salyer, Ival O.

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

  5. Method for producing flame retardant porous products and products produced thereby

    DOEpatents

    Salyer, Ival O.

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

  6. Flame-retardant-wrapped polyphosphazene nanotubes: A novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins.

    PubMed

    Qiu, Shuilai; Wang, Xin; Yu, Bin; Feng, Xiaming; Mu, Xiaowei; Yuen, Richard K K; Hu, Yuan

    2017-03-05

    The structure of polyphosphazene nanotubes (PZS) is similar to that of carbon nanotubes (CNTs) before modification. For applications of CNTs in polymer composites, surface wrapping is an economically attractive route to achieve functionalized nanotubes. Based on this idea, functionalized polyphosphazene nanotubes (FR@PZS) wrapped with a cross-linked DOPO-based flame retardant (FR) were synthesized via one-step strategy and well characterized. Then, the obtained FR@PZS was introduced into epoxy resin (EP) to investigate flame retardancy and smoke toxicity suppression performance. Thermogravimetric analysis indicated that FR@PZS significantly enhanced the thermal stability of EP composites. Cone calorimeter results revealed that incorporation of FR@PZS obviously improved flame retardant performance of EP, for example, 46.0% decrease in peak heat release rate and 27.1% reduction in total heat release were observed in the case of epoxy composite with 3wt% FR@PZS. The evolution of toxic CO and other volatile products from the EP decomposition was significantly suppressed after the introduction of FR@PZS, Therefore, the smoke toxicity associates with burning EP was reduced. The presence of both PZS and a DOPO-based flame retardant was probably responsible for this substantial diminishment of fire hazard.

  7. Flame retardant transfers from U.S. households (dust and laundry wastewater) to the aquatic environment.

    PubMed

    Schreder, Erika D; La Guardia, Mark J

    2014-10-07

    Levels of flame retardants in house dust and a transport pathway from homes to the outdoor environment were investigated in communities near the Columbia River in Washington state (WA). Residential house dust and laundry wastewater were collected from 20 homes in Vancouver and Longview, WA and analyzed for a suite of flame retardants to test the hypothesis that dust collecting on clothing and transferring to laundry water is a source of flame retardants to wastewater treatment plants (WWTPs) and subsequently to waterways. Influent and effluent from two WWTPs servicing these communities were also analyzed for flame retardants. A total of 21 compounds were detected in house dust, including polybrominated diphenyl ethers (PBDEs), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB or EH-TBB), bis(2-ethylhexyl) 3,4,5,6-tetrabromophthalate (TBPH), 1,2-bis(2,4,6,-tribromophenoxy)ethane (BTBPE) and decabromodiphenylethane (DBDPE), hexabromocyclododecane (HBCD or HBCDD), tetrabromobisphenol A (TBBPA), and three chlorinated organophosphate flame retardants (ClOPFRs), tris(1,3-dichloro-2-propyl)phosphate (TDCPP or TDCIPP), tris(1-chloro-2-propyl)phosphate (TCPP or TCIPP), and tris(2-chloroethyl)phosphate (TCEP). Levels ranged from 3.6 to 82,700 ng g(-1) (dry weight). Of the 21 compounds detected in dust, 18 were also detected in laundry wastewater. Levels ranged from 47.1 to 561,000 ng L(-1). ClOPFRs were present at the highest concentrations in both dust and laundry wastewater, making up 72% of total flame retardant mass in dust and 92% in laundry wastewater. Comparison of flame retardant levels in WWTP influents to estimates based on laundry wastewater levels indicated that laundry wastewater may be the primary source to these WWTPs. Mass loadings to the Columbia River from each treatment plant were by far the highest for the ClOPFRs and ranged up to 114 kg/yr for TCPP.

  8. Maternal exposure to brominated flame retardants and infant Apgar scores.

    PubMed

    Terrell, Metrecia L; Hartnett, Kathleen P; Lim, Hyeyeun; Wirth, Julie; Marcus, Michele

    2015-01-01

    Brominated flame retardants (BFRs) and other persistent organic pollutants have been associated with adverse health outcomes in humans and may be particularly toxic to the developing fetus. We investigated the association between in utero polybrominated biphenyl (PBB) and polychlorinated biphenyl (PCB) exposures and infant Apgar scores in a cohort of Michigan residents exposed to PBB through contaminated food after an industrial accident. PBB and PCB concentrations were measured in serum at the time the women were enrolled in the cohort. PBB concentrations were also estimated at the time of conception for each pregnancy using a validated elimination model. Apgar scores, a universal measure of infant health at birth, measured at 1 and 5min, were taken from birth certificates for 613 offspring born to 330 women. Maternal PCB concentrations at enrollment were not associated with below-median Apgar scores in this cohort. However, maternal PBB exposure was associated with a dose-related increase in the odds of a below-median Apgar score at 1min and 5min. Among infants whose mothers had an estimated PBB at conception above the limit of detection of 1 part per billion (ppb) to <2.5ppb, the odds ratio=2.32 (95% CI: 1.22-4.40); for those with PBB⩾2.5ppb the OR=2.62 (95% CI: 1.38-4.96; test for trend p<0.01). Likewise, the odds of a below-median 5min Apgar score increased with higher maternal PBB at conception. It remains critical that future studies examine possible relationships between in utero exposures to brominated compounds and adverse health outcomes.

  9. Dechlorane plus, a chlorinated flame retardant, in the Great Lakes.

    PubMed

    Hoh, Eunha; Zhu, Lingyan; Hites, Ronald A

    2006-02-15

    A highly chlorinated flame retardant, Dechlorane Plus (DP), was detected and identified in ambient air, fish, and sediment samples from the Great Lakes region. The identity of this compound was confirmed by comparing its gas chromatographic retention times and mass spectra with those of authentic material. This compound exists as two gas chromatographically separable stereoisomers (syn and anti), the structures of which were characterized by one- and two-dimensional proton nuclear magnetic resonance. DP was detected in most air samples, even at remote sites. The atmospheric DP concentrations were higher at the eastern Great Lakes sites (Sturgeon Point, NY, and Cleveland, OH) than those at the western Great Lakes sites (Eagle Harbor, MI, Chicago, IL, and Sleeping Bear Dunes, MI). Atthe Sturgeon Point site, DP concentrations once reached 490 pg/m3. DP atmospheric concentrations were comparable to those of BDE-209 at the eastern Great Lakes sites. DP was also found in sediment cores from Lakes Michigan and Erie. The peak DP concentrations were comparable to BDE-209 concentrations in the sediment core from Lake Erie butwere about 30 times lower than BDE-209 concentrations in the core from Lake Michigan. In the sediment cores, the DP concentrations peaked around 1975-1980, and the surficial concentrations were 10-80% of peak concentrations. Higher DP concentrations in air samples from Sturgeon Point, NY, and in the sediment core from Lake Erie suggest that DP's manufacturing facility in Niagara Falls, NY, may be a source. DP was also detected in archived fish (walleye) from Lake Erie, suggesting that this compound is, at least partially, bioavailable.

  10. Maternal exposure to brominated flame retardants and infant Apgar Scores

    PubMed Central

    Terrell, Metrecia L.; Hartnett, Kathleen P.; Lim, Hyeyeun; Wirth, Julie; Marcus, Michele

    2014-01-01

    Brominated flame retardants (BFRs) and other persistent organic pollutants have been associated with adverse health outcomes in humans and may be particularly toxic to the developing fetus. We investigated the association between in utero polybrominated biphenyl (PBB) and polychlorinated biphenyl (PCB) exposures and infant Apgar scores in a cohort of Michigan residents exposed to PBB through contaminated food after an industrial accident. PBB and PCB concentrations were measured in serum at the time the women were enrolled in the cohort. PBB concentrations were also estimated at the time of conception for each pregnancy using a validated elimination model. Apgar scores, a universal measure of infant health at birth, measured at 1 and 5 minutes, were taken from birth certificates for 613 offspring born to 330 women. Maternal PCB concentrations at enrollment were not associated with below–median Apgar scores in this cohort. However, maternal PBB exposure was associated with a dose–related increase in the odds of a below–median Apgar score at 1 minute and 5 minutes. Among infants whose mothers had an estimated PBB at conception above the limit of detection of 1 part per billion, the odds ratio was 2.32 (95 % CI: 1.22– 4.40); for those with PBB ≥ 2.5 ppb the OR=2.62 (95% CI: 1.38-4.96; test for trend p< 0.01). Likewise, the odds of a below–median 5–minute Apgar increased with higher maternal PBB at conception. It remains critical that future studies examine possible relationships between in utero exposures to brominated compounds and adverse health outcomes. PMID:25203650

  11. Phosphorus flame retardants in indoor dust and their relation to asthma and allergies of inhabitants.

    PubMed

    Araki, A; Saito, I; Kanazawa, A; Morimoto, K; Nakayama, K; Shibata, E; Tanaka, M; Takigawa, T; Yoshimura, T; Chikara, H; Saijo, Y; Kishi, R

    2014-02-01

    Organophosphate esters are used as additives in flame retardants and plasticizers, and they are ubiquitous in the indoor environment. Phosphorus flame retardants (PFRs) are present in residential dust, but few epidemiological studies have assessed their impact on human health. We measured the levels of 11 PFRs in indoor floor dust and multi-surface dust in 182 single-family dwellings in Japan. We evaluated their correlations with asthma and allergies of the inhabitants. Tris(2-butoxyethyl) phosphate was detected in all samples (median value: 580 μg/g in floor dust, 111 μg/g in multi-surface dust). Tris(2-chloro-iso-propyl) phosphate (TCIPP) was detected at 8.69 μg/g in floor dust and 25.8 μg/g in multi-surface dust. After adjustment for potential confounders, significant associations were found between the prevalence of atopic dermatitis and the presence of TCIPP and tris(1,3-dichloro-2-propyl) phosphate in floor dust [per log10 -unit, odds ratio (OR): 2.43 and 1.84, respectively]. Tributyl phosphate was significantly associated with the prevalence of asthma (OR: 2.85 in floor dust, 5.34 in multi-surface dust) and allergic rhinitis (OR: 2.55 in multi-surface dust). PFR levels in Japan were high compared with values reported previously for Europe, Asia-Pacific, and the USA. Higher levels of PFRs in house dust were related to the inhabitants' health status.

  12. Urinary Biomonitoring of Phosphate Flame Retardants: Levels in California Adults and Recommendations for Future Studies

    PubMed Central

    2014-01-01

    Phosphate flame retardants (PFRs) are abundant and found at the highest concentrations relative to other flame retardant chemicals in house dust; however, little is known about the biological levels of PFRs and their relationship with house dust concentrations. These relationships provide insight into major exposure pathways and potential health risks. We analyzed urine samples from 16 California residents in 2011 for 6 chlorinated and nonchlorinated dialkyl or diaryl phosphates (DAPs), the expected major metabolites of the most prominent PFRs, and qualitatively screened for 18 other metabolites predicted from in vitro studies. We detected all 6 DAPs within the range of previously reported levels, although very few comparisons are available. We found weakly positive nonsignificant correlations between urine and dust concentrations and maxima urine corresponding to maxima dust for the pairs bis(1,3-dichloro-2-propyl) phosphate (BDCIPP)-tris(1,3-dichloro-isopropyl) phosphate (TDCIPP) and bis(2-chloroethyl) phosphate (BCEP)-tris(2-chloroethyl) phosphate (TCEP). Metabolite levels of PFRs were correlated for many PFR combinations, suggesting they commonly co-occur. As far as we know, this is the first study to measure these 6 DAP metabolites simultaneously and to detect other PFR metabolites in US urine samples. We recommend biomonitoring studies include these 6 DAPs as well as several additional compounds detected through qualitative screening and previous ADME studies. PFRs represent a class of poorly studied commercial chemicals with widespread exposure and raise concerns for health effects including carcinogenicity and neurotoxicity. PMID:25388620

  13. Novel brominated flame retardants and dechloranes in three fish species from the St. Lawrence River, Canada.

    PubMed

    Houde, Magali; Berryman, David; de Lafontaine, Yves; Verreault, Jonathan

    2014-05-01

    Restrictions in the utilization of polybrominated diphenyl ether (PBDE) mixtures have led to the increased usage of alternative flame retardant additives in a wide range of commercial applications. The present study examined the occurrence of established and emerging flame retardants (FRs) in fish from a densely-populated urbanized sector of the St. Lawrence River (Montreal, Quebec, Canada). Thirty-eight PBDE congeners and sixteen emerging FRs were determined in fish belonging to three predatory species (yellow perch, northern pike, and muskellunge). The ∑PBDE in fish were up to 24,115 ng/g lipid weight (l.w.) in the apex predator muskellunge. Twelve emerging FRs including bis(2-ethylhexyl)-tetrabromophthalate (BEHTBP), pentabromoethylbenzene (PBEB), Dechlorane Plus (anti and syn), dechloranes (Dec) 602, Dec 604, Dec 604 Compound B (Dec 604 CB), and Chlordene Plus (CP) were detected (>0.01 ng/gl.w.) in the liver of muskellunge and northern pike but not in yellow perch homogenates. This is the first report of Dec 604 CB in any fish species. The bioavailability of these FRs in human-impacted aquatic ecosystems warrants further environmental assessment and toxicity testing.

  14. Characterizing Flame Retardant Applications and Potential Human Exposure in Backpacking Tents.

    PubMed

    Gomes, Genna; Ward, Peyton; Lorenzo, Amelia; Hoffman, Kate; Stapleton, Heather M

    2016-05-17

    Flame retardant (FR) chemicals are applied to products to meet flammability standards; however, exposure to some additive FRs has been shown to be associated with adverse health effects. Previous research on FR exposure has primarily focused on chemicals applied to furniture and electronics; however, camping tents sold in the United States, which often meet flammability standard CPAI-84, remain largely unstudied in regards to their chemical treatments. In this study, FRs from five brands of CPAI-84-compliant, two-person backpacking tents were measured and potential exposure was assessed. Dermal and inhalation exposure levels were assessed by collecting hand wipes from 20 volunteers before and after tent setup and by using active air samplers placed inside assembled tents, respectively. Organophosphate flame retardants (OPFRs) were the most commonly detected FR in the tent materials and included triphenyl phosphate (TPHP), tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) and tris(2-chloroethyl)phosphate (TCEP). Levels of OPFRS measured on hand wipes were significantly higher post-tent setup compared to pre setup, and in the case of TDCIPP, levels were 29 times higher post setup. OPFRs were also detected at measurable concentrations in the air inside of treated tents. Significant, positive correlations were found between FR levels in treated textiles and measures of dermal and inhalation exposure. These results demonstrate that dermal exposure to FRs occurs from handling camping tents and that inhalation exposure will likely occur while inside a tent.

  15. Piloted Ignition to Flaming in Smoldering Fire-Retarded Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Putzeys, O.; Fernandez-Pello, A. C.; Urban, D. L.

    2007-01-01

    Experimental results are presented on the piloted transition from smoldering to flaming in the fire-retarded polyurethane foam Pyrell . The samples are small rectangular blocks with a square cross section, vertically placed in the wall of a vertical wind tunnel. Three of the vertical sample sides are insulated and the fourth side is exposed to an upward oxidizer flow of variable oxygen concentration and to a variable radiant heat flux. The gases emitted from the smoldering reaction pass upwards through a pilot, which consists of a coiled resistance heating wire. In order to compensate for the solid-phase and gas-phase effects of the fire retardants on the piloted transition from smoldering to flaming in Pyrell, it was necessary to assist the process by increasing the power supplied to the smolder igniter and the pilot (compared to that used for non-fire retarded foam). The experiments indicate that the piloted transition from smoldering to flaming occurs when the gaseous mixture at the pilot passes the lean flammability limit. It was found that increasing the oxygen concentration or the external heat flux increases the likelihood of a piloted transition from smoldering to flaming, and generally decreases the time delay to transition. The piloted transition to flaming is observed in oxygen concentrations of 23% and above in both low-density and high-density Pyrell. Comparisons with previous experiments show that the piloted transition from smoldering to flaming is possible under a wider range of external conditions (i.e. lower oxygen concentration) than the spontaneous transition from smoldering to flaming. The results show that the fire retardants in Pyrell are very effective in preventing the piloted transition to flaming in normal air, but Pyrell is susceptible to smoldering and the piloted transition to flaming in oxygen-enriched environments. Therefore, precautions should be taken in the design of applications of Pyrell in oxygen-enriched environments to reduce

  16. Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6.

    PubMed

    Ge, Hua; Tang, Gang; Hu, Wei-Zhao; Wang, Bi-Bo; Pan, Ying; Song, Lei; Hu, Yuan

    2015-08-30

    Aluminum hypophosphite (AHP) is an effective phosphorus-containing flame retardant. But AHP also has fire risk that it will decompose and release phosphine which is spontaneously flammable in air and even can form explosive mixtures with air in extreme cases. In this paper, AHP has been microencapsulated by melamine cyanurate (MCA) to prepare microencapsulated aluminum hypophosphite (MCAHP) with the aim of enhancing the fire safety in the procedure of production, storage and use. Meanwhile, MCA was a nitrogen-containing flame retardant that can work with AHP via the nitrogen-phosphorus synergistic effect to show improved flame-retardant property than other capsule materials. After microencapsulation, MCA presented as a protection layer inhibit the degradation of AHP and postpone the generation of phosphine. Furthermore, the phosphine concentration could be effectively diluted by inert decomposition products of MCA. These nonflammable decomposition products of MCA could separate phosphine from air delay the oxidizing reaction with oxygen and decrease the heat release rate, which imply that the fire safety of AHP has been improved. Furthermore, MCAHP was added into polyamide 6 to prepare flame retardant polyamide 6 composites (FR-PA6) which show good flame retardancy.

  17. An efficient mono-component polymeric intumescent flame retardant for polypropylene: preparation and application.

    PubMed

    Shao, Zhu-Bao; Deng, Cong; Tan, Yi; Chen, Ming-Jun; Chen, Li; Wang, Yu-Zhong

    2014-05-28

    We found in our previous study that ethylenediamine- or ethanolamine-modified ammonium polyphosphates could be used alone as an intumescent flame retardant for polypropylene (PP), but their flame-retardant efficiency was not very high. In this present work, a novel highly-efficient mono-component polymeric intumescent flame retardant, piperazine-modified ammonium polyphosphate (PA-APP) was prepared. The oxygen index value of PP containing 22 wt % of PA-APP reached 31.2%, which increased by 58.4% compared with that of PP with equal amount of APP, and the vertical burning test (UL-94) could pass V-0 rating. Cone calorimeter (CC) results indicated that PP/PA-APP composite exhibited superior performance compared with PP/APP composite. For PP containing 25 wt % of PA-APP, fire growth rate (FGR) and smoke production rate (SPR) peak were reduced by 86.4% and 78.2%, respectively, compared with PP blended with 25 wt % APP. The relevant flame-retardant mechanism of PA-APP was investigated by Fourier transform infrared spectroscopy etc. The P-N-C structure with the alicyclic amine was formed during the thermal decomposition of piperazine salt (-NH2(+)-O-P-), and the rich P-N-C structure facilitated the formation of stable char layer at the later stage, consequently improving the flame-retardant efficiency of APP.

  18. Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen.

    PubMed

    Xie, Kongliang; Gao, Aiqin; Zhang, Yongsheng

    2013-10-15

    Boric acid and compound containing nitrogen, 2,4,6-tri[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC) were used to finish cotton fabric. The flame retardant properties of the finished cotton fabrics and the synergetic effects of boron and nitrogen elements were investigated and evaluated by limited oxygen index (LOI) method. The mechanism of cross-linking reaction among cotton fiber, Tri-HTAC, and boric acid was discussed by FTIR and element analysis. The thermal stability and surface morphology of the finished cotton fabrics were investigated by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. The finishing system of the mixture containing boron and nitrogen showed excellent synergistic flame retardancy for cotton fabric. The cotton fabric finished with mixture system had excellent flame retardancy. The LOI value of the treated cotton fabric increased over 27.5. Tri-HTAC could form covalent bonds with cellulose fiber and boric acid. The flame retardant cotton fabric showed a slight decrease in tensile strength and whiteness. The surface morphology of flame retardant cotton fiber was smooth.

  19. Flame retardant associations between children's handwipes and house dust.

    PubMed

    Stapleton, Heather M; Misenheimer, John; Hoffman, Kate; Webster, Thomas F

    2014-12-01

    Polybrominated diphenyl ether (PBDE), flame retardants (FRs) have been ubiquitously detected at high concentrations in indoor environments; however, with their recent phase-out, more attention is being focused on measurements of exposure to alternative FRs such as organophosphate FRs (OPFRs). In our previous research, we found that PBDE residues measured on children's handwipes were a strong predictor of serum PBDE levels. Here we build upon this research to examine longitudinal changes in PBDEs in indoor dust and children's handwipes, and explore the associations between handwipes and dust for alternative FRs. Children from our previous study were re-contacted after approximately two years and new samples of indoor dust and handwipes were collected. PBDE dust-levels were significantly correlated between two different sampling rounds separated by two years; however, PBDE levels in handwipes were not correlated, perhaps suggesting that the sources of PBDEs remained relatively constant in the home, but that behavioral differences in children are changing with age and influencing handwipe levels. OPFRs [i.e. tris(1,3-dichloroisopropyl) phosphate (TDCPP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP)], 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB, also known as TBB), di(2-ethylhexyl) tetrabromophthalate (BEH-TEBP, also known as TBPH), and 1,2,5,6,9,10-hexabromocyclododecane (HBCD) were also ubiquitously detected in house dust samples and geometric mean levels were similar to PBDE levels, or higher in the case of the OPFRs. Significant associations between handwipes and house dust were observed for these alternative FRs, particularly for EH-TBB (rs=0.54; p<0.001). Increasing house dust levels and age were associated with higher levels of FRs in handwipes, and high hand washing frequency (>5 times d(-1)) was associated with lower FR levels in handwipes. Overall these data suggest that exposure to these alternative FRs will be similar

  20. Halogenated flame retardants: do the fire safety benefits justify the risks?

    PubMed

    Shaw, Susan D; Blum, Arlene; Weber, Roland; Kannan, Kurunthachalam; Rich, David; Lucas, Donald; Koshland, Catherine P; Dobraca, Dina; Hanson, Sarah; Birnbaum, Linda S

    2010-01-01

    Since the 1970s, an increasing number of regulations have expanded the use of brominated and chlorinated flame retardants. Many of these chemicals are now recognized as global contaminants and are associated with adverse health effects in animals and humans, including endocrine and thyroid disruption, immunotoxicity, reproductive toxicity, cancer, and adverse effects on fetal and child development and neurologic function. Some flame retardants such as polybrominated diphenyl ethers (PBDEs) have been banned or voluntarily phased out by manufacturers because of their environmental persistence and toxicity, only to be replaced by other organohalogens of unknown toxicity. Despite restrictions on further production in some countries, consumer products previously treated with banned retardants are still in use and continue to release toxic chemicals into the environment, and the worldwide use of organohalogen retardants continues to increase. This paper examines major uses and known toxic effects of commonly-used organohalogen flame retardants, replacements for those that have been phased out, their combustion by-products, and their effectiveness at reducing fire hazard. Policy and other solutions to maintain fire safety while reducing toxicity are suggested. The major conclusions are: (1) Flammability regulations can cause greater adverse environmental and health impacts than fire safety benefits. (2) The current options for end-of-life disposal of products treated with organohalogens retardants are problematic. (3) Life-cycle analyses evaluating benefits and risks should consider the health and environmental effects of the chemicals, as well as their fire safety impacts. (4) Most fire deaths and most fire injuries result from inhaling carbon monoxide, irritant gases, and soot. The incorporation of organohalogens can increase the yield of these toxic by-products during combustion. (5) Fire-safe cigarettes, fire-safe candles, child-resistant lighters, sprinklers, and

  1. Size-exclusion simulated moving bed for separating organophosphorus flame retardants from a polymer.

    PubMed

    Weeden, George S; Ling, Lei; Soepriatna, Nicholas H; Wang, Nien-Hwa Linda

    2015-11-27

    Over 500,000t of flame retardants in electronic wastes are consigned to landfills each year. A room-temperature, size-exclusion simulated moving bed (SEC-SMB) was developed to recover high purity (>99%) flame retardants with high yield (>99%). The SSWD method for ternary mixtures was developed for SEC-SMB. Fourteen decision variables were optimized to obtain the lowest separation cost within 1min. The estimated cost is less than 10% of the purchase cost of the flame retardants. The estimated cost of the optimized SEC-SMB is less than 3% of that of a conventional batch SEC processes. Fast start-up methods were developed to reduce the SMB start-up time by more than 18-fold. SEC-SMB can be an economical method for separating small molecules from polymers.

  2. Irradiation crosslinking and halogen-free flame retardation of EVA using hydrotalcite and red phosphorus

    NASA Astrophysics Data System (ADS)

    Jiao, Chuanmei; Wang, Zhengzhou; Chen, Xilei; Yu, Benyi; Hu, Yuan

    2006-05-01

    Halogen-free flame retarded ethylene vinyl acetate copolymer (EVA) composites using Mg-Al-CO 3 hydrotalcite (MALDH) and microcapsulated red phosphorus (MRP) have been prepared in a melt process. The flame retardation of the composites has been studied by the limited oxygen index (LOI) and UL-94 methods, and the thermal decomposition by the thermogravimetric analysis (TGA). The changes of their properties of the composites before and after the Gamma irradiation are compared. The synergistic effect in the flame retardation between MALDH and MRP in EVA has been found. The EVA/MALDH/MRP composites after the irradiation crosslinking result in a great increase in the Vicat softening point. The LOI value, the mechanical properties and thermal stability are also improved for the composites irradiated by a suitable irradiation dose.

  3. The effect of electron-beam irradiation and halogen-free flame retardants on properties of poly butylene terephthalate

    NASA Astrophysics Data System (ADS)

    Hooshangi, Zhila; Feghhi, Seyed Amir Hossein; Sheikh, Nasrin

    2015-03-01

    Engineering plastics like Poly (butylene terephthalate) due to their desirable properties have various industrial applications. Neat PBT is highly combustible, so it is necessary to improve significantly its fire retardancy to meet the fire safety requirements. The combustion performance of PBT can be improved by addition of appropriate flame retardant additives. In this study we have investigated the effect of halogen free flame retardants, i.e. melamine and aluminum phosphate, and instantaneously electron beam radiation-induced crosslinking in the presence of Triallyl cyanurate on various properties of PBT. The results of gel content showed that a dose range of 200-400 kGy leads to high cross linked structure in this polymer. Also mechanical experiments showed that its structure became rigid and fragile due to irradiation. Radiation crosslinking of this polymer made its dielectric loss coefficient ten times lower than non-irradiated polymer, but had no effect on its dielectric constant. Moreover the addition of the fire retardant additives as impurity decreased the dielectric loss coefficient. TGA analysis in nitrogen exhibited that irradiation increases char formation and use of the fire retardant additives leads to reduction of onset temperature and formation of higher char quantity than pure PBT. According to the results of UL-94, irradiated samples burned with lower speed and less dripping in vertical and horizontal positions than pure polymer. Finally irradiation of the polymers containing fire retardant additives with a dose of 400 kGy led to self-extinguishing and non-dripping and reach to V-0 level in the UL-94 V.

  4. Organophosphate flame retardants in household dust before and after introduction of new furniture.

    PubMed

    Keimowitz, A R; Strunsky, N; Wovkulich, K

    2016-04-01

    Flame retardant compounds originating from household items collect in household dust, a reasonable proxy for human exposure. Contributions of specific items or behaviors to dust are difficult to separate. This study examined standardized college housing before and after the introduction of new, flame retardant couches in order to explore any effect that changing upholstered furniture may have on flame retardant concentrations in dust. Two contradictory hypotheses were posited: (1) that new furniture might increase flame retardant releases immediately after introduction due to initial off-gassing of new materials or (2) that older furniture would release more flame retardants due to mechanical breakdown of polyurethane foam. This study was designed to determine which of these processes dominated. Prior to the introduction of new furniture, TDCIPP was detected in 12/20 samples at a median concentration of 22 μg/g and TCEP was detected in 1/20 samples at a concentration of 16 μg/g. TDCIPP and TCEP were not detected in any samples (N = 29) after the introduction of new couches. TPHP was detected both before (in 11/20 samples) and after (in 5/29 samples) introduction of new couches; the median concentrations before and after were 63 ± 49 and 16 ± 11 μg/g (standard deviation shown). Introduced couches contained TDCIPP (and not TPHP) at ∼1.25% (w/w). These data support the second hypothesis and indicate that removal of older furniture decreases TDCIPP and TCEP concentrations in dust and may potentially reduce total flame retardant concentrations in dust, at least immediately after introduction of the new furniture.

  5. Photochemical degradation of a brominated flame retardant (tetrabromobisphenol A) in ice under field and laboratory conditions

    NASA Astrophysics Data System (ADS)

    Waligroski, G.; Grannas, A. M.

    2013-12-01

    Studies of brominated flame retardants have raised awareness of their potential environmental impact as toxic compounds. Because these compounds are now globally distributed, including in the Polar Regions, it is important to assess their potential fate in the environment. It has been shown that active photochemistry occurs in sunlit snow and ice, but there is little information regarding potential photochemical degradation of brominated flame retardants in snow and ice. The purpose of this research is to investigate the direct and indirect photochemical transformation pathways of a widely used brominated flame retardant, tetrabromobisphenol A (TBBPA). We have conducted field-based experiments in Barrow, Alaska to investigate the potential photochemical degradation of TBBPA in snow and ice under environmentally-relevant conditions. Field-based results show that TBBPA is efficiently degraded under direct photolysis conditions in frozen aqueous samples under natural Barrow sunlight. In aqueous solution the light absorption properties of TBBPA are pH dependent. Therefore, the photodegradation of TBBPA in snow and ice will be highly pH dependent. Reactions that are pH dependent may be affected by the nature of the liquid-like layers in snow/ice as well as the presence of other solutes that may indirectly affect the local pH experienced by TBBPA in snow and ice samples. In order to establish how the effective pH of liquid-like regions in ice might impact the degradation of TBBPA, various salts (sodium chloride, sodium fluoride, sodium bromide, ammonium chloride, ammonium acetate and ammonium sulfate) were added to aqueous solutions of TBBPA. Upon freezing, these different salts will induce pH differences in the liquid-like regions of the sample due to a phenomenon known as the freezing potential. Observed reactivity differences upon addition of these salts will be evaluated and discussed. Additionally, the presence of natural dissolved organic matter (DOM), an effective

  6. Using silicone wristbands to evaluate preschool children's exposure to flame retardants.

    PubMed

    Kile, Molly L; Scott, Richard P; O'Connell, Steven G; Lipscomb, Shannon; MacDonald, Megan; McClelland, Megan; Anderson, Kim A

    2016-05-01

    Silicone wristbands can be used as passive sampling tools for measuring personal environmental exposure to organic compounds. Due to the lightweight and simple design, the wristband may be a useful technique for measuring children's exposure. In this study, we tested the stability of flame retardant compounds in silicone wristbands and developed an analytical approach for measuring 41 flame retardants in the silicone wristband in order to evaluate exposure to these compounds in preschool-aged children. To evaluate the robustness of using wristbands to measure flame retardants, we evaluated the stability of 3 polybrominated diphenyl ethers (BDEs), and 2 organophosphate flame retardants (OPFRs) in wristbands over 84 days and did not find any evidence of significant loss over time at either 4 or -20°C (p>0.16). We recruited a cohort of 92 preschool aged children in Oregon to wear the wristband for 7 days in order to characterize children's acceptance of the technology, and to characterize their exposure to flame retardants. Seventy-seven parents returned the wristbands for analysis of 35 BDEs, 4 OPFRs, and 2 other brominated flame retardants although 5 were excluded from the exposure assessment due to protocol deviations (n=72). A total of 20 compounds were detected above the limit of quantitation, and 11 compounds including 4 OPFRs and 7 BDEs were detected in over 60% of the samples. Children's gender, age, race, recruitment site, and family context were not significantly associated with returning wristbands or compliance with protocols. Comparisons between flame retardant data and socio-demographic information revealed significant differences in total exposures to both ΣBDEs and ΣOPFRs based on age of house, vacuuming frequency, and family context. These results demonstrate that preschool children in Oregon are exposed to BDEs that are no longer being produced in the United States and to OPFRs that have been used as an alternative to polybrominated compounds

  7. The chemistry of dimethacrylate-styrene networks, and, Development of flame retardant, halogen-free fiber reinforced vinyl ester composites

    NASA Astrophysics Data System (ADS)

    Rosario, Astrid Christa

    One of the major classes of polymer matrix resins under consideration for structural composite applications in the infrastructure and construction industries is vinyl ester resin. Vinyl ester resin is comprised of low molecular weight poly(hydroxyether) oligomers with methacrylate endgroups diluted with styrene monomer. The methacrylate endgroups cure with styrene via free radical copolymerization to yield thermoset networks. The copolymerization behavior of these networks was monitored by Fourier Transform Infrared Spectroscopy (FTIR) at various cure conditions. Reactions of the carbon-carbon double bonds of the methacrylate (943 cm-1) and styrene (910 cm-1 ) were followed independently. Oligomers possessing number average molecular weights of 700 g/mole were studied with systematically increasing levels of styrene. The Mortimer-Tidwell reactivity ratios indicated that at low conversion more styrene was incorporated into the network at lower cure temperatures. The experimental vinyl ester-styrene network compositions deviated significantly from those predicted by the Meyer-Lowry integrated copolymer equation at higher conversion, implying that the reactivity ratios for these networks may change with conversion. The kinetic data were used to provide additional insight into the physical and mechanical properties of these materials. In addition to establishing the copolymerization kinetics of these materials, the development of halogen free fiber reinforced vinyl ester composites exhibiting good flame properties was of interest. Flame retardant vinyl ester resins are used by many industries for applications requiring good thermal resistance. The current flame-retardant technology is dependent on brominated vinyl esters, which generate high levels of smoke and carbon monoxide. A series of halogen free binder systems has been developed and dispersed in the vinyl ester to improve flame retardance. The binder approach enables the vinyl ester resin to maintain its low

  8. Bioaccumulation and toxicity of the flame retardant TBPH or the polychlorinated biphenyl PCB153 during dietary exposure in mummichog (Fundulus heteroclitus)

    EPA Science Inventory

    The use of polybrominated diphenyl ethers as flame retardants in consumer products has been scrutinized increasingly due to their environmental persistence and potential toxicity; however, alternative replacement flame retardants may have similar drawbacks. The alternative bromin...

  9. Birds and flame retardants: A review of the toxic effects on birds of historical and novel flame retardants.

    PubMed

    Guigueno, Mélanie F; Fernie, Kim J

    2017-04-01

    Flame retardants (FRs) are a diverse group of chemicals, many of which persist in the environment and bioaccumulate in biota. Although some FRs have been withdrawn from manufacturing and commerce (e.g., legacy FRs), many continue to be detected in the environment; moreover, their replacements and/or other novel FRs are also detected in biota. Here, we review and summarize the literature on the toxic effects of various FRs on birds. Birds integrate chemical information (exposure, effects) across space and time, making them ideal sentinels of environmental contamination. Following an adverse outcome pathway (AOP) approach, we synthesized information on 8 of the most commonly reported endpoints in avian FR toxicity research: molecular measures, thyroid-related measures, steroids, retinol, brain anatomy, behaviour, growth and development, and reproduction. We then identified which of these endpoints appear more/most sensitive to FR exposure, as determined by the frequency of significant effects across avian studies. The avian thyroid system, largely characterized by inconsistent changes in circulating thyroid hormones that were the only measure in many such studies, appears to be moderately sensitive to FR exposure relative to the other endpoints; circulating thyroid hormones, after reproductive measures, being the most frequently examined endpoint. A more comprehensive examination with concurrent measurements of multiple thyroid endpoints (e.g., thyroid gland, deiodinase enzymes) is recommended for future studies to more fully understand potential avian thyroid toxicity of FRs. More research is required to determine the effects of various FRs on avian retinol concentrations, inconsistently sensitive across species, and to concurrently assess multiple steroid hormones. Behaviour related to courtship and reproduction was the most sensitive of all selected endpoints, with significant effects recorded in every study. Among domesticated species (Galliformes), raptors

  10. Some of the properties of flame retardant medium density fiberboard made from rubberwood and recycled containers containing aluminum trihydroxide.

    PubMed

    Hashim, R; How, L S; Kumar, R N; Sulaiman, O

    2005-11-01

    The flame retardancy of medium density fiberboard (MDF) made from mixture of rubberwood fibers and recycled old corrugated containers was studied. Aluminum trihydroxide (ATH) was used as a fire retardant additive and mixed with the fibers to manufacture experimental MDF panels using wet process. Phenol formaldehyde (PF) resin in liquid, 2% based on oven dry weight of fibers, was used along with 0%, 10%, 15% and 20% of ATH. The flame retardant test was done using the limiting oxygen index (LOI) test. The other properties investigated include internal bond strength, thickness swelling and water absorption. The results showed that ATH loading increased as the LOI of MDF increased. This demonstrated that ATH could improved the fire retardant property of MDF at sufficient loading. An increase in concentration of ATH showed an increase in the IB values of MDF made without resin. MDF panels made without resin showed a progressive increase in internal bond as the composition of recycled old corrugated containers fiber increased. Addition of resin improved internal bond strength and reduced thickness swelling, and water absorption. Thickness swelling of panel increased as the composition of recycled old corrugated containers fiber increased. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) showed that there is indication of ATH and resin filling the void space in between fibers.

  11. Novel additives to retard permeable flow

    SciTech Connect

    Golombok, Michael; Crane, Carel; Ineke, Erik; Welling, Marco; Harris, Jon

    2008-09-15

    Low concentrations of surfactant and cosolute in water, can selectively retard permeable flow in high permeability rocks compared to low permeability ones. This represents a way forward for more efficient areal sweep efficiency when water flooding a reservoir during improved oil recovery. (author)

  12. Chicago's Sanitary and Ship Canal sediment: Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, brominated flame retardants, and organophosphate esters.

    PubMed

    Peverly, Angela A; O'Sullivan, Colin; Liu, Liang-Ying; Venier, Marta; Martinez, Andres; Hornbuckle, Keri C; Hites, Ronald A

    2015-09-01

    The Chicago Sanitary and Ship Canal (CSSC) links the Great Lakes to the Mississippi River starting in downtown Chicago. In addition to storm water, the CSSC receives water from Chicago's wastewater treatment plants (WWTP). Such effluents are known to be sources of organic pollutants to water and sediment. Therefore in 2013, we collected 10 sediment samples from the CSSC and measured the concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), brominated flame retardants, and organophosphate esters (OPEs). Geometric mean concentrations of the summed concentrations of 16 PAHs ranged from 11,000 to 420,000 ng/g dw, with the highest concentrations located at each end of the canal. Total PCB concentrations had a geometric mean of 1,400 ± 500 ng/g dw. Brominated flame retardants were separated into two groups: polybrominated diphenyl ethers (PBDEs) and non-PBDEs. Concentrations of PBDEs and those of the non-PBDE flame retardants had a geometric average of 83 ± 19 and 7.0 ± 5.8 ng/g dw, respectively. The summed concentrations of 8 OPEs ranged from 470 to 2,800 ng/g dw, with the highest concentration detected at a site located downstream of the Stickney water reclamation plant. Using ANOVA results, some hypotheses on sources to the CSSC could be formulated: downtown Chicago is probably a source of PAHs, the Cal-Sag Channel may be a source of PCBs, and neither the WWTP nor the Cal-Sag Channel seem to be significant sources of brominated flame retardants or OPEs.

  13. Priority and emerging flame retardants in rivers: occurrence in water and sediment, Daphnia magna toxicity and risk assessment.

    PubMed

    Cristale, Joyce; García Vázquez, Alejandro; Barata, Carlos; Lacorte, Silvia

    2013-09-01

    The occurrence, partitioning and risk of eight polybrominated diphenyl ethers (PBDEs), nine new brominated (NBFRs) and ten organophosphorus flame retardants (OPFRs) were evaluated in three Spanish rivers suffering different anthropogenic pressures (Nalón, Arga and Besòs). OPFRs were ubiquitous contaminants in water (ΣOPFRs ranging from 0.0076 to 7.2μgL(-1)) and sediments (ΣOPFRs ranging 3.8 to 824μgkg(-1)). Brominated flame retardants were not detected in waters, whereas ΣPBDEs ranged from 88 to 812μgkg(-1) and decabromodiphenyl ethane (DBDPE) reached 435μgkg(-1) in sediments from the River Besòs, the most impacted river. The occurrence of flame retardants in river water and sediment was clearly associated with human activities, since the highest levels occurred near urban and industrial zones and after wastewater treatment plants discharge. Daphnia magna toxicity was carried out for OPFRs, the most ubiquitous flame retardants, considering individual compounds and mixtures. Toxicity of nine tested OPFRs differed largely among compounds, with EC50 values ranging over three magnitude orders (0.31-381mgL(-1)). Results evidenced that these compounds act by non-polar narcosis, since their toxicity was proportional to their lipophilicity (Kow). Furthermore, their joint toxicity was additive, which means that single and joint toxicity can be predicted knowing their concentration levels in water using quantitative structure activity relationships (QSARs) and predictive mixture models. Based on these results, a risk assessment considering joint effect was performed calculating and summing risk quotients (RQs) for the water and sediment samples. No significant risk to D. magna (ΣRQs <1) was observed for any of the monitored rivers.

  14. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery

    NASA Astrophysics Data System (ADS)

    Zhang, Jianjun; Yue, Liping; Kong, Qingshan; Liu, Zhihong; Zhou, Xinhong; Zhang, Chuanjian; Xu, Quan; Zhang, Bo; Ding, Guoliang; Qin, Bingsheng; Duan, Yulong; Wang, Qingfu; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-02-01

    A sustainable, heat-resistant and flame-retardant cellulose-based composite nonwoven has been successfully fabricated and explored its potential application for promising separator of high-performance lithium ion battery. It was demonstrated that this flame-retardant cellulose-based composite separator possessed good flame retardancy, superior heat tolerance and proper mechanical strength. As compared to the commercialized polypropylene (PP) separator, such composite separator presented improved electrolyte uptake, better interface stability and enhanced ionic conductivity. In addition, the lithium cobalt oxide (LiCoO2)/graphite cell using this composite separator exhibited better rate capability and cycling retention than that for PP separator owing to its facile ion transport and excellent interfacial compatibility. Furthermore, the lithium iron phosphate (LiFePO4)/lithium cell with such composite separator delivered stable cycling performance and thermal dimensional stability even at an elevated temperature of 120°C. All these fascinating characteristics would boost the application of this composite separator for high-performance lithium ion battery.

  15. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery

    PubMed Central

    Zhang, Jianjun; Yue, Liping; Kong, Qingshan; Liu, Zhihong; Zhou, Xinhong; Zhang, Chuanjian; Xu, Quan; Zhang, Bo; Ding, Guoliang; Qin, Bingsheng; Duan, Yulong; Wang, Qingfu; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-01-01

    A sustainable, heat-resistant and flame-retardant cellulose-based composite nonwoven has been successfully fabricated and explored its potential application for promising separator of high-performance lithium ion battery. It was demonstrated that this flame-retardant cellulose-based composite separator possessed good flame retardancy, superior heat tolerance and proper mechanical strength. As compared to the commercialized polypropylene (PP) separator, such composite separator presented improved electrolyte uptake, better interface stability and enhanced ionic conductivity. In addition, the lithium cobalt oxide (LiCoO2)/graphite cell using this composite separator exhibited better rate capability and cycling retention than that for PP separator owing to its facile ion transport and excellent interfacial compatibility. Furthermore, the lithium iron phosphate (LiFePO4)/lithium cell with such composite separator delivered stable cycling performance and thermal dimensional stability even at an elevated temperature of 120°C. All these fascinating characteristics would boost the application of this composite separator for high-performance lithium ion battery. PMID:24488228

  16. Enhanced flame retardant property of fiber reactive halogen-free organophosphonate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we studied the synthesis, characterization, and flammability of the water-soluble, non-halogenated organophosphorus flame retardant (FR), dimethyl-[1,3,5-(3,5-triacryloylhexahydro)triazinyl]-3-oxopropylphosphonate, for application to cotton farbics. The FR was synthesized in a one-st...

  17. Influence of N-P base fiber reactive organophosphorus flame retardant on cotton thermal behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An efficient synergistic effect between a nitrogen-containing organophosphorus compound in the presence of a catalytic amount of chlorine is proposed based on the cyanuric chloride-linked organophosphorus flame retardant, tetraethyl-2,2'-(6-chloro-1,3,5-triazine-2,4-diyl)bis(azanediyl)bis(ethane-2,1...

  18. A CASE STUDY ON THE RISKS AND BENEFITS OF DECABDE, A MAJOR BROMINATED FLAME RETARDANT

    EPA Science Inventory

    This is a proposal for a roundtable presentation at the 2008 Society of Toxicology Annual Meeting. ABSTRACT BODY: Decabromodiphenyl ether (DecaBDE) is a high production volume chemical used as a flame retardant in a variety of consumer applications; examples of uses in h...

  19. BROMINATED FLAME RETARDANTS: WHAT WE KNOW, AND WHAT WE DON�T

    EPA Science Inventory

    Brominated flame retardants (BFRs) represent a large and diverse class of high volume industrial chemicals which have been developed to provide fire safety. There are many other BFRs which have been used and are under development. Historically, polybrominated biphenyls (PBBs) w...

  20. Surface coating for flame retardant behavior of cotton fabric by layer-by-layer processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flame retardant behavior has been prepared by the layer-by layer assemblies of branched polyethylenimine (BPEI), kaolin, urea, diammonium phosphate (dibasic) on cotton fabrics. Three different kinds of cotton fabrics (print cloth, mercerized print cloth, and mercerized twill fabric) were prepared wi...

  1. Flame-retardant contamination of firefighter personal protective clothing - A potential health risk for firefighters.

    PubMed

    Alexander, Barbara M; Baxter, C Stuart

    2016-09-01

    There is a high incidence of cardiovascular disease and certain cancers in firefighters that may be related to their occupational exposure to hazardous substances. Exposure may result from contaminated personal protective gear, as well as from direct exposure at fire scenes. This study characterized flame-retardant contamination on firefighter personal protective clothing to assess exposure of firefighters to these chemicals. Samples from used and unused firefighter protective clothing, including gloves, hoods and a coat wristlet, were extracted with methylene chloride and analyzed by EPA method 8270D Specific Ion Method (SIM) for polybrominated diphenyl ethers (PBDEs). Until recently PBDEs were some of the most common flame-retardant chemicals used in the US. Fifteen of the seventeen PBDEs for which analysis was performed were found on at least one clothing swatch. Every clothing sample, including an unused hood and all three layers of an unused glove, held a detectable concentration of at least one PBDE. These findings, along with previous research, suggest that firefighters are exposed to PBDE flame retardants at levels much higher than the general public. PBDEs are found widely dispersed in the environment and still persist in existing domestic materials such as clothing and furnishings. Firefighter exposure to flame retardants therefore merits further study.

  2. Thermal decomposition reactions of cotton fabric treated with piperazine-phosphonates derivatives as a flame retardant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been a great scientific interest in exploring the great potential of the piperazine-phosphonates in flame retardant (FR) application on cotton fabric by investigating the thermal decomposition of cotton fabric treated with them. This research tries to understand the mode of action of the t...

  3. The influences of piperazine-phosphonates derivatives on flame retardancy and thermal behaviors of cotton cellulose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to create the environmentally-friendly flame retardants (FRs) for cotton cellulose, two phosphoramidates derivatives, tetraethyl piperazine-1,4-diyldiphosphonate (PDP) and diethyl 4-methylpiperazin-1-ylphosphoramidate (PAP), have been developed. Both were synthesized in high yield and ...

  4. Innovative layer-by-layer processing for flame retardant behavior of cotton fabric

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flame retardant behavior has been prepared by the layer-by layer assemblies of kaolin/casein with inorganic chemicals on cotton fabrics. Three different kinds of cotton fabrics (print cloth, mercerized print cloth, and mercerized twill fabric) were prepared with solutions of mixture of BPEI, urea, ...

  5. Green application of flame retardant cotton fabric using supercritical carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to its environmentally benign character, supercritical carbon dioxide (scCO2) is considered in green chemistry as a substitute for organic solvents in chemical reactions. In this poster, an innovative approach for preparation of flame retardant woven and nonwoven fabrics were obtained by utiliz...

  6. Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008.

    PubMed

    Kajiwara, Natsuko; Noma, Yukio; Takigami, Hidetaka

    2011-09-15

    The concentrations of traditional brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) in new consumer products, including electronic equipment, curtains, wallpaper, and building materials, on the Japanese market in 2008 were investigated. Although some components of the electronic equipment contained bromine at concentrations on the order of percent by weight, as indicated by X-ray fluorescence analysis, the bromine content could not be fully accounted for by the BFRs analyzed in this study, which included polybrominated diphenylethers, decabromodiphenyl ethane, tetrabromobisphenol A, polybromophenols, and hexabromocyclododecanes. These results suggest the use of alternative BFRs such as newly developed formulations derived from tribromophenol, tetrabromobisphenol A, or both. Among the 11 OPFRs analyzed, triphenylphosphate was present at the highest concentrations in all the products investigated, which suggests the use of condensed-type OPFRs as alternative flame retardants, because they contain triphenylphosphate as an impurity. Tripropylphosphate was not detected in any samples; and trimethylphosphate, tributyl tris(2-butoxyethyl)phosphate, and tris(1,3-dichloro-2-propyl)phosphate were detected in only some components and at low concentrations. Note that all the consumer products evaluated in this study also contained traditional BFRs in amounts that were inadequate to impart flame retardancy, which implies the incorporation of recycled plastic materials containing BFRs that are of global concern.

  7. Structural effect of phosphoramidate derivatives on the thermal and flame retardant behaviors of treated cotton cellulose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present research is aimed at studying the structural effect of two phosphoramidate derivatives EHP Diethyl 3-hydroxypropylphosphoramidate and MHP Dimethyl 3-hydroxypropylphosphoramidate as flame retardants (FRs) for cotton cellulose. EHP and MHP were obtained in very high yield and purity by on...

  8. Structural effect of phosphorous-nitrogen containing flame retardant derivatives on thermal behaviors of treated cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present research is aimed at studying the structural effect of two phosphoramidate derivatives such as Diethyl 3-hydroxypropylphosphoramidate and Dimethyl 3-hydroxypropylphosphoramidate as flame retardants (FRs) for cotton. These FRs were obtained in very high yield and purity by one step proced...

  9. Development for phosphorus-nitrogen containing flame retardant compound and its textile application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel flame retardant Diethyl 4-methylpiperazin-1-ylphosphoramidate, CN-3 containing phosphorous and nitrogen has been prepared. Its chemical structure was confirmed by nuclear magnetic resonance (1H, 13C, 31P NMR), Fourier transform infrared spectrometry (FTIR), and elemental analysis. Print ...

  10. Mineralisation and primary biodegradation of aromatic organophosphorus flame retardants in activated sludge.

    PubMed

    Jurgens, Sharona S; Helmus, Rick; Waaijers, Susanne L; Uittenbogaard, Dirk; Dunnebier, Dorien; Vleugel, Melissa; Kraak, Michiel H S; de Voogt, Pim; Parsons, John R

    2014-09-01

    Halogen-free flame retardants (HFFRs), such as the aromatic organophosphorus flame retardants (OPFRs) triphenyl phosphate (TPHP), resorcinol bis(diphenylphosphate) (PBDPP) and bisphenol A bis(diphenylphosphate) (BPA-BDPP) have been proposed as potential replacements for brominated flame retardants in polymers and textiles. Although these OPFRs are already marketed, their environmental fate and effects are poorly characterised. The aim of this study was therefore to determine the mineralisation and primary biodegradation of these OPFRs by activated sludge. Mineralisation was monitored by measuring CO2 production by means of GC analysis, whereas primary biodegradation was monitored by LC-MS/MS analysis of the OPFRs and their potential metabolites. TPHP was biodegraded and mineralised most rapidly and achieved the requirement for ready biodegradability (60% of theoretical maximum mineralisation). Primary biodegradation was also rapid for PBDPP, but 60% mineralisation was not achieved within the time of the test, suggesting that transformation products of PBDPP may accumulate. Primary degradation of BPA-BDPP was very slow and very low CO2 production was also observed. Based on these results, TPHP and to a lesser extent PBDPP appear to be suitable replacements for the more environmentally persistent brominated flame retardants.

  11. TOXICOKINETICS OF THE FLAME RETARDANT HEXABROMOCYCLODODECANE GAMMA: EFFECT OF DOSE, TIMING, ROUTE, REPEATED EXPOSURE AND METABOLISM

    EPA Science Inventory

    1,2,5,6,9,10-Hexabromocyc1ododecane-gamma (y-HBCD) is the predominate diastereoisomer in the commercial HBCD mixture used as a flame retardant in a wide variety of consumer products. Three main diastereoisomers, alpha (a), beta (B) and gamma (y) comprise the commercial mixture. D...

  12. Study of Phosphorous and Nitrogen Containing Economic Flame Retardant Materials and Their Textile Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we have discovered that cyanuric chloride is excellent starting materials for preparing with phosphonates that interact well with cotton to improve flame retardant (FR) performance properties. The mono- or bis-(dimethoxy-hydroxymethyl phosphonyl) cyanurate derivatives have been prepared by...

  13. Citric acid based durable and sustainable flame retardant treatment for lyocell fabric.

    PubMed

    Mengal, Naveed; Syed, Uzma; Malik, Samander Ali; Ali Sahito, Iftikhar; Jeong, Sung Hoon

    2016-11-20

    Pyrovatex CP New, is a commonly used organophosphorus based flame retardant (FR) reagent for cellulosic materials. However, it has a drawback of high formaldehyde release when used with methylated melamine (MM) based cross-linker, a known carcinogenous compound. In the present approach, a durable and sustainable flame retarding recipe formulation for lyocell fabrics is developed using citric acid (CA) as a cross-linker. The FR finish was applied by pad-dry-cure process. The treated fabrics were characterized for surface morphology, elemental analysis, TG analysis, char study and FT-IR spectroscopy. Furthermore, flame retardancy, washing durability, formaldehyde release and breaking strength were also assessed, and compared with the conventional MM based FR recipe. The fabric samples treated with 400gL(-1) of FR with either 40 or 80gL(-1) of CA demonstrate flame retardancy even after 10 washing cycles. Furthermore, a 75% reduction in formaldehyde release is achieved. Higher char yield and lower decomposition temperature are found compared to untreated and FR+ MM treated lyocell. Such an improved sustainable recipe formulation can be used for lyocell fabric without any health risk in apparel wear.

  14. Flame-retardant EPDM compounds containing phenanthrene to enhance radiation resistance

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Huang, Wei; Jiang, Shu-Bin; Li, Xiao-Yan; An, You; Li, Chuang; Gao, Xiao-Ling; Chen, Hong-Bing

    2017-01-01

    Ethylene propylene diene monomer (EPDM) compounds with good flame-retardant and γ-ray radiation resistant properties were prepared by adding complex flame retardants and phenathrene. The resultant EPDM formulations have a long time to ignition (TTI >46 s), a low peak heat release rate (PHRR 341 kW/m2) and a high limited oxygen index (LOI >30). Effects of γ-ray radiation on the resultant flame-retardant EPDM was investigated. The formulated EPDM is a crosslinking dominated polymer under γ-ray radiation. The γ-ray radiation resistant property of EPDM was enhanced by adding phenanthrene. Elongation at break of EPDM formulated with phenanthrene could retain 91% after being irradiated to 0.3 MGy and still retains 40% elongation even after being irradiated to 0.9 MGy, which is much better the control. It is expected that the formulated flame-retardant and radiation resistant EPDM materials could meet the requirements for use in radiation environments.

  15. Levels of Urinary Metabolites of Organophosphate Flame Retardants, TDCIPP, and TPHP, in Pregnant Women in Shanghai

    PubMed Central

    Ouyang, Fengxiu; Liu, Liangpo; Wang, Xu; Wang, Xia; Li, Yi-Ju; Murtha, Amy; Shen, Heqing; Zhang, Junfeng; Zhang, Jun Jim

    2016-01-01

    Flame retardants are widely used in consumer products to reduce their flammability. Previously used flame retardants have been sequentially banned due to their environmental and human toxicity. Currently, tris(1,3-dichloropropyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) are among the most commonly used flame retardants. TDCIPP and TPHP are reproductive toxins and have carcinogenic, neurotoxic, and endocrine-disrupting properties. Although high levels of TDCIPP and TPHP have been found in drinking water, seawater, and office air in China, data regarding human exposure are lacking. In this study, we assessed the level of urinary TPHP and TDCIPP metabolites (DPHP and BDCIPP, resp.) in a cohort of pregnant women (N = 23) from Shanghai, China, using liquid chromatography-tandem mass spectrometry. DPHP were detected in 100% urine samples, while only four urine samples had detectable level of BDCIPP in this cohort (17% detected). Geometric means of DPHP and BDCIPP concentrations were 1.1 ng/mL (interquartile range [IQR]: 0.6, 1.5 ng/mL) and 1.2 ng/mL (IQR: 0.6, 2.2 ng/mL), respectively. In this small cohort, urinary DPHP and BDCIPP levels were not significantly correlated with miscarriages, neonatal birthweight, gestational diabetes, or maternal age. These data suggest that exposure to TPHP is widespread, and they demonstrate the feasibility of using urinary biomarkers to measure exposures to modern flame-retardant chemicals. PMID:28115951

  16. Flame Retardant Behavior of Polyelectrolyte-Clay Thin Film Assemblies on Cotton Fabric

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT(0.2 or 1 wt. ...

  17. Approach for achieving flame retardancy while retaining physical properties in a compatible polymer matrix

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor)

    2011-01-01

    The invention provides polymer blends containing polyhydroxyamide and one or more flammable polymers. The polymer blends are flame retardant and have improved durability and heat stability compared to the flammable polymer portion of the blends. Articles containing the polymer blends are also provided.

  18. Using the parallelogram approach to estimate human percutaneous bioavailability for novel & legacy brominated flame retardants

    EPA Science Inventory

    (This is an extended abstract. The following text was taken from the Discussion and Conclusion section.) Humans are frequently exposed to brominated flame retardants (BFRs), especially via dermal contact with contaminated dust. Human and rat skin data were integrated using a pa...

  19. Approach for achieving flame retardancy while retaining physical properties in a compatible polymer matrix

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor)

    2007-01-01

    The invention provides polymer blends containing polyhydroxyamide and one or more flammable polymers. The polymer blends are flame retardant and have improved durability and heat stability compared to the flammable polymer portion of the blends. Articles containing the polymer blends are also provided.

  20. Toxicokinetics of the Flame Retardant Hexabromocyclododecane Gamma: Effect of Dose, Timing, Route, Repeated Exposure and Metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1,2,5,6,9,10-Hexabromocyclododecane-gamma ('-HBCD) is the predominate diastereoisomer in the commercial HBCD mixture used as a flame retardant in a wide variety of consumer products. Three main diastereoisomers, alpha (a), beta (ß) and gamma (') comprise the commercial mixture. Despite the '-diaster...

  1. Effects of Organophosphorus Flame Retardants on Spontaneous Activity in Neuronal Networks Grown on Microelectrode Arrays

    EPA Science Inventory

    EFFECTS OF ORGANOPHOSPHORUS FLAME RETARDANTS ON SPONTANEOUS ACTIVITY IN NEURONAL NETWORKS GROWN ON MICROELECTRODE ARRAYS TJ Shafer1, K Wallace1, WR Mundy1, M Behl2,. 1Integrated Systems Toxicology Division, NHEERL, USEPA, RTP, NC, USA, 2National Toxicology Program, NIEHS, RTP, NC...

  2. Multiparameter toxicity assessment of novel DOPO-derived organophosphorus flame retardants.

    PubMed

    Hirsch, Cordula; Striegl, Britta; Mathes, Stephanie; Adlhart, Christian; Edelmann, Michael; Bono, Epifania; Gaan, Sabyasachi; Salmeia, Khalifah A; Hoelting, Lisa; Krebs, Alice; Nyffeler, Johanna; Pape, Regina; Bürkle, Alexander; Leist, Marcel; Wick, Peter; Schildknecht, Stefan

    2017-01-01

    Halogen-free organophosphorus flame retardants are considered as replacements for the phased-out class of polybrominated diphenyl ethers (PBDEs). However, toxicological information on new flame retardants is still limited. Based on their excellent flame retardation potential, we have selected three novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives and assessed their toxicological profile using a battery of in vitro test systems in order to provide toxicological information before their large-scale production and use. PBDE-99, applied as a reference compound, exhibited distinct neuro-selective cytotoxicity at concentrations ≥10 µM. 6-(2-((6-oxido-6H-dibenzo[c,e][1,2]oxaphosphinin-6-yl)amino)ethoxy)-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (ETA-DOPO) and 6,6'-(ethane-1,2-diylbis(oxy))bis(6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide) (EG-DOPO) displayed adverse effects at concentrations >10 µM in test systems reflecting the properties of human central and peripheral nervous system neurons, as well as in a set of non-neuronal cell types. DOPO and its derivative 6,6'-(ethane-1,2-diylbis(azanediyl))bis(6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide) (EDA-DOPO) were neither neurotoxic, nor did they exhibit an influence on neural crest cell migration, or on the integrity of human skin equivalents. The two compounds furthermore displayed no inflammatory activation potential, nor did they affect algae growth or daphnia viability at concentrations ≤400 µM. Based on the superior flame retardation properties, biophysical features suited for use in polyurethane foams, and low cytotoxicity of EDA-DOPO, our results suggest that it is a candidate for the replacement of currently applied flame retardants.

  3. Flame retardants in indoor dust and air of a hotel in Japan.

    PubMed

    Takigami, Hidetaka; Suzuki, Go; Hirai, Yasuhiro; Ishikawa, Yukari; Sunami, Masakiyo; Sakai, Shin-ichi

    2009-05-01

    Occurrence of flame retardants (FRs) in the indoor environment of highly flame-retarded public facilities is an important concern from the viewpoint of exposure because it is likely that FRs are used to a greater degree in these facilities than in homes. For this study, brominated flame-retardants (BFRs) and organophosphate flame-retardants and plasticizers (OPs), and brominated dibenzo-p-dioxins/furans (PBDD/DFs) were measured in eight floor dust samples taken from a Japanese commercial hotel that was assumed to have many flame-retardant materials. Concentrations of polybrominated diphenylethers (PBDEs) and hexabromocyclododecanes (HBCDs) varied by about two orders of magnitude, from 9.8-1700 ng/g (median of 1200 ng/g) and from 72-1300 ng/g (median of 740 ng/g), respectively. Concentrations of the two types of BFRs described above were most dominant among the investigated BFRs in the dust samples. It is inferred that BFR and PBDD/DF concentrations are on the same level as those in house and office dust samples reported based on past studies. Regarding concentrations of 11 OPs, 7 OPs were detected on the order of micrograms per gram, which are equivalent to or exceed the BFR concentrations such as PBDEs and HBCDs. Concentrations of the investigated compounds were not uniform among dust samples collected throughout the hotel: concentrations differed among floors, suggesting that localization of source products is associated with FR concentrations in dust. Passive air sampling was also conducted to monitor BFRs in the indoor air of hotel rooms: the performance of an air cleaner placed in the room was evaluated in terms of reducing airborne BFR concentrations. Monitoring results suggest that operation of an appropriate air cleaner can reduce both gaseous and particulate BFRs in indoor air.

  4. Analysis of Flame Retardancy in Polymer Blends by Synchrotron X-ray K-edge Tomography and Interferometric Phase Contrast Movies.

    PubMed

    Olatinwo, Mutairu B; Ham, Kyungmin; McCarney, Jonathan; Marathe, Shashidhara; Ge, Jinghua; Knapp, Gerry; Butler, Leslie G

    2016-03-10

    Underwriters Laboratories 94 test bars have been imaged with X-ray K-edge tomography between 12 and 32 keV to assess the bromine and antimony concentration gradient across char layers of partially burnt samples. Phase contrast tomography on partially burnt samples showed gas bubbles and dark-field scattering ascribed to residual blend inhomogeneity. In addition, single-shot grating interferometry was used to record X-ray movies of test samples during heating (IR and flame) intended to mimic the UL 94 plastics flammability test. The UL 94 test bars were formulated with varying concentrations of a brominated flame retardant, Saytex 8010, and a synergist, Sb2O3, blended into high-impact polystyrene (HIPS). Depending on the sample composition, samples will pass or fail the UL 94 plastics flammability test. Tomography and interferometry imaging show differences that correlate with UL 94 performance. Key features such as char layer, gas bubble formation, microcracks, and dissolution of the flame retardant in the char layer regions are used in understanding the efficiency of the flame retardant and synergist. The samples that pass the UL 94 test have a thick, highly visible char layer as well as an interior rich in gas bubbles. Growth of gas bubbles from flame-retardant thermal decomposition is noted in the X-ray phase contrast movies. Also noteworthy is an absence of bubbles near the burning surface of the polymer; dark-field images after burning suggest a microcrack structure between interior bubbles and the surface. The accepted mechanism for flame retardant activity includes free radical quenching in the flame by bromine and antimony species. The imaging supports this as well as provides a fast inspection of other parameters, such as viscosity and surface tension.

  5. A novel reutilization method for waste printed circuit boards as flame retardant and smoke suppressant for poly (vinyl chloride).

    PubMed

    Xiu, Fu-Rong; Weng, Huiwei; Qi, Yingying; Yu, Gending; Zhang, Zhigang; Zhang, Fu-Shen

    2016-09-05

    In this study, a novel reutilization method for waste printed circuit boards (PCBs) as flame retardant and smoke suppressant for poly (vinyl chloride) (PVC) was successfully testified. A supercritical water oxidation (SCWO) process was applied to treat waste PCBs before they could be used as flame retardants of PVC. The results indicated that SCWO conditions had a significant effect on the flame retarding and smoke suppressing properties of waste PCBs for PVC. Cu2O, CuO, and SnO2 were the main active ingredients in waste PCBs-derived flame retardants. A conversion of Cu elements (Cu(0)→Cu(+)→Cu(2+)) during SCWO process with the increase of reaction temperature was found to be the key influence factor for the flame retarding properties of SCWO-treated PCBs. The experiment results also showed that there was a synergistic effect of flame retardancy between Cu(+) and Cu(2+). After the optimized SCWO treatment, SCWO-treated PCBs significantly improved the flame retardancy and smoke suppression of PVC. Limiting oxygen index (LOI) and char yield (CY) increased with increasing SCWO-treated PCBs content in PVC, while smoke density rating (SDR) and maximum smoke density (MSD) decreased markedly. The mechanical properties of PVC samples were influenced in different degree by adding different content SCWO-treated PCBs.

  6. Novel and High Volume Use Flame Retardants in US Couches Reflective of the 2005 PentaBDE Phase Out

    PubMed Central

    2012-01-01

    California’s furniture flammability standard Technical Bulletin 117 (TB 117) is believed to be a major driver of chemical flame retardant (FR) use in residential furniture in the United States. With the phase-out of the polybrominated diphenyl ether (PBDE) FR mixture PentaBDE in 2005, alternative FRs are increasingly being used to meet TB 117; however, it was unclear which chemicals were being used and how frequently. To address this data gap, we collected and analyzed 102 samples of polyurethane foam from residential couches purchased in the United States from 1985 to 2010. Overall, we detected chemical flame retardants in 85% of the couches. In samples purchased prior to 2005 (n = 41) PBDEs associated with the PentaBDE mixture including BDEs 47, 99, and 100 (PentaBDE) were the most common FR detected (39%), followed by tris(1,3-dichloroisopropyl) phosphate (TDCPP; 24%), which is a suspected human carcinogen. In samples purchased in 2005 or later (n = 61) the most common FRs detected were TDCPP (52%) and components associated with the Firemaster550 (FM 550) mixture (18%). Since the 2005 phase-out of PentaBDE, the use of TDCPP increased significantly. In addition, a mixture of nonhalogenated organophosphate FRs that included triphenyl phosphate (TPP), tris(4-butylphenyl) phosphate (TBPP), and a mix of butylphenyl phosphate isomers were observed in 13% of the couch samples purchased in 2005 or later. Overall the prevalence of flame retardants (and PentaBDE) was higher in couches bought in California compared to elsewhere, although the difference was not quite significant (p = 0.054 for PentaBDE). The difference was greater before 2005 than after, suggesting that TB 117 is becoming a de facto standard across the U.S. We determined that the presence of a TB 117 label did predict the presence of a FR; however, lack of a label did not predict the absence of a flame retardant. Following the PentaBDE phase out, we also found an increased number of flame retardants on

  7. Perinatal exposure to the flame retardant triphenyl phosphate accelerates the onset of type 2 diabetes and causes adipose accumulation in UCD-type 2 diabetes mellitus rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triphenyl phosphate (TPP) is an additive used globally to in furniture, foams, and electronics products either as a flame retardant or plasticizer and is found in household dust. We administered TPP from gestational day 8.5 to weaning and evaluated metabolic phenotypes of 3.5 month old male and fema...

  8. Polysiloxane-Based Organoclay Nanocomposites as Flame Retardants

    DTIC Science & Technology

    2013-01-01

    per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information...Journal Article 3. DATES COVERED (From - To) Oct 2008 – Sep 2011 4. TITLE AND SUBTITLE Polysiloxane-based Organoclay Nanocomposites as Flame

  9. Flame-retardant polymeric foams: manufacturing, applications, and hazards. July 1984-August 1988 (Citations from the Rubber and Plastics Research Association data base). Report for July 1984-August 1988

    SciTech Connect

    Not Available

    1988-08-01

    This bibliography contains citations concerning flame-retardant compositions and additives used in the manufacture of polymeric foams. Latex, polyurethane, polyether, silicone rubber, phenol formaldehyde, polyisocyanurate, polystyrene, PVC, and polyphenylene ether are among the foam polymers discussed relative to tests performed to evaluate the toxicity of flame retardants in smoke and during manufacturing. Applications including public transportation, furniture, automotives, medical and building materials are discussed. (This updated bibliography contains 199 citations, 17 of which are new entries to the previous edition.)

  10. Detection of Organophosphate Flame Retardants in Furniture Foam and US House Dust

    PubMed Central

    Stapleton, Heather M.; Klosterhaus, Susan; Eagle, Sarah; Fuh, Jennifer; Meeker, John D.; Blum, Arlene; Webster, Thomas F.

    2009-01-01

    Restrictions on the use of polybrominated diphenyl ethers (PBDEs) have resulted in the increased use of alternate flame retardant chemicals to meet flammability standards. However, it has been difficult to determine which chemical formulations are currently being used in high volumes to meet flammability standards since the use of flame retardant formulations in consumer products is not transparent (i.e. not provided to customers). To investigate chemicals being used as replacements for PentaBDE in polyurethane foam, we analyzed foam samples from 26 different pieces of furniture purchased in the United States primarily between 2003 and 2009 using gas chromatography mass spectrometry. Samples included foam from couches, chairs, mattress pads, pillows, and, in one case, foam from a sound proofing system of a laboratory grade dust sieve. Fifteen of the foam samples contained the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP; 1–5% by weight), four samples contained tris(1-chloro-2-propyl) phosphate (TCPP; 0.5 –2.2 % by weight), one sample contained brominated chemicals found in a new flame retardant mixture called Firemaster 550 (4.2% by weight), and one foam sample collected from a futon likely purchased prior to 2004 contained PentaBDE (0.5% by weight). Due to the high frequency of detection of the chlorinated phosphate compounds in furniture foam, we analyzed extracts from 50 house dust samples collected between 2002 and 2007 in the Boston, MA area for TDCPP, TCPP, and another high volume use organophosphate-based flame retardant used in foam, triphenylphosphate (TPP). Detection frequencies for TDCPP and TPP in the dust samples were >96% and were log normally distributed, similar to observations for PBDEs. TCPP was positively detected in dust in only 24% of the samples, but detection was significantly limited by a co-elution problem. The geometric mean concentrations for TCPP, TDCPP and TPP in house dust were 570, 1890, and 7360 ng/g, respectively

  11. TSCA Work Plan Chemical Problem Formulation and Initial Assessment Tetrabromobisphenol A and Related Chemicals Cluster Flame Retardants

    EPA Pesticide Factsheets

    EPA released a problem formulation for TBBPA and related chemicals used as a flame retardants in plastics/printed circuit boards for electronics. The goal of this problem formulation was to identify scenarios where further risk analysis may be necessary.

  12. Effects of neonatal exposure to the flame retardant tetrabromobisphenol-A, aluminum diethylphosphinate or zinc stannate on long-term potentiation and synaptic protein levels in mice.

    PubMed

    Hendriks, Hester S; Koolen, Lucas A E; Dingemans, Milou M L; Viberg, Henrik; Lee, Iwa; Leonards, Pim E G; Ramakers, Geert M J; Westerink, Remco H S

    2015-12-01

    Brominated flame retardants such as tetrabromobisphenol-A (TBBPA) may exert (developmental) neurotoxic effects. However, data on (neuro)toxicity of halogen-free flame retardants (HFFRs) are scarce. Recent in vitro studies indicated a high neurotoxic potential for some HFFRs, e.g., zinc stannate (ZS), whereas the neurotoxic potential of other HFFRs, such as aluminum diethylphosphinate (Alpi), appears low. However, the in vivo (neuro)toxicity of these compounds is largely unknown. We therefore investigated effects of neonatal exposure to TBBPA, Alpi or ZS on synaptic plasticity in mouse hippocampus. Male C57bl/6 mice received a single oral dose of 211 µmol/kg bw TBBPA, Alpi or ZS on postnatal day (PND) 10. On PND 17-19, effects on hippocampal synaptic plasticity were investigated using ex vivo extracellular field recordings. Additionally, we measured levels of postsynaptic proteins involved in long-term potentiation (LTP) as well as flame retardant concentrations in brain, muscle and liver tissues. All three flame retardants induced minor, but insignificant, effects on LTP. Additionally, TBBPA induced a minor decrease in post-tetanic potentiation. Despite these minor effects, expression of selected synaptic proteins involved in LTP was not affected. The flame retardants could not be measured in significant amounts in the brains, suggesting low bioavailability and/or rapid elimination/metabolism. We therefore conclude that a single neonatal exposure on PND 10 to TBBPA, Alpi or ZS does affect neurodevelopment and synaptic plasticity only to a small extent in mice. Additional data, in particular on persistence, bioaccumulation and (in vivo) toxicity, following prolonged (developmental) exposure are required for further (human) risk assessment.

  13. Influence of intumescent flame retardant and sepiolite on the mechanical and rheological behavior of polypropylene

    NASA Astrophysics Data System (ADS)

    Pappalardo, Salvatore; Acierno, Domenico; Russo, Pietro

    2016-05-01

    The mechanical and dynamic-mechanical properties and the capillary rheological behavior of polypropylene (PP) containing an intumescent flame retardant and sepiolite nanoparticles are investigated. Previous studies demonstrated that the combination of 0.5 wt% of organically modified sepiolite (OSEP) with 12 wt% of flame retardant (ET) allows to obtain interesting fire properties. In this study it is shown that such combination also ensure an improvement of the mechanical properties with respect to both the neat resin and the corresponding binary formulations. This result may be related to the higher degree of crystallinity observed for this ternary formulation by DSC characterization. This advantages are obtained without worsening the processability of the hosting matrix.

  14. Retrospective analysis of "new" flame retardants in the global atmosphere under the GAPS Network.

    PubMed

    Lee, Sum Chi; Sverko, Ed; Harner, Tom; Pozo, Karla; Barresi, Enzo; Schachtschneider, JoAnne; Zaruk, Donna; DeJong, Maryl; Narayan, Julie

    2016-10-01

    A retrospective analysis was conducted on air samples that were collected in 2005 under the Global Atmospheric Passive Sampling (GAPS) Network around the time period when the Stockholm Convention on Persistent Organic Pollutants came into force. Results are presented for several new flame retardants, including hexabromocyclododecane (HBCD), which was recently listed under the Convention (2013). These results represent the first global-scale distributions in air for these compounds. The targeted compounds are shown to have unique global distributions in air, which highlights the challenges in understanding the sources and environmental fate of each chemical, and ultimately in their assessments as persistent organic pollutants. The study also demonstrates the feasibility of using the PUF disk passive air sampler to study these new flame retardants in air, many of which exist entirely in the particle-phase as demonstrated in this study using a KOA-based partitioning model.

  15. Flame retardant brominated styrene-based polymers. VI. Synthesis and characterization of dibromostyrene graft latices

    SciTech Connect

    Favstritsky, N.A.; Wang, J.L.

    1995-12-01

    Nine dibromostyrene-grafted commercial lattices were prepared in 8 oz bottles by an emulsion polymerization technique. Proper selection of lattices used in conjunction with the dibromostyrene monomer enables production of flame retardant latex products useful in a wide range of coating applications. The prime factor to be considered in the choice of a latex or a latex mixture to be grafted is the glass transition temperature(s) of the polymer(s) in the final latex desired. Lattices chosen for grafting are commercial lattices, such as Rhoplex HA-24 and HA-8, Hystretch V-29, Airflex 465, 4500, 4514 and 4530, Pliolite SBR latex and polybutadiene latex. The graft latex was characterized in terms of glass transition temperature, solids content, bromine content, grafted dibromostyrene and flame retardancy.

  16. Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure.

    PubMed

    Wei, Gao-Ling; Li, Ding-Qiang; Zhuo, Mu-Ning; Liao, Yi-Shan; Xie, Zhen-Yue; Guo, Tai-Long; Li, Jun-Jie; Zhang, Si-Yi; Liang, Zhi-Quan

    2015-01-01

    Due to the restricted use and ban of brominated flame retardants, organophosphorus compounds (OPs), extensively used as flame retardants and plasticizers, are ubiquitous in various environmental compartments worldwide. The present study shows that the release of OPs from a wide variety of commercial products and wastewater discharge might be considered as primary emission sources and that high potential of long-range atmospheric transport and persistence of OPs would be responsible for their presence in various matrices on a global scale. The occurrence and environmental behaviors of OPs in diverse matrices (e.g., dust, air, water, sediment, soil and biota) are reviewed. Human exposures to OPs via dermal contact, dust ingestion, inhalation and dietary intake are comprehensively evaluated. Finally, this study identifies gaps in the existing issues and generates a future agenda for the emerging contaminants OPs.

  17. Advanced treatment process for pharmaceuticals, endocrine disruptors, and flame retardants removal.

    PubMed

    Sundaram, Vijay; Emerick, Robert W; Shumaker, Stanley E

    2014-02-01

    The objective of this project was to demonstrate the effectiveness of an advanced treatment process that did not utilize reverse osmosis for the removal of pharmaceuticals, endocrine disruptors and flame retardants (collectively referred as contaminants of emerging concern [CECs]) from municipal effluent. The advanced treatment process consisted of (in the order of use): membrane filtration, ozonation (O3), and biologically active carbon (BAC) filtration. Ozone dosage of 5 mg/L or more was needed for desired CEC removal. Biologically active carbon removed flame retardants, and ozonation byproducts including NDMA and aldehydes. The project successfully demonstrated 1) the removal of a wide range of CECs, 2) reduction of estrogen activity to background levels, and 3) removal of ozonation byproducts. Treatment was achieved at lower costs and power utilization than reverse osmosis and without generating a concentrate stream. Results from this project could make CEC removal feasible, especially in situations where reverse osmosis treatment is infeasible.

  18. Intumescent flame retardants for polymers. I. The poly(acrylonitrile)-ammonium polyphosphate-hexabromocyclododecane system

    SciTech Connect

    Ballistreri, A.; Montaudo, G.; Puglisi, C.; Scamporrino, E.; Vitalini, D.

    1983-05-01

    The influence of ammonium polyphosphate (APP) and hexabromocyclododecane (HBCD) as flame retardant (FR) on poly(acrylonitrile) (PAN) has been examined. The APP-HBCD system behaves as an intumescent flame retardant (IFR) formulation, APP being the char-forming agent and HBCD the blowing agent. A negligible gas-phase mode of action was ascertained for HBCD with this substrate. A synergism between the two FR agents was observed, corresponding to about 50% increased efficacy with respect to the separate effects of the two components. Thermogravimetry (TG), oxygen index (OI), nitrous oxide index (NOI) experiments and phosphorous residue measurements were performed to substantiate the conclusion that a condensed phase mechanism of action accounts for all the facts observed.

  19. Detection of organophosphate flame retardants in furniture foam and U.S. house dust.

    PubMed

    Stapleton, Heather M; Klosterhaus, Susan; Eagle, Sarah; Fuh, Jennifer; Meeker, John D; Blum, Arlene; Webster, Thomas F

    2009-10-01

    Restrictions on the use of polybrominated diphenyl ethers (PBDEs) have resulted in the increased use of alternate flame retardant chemicals to meet flammability standards. However, it has been difficult to determine which chemical formulations are currently being used in high volumes to meet flammability standards since the use of flame retardant formulations in consumer products is not transparent (i.e., not provided to customers). To investigate chemicals being used as replacements for PentaBDE in polyurethane foam, we analyzed foam samples from 26 different pieces of furniture purchased in the United States primarily between 2003 and 2009. Samples included foam from couches, chairs, mattress pads, pillows, and, in one case, foam from a sound-proofing system of a laboratory-grade dust sieve, and were analyzed using gas chromatography mass spectrometry. Fifteen of the foam samples contained the flame retardanttris(1,3-dichloro-2-propyl) phosphate (TDCPP; 1-5% by weight), four samples contained tris(1-chloro-2-propyl) phosphate (TCPP; 0.5 -22% by weight), one sample contained brominated chemicals found in a new flame retardant mixture called Firemaster 550 (4.2% by weight), and one foam sample collected from a futon likely purchased prior to 2004 contained PentaBDE (0.5% by weight). Due to the high frequency of detection of the chlorinated phosphate compounds in furniture foam,we analyzed extracts from 50 house dust samples collected between 2002 and 2007 in the Boston, MA area for TDCPP, TCPP, and another high volume use organophosphate-based flame retardant used in foam, triphenylphosphate (TPP). Detection frequencies for TDCPP and TPP in the dust samples were > 96% and were log normally distributed, similar to observations for PBDEs. TCPP was positively detected in dust in only 24% of the samples, but detection was significantly limited by a coelution problem. The geometric mean concentrations for TCPP, TDCPP, and TPP in house dust were 570, 1890, and 7360 ng

  20. Effect of gravity on halogenated hydrocarbon flame retardant effectiveness

    NASA Technical Reports Server (NTRS)

    Ronney, P. D.

    1984-01-01

    Flammability limits, burning velocities, and minimum ignition energies under initially quiescent conditions were measured for stoichiometric and fuel-lean methane-, ethane-, and propane-air mixtures containing varying concentrations of Halon 1301. The characteristics of near-limit flames were strongly affected by fuel type but not Halon concentration. The conclusions were that the mechanism of the flammability limits was affected by fuel type but not Halon concentration, that the zero-g flammability limit is probably related to a stability criterion which is affected mostly by the molecular diffusion characteristics of the reactant gases and is mostly independent of chemical kinetics, and that the one-g upward flammability and ignition limits provide adequate criteria for safety at one-g and zero-g for both uninhibited and inhibited mixtures.

  1. Flame Retardant Fibers for Human Space Exploration - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2017-01-01

    The National Aeronautics and Space Administration (NASA) has led the development of unique flame retardant fibers for the specific requirements of different space programs. Three of these fibers have greatly contributed to the safety of all the space missions since the Apollo program. Beta alumina-silica microfiber developed for the outer layer of the space suit after the Apollo 1 fire is no longer used and has been replaced by other glass fibers. Expanded polytetrafluoroethylene (e-PTFE) fiber used in the current spacesuit is mostly known today through its trade mark Gore-Tex®. Polybenzimidazole (PBI) filament fiber used in many applications from the Apollo to the Space Shuttle program is no longer available. More recently, TOR"TM" copolymer of polyimide fiber developed during the space shuttle program to resist the atomic oxygen present in Low Earth Orbit has been barely used. The high cost and narrow range of aeronautical and aerospace applications have, however, led to a limited production of these fibers. Only fibers that found niche markets survived. Yet, deep space exploration will require more of these inherently flame retardant fibers than what is available today. There is a need for new flame retardant fabrics inside the space vehicles as well as a need for logistics reduction for long term space missions. Materials like modacrylic and polyimide are good candidates for future flame retardant aerospace fabrics. New fabrics must be developed for astronauts' clothing, as well as crew quarters and habitat. Therefore, both staple and filament fibers of various linear densities are needed for a three years mission to Mars.

  2. Organophosphate Flame Retardants Act as Endocrine-Disrupting Chemicals in MA-10 Mouse Tumor Leydig Cells.

    PubMed

    Schang, Gauthier; Robaire, Bernard; Hales, Barbara F

    2016-04-01

    The organophosphate flame retardants (OPFRs) have emerged as alternatives to banned brominated flame retardants but little is known about their possible activity as endocrine disruptors. Our goal was to compare the effects of 7 commonly used OPFRsin vitroon MA-10 mouse Leydig tumor cells to those of a major brominated flame retardant, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). The effects of OPFRs and BDE-47 on mitochondrial activity, cell counts, oxidative stress, steroid secretion and gene expression were investigated. BDE-47 and all 7 OPFRs tested significantly reduced MA-10 cell mitochondrial activity (concentrations ≥50 μM) and cell number (concentrations ≥10 μM). All of the OPFRs significantly increased (10 μM, 1.7-4.4-fold) superoxide production whereas BDE-47 had no significant effect. Basal progesterone production was significantly increased (10 μM, 1.5 to 3-fold) by 2-ethylhexyl diphenyl phosphate, isodecyl diphenyl phosphate, isopropylated triphenyl phosphate, tert-butylphenyl diphenyl phosphate, and tricresyl phosphate, while BDE-47, triphenyl phosphate and tri-o-cresyl phosphate had no effect. Interestingly, isopropylated triphenyl phosphate enhanced dbcAMP-stimulated steroid production (∼2-fold), while tri-o-cresyl phosphate decreased (∼2/3) LH-stimulated steroid production. Several OPFRs affected the expression of genes involved in the biosynthesis of progesterone. In conclusion, all the OPFRs tested affected mitochondrial activity, cell survival, and superoxide production. Basal or stimulated steroid secretion was affected by all of the OPFRs except triphenyl phosphate; BDE-47 had no effect. Hence, the OPFRs currently used as alternatives affect Leydig cells to a greater extent than the brominated flame retardants that they have replaced.

  3. Study of a novel phosphorus-containing flame retardant for cotton fabric

    NASA Astrophysics Data System (ADS)

    Gao, W. W.; Lu, Y. H.; Xu, F.; Zhang, G. X.; Zhang, F. X.

    2015-07-01

    In this paper, a high efficiency FR named HPA was applied to treat cotton fabric. The results of LOI values and vertical flammability test showed that HPA treated cotton fabric had the best flame retardancy (LOI value was 36.0%), when the FR concentration is 50 g/L, and cured at 180°C for 7 min. During the process of holding back the combustion, HPA behaves the excellent properties of FR for cotton fabric.

  4. Influence of radiation-crosslinking on flame retarded polymer materials-How crosslinking disrupts the barrier effect

    NASA Astrophysics Data System (ADS)

    Sonnier, Rodolphe; Caro-Bretelle, Anne-Sophie; Dumazert, Loïc; Longerey, Marc; Otazaghine, Belkacem

    2015-01-01

    Fire behavior of flame retardant-free and flame retarded PP/PA6 blends was studied using pyrolysis-combustion flow calorimeter, cone calorimeter and epiradiator equipped with infrared camera and pyrometer. Blends were previously γ-irradiated in presence of crosslinking agents at various doses (up to 100 kGy) in order to assess the influence of irradiation crosslinking on flame retardancy. Crosslinked specimens exhibit a solid-like behavior under high temperature gradient in cone calorimeter and then distort considerably. The influence of such a behavior depends on the material properties. When the flame retardancy is provided by heat shielding effect, heat distortion disrupts the top protective layer leading to a substantial increase of peak of heat release rate (pHRR). The barrier layer is no longer able to prevent the heat transfer to the underlying condensed phase. In other cases (flame retardant-free blends or flame retardancy provided by other effects than heat shielding), heat distortion has negligible influence on heat release rate curves in cone calorimeter tests.

  5. [Determination of three organophosphorous flame retardants in textiles by gas chromatography].

    PubMed

    Mu, Junze; Li, Xuan; Zhang, Bin; Jiang, Liyuan

    2007-05-01

    A method of simultaneous determination of three organophosphorous flame retardants in textiles by capillary gas chromatograph (GC) combined with nitrogen phosphorus detector (NPD) was developed. The samples were extracted by ultrasonic extraction, filtered by 0.22 microm microporous film and then directly analyzed by GC-NPD. The ultrasonic extraction key factors optimized by the orthogonal design were as follows: the volume ratio of acetone to n-hexane was 2 : 8, the extraction time was 40 min and the solvent volume was 35 mL. The linear ranges of tris (2-chloroethyl) phosphate (TCEP), tri-o-cresyl phosphate (TOCP) and tris (2,3-dibromopropyl) phosphate (TRIS) were 0.375 8 - 36.38 microg/mL, 0.384 1 - 38.41 microg/mL and 15.78 - 1 010 microg/mL, respectively, and the detection limits were 0.044 mg/kg, 0.053 mg/kg and 0.82 mg/kg, respectively. Textile samples including cotton, flax, nylon, silk and terylene spiked with different levels of the three flame retardants were employed to investigate the method precision and recovery. For aforementioned analytes, the method precisions were 6.2%, 7.7% and 6.5%, respectively and the method recoveries based on spiked studies were in the range of 83.2% - 115.4%. The method is suitable for the determination of three organophosphorous flame retardant residues in textiles in commodity inspection.

  6. Bioaccumulation of Dechloranes, organophosphate esters, and other flame retardants in Great Lakes fish.

    PubMed

    Guo, Jiehong; Venier, Marta; Salamova, Amina; Hites, Ronald A

    2017-04-01

    We measured the concentrations of 60 flame retardants (and related compounds) in fish samples collected in the Great Lakes basin. These analytes include dechlorane-related compounds (Decs), organophosphate esters (OPEs), and brominated flame retardants (BFRs). Composite lake trout (Salvelinus namaycush) or walleye (Sander vitreus, from Lake Erie) samples were collected (N=3 for each lake) in 2010 from each of the five Great Lakes (a total of 15 samples). Among the dechlorane-related compounds, Dechlorane, Dechlorane Plus, Dechlorane-602, Dechlorane-603, and Dechlorane-604 (with zero to three bromines and with four chlorines) were detected in >73% of the fish samples. The concentrations of some of these dechlorane-related compounds were 3-10 times higher in Lake Ontario trout than in fish from the other four lakes. Tris(1-chloroisopropyl) phosphate, tri-n-butylphosphate, tris(2-chloroethyl)phosphate, and triphenyl phosphate were found in >50% of the fish samples. Polybrominated diphenyl ethers (PBDEs) were the most abundant of the flame retardants in fish, with a mean concentration of 250ng/g lipid. Our findings suggest that the Decs and BFRs with 3-6 bromines are more bioaccumulative in the fish than the OPEs and high molecular weight BFRs.

  7. Relationships between estimated flame retardant emissions and levels in indoor air and house dust.

    PubMed

    Liagkouridis, I; Cequier, E; Lazarov, B; Palm Cousins, A; Thomsen, C; Stranger, M; Cousins, I T

    2016-09-10

    A significant number of consumer goods and building materials can act as emission sources of flame retardants (FRs) in the indoor environment. We investigate the relationship between the emission source strength and the levels of 19 brominated flame retardants (BFRs) and seven organophosphate flame retardants (OPFRs) in air and dust collected in 38 indoor microenvironments in Norway. We use modeling methods to back-calculate emission rates from indoor air and dust measurements and identify possible indications of an emission-to-dust pathway. Experimentally based emission estimates provide a satisfactory indication of the relative emission strength of indoor sources. Modeling results indicate an up to two orders of magnitude enhanced emission strength for OPFRs (median emission rates of 0.083 and 0.41 μg h(-1) for air-based and dust-based estimates) compared to BFRs (0.52 and 0.37 ng h(-1) median emission rates). A consistent emission-to-dust signal, defined as higher dust-based than air-based emission estimates, was identified for four of the seven OPFRs, but only for one of the 19 BFRs. It is concluded, however, that uncertainty in model input parameters could potentially lead to the false identification of an emission-to-dust signal.

  8. Enhancement of flame retardancy and water repellency properties of cotton fabrics using silanol based nano composites.

    PubMed

    Mohamed, Amina L; El-Sheikh, Manal A; Waly, Ahmed I

    2014-02-15

    Environmental concerns related to fluorinated and organophosphorus compounds led to a consideration of the methods for imparting flame retardancy and water/oil repellency to textiles. A simple and facile method for fabricating the cotton fabric with superhydrophobicity and flame retardancy is described in the present work. Complex coating with amino-functionalized silica nano-particles on epoxy-functionalized cotton accompanied with ZnO nano-particles coating are carried out. In This context, new preparation techniques were used to prepare both aminated silica and ZnO nano-particles. The particle size was investigated using Transition Electron Microscope (TEM) and the chemical structure was investigated using FT-IR analysis and other analytical techniques. Cotton was functionalized with epoxy and carboxyl via grafting cotton with nano-emulsion consisted of mixture of glycidyl methacrylate (GMA) and acrylic acid (AA), and then treated for functional finishing through conventional pad-dry-cure method. The treated fabrics showed good water repellency and excellent flame retardant properties as determined by the standard test methods.

  9. Effects of Hoods and Flame-Retardant Fabrics on WBGT Clothing Adjustment Factors.

    PubMed

    Ashley, Candi D; Bernard, Thomas E

    2008-01-01

    Personal protective clothing (PPC) may include hoods and flame-retardant (FR) fabrics that may affect heat transfer and, thus, the critical wet bulb globe temperature (WBGT crit) to maintain thermal equilibrium. The purpose of this study was to compare the differences in WBGT crit for hooded vs. nonhooded versions of particle barrier and vapor barrier coveralls as well as for coveralls made of two flame-retardant fabrics (INDURA cotton and Nomex). Acclimated men (n = 11) and women (n = 4) walked on a treadmill in a climatic chamber at 180 W/m2 wearing four different ensembles: limited-use, particle barrier coveralls with and without a hood (Tyvek 1427), and limited-use vapor barrier coveralls with and without a hood (Tychem QC, polyethylene-coated Tyvek). Twelve of the participants wore one of two flame-retardant coveralls. All participants wore standard cotton clothing. Progressive exposure testing at 50% relative humidity (rh) was designed so that each subject established a physiological steady-state followed by a clear loss of thermal equilibrium. WBGT crit was the WBGT 5 min prior to a loss of thermal equilibrium. Hooded ensembles had a lower WBGT crit than the nonhooded ensembles. The difference suggested a clothing adjustment of 1 degrees C for hoods. There were no significant differences among the FR ensembles and cotton work cloths, and the proposed clothing adjustment for FR coveralls clothing is 0 degrees C.

  10. Flame-Retardant Paper from Wood Fibers Functionalized via Layer-by-Layer Assembly.

    PubMed

    Köklükaya, Oruç; Carosio, Federico; Grunlan, Jaime C; Wågberg, Lars

    2015-10-28

    The highly flammable character of cellulose-rich fibers from wood limits their use in some advanced materials. To suppress the flammability and introduce flame-retardant properties to individual pulp fibers, we deposited nanometer thin films consisting of cationic chitosan (CH) and anionic poly(vinylphosphonic acid) (PVPA) on fibers using the layer-by-layer (LbL) technique. The buildup of the multilayer film was investigated in the presence and absence of salt (NaCl) using model cellulose surfaces and a quartz crystal microbalance technique. Fibers were then treated with the same strategy, and the treated fibers were used to prepare paper sheets. A horizontal flame test (HFT) and cone calorimetry were conducted to evaluate the combustion behavior of paper sheets as a function of the number of bilayers deposited on fibers. In HFT, paper made of fibers coated with 20 CH/PVPA bilayers (BL), self-extinguished the flame, while uncoated fibers were completely consumed. Scanning electron microscopy of charred paper after HFT revealed that a thin shell of the charred polymeric multilayer remained after the cellulose fibers had been completely oxidized. Cone calorimetry demonstrated that the phosphorus-containing thin films (20 BL is ∼25 nm) reduced the peak heat release rate by 49%. This study identifies a unique and highly effective way to impart flame-retardant characteristic to pulp fibers and the papers made from these fibers.

  11. Polybrominated diphenyl ether flame retardants in lichens and mosses from King George Island, maritime Antarctica.

    PubMed

    Yogui, G T; Sericano, J L

    2008-11-01

    Lichens and mosses are considered good indicators of atmospheric pollution as they absorb contaminants directly from the air. Polybrominated diphenyl ethers (PBDEs) are man-made chemicals used as flame retardants in materials such as plastics, textiles, electronic circuitry and furnishing foam. Few studies have investigated PBDEs in the southern hemisphere including Antarctica. This paper presents the first evaluation of PBDEs in lichens (Usnea antarctica and Usnea aurantiaco-atra) and mosses (Sanionia uncinata) collected at King George Island, maritime Antarctica. PBDEs were detected at low levels in all lichen and moss samples. On average, the levels of PBDEs in mosses (818 pg g(-1) dry weight; 101 ng g(-1) lipid) were significantly higher than in lichens (168 pg g(-1) dry weight; 9.11 ng g(-1) lipid). This difference is most likely due to the differing mechanisms of PBDEs uptake from the atmosphere which are controlled by a number of chemical, environmental and plant variables. Contaminant concentrations were not statistically different at sites close to and distant from human facilities. Long-range atmospheric transport is believed to be the primary source of PBDEs to King George Island. The pattern of congeners in plants resembles those found in commercial mixtures of Penta-BDE. In addition, the presence of BDE-183 in lichens and mosses suggests that other technical formulations (e.g., Octa-BDE and Deca-BDE) have reached Antarctica. Further studies are needed to better understand the role of Antarctic vegetation as a sink for anthropogenic organic pollutants.

  12. Temporal Trends in Exposure to Organophosphate Flame Retardants in the United States

    PubMed Central

    2017-01-01

    During the past decade, use of organophosphate compounds as flame retardants and plasticizers has increased. Numerous studies investigating biomarkers (i.e., urinary metabolites) demonstrate ubiquitous human exposure and suggest that human exposure may be increasing. To formally assess temporal trends, we combined data from 14 U.S. epidemiologic studies for which our laboratory group previously assessed exposure to two commonly used organophosphate compounds, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP). Using individual-level data and samples collected between 2002 and 2015, we assessed temporal and seasonal trends in urinary bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP), the metabolites of TDCIPP and TPHP, respectively. Data suggest that BDCIPP concentrations have increased dramatically since 2002. Samples collected in 2014 and 2015 had BDCIPP concentrations that were more than 15 times higher than those collected in 2002 and 2003 (10β = 16.5; 95% confidence interval from 9.64 to 28.3). Our results also demonstrate significant increases in DPHP levels; however, increases were much smaller than for BDCIPP. Additionally, results suggest that exposure varies seasonally, with significantly higher levels of exposure in summer for both TDCIPP and TPHP. Given these increases, more research is needed to determine whether the levels of exposure experienced by the general population are related to adverse health outcomes. PMID:28317001

  13. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour.

    PubMed

    Covaci, Adrian; Harrad, Stuart; Abdallah, Mohamed A-E; Ali, Nadeem; Law, Robin J; Herzke, Dorte; de Wit, Cynthia A

    2011-02-01

    This review summarises current knowledge about production volumes, physico-chemical properties, analysis, environmental occurrence, fate and behaviour and human exposure to the "novel" brominated flame retardants (NBFRs). We define the term NBFRs as relating to BFRs which are new to the market or newly/recently observed in the environment. Restrictions and bans on the use of some polybrominated diphenyl ether (PBDE) formulations, in many jurisdictions, have created a market for the use of NBFRs. To date, most data on NBFRs have arisen as additional information generated by research designed principally to study more "traditional" BFRs, such as PBDEs. This has led to a wide variety of analytical approaches for sample extraction, extract purification and instrumental analysis of NBFRs. An overview of environmental occurrence in abiotic matrices, aquatic biota, terrestrial biota and birds is presented. Evidence concerning the metabolism and absorption of different NBFRs is reviewed. Human exposure to NBFRs via different exposure pathways is discussed, and research gaps related to analysis, environmental sources, fate, and behaviour and human exposure are identified.

  14. Neurobehavioral effects of tetrabromobisphenol A, a brominated flame retardant, in mice.

    PubMed

    Nakajima, Akira; Saigusa, Daisuke; Tetsu, Naomi; Yamakuni, Tohru; Tomioka, Yoshihisa; Hishinuma, Takanori

    2009-08-25

    Tetrabromobisphenol A (TBBPA) is widely used as a flame retardant and is suspected to be stable in the environment with possible widespread human exposures. In the present study, we investigated the behavioral effects of TBBPA and measured the levels of TBBPA in the brain after oral administration in mice. Acute treatment with TBBPA (5mg/kg body weight) 3h before the open-field test induced an increase in the horizontal movement activities. In contextual fear conditioning paradigm, mice treated with TBBPA (0.1mg/kg or 5mg/kg body weight) showed more freezing behavior than vehicle-treated mice. In addition, TBBPA (0.1mg/kg body weight) significantly increased the spontaneous alternation behavior in the Y-maze test. The levels of TBBPA in the brain following TBBPA treatment were determined by using LC/ESI-MS/MS system. In the brain regions examined, high amounts of TBBPA were detected in the striatum after treatment with 0.1mg/kg or 5mg/kg body weight TBBPA, whereas non-specific accumulation of TBBPA in the brain was found after treatment with 250 mg/kg body weight TBBPA. These results suggest that TBBPA accumulates in brain regions including the striatum and induces the behavioral alterations. Together, the possibility of widespread human exposure to TBBPA warrants further studies to characterize its neurotoxicity.

  15. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors.

    PubMed

    Kojima, Hiroyuki; Takeuchi, Shinji; Van den Eede, Nele; Covaci, Adrian

    2016-03-14

    Organophosphate flame retardants (OPFRs) have been used in a wide variety of applications and detected in several environmental matrices, including indoor air and dust. Continuous human exposure to these chemicals is of growing concern. In this study, the agonistic and/or antagonistic activities of 12 primary OPFR-metabolites against ten human nuclear receptors were examined using cell-based transcriptional assays, and compared to those of their parent compounds. As a result, 3-hydroxylphenyl diphenyl phosphate and 4-hydroxylphenyl diphenyl phosphate showed more potent estrogen receptor α (ERα) and ERβ agonistic activity than did their parent, triphenyl phosphate (TPHP). In addition, these hydroxylated TPHP-metabolites also showed ERβ antagonistic activity at higher concentrations and exhibited pregnane X receptor (PXR) agonistic activity as well as androgen receptor (AR) and glucocorticoid receptor (GR) antagonistic activities at similar levels to those of TPHP. Bis(2-butoxyethyl) 3'-hydroxy-2-butoxyethyl phosphate and 2-hydroxyethyl bis(2-butoxyethyl) phosphate act as PXR agonists at similar levels to their parent, tris(2-butoxyethyl) phosphate. On the other hand, seven diester OPFR-metabolites and 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate did not show any receptor activity. Taken together, these results suggest that hydroxylated TPHP-metabolites show increased estrogenicity compared to the parent compound, whereas the diester OPFR-metabolites may have limited nuclear receptor activity compared to their parent triester OPFRs.

  16. Bioavailability of classical and novel flame retardants: Effect of fullerene presence.

    PubMed

    Santín, Giselle; Eljarrat, Ethel; Barceló, Damià

    2016-09-15

    To understand the behavior of some emerging flame retardants (FRs) in the environment, a nonexhaustive extraction using Tenax was applied to study their behavior in aquatic ecosystems. Desorption of 8 polybrominated diphenyl ethers (PBDEs), 8 methoxylated PBDEs, 3 emerging brominated FRs and 6 halogenated norbornenes from sediments spiked in the laboratory was studied. Results showed that emerging FRs have a similar bioavailability than that of legacy FRs, already banned. In addition, some parameters such as sediment total organic carbon (TOC), aging or nanomaterial (NMs) presence in the sediment were modified in order to study their effects on the bioavailability of FRs. Bioavailability increases with a diminution of sediment TOC, while diminishes with an increase of aging. The study of effect of NM presence was performed at three different pH (acidic, neutral and basic), and for the three scenarios, FR bioavailability decreased with NM presence. The retention of pollutants in the sediment seems to be favoured by NM presence, minimizing their impact on living organisms.

  17. Characterization of brominated flame retardants in construction and demolition waste components: HBCD and PBDEs.

    PubMed

    Duan, Huabo; Yu, Danfeng; Zuo, Jian; Yang, Bo; Zhang, Yukui; Niu, Yongning

    2016-12-01

    The vast majority of construction material is inert and can be managed as nonhazardous. However, structures may have either been built with some environmentally unfriendly substances such as brominated flame retardants (BFRs), or have absorbed harmful elements such as heavy metals. This study focuses on end-of-life construction materials, i.e. construction and demolition (C&D) waste components. The aim was to characterize the concentration of extremely harmful substances, primarily BFRs, including hexabromocyclododecane (HBCD) and polybrominateddiphenyl ethers (PBDEs). Results revealed extremely high contents of HBCD and PBDEs in typical C&D waste components, particularly polyurethane foam materials. Policies should therefore be developed for the proper management of C&D waste, with priority for POP-containing debris. The first priority is to develop a classification system and procedures to separate out the harmful materials for more extensive processing. Additionally, identification and quantification of the environmental implications associated with dumping-dominated disposal of these wastes are required. Finally, more sustainable materials should be selected for use in the construction industry.

  18. Vapor pressure of three brominated flame retardants determined by using the Knudsen effusion method.

    PubMed

    Fu, Jinxia; Suuberg, Eric M

    2012-03-01

    Brominated flame retardants (BFRs) have been used in a variety of consumer products in the past four decades. The vapor pressures for three widely used BFRs, that is, tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD), and octabromodiphenyl ethers (octaBDEs) mixtures, were determined using the Knudsen effusion method and compared with those of decabromodiphenyl ether (BDE209). The values measured extrapolated to 298.15 K are 8.47 × 10⁻⁹, 7.47 × 10⁻¹⁰, and 2.33 × 10⁻⁹  Pa, respectively. The enthalpies of sublimation for these BFRs were estimated using the Clausius-Clapeyron equation and are 143.6 ± 0.4, 153.7 ± 3.1, and 150.8 ± 3.2 kJ/mole, respectively. In addition, the enthalpies of fusion and melting temperatures for these BFRs were also measured in the present study.

  19. Temporal Trends in Exposure to Organophosphate Flame Retardants in the United States.

    PubMed

    Hoffman, Kate; Butt, Craig M; Webster, Thomas F; Preston, Emma V; Hammel, Stephanie C; Makey, Colleen; Lorenzo, Amelia M; Cooper, Ellen M; Carignan, Courtney; Meeker, John D; Hauser, Russ; Soubry, Adelheid; Murphy, Susan K; Price, Thomas M; Hoyo, Cathrine; Mendelsohn, Emma; Congleton, Johanna; Daniels, Julie L; Stapleton, Heather M

    2017-03-14

    During the past decade, use of organophosphate compounds as flame retardants and plasticizers has increased. Numerous studies investigating biomarkers (i.e., urinary metabolites) demonstrate ubiquitous human exposure and suggest that human exposure may be increasing. To formally assess temporal trends, we combined data from 14 U.S. epidemiologic studies for which our laboratory group previously assessed exposure to two commonly used organophosphate compounds, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP). Using individual-level data and samples collected between 2002 and 2015, we assessed temporal and seasonal trends in urinary bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP), the metabolites of TDCIPP and TPHP, respectively. Data suggest that BDCIPP concentrations have increased dramatically since 2002. Samples collected in 2014 and 2015 had BDCIPP concentrations that were more than 15 times higher than those collected in 2002 and 2003 (10(β) = 16.5; 95% confidence interval from 9.64 to 28.3). Our results also demonstrate significant increases in DPHP levels; however, increases were much smaller than for BDCIPP. Additionally, results suggest that exposure varies seasonally, with significantly higher levels of exposure in summer for both TDCIPP and TPHP. Given these increases, more research is needed to determine whether the levels of exposure experienced by the general population are related to adverse health outcomes.

  20. Neurobehavioral function and low-level exposure to brominated flame retardants in adolescents: a cross-sectional study

    PubMed Central

    2012-01-01

    Background Animal and in vitro studies demonstrated a neurotoxic potential of brominated flame retardants, a group of chemicals used in many household and commercial products to prevent fire. Although the first reports of detrimental neurobehavioral effects in rodents appeared more than ten years ago, human data are sparse. Methods As a part of a biomonitoring program for environmental health surveillance in Flanders, Belgium, we assessed the neurobehavioral function with the Neurobehavioral Evaluation System (NES-3), and collected blood samples in a group of high school students. Cross-sectional data on 515 adolescents (13.6-17 years of age) was available for the analysis. Multiple regression models accounting for potential confounders were used to investigate the associations between biomarkers of internal exposure to brominated flame retardants [serum levels of polybrominated diphenyl ether (PBDE) congeners 47, 99, 100, 153, 209, hexabromocyclododecane (HBCD), and tetrabromobisphenol A (TBBPA)] and cognitive performance. In addition, we investigated the association between brominated flame retardants and serum levels of FT3, FT4, and TSH. Results A two-fold increase of the sum of serum PBDE’s was associated with a decrease of the number of taps with the preferred-hand in the Finger Tapping test by 5.31 (95% CI: 0.56 to 10.05, p = 0.029). The effects of the individual PBDE congeners on the motor speed were consistent. Serum levels above the level of quantification were associated with an average decrease of FT3 level by 0.18 pg/mL (95% CI: 0.03 to 0.34, p = 0.020) for PBDE-99 and by 0.15 pg/mL (95% CI: 0.004 to 0.29, p = 0.045) for PBDE-100, compared with concentrations below the level of quantification. PBDE-47 level above the level of quantification was associated with an average increase of TSH levels by 10.1% (95% CI: 0.8% to 20.2%, p = 0.033), compared with concentrations below the level of quantification. We did not observe effects of

  1. The effect of mineral fillers on the rheological, mechanical and thermal properties of halogen-free flame-retardant polypropylene/expandable graphite compounds

    NASA Astrophysics Data System (ADS)

    Mattausch, Hannelore; Laske, Stephan; Hohenwarter, Dieter; Holzer, Clemens

    2015-05-01

    In many polyolefin applications, such as electrical cables or automotive applications, the fire protection is a very important task. Unfortunately flame-retardant polymeric materials are often halogenated and form toxic substances in case of fire, which explains the general requirement to reduce the halogen content to zero. Non-halogenated, state-of-the-art flame retardants must be incorporated into the polymer in very high grades (> 40 wt%) leading to massive decrease in mechanical properties and/or processability. In this research work halogen-free flame-retardant polypropylene (PP) /expandable graphite (EG) were filled with minerals fillers such as layered silicates (MMT), magnesium hydroxide (MgOH), zeolite (Z) and expanded perlite (EP) in order to enhance the flame-retardant effect. The rheological, mechanical and thermal properties of these materials were investigated to gain more fundamental knowledge about synergistic combinations of flame-retardants and other additives. The rheological properties were characterized with a rotational rheometer with plate-plate setup. The EG/EP/PP compound exhibited the highest increase in viscosity (˜ 37 %). As representative value for the mechanical properties the Young's modulus was chosen. The final Young's modulus values of the twofold systems gained higher values than the single ones. Thermo gravimetric analysis (TGA) was utilized to investigate the material with respect to volatile substances and combustion behavior. All materials decomposed in one-step degradation. The EG filled compounds showed a significant increase in sample weight due to the expansion of EG. The combustion behavior of these materials was characterized by cone calorimeter tests. Especially combinations of expandable graphite with mineral fillers exhibit a reduction of the peak heat release rate during cone calorimeter measurements of up to 87% compared to pure PP.

  2. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries

    PubMed Central

    Liu, Kai; Liu, Wei; Qiu, Yongcai; Kong, Biao; Sun, Yongming; Chen, Zheng; Zhuo, Denys; Lin, Dingchang; Cui, Yi

    2017-01-01

    Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel “smart” nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. During thermal runaway of the lithium-ion battery, the protective polymer shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes. PMID:28097221

  3. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries.

    PubMed

    Liu, Kai; Liu, Wei; Qiu, Yongcai; Kong, Biao; Sun, Yongming; Chen, Zheng; Zhuo, Denys; Lin, Dingchang; Cui, Yi

    2017-01-01

    Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel "smart" nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. During thermal runaway of the lithium-ion battery, the protective polymer shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes.

  4. Phosphate flame retardants and novel brominated flame retardants in home-produced eggs from an e-waste recycling region in China.

    PubMed

    Zheng, Xiaobo; Xu, Fuchao; Luo, Xiaojun; Mai, Bixian; Covaci, Adrian

    2016-05-01

    Phosphate flame retardants (PFRs) and novel brominated flame retardants (NBFRs) (2-ethylhexyl-2,3,4,5-tetrabromo-benzoate (EH-TBB) and bis-(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP)) were measured in free-range chicken eggs from three e-waste recycling sites and a negative control site located in Guangdong province, Southern China. BEH-TEBP, tris-(chloroethyl)-phosphate (TCEP), tris-(chloropropyl)-phosphate (∑TCPP, two isomers) and tris-(1,3-dichloroisopropyl)-phosphate (TDCIPP) were detected in more than 50% of eggs samples with low concentrations. The median values of BEH-TEBP and total PFRs were 0.17-0.46 ng/g ww (wet weight) and 1.62-2.59 ng/g ww in eggs from the e-waste sites, respectively. The results indicate that EH-TBB, BEH-TEBP and PFRs are less persistent and bioaccumulative than polybrominated diphenyl ethers (PBDEs) in chicken eggs, and possibly also in other bio-matrices. Triphenyl phosphate (TPHP) were identified in albumen with higher frequencies, but at similar concentrations compared to yolk, while BEH-TEBP was mainly detected in yolk. The estimated daily intake (EDI) of BEH-TEBP and total PFRs from consumption of chicken eggs ranged from 0.03 to 0.09 and 0.32-0.52 ng/kg bw/day for adults, and 0.20-0.54 and 1.89-3.02 ng/kg bw/day for children in e-waste sites, respectively. Indoor dust ingestion seems to be a more important pathway for the intake of these FRs, while egg consumption is probably a more important exposure pathway for PBDEs.

  5. Flyweight 3D Graphene Scaffolds with Microinterface Barrier-Derived Tunable Thermal Insulation and Flame Retardancy.

    PubMed

    Zhang, Qiangqiang; Hao, Menglong; Xu, Xiang; Xiong, Guoping; Li, Hui; Fisher, Timothy S

    2017-04-14

    In this article, flyweight three-dimensional (3D) graphene scaffolds (GSs) have been demonstrated with a microinterface barrier-derived thermal insulation and flame retardancy characteristics. Such 3D GSs were fabricated by a modified hydrothermal method and a unidirectional freeze-casting process with hierarchical porous microstructures. Because of high porosity (99.9%), significant phonon scattering, and strong π-π interaction at the interface barriers of multilayer graphene cellular walls, the GSs demonstrate a sequence of multifunctional properties simultaneously, such as lightweight density, thermal insulating characteristics, and outstanding mechanical robustness. At 100 °C, oxidized GSs exhibit a thermal conductivity of 0.0126 ± 0.0010 W/(m K) in vacuum. The thermal conductivity of oxidized GSs remains relatively unaffected despite large-scale deformation-induced densification of the microstructures, as compared to the behavior of reduced GSs (rGSs) whose thermal conductivity increases dramatically under compression. The contrasting behavior of oxidized GSs and rGSs appears to derive from large differences in the intersheet contact resistance and varying intrinsic thermal conductivity between reduced and oxidized graphene sheets. The oxidized GSs also exhibit excellent flame retardant behavior and mechanical robustness, with only 2% strength decay after flame treatment. In a broader context, this work demonstrates a useful strategy to design porous nanomaterials with a tunable heat conduction behavior through interface engineering at the nanoscale.

  6. Highly Efficient Flame Retardant Polyurethane Foam with Alginate/Clay Aerogel Coating.

    PubMed

    Chen, Hong-Bing; Shen, Peng; Chen, Ming-Jun; Zhao, Hai-Bo; Schiraldi, David A

    2016-11-30

    Highly efficient flame retardant polyurethane foams with alginate/clay aerogel coatings were fabricated using a freeze-drying method. The microstructure and the interaction of the samples were characterized with scanning electron and optical microscopy (SEM) and (OM). The results show that PU foam has a porous structure with pore sizes of several hundred microns, and that of aerogel ranges from 10 to 30 μm. The PU foam matrix and the aerogel coatings have strong interactions, due to the infusion of aerogel into the porous structure of the foam and the tension generated during the freeze-drying process. Both the PU foam and the aerogel exhibit good thermal stabilities, with onset decomposition temperatures above 240 °C. Combustion parameters, including LOI, TTI, HRR, TSR, FIGRA, CO, and CO2, all indicate significantly reduced fire risk. Total heat release of all but one of the samples was maintained, indicating that the flame retardant mechanism is to decrease flame spread rate by forming a heat, oxygen, and smoke barrier, rather than by reducing fuel content. This facile and inexpensive post-treatment of PU foam could expand its fire safe applications.

  7. Plant selective uptake of halogenated flame retardants at an e-waste recycling site in southern China.

    PubMed

    Wang, Shaorui; Wang, Yan; Luo, Chunling; Li, Jun; Yin, Hua; Zhang, Gan

    2016-07-01

    The concentrations and homolog patterns of halogenated flame retardants (HFRs) in vegetables grown at an e-waste contaminated site were investigated. Polybrominated diphenyl ethers (PBDEs) were the dominant HFRs in vegetable tissues, with concentrations ranging from 10.3 to 164 ng g(-1) and 1.16-107 ng g(-1) in shoots and roots, respectively, followed by novel brominated flame retardants (NBFRs) and dechlorane plus (DPs). This is an indication that PBDE contamination in vegetables grown around e-waste recycling sites may pose a risk to the local terrestrial ecosystem and residents. In addition, this is the first report on the concentrations and compositions of NBFRs in vegetables around e-waste recycling sites. The HFRs concentrations in vegetables varied greatly with the vegetable species, with the highest concentrations observed in Brassica oleracea var. capitata. Root concentration factors (RCF) decreased with increasing log Kow of HFRs, which indicated that the uptake of HFRs was controlled mainly by log Kow. Dissimilar HFRs profiles in shoots and roots suggested that the uptake and translocation of HFRs by plants were selective, with lower halogenated congeners prone to accumulation in vegetable tissues. Positive relationships between PBDEs and their substitutes were observed in vegetable tissues, suggesting that the replacement of PBDEs by NBFRs has not resulted in an obvious transition in plants within the study area.

  8. Extent and mechanisms of brominated flame retardant emissions from waste soft furnishings and fabrics: A critical review.

    PubMed

    Stubbings, William A; Harrad, Stuart

    2014-10-01

    Use of brominated flame retardants (BFRs) in soft furnishings has occurred for over thirty years with the phase out of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD) only relatively recently begun. As products treated with BFRs reach the end of their lifecycle they enter the waste stream, thereby constituting an important and increasing reservoir of these chemicals. This review highlights the dearth of data on the extent and potential mechanisms of BFR emissions from waste soft furnishings. However, insights into what may occur are provided by scrutiny of the larger (though still incomplete) database related to BFR emissions from electronic waste (e-waste). In many countries, municipal landfills have historically been the primary disposal method of waste consumer products and therefore represent a substantial reservoir of BFRs. Published data for BFR emissions to both air and water from landfill and other waste disposal routes are collated, presented and reviewed. Reported concentrations of PBDEs in landfill leachate range considerably from <1ngL(-1) to 133,000ngΣPBDEL(-1). In addition to direct migration of BFRs from waste materials; there is evidence that some higher brominated flame retardants are able to undergo degradation and debromination during waste treatment, that in some instances may lead to the formation of more toxic and bioavailable compounds. We propose that waste soft furnishings be treated with the same concern as e-waste, given its potential as a reservoir and source of environmental contamination with BFRs.

  9. Thermal Recycling of Brominated Flame Retardants with Fe2O3.

    PubMed

    Altarawneh, Mohammednoor; Ahmed, Oday H; Jiang, Zhong-Tao; Dlugogorski, Bogdan Z

    2016-08-04

    Plastics containing brominated flame retardants (BFRs) constitute the major fraction of nonmetallic content in e-waste. Co-pyrolysis of BFRs with hematite (Fe2O3) represents a viable option for the thermal recycling of BFRs. Consensus of experimental findings confirms the excellent bromine fixation ability of Fe2O3 and the subsequent formation of iron bromides. This contribution provides a comprehensive mechanistic account of the primary reactions between a cluster model of Fe2O3 and major bromine-bearing products from the decomposition of tetrabromobisphenol A (TBBA), the most commonly deployed BFR. We estimate the thermo-kinetic parameters for interactions of Fe2O3 with HBr, brominated alkanes and alkenes, bromobenzene, and bromophenol. Dissociative addition of HBr at a Fe-O bond proceeds through a trivial barrier of 8.2 kcal/mol with fitted parameters in the Arrhenius equation of k(T) = 7.96 × 10(11) exp(-6400/RT) s(-1). The facile and irreversible nature for HBr addition to Fe2O3 accords with the experimentally reported 90% reduction in HBr emission when Fe2O3 interacts with TBBA pyrolysates. A detailed kinetic analysis indicates that, transformation of Fe2O3 into iron bromides and oxybromides occurs via successive addition of HBr to Fe(Br)-O(H) entities. Elimination of a water molecule proceeds through an intramolecular H transfer. A direct elimination one-step mechanism operates in the dehydrohalogenation of bromoethane into ethene over Fe2O3. Dissociative decomposition and direct elimination channels assume comparable reaction rates in formation of acetylene from vinyl bromide. Results from this study provide an atomic-based insight into a promising thermal recycling route of e-waste.

  10. Detection and speciation of brominated flame retardants in high-impact polystyrene (HIPS) polymers.

    PubMed

    Holbrook, R D; Davis, J M; Scott, K C K; Szakal, C

    2012-05-01

    Polymeric materials have been suggested as possible environmental sources of persistent organic pollutants such as flame retardants. In situ, micrometre-scale characterization techniques for polymer matrix containing flame retardants may provide some insight into the dominant environmental transfer mechanism(s) of these brominated compounds. In this work, we demonstrate that micro X-ray fluorescence spectroscopy (μXRF), focused ion beam scanning electron microscopy (FIB-SEM) combined with energy dispersive X-ray spectroscopy (EDS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are promising techniques for the elemental and chemical identification of brominated fire retardant compounds (such as the deca-congener of polybrominated diphenyl ether, BDE-209) within polymeric materials (e.g. high-impact polystyrene or HIPS). Data from μXRF demonstrated that bromine (Br) inclusions were evenly distributed throughout the HIPS samples, whereas FIB SEM-EDS analysis revealed that small antimony (Sb) and Br inclusions are present, and regionally higher concentrations of Br surround the Sb inclusions (compared to the bulk material). Four prominent mass-to-charge ratio peaks (m/z 485, 487, 489 and 491) that correspond to BDE-209 were identified by ToF-SIMS and can be used to chemically distinguish this molecule on the surface of polymeric materials with respect to other brominated organic molecules. These techniques can be important in any study that investigates the route of entry to the environmental surroundings of BDE-containing materials.

  11. Differences in the seasonal variation of brominated and phosphorus flame retardants in office dust.

    PubMed

    Cao, Zhiguo; Xu, Fuchao; Covaci, Adrian; Wu, Min; Yu, Gang; Wang, Bin; Deng, Shubo; Huang, Jun

    2014-04-01

    This study documents the temporal variability in concentrations of flame retardants (FRs) in floor dust from three offices in Beijing, China. Dust from Office A (OAD) was collected weekly from March to August, 2012, and sampling of dust from Office B and C (OBD and OCD) was conducted fortnightly (each two weeks) from March to December 2012. With intensive and continuous sampling, we report for the first time on clear and coherent temporal trends of polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs) and phosphorus flame retardants (PFRs) in indoor dust. The observed mean concentrations of ∑9PBDEs, ∑4NBFRs and ∑9PFRs, were 554, 11,100 and 128,000ngg(-1) in OAD; 7560, 5000 and 17,300ngg(-1) in OBD; and 4750, 3550 and 17,200ngg(-1) in OCD, respectively. With exception of PBDEs, concentrations of FRs were elevated in OAD than in OBD and OCD. Two to ten-fold variations were observed between the minimum and maximum concentrations of FRs in the same office, indicating that the sampling moment exerts a substantial influence on the level of FR contamination. Different seasonality was distinctively found between BFRs and PFRs. Except for a few occasional abnormal values, BFR levels in office dust were generally constant among different seasons. The abundance rank order for PFRs was: winter>autumn>summer, with peak values occurring in late winter and early spring. This pattern may be attributable to the fact that PFRs are more sensitive to temperature changes compared to PBDEs and NBFRs owning to their higher volatilities. The absence of significant seasonal variation for BFR concentrations in indoor dust compared to outdoor air and dust concentrations is also discussed.

  12. Emission behavior of hexabromocyclododecanes and polybrominated diphenyl ethers from flame-retardant-treated textiles.

    PubMed

    Kajiwara, Natsuko; Takigami, Hidetaka

    2013-10-01

    To evaluate the emission behavior of hexabromocyclododecanes (HBCDs) and polybrominated diphenyl ethers (PBDEs) added to textile products as flame retardants, we used a small stainless steel container (7 cm i.d. × 5.5 cm height, ca. 210 cm(3)) to conduct emission tests on three upholstery textile samples at temperatures of 20, 40, 60, and 80 °C. The textile samples, which were intended for use in curtain manufacture and had been treated with either technical HBCD or technical DecaBDE, emitted HBCDs and PBDEs, including BDE 209, even at room temperature (20 °C), and the emission rates increased with increasing test temperature. These results indicate that flame-retardant-treated upholstery textiles have the potential to be major sources of brominated flame retardant contamination in indoor air and dust. The HBCD diastereomer emission profiles at the test temperatures of 20 and 40 °C were similar to the profiles of the original textile samples; in contrast, at the higher test temperatures, the proportion of α-HBCD was larger (up to 70% of the total HBCD emission) than in the original samples. At the higher test temperatures, the proportions of di- to hexa-BDEs in the emissions were clearly larger than in the original sample, suggesting that the textile products treated with technical DecaBDE could be a source of environmentally relevant PBDE congeners such as BDE 47, 99, and 100. The emission rates of HBCDs from the textiles were two orders of magnitude higher than those of PBDEs, suggesting that HBCDs volatilize more easily from textile products to the indoor environment than PBDEs.

  13. Detection of 34 plasticizers and 25 flame retardants in indoor air from houses in Sapporo, Japan.

    PubMed

    Takeuchi, Shinji; Kojima, Hiroyuki; Saito, Ikue; Jin, Kazuo; Kobayashi, Satoshi; Tanaka-Kagawa, Toshiko; Jinno, Hideto

    2014-09-01

    Various plasticizers and flame retardants are contained in building materials and furniture produced for indoor environments. However, some of these material inclusions have been reported to cause endocrine-disrupting and mucosa-irritating effects. Because of the local climate, buildings in Sapporo are better insulated against cold weather than those in many other areas in Japan. In this study, we measured 59 compounds, including plasticizers (phthalates, adipates, and others) and flame retardants (organo-phosphates and brominated compounds), from indoor air samples from six houses in Sapporo. These compounds were measured separately in the gas phase and the particle phase using a two-stage cartridge equipped with a quartz fiber filter (1 μm mesh) and C18 solid-phase extraction disk for sampling and analyzed by GC/MS and LC/MS/MS (for the detection of brominated flame retardants). Among the 59 compounds measured in this study, 34 compounds were detected from the indoor air of the six houses. The highest concentration among the 34 compounds found in a newly built house was 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (TXIB) at 20.8 μg/m(3). Di(2-ethyl-1-hexyl)terephthalate (DEHT), which has been used in recent years as an alternative to di(2-ethyl-1-hexyl)phthalate (DEHP), was found in all six houses, although at low concentrations ranging from 0.005 to 0.027 μg/m(3). To our knowledge, this is the first report of DEHT in indoor air in Japan. Among the compounds detected in this study, those with lower molecular weights tended to be captured in the C18 solid-phase extraction disk rather than in the quartz fiber filter. These results suggest that compounds with higher volatility exist preferentially in the gas phase, whereas compounds with lower volatility exist preferentially in the particulate phase in indoor air.

  14. Hexabromocyclododecane flame retardant in Antarctica: Research stations as sources.

    PubMed

    Chen, Da; Hale, Robert C; La Guardia, Mark J; Luellen, Drew; Kim, Stacy; Geisz, Heidi N

    2015-11-01

    Historical persistent organic pollutants (POPs) are banned from Antarctica under international treaty; but contemporary-use POPs can enter as additives within polymer and textile products. Over their useful lives these products may release additives in-situ. Indeed, we observed 226 and 109 ng/g dry weight (dw) of the total concentrations of α-, β- and γ-hexabromocyclododecane (HBCD) in indoor dust from McMurdo Station (U.S.) and Scott Station (New Zealand), respectively. Sewage sludge collected from wastewater treatment facilities at these stations exhibited ∑HBCD of 45 and 69 ng/g dw, respectively. Contaminants originally within the bases may exit to the local outdoor environment via wastewaters. Near McMurdo, maximum ∑HBCD levels in surficial marine sediments and aquatic biota (invertebrates and fish) were 2350 ng/g (total organic carbon basis) and 554 ng/g lipid weight, respectively. Levels declined with distance from McMurdo. Our results illustrate that Antarctic research stations serve as local HBCD sources to the pristine Antarctic environment.

  15. Flame retardant polypropylene nanocomposites reinforced with surface treated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Guleria, Abhishant

    Polypropylene nanocomposites are prepared by reinforcing carbon nanotubes by ex-situ solution mixing method. Interfacial dispersion of carbon nanotubes in polypropylene have been improved by surface modification of CNTs and adding surfactants. Polypropylene nanocomposites fabrication was done after treating CNTs. Firstly, oxidation of CNTs followed by silanization for addition of functionalized groups on the surface of CNTs. Maleic anhydride grafted PPs were used as surfactants. Maleic anhydrides with two different molecular weights were LAMPP and HMAPP. Successful oxidation of CNTs by nitric acid and functionalized CNTs by 3-Aminopropyltriethoxysilane was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) with evidence of absorption peak at 1700 and 1100-1000 cm-1. Scanning electron microscopy (SEM) micrographs revealed that the CNTs dispersion quality was improved by directly adding LMAPP/HMAPP into PP/CNTs system and the PP-CNTs adhesion was enhanced through both the CNTs surface treatment and the addition of surfactant. Thermal gravimetric analysis (TGA) revealed an enhanced thermal stability in the PP/CNTs and PP/CNTs/MAPP. Differential scanning calorimetry (DSC) characterization demonstrated that the crystalline temperature, fusion heat and crystalline fraction of hosting PP were decreased with the introduction of CNTs and surface treated CNTs; however, melting temperature was only slightly changed. Melting rheological behaviors including complex viscosity, storage modulus, and loss modulus indicated significant changes in the PP/MAPP/CNTs system before and after functionalization of CNTs, and the mechanism were also discussed in details.

  16. Eco-friendly functionalized superhydrophobic recycled paper with enhanced flame-retardancy.

    PubMed

    Si, Yifan; Guo, Zhiguang

    2016-09-01

    Recycled paper with superhydrophobicity and flame-retardancy has been demonstrated here due to the synergistic action of dopamine-silica trimethylsilyl modified gel powder and stearic acid modified Mg(OH)2. This multifunctional recycled paper displays great self-cleaning and anti-fouling ability and can be used for oil-water separation. Surprisingly, the absorbed organic can be reused as fuel via simple combustion method for multiple cycles. This work will not only expand the usable range of paper but also ease the energy and environment crisis.

  17. Organophosphorus Flame Retardants Inhibit Specific Liver Carboxylesterases and Cause Serum Hypertriglyceridemia

    PubMed Central

    2015-01-01

    Humans are prevalently exposed to organophosphorus flame retardants (OPFRs) contained in consumer products and electronics, though their toxicological effects and mechanisms remain poorly understood. We show here that OPFRs inhibit specific liver carboxylesterases (Ces) and cause altered hepatic lipid metabolism. Ablation of the OPFR target Ces1g has been previously linked to dyslipidemia in mice. Consistent with OPFR inhibition of Ces1g, we also observe OPFR-induced serum hypertriglyceridemia in mice. Our findings suggest novel toxicities that may arise from OPFR exposure and highlight the utility of chemoproteomic and metabolomic platforms in the toxicological characterization of environmental chemicals. PMID:24597639

  18. Sensitivity to a flame retardant, Tris(2,3-dibromopropyl)phosphate (Firemaster LVT 23 P).

    PubMed

    Andersen, K E

    1977-12-01

    Tris(2,3-dibromoprophyl) phosphate (TDB P) is marketed under many different trade names as a flame retardant, used in clothing and home furnishings. DTB P is chemically related to tricresylphosphate (TCP) and triphenylphosphate (TPP) used as plasticizers in plastics and lacquers. The International Contact Dermatitis Research Group (ICDRG) in 1976 examined the incidence of sensitization to TDB P and found two positives among 1103 patients. One of these two cases is reported here in detail. It concerns a woman, aged 56, with spectacle frame dermatitis. The spectacle frame did not contain TDB P and sensitization with another phosphate ester is assumed.

  19. Non-PBDE halogenated flame retardants in Canadian indoor house dust: sampling, analysis, and occurrence.

    PubMed

    Fan, Xinghua; Kubwabo, Cariton; Rasmussen, Pat E; Wu, Fang

    2016-04-01

    An analytical method was developed for the measurement of 18 novel halogenated flame retardants in house dust. Sample preparation was based on ultrasound-assisted solvent extraction and clean up with solid phase extraction (SPE). Sample extracts were analyzed by gas chromatography-mass spectrometry (GC/MS) operated in electron capture negative ion (ECNI) chemical ionization mode. Baseline data from 351 fresh (active) dust samples collected under the Canadian House Dust Study (CHDS) revealed that five out of 18 target chemicals were present with detection frequencies higher than 90 %. Median (range) concentrations for these five compounds were as follows: 104 (<1.5-13,000) ng/g for 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTBB), 8.5 (<1.7-2390) ng/g for 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), 10.2 (<1.7-430) ng/g for hexabromobenzene (HBB), 2.9 (<1.2-1410) ng/g for syn-dechlorane plus (syn-DP) and 5.6 (<1.9-1570) ng/g for anti-dechlorane plus (anti-DP). A comparison of two sampling methods in a subset of 40 homes showed significant positive correlations between samples of "active" dust and samples taken directly from the household vacuum cleaner for all target compounds having median values above their corresponding method detection limits (MDLs). In addition, the method was also applied to the analysis of the targeted compounds in National Institute of Standards and Technology (NIST) standard reference material (SRM 2585, organic contaminants in house dust). Results from the current study could contribute to the potential certification of target chemicals in SRM 2585.

  20. Fabric phase sorptive extraction: Two practical sample pretreatment techniques for brominated flame retardants in water.

    PubMed

    Huang, Guiqi; Dong, Sheying; Zhang, Mengfei; Zhang, Haihan; Huang, Tinglin

    2016-09-15

    Sample pretreatment is the critical section for residue monitoring of hazardous pollutants. In this paper, using the cellulose fabric as host matrix, three extraction sorbents such as poly (tetrahydrofuran) (PTHF), poly (ethylene glycol) (PEG) and poly (dimethyldiphenylsiloxane) (PDMDPS), were prepared on the surface of the cellulose fabric. Two practical extraction techniques including stir bar fabric phase sorptive extraction (stir bar-FPSE) and magnetic stir fabric phase sorptive extraction (magnetic stir-FPSE) have been designed, which allow stirring of fabric phase sorbent during the whole extraction process. In the meantime, three brominated flame retardants (BFRs) [tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bisallylether (TBBPA-BAE), tetrabromobisphenol A bis(2,3-dibromopropyl)ether (TBBPA-BDBPE)] in the water sample were selected as model analytes for the practical evaluation of the proposed two techniques using high-performance liquid chromatography (HPLC). Moreover, various experimental conditions affecting extraction process such as the type of fabric phase, extraction time, the amount of salt and elution conditions were also investigated. Due to the large sorbent loading capacity and unique stirring performance, both techniques possessed high extraction capability and fast extraction equilibrium. Under the optimized conditions, high recoveries (90-99%) and low limits of detection (LODs) (0.01-0.05 μg L(-1)) were achieved. In addition, the reproducibility was obtained by evaluating the intraday and interday precisions with relative standard deviations (RSDs) less than 5.1% and 6.8%, respectively. The results indicated that two pretreatment techniques were promising and practical for monitoring of hazardous pollutants in the water sample. Due to low solvent consumption and high repeated use performance, proposed techniques also could meet green analytical criteria.

  1. Comparative Toxicogenomic Responses to the Flame Retardant mITP in Developing Zebrafish.

    PubMed

    Haggard, Derik E; Das, Siba R; Tanguay, Robert L

    2017-02-20

    Monosubstituted isopropylated triaryl phosphate (mITP) is a major component of Firemaster 550, an additive flame retardant mixture commonly used in polyurethane foams. Developmental toxicity studies in zebrafish established mITP as the most toxic component of FM 550, which causes pericardial edema and heart looping failure. Mechanistic studies showed that mITP is an aryl hydrocarbon receptor (AhR) ligand; however, the cardiotoxic effects of mITP were independent of the AhR. We performed comparative whole genome transcriptomics in wild-type and ahr2(hu3335) zebrafish, which lack functional ahr2, to identify transcriptional signatures causally involved in the mechanism of mITP-induced cardiotoxicity. Regardless of ahr2 status, mITP exposure resulted in decreased expression of transcripts related to the synthesis of all-trans-retinoic acid and a host of Hox genes. Clustered gene ontology enrichment analysis showed unique enrichment in biological processes related to xenobiotic metabolism and response to external stimuli in wild-type samples. Transcript enrichments overlapping both genotypes involved the retinoid metabolic process and sensory/visual perception biological processes. Examination of the gene-gene interaction network of the differentially expressed transcripts in both genetic backgrounds demonstrated a strong AhR interaction network specific to wild-type samples, with overlapping genes regulated by retinoic acid receptors (RARs). A transcriptome analysis of control ahr2-null zebrafish identified potential cross-talk among AhR, Nrf2, and Hif1α. Collectively, we confirmed that mITP is an AhR ligand and present evidence in support of our hypothesis that mITP's developmental cardiotoxic effects are mediated by inhibition at the RAR level.

  2. Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate.

    PubMed

    Zhang, Tao; Yan, Hongqiang; Peng, Mao; Wang, Lili; Ding, Hongliang; Fang, Zhengping

    2013-04-07

    A new flame retardant nanocoating has been constructed by the alternate adsorption of polyelectrolyte amino-functionalized multiwall carbon nanotube (MWNT-NH2) and ammonium polyphosphate (APP) onto flexible and porous ramie fabric. Scanning electron microscopy indicates that the adsorbed carbon nanotube coating is a randomly oriented and overlapped network structure, which is a promising candidate for flame retardancy applications. Attenuated total reflection Fourier transform infrared spectroscopy and energy-dispersive X-ray analysis confirm that the APP is successfully incorporated into the multilayers sequentially. Assessment of the thermal and flammability properties for the pristine and nanocoated ramie fabrics shows that the thermal stability, flame retardancy and residual char are enhanced as the concentration of MWNT-NH2 suspension and number of deposition cycles increases. The enhancements are mostly attributed to the barrier effect of intumescent network structure, which is composed of MWNT-NH2 and the absorbed APP.

  3. Thermochemical Approach for Screening of Alternative Metal Oxides as a Flame Retardant of Modacrylic Fiber

    NASA Astrophysics Data System (ADS)

    Tanaka, Takeshi; Terakado, Osamu; Hirasawa, Masahiro

    2017-03-01

    In the view of the exploring novel flame retardants for polymers, modacrylic fibers, which consist of acrylonitrile and vinylidene dichloride, containing metal oxide have been investigated by thermogravimetric-mass spectrometry (TG-MS) analysis. It was found that, among the examined oxides, germanium and antimony oxides formed the corresponding volatile chlorides through the reactions of oxides with hydrogen chloride formed during thermal decomposition of the polymer. The results have been discussed in the framework of thermochemistry. Based on the equilibrium calculation of the polymer-oxide mixture, the predominance diagrams of the M-O-Cl systems (M = Sb and Ge) show that the chlorides are the most stable phases at 573 K, at which temperature the major decomposition of the polymer starts. These results suggest that GeO2 would be a possible candidate of a flame retardant for chlorinated polymers. However, combustion experiments revealed an insufficient performance of the oxide. The inductively coupled plasma with atomic emission spectroscopy (ICP-AES) analysis showed the reactivity of GeO2 for HCl was inferior to that of Sb2O3, and X-ray fluorescence spectrometer (XRF) analysis of the solid thermal decomposition products showed that the evaporation of germanium was less intense than that of the conventional antimony system. This result is presumably due to the smaller rate of the chlorination of GeO2 than that of Sb2O3.

  4. Organophosphorus flame retardants in house dust from the Philippines: occurrence and assessment of human exposure.

    PubMed

    Kim, Joon-Woo; Isobe, Tomohiko; Sudaryanto, Agus; Malarvannan, Govindan; Chang, Kwang-Hyeon; Muto, Mamoru; Prudente, Maricar; Tanabe, Shinsuke

    2013-02-01

    The use of organophosphorus flame retardants (PFRs) as flame retardants and plasticizers has increased due to the ban on common polybrominated diphenyl ether mixtures. However, only limited information on PFR contamination is available so far from Southeast Asia. In the present study, residual levels of PFRs in house dust and exposure through dust ingestion were investigated in the Philippines. House dust samples (n = 37) were collected from Malate (residential area) and Payatas (municipal dumping area) in the Philippines and analyzed using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. Among the targeted seven PFRs, triphenyl phosphate (TPP) was the predominant compound. Median levels of ΣPFRs in Malate (530 ng/g) were two times higher (p < 0.05) than in Payatas (240 ng/g). The estimated daily intake of PFRs in the Philippines (of areas studied) via house dust ingestion was below the guideline values. House dust may be an important contributor in the overall exposure of humans to TPP even when considering dietary sources. To our knowledge, this is a first report on PFR contamination in house dust from developing country. PFRs were ubiquitously detected in the home environments in the Philippines. Although estimated exposure levels through dust ingestion were below the guideline, it was suggested that toddlers are at higher risk. Therefore, further investigations to understand the behavior of PFRs in house and other microenvironments and overall exposure pathways for the country's populace to PFRs are necessary.

  5. Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries.

    PubMed

    Kim, Joon-Woo; Isobe, Tomohiko; Muto, Mamoru; Tue, Nguyen Minh; Katsura, Kana; Malarvannan, Govindan; Sudaryanto, Agus; Chang, Kwang-Hyeon; Prudente, Maricar; Viet, Pham Hung; Takahashi, Shin; Tanabe, Shinsuke

    2014-12-01

    In this study, the concentrations of 10 organophosphorus flame retardants (PFRs) were determined in 89 human breast milk samples collected from Japan, the Philippines and Vietnam. Among the targeted PFRs, tris(2-chloroexyl) phosphate (TCEP) and triphenyl phosphate (TPHP) were the predominant compounds and were detected in more than 60% of samples in all three countries. The concentrations of PFRs in human breast milk were significantly higher (p<0.05) in the Philippines (median 70 ng g(-1) lipid wt.) than those in Japan (median 22 ng g(-1) lipid wt.) and Vietnam (median 10 ng g(-1) lipid wt.). The present results suggest that the usage of products containing PFRs in the Philippines is higher than those of Japan and Vietnam. Comparing with a previous literature survey in Sweden, the levels of PFRs in human breast milk from the Philippines were 1.5-2 times higher, whereas levels in Japan and Vietnam were 4-20 times lower, suggesting that these differences might be due to their variation in the usage of flame-retarded products utilized in each country. When daily intake of PFRs to infants via human breast milk was estimated, some individuals accumulated tris(2-butoxyethyl) phosphate (TBOEP) and TCEP were close to reference dose (RfD). This is the first report to identify PFRs in human breast milk samples from Asian countries.

  6. Flame retardants and organochlorine pollutants in bald eagle plasma from the Great Lakes region.

    PubMed

    Venier, Marta; Wierda, Michael; Bowerman, William W; Hites, Ronald A

    2010-08-01

    We report measurements of polybrominated diphenyl ethers and of emerging flame retardants in the plasma of nestling bald eagles sampled from early May to late June of 2005. Concentrations of total PBDEs ranged from 0.35 ng g(-1) ww to 29.3 ng g(-1) ww (average=5.7+/-1.9 ng g(-1) ww). The most abundant congeners were BDE-47, BDE-99, and BDE-100. The fully brominated congener, BDE-209, was detected in approximately one third of the samples at an average concentration of 1.2+/-0.72 ng g(-1) ww. Several emerging flame retardants, such as pentabromoethylbenzene (PBEB), hexabromocyclododecanes (HBCDs), and Dechlorane Plus (DP), were detected in these samples. Polychlorinated biphenyls (PCBs) and organochlorine pesticides were also detected at levels close to those previously published. A statistically significant relationship was found between total PBDE concentrations and total PCB and p,p'-DDE concentrations, suggesting that these compounds share a common source, which is most likely the eagle's food.

  7. Brominated flame retardants in the indoor environment - Comparative study of indoor contamination from three countries.

    PubMed

    Venier, Marta; Audy, Ondřej; Vojta, Šimon; Bečanová, Jitka; Romanak, Kevin; Melymuk, Lisa; Krátká, Martina; Kukučka, Petr; Okeme, Joseph; Saini, Amandeep; Diamond, Miriam L; Klánová, Jana

    2016-09-01

    Concentrations of more than 20 brominated flame retardants (FRs), including polybrominated diphenyl ethers (PBDEs) and emerging FRs, were measured in air, dust and window wipes from 63 homes in Canada, the Czech Republic and the United States in the spring and summer of 2013. Among the PBDEs, the highest concentrations were generally BDE-209 in all three matrices, followed by Penta-BDEs. Among alternative FRs, EHTBB and BEHTBP were detected at the highest concentrations. DBDPE was also a major alternative FR detected in dust and air. Bromobenzenes were detected at lower levels than PBDEs and other alternative FRs; among the bromobenzenes, HBB and PBEB were the most abundant compounds. In general, FR levels were highest in the US and lowest in the Czech Republic - a geographic trend that reflects the flame retardants' market. No statistically significant differences were detected between bedroom and living room FR concentrations in the same house (n=10), suggesting that sources of FRs are widespread indoors and mixing between rooms. The concentrations of FRs in air, dust, and window film were significantly correlated, especially for PBDEs. We found a significant relationship between the concentrations in dust and window film and in the gas phase for FRs with log KOA values <14, suggesting that equilibrium was reached for these but not compounds with log KOA values >14. This hypothesis was confirmed by a large discrepancy between values predicted using a partitioning model and the measured values for FRs with log KOA values >14.

  8. Are some "safer alternatives" hazardous as PBTs? The case study of new flame retardants.

    PubMed

    Gramatica, Paola; Cassani, Stefano; Sangion, Alessandro

    2016-04-05

    Some brominated flame retardants (BFRs), as PBDEs, are persistent, bioaccumulative, toxic (PBT) and are restricted/prohibited under various legislations. They are replaced by "safer" flame retardants (FRs), such as new BFRs or organophosphorous compounds. However, informations on the PBT behaviour of these substitutes are often lacking. The PBT assessment is required by the REACH regulation and the PBT chemicals should be subjected to authorization. Several new FRs, proposed and already used as safer alternatives to PBDEs, are here screened by the cumulative PBT Index model, implemented in QSARINS (QSAR-Insubria), new software for the development/validation of QSAR models. The results, obtained directly from the chemical structure for the three studied characteristics altogether, were compared with those from the US-EPA PBT Profiler: the two different approaches are in good agreement, supporting the utility of a consensus approach in these screenings. A priority list of the most harmful FRs, predicted in agreement by the two modelling tools, has been proposed, highlighting that some supposed "safer alternatives" are detected as intrinsically hazardous for their PBT properties. This study also shows that the PBT Index could be a valid tool to evaluate appropriate and safer substitutes, a priori from the chemical design, in a benign by design approach, avoiding unnecessary synthesis and tests.

  9. A Versatile and Scalable Approach toward Robust Superhydrophobic Porous Materials with Excellent Absorbency and Flame Retardancy

    NASA Astrophysics Data System (ADS)

    Ruan, Changping; Shen, Mengxia; Ren, Xiaoyan; Ai, Kelong; Lu, Lehui

    2016-08-01

    The frequent oil spillages and the industrial discharge of organic contaminants have not only created severe environmental and ecological crises, but also cause a risk of fire and explosion. These environmental and safety issues emphasize the urgent need for materials that possess superior sorption capability and less flammability and thus can effectively and safely clean up the floating oils and water-insoluble organic compounds. Here we present the successful hydrophobic modification of the flame retardant melamine sponge with a commercial fluorosilicone, by using a facile one-step solvent-free approach and demonstrate that the resultant superhydrophobic sponge not only exhibits extraordinary absorption efficiency (including high capacity, superior selectivity, good recyclability, and simple recycling routes), but also retains excellent flame retardancy and robust stability. In comparison to conventional methods, which usually utilize massive organic solvents, the present approach does not involve any complicated process or sophisticated equipment nor generates any waste liquids, and thus is a more labor-saving, environment-friendly, energy-efficient and cost-effective strategy for the hydrophobic modification. Taking into account the critical role of hydrophobic porous materials, especially in the field of environmental remediation, the approach presented herein would be highly valuable for environmental remediation and industrial applications.

  10. Brominated flame retardants in Chinese air before and after the phase out of polybrominated diphenyl ethers

    NASA Astrophysics Data System (ADS)

    Li, Wen-Long; Qi, Hong; Ma, Wan-Li; Liu, Li-Yan; Zhang, Zhi; Mohammed, Mohammed O. A.; Song, Wei-Wei; Zhang, Zifeng; Li, Yi-Fan

    2015-09-01

    Brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) and novel non-BDE flame retardants (NBFRs), were analyzed in Chinese air during China's POPs Soil and Air Monitoring Program Phase I (SAMP-I) and Phase II (SAMP-II). The levels of Σ12PBDEs and Σ6NBFRs in urban sites were significantly higher than those in rural sites and background sites. The higher detection rate and concentrations of high molecular weight PBDEs and NBFRs in Phase II indicated the changing of the commercial pattern of BFRs after the phase out of PBDEs in China. Temperature was the major factor affecting the seasonal variations of molecular weight BFRs in atmosphere. A significant correlation between BFRs concentration and gross domestic product (GDP) was observed, with the GDP parameter explained 59.4% and 72.7% of the total variability for Octa-BDEs and low molecular weight NBFRs, respectively. Our findings indicated an evolving commercial usage of BFRs from SAMP-I to SAMP-II, i.e. shifting from lower molecular weight to higher molecular weight congeners in China.

  11. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish

    PubMed Central

    Jarema, Kimberly A.; Hunter, Deborah L.; Shaffer, Rachel M.; Behl, Mamta; Padilla, Stephanie

    2016-01-01

    As polybrominated diphenyl ethers are phased out, numerous compounds are emerging as potential replacement flame retardants for use in consumer and electronic products. Little is known, however, about the neurobehavioral toxicity of these replacements. This study evaluated the neurobehavioral effects of acute or developmental exposure to t-butylphenyl diphenyl phosphate (BPDP), 2-ethylhexyl diphenyl phosphate (EHDP), isodecyl diphenyl phosphate (IDDP), isopropylated phenyl phosphate (IPP), tricresyl phosphate (TMPP; also abbreviated TCP), triphenyl phosphate (TPHP; also abbreviated TPP), tetrabromobisphenol A (TBBPA), tris (2-chloroethyl) phosphate (TCEP), tris (1,3-dichloroisopropyl) phosphate (TDCIPP; also abbreviated TDCPP), tri-o-cresyl phosphate (TOCP), and 2,2-,4,4′-tetrabromodiphenyl ether (BDE-47) in zebrafish (Danio rerio) larvae. Larvae (n ≈ 24 per dose per compound) were exposed to test compounds (0.4–120 µM) at sub-teratogenic concentrations either developmentally or acutely, and locomotor activity was assessed at 6 days post fertilization. When given developmentally, all chemicals except BPDP, IDDP and TBBPA produced behavioral effects. When given acutely, all chemicals produced behavioral effects, with TPHP, TBBPA, EHDP, IPP, and BPDP eliciting the most effects at the most concentrations. The results indicate that these replacement flame retardants may have developmental or pharmacological effects on the vertebrate nervous system. PMID:26348672

  12. Dechlorane plus and other flame retardants in tree bark from the northeastern United States.

    PubMed

    Qiu, Xinghua; Hites, Ronald A

    2008-01-01

    Previous work has shown that certain parts of the Great Lakes region are polluted with Dechlorane Plus (DP), a highly chlorinated flame retardant that was used as a replacement for Dechlorane/Mirex. It was suspected that a source of DP to the environment might be its manufacturing facility located in the city of Niagara Falls, New York. To confirm this source location and to determine DP's spatial distribution, 26 tree bark samples were collected in triplicate from the northeastern United States, and the concentrations of DP and several brominated flame retardants (BFRs) were measured. Most concentrations of DP in tree bark were found to be much higher than those of the BFRs. The highest DP concentrations were >100 ng g(-1) bark in the city of Niagara Falls, dropping rapidly with distance from the potential source. A simple one-dimensional, Gaussian diffusion model was used to explain the spatial distribution of DP and to locate the source. The calculated source location was <7 km away from the DP manufacturing plant in Niagara Falls, New York.

  13. Occurrence of halogenated flame retardants in commercial seafood species available in European markets.

    PubMed

    Aznar-Alemany, Òscar; Trabalón, Laura; Jacobs, Silke; Barbosa, Vera Liane; Tejedor, Margarita Fernández; Granby, Kit; Kwadijk, Christiaan; Cunha, Sara C; Ferrari, Federico; Vandermeersch, Griet; Sioen, Isabelle; Verbeke, Wim; Vilavert, Lolita; Domingo, José L; Eljarrat, Ethel; Barceló, Damià

    2016-12-24

    PBDEs (congeners 28, 47, 99, 100, 153, 154, 183, 209), HBCD (α, β, γ), emerging brominated flame retardants (PBEB, HBB and DBDPE), dechloranes (Dec 602, 603, 604, syn- and anti-DP), TBBPA, 2,4,6-TBP and MeO-PBDEs (8 congeners) were analysed in commercial seafood samples from European countries. Levels were similar to literature and above the environmental quality standards (EQS) limit of the Directive 2013/39/EU for PBDEs. Contaminants were found in 90.5% of the seafood samples at n. d.-356 ng/g lw (n. d.-41.1 ng/g ww). DBDPE was not detected and 2,4,6-TBP was detected only in mussels, but at levels comparable to those of PBDEs. Mussel and seabream were the most contaminated species and the Mediterranean Sea (FAO Fishing Area 37) was the most contaminated location. The risk assessment revealed that there was no health risk related to the exposure to brominated flame retardants via seafood consumption. However, a refined risk assessment for BDE-99 is of interest in the future. Moreover, the cooking process concentrated PBDEs and HBB.

  14. Hair and Nails as Noninvasive Biomarkers of Human Exposure to Brominated and Organophosphate Flame Retardants.

    PubMed

    Liu, Liang-Ying; He, Ka; Hites, Ronald A; Salamova, Amina

    2016-03-15

    After the phase-out of polybrominated diphenyl ethers (PBDEs), the use of alternative flame retardants (AFRs), such as FireMaster 550, and of organophosphate esters (OPEs) has increased. However, little is known about human exposure to these chemicals. This lack of biomonitoring studies is partially due to the absence of reliable noninvasive biomarkers of exposure. Human hair and nails can provide integrated exposure measurements, and as such, these matrices can potentially be used as noninvasive biomarkers of exposure to these flame retardants. Paired human hair, fingernail, toenail, and serum samples obtained from 50 adult participants recruited at Indiana University Bloomington campus were analyzed by gas chromatographic mass spectrometry for 36 PBDEs, 9 AFRs, and 12 OPEs. BDE-47, BDE-99, 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), di(2-ethylhexyl) tetrabromophthalate (TBPH), tris(1,3-dichloro-2-propyl)phosphate (TDCIPP), and triphenyl phosphate (TPHP) were the most abundant compounds detected in almost all hair, fingernail, and toenail samples. The concentrations followed the order OPEs > TBB+TBPH > Σpenta-BDE. PBDE levels in the hair and nail samples were significantly correlated with their levels in serum (P < 0.05), suggesting that human hair and nails can be used as biomarkers to assess human exposure to PBDEs.

  15. A Versatile and Scalable Approach toward Robust Superhydrophobic Porous Materials with Excellent Absorbency and Flame Retardancy.

    PubMed

    Ruan, Changping; Shen, Mengxia; Ren, Xiaoyan; Ai, Kelong; Lu, Lehui

    2016-08-09

    The frequent oil spillages and the industrial discharge of organic contaminants have not only created severe environmental and ecological crises, but also cause a risk of fire and explosion. These environmental and safety issues emphasize the urgent need for materials that possess superior sorption capability and less flammability and thus can effectively and safely clean up the floating oils and water-insoluble organic compounds. Here we present the successful hydrophobic modification of the flame retardant melamine sponge with a commercial fluorosilicone, by using a facile one-step solvent-free approach and demonstrate that the resultant superhydrophobic sponge not only exhibits extraordinary absorption efficiency (including high capacity, superior selectivity, good recyclability, and simple recycling routes), but also retains excellent flame retardancy and robust stability. In comparison to conventional methods, which usually utilize massive organic solvents, the present approach does not involve any complicated process or sophisticated equipment nor generates any waste liquids, and thus is a more labor-saving, environment-friendly, energy-efficient and cost-effective strategy for the hydrophobic modification. Taking into account the critical role of hydrophobic porous materials, especially in the field of environmental remediation, the approach presented herein would be highly valuable for environmental remediation and industrial applications.

  16. Super flame-retardant lightweight rime-like carbon-phenolic nanofoam

    NASA Astrophysics Data System (ADS)

    Cheng, Haiming; Hong, Changqing; Zhang, Xinghong; Xue, Huafei; Meng, Songhe; Han, Jiecai

    2016-09-01

    The desire for lightweight nanoporous materials with high-performance thermal insulation and efficient anti-ablation resistance for energy conservation and thermal protection/insulation has greatly motivated research and development recently. The main challenge to synthesize such lightweight materials is how to balance the relationship of low thermal conductivity and flame retardancy. Herein, we propose a new concept of lightweight “rime-like” structured carbon-phenolic nanocomposites to solve this problem, where the 3D chopped network-structured carbon fiber (NCF) monoliths are incorporated with nanoporous phenolic aerogel to retain structural and functional integrity. The nanometer-scaled porous phenolic (NP) was synthesized through polymerization-induced phase separation and ambient pressure drying using phenolic resin (PR) solution as reaction source, ethylene glycol (EG) as solvent and hexamethylenetetramine (HMTA) as catalyst. We demonstrate that the as-prepared NCF-NP nanocomposite exhibits with a low density of 0.25–0.35 g/cm3, low thermal conductivity of 0.125 Wm‑1K‑1 and outstanding flame retardancy exceeding 2000 °C under arc-jet wind tunnel simulation environment. Our results show that the synthesis strategy is a promising approach for producing nanocomposites with excellent high-temperature heat blocking property.

  17. A Versatile and Scalable Approach toward Robust Superhydrophobic Porous Materials with Excellent Absorbency and Flame Retardancy

    PubMed Central

    Ruan, Changping; Shen, Mengxia; Ren, Xiaoyan; Ai, Kelong; Lu, Lehui

    2016-01-01

    The frequent oil spillages and the industrial discharge of organic contaminants have not only created severe environmental and ecological crises, but also cause a risk of fire and explosion. These environmental and safety issues emphasize the urgent need for materials that possess superior sorption capability and less flammability and thus can effectively and safely clean up the floating oils and water-insoluble organic compounds. Here we present the successful hydrophobic modification of the flame retardant melamine sponge with a commercial fluorosilicone, by using a facile one-step solvent-free approach and demonstrate that the resultant superhydrophobic sponge not only exhibits extraordinary absorption efficiency (including high capacity, superior selectivity, good recyclability, and simple recycling routes), but also retains excellent flame retardancy and robust stability. In comparison to conventional methods, which usually utilize massive organic solvents, the present approach does not involve any complicated process or sophisticated equipment nor generates any waste liquids, and thus is a more labor-saving, environment-friendly, energy-efficient and cost-effective strategy for the hydrophobic modification. Taking into account the critical role of hydrophobic porous materials, especially in the field of environmental remediation, the approach presented herein would be highly valuable for environmental remediation and industrial applications. PMID:27501762

  18. Super flame-retardant lightweight rime-like carbon-phenolic nanofoam

    PubMed Central

    Cheng, Haiming; Hong, Changqing; Zhang, Xinghong; Xue, Huafei; Meng, Songhe; Han, Jiecai

    2016-01-01

    The desire for lightweight nanoporous materials with high-performance thermal insulation and efficient anti-ablation resistance for energy conservation and thermal protection/insulation has greatly motivated research and development recently. The main challenge to synthesize such lightweight materials is how to balance the relationship of low thermal conductivity and flame retardancy. Herein, we propose a new concept of lightweight “rime-like” structured carbon-phenolic nanocomposites to solve this problem, where the 3D chopped network-structured carbon fiber (NCF) monoliths are incorporated with nanoporous phenolic aerogel to retain structural and functional integrity. The nanometer-scaled porous phenolic (NP) was synthesized through polymerization-induced phase separation and ambient pressure drying using phenolic resin (PR) solution as reaction source, ethylene glycol (EG) as solvent and hexamethylenetetramine (HMTA) as catalyst. We demonstrate that the as-prepared NCF-NP nanocomposite exhibits with a low density of 0.25–0.35 g/cm3, low thermal conductivity of 0.125 Wm−1K−1 and outstanding flame retardancy exceeding 2000 °C under arc-jet wind tunnel simulation environment. Our results show that the synthesis strategy is a promising approach for producing nanocomposites with excellent high-temperature heat blocking property. PMID:27629114

  19. Fire self-extinguishing cotton fabric: development of piperazine derivatives containing phosphorous-sulfur-nitrogen and their flame retardant and thermal behaviors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have shown interest in flame retardants containing phosphorus, nitrogen and sulfur a combination small molecule with a promising new approach in preparing an important class of flame retardant materials. Tetraethyl piperazine-1,4-diyldiphosphonate (TEPP) and O,O,O',O'-tetramethyl pip...

  20. Occupational exposure of air crews to tricresyl phosphate isomers and organophosphate flame retardants after fume events.

    PubMed

    Schindler, Birgit Karin; Weiss, Tobias; Schütze, Andre; Koslitz, Stephan; Broding, Horst Christoph; Bünger, Jürgen; Brüning, Thomas

    2013-04-01

    Aircraft cabin air can possibly be contaminated by tricresyl phosphates (TCP) from jet engine oils during fume events. o-TCP, a known neurotoxin, has been addressed to be an agent that might cause the symptoms reported by cabin crews after fume events. A total of 332 urine samples of pilots and cabin crew members in common passenger airplanes, who reported fume/odour during their last flight, were analysed for three isomers of tricresyl phosphate metabolites as well as dialkyl and diaryl phosphate metabolites of four flame retardants. None of the samples contained o-TCP metabolites above the limit of detection (LOD 0.5 μg/l). Only one sample contained metabolites of m- and p-tricresyl phosphates with levels near the LOD. Median metabolite levels of tributyl phosphate (TBP), tris-(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPP) (DBP 0.28 μg/l; BCEP 0.33 μg/l; DPP 1.1 μg/l) were found to be significantly higher than in unexposed persons from the general population. Median tris-(2-chloropropyl) phosphate (TCPP) metabolite levels were significantly not higher in air crews than in controls. Health complaints reported by air crews can hardly be addressed to o-TCP exposure in cabin air. Elevated metabolite levels for TBP, TCEP and TPP in air crews might occur due to traces of hydraulic fluid in cabin air (TBP, TPP) or due to release of commonly used flame retardants from the highly flame protected environment in the airplane. A slight occupational exposure of air crews to organophosphates was shown.

  1. Influence of Antimony-Halogen Additives on Flame Propagation.

    PubMed

    Babushok, Valeri I; Deglmann, Peter; Krämer, Roland; Linteris, Gregory T

    2017-01-01

    A kinetic model for flame inhibition by antimony-halogen compounds in hydrocarbon flames is developed. Thermodynamic data for the relevant species are assembled from the literature, and calculations are performed for a large set of additional species of Sb-Br-C-H-O system. The main Sb- and Br-containing species in the combustion products and reaction zone are determined using flame equilibrium calculations with a set of possible Sb-Br-C-H-O species, and these are used to develop the species and reactions in a detailed kinetic model for antimony flame inhibition. The complete thermodynamic data set and kinetic mechanism are presented. Laminar burning velocity simulations are used to validate the mechanism against available data in the literature, as well as to explore the relative performance of the antimony-halogen compounds. Further analysis of the premixed flame simulations has unraveled the catalytic radical recombination cycle of antimony. It includes (primarily) the species Sb, SbO, SbO2, and HOSbO, and the reactions: Sb+O+M=SbO+M; Sb+O2+M=SbO2+M; SbO+H=Sb+OH; SbO+O=Sb+O2; SbO+OH+M=HOSbO+M; SbO2+H2O=HOSbO+OH; HOSbO+H=SbO+H2O; SbO+O+M=SbO2+M. The inhibition cycles of antimony are shown to be more effective than those of bromine, and intermediate between the highly effective agents CF3Br and trimethylphosphate. Preliminary examination of a Sb/Br gas-phase system did not show synergism in the gas-phase catalytic cycles (i.e., they acted essentially independently).

  2. Brominated flame retardants in waste electrical and electronic equipment: substance flows in a recycling plant.

    PubMed

    Morf, Leo S; Tremp, Josef; Gloor, Rolf; Huber, Yvonne; Stengele, Markus; Zennegg, Markus

    2005-11-15

    Brominated flame retardants (BFRs) are synthetic additives mainly used in electrical and electronic appliances and in construction materials. The properties of some BFRs are typical for persistent organic pollutants, and certain BFRs, in particular some polybrominated diphenyl ether (PBDE) congeners and hexabromocyclododecane (HBCD), are suspected to cause adverse health effects. Global consumption of the most demanded BFRs, i.e., penta-, octa-, and decaBDE, tetrabromobisphenol A (TBBPA), and HBCD, has doubled in the 1990s. Only limited and rather uncertain data are available regarding the occurrence of BFRs in consumer goods and waste fractions as well as regarding emissions during use and disposal. The knowledge of anthropogenic substance flows and stocks is essential for early recognition of environmental impacts and effective chemicals management. In this paper, actual levels of penta-, octa-, and decaBDE, TBBPA, and HBCD in waste electrical and electronic equipment (WEEE) as a major carrier of BFRs are presented. These BFRs have been determined in products of a modern Swiss recycling plant applying gas chromatography/electron capture detection and gas chromatography/mass spectrometry analysis. A substance flow analysis (SFA) technique has been used to characterize the flows of target substances in the recycling process from the bulk WEEE input into the output products. Average concentrations in small size WEEE, representing the relevant electric and electronic appliances in WEEE, sampled in 2003 amounted to 34 mg/kg for pentaBDE, 530 mg/kg for octaBDE, 510 mg/kg for decaBDE, 1420 mg/kg for TBBPA (as an additive), 17 mg/kg for HBCD, 5500 mg/kg for bromine, and 1700 mg/kg for antimony. In comparison to data that have been calculated by SFA for Switzerland from literature for the 1990s, these measured concentrations in small size WEEE were 7 times higher for pentaBDE, unexpectedly about 50% lower for decaBDE, and agreed fairly well for TBBPA (as an additive) and

  3. Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: data availability and quality for 36 alternative brominated flame retardants.

    PubMed

    Stieger, Greta; Scheringer, Martin; Ng, Carla A; Hungerbühler, Konrad

    2014-12-01

    Polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCDD) are major brominated flame retardants (BFRs) that are now banned or under restrictions in many countries because of their persistence, bioaccumulation potential and toxicity (PBT properties). However, there is a wide range of alternative BFRs, such as decabromodiphenyl ethane and tribromophenol, that are increasingly used as replacements, but which may possess similar hazardous properties. This necessitates hazard and risk assessments of these compounds. For a set of 36 alternative BFRs, we searched 25 databases for chemical property data that are needed as input for a PBT assessment. These properties are degradation half-life, bioconcentration factor (BCF), octanol-water partition coefficient (Kow), and toxic effect concentrations in aquatic organisms. For 17 of the 36 substances, no data at all were found for these properties. Too few persistence data were available to even assess the quality of these data in a systematic way. The available data for Kow and toxicity show surprisingly high variability, which makes it difficult to identify the most reliable values. We propose methods for systematic evaluations of PBT-related chemical property data that should be performed before data are included in publicly available databases. Using these methods, we evaluated the data for Kow and toxicity in more detail and identified several inaccurate values. For most of the 36 alternative BFRs, the amount and the quality of the PBT-related property data need to be improved before reliable hazard and risk assessments of these substances can be performed.

  4. Synthesis of highly efficient flame retardant high-density polyethylene nanocomposites with inorgano-layered double hydroxides as nanofiller using solvent mixing method.

    PubMed

    Gao, Yanshan; Wang, Qiang; Wang, Junya; Huang, Liang; Yan, Xingru; Zhang, Xi; He, Qingliang; Xing, Zipeng; Guo, Zhanhu

    2014-04-09

    High-density polyethylene (HDPE) polymer nanocomposites containing Zn2Al-X (X= CO3(2-), NO3(-), Cl(-), SO4(2-)) layered double hydroxide (LDH) nanoparticles with different loadings from 10 to 40 wt % were synthesized using a modified solvent mixing method. Synthesized LDH nanofillers and the corresponding nanocomposites were carefully characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, etc. The thermal stability and flame retardancy behavior were investigated using a thermo gravimetric analyzer and microscale combustion calorimeter. Comparing to neat HDPE, the thermal stability of nanocomposites was significantly enhanced. With the addition of 15 wt % Zn2Al-Cl LDH, the 50% weight loss temperature was increased by 67 °C. After adding LDHs, the flame retardant performance was significantly improved as well. With 40 wt % of LDH loading, the peak heat release rate was reduced by 24%, 41%, 48%, and 54% for HDPE/Zn2Al-Cl, HDPE/Zn2Al-CO3, HDPE/Zn2Al-NO3, and HDPE/Zn2Al-SO4, respectively. We also noticed that different interlayer anions could result in different rheological properties and the influence on storage and loss moduli follows the order of SO4(2-) > NO3(-) > CO3(2-) > Cl(-). Another important finding of this work is that the influence of anions on flame retardancy follows the exact same order on rheological properties.

  5. Metabolites of organophosphate flame retardants and 2-ethylhexyl tetrabromobenzoate in urine from paired mothers and toddlers.

    PubMed

    Butt, Craig M; Congleton, Johanna; Hoffman, Kate; Fang, Mingliang; Stapleton, Heather M

    2014-09-02

    As a result of the polybrominated diphenyl ether (PBDE) ban in the mid-2000s, the chemical flame retardant market has moved toward alterative compounds including chlorinated alkyl and nonchlorinated aryl organophosphate flame retardants (OPFRs) as well as aromatic brominated compounds such as Firemaster 550 (FM550). Recent studies have shown that the OPFRs and Firemaster 550 components are frequently detected in polyurethane foams and in indoor dust. Some OPFRs are considered carcinogenic and/or neurodevelopmental toxicants, and children's exposure to these compounds is a concern. OPFRs are readily metabolized and excreted in the urine as their dialkyl and diaryl compounds which function as biomarkers for OPFR exposure. Limited research has shown that adults are broadly exposed to OPFRs, but nothing is known about children's exposure. Similarly, 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), a FM550 component, is metabolized to tetrabromobenzoic acid (TBBA). The current study measured levels of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), bis(1-chloro-2-propyl) phosphate (BCIPP), diphenyl phosphate (DPHP), 2 alkylated DPHPs, and TBBA in urine collected in 2013 from 21 US mother-toddler pairs. BDCIPP, DPHP, and ip-DPHP were detected in 100%, 98%, and 96% of all individuals, whereas BCIPP and tert-butyl-DPHP (tb-DPHP) were only detected in 8% and 13%. Further, TBBA was detected in 27% of adults but 70% of children. Overall, children had higher urinary levels of BDCIPP, DPHP, ip-DPHP, and TBBA as compared to their mothers, suggesting higher exposure. For example, on average, BDCIPP levels in children were 4.9 times those of mothers. BDCIPP and DPHP levels in mother's urine were also significantly correlated with levels in children's urine, suggesting similar exposure routes, likely in the home environment. Various potential predictors of OPFR exposure were assessed using a questionnaire. In children some predictors of hand-mouth exposure were associated with

  6. Alternate and new brominated flame retardants detected in U.S. house dust.

    PubMed

    Stapleton, Heather M; Allen, Joseph G; Kelly, Shannon M; Konstantinov, Alex; Klosterhaus, Susan; Watkins, Deborah; McClean, Michael D; Webster, Thomas F

    2008-09-15

    Due to the voluntary withdrawals and/or bans on the use of two polybrominated diphenyl ether (PBDE) commercial mixtures, an increasing number of alternate flame retardant chemicals are being introduced in commercial applications. To determine if these alternate BFRs are present in indoor environments, we analyzed dust samples collected from 19 homes in the greater Boston, MA area during 2006. Using pure and commercial standards we quantified the following brominated flame retardant chemicals using GC/ECNI-MS methods: hexabromocyclododecane (sigma HBCD), bis(2,4,6,-tribromphenoxy)ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and the brominated components found in Firemaster 550 (FM 550): 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB) and (2-ethylhexyl)tetrabromophthalate (TBPH), the latter compound being a brominated analogue of di(2-ethylhexyl)phthalate (DEHP). The concentrations of all compounds were log-normally distributed and the largest range in concentrations was observed for HBCD (sum of all isomers), with concentrations ranging from <4.5 ng/g to a maximum of 130,200 ng/g with a median value of 230 ng/g. BTBPE ranged from 1.6 to 789 ng/g with a median value of 30 ng/g and DBDPE ranged from <10.0 to 11,070 ng/g with a median value of 201 ng/g. Of the FM 550 components, TBB ranged from <6.6 to 15,030 ng/g with a median value of 133 ng/g; whereas TBPH ranged from 1.5 to 10,630 ng/g with a median value of 142 ng/g. Furthermore, the ratio of TBB/TBPH present in the dust samples ranged from 0.05 to 50 (average 4.4), varying considerably from the ratio observed in the FM 550 commercial mixture (4:1 by mass), suggesting different sources with different chemical compositions, and/or differential fate and transport within the home. Analysis of paired dust samples collected from different rooms in the same home suggests HBCD, TBB, and TBPH are higher in dust from the main living area compared to dust collected in bedrooms; however, BTBPE and DBDPE levels were

  7. Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and "novel" brominated flame retardants in house dust in Germany.

    PubMed

    Fromme, H; Hilger, B; Kopp, E; Miserok, M; Völkel, W

    2014-03-01

    Brominated flame retardants (BFRs) are used in a wide variety of products such as electronic devices, upholstery and carpets and in insulation boards. The study presented here aimed to quantify the amounts of BFRs in house dust in Germany. For this purpose 20 residences' dust samples were collected from vacuum cleaner bags and analysed with LC-MS/MS and simultaneously with GC/MS. Using GC/MS, the median (95th percentile) concentrations of PBDEs (sum of tetra- to hepta-congeners), BDE 209, Σ-HBCD (sum of three congeners), and decabromodiphenylethane (DBDPE) were 42ng/g (230ng/g), 950ng/g (3426ng/g), 335ng/g (1545ng/g), and 146ng/g (1059ng/g), respectively. Using LC-MS/MS some "novel" flame retardants were found in median concentrations of 343ng/g (bis(2-ethyl-1-hexyl)tetrabromophthalate, TBPH), and 28ng/g (tetrabromobisphenol A, TBBPA). Whilst 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE) and 2-ethyl-1-hexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) could not be detected. Based on these measurements an exposure assessment for the sum of tetra- to heptabrominated congeners, BDE 209, and Σ-HBCD resulted in a "high" daily intake for toddlers (based on 95th percentiles) of 1.2ng/kg b.w., 0.69ng/kg b.w., and 8.9ng/kg b.w., respectively. For TBPH the "high" intake was calculated at 4.1ng/kg b.w. and for DBDPE at 5.3ng/kg b.w. A clear tendency was observed to apply "novel" BFRs in Germany. Moreover, the results suggest that the recent exposure to PBDEs and HBCD via house dust in Germany is well below the levels that are associated with health effects. For the "novel" brominated flame retardants such an assessment is not possible due to limited toxicological information.

  8. Quantification of tetrabromo benzoic acid and tetrabromo phthalic acid in rats exposed to the flame retardant Uniplex FPR-45.

    PubMed

    Silva, Manori J; Hilton, Donald; Furr, Johnathan; Gray, L Earl; Preau, James L; Calafat, Antonia M; Ye, Xiaoyun

    2016-03-01

    The first withdrawal of certain polybrominated diphenyl ethers flame retardants from the US market occurred in 2004. Since then, use of brominated non-PBDE compounds such as bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) in commercial formulations has increased. Assessing human exposure to these chemicals requires identifying metabolites that can potentially serve as their biomarkers of exposure. We administered by gavage a dose of 500 mg/Kg bw of Uniplex FRP-45 (>95 % BEH-TEBP) to nine adult female Sprague-Dawley rats. Using authentic standards and mass spectrometry, we positively identified and quantified 2,3,4,5-tetrabromo benzoic acid (TBBA) and 2,3,4,5-tetrabromo phthalic acid (TBPA) in 24-h urine samples collected 1 day after dosing the rats and in serum at necropsy, 2 days post-exposure. Interestingly, TBBA and TBPA concentrations correlated well (R (2) = 0.92). The levels of TBBA, a known metabolite of EH-TBB, were much higher than the levels of TBPA both in urine and serum. Because Uniplex FRP-45 was technical grade and EH-TBB was present in the formulation, TBBA likely resulted from the metabolism of EH-TBB. Taken together, our data suggest that TBBA and TBPA may serve as biomarkers of exposure to non-PBDE brominated flame retardant mixtures. Additional research can provide useful information to better understand the composition and in vivo toxicokinetics of these commercial mixtures.

  9. Quantification of tetrabromo benzoic acid and tetrabromo phthalic acid in rats exposed to the flame retardant Uniplex FPR-45

    PubMed Central

    Hilton, Donald; Furr, Johnathan; Gray, L. Earl; Preau, James L.; Calafat, Antonia M.; Ye, Xiaoyun

    2015-01-01

    The first withdrawal of certain polybrominated diphenyl ethers flame retardants from the US market occurred in 2004. Since then, use of brominated non-PBDE compounds such as bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) in commercial formulations has increased. Assessing human exposure to these chemicals requires identifying metabolites that can potentially serve as their biomarkers of exposure. We administered by gavage a dose of 500 mg/Kg bw of Uniplex FRP-45 (>95 % BEH-TEBP) to nine adult female Sprague–Dawley rats. Using authentic standards and mass spectrometry, we positively identified and quantified 2,3,4,5-tetrabromo benzoic acid (TBBA) and 2,3,4,5-tetrabromo phthalic acid (TBPA) in 24-h urine samples collected 1 day after dosing the rats and in serum at necropsy, 2 days post-exposure. Interestingly, TBBA and TBPA concentrations correlated well (R2 = 0.92). The levels of TBBA, a known metabolite of EH-TBB, were much higher than the levels of TBPA both in urine and serum. Because Uniplex FRP-45 was technical grade and EH-TBB was present in the formulation, TBBA likely resulted from the metabolism of EH-TBB. Taken together, our data suggest that TBBA and TBPA may serve as biomarkers of exposure to non-PBDE brominated flame retardant mixtures. Additional research can provide useful information to better understand the composition and in vivo toxicokinetics of these commercial mixtures. PMID:25804200

  10. Brominated Flame Retardants, Tetrabromobisphenol A and Hexabromocyclododecane, Activate Mitogen-Activated Protein Kinases (MAPKs) in Human Natural Killer Cells

    PubMed Central

    Cato, Anita; Celada, Lindsay; Kibakaya, Esther Caroline; Simmons, Nadia; Whalen, Margaret M.

    2014-01-01

    NK cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10-0.5 µM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA. PMID:25341744

  11. Development of an environmentally friendly halogen-free phosphorous-nitrogen bond flame retardant for cotton fabrics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel flame retardant Diethyl 4-methylpiperazin-1-ylphosphoramidate, CN-3, containing phosphorous and nitrogen was prepared. Its chemical structure was confirmed by nuclear magnetic resonance (1H, 13C, 31P NMR), Fourier transform infrared spectrometry (FTIR), and elemental analysis. Print cloth an...

  12. Current halogenated flame retardant concentrations in serum from residents of Shandong Province, China, and temporal changes in the concentrations.

    PubMed

    Ma, Yulong; Li, Peng; Jin, Jun; Wang, Ying; Wang, Qinghua

    2017-02-16

    The residents of Shandong Province, China, are exposed to high concentrations of halogenated flame retardants because large amounts of halogenated flame retardants are produced in the province. We determined the concentrations of eight polybrominated diphenyl ether congeners (PBDEs), seven novel brominated flame retardants (NBFRs), and the two dechlorane plus isomers (DPs) in serum from residents of Shandong Province. The aim was to identify temporal trends in the concentrations of these pollutants. The mean total concentrations of PBDEs, NBFRs and DPs were 41, 2.2 and 2.1ng/g lipid in pooled serum samples collected in 2014, and were 32, 3.5 and 3.1ng/g lipid in pooled serum samples collected in 2015, respectively. Decabromodiphenyl ether was the dominant PBDE congener in all of the samples. The novel brominated flame retardant and dechlorane plus concentrations were between one and two orders of magnitude lower than the PBDE concentrations. The PBDE concentrations in serum decreased significantly between 2007 and 2015, but the pentabromobenzene, pentabromotoluene, and dechlorane plus concentrations were relatively stable.

  13. Studies of flammability and thermal degradation for flame retardant cotton fabric with P-N containing derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of a phosphoramidate Tetraethyl piperazine-1,4- diyldiphosphoramidate (TEPP) as a flame retardant (FR) on cotton twill fabrics was compared with that of a previously studied Diethyl 4- methylpiperazin-1-ylphosphoramidate (DEPP). TEPP was formed in a reaction between two phosphonat...

  14. Guide to PBDE: Toxic Flame Retardant--What Women, Children and School Personnel Need to Know. Revised

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Chemical flame-retardants are used in a variety of products to prevent the spread and occurrence of fire. While fire safety is critical, this family of chemicals, known as Polybrominated diphenyl ethers (PBDEs) are highly toxic. They are found in carpeting, foam cushions, polyester clothing and bedding, wallpaper, toys, household dust, a variety…

  15. Synthesis and characterization of a novel phosphorus-nitrogen containing flame retardant and its application for textile

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The economic and environmentally friendly flame retardant compound, tetramethyl (6-chloro-1,3,5-triazine-2,4-diyl)bis(oxy)bis (methylene)diphosphonate (FR-1) was synthesized by a simple 2 step procedure from dimethyl phosphate, and its chemical structure was characterized by 1H, 13C, and 31P nuclea...

  16. Application of a phosphazene derivative as a flame retardant for cotton fabric using conventional method and supercritical CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional pad-dry-cure (non-scCO2) and supercritical carbon dioxide (scCO2) application methods were investigated to study the effectiveness of a phosphazene derivative as a flame retardant on cotton fabric. 1,1',4,5-tetrahydrotrispiro[1,3,2-diazaphosphole-2,2'-[1,3,5,2,4,6]triazatriphosphinine-4...

  17. Gas chromatography/mass spectrometry comprehensive analysis of organophosphorus, brominated flame retardants, by-products and formulation intermediates in water.

    PubMed

    Cristale, Joyce; Quintana, Jordi; Chaler, Roser; Ventura, Francesc; Lacorte, Silvia

    2012-06-08

    A multiresidue method based on gas chromatography coupled to quadrupole mass spectrometry was developed to determine organophosphorus flame retardants, polybromodiphenyl ethers (BDEs 28, 47, 99, 100, 153, 154, 183 and 209), new brominated flame retardants, bromophenols, bromoanilines, bromotoluenes and bromoanisoles in water. Two ionization techniques (electron ionization--EI, and electron capture negative ionization--ECNI) and two acquisition modes (selected ion monitoring--SIM, and selected reaction monitoring--SRM) were compared as regards to mass spectral characterization, sensitivity and quantification capabilities. The highest sensitivity, at expenses of identification capacity, was obtained by GC-ECNI-MS/SIM for most of the compounds analyzed, mainly for PBDEs and decabromodiphenyl ethane while GC-EI-MS/MS in SRM was the most selective technique and permitted the identification of target compounds at the pg level, and identification capabilities increased when real samples were analyzed. This method was further used to evaluate the presence and behavior of flame retardants within a drinking water treatment facility. Organophosphorus flame retardants were the only compounds detected in influent waters at levels of 0.32-0.03 μg L⁻¹, and their elimination throughout the different treatment stages was evaluated.

  18. Toxicokinetics of the Sterioisomer Specific Flame Retardant Hexabromocyclododecane (HBCD) Gamma: Effect of Dose, Time, and Repeated Exposure

    EPA Science Inventory

    Hexabromocyclododecanes (HBCDs) are high production volume brominated aliphatic cyclic hydrocarbons used as flame-retardants in foams, plastics and textiles. Commercial HBCD is a mixture of three main stereoisomers, alpha (α), beta (β) and gamma (γ). A shift from the high percent...

  19. Exposure of Female Rats to an Environmentally Relevant Mixture of Brominated Flame Retardants Targets the Ovary, Affecting Folliculogenesis and Steroidogenesis.

    PubMed

    Lefèvre, Pavine L C; Berger, Robert G; Ernest, Sheila R; Gaertner, Dean W; Rawn, Dorothea F K; Wade, Michael G; Robaire, Bernard; Hales, Barbara F

    2016-01-01

    Brominated flame retardants (BFRs) are incorporated into various consumer products to prevent flame propagation. These compounds leach into the domestic environment, resulting in chronic exposure and contamination. Pregnancy failure is associated with high levels of BFRs in human follicular fluid, raising serious questions regarding their impact on female reproductive health. The goal of this study is to elucidate the effects of an environmentally relevant BFR mixture on female rat ovarian functions (i.e., folliculogenesis and steroidogenesis). A BFR dietary mixture formulated to mimic the relative BFR congener levels in North American house dust was administered to adult female Sprague-Dawley rats from 2 to 3 wk before mating until Gestational Day 20; these diets were designed to deliver nominal doses of 0, 0.06, 20, or 60 mg/kg/day of the BFR mixture. Exposure to BFRs triggered an approximately 50% increase in the numbers of preantral and antral follicles and an enlargement of the antral follicles in the ovaries of the dams. A significant reduction in the expression of catalase, an antioxidant enzyme, and downregulation of the expression of insulin-like factor 3 (Insl3) and 17alpha-hydroxylase (Cyp17a1) were observed in the ovary. In addition, BFR exposure affected steroidogenesis; we observed a significant decrease in circulating 17-hydroxypregnenolone and an increase in testosterone concentrations in BFR-exposed dams. Thus, BFRs target ovarian function in the rat, adversely affecting both folliculogenesis and steroidogenesis.

  20. The first exposure assessment of legacy and unrestricted brominated flame retardants in predatory birds of Pakistan.

    PubMed

    Abbasi, Naeem Akhtar; Eulaers, Igor; Jaspers, Veerle Leontina Bernard; Chaudhry, Muhammad Jamshed Iqbal; Frantz, Adrien; Ambus, Per Lennart; Covaci, Adrian; Malik, Riffat Naseem

    2017-01-01

    The exposure to legacy polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDDs) and unrestricted 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE), bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromo-benzoate (EH-TBB) was examined in tail feathers of 76 birds belonging to ten predatory species inhabiting Pakistan. In addition, different feather types of six individuals of Black kite (Milvus migrans) were compared for their brominated flame retardant (BFR) levels. Black kite was found to be the most contaminated species with a median (minimum-maximum) tail feather concentration of 2.4 (0.70-7.5) ng g(-1) dw for ∑PBDEs, 1.5 (0.5-8.1) ng g(-1) dw for ∑HBCDDs and 0.10 ( 0.05 for both). Similarly, no significant concentration differences were observed among different feather types (all P > 0.05) suggesting their similar exposure. While variables such as species, trophic guild and δ(15)N values were evaluated as major predictors for BFR accumulation in the studied species, we predict that combined effects of just mentioned factors may govern the intra- and interspecific differences in BFR contamination profiles. We urge for further investigation of BFR exposure and potential toxicological effects in

  1. Polybrominated diphenyl ether flame retardants in the U.S. marine environment: a review.

    PubMed

    Yogui, G T; Sericano, J L

    2009-04-01

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in polymeric materials such as furnishing foam, rigid plastics and textiles. The U.S. has historically led the world production of these man-made chemicals and was responsible for about 50% of the total global demand in 2001. Paradoxically, scientific studies addressing sources, behavior and fate of PBDEs in the U.S. environment are limited when compared to those in Europe. This paper reviews the distribution of PBDEs in marine and estuarine matrices of the three U.S. coasts (Atlantic, Pacific and Gulf of Mexico) and Alaska. PBDEs are ubiquitous in all compartments including water, sediment and biota. Contamination is higher in urbanized regions such as the coast of California. In numerous cases, concentrations of PBDEs in U.S. marine matrices are among the highest in the world. Higher PBDE levels in the U.S. marine environment reflect that over 90% of the Penta-BDE global production has been utilized in the United States. BDEs 47, 99 and 100 typically dominate the composition of PBDEs in most samples and exhibit high concentrations in several matrices. BDEs 17, 28, 33, 49, 153, 154 and 155 are also of concern since they are known to be present in a minor proportion in the Penta-BDE products. BDEs 206, 207, 208 and 209 which occur in Deca-BDE products do not appear to accumulate in most marine organisms although they may be debrominated into more toxic congeners. There is still no regulation addressing PBDEs contamination in the U.S. aquatic environments. Thus, efforts to understand the cycling of PBDEs in the environment as well as toxic effects in organisms are needed to support the development of quality criteria. Some PBDE congeners fulfill the criteria to be recognized as persistent organic pollutants (POPs). The addition of PBDEs to the list of POPs established by the United Nations Stockholm Convention will be important in elevating environmental concerns regarding these chemicals to an

  2. Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating

    SciTech Connect

    Xing, Weiyi; Zhang, Ping; Song, Lei; Wang, Xin; Hu, Yuan

    2014-01-01

    Graphical abstract: - Highlights: • A transparent intumescent fire protective coating was obtained by UV-cured technology. • OZrP could enhance the thermal stability and anti-oxidation of the coating. • OZrP could reduce the combustion properties of the coatings. - Abstract: Organophilic alpha-zirconium phosphate (OZrP) was used to improve the thermal and fire retardant behaviors of the phenyl di(acryloyloxyethyl)phosphate (PDHA)-triglycidyl isocyanurate acrylate (TGICA)-2-phenoxyethyl acrylate (PHEA) (PDHA-TGICA-PHEA) coating. The morphology of nanocomposite coating was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of OZrP on the flame retardancy, thermal stability, fireproofing time and char formation of the coatings was investigated by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS) and scanning electric microscope (SEM). The results showed that by adding OZrP, the peak heat release rate and total heat of combustion were significantly reduced. The highest improvement was achieved with 0.5 wt% OZrP. XPS analysis indicated that the performance of anti-oxidation of the coating was improved with the addition of OZrP, and SEM images showed that a good synergistic effect was obtained through a ceramic-like layer produced by OZrP covered on the surface of char.

  3. Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties.

    PubMed

    El-Shafei, A; ElShemy, M; Abou-Okeil, A

    2015-03-15

    This research work deals with flame retardant and antibacterial finishing agent for cellulosic fabrics using TiO2 nanoparticles and chitosan phosphate. TiO2 nanoparticles were prepared by sol-gel method using titanium tetraisopropoxide. The size of TiO2 nanoparticles was characterized using transmission electron microscope (TEM). The application of nano TiO2 onto cellulosic fabrics (cotton 100%) was achieved in presence of polycarboxylic acid [1,2,3,4-butane tetracarboxylic acid (BTCA)] with sodium hypophosphite (SHP) as catalyst and chitosan phosphate through conventional pad-dry-cure method. The effect of the finishing on the physical properties, flammability and antibacterial properties of cross-linked fabrics are investigated. Thermal gravimetric analysis (TGA) was employed to investigate the thermal decomposition behaviour of the treated samples. Limited oxygen indexes (LOI) of the treated cotton fabrics were investigated. The treated cotton fabric also reveals excellent antibacterial properties.

  4. Impairment in the mesohippocampal dopamine circuit following exposure to the brominated flame retardant, HBCDD.

    PubMed

    Pham-Lake, Camille; Aronoff, Elizabeth B; Camp, Chad R; Vester, Aimee; Peters, Sam J; Caudle, W Michael

    2017-03-01

    Many chemicals have been used to increase the safety of consumer products by reducing their flammability and risk for ignition. Recent focus on brominated flame retardants, such as polybrominated diphenyl ethers (PBDEs) has shown them to contribute to neurobehavioral deficits in children, including learning and memory. As the manufacture and use of PBDEs have been reduced, replacement chemicals, such as hexabromocyclododecane (HBCDD) have been substituted. Our current study evaluated the neurotoxicity of HBCDD, concentrating on dopaminergic innervation to the hippocampus. Using an in vivo model, we exposed male mice to HBCDD and then assessed alterations to the dopamine synapse 6 weeks later. These exposures elicited significant reductions in presynaptic dopaminergic proteins, including TH, COMT, MAO-B, DAT, VMAT2, and alpha-synuclein. In contrast, postsynaptic dopamine receptors were not impaired. These findings suggest that the mesohippocampal dopamine circuit is vulnerable to HBCDD and the dopamine terminal may be a selective target for alteration.

  5. Advances in Instrumental Analysis of Brominated Flame Retardants: Current Status and Future Perspectives

    PubMed Central

    2014-01-01

    This review aims to highlight the recent advances and methodological improvements in instrumental techniques applied for the analysis of different brominated flame retardants (BFRs). The literature search strategy was based on the recent analytical reviews published on BFRs. The main selection criteria involved the successful development and application of analytical methods for determination of the target compounds in various environmental matrices. Different factors affecting chromatographic separation and mass spectrometric detection of brominated analytes were evaluated and discussed. Techniques using advanced instrumentation to achieve outstanding results in quantification of different BFRs and their metabolites/degradation products were highlighted. Finally, research gaps in the field of BFR analysis were identified and recommendations for future research were proposed. PMID:27433482

  6. Brominated flame retardants and organochlorine compounds in duplicate diet samples from a Portuguese academic community.

    PubMed

    Coelho, Sónia D; Sousa, Ana C A; Isobe, Tomohiko; Kunisue, Tatsuya; Nogueira, António J A; Tanabe, Shinsuke

    2016-10-01

    Concentrations of persistent organic pollutants (POPs), including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDDs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane isomers (HCHs), hexachlorobenzene (HCB), chlordane compounds (CHLs) and dichlorodiphenyltrichloroethane and its metabolites (DDTs), were measured in duplicate diet samples from 21 volunteers at a Portuguese academic community (University of Aveiro). Overall, the levels of the target compounds were low, with detection frequencies varying widely depending on the compounds and with brominated flame retardants (BFRs) registering the lowest detection frequencies. Among PCB congeners, nondioxin-like PCBs were predominant and detected in the majority of the samples. Organochlorine pesticides were also detected in the majority of the samples, with 100% detection for DDTs and HCHs. Estimated daily intakes (EDIs) were calculated using lower and upper bound estimations, and in both cases values were far below the currently established tolerable daily intakes for PCBs and OCs and the reference doses for PBDEs and HBCDDs.

  7. Phenols, flame retardants and phthalates in water and wastewater - a global problem.

    PubMed

    Ayanda, Olushola Sunday; Olutona, Godwin Oladele; Olumayede, Emmanuel G; Akintayo, Cecilia O; Ximba, Bhekumusa J

    Organic pollutants in water and wastewater have been causing serious environmental problems. The arbitrary discharge of wastewater by industries, and handling, use, and disposal constitute a means by which phenols, flame retardants (FRs), phthalates (PAEs) and other toxic organic pollutants enter the ecosystem. Moreover, these organic pollutants are not completely removed during treatment processes and might be degraded into highly toxic derivatives, which has led to their occurrence in the environment. Phenols, FRs and PAEs are thus highly toxic, carcinogenic and mutagenic, and are capable of disrupting the endocrine system. Therefore, investigation to understand the sources, pathways, behavior, toxicity and exposure to phenols, FRs and PAEs in the environment is necessary. Formation of different by-products makes it difficult to compare the efficacy of the treatment processes, most especially when other organic matters are present. Hence, high levels of phenols, FRs and PAEs removal could be attained with in-line combined treatment processes.

  8. Reproductive Outcomes Among Women Exposed to a Brominated Flame Retardant In Utero

    PubMed Central

    Small, Chanley M.; Murray, Deanna; Terrell, Metrecia L.; Marcus, Michele

    2014-01-01

    The authors studied 194 women exposed to polybrominated biphenyls (PBB) in utero when their mothers consumed products accidentally contaminated in Michigan in 1973. Generalized estimating equations were used to examine the effect of in utero PBB exposure on adult pregnancy-related outcomes. Compared to those with the lowest exposure (≤1 ppb), those with mid-range (>1–3.16 ppb) and high (≥3.17 ppb) PBB exposure had increased odds of spontaneous abortion with wide confidence intervals (odds ratio [OR] = 2.75, 95% confidence interval [CI] = 0.64–11.79, OR = 4.08, 95% CI = 0.94–17.70; respectively; p for trend = .05). Exposure during infancy to PBB-contaminated breast milk further increased this risk. Time to pregnancy and infertility were not associated with in utero exposure to PBB. Future studies should examine the suggested relationship between spontaneous abortion and other brominated flame retardants. PMID:22014192

  9. Flame retardants (PBDEs) in marine turtles, dugongs and seafood from Queensland, Australia.

    PubMed

    Hermanussen, S; Matthews, V; Päpke, O; Limpus, C J; Gaus, C

    2008-01-01

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in numerous products. These compounds have been found to enter the marine environment where they have the potential to bioaccumulate in biota. Limited information is currently available concerning the levels of PBDEs in Australian marine wildlife. This study presents baseline information on PBDE levels in a variety of marine species from Queensland, Australia and considers the influence of species-specific factors on contaminant levels and tissue distribution in marine turtles. Overall, the PBDE levels measured in this study are relatively low compared to marine biota from the northern hemisphere, indicating low level input into the marine system of Queensland. This is in general agreement with global estimates which suggest low PBDE usage in Australia. Previous studies, however, have found relatively high PBDE levels in Australian human milk and sera. This discrepancy in contamination trends between terrestrial and marine biota suggests that future transport of PBDEs may occur to the marine system in Australia.

  10. Potential human exposure to halogenated flame-retardants in elevated surface dust and floor dust in an academic environment.

    PubMed

    Allgood, Jaime M; Jimah, Tamara; McClaskey, Carolyn M; La Guardia, Mark J; Hammel, Stephanie C; Zeineddine, Maryam M; Tang, Ian W; Runnerstrom, Miryha G; Ogunseitan, Oladele A

    2017-02-01

    Most households and workplaces all over the world possess furnishings and electronics, all of which contain potentially toxic flame retardant chemicals to prevent fire hazards. Indoor dust is a recognized repository of these types of chemicals including polybrominated diphenyl ethers (PBDEs) and non-polybrominated diphenyl ethers (non-PBDEs). However, no previous U.S. studies have differentiated concentrations from elevated surface dust (ESD) and floor dust (FD) within and across microenvironments. We address this information gap by measuring twenty-two flame-retardant chemicals in dust on elevated surfaces (ESD; n=10) and floors (FD; n=10) from rooms on a California campus that contain various concentrations of electronic products. We hypothesized a difference in chemical concentrations in ESD and FD. Secondarily, we examined whether or not this difference persisted: (a) across the studied microenvironments and (b) in rooms with various concentrations of electronics. A Wilcoxon signed-rank test demonstrated that the ESD was statistically significantly higher than FD for BDE-47 (p=0.01), BDE-99 (p=0.01), BDE-100 (p=0.01), BDE-153 (p=0.02), BDE-154 (p=0.02), and 3 non-PBDEs including EH-TBB (p=0.02), BEH-TEBP (p=0.05), and TDCIPP (p=0.03). These results suggest different levels and kinds of exposures to flame-retardant chemicals for individuals spending time in the sampled locations depending on the position of accumulated dust. Therefore, further research is needed to estimate human exposure to flame retardant chemicals based on how much time and where in the room individuals spend their time. Such sub-location estimates will likely differ from assessments that assume continuous unidimensional exposure, with implications for improved understanding of potential health impacts of flame retardant chemicals.

  11. Flame retardants and their metabolites in the homes and urine of pregnant women residing in California (the CHAMACOS cohort).

    PubMed

    Castorina, Rosemary; Butt, Craig; Stapleton, Heather M; Avery, Dylan; Harley, Kim G; Holland, Nina; Eskenazi, Brenda; Bradman, Asa

    2017-03-22

    Organophosphate flame retardants (PFRs), used in consumer products since the 1970s, persist in the environment. Restrictions on penta-polybrominated diphenyl ether (PBDE) flame retardants resulted in increased use of Firemaster(®) 550 (FM(®) 550), and the organophosphate triesters: tris(1,3- dichloro-2-propyl) phosphate (TDCIPP); tris(chloropropyl) phosphate (TCIPP); tris(2-chloroethyl) phosphate (TCEP); and triphenyl phosphate (TPHP). The objectives of this study were to (1) identify determinants of flame retardants (4 PFRs, PentaBDEs and FM(®) 550) in house dust, (2) measure urinary PFR metabolites in pregnant women, and (3) estimate health risks from PFR exposure. We measured flame retardants in house dust (n = 125) and metabolites in urine (n = 310) collected in 2000-2001 from Mexican American women participating in the CHAMACOS birth cohort study in California. We detected FM(®) 550 and PFRs, including two (TCEP and TDCIPP) known to the state of California to cause cancer, in most dust samples. The maximum TCEP and TDCIPP dust levels were among the highest ever reported although the median levels were generally lower compared to other U.S. cohorts. Metabolites of TDCIPP (BDCIPP: bis(1,3-dichloro-2-propyl) phosphate) and TPHP (DPHP: diphenyl phosphate) were detected in 78% and 79% of prenatal urine samples, respectively. We found a weak but positive correlation between TPHP in dust and DPHP in 124 paired prenatal urine samples (Spearman rho = 0.17; p = 0.06). These results provide information on PFR exposure and risk in pregnant women from the early 2000's and are also valuable to assess trends in exposure and risk given changing fire safety regulations and concomitant changes in chemical flame retardant use.

  12. Monitoring Indoor Exposure to Organophosphate Flame Retardants: Hand Wipes and House Dust

    PubMed Central

    Hoffman, Kate; Garantziotis, Stavros; Birnbaum, Linda S.

    2014-01-01

    Background: Organophosphate flame retardants (PFRs) are becoming popular replacements for the phased-out polybrominated diphenyl ether (PBDE) mixtures, and they are now commonly detected in indoor environments. However, little is known about human exposure to PFRs because they cannot be easily measured in blood or serum. Objectives: To investigate relationships between the home environment and internal exposure, we assessed associations between two PFRs, tris(1,3-dichloropropyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP), in paired hand wipe and dust samples and concentrations of their metabolites in urine samples (n = 53). We also assessed short-term variation in urinary metabolite concentrations (n = 11 participants; n = 49 samples). Methods: Adult volunteers in North Carolina, USA, completed questionnaires and provided urine, hand wipe, and household dust samples. PFRs and PBDEs were measured in hand wipes and dust, and bis(1,3-dichloropropyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP), metabolites of TDCIPP and TPHP, were measured in urine. Results: TDCIPP and TPHP were detected frequently in hand wipes and dust (> 86.8%), with geometric mean concentrations exceeding those of PBDEs. Unlike PBDEs, dust TDCIPP and TPHP levels were not associated with hand wipes. However, hand wipe levels were associated with urinary metabolites. Participants with the highest hand wipe TPHP mass, for instance, had DPHP levels 2.42 times those of participants with the lowest levels (95% CI: 1.23, 4.77). Women had higher levels of DPHP, but not BDCIPP. BDCIPP and DPHP concentrations were moderately to strongly reliable over 5 consecutive days (intraclass correlation coefficients of 0.81 and 0.51, respectively). Conclusions: PFR exposures are widespread, and hand-to-mouth contact or dermal absorption may be important pathways of exposure. Citation: Hoffman K, Garantziotis S, Birnbaum LS, Stapleton HM. 2015. Monitoring indoor exposure to organophosphate flame retardants

  13. Deposition of brominated flame retardants to the Devon Ice Cap, Nunavut, Canada.

    PubMed

    Meyer, Torsten; Muir, Derek C G; Teixeira, Camilla; Wang, Xiaowa; Young, Teresa; Wania, Frank

    2012-01-17

    Brominated flame retardants (BFRs) can be transported to Arctic regions via atmospheric long-range transport, however, relatively little is known about their deposition to terrestrial environments. Snow cores from the Devon Ice Cap in Nunavut, Canada served to determine the recent depositional trends of BFRs. Snow pits were dug in 2005, 2006, and 2008. Dating using annual snow accumulation data, ion chemistry, and density measurements established that the pits covered the period from approximately 1993 to spring 2008. Samples were extracted under clean room conditions, and analyzed using GC-negative ion MS for 26 tri- to decabromodiphenyl ethers (BDEs), as well as other BFRs, nonbrominated flame retardants, and industrial chemicals. Decabromodiphenyl ether (BDE-209) was the major congener present in all samples followed by nona-BDEs (BDE-207, BDE-206, and BDE-208), both accounting for 89% and 7% of total BDE, respectively. BDE-209 concentrations were in most cases significantly correlated (P < 0.05) to tri- to nona-BDE homologues, and the strength of the correlations increased with increasing degree of bromination. Prior to or after deposition BDE-209 may be subject to debromination to lighter congeners. Deposition fluxes of BDE-209 show no clear temporal trend and range between 90 and 2000 pg·cm(-2)·year(-1). Back trajectory origin in densely populated areas of northeastern North America is significantly correlated (P < 0.005) with the BDE-209 deposition flux. Several other high production volume and/or alternative BFRs such as hexabromocyclododecane (HBCD), 1,2-bis(2,4,6-dibromophenoxy)ethane (BTBPE), pentabromo ethyl benzene (PBEBz), and pentabromobenzene (PBBz), as well as the industrial chemical 1,3,5-tribromobenzene (135-TBBz) were found consistently in the snow pits.

  14. Seasonality and indoor/outdoor relationships of flame retardants and PCBs in residential air.

    PubMed

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Kukučka, Petr; Vojta, Šimon; Kalina, Jiří; Čupr, Pavel; Klánová, Jana

    2016-11-01

    This study is a systematic assessment of different houses and apartments, their ages and renovation status, indoors and outdoors, and in summer vs. winter, with a goal of bringing some insight into the major sources of semivolatile organic compounds (SVOCs) and their variability. Indoor and outdoor air concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and novel flame retardants (NFRs) were determined at 17-20 homes in Czech Republic in winter and summer. Indoor concentrations were consistently higher than outdoor concentrations for all compounds; indoor/outdoor ratios ranged from 2-20, with larger differences for the current use NFRs than for legacy PCBs. Seasonal trends differed according to the use status of the compounds: the PCBs had higher summer concentrations both indoors and outdoors, suggesting volatilization as a source of PCBs to air. PBDEs had no seasonal trends indoors, but higher summer concentrations outdoors. Several NFRs (TBX, PBT, PBEB) had higher indoor concentrations in winter relative to summer. The seasonal trends in the flame retardants suggest differences in air exchange rates due to lower building ventilation in winter could be driving the concentration differences. Weak relationships were found with building age for PCBs, with higher concentrations indoors in buildings built before 1984, and with the number of electronics for PBDEs, with higher concentrations in rooms with three or more electronic items. Indoor environments are the primary contributor to human inhalation exposure to these SVOCs, due to the high percentage of time spent indoors (>90%) combined with the higher indoors levels for all the studied compounds. Exposure via the indoor environment contributed ∼96% of the total chronic daily intake via inhalation in summer and ∼98% in winter.

  15. Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada

    NASA Astrophysics Data System (ADS)

    Shoeib, Mahiba; Ahrens, Lutz; Jantunen, Liisa; Harner, Tom

    2014-12-01

    Concentrations of organobromine (BFRs), organochlorine (CFRs) and organophosphate esters flame retardants and plasticizers (PFRs) in air were monitored for over one year at an urban site in Toronto, Canada during 2010-2011. The mean value for polybrominated diphenyl ethers (BDEs) (gas + particle phase) was 38 pg/m3 with BDE-47 and BDE-99 as the dominant congeners. The mean concentrations in air for ∑non-BDE (BFRs and CFRs), was 9.6 pg/m3 - about four times lower than the BDEs. The brominated FRs: TBP-AE, BTBPE, EH-TBB, BEH-TEBP and the chlorinated syn- and anti-DP were detected frequently, ranging from 87% to 96%. Highest concentrations in air among all flame retardant classes were observed for the Σ-PFRs. The yearly mean concentration in air for ΣPFRs was 2643 pg/m3 with detection frequency higher than 80%. Except for TBP-AE and b- DBE-DBCH, non-BDEs (BFRs, CFRs and PFRs) were mainly associated with the particle phase. BDE concentrations in air were positively correlated with temperature indicating that volatilization from local sources was an important factor controlling levels in air. This correlation did not hold for most BFRs, CFRs and PFRs which were mainly on particles. For these compounds, air concentrations in Toronto are likely related to emissions from point sources and advective inputs. This study highlights the importance of urban air monitoring for FRs. Urban air can be considered a sentinel for detecting changes in the use and application of FRs in commercial products.

  16. Dechlorane plus and other flame retardants in a sediment core from Lake Ontario.

    PubMed

    Qiu, Xinghua; Marvin, Chris H; Hites, Ronald A

    2007-09-01

    Our previous research on atmospheric samples suggested that Lake Ontario might receive significant amounts of Dechlorane Plus (DP), a highly chlorinated flame retardant, from the atmosphere and from inputs from DP's manufacturing facility in Niagara Falls, New York. To confirm this suspicion, a sediment core from the central basin of Lake Ontario was analyzed for the two isomers of DP, for polybrominated diphenyl ethers (PBDEs), and for 1,2-bis-(2,4,6-tribromophenoxy)ethane (TBE). The results showed that the concentration of DP in sediment increased rapidly starting in the mid-1970s and reached its peak concentration (310 ng g(-1) dry weight) in the mid-1990s. The peak flux and total inventory of DP were estimated to be 9.3 ng cm(-2) yr(-1) and 120 ng cm(-2), respectively. These values suggest that the total burden of DP in Lake Ontario is approximately 20 tons and that the maximum load rate was approximately 2 tons per year. The highest concentrations of PBDEs and TBE were found in the surficial sediment, with average concentrations of 2.8, 14, and 6.7 ng g(-1) d.w. for PBDE(3-7) (tri-through hepta-BDEs), BDE-209, and TBE, respectively. The surface fluxes were 0.08, 0.43, and 0.20 ng cm(-2) yr(-1), and the inventories were 0.87, 3.9, and 1.8 ng cm(-2) for PBDE3-7, BDE-209, and TBE, respectively. The concentration of DP in Lake Ontario sediment exceeds that of the brominated flame retardants combined.

  17. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants

    SciTech Connect

    Oleszek, Sylwia; Grabda, Mariusz; Shibata, Etsuro; Nakamura, Takashi

    2013-09-15

    Highlights: • Copper, silver and gold during thermal treatment with brominated flame retardants. • Distribution of copper, silver and gold during thermal processing. • Thermodynamic considerations of the bromination reactions. - Abstract: The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is

  18. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity.

    PubMed

    Behl, Mamta; Hsieh, Jui-Hua; Shafer, Timothy J; Mundy, William R; Rice, Julie R; Boyd, Windy A; Freedman, Jonathan H; Hunter, E Sidney; Jarema, Kimberly A; Padilla, Stephanie; Tice, Raymond R

    2015-01-01

    Due to their toxicity and persistence in the environment, brominated flame retardants (BFRs) are being phased out of commercial use, leading to the increased use of alternative chemicals such as the organophosphorus flame retardants (OPFRs). There is, however, limited information on the potential health effects of OPFRs. Due to the structural similarity of the OPFRs to organophosphorus insecticides, there is concern regarding developmental toxicity and neurotoxicity. In response, we evaluated a set of OPFRs (triphenyl phosphate [TPHP]), isopropylated phenyl phosphate [IPP], 2-ethylhexyl diphenyl phosphate [EHDP], tert-butylated phenyl diphenyl phosphate [BPDP], trimethyl phenyl phosphate [TMPP], isodecyl diphenyl phosphate [IDDP], (tris(1,3-dichloroisopropyl) phosphate [TDCIPP], and tris(2-chloroethyl)phosphate [TCEP]) in a battery of cell-based in vitro assays and alternative model organisms and compared the results to those obtained for two classical BFRs (3,3',5,5'-tetrabromobisphenol A [TBBPA] and 2,2'4,4'-brominated diphenyl ether [BDE-47]). The assays used evaluated the effects of chemicals on the differentiation of mouse embryonic stem cells, the proliferation and growth of human neural stem cells, rat neuronal growth and network activity, and development of nematode (Caenorhabditis elegans) and zebrafish (Danio rerio). All assays were performed in a concentration-response format, allowing for the determination of the point of departure (POD: the lowest concentration where a chemically-induced response exceeds background noise). The majority of OPFRs (8/9) were active in multiple assays in the range of 1-10 μM, most of which had comparable activity to the BFRs TBBPA and BDE-47. TCEP was negative in all assays. The results indicate that the replacement OPFRs, with the exception of TCEP, showed comparable activity to the two BFRs in the assays tested. Based on these results, more comprehensive studies are warranted to further characterize the potential hazard

  19. Layer-by-Layer Assembly of Multifunctional Flame Retardant Based on Brucite, 3-Aminopropyltriethoxysilane, and Alginate and Its Applications in Ethylene-Vinyl Acetate Resin.

    PubMed

    Wang, Yiliang; Yang, Xiaomei; Peng, Hui; Wang, Fang; Liu, Xiu; Yang, Yunguo; Hao, Jianwei

    2016-04-20

    An efficient and multifunctional brucite/3-aminopropyltriethoxysilane (APTES)/nickel alginate/APTES (B/A/Nia/A) hybrid flame retardant was fabricated via the layer-by-layer assembly technique with brucite, silane coupling agents, nickel chloride, and sodium alginate. The morphology, chemical composition, and structure of the hybrid flame retardant were characterized. The results confirmed the multilayer structure and indicated that the assembled driving forces were electrostatic interactions, dehydration condensation, hydrogen bonds, and coordination bonds. When used in ethylene-vinyl acetate (EVA) resin, the multifunctional flame retardant had better performance than brucite in improving the flame retardancy, smoke suppression, and mechanical properties. With 130 phr loading, the multifunctional flame retardant achieved a limiting oxygen index value of 32.3% and a UL 94 V-0 rating, whereas the brucite achieved only 31.1% and a V-2 rating, respectively. The peak heat release rate and total heat released decreased by 41.5% and 8.9%, respectively. The multifunctional flame retardant had an excellent performance in reducing the smoke, CO, and CO2 production rates. These improvements could be attributed to the catalyzing carbonization of nickel compounds and the formation of more protective char layers. Moreover, the elongation at break increased by 97.5%, which benefited from the improved compatibility and the sacrificial bonds in the nickel alginate. The mechanism of flame retardant, smoke suppression, and toughening is proposed.

  20. Substance flow analysis of brominated flame retardants and related compounds in waste TV sets in Japan.

    PubMed

    Tasaki, Tomohiro; Takasuga, Takumi; Osako, Masahiro; Sakai, Shin-Ichi

    2004-01-01

    We conducted time-series substance flow analysis of two types of brominated flame retardants (BFRs)--polybrominated diphenyl ethers (PBDEs) and tetrabromobisphenol A (TBBPA)--and two types of related compounds--Sb (used with BFRs for flame inhibition) and polybrominated dibenzo dioxins and furans (PBDDs/DFs: unintended byproducts)--in five size categories of waste TV sets in Japan. Two scenarios were created with BFR substitutions and compared to a "business as usual" scenario in order to obtain basic information for strategic product management. The results showed that the use of DecaBDE in rear and front covers of TV sets began in fiscal 1987-1990 and 1993-1996, respectively, and that TBBPA was used to some extent as a substitute for DecaBDE in the 90s. The amount of waste Br in the plastic covers is predicted to increase until at least fiscal 2020 due to the increasing size of TV sets. Although substitution of BFRs with non-BFRs in Japan by 2006 will reduce waste Br, the amount in waste TV sets will not peak until fiscal 2009. The results will help inform decisions in Japan regarding the recovery and disposal of waste TV sets. The methods used would benefit waste managers faced with similar issues in other countries.

  1. Development of flame retardant PV module encapsulants: Volume 1. Final report

    SciTech Connect

    Galica, J.P.

    1998-06-01

    This Phase 1 final report covers the work performed by Springborn Testing and Research, Inc., for the period October 1, 1997 to June 30, 1998 under the Department of Energy Cooperative Agreement Number DE-FC36-97GO10255, entitled Development of Flame Retardant PV Module Encapsulants. While use of roof-mounted arrays has always been an attractive means of deploying PV, only within recent years have such building integrated concepts (BIPV) found renewed interest among module makers and end-users. Prior to building integrated and rooftop applications, flammability requirements for modules have not been a great industry concern. However, with growing interest in BIPV and the requirement for building code requirements for commercial and industrial structures, flammability issues have become a barrier to entry for many module constructions into this potentially huge domestic market for PV. The overall goal of the 3 phase PV BONUS two project is to develop and commercialize a line of fire retardant encapsulation materials to serve the emerging building integrated and building mounted PV market. The objectives of the Phase 1 effort are limited to concept development and business planning activities.

  2. Investigation of Fuel Additive Effects on Sooting Flames

    DTIC Science & Technology

    1989-07-28

    Ndubizu, C. C., and B. T. Zinn : Effects of Metallic Aditive Upon Soot Formation in Polymer Diffusion Flames. Combust, Flame 46, 301-314 (1982). 3.4...Plenum Press, New York, p. 143 (1981). 3.28 Wersborg, B. L., .1. B. Howard , and G. C. Williams: Physical Mechanisms in Carbon 3 Formation in Flames

  3. Assessment of dietary exposure to organohalogen contaminants, legacy and emerging flame retardants in a Norwegian cohort.

    PubMed

    Xu, Fuchao; Tay, Joo-Hui; Covaci, Adrian; Padilla-Sánchez, Juan Antonio; Papadopoulou, Eleni; Haug, Line Småstuen; Neels, Hugo; Sellström, Ulla; de Wit, Cynthia A

    2017-03-20

    Polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), emerging halogenated flame retardants (EHFRs) and organophosphate flame retardants (PFRs) were detected in 24h duplicate diet samples from a Norwegian cohort (n=61), with concentrations ranging from

  4. Tracing organophosphorus and brominated flame retardants and plasticizers in an estuarine food web.

    PubMed

    Brandsma, Sicco H; Leonards, Pim E G; Leslie, Heather A; de Boer, Jacob

    2015-02-01

    Nine organophosphorus flame retardants (PFRs) were detected in a pelagic and benthic food web of the Western Scheldt estuary, The Netherlands. Concentrations of several PFRs were an order of magnitude higher than those of the brominated flame retardants (BFRs). However, the detection frequency of the PFRs (6-56%) was lower than that of the BFRs (50-97%). Tris(2-butoxyethyl) phosphate (TBOEP), tris(isobutyl) phosphate (TIBP) and tris(2-chloroisopropyl) phosphate (TCIPP) were the dominant PFRs in sediment with median concentrations of 7.0, 8.1 and 1.8 ng/g dry weight (dw), respectively. PFR levels in the suspended particular matter (SPM) were 2-12 times higher than that in sediment. TBOEP, TCIPP, TIBP, tris(2-chloroethyl) phosphate (TCEP) and tris(phenyl) phosphate (TPHP) were found in organisms higher in the estuarine food web. The highest PFR concentrations in the benthic food web were found in sculpin, goby and lugworm with median concentrations of 17, 7.4, 4.6 and 2.0 ng/g wet weight (ww) for TBOEP, TIBP, TCIPP and TPHP, respectively. Comparable levels were observed in the pelagic food web, BDE209 was the predominant PBDE in sediment and SPM with median concentrations up to 9.7 and 385 ng/g dw, respectively. BDE47 was predominant in the biotic compartment of the food web with highest median levels observed in sculpin and common tern eggs of 79 ng/g lipid weight (lw) (2.5 ng/g ww) and 80 ng/g lw (11 ng/g ww), respectively. Trophic magnification was observed for all PBDEs with the exception of BDE209. Indications of trophic magnification of PFRs were observed in the benthic food web for TBOEP, TCIPP and TCEP with tentative trophic magnification factors of 3.5, 2.2 and 2.6, respectively (p<0.05). Most of the other PFRs showed trophic dilution in both food webs. The relative high PFR levels in several fish species suggest high emissions and substantial exposure of organisms to PFRs in the Western Scheldt.

  5. Selective pressurized liquid extraction of replacement and legacy brominated flame retardants from soil.

    PubMed

    McGrath, Thomas J; Morrison, Paul D; Ball, Andrew S; Clarke, Bradley O

    2016-08-05

    Polybrominated diphenyl ethers (PBDEs) are a class of flame retardant registered as UN POPs due to their persistence in the environment, bioaccumulation potential and toxicity. Replacement novel brominated flame retardants (NBFRs) have exhibited similar health hazards and environmental distribution, becoming recognized as significant contaminants. This work describes the development and validation of a sensitive and reliable method for the simultaneous quantitation of PBDEs and NBFRs in environmental soil samples using selective pressurized liquid extraction (S-PLE) and gas chromatography coupled to triple quadrupole mass spectrometry (GC-(EI)-MS/MS). Under optimal conditions, extraction of eight PBDEs (-28, -47, -99, -100, -153, -154, -183 and -209) and five NBFRs; pentabromotoluene (PBT), pentabromoethylbenzene (PBEB), hexabromobenzene (HBB), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2,4,6-tribromophenoxy)ethane (BTBPE) was performed at 100°C and 1500psi using a 1:1 mixture of hexane and dichloromethane. The method utilized 33mL capacity PLE cells containing, from bottom to top, a single cellulose filter, 3g activated Florisil, 6g acid silica (10% w/w), 3g Na2SO4, another cellulose filter, 2g activated copper powder and 3g soil sample dispersed in 2g Na2SO4 and 1g of Hydromatrix. The method was evaluated by repeated extraction and analysis of all analytes from 3g soil at three spike concentrations. Good recoveries were observed for most analytes at each of the spiking levels with RSD values generally below 20%. MDLs ranged from 0.01 to 4.8ng/g dw for PBDEs and 0.01-0.55ng/g dw for NBFRs. The described one-step combined extraction and cleanup method reduces sample processing times compared with traditional procedures, while delivering comparable analytical performance. The method was successfully applied to environmental soil samples (n=5), detecting PBDEs in each sample and providing the first account of NBFR contamination in Australian soils.

  6. In vitro effects of brominated flame retardants and metabolites on CYP17 catalytic activity: A novel mechanism of action?

    SciTech Connect

    Canton, Rocio F. . E-mail: r.Fernandezcanton@iras.uu.nl; Sanderson, J. Thomas; Nijmeijer, Sandra; Bergman, Ake; Letcher, Robert J.; Berg, Martin van den

    2006-10-15

    Fire incidents have decreased significantly over the last 20 years due, in part, to regulations requiring addition of flame retardants (FRs) to consumer products. Five major classes of brominated flame retardants (BFRs) are hexabromocyclododecane isomers (HBCDs), tetrabromobisphenol-A (TBBPA) and three commercial mixtures of penta-, octa- and deca-polybrominated diphenyl ether (PBDE) congeners, which are used extensively as commercial FR additives. Furthermore, concentrations of PBDEs have been rapidly increasing during the 1999s in human breast milk and a number of endocrine effects have been reported. We used the H295R human adrenocortical carcinoma cell line to assess possible effects of some of these BFRs (PBDEs and several of their hydroxylated (OH) and methoxylated (CH{sub 3}O) metabolites or analogues), TBBPA and brominated phenols (BPs) on the combined 17{alpha}-hydroxylase and 17,20-lyase activities of CYP17. CYP17 enzyme catalyzes an important step in sex steroidogenesis and is responsible for the biosynthesis of dehydroepiandrosterone (DHEA) and androstenedione in the adrenals. In order to study possible interactions with BFRs, a novel enzymatic method was developed. The precursor substrate of CYP17, pregnenolone, was added to control and exposed H295R cells, and enzymatic production of DHEA was measured using a radioimmunoassay. In order to avoid pregnenolone metabolism via different pathways, specific chemical inhibitor compounds were used. None of the parent/precursor BFRs had a significant effect (P < 0.05) on CYP17 activity except for BDE-183, which showed significant inhibition of CYP17 activity at the highest concentration tested (10 {mu}M), with no signs of cytotoxicity as measured by mitochondrial toxicity tests (MTT). A strong inhibition of CYP17 activity was found for 6-OH-2,2',4,4'-tetrabromoDE (6-OH-BDE47) with a concentration-dependent decrease of almost 90% at 10 {mu}M, but with a concurrent decrease in cell viability at the higher

  7. Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber

    NASA Astrophysics Data System (ADS)

    Chai, Hao; Tang, Xiaobin; Ni, Minxuan; Chen, Feida; Zhang, Yun; Chen, Da; Qiu, Yunlong

    2015-09-01

    Flexible flame-retardant composites were prepared using high-functional methyl vinyl silicone rubber matrix with B4C, hollow beads, and zinc borate (ZB) as filler materials. As filler content increased, the tensile strength, elongation, and tear strength of the composites initially increased and then decreased. The shore hardness of the composites increased with increasing filler content with a maximum value of 30 HA. The heat insulation properties of the composites with hollow beads were higher than that of the ordinary composites with the same filler mass fraction. When ZB content exceeded 12 wt%, the limit of oxygen index of the composites was higher than 27.1%. With Am-Be neutron as the test radiation source, the transmission of neutron for a 2 cm sample was only 47.8%. Powder surface modification improved the mechanical properties, thermal conductivity, flame retardancy, and neutron shielding performance of the composites, but did not affect shore hardness.

  8. Free radical induced grafting of acrylonitrile on pre-treated rice straw for enhancing its durability and flame retardancy.

    PubMed

    Mukherjee, Aparna; Halder, Seema; Datta, Deepshikha; Anupam, Kumar; Hazra, Biren; Kanti Mandal, Mrinal; Halder, Gopinath

    2017-01-01

    The present investigation highlights the feasibility of a polymer grafting process to enhance the durability and flame retardancy of rice straw towards application as a low cost roofing material. The success of this grafting methodology was perceived to depend upon a bi-step pre-treatment process encompassing delignification and inorganic salts dispersion. Subsequently free radical polymer grafting of acrylonitrile onto rice straw was implemented by immersion mechanism initiated by oxalic acid-potassium permanganate initiator. The percentage of grafting, limiting oxygen index (LOI), biodegradability of the grafted rice straw and grafting yield percentage was estimated to be 57%, 27%, 0.02% and 136.67%, respectively. The weight loss of polymer grafted rice straw implied its less biodegradability over raw straw. Thus, the process of grafting contrived in the present analysis can be a promising and reliable technique for the efficient utilization of rice straw as an inexpensive roofing element through the augmentation of its durability and flame retardancy.

  9. Air sampling of flame retardants based on the use of mixed-bed sorption tubes--a validation study.

    PubMed

    Lazarov, Borislav; Swinnen, Rudi; Spruyt, Maarten; Maes, Frederick; Van Campenhout, Karen; Goelen, Eddy; Covaci, Adrian; Stranger, Marianne

    2015-11-01

    An analytical methodology using automatic thermal desorption and gas chromatography mass spectrometry analysis was optimized and validated for simultaneous determination of a set of components from three different flame retardant chemical classes: polybrominated diphenyl ethers (PBDEs) (PBDE-28, PBDE-47, PBDE-66, PBDE-85, PBDE-99, PBDE-100), organophosphate flame retardants (PFRs) (tributyl phosphate, tripropyl phosphate, tris(2-chloroethyl)phosphate-, tris(1,3-dichloro-2-propyl) phosphate, tris(2-ethylhexyl) phosphate, triphenyl phosphate, tris(2-chloro-1-methylethyl) phosphate and tricresylphosphate), and "novel" brominated flame retardants (NBFRs) (pentabromotoluene, 2,3,4,5,6-pentabromoethylbenzene, (2,3-dibromopropyl) (2,4,6-tribromophenyl) ether, hexabromobenzene, and 2-ethylhexyl 2,3,4,5-tetrabromobenzoate) in air. The methodology is based on low volume active air sampling of gaseous and particulate air fractions on mixed-bed (polydimethylsiloxane (PDMS)/Tenax TA) sorption tubes. The optimized method provides recoveries >88%; a limit of detection in the range of 6-25 pg m(-3) for PBDEs, 6-171 pg m(-3) for PFRs, and 7-41 pg m(-3) for NBFRs; a linearity greater than 0.996; and a repeatability of less than 10% for all studied compounds. The optimized method was compared with a standard method using active air sampling on XAD-2 sorbent material, followed by liquid extraction. On the one hand, the PDMS/Tenax TA method shows comparable results at longer sampling time conditions (e.g., indoor air sampling, personal air sampling). On the other hand, at shorter sampling time conditions (e.g., sampling from emission test chambers), the optimized method detects up to three times higher concentrations and identifies more flame retardant compounds compared to the standard method based on XAD-2 loading.

  10. Synthesis of a Novel Phosphorus-Containing Flame Retardant Curing Agent and Its Application in Epoxy Resins.

    PubMed

    Zhang, Hongkun; Xu, Miaojun; Li, Bin

    2016-03-01

    A novel phosphorus-containing compound diphenyl-(2,5-dihydroxyphenyl)-phosphine oxide defined as DPDHPPO was synthesized and used as flame retardant and curing agent for epoxy resins (EP). The chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy, 1H, 13C and 31P nuclear magnetic resonance. The flame retardant properties, combusting performances and thermal degradation behaviors of the cured epoxy resins were investigated by limiting oxygen index (LOI), vertical burning tests (UL-94), cone calorimeter and thermogravimetric analysis (TGA) tests. The morphologies and chemical compositions of char residues for cured epoxy resins were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The water resistant properties were evaluated by putting the samples into distilled water at 70 degrees C for 168 h. The results revealed that the EP/40 wt% DPDHPPO/60 wt% PDA thermosets successfully passed UL-94 V-0 flammability rating and the LOI value was as high as 31.9%. The cone tests results revealed that the incorporation of DPDHPPO efficiently reduced the combustion parameters of epoxy resins thermosets, such as heat release rate (HRR), total heat release (THR) and so on. The TGA results indicated that the introduction of DPDHPPO promoted epoxy resins matrix decomposed ahead of time compared with that of pure EP and led to a higher char yield and thermal stability at high temperature. The morphological structures and analysis of XPS of char residues revealed that DPDHPPO benefited to the formation of a sufficient, compact and homogeneous char layer with rich flame retardant elements on the epoxy resins materials surface during combustion. After water resistance tests, EP/40 wt% DPDHPPO/60 wt% PDA thermosets still remained excellent flame retardancy, the moisture absorption of epoxy resins thermosets decreased with the increase of DPDHPPO contents in the thermosets due to the existing

  11. Investigating endocrine and physiological parameters of captive American kestrels exposed by diet to selected organophosphate flame retardants

    USGS Publications Warehouse

    Fernie, KJ; Palace, V; Peters, L.; Basu, Niladri; Letcher, R.J.; Karouna, Natalie; Schultz, Sandra; Lazarus, Rebecca; Rattner, Barnett A.

    2015-01-01

    Organophosphate triesters are high production volume additive flame retardants (OPFRs) and plasticizers. Shown to accumulate in abiotic and biotic environmental compartments, little is known about the risks they pose. Captive adult male American kestrels (Falco sparverius) were fed the same dose (22 ng OPFR/g kestrel/d) daily (21 d) of tris(2- butoxyethyl) phosphate (TBOEP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP), or tris(1,2-dichloro-2-propyl) phosphate (TDCIPP). Concentrations were undetected in tissues (renal, hepatic), suggesting rapid metabolism. There were no changes in glutathione status, indicators of hepatic oxidative status, or the cholinergic system (i.e., cerebrum, plasma cholinesterases; cerebrum muscarinic, nicotinic receptors). Modest changes occurred in hepatocyte integrity and function (clinical chemistry). Significant effects on plasma free triiodothyronine (FT3) concentrations occurred with exposure to TBOEP, TCEP, TCIPP, and TDCIPP; TBOEP and TCEP had additional overall effects on free thyroxine (FT4), whereas TDCIPP also influenced total thyroxine (TT4). Relative increases (32%−96%) in circulating FT3, TT3, FT4, and/or TT4 were variable with each OPFR at 7 d exposure, but limited thereafter, which was likely maintained through decreased thyroid gland activity and increased hepatic deiodinase activity. The observed physiological and endocrine effects occurred at environmentally relevant concentrations and suggest parent OPFRs or metabolites may have been present despite rapid degradation.

  12. Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant.

    PubMed

    Zhou, Yang; Ding, Chunyue; Qian, Xueren; An, Xianhui

    2015-01-22

    Polyaniline (PANI)-deposited electrically conductive and flame retardant paper composite was prepared using phytic acid (PA) as dopant or co-dopant. PA as doping acid greatly improved the flame retardancy of PANI-deposited paper composite whilst the conductivity was lower compared with using 5-sulfosalicylic acid (SSA) as doping acid. Lower temperature was favorable to obtain PANI-deposited paper composite with both higher conductivity and better flame retardancy. Conductivity of PANI-deposited paper composite increased with increase of doping acid concentration and the suitable PA concentration range was 0.15-0.3 mol/L depending on the requirement of conductivity and flame retardancy. The PANI-deposited paper composite was characterized by SEM, TGA and XPS. The outstanding flame retardancy of PA-doped paper composite was caused by the synergetic effect of PANI coating and H3PO4. Both higher flame retardancy and higher conductivity of PANI-deposited paper composite were obtained by co-doping of SSA with PA.

  13. Determination of the volatile fraction of phosphorus flame retardants in cushioning foam of upholstered furniture: towards respiratory exposure assessment.

    PubMed

    Ghislain, Mylène; Beigbeder, Joana; Dumazert, Loïc; Lopez-Cuesta, José-Marie; Lounis, Mohammed; Leconte, Stéphane; Desauziers, Valérie

    2016-10-01

    The purpose of this paper was to highlight potential exposure in indoor air to phosphorus flame retardants (PFRs) due to their use in upholstered furniture. For that, an analytical method of PFRs by headspace coupled to solid-phase micro-extraction (HS-SPME) was developed on cushioning foams in order to determine the PFRs' volatile fraction in the material. Tests on model foams proved the feasibility of the method. The average repeatability (RSD) is 6.3 % and the limits of detection range from 0.33 to 1.29 μg g(-1) of foam, depending on the PFRs. Results showed that some PFRs can actually be emitted in air, leading to a potential risk of exposure by inhalation. The volatile fraction can be high (up to 98 % of the total PFRs amount) and depends on the physicochemical properties of flame retardants, on the textural characteristics of the materials and on the temperature. The methodology developed for cushioning foams could be further applied to other types of materials and can be used to rate them according to their potential releases of phosphorus flame retardants.

  14. Degradation of Polymeric Brominated Flame Retardants: Development of an Analytical Approach Using PolyFR and UV Irradiation.

    PubMed

    Koch, Christoph; Dundua, Alexander; Aragon-Gomez, Jackelyn; Nachev, Milen; Stephan, Susanne; Willach, Sarah; Ulbricht, Mathias; Schmitz, Oliver J; Schmidt, Torsten C; Sures, Bernd

    2016-12-06

    Many well-established methods for studying the degradation of brominated flame retardants are not useful when working with polymeric and water insoluble species. An example for this specific class of flame retardants is PolyFR (polymeric flame retardant; CAS No 1195978-93-8), which is used as a substituent for hexabromocyclododecane. Although it has been on the market for two years now, almost no information is available about its long time behavior in the environment. Within this study, we focus on how to determine a possible degradation of both pure PolyFR as well as PolyFR in the final insulation product, expanded polystyrene foam. Therefore, we chose UV radiation followed by analyses of the total bromine content at different time points via ICP-MS and identified possible degradation products such as 2,4,6-tribromophenol through LC-MS. These results were then linked with measurements of the adsorbable organically bound bromine and total organic carbon in order to estimate their concentrations. With respect to the obtained (1)H NMR, GPC, and contact angle results, the possibility for further degradation was discussed, as UV irradiation can influence the decomposition of molecules in combination with other environmental factors like biodegradation.

  15. Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials.

    PubMed

    Fang, Guiyin; Li, Hui; Chen, Zhi; Liu, Xu

    2010-09-15

    Flame retardant n-hexadecane/silicon dioxide (SiO(2)) composites as thermal energy storage materials were prepared using sol-gel methods. In the composites, n-hexadecane was used as the phase change material for thermal energy storage, and SiO(2) acted as the supporting material that is fire resistant. In order to further improve flame retardant property of the composites, the expanded graphite (EG) was added in the composites. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine chemical structure, crystalloid phase and microstructure of flame retardant n-hexadecane/SiO(2) composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the n-hexadecane was well dispersed in the porous network of the SiO(2). The DSC results indicated that the melting and solidifying latent heats of the composites are 147.58 and 145.10 kJ/kg when the mass percentage of the n-hexadecane in the composites is 73.3%. The TGA results showed that the loading of the EG increased the charred residue amount of the composites at 700 degrees C, contributing to the improved thermal stability of the composites. It was observed from SEM photographs that the homogeneous and compact charred residue structure after combustion improved the flammability of the composites.

  16. Brominated flame retardants in food and environmental samples from a production area in China: concentrations and human exposure assessment.

    PubMed

    Li, Peng; Wu, Hui; Li, Qiuxu; Jin, Jun; Wang, Ying

    2015-11-01

    Human exposure to brominated flame retardants (BFRs: decabromodiphenyl ether (BDE209), decabromodiphenyl ethane (DBDPE), hexabromobenzene (HBB), pentabromoethylbenzene (PBEB), pentabromotoluene (PBT), 1,2,3,4,5-pentabromobenzene (PBBz), and 2,3,5,6-tetrabromo-p-xylene (TBX)) in a brominated flame retardant production area (Weifang, Shandong Province, China) was estimated. Thirty food samples, 14 air samples, and 13 indoor dust samples were analyzed. BDE209 and DBDPE were the dominant BFRs in all samples. Higher alternative brominated flame retardant (including DBDPE, HBB, PBEB, PBT, PBBz, and TBX) concentrations were found in vegetables than in fish and meat; thus, plant-original foods might be important alternative BFR sources in the study area. The BDE209 and alternative BFR concentrations in air were 1.5×10(4) to 2.2×10(5) and 620 to 3.6×10(4) pg/m3, respectively. Mean total BFR exposures through the diet, inhalation, and indoor dust ingestion were 570, 3000, and 69 ng/d, respectively (16, 82, and 2% of total intake, respectively). Inhalation was the dominant BFR source except for DBDPE, for which diet dominated. BDE209 contributed 85% of the total BFR intake in the study area.

  17. A review of chamber experiments for determining specific emission rates and investigating migration pathways of flame retardants

    NASA Astrophysics Data System (ADS)

    Rauert, Cassandra; Lazarov, Borislav; Harrad, Stuart; Covaci, Adrian; Stranger, Marianne

    2014-01-01

    The widespread use of flame retardants (FRs) in indoor products has led to their ubiquitous distribution within indoor microenvironments with many studies reporting concentrations in indoor air and dust. Little information is available however on emission of these compounds to air, particularly the measurement of specific emission rates (SERs), or the migration pathways leading to dust contamination. Such knowledge gaps hamper efforts to develop understanding of human exposure. This review summarizes published data on SERs of the following FRs released from treated products: polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), tetrabromobisphenol-A (TBBPA), novel brominated flame retardants (NBFRs) and organophosphate flame retardants (PFRs), including a brief discussion of the methods used to derive these SERs. Also reviewed are published studies that utilize emission chambers for investigations/measurements of mass transfer of FRs to dust, discussing the chamber configurations and methods used for these experiments. A brief review of studies investigating correlations between concentrations detected in indoor air/dust and possible sources in the microenvironment is included along with efforts to model contamination of indoor environments. Critical analysis of the literature reveals that the major limitations with utilizing chambers to derive SERs for FRs arise due to the physicochemical properties of FRs. In particular, increased partitioning to chamber surfaces, airborne particles and dust, causes loss through “sink” effects and results in long times to reach steady state conditions inside the chamber. The limitations of chamber experiments are discussed as well as their potential for filling gaps in knowledge in this area.

  18. Fate of flame retardants and the antimicrobial agent triclosan in planted and unplanted biosolid-amended soils.

    PubMed

    Davis, Elizabeth F; Gunsch, Claudia K; Stapleton, Heather M

    2015-05-01

    A comprehensive understanding of the fate of contaminant-laden biosolids is needed to fully evaluate the environmental impacts of biosolid land application. The present study examined the fate of several flame retardants and triclosan in biosolid-amended soil in a 90-d greenhouse experiment. Objectives included evaluating the persistence of these compounds in soil, their phytoaccumulation potential by alfalfa (Medicago sativa), and potential degradation reactions. Concentrations of the polybrominated diphenyl ether (PBDE) congeners BDE-47 and BDE-209 and the antimicrobial triclosan declined significantly over time in biosolid-amended soil planted with alfalfa and then reached a steady state by day 28. In contrast, no significant losses of those analytes were observed from soil in nonvegetated pots. The amount of an analyte lost from vegetated soil ranged from 43% for the flame retardant di(2-ethylhexyl)-2,3,4,5-tetrabromophthalate to 61% for triclosan and was significantly and negatively related to the log octanol-water partition coefficient. Alfalfa roots and shoots were monitored for the compounds, but no clear evidence of phytoaccumulation was observed. Methyl triclosan formation was observed in the biosolid-amended soils during the study period, indicating in situ biotransformation of triclosan. The present study demonstrates that, although they are highly recalcitrant, PBDEs, selected alternate brominated flame retardants, and triclosan are capable of undergoing dissipation from biosolid-amended soils in the presence of plants.

  19. Development of a broad spectrum method for measuring flame retardants - overcoming the challenges of non-invasive human biomonitoring studies.

    PubMed

    Kucharska, Agnieszka; Covaci, Adrian; Vanermen, Guido; Voorspoels, Stefan

    2014-10-01

    Flame retardants (FRs), such as polybrominated diphenyl ethers (PBDEs) and phosphate flame retardants (PFRs), are a diverse group of compounds that are used to improve fire safety in many consumer products, such as furniture, textiles, electronics, etc. As these compounds are potentially harmful for human health, there is a need to better understand human exposure. Exposure to environmental contaminants can be monitored by the measurement of external sources of exposures and also by the determination of contaminant levels in human samples. For ethical and practical reasons, noninvasive matrices, such as hair, are preferred but, unfortunately, not widely used due to methodological limitations. A major challenge is sample availability: only small amounts can be sampled per individual. Multi-residue methods are therefore essential in order to determine multiple compounds in low sample amounts. In the framework of the FP7 project (INFLAME), an analytical method for the simultaneous determination of PBDEs and PFRs in human hair has been optimized and validated. Before extraction, hair samples (200 mg) were denaturated in nitric acid (HNO3) for 25 min at 25 °C. Consecutively, the samples were extracted using a mixture of hexane:dichloromethane, and extracts were further fractionated on Florisil. Fraction A which contained PBDEs was additionally cleaned on acidified silica gel and measured by gas chromatography coupled with electron capture negative ionization mass spectrometry (GC-ECNI-MS), while fraction B containing PFRs was directly analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). This approach resulted in recoveries between 81-120% for PBDEs and 75-113% for PFRs (relative standard deviation (RSD) < 16%, n = 9). The optimized multi-residue method has been applied to 20 human hair samples. The obtained results indicated that the levels of PBDEs in hair samples were very low (0.2-12 ng/g) in relation to PBDE levels in human hair samples

  20. Feasibility study of feces for noninvasive biomonitoring of brominated flame retardants in toddlers.

    PubMed

    Sahlström, Leena M O; Sellström, Ulla; de Wit, Cynthia A; Lignell, Sanna; Darnerud, Per Ola

    2015-01-06

    This study investigated the feasibility of using feces as a noninvasive matrix to estimate serum concentrations of brominated flame retardants (BFRs) in toddlers for biomonitoring purposes. Tri- to decabrominated diphenyl ethers (tri-decaBDEs), isomer-specific hexabromocyclododecanes, and 16 emerging BFRs were determined in feces from 22 toddlers (11-15 months of age), and results were compared to previously analyzed matched serum samples. BDE-47, -153, -196, -197, -203, -206, -207, -208, and -209 were detected in the feces creating a matched data set (feces-serum, n = 21). Tetra-octaBDE concentrations were significantly higher (Student's paired comparisons t test, α = 0.05) in serum versus feces with BDE-153 having the highest mean difference between the sample matrices. BDE-209 was found in significantly higher concentrations in feces compared to serum. Significant correlations (Pearson's, α = 0.05) between congener-specific concentrations in feces and serum were found for all BDEs except BDE-197 and -203. The feces-serum associations found can be used to estimate serum concentrations of tetra-decaBDEs from feces concentrations and enable a noninvasive sampling method for biomonitoring BDEs in toddlers.

  1. Risk migration and scientific advance: the case of flame-retardant compounds.

    PubMed

    Alcock, Ruth E; Busby, Jerry

    2006-04-01

    It is a common experience that attempts to mitigate a risk lead to new risks, and that risks formerly thought to be of one kind become another kind as technical knowledge evolves. This phenomenon of risk migration suggests that we should take processes over time, rather than specific risks or specific technologies, as a unit of analysis. Several of our existing models of the social management of risks-such as that of social risk amplification-are process models of a kind but are still oriented around the playing out of a particular event or issue. A case study of risk in a group of flame-retardant compounds was used as the basis of a grounded, exploratory analysis of migration processes, the phenomena that influence them, and their consequences. This illustrated how migration naturally occurs from risks that are understood, in which risk bearers have at least some agency, to risks that are not understood and not capable of being influenced by risk bearers. It illustrated how the simultaneous improvement in measuring technology, which detects potential toxins at increasingly small concentrations, combines with intuitive models that ignore concentration to produce conditions likely to generate anxiety. And it illustrated how pressure groups and commercial interests exploit this effect. It also showed how migration makes precautionary action problematic, and how more generally it tends to undermine a society's capacity to cope with risk.

  2. Reactions of Three Halogenated Organophosphorus Flame Retardants with Reduced Sulfur Species

    PubMed Central

    Saint-Hilaire, Dickens; Jans, Urs

    2014-01-01

    Tris(haloalkyl)phosphates (THAPs) are among the most widely used flame retardants in the U.S. They have been identified as one of the most frequently detected contaminants in U.S. streams. These contaminants are of toxicological concern in sensitive coastal ecosystems such as estuaries and salt marshes. It is likely that reactions with reduced sulfur species such as polysulfides (Sn2−) and bisulfide (HS−), present in anoxic subregions of coastal water bodies could have a significant impact on rates of removal of such contaminants, especially since no significant degradation reactions in the environment (e.g., hydrolysis, biological degradation) is reported for these compounds. The kinetics of the reaction of reduced sulfur species with three structurally related THAPs have been determined in well-defined aqueous solutions under anoxic conditions. Reactions were monitored at varying concentrations of reduced sulfur species to obtain second-order rate constants from the observed pseudo-first order rate constants. The degradation products were studied with GC-FID and LC-MS. The reactivity of Sn2−, thiophenolate, and HS− were compared and steric, as well as electronic factors are used to explain the relative reactivity of the three THAPs with these three sulfur species. PMID:23948611

  3. Soil contamination by brominated flame retardants in open waste dumping sites in Asian developing countries.

    PubMed

    Eguchi, Akifimi; Isobe, Tomohiko; Ramu, Karri; Tue, Nguyen Minh; Sudaryanto, Agus; Devanathan, Gnanasekaran; Viet, Pham Hung; Tana, Rouch Seang; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke

    2013-03-01

    In Asian developing countries, large amounts of municipal wastes are dumped into open dumping sites each day without adequate management. This practice may cause several adverse environmental consequences and increase health risks to local communities. These dumping sites are contaminated with many chemicals including brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). BFRs may be released into the environment through production processes and through the disposal of plastics and electronic wastes that contain them. The purpose of this study was to elucidate the status of BFR pollution in municipal waste dumping sites in Asian developing countries. Soil samples were collected from six open waste dumping sites and five reference sites in Cambodia, India, Indonesia, Malaysia, and Vietnam from 1999 to 2007. The results suggest that PBDEs are the dominant contaminants in the dumping sites in Asian developing countries, whereas HBCD contamination remains low. Concentrations of PBDEs and HBCDs ranged from ND to 180 μg/kg dry wt and ND to 1.4 μg/kg dry wt, respectively, in the reference sites and from 0.20 to 430 μg/kg dry wt and ND to 2.5 μg/kg dry wt, respectively, in the dumping sites. Contamination levels of PBDEs in Asian municipal dumping sites were comparable with those reported from electronic waste dismantling areas in Pearl River delta, China.

  4. Measurement and human exposure assessment of brominated flame retardants in household products from South China.

    PubMed

    Chen, She-Jun; Ma, Yun-Juan; Wang, Jing; Tian, Mi; Luo, Xiao-Jun; Chen, Da; Mai, Bi-Xian

    2010-04-15

    Brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs), and decabromodiphenyl ethane (DBDPE) were examined in household products in the Pearl River Delta, South China, including electronic appliances, furniture and upholstery, car interiors, and raw materials for electronics. The concentrations of PBDEs derived from penta-BDE mixture were much lower (<111 ng/g) than those for octa- and deca-BDE commercially derived PBDEs, with maximum values of 15,107 and 1,603,343 ng/g, respectively, in all the household products. Our findings suggest the recycling of old electronic products and their reuse might be also a potential important source of discontinued PBDEs to the environment. DBDPE was found in 20.0% of all the samples, ranging from 311 to 268,230 ng/g. PBDE congener profiles in both the household products and raw materials suggest that some less brominated BDEs in the environment may be derived from the decomposition of higher brominated PBDEs in PBDE-containing products in process of the manufacturing, use and/or recycling. Human exposure to PBDEs from household products via inhalation ranged from 175 to 612 pg/kg bw day, accounting for a small proportion of the total daily exposure via indoor inhalation. Despite the low deleterious risk associated with household products with regard to PBDEs, they are of special concern because of the relatively higher exposures observed for young children and further work is required.

  5. Measuring Personal Exposure to Organophosphate Flame Retardants Using Silicone Wristbands and Hand Wipes.

    PubMed

    Hammel, Stephanie C; Hoffman, Kate; Webster, Thomas F; Anderson, Kim A; Stapleton, Heather M

    2016-04-19

    Organophosphate flame retardants (PFRs) are widely used as replacements for polybrominated diphenyl ethers in consumer products. With high detection in indoor environments and increasing toxicological evidence suggesting a potential for adverse health effects, there is a growing need for reliable exposure metrics to examine individual exposures to PFRs. Silicone wristbands have been used as passive air samplers for quantifying exposure in the general population and occupational exposure to polycyclic aromatic hydrocarbons. Here we investigated the utility of silicone wristbands in measuring exposure and internal dose of PFRs through measurement of urinary metabolite concentrations. Wristbands were also compared to hand wipes as metrics of exposure. Participants wore wristbands for 5 consecutive days and collected first morning void urine samples on 3 alternating days. Urine samples were pooled across 3 days and analyzed for metabolites of the following PFRs: tris(1,3-dichloroisopropyl) phosphate (TDCIPP), tris(1-chloro-2-isopropyl) phosphate (TCIPP), triphenyl phosphate (TPHP), and monosubstituted isopropylated triaryl phosphate (mono-ITP). All four PFRs and their urinary metabolites were ubiquitously detected. Correlations between TDCIPP and TCIPP and their corresponding urinary metabolites were highly significant on the wristbands (rs = 0.5-0.65, p < 0.001), which suggest that wristbands can serve as strong predictors of cumulative, 5-day exposure and may be an improved metric compared to hand wipes.

  6. QSAR modeling and prediction of the endocrine-disrupting potencies of brominated flame retardants.

    PubMed

    Papa, Ester; Kovarich, Simona; Gramatica, Paola

    2010-05-17

    In the European Union REACH regulation, the chemicals with particularly harmful behaviors, such as endocrine disruptors (EDs), are subject to authorization, and the identification of safer alternatives to these chemicals is required. In this context, the use of quantitative structure-activity relationships (QSAR) becomes particularly useful to fill the data gap due to the very small number of experimental data available to characterize the environmental and toxicological profiles of new and emerging pollutants with ED behavior such as brominated flame retardants (BFRs). In this study, different QSAR models were developed on different responses of endocrine disruption measured for several BFRs. The multiple linear regression approach was applied to a variety of theoretical molecular descriptors, and the best models, which were identified from all of the possible combinations of the structural variables, were internally validated for their performance using the leave-one-out (Q(LOO)(2) = 73-91%) procedure and scrambling of the responses. External validation was provided, when possible, by splitting the data sets in training and test sets (range of Q(EXT)(2) = 76-90%), which confirmed the predictive ability of the proposed equations. These models, which were developed according to the principles defined by the Organization for Economic Co-operation and Development to improve the regulatory acceptance of QSARs, represent a simple tool for the screening and characterization of BFRs.

  7. QSAR classification models for the prediction of endocrine disrupting activity of brominated flame retardants.

    PubMed

    Kovarich, Simona; Papa, Ester; Gramatica, Paola

    2011-06-15

    The identification of potential endocrine disrupting (ED) chemicals is an important task for the scientific community due to their diffusion in the environment; the production and use of such compounds will be strictly regulated through the authorization process of the REACH regulation. To overcome the problem of insufficient experimental data, the quantitative structure-activity relationship (QSAR) approach is applied to predict the ED activity of new chemicals. In the present study QSAR classification models are developed, according to the OECD principles, to predict the ED potency for a class of emerging ubiquitary pollutants, viz. brominated flame retardants (BFRs). Different endpoints related to ED activity (i.e. aryl hydrocarbon receptor agonism and antagonism, estrogen receptor agonism and antagonism, androgen and progesterone receptor antagonism, T4-TTR competition, E2SULT inhibition) are modeled using the k-NN classification method. The best models are selected by maximizing the sensitivity and external predictive ability. We propose simple QSARs (based on few descriptors) characterized by internal stability, good predictive power and with a verified applicability domain. These models are simple tools that are applicable to screen BFRs in relation to their ED activity, and also to design safer alternatives, in agreement with the requirements of REACH regulation at the authorization step.

  8. Halogenated Natural Products in Dolphins: Brain-Blubber Distribution and Comparison with Halogenated Flame Retardants.

    PubMed

    Barón, E; Hauler, C; Gallistl, C; Giménez, J; Gauffier, P; Castillo, J J; Fernández-Maldonado, C; de Stephanis, R; Vetter, W; Eljarrat, E; Barceló, D

    2015-08-04

    Halogenated natural products (MHC-1, TriBHD, TetraBHD, MeO-PBDEs, Q1, and related PMBPs) and halogenated flame retardants (PBDEs, HBB, Dec 602, Dec 603, and DP) in blubber and brain are reported from five Alboran Sea delphinids (Spain). Both HNPs and HFRs were detected in brain, implying that they are able to surpass the blood-brain barrier and reach the brain, which represents a new finding for some compounds, such as Q1 and PMBPs, MHC-1, TriBHD, TetraBHD, or Dec 603. Moreover, some compounds (TetraBHD, BDE-153, or HBB) presented higher levels in brain than in blubber. This study evidence the high concentrations of HNPs in the marine environment, especially in top predators. It shows the importance of further monitoring these natural compounds and evaluating their potential toxicity, when most studies focus on anthropogenic compounds only. While no bioaccumulation was found for ∑HNPs, ∑HFRs increased significantly with body size for both common and striped dolphins. Studies evaluating BBB permeation mechanisms of these compounds together with their potential neurotoxic effects in dolphins are recommended.

  9. Organophosphate ester (OPE) flame retardants and plasticizers in the open Mediterranean and Black Seas atmosphere.

    PubMed

    Castro-Jiménez, Javier; Berrojalbiz, Naiara; Pizarro, Mariana; Dachs, Jordi

    2014-03-18

    The presence of organophosphate ester (OPE) flame retardants and plasticizers has been confirmed for the first time in the atmosphere over the Mediterranean and Black Seas. Atmospheric aerosol samples were collected during two West-East oceanographic cruises across the Mediterranean and in the southwest Black Sea. This comprehensive assessment of baseline concentrations of aerosol phase OPEs, spatial distribution, and related deposition fluxes reveals levels ranging from 0.4 to 6.0 ng m(-3) for the ∑14OPEs and a lack of significant differences among sub-basins. Levels measured across the Mediterranean Sea and in the Black Sea are in the upper range or higher than those from previous reports for the marine atmosphere, presumably due to proximity to sources. From 13 to 260 tons of OPEs are estimated to be annually loaded to the Mediterranean Sea open waters from the atmosphere. Tris-(1-chloro-2-propyl)phosphate (TCPP) was the most abundant compound over the atmosphere of all the Mediterranean and Black Sea sub-basins, and therefore the chemical reaching surface waters at a higher extent by dry deposition. The atmospheric deposition fluxes of phosphorus due to OPE deposition is a significant fraction of known atmospheric inputs of new organic phosphorus (P), suggesting the relevant role that anthropogenic organic pollutants could play in the P cycle.

  10. Five-year trends of selected halogenated flame retardants in the atmosphere of Northeast China.

    PubMed

    Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Zhang, Zi-Feng; Qiao, Li-Na; Ma, Wan-Li; Li, Yi-Fan

    2016-01-01

    This study collected 227 pairs of gas phase and particle phase air samples in a typical urban city of Northeast China from 2008 to 2013. Four alternative halogenated flame retardants for polybrominated diphenyl ethers (PBDEs) were analyzed, namely 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EHTBB), bis (2-ethylhexyl) tetrabromophthalate (BEHTBP), syn-dechlorane plus (syn-DP) and anti-dechlorane plus (anti-DP). The average concentrations for EHTBB and BEHTBP were 5.2 ± 20 and 30 ± 200 pg/m3, respectively, while for syn-DP and anti-DPwere 1.9±5.1 and 5.8±18 pg/m3, respectively. Generally, they were frequently detected in the particle phase, and the gas/particle partitioning suggested they were the maximum partition chemicals. The fractional abundance of EHTBB (fEHTBB) and syn-DP (fsyn)were comparablewith those in other studies. Strong local sources were identified based on the air parcel backward trajectories and the potential source contribution function. The concentrations of these chemicals were significantly increased during this sampling campaign, possibly suggesting their increasing usages from 2008 to 2013 in China.

  11. The toxic effects of flame retardants: a gene expression study in elucidating their carcinogenicity

    NASA Astrophysics Data System (ADS)

    Vagula, Mary; Al-Dhumani, Ali; Al-Dhumani, Sajaad; Mastro, Alexandra

    2013-05-01

    Polybrominated Diphenyl Ethers (PBDEs) are flame retardants widely used in many commercial products, including building materials, electronics, furnishings, motor vehicles, airplanes, plastics, polyurethane foams, and textiles. Although the specific toxic action of these chemicals is not clear, it is reported that they can cause serious damage to the nervous, reproductive, and endocrine systems. These chemicals are branded as "probable carcinogens" by Environmental Protection Agency (EPA). Therefore, this study is taken up to investigate the expression of genes namely, TP-53, RAD1, CRADD, and ATM, which are involved in apoptosis, DNA repair and cell cycle regulation. For this study human umbilical vein endothelial cells (HUVEC) are exposed to 5 μM of BDE-85 (a penta-BDE) and BDE-209 (deca-BDE). The results of this report reveal significant alteration in all the genes under investigation in BDE-85 and BDE-209 exposed cells. The BDE-85 induced responses are significantly more than BDE-209. These results emphasize the congener specific action of PBDEs on the expression of genes relevant to DNA repair and cell division of HUVEC cells.

  12. Distribution of organophosphorus flame retardants in sediments from the Pearl River Delta in South China.

    PubMed

    Tan, Xiao-Xin; Luo, Xiao-Jun; Zheng, Xiao-Bo; Li, Zong-Rui; Sun, Run-Xia; Mai, Bi-Xian

    2016-02-15

    Twelve organophosphorus flame retardants (PFRs) were identified in the sediments and the sediment core collected from the rivers and the estuary in the Pearl River Delta, with the aim of investigating their spatial and vertical distributions. The concentrations of PFRs ranged from 8.3 to 470 ng/g dry weight with high levels of PFRs in the urban area and the e-waste recycling region. Generally, TPhP, TCPP, TEHP, TCEP, and TBEP were the dominant compounds of the PFRs, the composition of which varied across the different regions, reflecting the different sources of PFRs. In the estuary, the PFRs mainly derived from the Xijiang River and the Shunde sections. Increased concentrations of halogen-containing PFRs have been observed in the upper layers of the sediment core. Conversely, relatively high concentrations of halogen-free PFRs were observed in the lower layers of the sediment core, indicating different usage patterns or environmental behaviors between the halogen and the non-halogen PFRs in the study area.

  13. Microbial degradation of the brominated flame retardant TBNPA by groundwater bacteria: laboratory and field study.

    PubMed

    Balaban, Noa; Bernstein, Anat; Gelman, Faina; Ronen, Zeev

    2016-08-01

    In the present study, the biodegradation of the brominated flame retardant tribromoneopentylalcohol (TBNPA) by a groundwater enrichment culture was investigated using a dual carbon ((13)C/(12)C)- bromine ((81)Br/(79)Br) stable isotope analysis. An indigenous aerobic bacterial consortium was enriched from the polluted groundwater underlying an industrial site in the northern Negev Desert, Israel, where TBNPA is an abundant pollutant. Aerobic biodegradation was shown to be rapid, with complete debromination within a few days, whereas anaerobic biodegradation was not observed. Biodegradation under aerobic conditions was accompanied by a significant carbon isotope effect with an isotopic enrichment factor of ɛCbulk = -8.8‰ ± 1.5‰, without any detectable bromine isotope fractionation. It was found that molecular oxygen is necessary for biodegradation to occur, suggesting an initial oxidative step. Based on these results, it was proposed that H abstraction from the C-H bond is the first step of TBNPA biodegradation under aerobic conditions, and that the C-H bond cleavage results in the formation of unstable intermediates, which are rapidly debrominated. A preliminary isotopic analysis of TBNPA in the groundwater underlying the industrial area revealed that there are no changes in the carbon and bromine isotope ratio values downstream of the contamination source. Considering that anoxic conditions prevail in the groundwater of the contaminated site, the lack of isotope shifts in TBNPA indicates the lack of TBNPA biodegradation in the groundwater, in accordance with our findings.

  14. Human Excretion of Polybrominated Diphenyl Ether Flame Retardants: Blood, Urine, and Sweat Study

    PubMed Central

    Genuis, Shelagh K.; Birkholz, Detlef

    2017-01-01

    Commonly used as flame retardants, polybrominated diphenyl ethers (PBDEs) are routinely detected in the environment, animals, and humans. Although these persistent organic pollutants are increasingly recognized as having serious health implications, particularly for children, this is the first study, to our knowledge, to investigate an intervention for human elimination of bioaccumulated PBDEs. Objectives. To determine the efficacy of blood, urine, and perspiration as PBDE biomonitoring mediums; assess excretion of five common PBDE congeners (28, 47, 99, 100, and 153) in urine and perspiration; and explore the potential of induced sweating for decreasing bioaccumulated PBDEs. Results. PBDE congeners were not found in urine samples; findings focus on blood and perspiration. 80% of participants tested positive in one or more body fluids for PBDE 28, 100% for PBDE 47, 95% for PBDE 99, and 90% for PBDE 100 and PBDE 153. Induced perspiration facilitated excretion of the five congeners, with different rates of excretion for different congeners. Conclusion. Blood testing provides only a partial understanding of human PBDE bioaccumulation; testing of both blood and perspiration provides a better understanding. This study provides important baseline evidence for regular induced perspiration as a potential means for therapeutic PBDE elimination. Fetotoxic and reproductive effects of PBDE exposure highlight the importance of further detoxification research. PMID:28373979

  15. Characterization of organophosphorus flame retardants' sorption on building materials and consumer products

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyu; Allen, Matthew R.; Roache, Nancy F.

    2016-09-01

    Better understanding the transport mechanisms of organophosphorus flame-retardants (OPFRs) in the residential environment is important to more accurately estimate their indoor exposure and develop risk management strategies that protect human health. This study describes an improved dual small chamber testing method to characterize the sorption of OPFRs on indoor building materials and consumer products. The OPFRs studied were tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP). The test materials and products used as sinks include concrete, ceiling tile, vinyl flooring, carpet, latex painted gypsum wallboard, open cell polyurethane foam, mattress pad and liner, polyester clothing, cotton clothing, and uniform shirt. During the tests, the amount of OPFRs absorbed by the materials at different exposure times was determined simultaneously. OPFRs air concentrations at the inlet and inside the test chamber were monitored. The data were used to rank the sorption strength of the OPFRs on different materials. In general, building materials exhibited relatively stronger sorption strength than clothing textiles. The material-air partition and material phase diffusion coefficients were estimated by fitting a sink model to the sorption concentration data for twelve materials with three OPFRs. They are in the range of 2.72 × 105 to 3.99 × 108 (dimensionless) for the material-air partition coefficients and 1.13 × 10-14 to 5.83 × 10-9 (m2/h) for the material phase diffusion coefficients.

  16. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF.

    PubMed

    Aldrian, Alexia; Ledersteger, Alfred; Pomberger, Roland

    2015-02-01

    This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television sets (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC-MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements.

  17. Removal of brominated flame retardant from electrical and electronic waste plastic by solvothermal technique.

    PubMed

    Zhang, Cong-Cong; Zhang, Fu-Shen

    2012-06-30

    Brominated flame retardants (BFRs) in electrical and electronic (E&E) waste plastic are toxic, bioaccumulative and recalcitrant. In the present study, tetrabromobisphenol A (TBBPA) contained in this type of plastic was tentatively subjected to solvothermal treatment so as to obtain bromine-free plastic. Methanol, ethanol and isopropanol were examined as solvents for solvothermal treatment and it was found that methanol was the optimal solvent for TBBPA removal. The optimum temperature, time and liquid to solid ratio for solvothermal treatment to remove TBBPA were 90°C, 2h and 15:1, respectively. After the treatment with various alcohol solvents, it was found that TBBPA was finally transferred into the solvents and bromine in the extract was debrominated catalyzed by metallic copper. Bisphenol A and cuprous bromide were the main products after debromination. The morphology and FTIR properties of the plastic were generally unchanged after the solvothermal treatment indicating that the structure of the plastic maintained after the process. This work provides a clean and applicable process for BFRs-containing plastic disposal.

  18. Occurrence and fate of four novel brominated flame retardants in wastewater treatment plants.

    PubMed

    Kim, M; Guerra, P; Alaee, M; Smyth, S A

    2014-12-01

    Four novel brominated flame retardants (NBFRs), i.e., decabromodiphenylethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), pentabromoethylbenzene (PBEB), and hexabromobenzene (HBB) were studied in 377 liquid samples and 288 solid samples collected from 20 wastewater treatment plants. Lagoon, primary, secondary, and advanced treatment processes were included, in order to investigate NBFR occurrence and the effects of WWTP operational conditions on NBFR removal. Median influent and effluent levels were 14 to 3,700 and 1.0 to 180 pg/L respectively, with DBDPE being the highest in both. Overall median removal efficiencies for DBDPE, BTBPE, HBB, and PBEB across all process types were 81 to 93, 76 to 98, 61 to 97, and 54 to 97 %, respectively with advanced treatment processes obtaining the best removals. NBFRs removal was related to retention time, surface loading rate, and biomass concentration. Median NBFR levels in treated biosolids were 80 to 32,000 pg/g, influenced by solids treatment processes.

  19. Potential genotoxicity and risk assessment of a chlorinated flame retardant, Dechlorane Plus.

    PubMed

    Dou, Jing; Jin, Yuan; Li, Yajie; Wu, Bing; Li, Mei

    2015-09-01

    Dechlorane Plus (DP) is a chlorinated flame retardants that is globally ubiquitous. It is a potentially persistent organic pollutant (POPs) and an environmental toxin. However, the toxicity data is still limited and cannot provide a comprehensive environmental ecological risk assessment for DP. In this study, luminous bacteria, Vicia faba and Tetrahymena thermophila were chosen as testing organisms to investigate the acute toxicity and mutagenicity of DP. The concentration gradient of DP used in this study was chosen based on its environmental levels (experiments of luminous bacteria: 0.591, 2.95, 14.8, 73.8, 369 μg L(-1); micronucleus tests: 2.4, 12, 60, 300, 1500 μg L(-1); comet assay: 2.4, 12, 60, 300, 1500 μg L(-1)). For luminous bacteria, the relative luminosities were around 100% in treated groups, which suggested that there is no acute toxicity to luminous bacteria under the studied DP concentrations. The micronucleus test showed no significant difference between treatment and control groups, indicating no genotoxicity of DP. However the comet assay conducted with T. thermophila was relatively sensitive as there was a significant increase in DNA damage when the concentrations of DP increased from 300 to 1500 μg L(-1), while the lower concentrations failed to show any treatment-related differences. Therefore, DP may pose a potential risk at concentration⩾300 μg L(-1). The results provide scientific information on the ecological risk assessment of DP.

  20. Regional distribution of halogenated organophosphate flame retardants in seawater samples from three coastal cities in China.

    PubMed

    Hu, Mengyang; Li, Jun; Zhang, Beibei; Cui, Qinglan; Wei, Si; Yu, Hongxia

    2014-09-15

    Thirteen samples of seawater were collected from Yellow Sea and East China Sea near Qingdao, Lianyungang, and Xiamen, China. They were analyzed for halogenated organophosphorus flame retardants (OPFRs). The compounds selected for detection were Tris(2-chloroethyl) phosphate (TCEP), Tris(2-chloroisopropyl) phosphate (TCPP), Tris (1,3-dichloro-2-propyl) phosphate (TDCPP), and Tris(2,3-dibromopropyl) phosphate (TDBPP). The total concentrations ranged from 91.87 to 1392 ng/L and the mean concentrations of these four chemicals were 134.44, 84.12, 109.28, and 96.70 ng/L, respectively. TCEP exhibited the highest concentrations, although concentrations of TCPP and TDCPP were also fairly high in Lianyungang and Xiamen. Generally, Lianyungang was the most heavily polluted district, with very high concentrations of TCEP at LYG-2 (550.54 ng/L) and LYG-4 (617.92 ng/L). The main sources of halogenated OPFRs were municipal and industrial effluents of wastewater treatment plants in the nearby economic and industrial zones.

  1. Environmental fate of three novel brominated flame retardants in aquatic mesocosms.

    PubMed

    de Jourdan, Benjamin P; Hanson, Mark L; Muir, Derek C G; Solomon, Keith R

    2013-04-01

    Currently, little is known about the environmental fate and persistence of novel brominated flame retardants (NBFRs). The recent detection of NBFRs in sediment cores and air samples provides insight into their persistence and potential for transport. Limited numbers of laboratory studies have examined the fate and behavior of these compounds, but field-based fate studies have been especially lacking. The authors conducted an aquatic mesocosm experiment to assess the behavior of three NBFRs: bis(tribromophenoxy)ethane (BTBPE), tetrabromobisphenol A bis(2,3-dibromopropyl ether; TBBPA-DBPE), and Firemaster BZ-54, a commercial mixture containing bis(2-ethylhexyl)tetrabromophthalate (BEHTBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTeBB) in a ratio of 1:4. Analysis by gas chromatography-mass spectrometry, operated in the electron capture negative ionization mode, revealed partitioning between the particulate and sediment phases, with BTBPE, TBBPA-DBPE, and BEHTBP identified as being environmentally persistent in both the particulate and the sediment compartments. The median dissipation times (DT50) differed in each compartment, with more rapid disappearance in the particulate (9-30 d) compared with the sediment compartment (>100 d) for each compound. The degradation products were more concentrated in the particulate compartment and corresponded to known photodegradation products. The ratio of EHTeBB to BEHTBP differed in the mesocosm compartments compared with the technical product used for treatment, indicating increased degradation of EHTeBB relative to BETHBP.

  2. Occurrence of brominated flame retardants in household and car dust from the Czech Republic.

    PubMed

    Kalachova, K; Hradkova, P; Lankova, D; Hajslova, J; Pulkrabova, J

    2012-12-15

    The levels and profiles of 16 polybrominated diphenyl ethers congeners (PBDEs), three isomers of hexabromocyclododecane (HBCD) and other six "alternative" brominated flame retardants (BFRs) in dust collected in 25 Czech households and 27 car interiors were investigated. The Σ16 PBDEs contents varied widely with maximum concentrations reaching up to 5896 and 33728 μg/kg in house and car dust, respectively. The highest concentrations of PBDEs were observed for BDE 209, which was found almost in all samples and exceeded concentrations of other PBDEs even by one order of magnitude. The profile and levels of Penta-, Octa-, and DecaBDE obtained within this study were comparable to those presented in other studies worldwide and confirmed lower contamination of dust from Europe compared to North America. From the group of "alternative" BFRs, suitable for commercial applications as an alternative to banned PBDEs, mainly decabromodiphenyl ethane (DBDPE) and HBCD were detected in the concentration ranges <20-3567 and <0.3-950 μg/kg, respectively. γ-HBCD was dominating, forming up to 70% of ΣHBCD. Using the measured concentrations and estimates of dust ingestion rates it was estimated that toddlers had a higher exposure than adults for all compounds investigated.

  3. Trophic magnification of chlorinated flame retardants and their dechlorinated analogs in a fresh water food web.

    PubMed

    Wang, De-Gao; Guo, Ming-Xing; Pei, Wei; Byer, Jonathan D; Wang, Zhuang

    2015-01-01

    Chlorinated flame retardants, particularly dechlorane plus (DP), were widely used in commercial applications and are ubiquitous in the environment. A total of seven species of aquatic organisms were collected concurrently from the region of a chemical production facility in Huai’an, China. DP and structurally related compounds including mirex, dechloranes 602, 603, 604, chlordene plus (CP), DP monoadduct (DPMA), and two dechlorinated breakdown products of DP, decachloropentacyclooctadecadiene (anti-Cl(10)-DP) and undecachloropentacyclooctadecadiene (anti-Cl(11)-DP), were detected in these aquatic organisms. Nitrogen stable isotope ratios were also measured to determine the trophic levels of the organisms. Trophic magnification factors (TMFs) for these chemicals were calculated with values ranging from 1.0 to 3.1. TMFs for CP, mirex, anti-DP, and ∑DP were statistically greater than 1, showing evidence of biomagnification in the food web. Concentration ratios of anti-Cl(11)-DP to anti-DP showed a significant relationship with trophic level, implying that anti-Cl(11)-DP had a higher food-web magnification potential than its precursor. The biota-sediment accumulation factors and TMFs for DP demonstrated stereoselectivity, with syn-DP having a greater bioaccumulation potential than anti-DP in the aquatic environment.

  4. Synthesis of hydrophobic zinc borate nanoflakes and its effect on flame retardant properties of polyethylene

    SciTech Connect

    Li Shengli; Long Beihong; Wang Zichen; Tian Yumei; Zheng Yunhui; Zhang Qian

    2010-04-15

    Zinc borate (2ZnO.3B{sub 2}O{sub 3}.3.5H{sub 2}O) has relatively high dehydration on-set temperature which property permits processing in a wide range of polymer system. But zinc borate particles are hardly dispersed in a polymer matrix so that they prevent their using in industry. To address this problem, we synthesized hydrophobic zinc borate (2ZnO.3B{sub 2}O{sub 3}.3.5H{sub 2}O) nanoflakes by employing solid-liquid reaction of zinc oxide (ZnO) and boric acid (H{sub 3}BO{sub 3}) in the presence of oleic acid. This method does not bring pollution. By conducting morphological and microscopic analyses, we found that this compound displayed nanoflake morphology with particle size of around 100-200 nm, thickness less than 100 nm and there were uniform mesopores with the diameter about 10 nm within the particles. Furthermore, our products had an effect on flame retardant of polyethylene, especially when the zinc borate was modified by oleic acid. - Graphical abstract: The contact angle of hydrophobic zinc borate nanoflakes is 129.02 deg. with added 2.0 wt% of oleic acid.

  5. Photolysis of brominated flame retardants in textiles exposed to natural sunlight.

    PubMed

    Kajiwara, Natsuko; Desborough, Jennifer; Harrad, Stuart; Takigami, Hidetaka

    2013-03-01

    Photolytic transformation profiles of technical hexabromocyclododecane (HBCD) and technical decabromodiphenyl ether (DecaBDE) in flame-retarded textiles exposed to natural sunlight were compared. Textiles that contained approximately 4% HBCDs by weight showed no substantial loss of any of the HBCD diastereomers during the entire exposure period (371 days), indicating that they were resistant to sunlight, that is, that debromination and isomerization of HBCD diastereomers did not occur under the experimental conditions. Exposure of a textile treated with technical DecaBDE resulted in the formation of polybrominated dibenzofurans (PBDFs) as products of photodecomposition of polybrominated diphenyl ethers present in the technical DecaBDE. After 329 days of exposure, the total PBDF concentration reached a maximum of 27 000 ng g(-1), which was approximately 10 times the initial concentration. During the experiment, di- to hexa-BDF congener concentrations increased continuously. Although the concentrations of PBDFs in the textiles were 4–5 orders of magnitude lower than the concentrations of polybrominated diphenyl ethers, it is important to note that PBDFs were formed as a result of sunlight exposure during normal use of products treated with technical DecaBDE.

  6. Kinetics of Brominated Flame Retardant (BFR) Releases from Granules of Waste Plastics.

    PubMed

    Sun, Bingbing; Hu, Yuanan; Cheng, Hefa; Tao, Shu

    2016-12-20

    Plastic components of e-waste contain high levels of brominated flame retardants (BFRs), whose releases cause environmental and human health concerns. This study characterized the release kinetics of polybrominated diphenyl ethers (PBDEs) from millimeter-sized granules processed from the plastic exteriors of two scrap computer displays at environmentally relevant temperatures. The release rate of a substitute of PBDEs, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), from the waste plastics, was reported for the first time. Deca-BDE was the most abundant PBDE congeners in both materials (87-89%), while BTBPE was also present at relatively high contents. The release kinetics of BFRs could be modeled as one-dimensional diffusion, while the temperature dependence of diffusion coefficients was well described by the Arrhenius equation. The diffusion coefficients of BFRs (at 30 °C) in the plastic matrices were estimated to be in the range of 10(-27.16) to 10(-19.96) m(2)·s(-1), with apparent activation energies between 88.4 and 154.2 kJ·mol(-1). The half-lives of BFR releases (i.e., 50% depletion) from the plastic granules ranged from thousands to tens of billions of years at ambient temperatures. These findings suggest that BFRs are released very slowly from the matrices of waste plastics through molecular diffusion, while their emissions can be significantly enhanced with wear-and-tear and pulverization.

  7. Atmospheric occurrence and fate of organophosphorus flame retardants and plasticizer at the German coast

    NASA Astrophysics Data System (ADS)

    Wolschke, Hendrik; Sühring, Roxana; Mi, Wenying; Möller, Axel; Xie, Zhiyong; Ebinghaus, Ralf

    2016-07-01

    This study reports the occurrence and distribution of organophosphor esters (OPEs), used as flame retardants and plasticizer, in the marine atmosphere of the German Coast. From August 2011 to October 2012, 58 high volume air samples (gas/particle phase separately) were collected at the German North Sea coast town Büsum. With the use of a GC-MS/MS System for instrumental analysis, detection limits for OPEs in air samples could be significantly improved compared to the previously used single GC-MS method. The concentration (gas + particle phase) of total OPEs was on average 5 pg/m3, with eight of the nine investigated compounds detectable in over 50% of the samples. A focus of this investigation concerned the partioning of OPEs between the particle and the gas phase. The observed partitioning of OPEs in this study was distinguished from previous studies. While previous studies reported OPEs exclusively in the particle phase, a significant part of the sum OPE concentration (55%) was detected in the gas phase. The contribution of the gas phase even reached up to as high as 88% for individual compounds such as tri-iso-butyl phosphate.

  8. Multiyear Measurements of Flame Retardants and Organochlorine Pesticides in Air in Canada's Western Sub-Arctic.

    PubMed

    Yu, Yong; Hung, Hayley; Alexandrou, Nick; Roach, Pat; Nordin, Ken

    2015-07-21

    Fourteen polybrominated diphenyl ethers (PBDEs), 14 non-BDE flame retardants (FRs), and 25 organochlorine pesticides (OCPs) were analyzed in air samples collected at Little Fox Lake (LFL) in Canada's Yukon Territory from August 2011 to December 2014. LFL is a long-term monitoring station operated under the Northern Contaminants Program (NCP) and one of only a few stations that contribute to the assessment of air pollution levels and pathways to the sub-Arctic region. BDE-47 was the most abundant congener among the 14 PBDEs, followed by BDE-99. Non-BDE FRs pentabromotoluene (PBT) and dechlorane plus (DP) were detected in all the samples. Dechlorane 602, 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), hexabromobenzene (HBB), and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) were also detected in >75% of all samples. PBDEs have shown a decreasing tendency as of 2013, which may reflect the phase-out of penta- and octa-BDE mixtures has led to significant decline in the atmosphere. The highest concentrations of OCPs were observed for hexachlorobenzene (HCB), with a median concentration of 61 pg/m(3), followed by α-hexachlorocyclohexane (α-HCH) and α-endosulfan. Potential source contribution function (PSCF) highlights Northern Canada, Pacific, and East Asia as potential sources in warm seasons; whereas in cold seasons, the chemicals mainly came from the Pacific Rim.

  9. DNA aptamers for selective identification and separation of flame retardant chemicals.

    PubMed

    Kim, Un-Jung; Kim, Byoung Chan

    2016-09-14

    Polybrominated diphenyl ethers (PBDEs) are group of chemicals which are representative persistent organic pollutants (POPs) and used as brominated flame retardants for many consumer products. PBDEs were phased out since 2009 but are still frequently observed in various environmental matrices and human body. Here, we report ssDNA aptamers which bind to BDE47, one of the PBDE congeners commonly found in various environmental matrices, and show affinity to other major tri-to hepta- BDE congeners. The PBDE specific aptamers were isolated from random library of ssDNA using Mag-SELEX. Two out of 15 sequences, based on their alignment and hairpin loop structures, were chosen to determine dissociation constant with BDE47 and showed from picomolar to nanomolar affinities (200 pM and 1.53 nM). The aptamers displayed high selectivity to the original target, BDE47, and implying general specificity to PBDE backbone with varying affinities to other congeners. Further, we showed that the use of two aptamers together could enhance the separation efficiency of BDE47 and other BDE congeners when dissolved in a solvent compared to use of single aptamer. These aptamers are expected to provide a tool for preliminary screening or quick separation of PBDEs in environmental samples prior to trace quantitative analysis.

  10. Does exposure to flame retardants increase the risk for preterm birth?

    PubMed

    Peltier, Morgan R; Koo, Hschi-Chi; Getahun, Darios; Menon, Ramkumar

    2015-02-01

    During the past 40 years, polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants and nearly all women have some level of exposure. PBDEs have been isolated from amniotic fluid and cord plasma indicating vertical transmission; however, their effects on pregnancy outcome are largely unknown. Therefore, we quantified PBDE-47, the most common congener in maternal plasma samples collected at the time of labor from women who subsequently had term or preterm birth (PTB). Women were then scored based on whether or not they had very low, low, medium, high or very high peripheral plasma concentrations of PBDE-47. Probit regression analysis suggested that women in the PTB group had a greater chance of scoring higher on this scale (P<0.001). Women with high (OR=3.8, CI: 1.6, 9.7; P=0.003) or very high PBDE-47 concentrations were at greater odds (OR=5.6, CI: 2.2, 15.2; P<0.001) for PTB than women with very low levels of PBDE-47. Results became even more significant after adjustment for maternal race, age, and marital status. These findings suggest that high levels of maternal exposure to PBDEs might increase the risk for PTB.

  11. Bioaccumulation kinetics of brominated flame retardants (polybrominated diphenyl ethers) in blue mussels (Mytilus edulis)

    SciTech Connect

    Gustafsson, K.; Bjoerk, M.; Burreau, S.; Gilek, M. )

    1999-06-01

    Baltic Sea blue mussels, Mytilus edulis, were exposed to polybrominated diphenyl ethers (PBDEs, IUPAC congeners 47, 99, and 153) and polychlorinated biphenyls (PCBs, congeners 31, 52, 77, 118, and 153) in a flow-through experimental setup for 44 d. After the exposure phase, the mussels were allowed to depurate in natural brackish water for 26 d. After analyses, uptake clearance rate coefficients (k[sub u]), depuration rate coefficients (k[sub d]), and bioaccumulation factors (BAF) were calculated. A rapid uptake of all PBDEs and PCBs was observed, especially for PBDE congeners 47 and 99. The depuration rate decreased with increasing hydrophobicity as expected for the PCBs, but for the PBDEs, depuration rate coefficients appeared to be of the same magnitude for all three congeners independently of log K[sub OW]. The BAFs obtained for PBDE 47 and PBDE 99 were higher than for all other substances in the study, severalfold higher than for PCBs of similar hydrophobicity. The presented data indicate that the bioaccumulation potential of PBDEs, extensively used as flame retardants, is similar or higher than that of PCBs for filter feeding organisms such as blue mussels.

  12. Controlled flame synthesis of αFe2O3 and Fe3O4 nanoparticles: effect of flame configuration, flame temperature, and additive loading

    NASA Astrophysics Data System (ADS)

    Buyukhatipoglu, K.; Morss Clyne, A.

    2010-05-01

    Superparamagnetic iron oxide nanoparticles are used in diverse applications, including optical magnetic recording, catalysts, gas sensors, targeted drug delivery, magnetic resonance imaging, and hyperthermic malignant cell therapy. Combustion synthesis of nanoparticles has significant advantages, including improved nanoparticle property control and commercial production rate capability with minimal post-processing. In the current study, superparamagnetic iron oxide nanoparticles were produced by flame synthesis using a coflow flame. The effect of flame configuration (diffusion and inverse diffusion), flame temperature, and additive loading on the final iron oxide nanoparticle morphology, elemental composition, and particle size were analyzed by transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. The synthesized nanoparticles were primarily composed of two well known forms of iron oxide, namely hematite αFe2O3 and magnetite Fe3O4. We found that the synthesized nanoparticles were smaller (6-12 nm) for an inverse diffusion flame as compared to a diffusion flame configuration (50-60 nm) when CH4, O2, Ar, and N2 gas flow rates were kept constant. In order to investigate the effect of flame temperature, CH4, O2, Ar gas flow rates were kept constant, and N2 gas was added as a coolant to the system. TEM analysis of iron oxide nanoparticles synthesized using an inverse diffusion flame configuration with N2 cooling demonstrated that particles no larger than 50-60 nm in diameter can be grown, indicating that nanoparticles did not coalesce in the cooler flame. Raman spectroscopy showed that these nanoparticles were primarily magnetite, as opposed to the primarily hematite nanoparticles produced in the hot flame configuration. In order to understand the effect of additive loading on iron oxide nanoparticle morphology, an Ar stream carrying titanium-tetra-isopropoxide (TTIP) was flowed through the

  13. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    PubMed Central

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-01-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay. PMID:27917901

  14. Evaluating the blank contamination and recovery of sample pretreatment procedures for analyzing organophosphorus flame retardants in waters.

    PubMed

    Liang, Kang; Niu, Yumin; Yin, Yongguang; Liu, Jingfu

    2015-08-01

    Organophosphate esters (OPEs), used as flame retardants and plasticizers, are widely present in environmental waters. Development of accurate determination methods for trace OPEs in water is urgent for understanding the fate and risk of this class of emerging pollutants. However, the wide use of OPEs in experimental materials results in blank interference, which influences the accuracy of analytical results. In the present work, blank contamination and recovery of pretreatment procedures for analysis of OPEs in water samples were systematically examined for the first time. Blank contaminations were observed in filtration membranes, glass bottles, solid phase extraction cartridges, and nitrogen blowing instruments. These contaminations could be as high as 6.4-64ng/L per treatment. Different kinds of membranes were compared in terms of contamination levels left after common glassware cleaning, and a special wash procedure was proposed to eliminate the contamination from membranes. Meanwhile, adsorption of highly hydrophobic OPEs on the inside wall of glass bottles was found to be 42.4%-86.1%, which was the primary cause of low recoveries and was significantly reduced by an additional washing step with acetonitrile. This work is expected to provide guidelines for the establishment of analysis methods for OPEs in aqueous samples.

  15. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    NASA Astrophysics Data System (ADS)

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  16. The brominated flame retardant BDE-47 causes oxidative stress and apoptotic cell death in vitro and in vivo in mice.

    PubMed

    Costa, Lucio G; Pellacani, Claudia; Dao, Khoi; Kavanagh, Terrance J; Roque, Pamela J

    2015-05-01

    Polybrominated diphenyl ethers (PBDEs), used for decades as flame retardants, have become widespread environmental contaminants. Exposure is believed to occur primarily through diet and dust, and infants and toddlers have the highest body burden, raising concern for potential developmental neurotoxicity. The exact mechanisms of PBDE neurotoxicity have not been elucidated, but two relevant modes of action relate to impairment of thyroid hormone homeostasis and to direct effects on brain cells causing alterations in signal transduction, oxidative stress and apoptotic cell death. The present study shows that BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) induces oxidative stress and ensuing apoptotic cell death in mouse cerebellar granule neurons in vitro. Similarly, in vivo administration of BDE-47, according to an exposure protocol shown to induce behavioral and biochemical alterations (10mg/kg, per os on post-natal day 10), induces oxidative stress and apoptosis, without altering serum levels of thyroid hormones. The effects of BDE-47 both in vitro and in vivo were more pronounced in a mouse model lacking the modifier subunit of glutamate cysteine ligase (GCLM) which results in reduced anti-oxidant capability due to low levels of GSH. Concentrations of BDE-47 in brain were in the mid-nanomolar range. These findings indicate that effects observed with BDE-47 in vitro are also present after in vivo administration, suggesting that in addition to potential endocrine effects, which were not seen here, direct interactions with brain cells should be considered as a potential mechanism of BDE-47 neurotoxicity.

  17. Thyroid axis disruption in juvenile brown trout (Salmo trutta) exposed to the flame retardant β-tetrabromoethylcyclohexane (β-TBECH) via the diet.

    PubMed

    Park, Bradley J; Palace, Vince; Wautier, Kerry; Gemmill, Bonnie; Tomy, Gregg

    2011-09-15

    Tetrabromoethylcyclohexane (TBECH) is an additive brominated flame retardant used in domestic and industrial applications. It has been detected in wildlife, and there is early evidence that it is an endocrine disruptor. Whereas other brominated flame retardants with similar physicochemical properties have been shown to disrupt the thyroid axis, no such evaluation has been conducted for TBECH. To elucidate this, juvenile brown trout (Salmo trutta) were fed either a control diet or diets containing low, medium, or high doses of β-TBECH, the isomer most frequently detected in wildlife, for 56 days (uptake phase) followed by a control diet for an additional 77 days (depuration phase). Eight fish per treatment were lethally sampled on uptake days 7, 14, 21, 35, 49, and 56 and on depuration days 7, 21, 35, 49, and 77 to assess fish condition, circulating free and total triiodothyronine and thyroxine, and thyroid epithelial cell height. Although there was no effect on condition factor, there was a significant reduction in total plasma thyroxine in the high dose group and a significant increase in mean thyroid epithelial cell height in the low, medium, and high dose groups during the uptake phase, whereas there were no differences in the depuration phase. These results indicate that β-TBECH may modulate the thyroid axis in fish at environmentally relevant concentrations.

  18. Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene-vinyl acetate copolymer/microencapsulated ammonium polyphosphate/polyamide-6 blends.

    PubMed

    Wang, Bibo; Tang, Qinbo; Hong, Ningning; Song, Lei; Wang, Lei; Shi, Yongqian; Hu, Yuan

    2011-09-01

    Ammonium polyphosphate (APP), a widely used intumescent flame retardant, has been microencapsulated by cellulose acetate butyrate with the aim of enhancing the water resistance of APP and the compatibility between the ethylene-vinyl acetate copolymer (EVA) matrix and APP. The structure of microencapsulated ammonium polyphosphate (MCAPP) was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and water contact angle (WCA). The flame retadancy and thermal stability were investigated by a limiting oxygen index (LOI) test, UL-94 test, cone calorimeter, and thermogravimetric analysis (TGA). The WCA results indicated that MCAPP has excellent water resistance and hydrophobicity. The results demonstrated that MCAPP enhanced interfacial adhesion, mechanical, electrical, and thermal stability of the EVA/MCAPP/polyamide-6 (PA-6) system. The microencapsulation not only imparted EVA/MCAPP/PA-6 with a higher LOI value and UL-94 rating but also could significantly improve the fire safety. Furthermore, the microencapsulated EVA/MCAPP/PA-6 composites can still pass the UL-94 V-0 rating after treatment with water for 3 days at 70 °C, indicating excellent water resistance. This investigation provides a promising formulation for the intumescent flame retardant EVA with excellent properties.

  19. Brominated flame retardants in offices in Michigan, U.S.A.

    PubMed Central

    Batterman, Stuart; Godwin, Christopher; Chernyak, Sergei; Jia, Chunrong; Charles, Simone

    2015-01-01

    Brominated flame retardants (BFRs) are now ubiquitous contaminants with large reservoirs and high concentrations in buildings. Most of the information documenting BFR levels has been obtained in residences, and other environments that can lead to exposure have received relatively little attention, including offices that contain numerous BFR sources and where individuals spend considerable time. The aim of this study is to characterize BFR concentrations, potential emission sources, and migration pathways in office environments. We measure BFR levels in floor dust, indoor air, ventilation filter dust, and carpets in ten commercial and institutional buildings in Michigan, U.S.A. The median concentration of total BDEs in settled dust was 8754 ng g−1, at the upper range of levels previously reported. Especially elevated levels were found in offices in buildings that contained known or likely BFR sources, e.g., computer servers. A trends analysis in a newly constructed building showed remarkable increases in concentrations of BFRs in settled dust and indoor air, and apparent steady-state levels were reached 5 to 8 months after building completion, a particularly striking finding given that the building was constructed and furnished several years after the voluntary phase-out of the penta- and octa-mixtures. Airborne particulate matter collected in a building's HVAC system filters contained PBDEs, including BDE-209, at levels exceeding the concentration of floor dust. In conjunction with estimates of building air flow rates, filter efficiency and other parameters, mass balance calculations for this building were used to estimate the emission rates and reservoirs of PBDEs. The widespread distribution of BFRs found in offices in both new and old buildings suggests the significance of workplace exposures, the need for controls to minimize human exposure, intra-building migration, and environmental releases of these chemicals, and the need for monitoring in new buildings

  20. Industry-sponsored research on the potential health and environmental effects of selected brominated flame retardants.

    PubMed

    Hardy, M L; Biesemeier, J; Manor, O; Gentit, W

    2003-09-01

    Modern fire-fighting techniques, equipment and fire-resistant building design has lead to less destruction than in the previous centuries. However, a high fuel load in either a residence or a commercial building can overwhelm even the best firefighters or building construction, and factors affecting the fuel load have changed in recent decades. The fire load in a typical home has doubled over the last 50 years, furnishings typically include those made of petrochemicals that can behave as if containing built-in accelerant, and modern energy-efficient buildings are less able to disperse heat in the event of a fire. Flame retardant chemicals (FRs) are one means used to reduce the risk of fire. FRs are typically added or incorporated chemically into a polymer to slow or hinder the ignition or growth of a fire in low-to-moderate cost commodity polymers. One type of FR contains bromine atoms as the active moiety. The FR industry, either as individual companies or as consortia, has conducted a broad range of studies on the commercial deca-, octa- and pentabromodiphenyl oxide/ether, tetrabromobisphenol A and hexabromocyclododecane products. These five products have data in excess of the OECD Screening Informational Data Set (SIDS) and the U.S. High Production Volume (HPV) program, and sufficient data for the performance of formal EU risk assessments. The objective of this paper is to present the range of data developed by industry consortia and to provide sources for the information. We hope to facilitate further research by assembling references to industry consortia-sponsored research here.

  1. Geographical distribution of non-PBDE-brominated flame retardants in mussels from Asian coastal waters.

    PubMed

    Isobe, Tomohiko; Ogawa, Shohei P; Ramu, Karri; Sudaryanto, Agus; Tanabe, Shinsuke

    2012-09-01

    Hexabromocyclododecanes (HBCDs), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), and decabromodiphenyl ethane (DBDPE) used as alternatives for polybrominated diphenyl ethers (PBDEs) are also persistent in the environment as PBDEs. Limited information on these non-PBDE brominated flame retardants (BFRs) is available; in particular, there are only few publications on environmental pollution by these contaminants in the coastal waters of Asia. In this regard, we investigated the contamination status of HBCDs, BTBPE, and DBDPE in the coastal waters of Asia using mussels as a bioindicator. Concentrations of HBCDs, BTBPE, and DBDPE were determined in green (Perna viridis) and blue mussels (Mytilus edulis) collected from the coastal areas in Cambodia, China (mainland), SAR China (Hong Kong), India, Indonesia, Japan, Malaysia, the Philippines, and Vietnam on 2003-2008. BTBPE and DBDPE were analyzed using GC-MS, whereas HBCDs were determined by LC-MS/MS. HBCDs, BTBPE, and DBDPE were found in mussels at levels ranging from <0.01 to 1,400, <0.1 to 13, and <0.3 to 22 ng/g lipid wt, respectively. Among the three HBCD diastereoisomers, α-HBCD was the dominant isomer followed by γ- and β-HBCDs. Concentrations of HBCDs and DBDPE in mussels from Japan and Korea were higher compared to those from the other Asian countries, indicating extensive usage of these non-PBDE BFRs in Japan and Korea. Higher levels of HBCDs and DBDPE than PBDEs were detected in some mussel samples from Japan. The results suggest that environmental pollution by non-PBDE BFRs, especially HBCDs in Japan, is ubiquitous. This study provides baseline information on the contamination status of these non-PBDE BFRs in the coastal waters of Asia.

  2. In vivo metabolism of organophosphate flame retardants and distribution of their main metabolites in adult zebrafish.

    PubMed

    Wang, Guowei; Chen, Hanyan; Du, Zhongkun; Li, Jianhua; Wang, Zunyao; Gao, Shixiang

    2017-07-15

    Understanding the metabolism of chemicals as well as the distribution and depuration of their main metabolites in tissues are essential for evaluating their fate and potential toxicity in vivo. Herein, we investigated the metabolism of six typical organophosphate (OP) flame retardants (tripropyl phosphate (TPRP), tri-n-butyl phosphate (TNBP), tris(2-butoxyethyl) phosphate (TBOEP), tris(2-chloroethyl) phosphate (TCEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tri-p-cresyl phosphate (p-TCP)) in adult zebrafish in laboratory at three levels (0, 1/150 LC50 (environmentally relevant level), and 1/30 LC50 per OP analog). Twenty main metabolites were detected in the liver of OPs-exposed zebrafish using high resolution mass spectrometry (Q-TOF). The reaction pathways involving scission of the ester bond (hydrolysis), cleavage of the ether bond, oxidative hydroxylation, dechlorination, and coupling with glucuronic acid were proposed, and were further confirmed by the frontier electron density and point charge calculations. Tissue distribution of the twenty metabolites revealed that liver and intestine with the highest levels of metabolites were the most active organs for OPs biotransformation among the studied tissues of intestine, liver, roe, brain, muscle, and gill, which showed the importance of hepatobiliary system (liver-bile-intestine) in the metabolism and excretion of OPs in zebrafish. Fast depuration of metabolites from tissues indicated that the formed metabolites might be not persistent in fish, and easily released into water. This study provides comprehensive information on the metabolism of OPs in the tissue of zebrafish, which might give some hints for the exploration of their toxic mechanism in aquatic life.

  3. Inhibition of thyroid hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics.

    PubMed

    Butt, Craig M; Stapleton, Heather M

    2013-11-18

    Many halogenated organic contaminants (HOCs) are considered endocrine disruptors and affect the hypothalamic-pituitary-thyroid axis, often by interfering with circulating levels of thyroid hormones (THs). We investigated one potential mechanism for TH disruption, inhibition of sulfotransferase activity. One of the primary roles of TH sulfation is to support the regulation of biologically active T3 through the formation of inactive THs. We investigated TH sulfotransferase inhibition by 14 hydroxylated polybrominated diphenyl ethers (OH BDEs), BDE 47, triclosan, and fluorinated, chlorinated, brominated, and iodinated analogues of 2,4,6-trihalogenated phenol and bisphenol A (BPA). A new mass spectrometry-based method was also developed to measure the formation rates of 3,3'-T2 sulfate (3,3'-T2S). Using pooled human liver cytosol, we investigated the influence of these HOCs on the sulfation of 3,3'-T2, a major substrate for TH sulfation. For the formation of 3,3'-T2S, the Michaelis constant (Km) was 1070 ± 120 nM and the Vmax was 153 ± 6.6 pmol min(-1) (mg of protein)(-1). All chemicals investigated inhibited sulfotransferase activity with the exception of BDE 47. The 2,4,6-trihalogenated phenols were the most potent inhibitors followed by the OH BDEs and then halogenated BPAs. The IC50 values for the OH BDEs were primarily in the low nanomolar range, which may be environmentally relevant. In silico molecular modeling techniques were also used to simulate the binding of OH BDE to SULT1A1. This study suggests that some HOCs, including antimicrobial chemicals and metabolites of flame retardants, may interfere with TH regulation through inhibition of sulfotransferase activity.

  4. Human dermal absorption of chlorinated organophosphate flame retardants; implications for human exposure.

    PubMed

    Abou-Elwafa Abdallah, Mohamed; Pawar, Gopal; Harrad, Stuart

    2016-01-15

    Tris-2-chloroethyl phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP) and tris-1,3-dichloropropyl phosphate (TDCIPP) are organophosphate flame retardants (PFRs) widely applied in a plethora of consumer products despite their carcinogenic potential. Human dermal absorption of these PFRs is investigated for the first time using human ex vivo skin and EPISKIN™ models. Results of human ex vivo skin experiments revealed 28%, 25% and 13% absorption of the applied dose (500 ng/cm(2), finite dose) of TCEP, TCIPP and TDCIPP, respectively after 24h exposure. The EPISKIN™ model showed enhanced permeability values (i.e. weaker barrier), that were respectively 16%, 11% and 9% for TCEP, TCIPP and TDCIPP compared to human ex vivo skin. However, this difference was not significant (P>0.05). Estimated permeability constants (Kp, cm/h) showed a significant negative correlation with log Kow for the studied contaminants. The effect of hand-washing on dermal absorption of PFRs was investigated. Washing reduced overall dermal absorption, albeit to varying degrees depending on the physicochemical properties of the target PFRs. Moreover, slight variations of the absorbed dose were observed upon changing the dosing solution from acetone to 20% Tween 80 in water, indicating the potential influence of the dose vehicle on the dermal absorption of PFRs. Finally, estimated dermal uptake of the studied PFRs via contact with indoor dust was higher in UK toddlers (median ΣPFRs=36 ng/kg bw day) than adults (median ΣPFRs=4 ng/kg bw day). More research is required to fully elucidate the toxicological implications of such exposure.

  5. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment.

    PubMed

    He, Ruiwen; Li, Yunzi; Xiang, Ping; Li, Chao; Zhou, Chunyang; Zhang, Shujun; Cui, Xinyi; Ma, Lena Q

    2016-05-01

    Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, public microenvironments (PMEs), and university dorms, and physiologically based extraction test (PBET) was used to measure the bioaccessibility of OPFRs and PAEs in these dust samples. Total concentrations of OPFRs in dust samples ranged from 0.01 to 63.2 μg g(-1), with significantly lower concentrations in dorm dust (median = 0.30 μg g(-1)) than those in houses (3.12), offices (5.94), and PMEs (11.6). Total PAEs ranged from 5.49 to 2161 μg g(-1) with significantly lower concentrations in dorm dust (379 μg g(-1)) than those in the other three types of dust (767, 515, and 731 μg g(-1)). When subject to PBET, the bioaccessibility of OPFRs ranged from 8.18% (triphenyl phosphate) to 54.5% (Tris(2-chloroisopropyl) phosphate) for OPFRs, and from 1.21% (di-2-ethylhexyl phthalate, DEHP) to 81.1% (dimethyl phthalate) for PAEs. Estimated exposure doses for adults and infants to OPFRs via dust ingestion were much lower than the reference doses (RfD), but intake dose of DEHP for infants was higher than the RfD of 20 μg kg(-1) d(-1). However, the DEHP intake dose did not exceed the RfD after incorporating bioaccessibility into risk assessment. Our data indicated the importance of considering contaminant bioaccessibility during risk assessment of indoor dust.

  6. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants.

    PubMed

    Oleszek, Sylwia; Grabda, Mariusz; Shibata, Etsuro; Nakamura, Takashi

    2013-09-01

    The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000°C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is resistant to HBr and remains unchanged in the residue.

  7. Critical review of the analysis of brominated flame retardants and their environmental levels in Africa.

    PubMed

    Brits, Martin; de Vos, Jayne; Weiss, Jana M; Rohwer, Egmont R; de Boer, Jacob

    2016-12-01

    World-wide, the prevalence of brominated flame retardants (BFRs) is well documented for routine analysis of environmental and biological matrices. There is, however, limited information on these compounds in the African environment and insufficient information on the analytical approaches used to obtain data. This paper presents a review on BFR levels in the African environment and the various analytical methodologies specifically applied in Africa for polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls and alternative-BFRs. The analyses include liquid sample preparation using liquid-liquid and solid phase extraction and solid sample preparation involving Soxhlet extraction, with ultrasound-assisted extraction increasingly being applied. Instrumental detection techniques were limited to gas chromatography coupled with electron capture detector and electron impact ionisation with single quadrupole mass spectrometers. Information on congener profile prevalence in indoor dust, soil, aquatic environment (water, sediment, and aquatic organisms), eggs, wastewater treatment plant compartments, landfills (leachate and sediment) and breast milk are presented. Although PBDEs were inconsistently detected, contamination was reported for all investigated matrices in the African environment. The manifestation in remote regions indicates the ubiquitous prevalence and long-range transport of these compounds. Levels in sediment, and breast milk from some African countries were higher than reported for Asia and Europe. Due to limited data or non-detection of alternative-BFRs, it is unclear whether banned formulations were replaced in Africa. Most of the data reported for BFR levels in Africa were obtained in non-African laboratories or in South Africa and formed the basis for our discussion of reported contamination levels and related methodologies.

  8. Selective damage to dopaminergic transporters following exposure to the brominated flame retardant, HBCDD.

    PubMed

    Genskow, Kelly R; Bradner, Joshua M; Hossain, Muhammad M; Richardson, Jason R; Caudle, W Michael

    2015-01-01

    Over the last several decades, the use of halogenated organic compounds has become the cause of environmental and human health concerns. Of particular notoriety has been the establishment of the neurotoxicity of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). The subsequent banning of PBDEs has led to greatly increased use of 1,2,5,6,9,10-hexabromocyclododecane (HBCDD, also known as HBCD) as a flame retardant in consumer products. The physiochemical similarities between HBCDD and PBDEs suggest that HBCDD may also be neurotoxic to the dopamine system, which is specifically damaged in Parkinson disease (PD). The purpose of this study was to assess the neurotoxicity of HBCDD on the nigrostriatal dopamine system using an in vitro and in vivo approach. We demonstrate that exposure to HBCDD (0-25 μM) for 24 h causes significant cell death in the SK-N-SH catecholaminergic cell line, as well as reductions in the growth and viability of TH+ primary cultured neurons at lower concentrations (0-10 μM) after 72 h of treatment. Assessment of the in vivo neurotoxicity of HBCDD (25 mg/kg for 30 days) resulted in significant reductions in the expression of the striatal dopamine transporter and vesicular monoamine transporter 2, both of which are integral in mediating dopamine homeostasis and neurotransmission in the dopamine circuit. However, no changes were seen in the expression of tyrosine hydroxylase in the dopamine terminal, or striatal levels of dopamine. To date, these are the first data to demonstrate that exposure to HBCDD disrupts the nigrostriatal dopamine system. Given these results and the ubiquitous nature of HBCDD in the environment, its possible role as an environmental risk factor for PD should be further investigated.

  9. Brominated flame retardants - Exposure and risk assessment for the general population.

    PubMed

    Fromme, H; Becher, G; Hilger, B; Völkel, W

    2016-01-01

    Brominated flame retardants (BFRs) are a large group of different substances used in numerous products to prevent fire hazards. Some of them are persistent in the environment, accumulate in the food chain and are of toxicological concern, while for others current data are limited. Meanwhile, BFRs have been found in many environmental media, foods, and biota including humans. This review presents recent findings obtained from monitoring data in environmental media relevant for human exposure, as well as dietary exposure. In this context, concentrations in indoor and ambient air and in house dust are outlined. Furthermore, we summarize human biomonitoring data on BFR levels in blood and breast milk. Current estimates of the overall exposure of the general population using different relevant subsets are also addressed. All of these data are discussed in relation to currently available toxicological reference values used for risk assessment purposes. Obviously, the exposure of the general population varies considerably in different parts of the world and even within countries. Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD) show the highest intake during infancy. While the highest intake for BDE 47 for all groups was observed in the US, the total BDE 209 and HBCD intake was highest in the UK. For HBCD and all PBDEs except BDE 209, diet accounts for a large proportion of the total intake during infancy in all countries. With regard to toddlers and adults, the contribution of diet to total intake is high in Germany and the UK, while in the US, the high concentrations of PBDE in dust resulted in a notably smaller proportion of the intake being attributed to diet.

  10. Oxidation of flame retardant tetrabromobisphenol a by aqueous permanganate: reaction kinetics, brominated products, and pathways.

    PubMed

    Pang, Su-Yan; Jiang, Jin; Gao, Yuan; Zhou, Yang; Huangfu, Xiaoliu; Liu, Yongze; Ma, Jun

    2014-01-01

    In this work, the most widely used brominated flame retardant tetrabromobisphenol A (TBrBPA) was shown to exhibit appreciable reactivity toward potassium permanganate [Mn(VII)] in water over a wide pH range of 5-10 with the maxima of second-order rate constants (kMn(VII) = 15-700 M(-1) s(-1)) at pH near its pKa values (7.5/8.5). A novel precursor ion scan (PIS) approach using negative electrospray ionization-triple quadrupole mass spectrometry (ESI-QqQMS) was adopted and further optimized for fast selective detection of brominated oxidation products of TBrBPA by Mn(VII). By setting PIS of m/z 79 and 81, two major products (i.e., 4-(2-hydroxyisopropyl)-2,6-dibromophenol and 4-isopropylene-2,6-dibromophenol) and five minor ones (including 2,6-dibromophenol, 2,6-dibromo-1,4-benzoquinone, and three dimers) were detected and suggested with chemical structures from their product ion spectra and bromine isotope patterns. Reaction pathways mainly involving the initial one-electron oxidation of TBrBPA and subsequent release and further reactions of 2,6-dibromo-4-isopropylphenol carbocation intermediate were proposed. The effectiveness of Mn(VII) for treatment of TBrBPA in real waters was confirmed. It is important to better understand the reactivity and toxicity of primary brominated products before Mn(VII) can be applied for treatment of TBrBPA-contaminated wastewater and source water.

  11. Toxicokinetics of the flame retardant hexabromocyclododecane gamma: effect of dose, timing, route, repeated exposure, and metabolism.

    PubMed

    Szabo, David T; Diliberto, Janet J; Hakk, Heldur; Huwe, Janice K; Birnbaum, Linda S

    2010-10-01

    Hexabromocyclododecane-gamma (γ-HBCD) is the predominate diastereoisomer in the commercial HBCD mixture used as a flame retardant in a wide variety of consumer products. Three main diastereoisomers, alpha (α), beta (β), and gamma (γ), comprise the mixture. Despite the γ-diastereoisomer being the major diastereoisomer in the mixture and environmental samples, the α-diastereoisomer predominates human tissue and wildlife. This study was conducted to characterize absorption, distribution, metabolism, and excretion parameters of γ-HBCD with respect to dose and time following a single acute exposure and repeated exposure in adult female C57BL/6 mice. Results suggest that 85% of the administered dose (3 mg/kg) was absorbed after po exposure. Disposition was dose independent and did not significantly change after 10 days of exposure. Liver was the major depot (< 0.3% of dose) 4 days after treatment followed by blood, fat, and then brain. γ-HBCD was rapidly metabolized and eliminated in the urine and feces. For the first time, in vivo stereoisomerization was observed of the γ-diastereoisomer to the β-diastereoisomer in liver and brain tissues and to the α- and β-diastereoisomer in fat and feces. Polar metabolites in the blood and urine were a major factor in determining the initial whole-body half-life (1 day) after a single po exposure. Elimination, both whole-body and from individual tissues, was biphasic. Initial half-lives were approximately 1 day, whereas terminal half-lives were up to 4 days, suggesting limited potential for γ-diastereoisomer bioaccumulation. The toxicokinetic behavior reported here has important implications for the extrapolation of toxicological studies of the commercial HBCD mixture to the assessment of risk.

  12. Recent developments in the analysis of brominated flame retardants and brominated natural compounds.

    PubMed

    Covaci, Adrian; Voorspoels, Stefan; Ramos, Lourdes; Neels, Hugo; Blust, Ronny

    2007-06-15

    This article reviews recent literature on the analysis of brominated flame retardants (BFRs) and brominated natural compounds (BNCs). The main literature sources are reviews from the last five years and research articles reporting new analytical developments published between 2003 and 2006. Sample pretreatment, extraction, clean-up and fractionation, injection techniques, chromatographic separation, detection methods, quality control and method validation are discussed. Only few new techniques, such as solid-phase microextraction (SPME) or pressurized liquid extraction (PLE), have been investigated for their ability of combining the extraction and clean-up steps. With respect to the separation of BFRs, the most important developments were the use of comprehensive two-dimensional gas chromatography for polybrominated diphenyl ethers (PBDEs) and the growing tendency for liquid-chromatographic techniques for hexabromocyclododecane (HBCD) stereoisomers and of tetrabromobisphenol-A (TBBP-A). At the detection stage, mass spectrometry (MS) has been developed as well-established and reliable technology in the identification and quantification of BFRs. A growing attention has been paid to quality assurance. Interlaboratory exercises directed towards BFRs have grown in popularity and have enabled laboratories to validate analytical methods and to guarantee the quality of their results. The analytical procedures used for the identification and characterization of several classes of BNCs, such as methoxylated polybrominated diphenyl ethers (MeO-PBDEs) (also metabolites of PBDEs), halogenated methyl or dimethyl bipyrroles (DBPs), are reviewed here for the first time. These compounds were generally identified during the routine analysis of BFRs and have received little attention until recently. For each topic, an overview is presented of its current status.

  13. Levels of brominated flame retardants (BFRs) in honey samples from different geographic regions.

    PubMed

    Mohr, Susana; García-Bermejo, Angel; Herrero, Laura; Gómara, Belén; Costabeber, Ijoni Hilda; González, María José

    2014-02-15

    Concentrations of 17 brominated flame retardants (BFRs), including two "novel" BFRs (1,2-bis(2,4,6-tribromophenoxy)ethane, BTBPE and decabromodiphenylethane, DBDPE), have been determined to be in 35 commercial honey samples from Brazil, Spain, Portugal, Slovenia and Morocco. The results revealed the presence of low amounts (between

  14. Maternal Exposure to a Brominated Flame Retardant and Genitourinary Conditions in Male Offspring

    PubMed Central

    Small, Chanley M.; DeCaro, John J.; Terrell, Metrecia L.; Dominguez, Celia; Cameron, Lorraine L.; Wirth, Julie; Marcus, Michele

    2009-01-01

    Background The upward trend in industrial nations in the incidence of male genitourinary (GU) conditions may be attributed to increased exposure to endocrine disruptors. Polybrominated biphenyl (PBB), a brominated flame retardant, is one such suspected endocrine disruptor. Objective We investigated the relationship between maternal serum levels of PBBs and GU conditions among male offspring exposed in utero. Methods In this cohort study of sons born to women accidentally exposed to PBBs during 1973–1974, we examined self-reported data on GU conditions among male offspring in relation to maternal serum PBB levels. We used generalized estimating equations to calculate odds ratios (ORs), controlling for gestational age at birth. Results Of 464 sons, 33 reported any GU condition (13 hernias, 10 hydroceles, 9 cryptorchidism, 5 hypospadias, and 1 varicocele). Four reported both hernia and hydrocele, and one both hernia and cryptorchidism. After adjustment for gestational age at birth, sons of highly exposed women (> 5 ppb) were twice as likely to report any GU condition compared with sons of the least exposed women [≤1 ppb; OR = 2.0; 95% confidence interval (CI), 0.8–5.1]. This risk was increased when we excluded sons born after the exposure but before the mother’s serum PBB measurement (OR = 3.1; 95% CI, 1.0–9.1). We found evidence of a 3-fold increase in reported hernia or hydrocele among sons with higher PBB exposure (test of trend p-value = 0.04). Neither hypospadias nor cryptorchidism was individually associated with PBB exposure. Conclusions Although cryptorchidism and hypospadias were not associated with in utero PBB exposure, this study suggests that other GU conditions may be associated with exposure to endocrine-disrupting chemicals during development. PMID:19654930

  15. Measurements of Selected Brominated Flame Retardants in Nursing Women: Implications for Human Exposure

    PubMed Central

    2014-01-01

    We have examined several emerging brominated flame retardants (BFRs) including 2-ethyl-1-hexyl-2,3,4,5-tetrabromobenzoate (TBB), bis(2-ethylhexyl) tetrabromophthalate (TBPH), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), 4,5,6,7-tetrabromo-1,1,3-trimethyl-3-(2,3,4,5-tetrabromophenyl)-indane (OBIND), and decabromodiphenyl ethane (DBDPE) in paired human maternal serum (n = 102) and breast milk (n = 105) collected in 2008–2009 in the Sherbrooke region in Canada. Three legacy BFRs were also included in the study for comparison: decabromobiphenyl (BB-209), 2,2′,4,4′,5,5′-hexabromobiphenyl (BB-153), and 2,2′,4,4′,5,5′-hexabromodiphenyl ethers (BDE-153). TBB, BB-153, and BDE-153 had detection frequencies greater than 55% in both serum and milk samples. Their lipid weight (lw) adjusted median concentrations (ng g–1 lw) in serum and milk were 1.6 and 0.41 for TBB, 0.48 and 0.31 for BB-153, and 1.5 and 4.4 for BDE-153, respectively. The detection frequencies for the other BFRs measured in serum and milk were 16.7% and 32.4% for TBPH, 3.9% and 0.0% for BTBPE, 2.0% and 0.0% for BB-209, 9.8% and 1.0% for OBIND, and 5.9% and 8.6% for DBDPE. The ratio of TBB over the sum of TBB and TBPH (fTBB) in serum (0.23) was lower than that in milk (0.46), indicating TBB has a larger tendency than TBPH to be redistributed from blood to milk. Overall, these data confirm the presence of non-PBDE BFRs in humans, and the need to better understand their sources, routes of exposure, and potential human health effects. PMID:24992303

  16. Bromine content and brominated flame retardants in food and animal feed from the UK.

    PubMed

    Fernandes, A R; Mortimer, D; Rose, M; Smith, F; Panton, S; Garcia-Lopez, M

    2016-05-01

    Current occurrence data for polybrominated diphenyl ethers (PBDE) and hexa-bromocyclododecane (HBCD) measured in most commonly consumed foods (n = 156) and animal feeds (n = 51) sampled in the UK, demonstrates an ongoing ubiquity of these contaminants in human and animal diets. PBDE concentrations for the sum of 17 measured congeners ranged from 0.02 ng/g to 8.91 ng/g whole weight for food, and 0.11 ng/g to 9.63 ng/g whole weight for animal feeds. The highest concentration ranges, and mean values were detected in fish, processed foods and fish feeds. HBCD diastereomers (alpha-HBCD was the most commonly detected) generally occurred at lower concentrations (from <0.01 ng/g to 10.1 ng/g for food and <0.01 ng/g to 0.66 ng/g for animal feed) and less frequently than PBDEs, but tetrabromobisphenol A which was also measured, was rarely detected. The total bromine content of the samples was also determined in an attempt to use a mass balance approach to investigate some of these samples for the occurrence of novel and emerging BFRs. Although the approach was further refined by measuring organic bromine content, the concentrations of bromine were too high (in most cases by orders of magnitude) to allow use of the approach. A selected sub-set of samples was screened by GC-MS, for the presence of novel/emerging brominated flame retardants (PBT, TBX, PBEB, DBHCTD, HCTBPH and OBTMPI) but these were not detected at the higher limits of detection that result from full scan (GC-MS) screening. This data will contribute to the EU wide risk assessment on these contaminants.

  17. Elimination of organophosphate ester flame retardants and plasticizers in drinking water purification.

    PubMed

    Andresen, Jens; Bester, Kai

    2006-02-01

    Organophosphate ester flame retardants and plasticizers like tris-(2-chloro-, 1-methyl-ethyl)phosphate (TCPP), tris-(2-chloro-, 1-chloromethyl-ethyl)phosphate (TDCP), tris-(2-chloroethyl)phosphate (TCEP), tributylphosphates, triphenylphosphate (TPP), ethylhexyldiphenylphosphate (EHDPP) and tris-(butoxyethyl)phosphate (TBEP) have been studied in diverse processes for drinking water purification. The elimination efficiency of these different treatment processes, e.g., biological active slow underground passage, soil passage and technical treatment processes such as ozonization or multilayer and activated carbon filtration have been studied in three waterworks in the catchment area of the river Ruhr. In the untreated surface water the concentrations of the chlorinated organophosphates ranged 50-150 ng L(-1) TCPP, 10-130 ng L(-1) TCEP and 10-40 ng L(-1) TDCP. The amounts of the non-chlorinated alkylphosphates were in the same order of magnitude (40 ng L(-1) of the tributylphosphates, 170 ng L(-1) of TBEP and 10 ng L(-1) TPP) depending on weather and water flow. EHDPP was detected in the range of 1 ng L(-1). After the drinking water purification process in all waterworks in this study, the concentrations of the selected substances were below the respective limit of quantification (0.3-3 ng L(-1)). While activated carbon filtration as well as extended passage through soil (10-15 days residence time) were effective in eliminating all selected compounds, ozonization and multilayer filtration did not contribute to the elimination of the chlorinated compounds. The elimination effect of slow underground passage combined with soil passage concerning the halogenated compounds seemed to depend on the hydraulic residence time.

  18. Dietary intake of phosphorus flame retardants (PFRs) using Swedish food market basket estimations.

    PubMed

    Poma, Giulia; Glynn, Anders; Malarvannan, Govindan; Covaci, Adrian; Darnerud, Per Ola

    2017-02-01

    The occurrence of eight phosphorus flame retardants (PFRs) was investigated in 53 composite food samples from 12 food categories, collected in 2015 for a Swedish food market basket study. 2-ethylhexyl diphenyl phosphate (EHDPHP), detected in most food categories, had the highest median concentrations (9 ng/g ww, pastries). It was followed by triphenyl phosphate (TPHP) (2.6 ng/g ww, fats/oils), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) (1.0 ng/g ww, fats/oils), tris(2-chloroethyl) phosphate (TCEP) (1.0 ng/g ww, fats/oils), and tris(1-chloro-2-propyl) phosphate (TCIPP) (0.80 ng/g ww, pastries). Tris(2-ethylhexyl) phosphate (TEHP), tri-n-butyl phosphate (TNBP), and tris(2-butoxyethyl) phosphate (TBOEP) were not detected in the analyzed food samples. The major contributor to the total dietary intake was EHDPHP (57%), and the food categories which contributed the most to the total intake of PFRs were processed food, such as cereals (26%), pastries (10%), sugar/sweets (11%), and beverages (17%). The daily per capita intake of PFRs (TCEP, TPHP, EHDPHP, TDCIPP, TCIPP) from food ranged from 406 to 3266 ng/day (or 6-49 ng/kg bw/day), lower than the health-based reference doses. This is the first study reporting PFR intakes from other food categories than fish (here accounting for 3%). Our results suggest that the estimated human dietary exposure to PFRs may be equally important to the ingestion of dust.

  19. Role of Surface Interactions in the Synergizing Polymer/Clay Flame Retardant Properties

    SciTech Connect

    Pack, S.; Kashiwagi, T; Cao, C; Korach, C; Lewin, M; Rafailovich, M

    2010-01-01

    The absorption of resorcinol di(phenyl phosphate) (RDP) oligomers on clay surfaces has been studied in detail and is being proposed as an alternative method for producing functionalized clays for nanocomposite polymers. The ability of these clays to be exfoliated or intercalated in different homopolymers was investigated using both transmission electron microscopy and small-angle X-ray scattering results, compared with contact angle measurements on Langmuir-Blodgett clay monolayers, where the interfacial energies were used as predictors of the polymer/clay interactions. We found that the contact angle between PS/RDP clay monolayer substrates was {approx}2.5{sup o}, whereas the angle for polystyrene (PS)/Cloisite 20A clays substrates was {approx}32{sup o}, consistent with the large degree of exfoliation observed in PS for the RDP-coated clays. The interfacial activity of these clays was also measured, and we found that the RDP-coated clays segregated to the interfaces of PC/poly(styrene-co-acrylonitrile) blends, while they segregated into the poly(methyl methacrylate) (PMMA) domain of PS/PMMA blends. This morphology was explained in terms of the relative energy advantage in placing the RDP versus the Cloisite clays at the interfaces. Finally, we demonstrated the effects of the relative surface energies of the clays in segregating to the blend air interface when heated to high temperatures. The segregation was shown to affect the composition and mechanical properties of the resulting chars, which in turn could determine their flame retardant response.

  20. Organophosphate Ester Flame Retardants and Plasticizers in the Global Oceanic Atmosphere.

    PubMed

    Castro-Jiménez, Javier; González-Gaya, Belén; Pizarro, Mariana; Casal, Paulo; Pizarro-Álvarez, Cristina; Dachs, Jordi

    2016-12-06

    Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers and have been detected ubiquitously in the remote atmosphere. Fourteen OPEs were analyzed in 115 aerosol phase samples collected from the tropical and subtropical Atlantic, Pacific, and Indian Oceans during the MALASPINA circumnavigation campaign. OPEs were detected in all samples with concentrations ranging from 360 to 4400 pg m(-3) for the sum of compounds. No clear concentration trends were found between the Northern and Southern hemispheres. The pattern was generally dominated by tris(1-chloro-2-propyl) phosphate (TCPP), although tri-n-butyl phosphate (TnBP) had a predominant role in samples close to continents and in those influenced by air masses originating in continents. The dry deposition fluxes of aerosol phase ∑14OPE ranged from 4 to 140 ng m(-2) d(-1). An estimation of the OPE gas phase concentration and gross absorption fluxes by using three different sets of physical chemical properties suggested that the atmosphere-ocean diffusive exchange of OPEs could be 2-3 orders of magnitude larger than dry deposition. The associated organic phosphorus inputs coming from diffusive OPE fluxes were estimated to potentially trigger up to 1.0% of the reported primary production in the most oligotrophic oceanic regions. However, the uncertainty associated with these calculations is high and mostly driven by the uncertainty of the physical chemical properties of OPEs. Further constraints of the physical chemical properties and fluxes of OPEs are urgently needed, in order to estimate their environmental fate and relevance as a diffusive source of new organic phosphorus to the ocean.

  1. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF

    SciTech Connect

    Aldrian, Alexia; Ledersteger, Alfred; Pomberger, Roland

    2015-02-15

    Highlights: • Specification of an empirical factor for conversion from bromine to PBB and PBDE. • The handheld XRF device was validated for this particular application. • A very large number of over 4600 pieces of monitor housings was analysed. • The recyclable fraction mounts up to 85% for TV but only 53% of PC waste plastics. • A high percentage of pieces with bromine contents of over 50,000 ppm was obtained. - Abstract: This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television sets (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000 ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC–MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements.

  2. Design and performance evaluation of a medium flow sampler for airborne brominated flame retardants (BFRs).

    PubMed

    Batterman, Stuart; Chen, Tze-Chun; Chernyak, Sergei; Godwin, Christopher

    2009-04-01

    Brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs), have emerged as important and ubiquitous environmental pollutants, and there is a need to accurately measure airborne levels of these chemicals in both indoor and outdoor applications. We review and suggest performance criteria for BFR sampling systems, and then present the design of a new medium flow active sampler. The sampler uses a PTFE filter (47 mm, 1 microm pore size) in front of a polyurethane foam (PUF) adsorbent plug (22 mm dia, 76 mm length) with a nominal flow rate of 15 L min(-1) and a sampling period of one week, giving a sampling volume of 150 m(3). The sampler was evaluated using co-located systems to test precision, backup PUFs to test breakthrough, and distributed volume sampling to test linearity. Field experiments were conducted in five commercial buildings, one residence and outdoors at an urban site. A total of 20 BDE congeners were quantified. After appropriate cleaning of the PUF adsorbent, blank levels were negligible. Method detection limits (MDLs) were sufficiently low to quantify BDE congeners 17, 28, 71, 47, 100 and 99 in ambient air, and more than adequate to quantify these and other congeners in indoor air, where levels are typically much higher. The relative absolute deviation (RAD), based on distributed volume samples, ranged from 21% (BDE-71) to 81% (BDE-75) for indoor samples, and was somewhat higher for ambient samples. Only minimal breakthrough was detected in back-up samples, and over 80% of the samples had very low or negligible breakthrough. Humidity did not influence sampler performance. Overall, the medium-flow sampler can accurately measure PBDEs over a wide range of concentrations and applications.

  3. Organophosphate flame retardants in the indoor air and dust in cars in Japan.

    PubMed

    Tokumura, Masahiro; Hatayama, Rurika; Tatsu, Kouichi; Naito, Toshiyuki; Takeda, Tetsuya; Raknuzzaman, Mohammad; -Al-Mamun, Md Habibullah; Masunaga, Shigeki

    2017-01-01

    The concentrations of organophosphate flame retardants (OPFRs) in the indoor air and dust were measured in 25 unoccupied cars in Japan. In the indoor air of the cars, most OPFRs were neither detected nor found at a concentration lower than the method quantification limit. The highest concentration (1500 ng m(-3)) was obtained for tris(1-chloro-2-propyl) phosphate (TCIPP). By contrast, many OPFRs were detected in the dust samples collected from the interior of the cars. TCIPP and tris(2-ethylhexyl) phosphate (TEHP) were present at the highest concentrations at 390 μg g(-1) (in dust from car seats) and 640 μg g(-1) (in dust from car floor mats), respectively. The highest median concentrations (35 μg g(-1) for car seats, 53 μg g(-1) for car floor mats) were obtained for tris(2-butoxyethyl) phosphate (TBOEP). According to the results of our exposure assessment, the typical exposures to OPFRs via inhalation in car cabins ranged from 9.0×10(-4) to 7.8×10(-1) ng kg-bw(-1) day(-1). The typical exposures to OPFRs via dust ingestion ranged from 9.2×10(-4) to 8.8×10(-1) ng kg-bw(-1) day(-1). We compared these results with the ref-erence doses for OPFRs and found that, based on cur-rent information about the toxicities of OPFRs, exposure to OPFRs in car cabins via inhalation and dust ingestion is unlikely to have adverse human health effects.

  4. Selective damage to dopaminergic transporters following exposure to the brominated flame retardant, HBCDD

    PubMed Central

    Genskow, Kelly R.; Bradner, Joshua M.; Hossain, Muhammad M.; Richardson, Jason R.; Caudle, W. Michael

    2015-01-01

    Over the last several decades, the use of halogenated organic compounds has become the cause of environmental and human health concerns. Of particular notoriety has been the establishment of the neurotoxicity of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). The subsequent banning of PBDEs has led to greatly increased use of 1,2,5,6,9,10-hexabromocyclododecane (HBCDD, also known as HBCD) as a flame retardant in consumer products. The physiochemical similarities between HBCDD and PBDEs suggest that HBCDD may also be neurotoxic to the dopamine system, which is specifically damaged in Parkinson disease (PD). The purpose of this study was to assess the neurotoxicity of HBCDD on the nigrostriatal dopamine system using an in vitro and in vivo approach. We demonstrate that exposure to HBCDD (0–25 μM) for 24 hrs causes significant cell death in the SK-N-SH catecholaminergic cell line, as well as reductions in the growth and viability of TH+ primary cultured neurons at lower concentrations (0–10 μM) after 72 hrs of treatment. Assessment of the in vivo neurotoxicity of HBCDD (25 mg/kg for 30 days) resulted in significant reductions in the expression of the striatal dopamine transporter and vesicular monoamine transporter 2, both of which are integral in mediating dopamine homeostasis and neurotransmission in the dopamine circuit. However, no changes were seen in the expression of tyrosine hydroxylase in the dopamine terminal, or striatal levels of dopamine. To date, these are the first data to demonstrate that exposure to HBCDD disrupts the nigrostriatal dopamine system. Given these results and the ubiquitous nature of HBCDD in the environment, its possible role as an environmental risk factor for PD should be further investigated. PMID:26073293

  5. PBDE, HBCD, and novel brominated flame retardant contamination in sediments from Lake Maggiore (Northern Italy).

    PubMed

    Poma, Giulia; Roscioli, Claudio; Guzzella, Licia

    2014-11-01

    The reduction in the use of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD) has opened the way for the introduction of novel brominated flame retardants (NBFRs) in place of the banned formulations. Important representatives of this group are decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), hexabromobenzene (HBB), and pentabromoethylbenzene (PBEB). In this study, the contamination due to NBRFs was investigated for the first time in Italy in the sediments of Lake Maggiore. The aim of the research was to characterize in detail the possible presence of temporal trends and/or to identify potential sources of contamination. The study also considered the PBDE and HBCD lake sediment's current contamination. The analytical results showed that sediments in Lake Maggiore and its tributary rivers had weak concentrations of PBEB, HBB, and BTBPE, but they did not have a negligible/insignificant contamination of HBCD (up to 23.7 ng/g dry weight (d.w.)). The determination of PBDEs in sediments showed that BDE-209 was the predominant congener (up to 217 and 28 ng/g d.w. in river and lake sediments, respectively). DBDPE was detected in the sediments with relevant concentrations (up to 280 ng/g d.w in the River Boesio sediments). The positive correlation of DBDPE with BDE-209 confirmed the wide and important use of this compound in the Lake Maggiore basin and the hypothesis that this compound will soon become one of the most important NBFRs used in Northern Italy. The contamination of Lake Maggiore sediments due to PBDEs, HBCD, and NBFRs were comparable to other worldwide situations.

  6. Application of polydimethylsiloxane rod extraction to the determination of sixteen halogenated flame retardants in water samples.

    PubMed

    Valls-Cantenys, Carme; Villaverde-de-Sáa, Eugenia; Rodil, Rosario; Quintana, José Benito; Iglesias, Mònica; Salvadó, Victòria; Cela, Rafael

    2013-04-03

    An extraction and preconcentration procedure for the determination in water samples of several halogenated flame retardants (FRs), nine brominated diphenyls ethers (BDEs) and seven non-BDE FRs, was developed and validated. The optimised procedure is based on polydimethylsiloxane (PDMS) rods as sorptive extraction material, followed by liquid desorption and gas chromatography coupled to negative chemical ionisation-mass spectrometry (GC-NCI-MS) determination, rendering an efficient and inexpensive method. The final optimised protocol consists of overnight extraction of 100mL of sample solutions containing 40% MeOH and 4% NaCl, followed by a 15-min sonication-assisted desorption with 300 μL of ethyl acetate, solvent evaporation and GC-NCI-MS analysis. Under these conditions, extraction efficiencies in the 9 to 70% range were obtained, leading to enrichment factors between 108 and 840, detection limits in the range from 0.4 to 10 ng L(-1)and RSD values in the 2-23% range. After method validation, different real water samples, including river, ria, sea, landfill leachate, influent and effluent wastewater from an urban sewage treatment plant (STP) and effluent wastewater from a textile industry, were analysed. BDE-47, BDE-99, BDE-100 and BDE-197 were detected in wastewater and landfill leachate samples at concentration levels up to 2887 ng L(-1). Among the non-BDE FRs, bis (2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (DEHTBP) was detected in surface water samples (sea, river and ria) between 1.3 and 2.2 ng L(-1) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) in the landfill leachate (64 ng L(-1)).

  7. A Novel Organophosphorus Hybrid with Excellent Thermal Stability: Core-Shell Structure, Hybridization Mechanism, and Application in Flame Retarding Semi-Aromatic Polyamide.

    PubMed

    Lin, Xue-Bao; Du, Shuang-Lan; Long, Jia-Wei; Chen, Li; Wang, Yu-Zhong

    2016-01-13

    An organophosphorous hybrid (BM@Al-PPi) with unique core-shell structure was prepared through hybridization reaction between boehmite (BM) as the inorganic substrate and phenylphosphinic acid (PPiA) as the organic modifier. Fourier transform infrared spectra (FTIR), solid state (31)P and (27)Al magic angle spinning nuclear magnetic resonance, X-ray diffraction, and element analysis were used to investigate the chemical structure of the hybrids, where the microrod-like core was confirmed as Al-PPi aggregates generated from the reaction between BM and PPiA, and those irregular nanoparticles in the shell belonged to residual BM. Compared with the traditional dissolution-precipitation process, a novel analogous suspension reaction mode was proposed to explain the hybridization process and the resulting product. Scanning electronic microscopy further proved the core-shell structure of the hybrids. BM exhibited much higher initial decomposition temperature than that of Al-PPi; therefore, the hybrid showed better thermal stability than Al-PPi, and it met the processing temperature of semi-aromatic polyamide (HTN, for instance) as an additive-type flame retardant. Limiting oxygen index and cone calorimetric analysis suggested the excellent flame-retardant performance and smoke suppressing activity by adding the resulting hybrid into HTN.

  8. The GhTT2_A07 gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres

    PubMed Central

    Hinchliffe, Doug J.; Condon, Brian D.; Thyssen, Gregory; Naoumkina, Marina; Madison, Crista A.; Reynolds, Michael; Delhom, Christopher D.; Fang, David D.; Li, Ping; McCarty, Jack

    2016-01-01

    Some naturally coloured brown cotton fibres from accessions of Gossypium hirsutum L. can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fibre loci have been identified and mapped to chromosomes, but the underlying genes have not yet been identified, and the mechanism of lint fibre FR is not yet fully understood. In this study, we show that both the brown colour and enhanced FR of the Lc1 lint colour locus are linked to a 1.4Mb inversion on chromosome A07 that is immediately upstream of a gene with similarity to Arabidopsis TRANSPARENT TESTA 2 (TT2). As a result of the alternative upstream sequence, the transcription factor GhTT2_A07 is highly up-regulated in developing fibres. In turn, genes in the phenylpropanoid metabolic pathway are activated, leading to biosynthesis of proanthocyanidins and accumulation of inorganic elements. We show that enhanced FR and anthocyanin precursors appear in developing brown fibres well before the brown colour is detectible, demonstrating for the first time that the polymerized proanthocyanidins that constitute the brown colour are not the source of enhanced FR. Identifying the particular colourless metabolite that provides Lc1 cotton with enhanced FR could help minimize the use of synthetic chemical flame retardant additives in textiles. PMID:27567364

  9. Emissions of brominated flame retardants in Asia: consideration of its potential risk form the view point of the Norwegian regulation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Ryunosuke; Gerardo, Romeu; Gorbacheva, Tamara

    2010-05-01

    Flame retardants can be divided into two broad categories: additive or reactive, which can be further more divided into brominated or non-brominated sub-categories. These retardants are found in many commercial products such as computers, television sets, furniture, carpets, etc. They are of environmental concern due to their persistence, potential for bioaccumulation and widespread distribution via atmospheric transport, and possible adverse effects in wildlife and humans. Tetrabromobisphenol-A (TBBPA) is mainly used in electrical and electronic appliances (circuit board in particular), and the application of TBBPA accounts for about two thirds of the global production of brominated flame retardant (BFR). The European Union Risk Assessment does not support the restriction of TBBPA: i.e. no risk is identified for the reactive use of TBBPA such as in epoxy resin used in circuit boards. By contrast, in 2007 Norway notified the World Trade Organization of its intention to prohibit 18 substances from consumer goods (Notification No. 2007/9016/N), called the Prohibition on Certain Hazardous Substances in Consumer Products (PoHS). TBBPA is listed in this prohibition list. Marine conservation is recognized as a key issue in Norwegian fishery management e.g. wastewater management in the framework of the North Sea Declarations. TBBPA is very water-soluble, and dimethyl-TBBPA is lipophilic and may accumulate in fat. TBBPA is not readily biodegradable and can have long-term effects in the aquatic environment. Norwegian examples are summarized: TBBPA was found in marine sediment samples from Tromsø harbor (northern Norway) and in Atlantic cod from Lofoten and Varanger; TBBPA has been detected in Norwegian peregrine falcon and golden eagle eggs; and TBBPA has been detected in the blood in the general population of Norway. From these viewpoints, it can be considered that Norway needs to strictly control TBBPA emissions. In recent times, Asia has emerged as one of the leading

  10. Development and validation of a multiresidue method for the analysis of polybrominated diphenyl ethers, new brominated and organophosphorus flame retardants in sediment, sludge and dust.

    PubMed

    Cristale, Joyce; Lacorte, Silvia

    2013-08-30

    This study presents a multiresidue method for simultaneous extraction, clean-up and analysis of priority and emerging flame retardants in sediment, sewage sludge and dust. Studied compounds included eight polybrominated diphenyl ethers congeners, nine new brominated flame retardants and ten organophosphorus flame retardants. The analytical method was based on ultrasound-assisted extraction with ethyl acetate/cyclohexane (5:2, v/v), clean-up with Florisil cartridges and analysis by gas chromatography coupled to tandem mass spectrometry (GC-EI-MS/MS). Method development and validation protocol included spiked samples, certified reference material (for dust), and participation in an interlaboratory calibration. The method proved to be efficient and robust for extraction and determination of three families of flame retardants families in the studied solid matrices. The method was applied to river sediment, sewage sludge and dust samples, and allowed detection of 24 among the 27 studied flame retardants. Organophosphate esters, BDE-209 and decabromodiphenyl ethane were the most ubiquitous contaminants detected.

  11. Effect of electron beam irradiation and microencapsulation on the flame retardancy of ethylene-vinyl acetate copolymer materials during hot water ageing test

    NASA Astrophysics Data System (ADS)

    Sheng, Haibo; Zhang, Yan; Wang, Bibo; Yu, Bin; Shi, Yongqian; Song, Lei; Kundu, Chanchal Kumar; Tao, Youji; Jie, Ganxin; Feng, Hao; Hu, Yuan

    2017-04-01

    Microencapsulated ammonium polyphosphate (MCAPP) in combination with polyester polyurethane (TPU) was used to flame retardant ethylene-vinyl acetate copolymer (EVA). The EVA composites with different irradiation doses were immersed in hot water (80 °C) to accelerate ageing process. The microencapsulation and irradiation dose ensured positive impacts on the properties of the EVA composites in terms of better dimensional stability and flame retardant performance. The microencapsulation of APP could lower its solubility in water and the higher irradiation dose led to the more MCAPP immobilized in three dimensional crosslinked structure of the EVA matrix which could jointly enhance the flame retardant and electrical insulation properties of the EVA composites. So, the EVA composites with 180 kGy irradiation dose exhibited better dimensional stability than the EVA composites with 120 kGy due to the higher crosslinking degree. Moreover, the higher irradiation dose lead to the more MCAPP immobilizated in crosslinked three-dimensional structure of EVA, enhancing the flame retardancy and electrical insulation properties of the EVA composites. After ageing test in hot water at 80 °C for 2 weeks, the EVA/TPU/MCAPP composite with 180 kGy could still maintain the UL-94 V-0 rating and the limiting oxygen index (LOI) value was as high as 30%. This investigation indicated the flame retardant EVA cable containing MCAPP could achieve stable properties and lower electrical fire hazard risk during long-term hot water ageing test.

  12. Comprehensive characterisation of flame retardants in textile furnishings by ambient high resolution mass spectrometry, gas chromatography-mass spectrometry and environmental forensic microscopy.

    PubMed

    Ionas, Alin C; Ballesteros Gómez, Ana; Uchida, Natsuyo; Suzuki, Go; Kajiwara, Natsuko; Takata, Kyoko; Takigami, Hidetaka; Leonards, Pim E G; Covaci, Adrian

    2015-10-01

    The presence and levels of flame retardants (FRs), such as polybrominated diphenyl ethers (PBDEs) and organophosphate flame retardants (PFRs), was determined in textile home furnishings, such as carpets and curtains from stores in Belgium. A comprehensive characterisation of FRs in textile was done by ambient high resolution mass spectrometry (qualitative screening), gas chromatography-mass spectrometry (GC-MS) (quantitation), and environmental forensic microscopy (surface distribution). Ambient ionisation coupled to a time-of-flight (TOF) high resolution mass spectrometer (direct probe-TOF-MS) was investigated for the rapid screening of FRs. Direct probe-TOF-MS proved to be useful for a first screening step of textiles to detect FRs below the levels required to impart flame retardancy and to reduce, in this way, the number of samples for further quantitative analysis. Samples were analysed by GC-MS to confirm the results obtained by ambient mass spectrometry and to obtain quantitative information. The levels of PBDEs and PFRs were typically too low to impart flame retardancy. Only high levels of BDE-209 (11-18% by weight) were discovered and investigated in localised hotspots by employing forensic microscopy techniques. Most of the samples were made of polymeric materials known to be inherently flame retarded to some extent, so it is likely that other alternative and halogen-free FR treatments/solutions are preferred for the textiles on the Belgian market.

  13. Flame retardant brominated styrene-based polymers. II. Synthesis, characterization and application of dibromostyrene, styrene and butadiene terpolymers

    SciTech Connect

    Wang, J.L.; Favstritsky, N.A.

    1993-12-31

    Brominated styrene-based polymers having surprisingly good physical properties in combination with flame retardancy are prepared from terpolymers of dibromostyrene, styrene and butadiene. Polymerization compositions were determined by bromine contents (% Br) of the polymers by Schoeninger Combustion Method and {sup 1}H NMR integration. Weight losses (% loss) were measured at 20{degrees}C/min by Thermogravimetric Analysis (TGA). Molecular weights were measured by GPC based on a standard molecular weight (MW) of polystyrene (PS)> Flammability of the latex products when used in textile backcoatings was testing by Motor Vehicle Safety Standard 302 (MVSS-302) flammability test. As latexes were used as non-woven binders, flammability was tested by exposure to a 4 in high, 1950{degrees}F propane flame from a Fisher Burner. When latexes were employed for carpet backing, flammability was tested by DOC. FF-1-70 (pill test) flammability tests.

  14. Molecular Design, Graft Polymerization and Performance Evaluation of Radiation Curable Flame Retardant Monomers Derived from Phosphorus-Nitrogen Systems

    NASA Astrophysics Data System (ADS)

    Edwards, Brian Tyndall

    The textile industry is constantly seeking new technologies to make its production more efficient, economical and environmentally friendly. An exciting new strategy to impart value-added functional finishes to textiles is the use of radiation, such as ultraviolet (UV) light, to drive the polymerization of monomers onto the surface of the substrates. These grafted polymeric layers provide the fiber or fabric with interesting new properties, such as antimicrobial behavior, water and oil repellency or flame retardancy. With the aid of a photoinitiator, UV curing can take place very rapidly and the process is waterless and uses less energy than traditional textile wet processing. With these thoughts in mind, this research explores the molecular design, synthesis, UV induced graft polymerization and performance evaluation of nine phosphorus-based flame retardant monomers for cellulosic cotton substrates. All monomers in this work were easily prepared using one-pot reactions procedures. With the assistance of Irgacure 819 photoinitiator, seven of the nine monomers were shown to simultaneously graft and polymerize onto the surface of cotton fabrics under UV radiation. JMPRTM Pro 10 software was used to explore the effect of variables, such as monomer concentration, photoinitiator concentration and UV exposure time, on the yield of the grafted polymeric layer. Burn testing of the treated fabrics in the vertical, 45° and horizontal orientations showed that all nine monomers were effective flame retardants that function via the condensed phase mechanism by encouraging the formation of nonflammable char. These burn test results were validated by thermogravimetric analysis, which demonstrated quantitatively that all nine monomers strongly promote the generation of a protective char. Finally, scanning electron microscopy was used to examine the surface morphology of the treated fabrics and visualize the grafted polymeric layer.

  15. Exposure to an environmentally relevant mixture of brominated flame retardants affects fetal development in Sprague-Dawley rats.

    PubMed

    Berger, Robert G; Lefèvre, Pavine L C; Ernest, Sheila R; Wade, Michael G; Ma, Yi-Qian; Rawn, Dorothea F K; Gaertner, Dean W; Robaire, Bernard; Hales, Barbara F

    2014-06-05

    Brominated flame retardants are incorporated into a wide variety of consumer products and are known to enter into the surrounding environment, leading to human exposure. There is accumulating evidence that these compounds have adverse effects on reproduction and development in humans and animal models. Animal studies have generally characterized the outcome of exposure to a single technical mixture or congener. Here, we determined the impact of exposure of rats prior to mating and during gestation to a mixture representative of congener levels found in North American household dust. Adult female Sprague-Dawley rats were fed a diet containing 0, 0.75, 250 or 750mg/kg of a mixture of flame retardants (polybrominated diphenyl ethers, hexabromocyclododecane) from two weeks prior to mating to gestation day 20. This formulation delivered nominal doses of 0, 0.06, 20 and 60mg/kg body weight/day. The lowest dose approximates high human exposures based on house dust levels and the dust ingestion rates of toddlers. Litter size and resorption sites were counted and fetal development evaluated. No effects on maternal health, litter size, fetal viability, weights, crown rump lengths or sex ratios were detected. The proportion of litters with fetuses with anomalies of the digits (soft tissue syndactyly or malposition of the distal phalanges) was increased significantly in the low (0.06mg/kg/day) dose group. Skeletal analysis revealed a decreased ossification of the sixth sternebra at all exposure levels. Thus, exposure to an environmentally relevant mixture of brominated flame retardants results in developmental abnormalities in the absence of apparent maternal toxicity. The relevance of these findings for predicting human risk is yet to be determined.

  16. Fathead minnow (Pimephales promelas Rafinesque) exposure to three novel brominated flame retardants in outdoor mesocosms: bioaccumulation and biotransformation.

    PubMed

    de Jourdan, Benjamin P; Hanson, Mark L; Muir, Derek C G; Solomon, Keith R

    2014-05-01

    The phaseout of polybrominated diphenyl ethers (PBDEs) has prompted the search for appropriate substitutes. These substitutes, referred to as novel brominated flame retardants (NBFRs), are poorly characterized in terms of their persistence, bioaccumulation, and toxicity. The authors assessed the bioaccumulation potential of 3 non-PBDE brominated flame retardants: 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), tetrabromobisphenol A bis(2,3-dibromopropylether) (TBBPA-BDBPE), and BZ-54, a mixture of bis(2-ethylhexyl)tetrabromophthalate) (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB). Replicate outdoor aquatic mesocosms were treated individually at concentrations designed to give a maximum load of 500 ng/g of flame retardant in the upper 5 cm of the sediment. Caged fathead minnows (Pimephales promelas, 24 fish per replicate) were introduced to each mesocosm and acclimated for 10 d prior to exposure. The exposure period was 42 d, followed by 28 d of depuration after transfer to a control mesocosm, during which physical, reproductive, and biochemical end points were examined. Tissue samples were taken to measure the accumulation, depuration, and biotransformation of NBFRs. Fathead minnows were observed to accumulate, after growth adjustment, BTBPE (16-4203 ng/g lipid) and TBBPA-BDBPE (>1000 ng/g lipid) but with a lack of consistent accumulation observed for EH-TBB and BEH-TEBP. However, limited biologically meaningful or consistent responses were observed in the monitored physical, reproductive, and biochemical parameters. Fathead minnows from each treatment exhibited several brominated transformation products. The authors conclude that these NBFRs have the potential to be bioaccumulative and persistent in vivo and, therefore, warrant further study of physiological effects linked to chronic, sublethal responses.

  17. Occurrence of PBDEs and other alternative brominated flame retardants in sludge from wastewater treatment plants in Korea.

    PubMed

    Lee, Sunggyu; Song, Geum-Ju; Kannan, Kurunthachalam; Moon, Hyo-Bang

    2014-02-01

    Studies on the occurrence of polybrominated diphenyl ethers (PBDEs) and other alternative brominated flame retardants in the environment are scarce. In this study, PBDEs and non-PBDE brominated flame retardants (NBFRs), including decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), were measured in sludge collected from three types of wastewater treatment plants (WWTPs) in Korea. Total concentrations of PBDEs (∑PBDE) in sludge ranged from 298 to 48,000 (mean: 3240) ng/g dry weight. Among 10 NBFRs analyzed, DBDPE and BTBPE were the only ones detected in sludge samples. Concentrations of DBDPE and BTBPE ranged from 1) of DBDPE/BDE 209 were found in sludge from I-WWTPs, reflecting a shift in the usage pattern of BFRs by the Korean industry. The nationwide annual emission fluxes of ∑PBDE, DBDPE and BTBPE via WWTPs to the environment were estimated to be 7400, 480, and 3.7 kg/year, respectively. This is the first study on the occurrence of alternative brominated flame retardants in sludge from Korea.

  18. Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses.

    PubMed

    Mizouchi, Shigekazu; Ichiba, Masayoshi; Takigami, Hidetaka; Kajiwara, Natsuko; Takamuku, Toshiyuki; Miyajima, Toru; Kodama, Hiroki; Someya, Takashi; Ueno, Daisuke

    2015-03-01

    To assess the exposure of flame retardants (FRs) for school-children, organophosphorus flame retardants and plasticizers (PFRs) and organobromine flame retardants (BFRs) were determined in the indoor dust samples collected from elementary schools and domestic houses in Japan in 2009 and 2010. PFRs were detected in all the dust samples analyzed and the highest concentration of total PFRs was thousand-fold higher than that of BFRs. Among the PFRs, tris(butoxyethyl)phosphate (TBOEP) showed the highest concentration with a median (med.) of 270,000 ng g(-1) dry weight (3700-5,500,000 ng g(-1) dry weight), followed by tris(methylphenyl)phosphate (TMPPs)>triphenyl phosphate (TPHP)=tris(1,3-dichloro-2-propyl)phosphate (TDCIPP)=tris(2-chloroisopropyl)phosphate (TCIPP)=tris(2chloroethyl)phosphate (TCEP)>ethylhexyl diphenyl phosphate (EHDPP). Significantly higher concentrations of TBOEP, tri-n-butyl phosphate (TNBP), TPHP, TMPPs, and total-PFRs were found in dust samples from elementary schools than from domestic houses. It might be due to that higher concentrations of TBOEP (as leveling agent) were detected from the floor polisher/wax products collected in those elementary schools. On the other hand, significantly higher concentrations of TCEP, TCIPPs, and total chloroalkyl-PFRs were found in domestic houses than in elementary schools. Exposure assessments of PFRs via indoor dust from elementary schools and domestic houses were conducted by calculating the hazard quotient (HQ). Among PFRs, HQs for TBOEP exceeded 1 (higher than reference dose: RfD) and its highest value was 1.9. To reduce the intake of TBOEP by school-children, it is recommended that the use of floor polisher/wax containing TBOEP be reduced in schools.

  19. Levels of polybrominated diphenyl ethers and novel flame retardants in microenvironment dust from Egypt: an assessment of human exposure.

    PubMed

    Hassan, Yasmeen; Shoeib, Tamer

    2015-02-01

    There are very few studies reporting concentrations of polybrominated diphenyl ethers (PBDEs) and novel flame retardants (FRs) or non-PBDEs in Africa and the Middle East. The present work reported concentrations of fourteen PBDE congeners and eleven non-PBDE flame retardants in dust samples collected from homes (n=17), workplaces (n=9) and cars (n=5) in the greater Cairo region. The median ∑PBDE concentrations were 57, 425 and 1608 ng g(-1) in homes, workplaces and cars respectively. The highest PBDE levels were observed for BDE 209, with a median concentration of 40.2, 366 and 1540 ng g(-1) representing 70% to 95% of the total PBDEs in homes, workplaces and cars respectively. This is about 8 to 46 times greater than the median concentration of the pentaBDE (represented by the most abundant compounds in this formulation, ∑BDE 47, 99 and 100). In the case of non-PBDE flame retardants, a detection frequency between 52% and 100% was observed for several compounds including: hexabromocyclododecane (HBCD), hexabromobenzene (HBB), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), bis (2-ethyl-1-hexyl) tetrabromophthalate (TBPH), 1,2-bis (2,4,6-tribromophenoxy) ethane (TBPE), ally-2,4,6-tribromophenyl ether (ATE) and Dechlorane Plus (DP). The ∑non-PBDE median concentrations were 8.30, 28.9 and 49.9 ng g(-1) in homes, workplaces and cars respectively with the highest level observed for HBCD in the three microenvironments. The detection of novel flame retardants in indoor environments may be due to their wide usage after the ban of the penta and octa BDE formulation. Results show the levels of PBDEs and non-PBDEs in Egyptian dust to be among the lowest levels reported from other countries. Different dust exposure scenarios using 5th percentile, median, 95th percentile and maximum levels were estimated for adult and children. The estimated dust intake results were several orders of magnitude lower than the oral reference dose values.

  20. Effects of selected polybrominated diphenyl ether flame retardants on lake trout (Salvelinus namaycush) thymocyte viability, apoptosis, and necrosis

    USGS Publications Warehouse

    Birchmeier, Kelly L.; Smith, Kimberly A.; Passino-Reader, Dora R.; Sweet, Leonard I.; Chernyak, Sergei M.; Adams, Jean V.; Omann, Geneva M.

    2005-01-01

    Polybrominated diphenyl ether (PBDE) flame-retardants have been identified as an emergent contaminants issue in many parts of the world. In vitro analyses were conducted to test the hypothesis that selected PBDEs congeners affect viability, apoptosis, and necrosis of thymocytes from laboratory-reared lake trout (Salvelinus namaycush). At current environmental levels (<1 mg/L), effects of the tested PBDEs on thymocytes were negligible. However, at 100 mg/L, major effects were seen for congener brominated diphenyl ether 47 (BDE-47) and minor effects were seen for congener BDE-99.

  1. Organophosphorus flame retardants (PFRs) and plasticisers in harbour porpoises (Phocoena phocoena) stranded or bycaught in the UK during 2012.

    PubMed

    Papachlimitzou, Alexandra; Barber, Jonathan L; Losada, Sara; Bersuder, Philippe; Deaville, Rob; Brownlow, Andrew; Penrose, Rod; Jepson, Paul D; Law, Robin J

    2015-09-15

    A suite of twenty organophosphorus flame retardant compounds have been determined in blubber and liver tissue of twenty harbour porpoises stranded or bycaught in the UK during 2012 in order to establish current levels of contamination. Fourteen of the twenty compounds were below the limits of quantification in all samples. Six could be quantified at maximum concentrations (in blubber) between 6.7 and 246μgkg(-1) wet weight. These levels do not suggest a high level of concern regarding potential impacts and do not indicate that routine monitoring in UK porpoises is warranted at this time.

  2. Ultra-Fast Layer-by-Layer Approach for Depositing Flame Retardant Coatings on Flexible PU Foams within Seconds.

    PubMed

    Carosio, F; Alongi, J

    2016-03-01

    In this letter, we are presenting a novel approach for the deposition of layer-by-layer (LbL) coatings capable of conferring flame retardant properties to flexible polyurethane foams exploiting subsecond deposition times. The process yields nanoscale coatings able to reduce by 33% one of the main fire safety parameters, namely the heat release rate peak, with a total treatment time of only 2.5 s. This new approach turned out to be three to 4 orders of magnitude faster than conventional LbL treatments. Such results make it possible for the exploit of LbL as a competitive, efficient and ecofriendly technology at industrial scale.

  3. Chemical alternatives assessment of different flame retardants - A case study including multi-walled carbon nanotubes as synergist.

    PubMed

    Aschberger, Karin; Campia, Ivana; Pesudo, Laia Quiros; Radovnikovic, Anita; Reina, Vittorio

    2017-04-01

    Flame retardants (FRs) are a diverse group of chemicals used as additives in a wide range of products to inhibit, suppress, or delay ignition and to prevent the spread of fire. Halogenated FRs (HFRs) are widely used because of their low impact on other material properties and the low loading levels necessary to meet the required flame retardancy. Health and environmental hazards associated with some halogenated FRs have driven research for identifying safer alternatives. A variety of halogen-free FRs are available on the market, including organic (phosphorus and nitrogen based chemicals) and inorganic (metals) materials. Multi-walled carbon nanotubes (MWCNT) have been demonstrated to act as an effective/synergistic co-additive in some FR applications and could thereby contribute to reducing the loading of FRs in products and improving their performance. As part of the FP7 project DEROCA we carried out a chemical alternatives assessment (CAA). This is a methodology for identifying, comparing and selecting safer alternatives to chemicals of concern based on criteria for categorising human and environmental toxicity as well as environmental fate. In the project we assessed the hazard data of different halogen-free FRs to be applied in 5 industrial and consumer products and here we present the results for MWCNT, aluminium diethylphosphinate, aluminium trihydroxide, N-alkoxy hindered amines and red phosphorus compared to the HFR decabromodiphenylether. We consulted the REACH guidance, the criteria of the U.S.-EPA Design for Environment (DfE) and the GreenScreen® Assessment to assess and compare intrinsic properties affecting the hazard potential. A comparison/ranking of exposure reference values such as Derived No Effect Levels (DNELs) showed that FRs of concern are not identified by a low DNEL. A comparison based on hazard designations according to the U.S.-EPA DfE and GreenScreen® for human health endpoints, aquatic toxicity and environmental fate showed that the

  4. Effect of single flame retardant aluminum tri-hydroxide and boric acid against inflammability and biodegradability of recycled PP/KF composites

    NASA Astrophysics Data System (ADS)

    Suharty, Neng Sri; Dihardjo, Kuncoro; Handayani, Desi Suci; Firdaus, Maulidan

    2016-03-01

    Composites rPP/DVB/AA/KF had been reactively synthesized in melt using starting material: recycled polypropylene (rPP), kenaf fiber (KF), multifunctional compound acrylic acid (AA), compatibilizer divinyl benzene (DVB). To improve the inflammability of composites, single flame retardant aluminum tri-hydroxide (ATH) and boric acid (BA) as an additive was added. The inflammability of the composites was tested according to ASTM D635. By using 20% ATH and 5% BA additive in the composites it is effectively inhibiting its time to ignition (TTI). Its burning rate (BR) can be reduced and its heat realease (%HR) decreases. The biodegradability of composites was quantified by its losing weight (LW) of composites after buried for 4 months in the media with rich cellulolytic bacteria. The result shows that the LW of composites in the presence 20% ATH and 5% BA is 6.3%.

  5. Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption.

    PubMed

    Chen, Guanliang; Jin, Yuanxiang; Wu, Yan; Liu, Ling; Fu, Zhengwei

    2015-07-01

    Triphenyl phosphate (TPP) and tris(2-chloroethyl) phosphate (TCEP) are two of the most common organophosphate flame retardants in the ecosystem. Effects of TPP and TCEP on the induction of oxidative stress and endocrine disruption were evaluated in five weeks old male mice. After receiving 100, 300 mg/kg/bodyweight oral exposure to TPP and TCEP for 35 days, the body and testis weights decreased in 300 mg/kg TPP and TCEP treated groups. Hepatic malondialdehyde (MDA) contents increased significantly in both TPP treated groups, while the contents of glutathione (GSH) decreased significantly in 300 mg/kg TPP and both TCEP treated groups. In addition, the hepatic activities of antioxidant enzymes including glutathione peroxidase (GPX), catalase (CAT) and glutathione S-transferase (GST) as well as their related gene expression were affected by TPP or TECP exposure. On the other hand, 300 mg/kg of TPP or TECP treatment resulted in histopathological damage and the decrease of testicular testosterone levels. Moreover, the expression of main genes related to testosterone synthesis including steroidogenic acute regulatory protein (StAR), low-density lipoprotein receptor (LDL-R), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) and cytochrome P450 17α-hydroxysteroid dehydrogenase (P450-17α) in the testes also decreased after the exposure to 300 mg/kg TPP or TCEP for 35 days. Combined with the effects on physiology, histopathology and the expression of genes, TPP and TCEP can induce oxidative stress and endocrine disruption in mice.

  6. Species specific differences in the in vitro metabolism of the flame retardant mixture, Firemaster® BZ-54

    PubMed Central

    Bearr, Jonathan S.; Mitchelmore, Carys L.; Roberts, Simon C.; Stapleton, Heather M.

    2013-01-01

    Firemaster® BZ-54 is a flame retardant additive and consists of a brominated benzoate (2-ethylhexyl 2,3,4,5-tetrabromobenzoate; TBB) and a brominated phthalate (bis (2-ethylhexyl) 2,3,4,5-tetrabromophthalate; TBPH). Previous research has shown that fathead minnows exposed in vivo to Firemaster® BZ-54 accumulate TBB and TBPH. This study examined the in vitro biotransformation potential of TBB and TBPH in hepatic subcellular fractions (i.e., S9, microsomes and cytosol) in the fathead minnow, common carp, mouse and snapping turtle. Metabolism was evaluated by measuring the loss of the parent TBB or TBPH and identifying potential metabolites in the sample extracts. Metabolic loss of TBPH was measured for all species, while TBB loss was observed for all species except for the snapping turtle. Several metabolites were observed in all of the incubations except for snapping turtle. Metabolites observed appeared to be derived from TBB, given their structures and lack of appearance in the snapping turtle incubations. One of these metabolites, 2,3,4,5-tetrabromomethylbenzoate has been identified for the first time in a biological system. When metabolized, TBB and TBPH loss was found in each subcellular fraction suggesting that the enzyme(s) involved are present in both soluble and membrane-bound forms. It can be concluded that a broad range of species are capable of metabolizing TBB and TBPH to various metabolites and further research should be carried out to ascertain the specific products formed from metabolism of TBB and TBPH. PMID:22889877

  7. Species specific differences in the in vitro metabolism of the flame retardant mixture, Firemaster® BZ-54.

    PubMed

    Bearr, Jonathan S; Mitchelmore, Carys L; Roberts, Simon C; Stapleton, Heather M

    2012-11-15

    Firemaster(®) BZ-54 is a flame retardant additive and consists of a brominated benzoate (2-ethylhexyl 2,3,4,5-tetrabromobenzoate; TBB) and a brominated phthalate (bis (2-ethylhexyl) 2,3,4,5-tetrabromophthalate; TBPH). Previous research has shown that fathead minnows exposed in vivo to Firemaster(®) BZ-54 accumulate TBB and TBPH. This study examined the in vitro biotransformation potential of TBB and TBPH in hepatic subcellular fractions (i.e., S9, microsomes and cytosol) in the fathead minnow, common carp, mouse and snapping turtle. Metabolism was evaluated by measuring the loss of the parent TBB or TBPH and identifying potential metabolites in the sample extracts. Metabolic loss of TBPH was measured for all species, while TBB loss was observed for all species except for the snapping turtle. Several metabolites were observed in all of the incubations except for snapping turtle. Metabolites observed appeared to be derived from TBB, given their structures and lack of appearance in the snapping turtle incubations. One of these metabolites, 2,3,4,5-tetrabromomethylbenzoate has been identified for the first time in a biological system. When metabolized, TBB and TBPH loss was found in each subcellular fraction suggesting that the enzyme(s) involved are present in both soluble and membrane-bound forms. It can be concluded that a broad range of species are capable of metabolizing TBB and TBPH to various metabolites and further research should be carried out to ascertain the specific products formed from metabolism of TBB and TBPH.

  8. Brominated flame retardants (BFRs) in air and dust from electronic waste storage facilities in Thailand.

    PubMed

    Muenhor, Dudsadee; Harrad, Stuart; Ali, Nadeem; Covaci, Adrian

    2010-10-01

    This study reports concentrations of brominated flame retardants in dust samples (n=25) and in indoor (n=5) and outdoor air (n=10) (using PUF disk passive air samplers) from 5 electronic and electrical waste (e-waste) storage facilities in Thailand. Concentrations of Sigma(10)PBDEs (BDEs 17, 28, 47, 49, 66, 85, 99, 100, 153 and 154) in outdoor air in the vicinity of e-waste storage facilities ranged from 8 to 150 pg m(-3). Indoor air concentrations ranged from 46 to 350 pg m(-3), with highest concentrations found in a personal computer and printer waste storage room at an e-waste storage facility. These are lower than reported previously for electronic waste treatment facilities in China, Sweden, and the US. Concentrations of Sigma(21)PBDEs (Sigma(10)PBDEs+BDEs 181, 183, 184, 191, 196, 197, 203, 206, 207, 208 and 209), decabromodiphenylethane (DBDPE), decabromobiphenyl (BB-209) in dust were 320-290,000, 43-8700 and <20-2300 ng g(-1) respectively, with the highest concentrations of Sigma(21)PBDEs, BDE-209 and DBDPE in a room used to house discarded TVs, stereos and radios. PBDE concentrations in dust were slightly higher but within the range of those detected in workshop floor dust from an e-waste recycling centre in China. The highest concentration of BB-209 was detected in a room storing discarded personal computers and printers. Consistent with recent reports of elevated ratios of BDE-208:BDE-209 and BDE-183:BDE-209 in household electronics from South China, percentage ratios of BDE-208:BDE-209 (0.64-2.9%) and of BDE-208:BDE-183 (2.8-933%) in dust samples exceeded substantially those present in commercial deca-BDE and octa-BDE formulations. This suggests direct migration of BDE-208 and other nonabrominated BDEs from e-waste to the environment. Under realistic high-end scenarios of occupational exposure to BDE-99, workers in the facilities were exposed above a recently-published Health Based Limit Value for this congener. Reassuringly, estimated exposures to BDE

  9. Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines.

    PubMed

    Zhang, Xi; He, Qingliang; Gu, Hongbo; Colorado, Henry A; Wei, Suying; Guo, Zhanhu

    2013-02-01

    Both fibril and spherical polyaniline (PANI) nanostructures have successfully served as nanofillers for obtaining epoxy resin polymer nanocomposites (PNCs). The effects of nanofiller morphology and loading level on the mechanical properties, rheological behaviors, thermal stability, flame retardancy, electrical conductivity, and dielectric properties were systematically studied. The introduction of the PANI nanofillers was found to reduce the heat-release rate and to increase the char residue of epoxy resin. A reduced viscosity was observed in both types of PANI-epoxy resin liquid nanosuspension samples at lower loadings (1.0 wt % for PANI nanospheres; 1.0 and 3.0 wt % for PANI nanofibers), the viscosity was increased with further increases in the PANI loading for both morphologies. The dynamic storage and loss modulii were studied, together with the glass-transition temperature (T(g)) being obtained from the peak of tan δ. The critical PANI nanofiller loading for the modulus and T(g) was different, i.e., 1.0 wt % for the nanofibers and 5.0 wt % for the nanospheres. The percolation thresholds of the PANI nanostructures were identified with the dynamic mechanical property and electrical conductivity, and, because of the higher aspect ratio, nanofibers reached the percolation threshold at a lower loading (3.0 wt %) than the PANI nanospheres (5.0 wt %). The PANI nanofillers could increase the electrical conductivity, and, at the same loading, the epoxy nanocomposites with the PANI nanofibers showed lower volume resistivity than the nanocomposites with the PANI nanospheres, which were discussed with the contact resistance and percolation threshold. The tensile test indicated an improved tensile strength of the epoxy matrix with the introduction of the PANI nanospheres at a lower loading (1.0 wt %). Compared with pure epoxy, the elasticity modulus was increased for all the PNC samples. Moreover, further studies on the fracture surface revealed an enhanced

  10. Levels and trends of brominated flame retardants in the European environment.

    PubMed

    Law, Robin J; Allchin, Colin R; de Boer, Jacob; Covaci, Adrian; Herzke, Dorte; Lepom, Peter; Morris, Steven; Tronczynski, Jacek; de Wit, Cynthia A

    2006-06-01

    In this paper, we review those data which have recently become available for brominated flame retardants (particularly the brominated diphenyl ethers (BDEs) and hexabromocyclododecane (HBCD)) in samples from the European environment. Environmental compartments studied comprise the atmosphere, sediments and soils, sewage sludges, and a variety of biological samples and food chains. This is currently a very active research area, and we cite over 70 studies reported in the literature during 2003-04. Findings include that the input of BDEs (especially BDE209) to the Baltic Sea by atmospheric deposition now exceeds that of PCBs by a factor of almost 40 times. Sewage sludge samples from both industrial and background locations show concentrations of BDEs, HBCD and tetrabromobisphenol-A (TBBP-A) that are of a similar order, indicating that the major source is from diffuse leaching from products into wastewater streams from users, households and industries generally. Point-sources from industries using BFRs (e.g. the textile industry) also generate local hot-spots. Sediment core studies identified the presence of two of the three PBDE formulations. The penta-mix formulation was clearly present from the beginning of the 1970s, but the deca-mix only appeared in the late 1970s. BDE183, BDE209 and HBCD were detected in peregrine falcons from Sweden and other birds feeding on terrestrial food chains. BDEs are found widely distributed in fish, including those from high mountain lakes in Europe, as a consequence of long-range atmospheric transport and deposition. A temporal trend study in archived freeze-dried mussels from the Seine estuary, France, indicated an exponential increase in BDE concentrations during the period 1982-1993, which levelled off in 1999 and 2001 and then began to decline after 2002. HBCD was detected in liver and blubber samples from harbour seals and harbour porpoises from the Wadden and North Seas, though very few animals yielded positive values for TBBP

  11. Flame Retardant Associations Between Children’s Handwipes and House Dust

    PubMed Central

    Stapleton, Heather M.; Misenheimer, John; Hoffman, Kate; Webster, Thomas F.

    2014-01-01

    Polybrominated diphenyl ether (PBDE) flame retardants (FRs) have been ubiquitously detected at high concentrations in indoor environments; however, with their recent phase-out, more attention is being focused on measurements of exposure to alternative FRs such as organophosphate FRs (OPFRs). In our previous research, we found that PBDE residues measured on children’s handwipes were a strong predictor of serum PBDE levels. Here we build upon this research to examine longitudinal changes in PBDEs in indoor dust and children’s handwipes, and explore the associations between handwipes and dust for alternative FRs. Children from our previous study were re-contacted after approximately two years and new samples of indoor dust and handwipes were collected. PBDE dust-levels were significantly correlated between two different sampling rounds separated by two years; however, PBDE levels in handwipes were not correlated, perhaps suggesting that the sources of PBDEs remained relatively constant in the home, but that behavioral differences in children are changing with age and influencing handwipe levels. OPFRs [i.e. tris (1,3-dichloroisopropyl) phosphate (TDCPP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP)], 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB, also known as TBB), di(2-ethylhexyl) tetrabromophthalate (BEH-TEBP, also known as TBPH), and 1,2,5,6,9,10-hexabromocyclododecane (HBCD) were also ubiquitously detected in house dust samples and geometric mean levels were similar to PBDE levels, or higher in the case of the OPFRs. Significant associations between handwipes and house dust were observed for these alternative FRs, particularly for EH-TBB (rs= 0.54; p<0.001). Increasing house dust levels and age were associated with higher levels of FRs in handwipes, and high hand washing frequency (>5 times/day) was associated with lower FR levels in handwipes. Overall these data suggest that exposure to these alternative FRs will be

  12. Levels and trends of polybrominated diphenylethers and other brominated flame retardants in wildlife.

    PubMed

    Law, Robin J; Alaee, Mehran; Allchin, Colin R; Boon, Jan P; Lebeuf, Michel; Lepom, Peter; Stern, Gary A

    2003-09-01

    In this paper, we review the available data for polybrominated diphenylethers (PBDEs) and other flame retardants in wildlife, with the exception of fishes from Europe and North America which are covered in more detail elsewhere. More data are available for PBDEs than for other compounds, and these show that some of these compounds have become widely distributed in the environment, being found in samples from Europe, Australia, Azerbaijan, North America and the Arctic. Most available data relate to birds and their eggs and marine mammals, but the results of two food web studies are also included. The detection of PBDEs in pelagic marine mammals which feed in deep offshore waters, including baleen whales, indicate that these compounds have found their way into deep-water, oceanic food webs as well as the coastal/shallow sea examples described in detail. In the North Sea study, the most marked increase in lipid-normalised concentrations of six BDE congeners occurred during transfer from predatory fish to marine mammals. In the St. Lawrence Estuary study, marked differences in the ratios observed between species suggested that some fish species may be able to metabolise BDE99.A number of time trend studies have also been conducted, notably in guillemot eggs from Sweden (1969-2000), beluga whales from the Canadian Arctic (1982-1997 and 1989-2001) and from the St. Lawrence Estuary (1988-1999), and ringed seals from the Canadian Arctic (1981-2000). In the temperate latitudes, from these and other studies (e.g. in dated sediment cores), PBDE concentrations began to rise earlier than in those from high latitudes, in line with data for production and use. These trends have now slowed in many cases. Declines could be expected in Europe for many congeners following the cessation of manufacture and use of the penta-mix formulation in the EU, though these are not yet apparent in environmental samples. In Arctic biota, however, the rapidly rising concentrations seen currently in

  13. Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via Layer-by-Layer assembly of chitin derivatives.

    PubMed

    Pan, Haifeng; Wang, Wei; Pan, Ying; Song, Lei; Hu, Yuan; Liew, Kim Meow

    2015-01-22

    The self-extinguishing coating, consisting of biobased chitin derivatives, phosphorylated chitin and deacetylated chitin (chitosan), was deposited on cotton fabrics via the Layer-by-Layer (LbL) assembled method. The content of phosphorylated chitin prepared on cotton fabrics surface is dependent on the bilayers' number and concentration of phosphorylated chitin. In the vertical flame test, the cotton fabric with 20 bilayers prepared at the high phosphorylated chitin concentration (2 wt%) could extinguish the flame. Microcombustion calorimetry result showed that all coated cotton fabrics showed lower peak heat-release rate and total heat-release values compared with that of the pure one. Thermogravimetric analysis result indicated that thermal and thermal oxidation stability of all coated cotton fabrics were enhanced in the high temperature range (400-700°C). This work provided the flame retardant multilayer films based on fully biobased chitin derivatives on cotton fabrics to enhance its flame retardancy.

  14. Fire retardancy enhancement of unsaturated polyester polymer resin filled with nano and micro particulate oxide additives

    NASA Astrophysics Data System (ADS)

    Ribeiro, M. C. S.; Sousa, S. P. B.; Nóvoa, P. R. O.; Pereira, C. M.; Ferreira, A. J. M.

    2014-06-01

    In the last years the traditional construction materials, such as wood, glass and steel, have been increasingly replaced by polymer composite materials due to their superior properties. However, this feature has also raised buildings' combustibility fire hazards. Polymer modification with inorganic nanoparticles can be a potential and efficient solution to control matrix flammability without sacrificing other important properties. In this study a new type of unsaturated polyester based composite materials with enhanced fire retardancy are developed, through polymer modification with nano/micro oxide particles and common flame retardants systems. For this purpose, the design of experiments based on Taguchi methodology and analyses of variance were applied. Samples with different material contents and processing parameters resultant from the L9 Taguchi orthogonal array were produced, and their fire properties assessed and quantified by single-flame source and vertical flammability tests. It was found that material and processing parameters have different effects on different properties. Unsaturated polyester composites modified with nano and micro oxide particles showed better fire performance compared to the neat composite improving at least one fire property whatever the nature of the filler. More thorough studies are required in order to improve mix design formulations towards further fire retardancy enhancement.

  15. Interrogation of the Substrate Profile and Catalytic Properties of the Phosphotriesterase from Sphingobium sp. Strain TCM1: An Enzyme Capable of Hydrolyzing Organophosphate Flame Retardants and Plasticizers.

    PubMed

    Xiang, Dao Feng; Bigley, Andrew N; Ren, Zhongjie; Xue, Haoran; Hull, Kenneth G; Romo, Daniel; Raushel, Frank M

    2015-12-29

    The most familiar organophosphorus compounds are the neurotoxic insecticides and nerve agents. A related group of organophosphorus compounds, the phosphotriester plasticizers and flame retardants, has recently become widely used. Unlike the neurotoxic phosphotriesters, the plasticizers and flame retardants lack an easily hydrolyzable bond. While the hydrolysis of the neurotoxic organophosphates by phosphotriesterase enzymes is well-known, the lack of a labile bond in the flame retardants and plasticizers renders them inert to typical phosphotriesterases. A phosphotriesterase from Sphingobium sp. strain TCM1 (Sb-PTE) has recently been reported to catalyze the hydrolysis of organophosphorus flame retardants. This enzyme has now been expressed in Escherichia coli, and the activity with a wide variety of organophosphorus substrates has been characterized and compared to the activity of the well-known phosphotriesterase from Pseudomonas diminuta (Pd-PTE). Structure prediction suggests that Sb-PTE has a β-propeller fold, and homology modeling has identified a potential mononuclear manganese binding site. Sb-PTE exhibits catalytic activity against typical phosphotriesterase substrates such as paraoxon, but unlike Pd-PTE, Sb-PTE is also able to effectively hydrolyze flame retardants, plasticizers, and industrial solvents. Sb-PTE can hydrolyze both phosphorus-oxygen bonds and phosphorus-sulfur bonds, but not phosphorus-nitrogen bonds. The best substrate for Sb-PTE is the flame retardant triphenyl phosphate with a kcat/Km of 1.7 × 10(6) M(-1) s(-1). Quite remarkably, Sb-PTE is also able to hydrolyze phosphotriesters with simple alcohol leaving groups such as tributyl phosphate (kcat/Km = 40 M(-1) s(-1)), suggesting that this enzyme could be useful for the bioremediation of a wide variety of organophosphorus compounds.

  16. Halogenated flame retardants during egg formation and chicken embryo development: maternal transfer, possible biotransformation, and tissue distribution.

    PubMed

    Zheng, Xiao-Bo; Luo, Xiao-Jun; Zeng, Yan-Hong; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian

    2014-08-01

    Hen muscle, eggs, and newborn chick tissues (muscle and liver) were collected from an electronic waste recycling site in southern China. The authors examined the maternal transfer, potential metabolism, and tissue distribution of several halogenated flame retardants (HFRs) during egg formation and chicken embryo development. The pollutant composition changes significantly from hen muscle to eggs and from eggs to tissues of newborn chicks. Higher-halogenated chemicals, such as octa- to deca-polybrominated diphenyl ether (PBDE) congeners, deca-polybrominated biphenyl (PBB209), and dechlorane plus (DP), are less readily transferred to eggs compared with lower-halogenated chemicals. During embryo development, PBDEs are the most likely to be metabolized, whereas decabromodiphenyl ethane (DBDPE) is the least. The authors also observed selective maternal transfer of anti-DP and stereoselective metabolism of syn-DP during chicken embryo development. During tissue development, liver has greater affinity than the muscle for chemcials with a high log octanol-water partition coefficient, with the exception of DBDPE. The differences in metabolism potential of different chemicals in chicken embryos cause pollutant composition alterations. Halogenated flame retardant from maternal transfer and tissue distribution also exhibited chemical specificity, especially for DBDPE. Levels of DBDPE were elevated along with the full process from hen muscle to eggs and from eggs to chick tissues. More attention should be paid to the selective accumulation and biotransformation of HFRs in the early development stage of birds.

  17. Diffusion of polyphosphates into (poly(allylamine)-montmorillonite) multilayer films: flame retardant-intumescent films with improved oxygen barrier.

    PubMed

    Laachachi, Abdelghani; Ball, Vincent; Apaydin, Kadir; Toniazzo, Valérie; Ruch, David

    2011-11-15

    The present paper relies on the original idea to design multifunctional coatings, and in particular highly efficient intumescent flame retardant coatings, based on the diffusion of polyphosphates (PSPs) in exponentially growing "layer-by-layer" films made from montmorillonite (MMT) and poly(allylamine) (PAH). Here, we used polyphosphates as an acid source, polyallylamine as both a carbon source and a swelling agent, and finally clays to reinforce the intumescent char strength and also for their oxygen barrier property. The coatings made from the alternated deposition of n = 60 layer pairs of PAH and MMT reach a considerable thickness of ∼18 μm with well-defined ordering of the MMT in the direction parallel to the substrate. Structural, morphological, mechanical, gas barrier, and fire resistance properties of these films have been studied. Excellent oxygen barrier properties and extraordinary fire resistance properties are demonstrated based on the basis of a strong increase of the time to ignition and on a decrease of the heat release rate of polylactide substrates during mass loss calorimeter tests. This new and innovative intumescent flame retardant system based on (PAH-MMT)(n)-PSP coatings is a promising universal treatment for current polymeric materials.

  18. Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene.

    PubMed

    Hu, Weizhao; Yu, Bin; Jiang, Shu-Dong; Song, Lei; Hu, Yuan; Wang, Bibo

    2015-12-30

    A well-defined functionalized graphene oxide (FGO) grafted by hyper-branched flame retardant based on N-aminoethyl piperazine and phosphonate derivative was synthesized to reduce flammability and toxicity of polystyrene (PS). The chemical structure, morphological and thermal properties were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis, respectively. Micro combustion calorimeter and steady state tube furnace were employed to evaluate the heat and non-heat fire hazards of PS nanocomposites. The incorporation of FGO into PS matrix effectively improved the flame retardancy and restrained the toxicity of the volatiles escaped, which is attributed to that the homogeneous dispersion of FGO in the PS matrix enhanced barrier effect that reduced peak heat release rate, total heat release and toxic gas release during combustion. Furthermore, PS-FGO nanocompsites obviously decreased the amount of flammable and toxic volatiles evolved, such as the aromatic compounds, carbonyl compounds, carbon monoxide, indicating suppressed fire hazards of the PS composites.

  19. Evaluation of in vitro vs. in vivo methods for assessment of dermal absorption of organic flame retardants: a review.

    PubMed

    Abdallah, Mohamed Abou-Elwafa; Pawar, Gopal; Harrad, Stuart

    2015-01-01

    There is a growing interest to study human dermal exposure to a large number of chemicals, whether in the indoor or outdoor environment. Such studies are essential to predict the systemic exposure to xenobiotic chemicals for risk assessment purposes and to comply with various regulatory guidelines. However, very little is currently known about human dermal exposure to persistent organic pollutants. While recent pharmacokinetic studies have highlighted the importance of dermal contact as a pathway of human exposure to brominated flame retardants, risk assessment studies had to apply assumed values for percutaneous penetration of various flame retardants (FRs) due to complete absence of specific experimental data on their human dermal bioavailability. Therefore, this article discusses the current state-of-knowledge on the significance of dermal contact as a pathway of human exposure to FRs. The available literature on in vivo and in vitro methods for assessment of dermal absorption of FRs in human and laboratory animals is critically reviewed. Finally, a novel approach for studying human dermal absorption of FRs using in vitro three-dimensional (3D) human skin equivalent models is presented and the challenges facing future dermal absorption studies on FRs are highlighted.

  20. Dermal uptake and percutaneous penetration of ten flame retardants in a human skin ex vivo model.

    PubMed

    Frederiksen, Marie; Vorkamp, Katrin; Jensen, Niels Martin; Sørensen, Jens Ahm; Knudsen, Lisbeth E; Sørensen, Lars S; Webster, Thomas F; Nielsen, Jesper B

    2016-11-01

    The dermal uptake and percutaneous penetration of ten organic flame retardants was measured using an ex vivo human skin model. The studied compounds were DBDPE, BTBPE, TBP-DBPE, EH-TBB, BEH-TEBP, α, β and γ-HBCDD as well as syn- and anti-DDC-CO. Little or none of the applied flame retardants was recovered in either type of the receptor fluids used (physiological and worst-case). However, significant fractions were recovered in the skin depot, particularly in the upper skin layers. The primary effect of the worst-case receptor fluid was deeper penetration into the skin. The recovered mass was used to calculate lower- and upper-bound permeability coefficients kp. Despite large structural variation between the studied compounds, a clear, significant decreasing trend of kp was observed with increasing log Kow. The results indicate that the dermis may provide a significant barrier for these highly lipophilic compounds. However, based on our results, dermal uptake should be considered in exposure assessments, though it may proceed in a time-lagged manner compared to less hydrophobic compounds.

  1. Wastewater analysis of Census day samples to investigate per capita input of organophosphorus flame retardants and plasticizers into wastewater.

    PubMed

    O'Brien, Jake W; Thai, Phong K; Brandsma, Sicco H; Leonards, Pim E G; Ort, Christoph; Mueller, Jochen F

    2015-11-01

    The use of organophosphate esters (PFRs) as flame retardants and plasticizers has increased due to the ban of some brominated flame retardants. There is however some concern regarding the toxicity, particularly carcinogenicity and neurotoxicity, of some of the PFRs. In this study we applied wastewater analysis to assess use of PFRs by the Australian population. Influent samples were collected from eleven wastewater treatment plants (STPs) in Australia on Census day and analysed for PFRs using gas chromatography coupled with mass spectrometry (GC-MS). Per capita mass loads of PFRs were calculated using the accurate Census head counts. The results indicate that tris(2-butoxyethyl) phosphate (TBOEP) has the highest per capita input into wastewater followed by tris(2-chloroisopropyl) phosphate (TCIPP), tris(isobutyl) phosphate (TIBP), tris(2-chloroethyl) phosphate (TCEP) and tris(1,3-dichloroisopropyl) phosphate (TDCIPP). Similar PFR profiles were observed across the Australian STPs and a comparison with European and U.S. STPs indicated similar PFR concentrations. We estimate that approximately 2.1 mg person(-1) day(-1) of PFRs are input into Australian wastewater which equates to 16 tonnes per annum.

  2. Polybrominated diphenyl ethers and alternative flame retardants in air and precipitation samples from the northern Lake Victoria region, East Africa.

    PubMed

    Arinaitwe, Kenneth; Muir, Derek C G; Kiremire, Bernard T; Fellin, Phil; Li, Henrik; Teixeira, Camilla

    2014-01-01

    High volume air and precipitation samples were collected close to the shore of Lake Victoria at Entebbe, Uganda, between October 2008 and July 2010 inclusive. Polybrominated diphenyl ethers (PBDEs) and alternative flame retardants (AFRs) were analyzed by GC-MS. BDEs 47, 99, and 209 were the predominant PBDEs with mean concentrations (in air) of 9.84, 4.38, 8.27 pg m(-3) and mean fluxes in precipitation of 3.40, 6.23, and 7.82 ng m(-2) sample(-1), respectively. 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and hexabromocyclododecane (HBCDD), anti- and syn-Dechlorane plus were detected at levels comparable with those of PBDEs. Both PBDEs and AFRs in air generally increased from 2008 to 2010. Elevated PBDE concentrations in air were associated with slow moving low altitude air masses from the region immediately adjacent to the lake, while low concentrations were mostly associated with fast moving westerly and southwesterly air masses. Analysis of the octa- and nona-BDE profiles suggested photolysis and pyrolytic debromination of BDE-209 in the air samples. The highly halogenated and most abundant PBDEs and AFRs in air also predominated in precipitation samples. This is the first study to report flame retardants in high volume air samples and precipitation in Equatorial Africa.

  3. Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European river basins.

    PubMed

    Giulivo, Monica; Capri, Ettore; Kalogianni, Eleni; Milacic, Radmila; Majone, Bruno; Ferrari, Federico; Eljarrat, Ethel; Barceló, Damià

    2017-05-15

    Classic (polybromodiphenyl ethers, PBDEs) and emerging halogenated flame retardants (HFRs) such as decabromodiphenyl ethane (DBDPE) and halogenated norbornenes, as well as organophosphate flame retardants (OPFRs) were analysed in 52 sediments and 27 fish samples from three European river basins, namely the Evrotas (Greece), the Adige (Italy) and the Sava (Slovenia, Croatia, Bosnia and Herzegovina and Serbia). This is the first time that FR levels have been reported in these three European river basins. The highest contamination was found in the Adige and Sava rivers, whereas lower values were obtained for the Evrotas. The levels in sediment samples ranged between 0.25 and 34.0ng/g dw, and between 0.31 and 549ng/g dw, for HFRs and OPFRs respectively. As regards levels in fish, concentrations ranged between 9.32 and 461ng/g lw and between 14.4 and 650ng/g lw, for HFRs and OPFRs, respectively. Thus, whereas OPFR values were higher in sediments, similar concentrations (in the Evrotas) and even lower concentrations than HFRs (Sava) were found for OPFRs in the fish samples, indicating the lower bioaccumulation potential of OPFRs. Biota to sediment accumulation factors (BSAFs) were calculated and higher values were obtained for HFRs compared to those assessed for OPFRs.

  4. Brominated flame retardants in the surrounding soil of two manufacturing plants in China: Occurrence, composition profiles and spatial distribution.

    PubMed

    Li, Wen-Long; Liu, Li-Yan; Zhang, Zi-Feng; Song, Wei-Wei; Huo, Chun-Yan; Qiao, Li-Na; Ma, Wan-Li; Li, Yi-Fan

    2016-06-01

    Surface soil samples were collected surrounding two brominated flame retardants (BFRs) manufacturing plants in China in August 2014 and analyzed for 23 polybrominated diphenyl ethers (PBDEs) and 8 novel brominated flame retardants (NBFRs). BDE209 and decabromodiphenylethane (DBDPE) were the predominant compounds in soil with the median levels of 1600 and 560 ng/g dw, respectively. The PBDEs profiles in soil samples were consistent with that of commercial product (comDecaBDE). The percentage contributions to total PBDEs decreased from higher to lower brominated homologues. Lower concentrations of NBFRs (excluding DBDPE) were detected in soil surrounding the two plants, suggesting they are byproducts or degradation products of the manufacturing activities. The concentrations of most BFRs dropped exponentially within 3-5 km of the manufacturing plants, suggesting recent deposition of these compounds to the soil. Directional distribution indicated that PBDEs and DBDPE concentrations were highest in the north direction of Plants 1. Three-day air parcel forward trajectories confirmed that the air parcel was responsible for the higher concentration of BFRs in the soil of north direction of the plant.

  5. Transcriptomic and metabolomic approaches to investigate the molecular responses of human cell lines exposed to the flame retardant hexabromocyclododecane (HBCD).

    PubMed

    Zhang, Jinkang; Williams, Timothy D; Abdallah, Mohamed Abou-Elwafa; Harrad, Stuart; Chipman, James K; Viant, Mark R

    2015-12-01

    The potential for human exposure to the brominated flame retardant, hexabromocyclododecane (HBCD) has given rise to health concerns, yet there is relatively limited knowledge about its possible toxic effects and the underlying molecular mechanisms that may mediate any impacts on health. In this study, unbiased transcriptomic and metabolomic approaches were employed to investigate the potential molecular changes that could lead to the toxicity of HBCD under concentrations relevant to human exposure conditions using in vitro models. A concentration-dependent cytotoxic effect of HBCD to A549 and HepG2/C3A cells was observed based on MTT assays or CCK-8 assays with EC50 values of 27.4 μM and 63.0 μM, respectively. Microarray-based transcriptomics and mass spectrometry-based metabolomics revealed few molecular changes in A549 cells or HepG2/C3A cells following a 24-hour exposure to several sub-lethal concentrations (2 to 4000 nM) of HBCD. Quantification of the level of HBCD in the HepG2/C3A exposed cells suggested that the flame retardant was present at concentrations several orders of magnitude higher than those reported to occur in human tissues. We conclude that at the concentrations known to be achievable following exposure in humans, HBCD exhibits no detectable acute toxicity in A549 cells, representative of the lung, or in HepG2/C3A cells, that are hepatocytes with some xenobiotic metabolic capacity.

  6. Novel chemical synthesis and characterization of copper pyrovanadate nanoparticles and its influence on the flame retardancy of polymeric nanocomposites

    PubMed Central

    Ghiyasiyan-Arani, Maryam; Masjedi-Arani, Maryam; Ghanbari, Davood; Bagheri, Samira; Salavati-Niasari, Masoud

    2016-01-01

    In this work, copper pyrovanadate (Cu3V2O7(OH)2(H2O)2) nanoparticles have been synthesized by a simple and rapid chemical precipitation method. Different copper-organic complexes were used to control the size and morphology of products. The morphology and structure of the as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectrum, electron dispersive X-ray spectroscopy (EDX), thermal gravimetric analysis (TGA), differential thermal analysis (DTA) and photoluminescence (PL) spectroscopy. The influence of copper pyrovanadate nanostructures on the flame retardancy of the polystyrene, poly vinyl alcohol and cellulose acetate was studied. Dispersed nanoparticles play the role of a magnetic barrier layer, which slows down product volatilization and prevents the flame and oxygen from the sample during decomposition of the polymer. Cu3V2O7(OH)2(H2O)2 is converted to Cu3V2O8 with an endothermic reaction which simultaneously releases water and decrease the temperature of the flame region. PMID:27143312

  7. Novel chemical synthesis and characterization of copper pyrovanadate nanoparticles and its influence on the flame retardancy of polymeric nanocomposites

    NASA Astrophysics Data System (ADS)

    Ghiyasiyan-Arani, Maryam; Masjedi-Arani, Maryam; Ghanbari, Davood; Bagheri, Samira; Salavati-Niasari, Masoud

    2016-05-01

    In this work, copper pyrovanadate (Cu3V2O7(OH)2(H2O)2) nanoparticles have been synthesized by a simple and rapid chemical precipitation method. Different copper-organic complexes were used to control the size and morphology of products. The morphology and structure of the as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectrum, electron dispersive X-ray spectroscopy (EDX), thermal gravimetric analysis (TGA), differential thermal analysis (DTA) and photoluminescence (PL) spectroscopy. The influence of copper pyrovanadate nanostructures on the flame retardancy of the polystyrene, poly vinyl alcohol and cellulose acetate was studied. Dispersed nanoparticles play the role of a magnetic barrier layer, which slows down product volatilization and prevents the flame and oxygen from the sample during decomposition of the polymer. Cu3V2O7(OH)2(H2O)2 is converted to Cu3V2O8 with an endothermic reaction which simultaneously releases water and decrease the temperature of the flame region.

  8. Effects of the brominated flame retardant TBCO on fecundity and profiles of transcripts of the HPGL-axis in Japanese medaka.

    PubMed

    Saunders, David M V; Podaima, Michelle; Wiseman, Steve; Giesy, John P

    2015-03-01

    The novel brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO) is an additive flame retardant which is marketed under the trade name Saytex BCL-48. TBCO has recently been investigated as a potential alternative to the major use brominated flame retardant, hexabromocyclododecane (HBCD), which could have major implications for significant increases in amounts of TBCO used. Yet there is a lack of information regarding potential toxicities of TBCO. Recently, results of in vitro experiments have demonstrated the potential of TBCO to modulate endocrine function through interaction with estrogen and androgen receptors and via alterations to the synthesis of 17-β-estradiol and testosterone. Further research is required to determine potential endocrine disrupting effects of TBCO in vivo. In this experiment a 21-day fecundity assay with Japanese medaka (Oryzias latipes) was conducted to examine endocrine disrupting effects of TBCO in vivo. Medaka were fed a diet containing either 607 or 58μg TBCO/g food, wet mass (wm). Fecundity, measured as cumulative deposition of eggs and fertilization of eggs, as well as abundances of transcripts of 34 genes along the hypothalamus-pituitary-gonadal-liver (HPGL) axis were measured as indicators of holistic endocrine disruption and to determine mechanisms of effects, respectively. Cumulative fecundity was 18% lesser by medaka exposed to 58μg TBCO/g, wm food. However, fecundity of medaka exposed to 607μg TBCO/g, wm food was not significantly different from that of controls. Organ-specific and dose-dependent alterations to abundances of transcripts were observed in male and female medaka. A pattern of down-regulation of expression of genes involved in steroidogenesis, metabolism of cholesterol, and regulatory feedback mechanisms was observed in gonads from male and female medaka which had been exposed to the greater concentration of TBCO. However, these effects on expression of genes were not manifested in effects on

  9. Investigating A Novel Flame Retardant Known as V6: Measurements in Baby Products, House Dust and Car Dust

    PubMed Central

    Fang, Mingliang; Webster, Thomas F.; Gooden, David; Cooper, Ellen M.; McClean, Michael D.; Carignan, Courtney; Makey, Colleen; Stapleton, Heather M.

    2013-01-01

    With the phase-out of polybrominated diphenyl ether (PBDE) flame retardants, the use of new and alternate flame retardants has been increasing. 2,2-bis(chloromethyl)propane-1,3-diyltetrakis(2-chloroethyl) bisphosphate, known as V6, is a flame retardant applied to polyurethane foam commonly found in furniture and automobile foam. However, to the authors’ knowledge, no research has been conducted on V6 levels in the environment. The intention of this study was to measure the concentration of V6 in foam collected from baby products where it was recently detected, and measure levels in dust samples collected from homes and automobiles in the Boston, MA area. To accomplish this a pure V6 commercial standard was purchased from a Chinese manufacturer and purified (> 98%). An analytical method to measure V6 in dust samples using liquid chromatography tandem mass spectrometry (LC/MS-MS) was developed. Extraction was conducted using Accelerated Solvent Extraction (ASE) and extracts were purified using an ENVI-Florisil SPE column (500 mg, 3mL). V6 was measured in foam samples collected from baby products with a concentration ranging from 24,500,000 to 59,500,000 ng/g of foam (n = 12, average ± sd: 46,500,000 ± 12,000,000 ng/g; i.e., on average, 4.6 % of the foam mass was V6). V6 was also detected in 19 of 20 car dust samples and 14 of 20 house dust samples analyzed. The concentration of V6 in the house dust ranged from < 5 ng/g to 1,110 ng/g with a median of 12.5 ng/g, and < 5 ng/g to 6,160 ng/g in the car dust with a median of 103.0 ng/g. Concentrations in car dust were significantly higher than the house dust, potentially indicating higher use of V6 in automobiles compared to products found in the home. Furthermore, tris (2-chloroethyl) phosphate (TCEP), a known carcinogen, was found in the V6 commercial mixture (14% by weight) as an impurity and was consistently detected with V6 in the foam samples analyzed. A significant correlation was also observed between V6 and

  10. Investigating a novel flame retardant known as V6: measurements in baby products, house dust, and car dust.

    PubMed

    Fang, Mingliang; Webster, Thomas F; Gooden, David; Cooper, Ellen M; McClean, Michael D; Carignan, Courtney; Makey, Colleen; Stapleton, Heather M

    2013-05-07

    With the phase-out of polybrominated diphenyl ether (PBDE) flame retardants, the use of new and alternate flame retardants has been increasing. 2,2-bis(chloromethyl)propane-1,3-diyltetrakis(2-chloroethyl) bisphosphate, known as V6, is a flame retardant applied to polyurethane foam commonly found in furniture and automobile foam. However, to the authors' knowledge, no research has been conducted on V6 levels in the environment. The intention of this study was to measure the concentration of V6 in foam collected from baby products where it was recently detected and measure levels in dust samples collected from homes and automobiles in the Boston, MA area. To accomplish this, a pure V6 commercial standard was purchased from a Chinese manufacturer and purified (>98%). An analytical method to measure V6 in dust samples using liquid chromatography tandem mass spectrometry (LC/MS-MS) was developed. Extraction was conducted using accelerated solvent extraction (ASE) and extracts were purified using an ENVI-Florisil SPE column (500 mg, 3 mL). V6 was measured in foam samples collected from baby products with a concentration ranging from 24,500,000 to 59,500,000 ng/g of foam (n = 12, average ± sd: 46,500,000 ± 12,000,000 ng/g; i.e., on average, 4.6% of the foam mass was V6). V6 was also detected in 19 of 20 car dust samples and 14 of 20 house dust samples analyzed. The concentration of V6 in the house dust ranged from <5 ng/g to 1110 ng/g with a median of 12.5 ng/g, and <5 ng/g to 6160 ng/g in the car dust with a median of 103.0 ng/g. Concentrations in car dust were significantly higher than in the house dust potentially indicating higher use of V6 in automobiles compared to products found in the home. Furthermore, tris (2-chloroethyl) phosphate (TCEP), a known carcinogen, was found in the V6 commercial mixture (14% by weight) as an impurity and was consistently detected with V6 in the foam samples analyzed. A significant correlation was also observed between V6 and TCEP in

  11. Evaluating the Bioaccessibility of Flame Retardants in House Dust Using an In Vitro Tenax Bead-Assisted Sorptive Physiologically Based Method

    PubMed Central

    2015-01-01

    Exposure to house dust is a significant source of exposure to flame retardant chemicals (FRs), particularly in the US. Given the high exposure there is a need to understand the bioaccessibility of FRs from dust. In this study, Tenax beads (TA) encapsulated within a stainless steel insert were used as an adsorption sink to estimate the dynamic absorption of a suite of FRs commonly detected in indoor dust samples (n = 17), and from a few polyurethane foam samples for comparison. Organophosphate flame retardants (OPFRs) had the highest estimated bioaccessibility (∼80%) compared to brominated compounds (e.g., PBDEs), and values generally decreased with increasing Log Kow, with <30% bioaccessibility measured for BDE209. These measurements were in very close agreement with reported PBDE bioavailability measures from an in vivo rat exposure study using indoor dust. The bioaccessibility of very hydrophobic FRs (Log Kow > 6) in foam was much less than that in house dust, and increasing bioaccessibility was observed with decreasing particle size. In addition, we examined the stability of more labile FRs containing ester groups (e.g., OPFRs and 2-ethylhexyl-tetrabromo-benzoate (EH-TBB)) in a mock-digestive fluid matrix. No significant changes in the OPFR concentrations were observed in this fluid; however, EH-TBB was found to readily hydrolyze to tetrabromobenzoic acid (TBBA) in the intestinal fluid in the presence of lipases. In conclusion, our study demonstrates that the bioaccessibility and stability of FRs following ingestion varies by chemical and sample matrix and thus should be considered in exposure assessments. PMID:25330458

  12. Development and validation of a multi-residue method for the analysis of brominated and organophosphate flame retardants in indoor dust.

    PubMed

    He, Chang; Wang, Xianyu; Thai, Phong; Mueller, Jochen F; Gallen, Christie; Li, Yan; Baduel, Christine

    2017-03-01

    Flame retardants are associated to numerous adverse health effects, can accumulate in humans and have been used intensively worldwide. Recently, dust has been identified as a major human exposure route for flame retardants. The aim of this study was to develop a multi-residue method using a two-step SPE purification. It enabled us to effectively limit co-extracted matrix/interferets and therefore a simultaneous analysis of brominated and organophosphate flame retardants for indoor dust was achieved. The optimized method was validated according to standard protocol and achieved good accuracy and reproducibility (percent error ranged from -29% to 28%). Standard Reference Material (SRM) for dust was also analysed, and good agreement was found with reported brominated and organophosphate flame retardants (OPFRs) concentrations. The applicability of the validated method was demonstrated by the analysis of ten indoor dust samples from ten Australian homes. Overall 89% of the analytes were detected in these samples. The average concentrations of ∑OPFRs and ∑PBDEs in those samples were 41 and 3.6μg/g, respectively. Tris(2-butoxyethyl) phosphate and tris(2-chloroisopropyl) phosphate were the most abundant OPFRs, accounting for 57-92% ∑OPFRs, while decabromodiphenyl ether dominated the Polybrominated diphenyl ethers (PBDE) congeners contributing between 71-94% to the ∑PBDEs.

  13. Species-specific accumulation of polybrominated diphenyl ethers (PBDEs) and other emerging flame retardants in several species of birds from Korea.

    PubMed

    Jin, Xiangzi; Lee, Sunggyu; Jeong, Yunsun; Yu, Jae-Pyoung; Baek, Woon Kee; Shin, Kyung-Hoon; Kannan, Kurunthachalam; Moon, Hyo-Bang

    2016-12-01

    Few studies have been conducted on the alternatives to legacy flame retardants in avian species worldwide. In this study, polybrominated diphenyl ethers (PBDEs) and alternative flame retardants such as novel brominated flame retardants (NBFRs) and dechlorane plus (DP) were determined in livers of 10 species of birds from Korea to elucidate species-specific accumulation, biological factors that affect accumulation, and bioaccumulation potentials of these contaminants. Among the emerging alternative flame retardants, the highest occurrence was found for bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEHTBP), syn-DP, anti-DP, and decabromodiphenyl ethane (DBDPE). PBDE concentrations (median: 17.1 ng/g lipid wt) measured in our study were within the ranges reported in previous studies, while the concentrations of BEHTBP, BTBPE and DP were greater than those reported earlier. Residential predatory birds showed significantly greater concentrations of PBDEs and NBFRs than migratory predators and passerine birds. The concentrations of PBDEs, BEHTBP, and DP in residential predatory birds were significantly correlated with increasing stable nitrogen isotope ratio (δ(15)N), which indicated biomagnification potentials of these contaminants. Our results suggest that the concentrations and accumulation patterns of PBDEs, NBFRs, and DP depend on the feeding habits and migration patterns of avian species. This is the first report on the accumulation of emerging alternatives to PBDEs in birds from Korea.

  14. The GhTT2_A07 gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some naturally-coloured brown cotton fibres from accessions of Gossypium hirsutum can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fibre loci have been identified and mapped to chromosomes, but the underlying genes have yet to be identified, and the mechan...