Sample records for additive genetic component

  1. Additive and non-additive genetic components of the jack male life history in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Forest, Adriana R; Semeniuk, Christina A D; Heath, Daniel D; Pitcher, Trevor E

    2016-08-01

    Chinook salmon, Oncorhynchus tshawytscha, exhibit alternative reproductive tactics (ARTs) where males exist in two phenotypes: large "hooknose" males and smaller "jacks" that reach sexual maturity after only 1 year in seawater. The mechanisms that determine "jacking rate"-the rate at which males precociously sexually mature-are known to involve both genetics and differential growth rates, where individuals that become jacks exhibit higher growth earlier in life. The additive genetic components have been studied and it is known that jack sires produce significantly more jack offspring than hooknose sires, and vice versa. The current study was the first to investigate both additive and non-additive genetic components underlying jacking through the use of a full-factorial breeding design using all hooknose sires. The effect of dams and sires descendant from a marker-assisted broodstock program that identified "high performance" and "low performance" lines using growth- and survival-related gene markers was also studied. Finally, the relative growth of jack, hooknose, and female offspring was examined. No significant dam, sire, or interaction effects were observed in this study, and the maternal, additive, and non-additive components underlying jacking were small. Differences in jacking rates in this study were determined by dam performance line, where dams that originated from the low performance line produced significantly more jacks. Jack offspring in this study had a significantly larger body size than both hooknose males and females starting 1 year post-fertilization. This study provides novel information regarding the genetic architecture underlying ARTs in Chinook salmon that could have implications for the aquaculture industry, where jacks are not favoured due to their small body size and poor flesh quality.

  2. Analysis of conditional genetic effects and variance components in developmental genetics.

    PubMed

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  3. Analysis of Conditional Genetic Effects and Variance Components in Developmental Genetics

    PubMed Central

    Zhu, J.

    1995-01-01

    A genetic model with additive-dominance effects and genotype X environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t - 1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects. PMID:8601500

  4. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers

    PubMed Central

    Su, Guosheng; Christensen, Ole F.; Ostersen, Tage; Henryon, Mark; Lund, Mogens S.

    2012-01-01

    Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions. PMID:23028912

  5. The genetics of East African populations: a Nilo-Saharan component in the African genetic landscape

    PubMed Central

    Dobon, Begoña; Hassan, Hisham Y.; Laayouni, Hafid; Luisi, Pierre; Ricaño-Ponce, Isis; Zhernakova, Alexandra; Wijmenga, Cisca; Tahir, Hanan; Comas, David; Netea, Mihai G.; Bertranpetit, Jaume

    2015-01-01

    East Africa is a strategic region to study human genetic diversity due to the presence of ethnically, linguistically, and geographically diverse populations. Here, we provide new insight into the genetic history of populations living in the Sudanese region of East Africa by analysing nine ethnic groups belonging to three African linguistic families: Niger-Kordofanian, Nilo-Saharan and Afro-Asiatic. A total of 500 individuals were genotyped for 200,000 single-nucleotide polymorphisms. Principal component analysis, clustering analysis using ADMIXTURE, FST statistics, and the three-population test were used to investigate the underlying genetic structure and ancestry of the different ethno-linguistic groups. Our analyses revealed a genetic component for Sudanese Nilo-Saharan speaking groups (Darfurians and part of Nuba populations) related to Nilotes of South Sudan, but not to other Sudanese populations or other sub-Saharan populations. Populations inhabiting the North of the region showed close genetic affinities with North Africa, with a component that could be remnant of North Africans before the migrations of Arabs from Arabia. In addition, we found very low genetic distances between populations in genes important for anti-malarial and anti-bacterial host defence, suggesting similar selective pressures on these genes and stressing the importance of considering functional pathways to understand the evolutionary history of populations. PMID:26017457

  6. Genetic covariance between components of male reproductive success: within-pair vs. extra-pair paternity in song sparrows

    PubMed Central

    Reid, J M; Arcese, P; Losdat, S

    2014-01-01

    The evolutionary trajectories of reproductive systems, including both male and female multiple mating and hence polygyny and polyandry, are expected to depend on the additive genetic variances and covariances in and among components of male reproductive success achieved through different reproductive tactics. However, genetic covariances among key components of male reproductive success have not been estimated in wild populations. We used comprehensive paternity data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) to estimate additive genetic variance and covariance in the total number of offspring a male sired per year outside his social pairings (i.e. his total extra-pair reproductive success achieved through multiple mating) and his liability to sire offspring produced by his socially paired female (i.e. his success in defending within-pair paternity). Both components of male fitness showed nonzero additive genetic variance, and the estimated genetic covariance was positive, implying that males with high additive genetic value for extra-pair reproduction also have high additive genetic propensity to sire their socially paired female's offspring. There was consequently no evidence of a genetic or phenotypic trade-off between male within-pair paternity success and extra-pair reproductive success. Such positive genetic covariance might be expected to facilitate ongoing evolution of polygyny and could also shape the ongoing evolution of polyandry through indirect selection. PMID:25186454

  7. Additive genetic variation and evolvability of a multivariate trait can be increased by epistatic gene action.

    PubMed

    Griswold, Cortland K

    2015-12-21

    Epistatic gene action occurs when mutations or alleles interact to produce a phenotype. Theoretically and empirically it is of interest to know whether gene interactions can facilitate the evolution of diversity. In this paper, we explore how epistatic gene action affects the additive genetic component or heritable component of multivariate trait variation, as well as how epistatic gene action affects the evolvability of multivariate traits. The analysis involves a sexually reproducing and recombining population. Our results indicate that under stabilizing selection conditions a population with a mixed additive and epistatic genetic architecture can have greater multivariate additive genetic variation and evolvability than a population with a purely additive genetic architecture. That greater multivariate additive genetic variation can occur with epistasis is in contrast to previous theory that indicated univariate additive genetic variation is decreased with epistasis under stabilizing selection conditions. In a multivariate setting, epistasis leads to less relative covariance among individuals in their genotypic, as well as their breeding values, which facilitates the maintenance of additive genetic variation and increases a population׳s evolvability. Our analysis involves linking the combinatorial nature of epistatic genetic effects to the ancestral graph structure of a population to provide insight into the consequences of epistasis on multivariate trait variation and evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Additive manufacturing of optical components

    NASA Astrophysics Data System (ADS)

    Heinrich, Andreas; Rank, Manuel; Maillard, Philippe; Suckow, Anne; Bauckhage, Yannick; Rößler, Patrick; Lang, Johannes; Shariff, Fatin; Pekrul, Sven

    2016-08-01

    The development of additive manufacturing methods has enlarged rapidly in recent years. Thereby, the work mainly focuses on the realization of mechanical components, but the additive manufacturing technology offers a high potential in the field of optics as well. Owing to new design possibilities, completely new solutions are possible. This article briefly reviews and compares the most important additive manufacturing methods for polymer optics. Additionally, it points out the characteristics of additive manufactured polymer optics. Thereby, surface quality is of crucial importance. In order to improve it, appropriate post-processing steps are necessary (e.g. robot polishing or coating), which will be discussed. An essential part of this paper deals with various additive manufactured optical components and their use, especially in optical systems for shape metrology (e.g. borehole sensor, tilt sensor, freeform surface sensor, fisheye lens). The examples should demonstrate the potentials and limitations of optical components produced by additive manufacturing.

  9. Including non-additive genetic effects in Bayesian methods for the prediction of genetic values based on genome-wide markers

    PubMed Central

    2011-01-01

    Background Molecular marker information is a common source to draw inferences about the relationship between genetic and phenotypic variation. Genetic effects are often modelled as additively acting marker allele effects. The true mode of biological action can, of course, be different from this plain assumption. One possibility to better understand the genetic architecture of complex traits is to include intra-locus (dominance) and inter-locus (epistasis) interaction of alleles as well as the additive genetic effects when fitting a model to a trait. Several Bayesian MCMC approaches exist for the genome-wide estimation of genetic effects with high accuracy of genetic value prediction. Including pairwise interaction for thousands of loci would probably go beyond the scope of such a sampling algorithm because then millions of effects are to be estimated simultaneously leading to months of computation time. Alternative solving strategies are required when epistasis is studied. Methods We extended a fast Bayesian method (fBayesB), which was previously proposed for a purely additive model, to include non-additive effects. The fBayesB approach was used to estimate genetic effects on the basis of simulated datasets. Different scenarios were simulated to study the loss of accuracy of prediction, if epistatic effects were not simulated but modelled and vice versa. Results If 23 QTL were simulated to cause additive and dominance effects, both fBayesB and a conventional MCMC sampler BayesB yielded similar results in terms of accuracy of genetic value prediction and bias of variance component estimation based on a model including additive and dominance effects. Applying fBayesB to data with epistasis, accuracy could be improved by 5% when all pairwise interactions were modelled as well. The accuracy decreased more than 20% if genetic variation was spread over 230 QTL. In this scenario, accuracy based on modelling only additive and dominance effects was generally superior to

  10. Tendon and ligament injuries: the genetic component

    PubMed Central

    September, Alison V; Schwellnus, Martin P; Collins, Malcolm

    2007-01-01

    Tendons and ligaments within the upper and lower limbs are some of the more common sites of musculoskeletal injuries during physical activity. Several extrinsic and intrinsic factors have been shown to be associated with these injuries. More recently, studies have suggested that there is also, at least in part, a genetic component to the Achilles tendon, rotator cuff and anterior cruciate ligament injuries. However, specific genes have not been suggested to be associated with rotator cuff or anterior cruciate ligament injuries. Sequence variants of the tenascin C (TNC) gene, on the other hand, have been shown to be associated with Achilles tendinopathies and Achilles tendon ruptures, whereas a variant of the collagen V α 1 (COL5A1) gene has also been shown to be associated with Achilles tendinopathies. Both genes encode for important structural components of tendons and ligaments. The COL5A1 gene encodes for a component of type V collagen, which has an important role in regulating collagen fibre assembly and fibre diameters. The TNC gene, on the other hand, encodes for TNC, which regulates the tissue's response to mechanical load. To date, only variants in two genes have been shown to be associated with Achilles tendon injuries. In addition, although specific genes have not been identified, investigators have suggested that there is also a genetic component to both rotator cuff and anterior cruciate ligament injuries. In future, specific genotypes associated with increased risk of injury to specific tendons and ligaments can prevent these injuries by identifying individuals at higher risk. PMID:17261551

  11. Evaluation of non-additive genetic variation in feed-related traits of broiler chickens.

    PubMed

    Li, Y; Hawken, R; Sapp, R; George, A; Lehnert, S A; Henshall, J M; Reverter, A

    2017-03-01

    Genome-wide association mapping and genomic predictions of phenotype of individuals in livestock are predominately based on the detection and estimation of additive genetic effects. Non-additive genetic effects are largely ignored. Studies in animals, plants, and humans to assess the impact of non-additive genetic effects in genetic analyses have led to differing conclusions. In this paper, we examined the consequences of including non-additive genetic effects in genome-wide association mapping and genomic prediction of total genetic values in a commercial population of 5,658 broiler chickens genotyped for 45,176 single nucleotide polymorphism (SNP) markers. We employed mixed-model equations and restricted maximum likelihood to analyze 7 feed related traits (TRT1 - TRT7). Dominance variance accounted for a significant proportion of the total genetic variance in all 7 traits, ranging from 29.5% for TRT1 to 58.4% for TRT7. Using a 5-fold cross-validation schema, we found that in spite of the large dominance component, including the estimated dominance effects in the prediction of total genetic values did not improve the accuracy of the predictions for any of the phenotypes. We offer some possible explanations for this counter-intuitive result including the possible confounding of dominance deviations with common environmental effects such as hatch, different directional effects of SNP additive and dominance variations, and the gene-gene interactions' failure to contribute to the level of variance. © 2016 Poultry Science Association Inc.

  12. Additive Manufacturing of Aerospace Propulsion Components

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  13. Unnatural reactive amino acid genetic code additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  14. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  15. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander [La Jolla, CA; Cropp, T Ashton [San Diego, CA; Chin, Jason W [Cambridge, GB; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2011-02-15

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  16. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  17. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander [La Jolla, CA; Cropp, T Ashton [Bethesda, MD; Chin, Jason W [Cambridge, GB; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2011-08-09

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNAsyn-thetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  18. FEMALE AND MALE GENETIC EFFECTS ON OFFSPRING PATERNITY: ADDITIVE GENETIC (CO)VARIANCES IN FEMALE EXTRA-PAIR REPRODUCTION AND MALE PATERNITY SUCCESS IN SONG SPARROWS (MELOSPIZA MELODIA)

    PubMed Central

    Reid, Jane M; Arcese, Peter; Keller, Lukas F; Losdat, Sylvain

    2014-01-01

    Ongoing evolution of polyandry, and consequent extra-pair reproduction in socially monogamous systems, is hypothesized to be facilitated by indirect selection stemming from cross-sex genetic covariances with components of male fitness. Specifically, polyandry is hypothesized to create positive genetic covariance with male paternity success due to inevitable assortative reproduction, driving ongoing coevolution. However, it remains unclear whether such covariances could or do emerge within complex polyandrous systems. First, we illustrate that genetic covariances between female extra-pair reproduction and male within-pair paternity success might be constrained in socially monogamous systems where female and male additive genetic effects can have opposing impacts on the paternity of jointly reared offspring. Second, we demonstrate nonzero additive genetic variance in female liability for extra-pair reproduction and male liability for within-pair paternity success, modeled as direct and associative genetic effects on offspring paternity, respectively, in free-living song sparrows (Melospiza melodia). The posterior mean additive genetic covariance between these liabilities was slightly positive, but the credible interval was wide and overlapped zero. Therefore, although substantial total additive genetic variance exists, the hypothesis that ongoing evolution of female extra-pair reproduction is facilitated by genetic covariance with male within-pair paternity success cannot yet be definitively supported or rejected either conceptually or empirically. PMID:24724612

  19. Evidence for a genetic component in familial sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybicki, B.A.; Harrington, D.; Major, M.

    1994-09-01

    Sarcoidosis is a disease with reported familial clustering, but a putative hereditary component has not been established. We analyzed 33 sarcoid index cases with a positive family history and their 596 1st and 2nd degree relatives to determine if the distribution of disease was consistent with a genetic etiology. Prevalence of sarcoidosis was twice as high in 1st degree relatives of index cases compared to 2nd degree relatives (8.5% vs. 3.9%; p=0.016). Recurrence risk ratios (defined as the risk of disease in relatives divided by the population prevalence) were calculated in 2nd degree relatives after making an ascertainment correction. Amore » single gene model fit the observed results better than a polygenic model for a range of sarcoidosis prevalance. A greater shared environment among siblings compared to parents and offspring did not appear to increase risk of sarcoidosis based on a higher prevalance of disease in the latter (7.1% vs. 10.7%; p=0.313). However, the age of diagnosis in affected parent-offspring pairs was more consistent with a combined genetic and environmental etiology than either component alone. In summary, these results suggest a genetic component, possibly a single gene, increases disease risk in family members of sarcoidosis cases. A segregation analysis is planned to more thoroughly evaluate the evidence for both genetic and non-genetic transmission of sarcoidosis in these families.« less

  20. Genetic Evaluation of Dual-Purpose Buffaloes (Bubalus bubalis) in Colombia Using Principal Component Analysis

    PubMed Central

    Agudelo-Gómez, Divier; Pineda-Sierra, Sebastian; Cerón-Muñoz, Mario Fernando

    2015-01-01

    Genealogy and productive information of 48621 dual-purpose buffaloes born in Colombia between years 1996 and 2014 was used. The following traits were assessed using one-trait models: milk yield at 270 days (MY270), age at first calving (AFC), weaning weight (WW), and weights at the following ages: first year (W12), 18 months (W18), and 2 years (W24). Direct additive genetic and residual random effects were included in all the traits. Maternal permanent environmental and maternal additive genetic effects were included for WW and W12. The fixed effects were: contemporary group (for all traits), sex (for WW, W12, W18, and W24), parity (for WW, W12, and MY270). Age was included as covariate for WW, W12, W18 and W24. Principal component analysis (PCA) was conducted using the genetic values of 133 breeding males whose breeding-value reliability was higher than 50% for all the traits in order to define the number of principal components (PC) which would explain most of the variation. The highest heritabilities were for W18 and MY270, and the lowest for AFC; with 0.53, 0.23, and 0.17, respectively. The first three PCs represented 66% of the total variance. Correlation of the first PC with meat production traits was higher than 0.73, and it was -0.38 with AFC. Correlations of the second PC with maternal genetic component traits for WW and W12 were above 0.75. The third PC had 0.84 correlation with MY270. PCA is an alternative approach for analyzing traits in dual-purpose buffaloes and reduces the dimension of the traits. PMID:26230093

  1. Female and male genetic effects on offspring paternity: additive genetic (co)variances in female extra-pair reproduction and male paternity success in song sparrows (Melospiza melodia).

    PubMed

    Reid, Jane M; Arcese, Peter; Keller, Lukas F; Losdat, Sylvain

    2014-08-01

    Ongoing evolution of polyandry, and consequent extra-pair reproduction in socially monogamous systems, is hypothesized to be facilitated by indirect selection stemming from cross-sex genetic covariances with components of male fitness. Specifically, polyandry is hypothesized to create positive genetic covariance with male paternity success due to inevitable assortative reproduction, driving ongoing coevolution. However, it remains unclear whether such covariances could or do emerge within complex polyandrous systems. First, we illustrate that genetic covariances between female extra-pair reproduction and male within-pair paternity success might be constrained in socially monogamous systems where female and male additive genetic effects can have opposing impacts on the paternity of jointly reared offspring. Second, we demonstrate nonzero additive genetic variance in female liability for extra-pair reproduction and male liability for within-pair paternity success, modeled as direct and associative genetic effects on offspring paternity, respectively, in free-living song sparrows (Melospiza melodia). The posterior mean additive genetic covariance between these liabilities was slightly positive, but the credible interval was wide and overlapped zero. Therefore, although substantial total additive genetic variance exists, the hypothesis that ongoing evolution of female extra-pair reproduction is facilitated by genetic covariance with male within-pair paternity success cannot yet be definitively supported or rejected either conceptually or empirically. © 2014 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  2. Glioblastoma with an oligodendroglioma component: distinct clinical behavior, genetic alterations, and outcome.

    PubMed

    Wang, Yongzhi; Li, Shouwei; Chen, Lingchao; You, Gan; Bao, Zhaoshi; Yan, Wei; Shi, Zhendong; Chen, Yin; Yao, Kun; Zhang, Wei; Kang, Chunsheng; Jiang, Tao

    2012-04-01

    Glioblastomas (GBMs) containing foci that resemble oligodendroglioma are defined as GBM with oligodendroglioma component (GBMO). However, whether GBMO is a distinct clinicopathological variant of GBM or merely represents a divergent pattern of differentiation remains controversial. We investigated 219 consecutive primary GBMs, of which 40 (18.3%) were confirmed as GBMOs. The clinical features and genetic profiles of the GBMOs were analyzed and compared with the conventional GBMs. The GBMO group showed more frequent tumor-related seizures (P= .027), higher frequency of IDH1 mutation (31% vs. <5%, P= .015), lower MGMT expression (P= .016), and longer survival (19.0 vs. 13.2 months; P= .022). In multivariate Cox regression analyses, presence of an oligodendroglioma component was predictive of longer survival (P= .001), but the extent of the oligodendroglial component appeared not to be linked to prognosis (P= .664). The codeletions of 1p/19q, somewhat surprisingly, were infrequent (<5%) in both GBMO and conventional GBM. In addition, the response to aggressive therapy differed: the GBMO group had no survival advantage associated with aggressive treatment protocols, whereas a clear treatment effect was observed in the conventional GBM group. Collectively, the clinical behavior and genetic alterations of GBMO thus differs from those of conventional GBM. Presence of an oligodendroglial component may therefore be a useful classification and stratification variable in therapeutic trials of GBMs.

  3. Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices

    PubMed Central

    Meyer, Karin; Kirkpatrick, Mark

    2005-01-01

    Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566

  4. Unraveling additive from nonadditive effects using genomic relationship matrices.

    PubMed

    Muñoz, Patricio R; Resende, Marcio F R; Gezan, Salvador A; Resende, Marcos Deon Vilela; de Los Campos, Gustavo; Kirst, Matias; Huber, Dudley; Peter, Gary F

    2014-12-01

    The application of quantitative genetics in plant and animal breeding has largely focused on additive models, which may also capture dominance and epistatic effects. Partitioning genetic variance into its additive and nonadditive components using pedigree-based models (P-genomic best linear unbiased predictor) (P-BLUP) is difficult with most commonly available family structures. However, the availability of dense panels of molecular markers makes possible the use of additive- and dominance-realized genomic relationships for the estimation of variance components and the prediction of genetic values (G-BLUP). We evaluated height data from a multifamily population of the tree species Pinus taeda with a systematic series of models accounting for additive, dominance, and first-order epistatic interactions (additive by additive, dominance by dominance, and additive by dominance), using either pedigree- or marker-based information. We show that, compared with the pedigree, use of realized genomic relationships in marker-based models yields a substantially more precise separation of additive and nonadditive components of genetic variance. We conclude that the marker-based relationship matrices in a model including additive and nonadditive effects performed better, improving breeding value prediction. Moreover, our results suggest that, for tree height in this population, the additive and nonadditive components of genetic variance are similar in magnitude. This novel result improves our current understanding of the genetic control and architecture of a quantitative trait and should be considered when developing breeding strategies. Copyright © 2014 by the Genetics Society of America.

  5. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments

    PubMed Central

    Kumar, Satish; Molloy, Claire; Muñoz, Patricio; Daetwyler, Hans; Chagné, David; Volz, Richard

    2015-01-01

    The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions using genomic best linear unbiased prediction models with or without including nonadditive genetic effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites, and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dominance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance (heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of GEGV. Between-site genotypic correlations were high (>0.85) for all traits, and genotype-site interaction accounted for <10% of the phenotypic variability. The accuracy of prediction, when the validation set was present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the training and validation families. PMID:26497141

  6. Genetic component of flammability variation in a Mediterranean shrub.

    PubMed

    Moreira, B; Castellanos, M C; Pausas, J G

    2014-03-01

    Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non-resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability-enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems. © 2014 John Wiley & Sons Ltd.

  7. Prioritizing the Components of Vulnerability: A Genetic Algorithm Minimization of Flood Risk

    NASA Astrophysics Data System (ADS)

    Bongolan, Vena Pearl; Ballesteros, Florencio; Baritua, Karessa Alexandra; Junne Santos, Marie

    2013-04-01

    We define a flood resistant city as an optimal arrangement of communities according to their traits, with the goal of minimizing the flooding vulnerability via a genetic algorithm. We prioritize the different components of flooding vulnerability, giving each component a weight, thus expressing vulnerability as a weighted sum. This serves as the fitness function for the genetic algorithm. We also allowed non-linear interactions among related but independent components, viz, poverty and mortality rate, and literacy and radio/ tv penetration. The designs produced reflect the relative importance of the components, and we observed a synchronicity between the interacting components, giving us a more consistent design.

  8. A simulations approach for meta-analysis of genetic association studies based on additive genetic model.

    PubMed

    John, Majnu; Lencz, Todd; Malhotra, Anil K; Correll, Christoph U; Zhang, Jian-Ping

    2018-06-01

    Meta-analysis of genetic association studies is being increasingly used to assess phenotypic differences between genotype groups. When the underlying genetic model is assumed to be dominant or recessive, assessing the phenotype differences based on summary statistics, reported for individual studies in a meta-analysis, is a valid strategy. However, when the genetic model is additive, a similar strategy based on summary statistics will lead to biased results. This fact about the additive model is one of the things that we establish in this paper, using simulations. The main goal of this paper is to present an alternate strategy for the additive model based on simulating data for the individual studies. We show that the alternate strategy is far superior to the strategy based on summary statistics.

  9. Increasing component functionality via multi-process additive manufacturing

    NASA Astrophysics Data System (ADS)

    Coronel, Jose L.; Fehr, Katherine H.; Kelly, Dominic D.; Espalin, David; Wicker, Ryan B.

    2017-05-01

    Additively manufactured components, although extensively customizable, are often limited in functionality. Multi-process additive manufacturing (AM) grants the ability to increase the functionality of components via subtractive manufacturing, wire embedding, foil embedding and pick and place. These processes are scalable to include several platforms ranging from desktop to large area printers. The Multi3D System is highlighted, possessing the capability to perform the above mentioned processes, all while transferring a fabricated component with a robotic arm. Work was conducted to fabricate a patent inspired, printed missile seeker. The seeker demonstrated the advantage of multi-process AM via introduction of the pick and place process. Wire embedding was also explored, with the successful interconnect of two layers of embedded wires in different planes. A final demonstration of a printed contour bracket, served to show the reduction of surface roughness on a printed part is 87.5% when subtractive manufacturing is implemented in tandem with AM. Functionality of the components on all the cases was improved. Results included optical components embedded within the printed housing, wires embedded with interconnection, and reduced surface roughness. These results highlight the improved functionality of components through multi-process AM, specifically through work conducted with the Multi3D System.

  10. Additive genetic contribution to symptom dimensions in major depressive disorder.

    PubMed

    Pearson, Rahel; Palmer, Rohan H C; Brick, Leslie A; McGeary, John E; Knopik, Valerie S; Beevers, Christopher G

    2016-05-01

    Major depressive disorder (MDD) is a phenotypically heterogeneous disorder with a complex genetic architecture. In this study, genomic-relatedness-matrix restricted maximum-likelihood analysis (GREML) was used to investigate the extent to which variance in depression symptoms/symptom dimensions can be explained by variation in common single nucleotide polymorphisms (SNPs) in a sample of individuals with MDD (N = 1,558) who participated in the National Institute of Mental Health Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. A principal components analysis of items from the Hamilton Rating Scale for Depression (HRSD) obtained prior to treatment revealed 4 depression symptom components: (a) appetite, (b) core depression symptoms (e.g., depressed mood, anhedonia), (c) insomnia, and (d) anxiety. These symptom dimensions were associated with SNP-based heritability (hSNP2) estimates of 30%, 14%, 30%, and 5%, respectively. Results indicated that the genetic contribution of common SNPs to depression symptom dimensions were not uniform. Appetite and insomnia symptoms in MDD had a relatively strong genetic contribution whereas the genetic contribution was relatively small for core depression and anxiety symptoms. While in need of replication, these results suggest that future gene discovery efforts may strongly benefit from parsing depression into its constituent parts. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Additive Manufacturing Design Considerations for Liquid Engine Components

    NASA Technical Reports Server (NTRS)

    Whitten, Dave; Hissam, Andy; Baker, Kevin; Rice, Darron

    2014-01-01

    The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.

  12. Multi-allelic haplotype model based on genetic partition for genomic prediction and variance component estimation using SNP markers.

    PubMed

    Da, Yang

    2015-12-18

    The amount of functional genomic information has been growing rapidly but remains largely unused in genomic selection. Genomic prediction and estimation using haplotypes in genome regions with functional elements such as all genes of the genome can be an approach to integrate functional and structural genomic information for genomic selection. Towards this goal, this article develops a new haplotype approach for genomic prediction and estimation. A multi-allelic haplotype model treating each haplotype as an 'allele' was developed for genomic prediction and estimation based on the partition of a multi-allelic genotypic value into additive and dominance values. Each additive value is expressed as a function of h - 1 additive effects, where h = number of alleles or haplotypes, and each dominance value is expressed as a function of h(h - 1)/2 dominance effects. For a sample of q individuals, the limit number of effects is 2q - 1 for additive effects and is the number of heterozygous genotypes for dominance effects. Additive values are factorized as a product between the additive model matrix and the h - 1 additive effects, and dominance values are factorized as a product between the dominance model matrix and the h(h - 1)/2 dominance effects. Genomic additive relationship matrix is defined as a function of the haplotype model matrix for additive effects, and genomic dominance relationship matrix is defined as a function of the haplotype model matrix for dominance effects. Based on these results, a mixed model implementation for genomic prediction and variance component estimation that jointly use haplotypes and single markers is established, including two computing strategies for genomic prediction and variance component estimation with identical results. The multi-allelic genetic partition fills a theoretical gap in genetic partition by providing general formulations for partitioning multi-allelic genotypic values and provides a haplotype

  13. Glioblastomas with oligodendroglial component - common origin of the different histological parts and genetic subclassification.

    PubMed

    Klink, Barbara; Schlingelhof, Ben; Klink, Martin; Stout-Weider, Karen; Patt, Stephan; Schrock, Evelin

    2010-01-01

    Glioblastomas are the most common and most malignant brain tumors in adults. A small subgroup of glioblastomas contains areas with histological features of oligodendroglial differentiation (GBMO). Our objective was to genetically characterize the oligodendroglial and the astrocytic parts of GBMOs and correlate morphologic and genetic features with clinical data. The oligodendroglial and the "classic" glioblastoma parts of 13 GBMO were analyzed separately by interphase fluorescence in situ hybridization (FISH) on paraffin sections using a custom probe set (regions 1p, 1q, 7q, 10q, 17p, 19q, cen18, 21q) and by comparative genomic hybridization (CGH) of microdissected paraffin embedded tumor tissue. We identified four distinct genetic subtypes in 13 GBMOs: an "astrocytic" subtype (9/13) characterized by +7/-10; an "oligodendroglial" subtype with -1p/-19q (1/13); an "intermediate" subtype showing +7/-1p (1/13), and an "other" subtype having none of the former aberrations typical for gliomas (2/13). The different histological tumor parts of GBMO revealed common genetic changes in all tumors and showed additional aberrations specific for each part. Our findings demonstrate the monoclonal origin of GBMO followed by the development of the astrocytic and oligodendroglial components. The diagnostic determination of the genetic signatures may allow for a better prognostication of the patients.

  14. Genetic diversity of volatile components in Xinjiang Wild Apple (Malus sieversii).

    PubMed

    Chen, Xuesen; Feng, Tao; Zhang, Yanmin; He, Tianming; Feng, Jianrong; Zhang, Chunyu

    2007-02-01

    To evaluate genetic relationships using qualitative and/or quantitative differentiation of volatile components in Xinjiang Wild Apple (Malus sieversii (Lebed.) Roem.) and to acquire basic data for the conservation and utilization of the species, aroma components in ripe fruit of M. sieversii obtained from 30 seedlings at Mohe, Gongliu County, Xinjiang Autonomic Region, China, and in ripe fruit of 4 M. pumila cultivars ('Ralls', 'Delicious', 'Golden Delicious', and 'Fuji') were analyzed using head space-solid phase microextraction and gas chromatography-mass spectrometry. The results indicated that the values of similarity coefficient concerning volatile types between the two species were in accordance with the evolution of M. pumila cultivars (forms), and that M. sieversii seedlings showed considerable genetic variations in these aspects: the total content of volatile components, the classes and contents of each compound classes, the segregation ratio, and content of main components. The results showed significant difference among seedlings and wide genetic diversity within the populations. Comparison of the volatile components in M. sieversii with those in M. pumila cultivars showed that the common compounds whose number were larger than five with the contents over 0.04 mg/L simultaneously between M. sieversii and M. pumila cultivars belonged to esters, alcohols, aldehydes or ketones. This suggests fundamental identity in main volatile components of M. sieversii and M. pumila cultivars. The results above sustained the conclusion "M. sieversii is probably the ancestor of M. pumila". However, there were 48 compounds present in M. pumila that were not detected in M. sieversii, including 6 character impact components (i.e., propyl acetate, (Z)-3-hexenal, 2-methyl-1-butanol acetate, pentyl acetate, 3-furanmethanol, and benzene acetaldehyde). This suggested that in the domestication of M. pumila, introgression of other apple species, except for M. sieversii, by

  15. Similarity in genetic alterations between paired well-differentiated and dedifferentiated components of dedifferentiated liposarcoma.

    PubMed

    Horvai, Andrew E; DeVries, Sandy; Roy, Ritu; O'Donnell, Richard J; Waldman, Frederic

    2009-11-01

    Liposarcoma represents a unique model insofar as some well-differentiated liposarcomas progress to non-lipogenic, so-called 'dedifferentiated,' forms. The well-differentiated and dedifferentiated family of liposarcomas demonstrates amplification of the chromosome subregion 12q13-q15 with resultant amplification of the MDM2 and CDK4 genes. However, the specific genetic changes that distinguish between well-differentiated and dedifferentiated liposarcomas are less well understood. To study the genetic changes in dedifferentiated liposarcomas, paired well-differentiated and dedifferentiated components of 29 tumors were analyzed separately by array-based comparative genomic hybridization. A bacterial artificial chromosome array at approximately 1-Mb resolution was used. The genetic changes were compared with clinical presentation, grade of the dedifferentiated component and overexpression of MDM2 and CDK4. Most tumors (n=21, 72%) were retroperitoneal, with both components present at initial diagnosis (n=25, 86%). Eight tumors (28%) were classified as low-grade dedifferentiation. In four cases (14%), a well-differentiated liposarcoma preceded the presentation of the dedifferentiated tumor by 1-5 years. 12q13-q15 was amplified in all tumors. Using unsupervised hierarchical clustering of copy-number changes, all but two tumors showed close similarities between well-differentiated and dedifferentiated components, and segregated as pairs. Dedifferentiated components had more total amplifications (P=0.008) and a trend for gain at 19q13.2, but no genetic changes were significant in distinguishing between the two components. High-level amplifications of 1p21-32 (n=7, 24%), 1q21-23 (n=9, 31%), 6q23-24 (n=6, 21%) and 12q24 (n=3, 10%) were common, but none significantly correlated with differentiation. Presentation and grade correlated with the frequency of changes at a number of genetic loci (P<0.001), whereas CDK4 immunostaining showed negative correlation with 12q13

  16. Estimation of Additive, Dominance, and Imprinting Genetic Variance Using Genomic Data

    PubMed Central

    Lopes, Marcos S.; Bastiaansen, John W. M.; Janss, Luc; Knol, Egbert F.; Bovenhuis, Henk

    2015-01-01

    Traditionally, exploration of genetic variance in humans, plants, and livestock species has been limited mostly to the use of additive effects estimated using pedigree data. However, with the development of dense panels of single-nucleotide polymorphisms (SNPs), the exploration of genetic variation of complex traits is moving from quantifying the resemblance between family members to the dissection of genetic variation at individual loci. With SNPs, we were able to quantify the contribution of additive, dominance, and imprinting variance to the total genetic variance by using a SNP regression method. The method was validated in simulated data and applied to three traits (number of teats, backfat, and lifetime daily gain) in three purebred pig populations. In simulated data, the estimates of additive, dominance, and imprinting variance were very close to the simulated values. In real data, dominance effects account for a substantial proportion of the total genetic variance (up to 44%) for these traits in these populations. The contribution of imprinting to the total phenotypic variance of the evaluated traits was relatively small (1–3%). Our results indicate a strong relationship between additive variance explained per chromosome and chromosome length, which has been described previously for other traits in other species. We also show that a similar linear relationship exists for dominance and imprinting variance. These novel results improve our understanding of the genetic architecture of the evaluated traits and shows promise to apply the SNP regression method to other traits and species, including human diseases. PMID:26438289

  17. The Genetic Components of Verbal Divergent Thinking and Short Term Memory.

    ERIC Educational Resources Information Center

    Pezzullo, Thomas R.; Madaus, George F.

    A study of twins was conducted to determine the presence of an hereditary component in short term memory and in three aspects of verbal divergent thinking--flexibility, fluency, and originality. Results showed the existence of a significant genetic component in the trait of short term memory, while none was found in verbal divergent thinking. (AG)

  18. The contribution of additive genetic variation to personality variation: heritability of personality.

    PubMed

    Dochtermann, Ned A; Schwab, Tori; Sih, Andrew

    2015-01-07

    Individual animals frequently exhibit repeatable differences from other members of their population, differences now commonly referred to as 'animal personality'. Personality differences can arise, for example, from differences in permanent environmental effects--including parental and epigenetic contributors--and the effect of additive genetic variation. Although several studies have evaluated the heritability of behaviour, less is known about general patterns of heritability and additive genetic variation in animal personality. As overall variation in behaviour includes both the among-individual differences that reflect different personalities and temporary environmental effects, it is possible for personality to be largely genetically influenced even when heritability of behaviour per se is quite low. The relative contribution of additive genetic variation to personality variation can be estimated whenever both repeatability and heritability are estimated for the same data. Using published estimates to address this issue, we found that approximately 52% of animal personality variation was attributable to additive genetic variation. Thus, while the heritability of behaviour is often moderate or low, the heritability of personality is much higher. Our results therefore (i) demonstrate that genetic differences are likely to be a major contributor to variation in animal personality and (ii) support the phenotypic gambit: that evolutionary inferences drawn from repeatability estimates may often be justified. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Genetic component of sensitivity to heat stress for nonreturn rate of Brazilian Holstein cattle.

    PubMed

    Santana, M L; Bignardi, A B; Stefani, G; El Faro, L

    2017-08-01

    The objectives of the present study were: 1) to investigate variation in the genetic component of heat stress for nonreturn rate at 56 days after first artificial insemination (NR56); 2) to identify and characterize the genotype by environment interaction (G × E) due to heat stress for NR56 of Brazilian Holstein cattle. A linear random regression model (reaction norm model) was applied to 51,748 NR56 records of 28,595 heifers and multiparous cows. The decline in NR56 due to heat stress was more pronounced in milking cows compared to heifers. The age of females at first artificial insemination and temperature-humidity index (THI) exerted an important influence on the genetic parameters of NR56. Several evidence of G × E on NR56 were found as the high slope/intercept ratio and frequent intersection of reaction norms. Additionally, the genetic correlation between NR56 at opposite extremes of the THI scale reached estimates below zero, indicating that few of the same genes are responsible for NR56 under conditions of thermoneutrality and heat stress. The genetic evaluation and selection for NR56 in Holstein cattle reared under (sub)tropical conditions should therefore take into consideration the genetic variation on age at insemination and G × E due to heat stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Multi-system Component Phenotypes of Bipolar Disorder for Genetic Investigations of Extended Pedigrees

    PubMed Central

    Fears, Scott C.; Service, Susan K.; Kremeyer, Barbara; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Ramirez, Margarita; Castrillón, Gabriel; Gomez-Franco, Juliana; Lopez, Maria C.; Montoya, Gabriel; Montoya, Patricia; Aldana, Ileana; Teshiba, Terri M.; Abaryan, Zvart; Al-Sharif, Noor B.; Ericson, Marissa; Jalbrzikowski, Maria; Luykx, Jurjen J.; Navarro, Linda; Tishler, Todd A.; Altshuler, Lori; Bartzokis, George; Escobar, Javier; Glahn, David C.; Ospina-Duque, Jorge; Risch, Neil; Ruiz-Linares, Andrés; Thompson, Paul M.; Cantor, Rita M.; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I.; Sabatti, Chiara; Freimer, Nelson B.; Bearden, Carrie E.

    2014-01-01

    IMPORTANCE Genetic factors contribute to risk for bipolar disorder (BP), yet its pathogenesis remains poorly understood. A focus on measuring multi-system quantitative traits that may be components of BP psychopathology may enable genetic dissection of this complex disorder, and investigation of extended pedigrees from genetically isolated populations may facilitate the detection of specific genetic variants that impact on BP as well as its component phenotypes. OBJECTIVE To identify quantitative neurocognitive, temperament-related, and neuroanatomic phenotypes that appear heritable and associated with severe bipolar disorder (BP-I), and therefore suitable for genetic linkage and association studies aimed at identifying variants contributing to BP-I risk. DESIGN Multi-generational pedigree study in two closely related, genetically isolated populations: the Central Valley of Costa Rica (CVCR) and Antioquia, Colombia (ANT). PARTICIPANTS 738 individuals, all from CVCR and ANT pedigrees, of whom 181 are affected with BP-I. MAIN OUTCOME MEASURE Familial aggregation (heritability) and association with BP-I of 169 quantitative neurocognitive, temperament, magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) phenotypes. RESULTS Seventy-five percent (126) of the phenotypes investigated were significantly heritable, and 31% (53) were associated with BP-I. About 1/4 of the phenotypes, including measures from each phenotype domain, were both heritable and associated with BP-I. Neuroimaging phenotypes, particularly cortical thickness in prefrontal and temporal regions, and volume and microstructural integrity of the corpus callosum, represented the most promising candidate traits for genetic mapping related to BP based on strong heritability and association with disease. Analyses of phenotypic and genetic covariation identified substantial correlations among the traits, at least some of which share a common underlying genetic architecture. CONCLUSIONS AND

  1. Materials Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.

  2. Material Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.

  3. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.)

    Treesearch

    Joao P. Carvalho; Bernard R. Parresol

    2003-01-01

    In tree biomass estimations, it is important to consider the property of additivity, i.e., the total tree biomass should equal the sum of the components. This work presents functions that allow estimation of the stem and crown dry weight components of Pyrenean oak (Quercus pyrenaica Willd.) trees. A procedure that considers additivity of tree biomass...

  4. Glioblastomas with Oligodendroglial Component – Common Origin of the Different Histological Parts and Genetic Subclassification

    PubMed Central

    Klink, Barbara; Schlingelhof, Ben; Klink, Martin; Stout-Weider, Karen; Patt, Stephan; Schrock, Evelin

    2010-01-01

    Background: Glioblastomas are the most common and most malignant brain tumors in adults. A small subgroup of glioblastomas contains areas with histological features of oligodendroglial differentiation (GBMO). Our objective was to genetically characterize the oligodendroglial and the astrocytic parts of GBMOs and correlate morphologic and genetic features with clinical data. Methods: The oligodendroglial and the “classic” glioblastoma parts of 13 GBMO were analyzed separately by interphase fluorescence in situ hybridization (FISH) on paraffin sections using a custom probe set (regions 1p, 1q, 7q, 10q, 17p, 19q, cen18, 21q) and by comparative genomic hybridization (CGH) of microdissected paraffin embedded tumor tissue. Results: We identified four distinct genetic subtypes in 13 GBMOs: an “astrocytic” subtype (9/13) characterized by +7/−10; an “oligodendroglial” subtype with −1p/−19q (1/13); an “intermediate” subtype showing +7/−1p (1/13), and an “other” subtype having none of the former aberrations typical for gliomas (2/13). The different histological tumor parts of GBMO revealed common genetic changes in all tumors and showed additional aberrations specific for each part. Conclusion: Our findings demonstrate the monoclonal origin of GBMO followed by the development of the astrocytic and oligodendroglial components. The diagnostic determination of the genetic signatures may allow for a better prognostication of the patients. PMID:20966543

  5. Comparing GWAS Results of Complex Traits Using Full Genetic Model and Additive Models for Revealing Genetic Architecture

    PubMed Central

    Monir, Md. Mamun; Zhu, Jun

    2017-01-01

    Most of the genome-wide association studies (GWASs) for human complex diseases have ignored dominance, epistasis and ethnic interactions. We conducted comparative GWASs for total cholesterol using full model and additive models, which illustrate the impacts of the ignoring genetic variants on analysis results and demonstrate how genetic effects of multiple loci could differ across different ethnic groups. There were 15 quantitative trait loci with 13 individual loci and 3 pairs of epistasis loci identified by full model, whereas only 14 loci (9 common loci and 5 different loci) identified by multi-loci additive model. Again, 4 full model detected loci were not detected using multi-loci additive model. PLINK-analysis identified two loci and GCTA-analysis detected only one locus with genome-wide significance. Full model identified three previously reported genes as well as several new genes. Bioinformatics analysis showed some new genes are related with cholesterol related chemicals and/or diseases. Analyses of cholesterol data and simulation studies revealed that the full model performs were better than the additive-model performs in terms of detecting power and unbiased estimations of genetic variants of complex traits. PMID:28079101

  6. Feasibility and Testing of Additive Manufactured Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; Hummelt, Ed; Solovyeva, Lyudmila

    2016-09-01

    This project focused on demonstrating the ability to fabricate two parts with different geometry: an arc flash interrupter and a hydraulic manifold. Eaton Corporation provided ORNL solid models, information related to tolerances and sensitive parameters of the parts and provided testing and evaluation. ORNL successfully manufactured both components, provided cost models of the manufacturing (materials, labor, time and post processing) and delivered test components for Eaton evaluation. The arc flash suppressor was fabricated using the Renishaw laser powder bed technology in CoCrMo while the manifold was produced from Ti-6Al-4V using the Arcam electron beam melting technology. These manufacturing techniques weremore » selected based on the design and geometrical tolerances required. A full-scale manifold was produced on the Arcam A2 system (nearly 12 inches tall). A portion of the manifold was also produced in the Arcam Q10 system. Although a full scale manifold could not be produced in the system, a full scale manifold is expected to have similar material properties, geometric accuracy, and surface finish as could be fabricated on an Arcam Q20 system that is capable of producing four full scale manifolds in a production environment. In addition to the manifold, mechanical test specimens, geometric tolerance artifacts, and microstructure samples were produced alongside the manifold. The development and demonstration of these two key components helped Eaton understand the impact additive manufacturing can have on many of their existing products. By working within the MDF and leveraging ORNL’s manufacturing and characterization capabilities, the work will ensure the rapid insertion and commercialization of this technology.« less

  7. The scope of additive manufacturing in cryogenics, component design, and applications

    NASA Astrophysics Data System (ADS)

    Stautner, W.; Vanapalli, S.; Weiss, K.-P.; Chen, R.; Amm, K.; Budesheim, E.; Ricci, J.

    2017-12-01

    Additive manufacturing techniques using composites or metals are rapidly gaining momentum in cryogenic applications. Small or large, complex structural components are now no longer limited to mere design studies but can now move into the production stream thanks to new machines on the market that allow for light-weight, cost optimized designs with short turnaround times. The potential for cost reductions from bulk materials machined to tight tolerances has become obvious. Furthermore, additive manufacturing opens doors and design space for cryogenic components that to date did not exist or were not possible in the past, using bulk materials along with elaborate and expensive machining processes, e.g. micromachining. The cryogenic engineer now faces the challenge to design toward those new additive manufacturing capabilities. Additionally, re-thinking designs toward cost optimization and fast implementation also requires detailed knowledge of mechanical and thermal properties at cryogenic temperatures. In the following we compile the information available to date and show a possible roadmap for additive manufacturing applications of parts and components typically used in cryogenic engineering designs.

  8. Same genetic components underlie different measures of sweet taste preference.

    PubMed

    Keskitalo, Kaisu; Tuorila, Hely; Spector, Tim D; Cherkas, Lynn F; Knaapila, Antti; Silventoinen, Karri; Perola, Markus

    2007-12-01

    Sweet taste preferences are measured by several often correlated measures. We examined the relative proportions of genetic and environmental effects on sweet taste preference indicators and their mutual correlations. A total of 663 female twins (324 complete pairs, 149 monozygous and 175 dizygous pairs) aged 17-80 y rated the liking and intensity of a 20% (wt/vol) sucrose solution, reported the liking and the use-frequency of 6 sweet foods (sweet desserts, sweets, sweet pastry, ice cream, hard candy, and chocolate), and completed a questionnaire on cravings of sweet foods. The estimated contributions of genetic factors, environmental factors shared by a twin pair, and environmental factors unique to each twin individual to the variance and covariance of the traits were obtained with the use of linear structural equation modeling. Approximately half of the variation in liking for sweet solution and liking and use-frequency of sweet foods (49-53%) was explained by genetic factors, whereas the rest of the variation was due to environmental factors unique to each twin individual. Sweet taste preference-related traits were correlated. Tetravariate modeling showed that the correlation between liking for the sweet solution and liking for sweet foods was due to genetic factors (genetic r = 0.27). Correlations between liking, use-frequency, and craving for sweet foods were due to both genetic and unshared environmental factors. Detailed information on the associations between preference measures is an important intermediate goal in the determination of the genetic components affecting sweet taste preferences.

  9. Application of Additively Manufactured Components in Rocket Engine Turbopumps

    NASA Technical Reports Server (NTRS)

    Calvert, Marty, Jr.; Hanks, Andrew; Schmauch, Preston; Delessio, Steve

    2015-01-01

    The use of additive manufacturing technology has the potential to revolutionize the development of turbopump components in liquid rocket engines. When designing turbomachinery with the additive process there are several benefits and risks that are leveraged relative to a traditional development cycle. This topic explores the details and development of a 90,000 RPM Liquid Hydrogen Turbopump from which 90% of the parts were derived from the additive process. This turbopump was designed, developed and will be tested later this year at Marshall Space Flight Center.

  10. Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing.

    PubMed

    Ding, Donghong; Pan, Zengxi; van Duin, Stephen; Li, Huijun; Shen, Chen

    2016-08-03

    Cast nickel aluminum bronze (NAB) alloy is widely used for large engineering components in marine applications due to its excellent mechanical properties and corrosion resistance. Casting porosity, as well as coarse microstructure, however, are accompanied by a decrease in mechanical properties of cast NAB components. Although heat treatment, friction stir processing, and fusion welding were implemented to eliminate porosity, improve mechanical properties, and refine the microstructure of as-cast metal, their applications are limited to either surface modification or component repair. Instead of traditional casting techniques, this study focuses on developing NAB components using recently expanded wire arc additive manufacturing (WAAM). Consumable welding wire is melted and deposited layer-by-layer on substrates producing near-net shaped NAB components. Additively-manufactured NAB components without post-processing are fully dense, and exhibit fine microstructure, as well as comparable mechanical properties, to as-cast NAB alloy. The effects of heat input from the welding process and post-weld-heat-treatment (PWHT) are shown to give uniform NAB alloys with superior mechanical properties revealing potential marine applications of the WAAM technique in NAB production.

  11. Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing

    PubMed Central

    Ding, Donghong; Pan, Zengxi; van Duin, Stephen; Li, Huijun; Shen, Chen

    2016-01-01

    Cast nickel aluminum bronze (NAB) alloy is widely used for large engineering components in marine applications due to its excellent mechanical properties and corrosion resistance. Casting porosity, as well as coarse microstructure, however, are accompanied by a decrease in mechanical properties of cast NAB components. Although heat treatment, friction stir processing, and fusion welding were implemented to eliminate porosity, improve mechanical properties, and refine the microstructure of as-cast metal, their applications are limited to either surface modification or component repair. Instead of traditional casting techniques, this study focuses on developing NAB components using recently expanded wire arc additive manufacturing (WAAM). Consumable welding wire is melted and deposited layer-by-layer on substrates producing near-net shaped NAB components. Additively-manufactured NAB components without post-processing are fully dense, and exhibit fine microstructure, as well as comparable mechanical properties, to as-cast NAB alloy. The effects of heat input from the welding process and post-weld-heat-treatment (PWHT) are shown to give uniform NAB alloys with superior mechanical properties revealing potential marine applications of the WAAM technique in NAB production. PMID:28773774

  12. Computed Tomography Inspection and Analysis for Additive Manufacturing Components

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2017-01-01

    Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws and geometric features were inspected using a 2-megavolt linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed to determine the impact of additive manufacturing on inspectability of objects with complex geometries.

  13. Development of a genetic sexing strain in Bactrocera carambolae (Diptera: Tephritidae) by introgression of sex sorting components from B. dorsalis, Salaya1 strain

    PubMed Central

    2014-01-01

    Background The carambola fruit fly, Bactrocera carambolae Drew & Hancock is a high profile key pest that is widely distributed in the southwestern ASEAN region. In addition, it has trans-continentally invaded Suriname, where it has been expanding east and southward since 1975. This fruit fly belongs to Bactrocera dorsalis species complex. The development and application of a genetic sexing strain (Salaya1) of B. dorsalis sensu stricto (s.s.) (Hendel) for the sterile insect technique (SIT) has improved the fruit fly control. However, matings between B. dorsalis s.s. and B. carambolae are incompatible, which hinder the application of the Salaya1 strain to control the carambola fruit fly. To solve this problem, we introduced genetic sexing components from the Salaya1 strain into the B. carambolae genome by interspecific hybridization. Results Morphological characteristics, mating competitiveness, male pheromone profiles, and genetic relationships revealed consistencies that helped to distinguish Salaya1 and B. carambolae strains. A Y-autosome translocation linking the dominant wild-type allele of white pupae gene and a free autosome carrying a recessive white pupae homologue from the Salaya1 strain were introgressed into the gene pool of B. carambolae. A panel of Y-pseudo-linked microsatellite loci of the Salaya1 strain served as markers for the introgression experiments. This resulted in a newly derived genetic sexing strain called Salaya5, with morphological characteristics corresponding to B. carambolae. The rectal gland pheromone profile of Salaya5 males also contained a distinctive component of B. carambolae. Microsatellite DNA analyses confirmed the close genetic relationships between the Salaya5 strain and wild B. carambolae populations. Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions. Conclusions Introgression of sex sorting components from the Salaya1 strain to a

  14. Development of a genetic sexing strain in Bactrocera carambolae (Diptera: Tephritidae) by introgression of sex sorting components from B. dorsalis, Salaya1 strain.

    PubMed

    Isasawin, Siriwan; Aketarawong, Nidchaya; Lertsiri, Sittiwat; Thanaphum, Sujinda

    2014-01-01

    The carambola fruit fly, Bactrocera carambolae Drew & Hancock is a high profile key pest that is widely distributed in the southwestern ASEAN region. In addition, it has trans-continentally invaded Suriname, where it has been expanding east and southward since 1975. This fruit fly belongs to Bactrocera dorsalis species complex. The development and application of a genetic sexing strain (Salaya1) of B. dorsalis sensu stricto (s.s.) (Hendel) for the sterile insect technique (SIT) has improved the fruit fly control. However, matings between B. dorsalis s.s. and B. carambolae are incompatible, which hinder the application of the Salaya1 strain to control the carambola fruit fly. To solve this problem, we introduced genetic sexing components from the Salaya1 strain into the B. carambolae genome by interspecific hybridization. Morphological characteristics, mating competitiveness, male pheromone profiles, and genetic relationships revealed consistencies that helped to distinguish Salaya1 and B. carambolae strains. A Y-autosome translocation linking the dominant wild-type allele of white pupae gene and a free autosome carrying a recessive white pupae homologue from the Salaya1 strain were introgressed into the gene pool of B. carambolae. A panel of Y-pseudo-linked microsatellite loci of the Salaya1 strain served as markers for the introgression experiments. This resulted in a newly derived genetic sexing strain called Salaya5, with morphological characteristics corresponding to B. carambolae. The rectal gland pheromone profile of Salaya5 males also contained a distinctive component of B. carambolae. Microsatellite DNA analyses confirmed the close genetic relationships between the Salaya5 strain and wild B. carambolae populations. Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions. Introgression of sex sorting components from the Salaya1 strain to a closely related B. carambolae

  15. Computed Tomography Inspection and Analysis for Additive Manufacturing Components

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2016-01-01

    Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws were inspected using a 2MeV linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed using standard image analysis techniques to determine the impact of additive manufacturing on inspectability of objects with complex geometries.

  16. From Common to Rare Variants: The Genetic Component of Alzheimer Disease.

    PubMed

    Nicolas, Gaël; Charbonnier, Camille; Campion, Dominique

    2016-01-01

    Alzheimer disease (AD) is a remarkable example of genetic heterogeneity. Extremely rare variants in the APP, PSEN1, or PSEN2 genes, or duplications of the APP gene cause autosomal dominant forms, generally with complete penetrance by the age of 65 years. Nonautosomal dominant forms are considered as a complex disorder with a high genetic component, whatever the age of onset. Although genetically heterogeneous, AD is defined by the same neuropathological criteria in all configurations. According to the amyloid cascade hypothesis, the Aβ peptide, which aggregates in AD brains, is a key player. APP, PSEN1, or PSEN2 gene mutations increase the production of more aggregation-prone forms of the Aβ peptide, triggering the pathological process. Several risk factors identified in association studies hit genes involved in Aβ production/secretion, aggregation, clearance, or toxicity. Among them, the APOE ε4 allele is a rare example of a common allele with a large effect size, the ORs ranging from 4 to 11-14 for heterozygous and homozygous carriers, respectively. In addition, genome-wide association studies have identified more than two dozen loci with a weak but significant association, the OR of the at-risk allele ranging from 1.08 to 1.30. Recently, the use of massive parallel sequencing has enabled the analysis of rare variants in a genome-wide manner. Two rare variants have been nominally associated with AD risk or protection (TREM2 p.R47H, MAF approximately 0.002, OR approximately 4 and APP p.A673T, MAF approximately 0.0005, OR approximately 0.2). Association analyses at the gene level identified rare loss-of-function and missense, predicted damaging, variants (MAF <0.01) in the SORL1 and ABCA7 genes associated with a moderate relative risk (OR approximately 5 and approximately 2.8, respectively). Although the latter analyses revealed association signals with moderately rare variants by collapsing them, the power to detect genes hit by extremely rare variants is

  17. Additive Genetic Variability and the Bayesian Alphabet

    PubMed Central

    Gianola, Daniel; de los Campos, Gustavo; Hill, William G.; Manfredi, Eduardo; Fernando, Rohan

    2009-01-01

    The use of all available molecular markers in statistical models for prediction of quantitative traits has led to what could be termed a genomic-assisted selection paradigm in animal and plant breeding. This article provides a critical review of some theoretical and statistical concepts in the context of genomic-assisted genetic evaluation of animals and crops. First, relationships between the (Bayesian) variance of marker effects in some regression models and additive genetic variance are examined under standard assumptions. Second, the connection between marker genotypes and resemblance between relatives is explored, and linkages between a marker-based model and the infinitesimal model are reviewed. Third, issues associated with the use of Bayesian models for marker-assisted selection, with a focus on the role of the priors, are examined from a theoretical angle. The sensitivity of a Bayesian specification that has been proposed (called “Bayes A”) with respect to priors is illustrated with a simulation. Methods that can solve potential shortcomings of some of these Bayesian regression procedures are discussed briefly. PMID:19620397

  18. Five-Axis Ultrasonic Additive Manufacturing for Nuclear Component Manufacture

    NASA Astrophysics Data System (ADS)

    Hehr, Adam; Wenning, Justin; Terrani, Kurt; Babu, Sudarsanam Suresh; Norfolk, Mark

    2017-03-01

    Ultrasonic additive manufacturing (UAM) is a three-dimensional metal printing technology which uses high-frequency vibrations to scrub and weld together both similar and dissimilar metal foils. There is no melting in the process and no special atmosphere requirements are needed. Consequently, dissimilar metals can be joined with little to no intermetallic compound formation, and large components can be manufactured. These attributes have the potential to transform manufacturing of nuclear reactor core components such as control elements for the High Flux Isotope Reactor at Oak Ridge National Laboratory. These components are hybrid structures consisting of an outer cladding layer in contact with the coolant with neutron-absorbing materials inside, such as neutron poisons for reactor control purposes. UAM systems are built into a computer numerical control (CNC) framework to utilize intermittent subtractive processes. These subtractive processes are used to introduce internal features as the component is being built and for net shaping. The CNC framework is also used for controlling the motion of the welding operation. It is demonstrated here that curved components with embedded features can be produced using a five-axis code for the welder for the first time.

  19. Five-axis ultrasonic additive manufacturing for nuclear component manufacture

    DOE PAGES

    Hehr, Adam; Wenning, Justin; Terrani, Kurt A.; ...

    2016-01-01

    Ultrasonic additive manufacturing (UAM) is a three-dimensional metal printing technology which uses high-frequency vibrations to scrub and weld together both similar and dissimilar metal foils. There is no melting in the process and no special atmosphere requirements are needed. Consequently, dissimilar metals can be joined with little to no intermetallic compound formation, and large components can be manufactured. These attributes have the potential to transform manufacturing of nuclear reactor core components such as control elements for the High Flux Isotope Reactor at Oak Ridge National Laboratory. These components are hybrid structures consisting of an outer cladding layer in contact withmore » the coolant with neutron-absorbing materials inside, such as neutron poisons for reactor control purposes. UAM systems are built into a computer numerical control (CNC) framework to utilize intermittent subtractive processes. These subtractive processes are used to introduce internal features as the component is being built and for net shaping. The CNC framework is also used for controlling the motion of the welding operation. Lastly, it is demonstrated here that curved components with embedded features can be produced using a five-axis code for the welder for the first time.« less

  20. Efficient Improvement of Silage Additives by Using Genetic Algorithms

    PubMed Central

    Davies, Zoe S.; Gilbert, Richard J.; Merry, Roger J.; Kell, Douglas B.; Theodorou, Michael K.; Griffith, Gareth W.

    2000-01-01

    The enormous variety of substances which may be added to forage in order to manipulate and improve the ensilage process presents an empirical, combinatorial optimization problem of great complexity. To investigate the utility of genetic algorithms for designing effective silage additive combinations, a series of small-scale proof of principle silage experiments were performed with fresh ryegrass. Having established that significant biochemical changes occur over an ensilage period as short as 2 days, we performed a series of experiments in which we used 50 silage additive combinations (prepared by using eight bacterial and other additives, each of which was added at six different levels, including zero [i.e., no additive]). The decrease in pH, the increase in lactate concentration, and the free amino acid concentration were measured after 2 days and used to calculate a “fitness” value that indicated the quality of the silage (compared to a control silage made without additives). This analysis also included a “cost” element to account for different total additive levels. In the initial experiment additive levels were selected randomly, but subsequently a genetic algorithm program was used to suggest new additive combinations based on the fitness values determined in the preceding experiments. The result was very efficient selection for silages in which large decreases in pH and high levels of lactate occurred along with low levels of free amino acids. During the series of five experiments, each of which comprised 50 treatments, there was a steady increase in the amount of lactate that accumulated; the best treatment combination was that used in the last experiment, which produced 4.6 times more lactate than the untreated silage. The additive combinations that were found to yield the highest fitness values in the final (fifth) experiment were assessed to determine a range of biochemical and microbiological quality parameters during full-term silage

  1. The Genetic and Environmental Etiologies of the Relations between Cognitive Skills and Components of Reading Ability

    PubMed Central

    Christopher, Micaela E.; Keenan, Janice M.; Hulslander, Jacqueline; DeFries, John C.; Miyake, Akira; Wadsworth, Sally J.; Willcutt, Erik; Pennington, Bruce; Olson, Richard K.

    2016-01-01

    While previous research has shown cognitive skills to be important predictors of reading ability in children, the respective roles for genetic and environmental influences on these relations is an open question. The present study explored the genetic and environmental etiologies underlying the relations between selected executive functions and cognitive abilities (working memory, inhibition, processing speed, and naming speed) with three components of reading ability (word reading, reading comprehension, and listening comprehension). Twin pairs drawn from the Colorado Front Range (n = 676; 224 monozygotic pairs; 452 dizygotic pairs) between the ages of eight and 16 (M = 11.11) were assessed on multiple measures of each cognitive and reading-related skill. Each cognitive and reading-related skill was modeled as a latent variable, and behavioral genetic analyses estimated the portions of phenotypic variance on each latent variable due to genetic, shared environmental, and nonshared environmental influences. The covariance between the cognitive skills and reading-related skills was driven primarily by genetic influences. The cognitive skills also shared large amounts of genetic variance, as did the reading-related skills. The common cognitive genetic variance was highly correlated with the common reading genetic variance, suggesting that genetic influences involved in general cognitive processing are also important for reading ability. Skill-specific genetic variance in working memory and processing speed also predicted components of reading ability. Taken together, the present study supports a genetic association between children’s cognitive ability and reading ability. PMID:26974208

  2. Genetic covariance components within and among linear type traits differ among contrasting beef cattle breeds.

    PubMed

    Doyle, Jennifer L; Berry, Donagh P; Walsh, Siobhan W; Veerkamp, Roel F; Evans, Ross D; Carthy, Tara R

    2018-05-04

    Linear type traits describing the skeletal, muscular, and functional characteristics of an animal are routinely scored on live animals in both the dairy and beef cattle industries. Previous studies have demonstrated that genetic parameters for certain performance traits may differ between breeds; no study, however, has attempted to determine if differences exist in genetic parameters of linear type traits among breeds or sexes. Therefore, the objective of the present study was to determine if genetic covariance components for linear type traits differed among five contrasting cattle breeds, and to also investigate if these components differed by sex. A total of 18 linear type traits scored on 3,356 Angus (AA), 31,049 Charolais (CH), 3,004 Hereford (HE), 35,159 Limousin (LM), and 8,632 Simmental (SI) were used in the analysis. Data were analyzed using animal linear mixed models which included the fixed effects of sex of the animal (except in the investigation into the presence of sexual dimorphism), age at scoring, parity of the dam, and contemporary group of herd-date of scoring. Differences (P < 0.05) in heritability estimates, between at least two breeds, existed for 13 out of 18 linear type traits. Differences (P < 0.05) also existed between the pairwise within-breed genetic correlations among the linear type traits. Overall, the linear type traits in the continental breeds (i.e., CH, LM, SI) tended to have similar heritability estimates to each other as well as similar genetic correlations among the same pairwise traits, as did the traits in the British breeds (i.e., AA, HE). The correlation between a linear function of breeding values computed conditional on covariance parameters estimated from the CH breed with a linear function of breeding values computed conditional on covariance parameters estimated from the other breeds was estimated. Replacing the genetic covariance components estimated in the CH breed with those of the LM had least effect but the impact

  3. Additive manufacturing method for SRF components of various geometries

    DOEpatents

    Rimmer, Robert; Frigola, Pedro E; Murokh, Alex Y

    2015-05-05

    An additive manufacturing method for forming nearly monolithic SRF niobium cavities and end group components of arbitrary shape with features such as optimized wall thickness and integral stiffeners, greatly reducing the cost and technical variability of conventional cavity construction. The additive manufacturing method for forming an SRF cavity, includes atomizing niobium to form a niobium powder, feeding the niobium powder into an electron beam melter under a vacuum, melting the niobium powder under a vacuum in the electron beam melter to form an SRF cavity; and polishing the inside surface of the SRF cavity.

  4. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast

    PubMed Central

    Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid

    2015-01-01

    Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231

  5. Genetic and environmental contributions to body mass index: comparative analysis of monozygotic twins, dizygotic twins and same-age unrelated siblings.

    PubMed

    Segal, N L; Feng, R; McGuire, S A; Allison, D B; Miller, S

    2009-01-01

    Earlier studies have established that a substantial percentage of variance in obesity-related phenotypes is explained by genetic components. However, only one study has used both virtual twins (VTs) and biological twins and was able to simultaneously estimate additive genetic, non-additive genetic, shared environmental and unshared environmental components in body mass index (BMI). Our current goal was to re-estimate four components of variance in BMI, applying a more rigorous model to biological and virtual multiples with additional data. Virtual multiples share the same family environment, offering unique opportunities to estimate common environmental influence on phenotypes that cannot be separated from the non-additive genetic component using only biological multiples. Data included 929 individuals from 164 monozygotic twin pairs, 156 dizygotic twin pairs, five triplet sets, one quadruplet set, 128 VT pairs, two virtual triplet sets and two virtual quadruplet sets. Virtual multiples consist of one biological child (or twins or triplets) plus one same-aged adoptee who are all raised together since infancy. We estimated the additive genetic, non-additive genetic, shared environmental and unshared random components in BMI using a linear mixed model. The analysis was adjusted for age, age(2), age(3), height, height(2), height(3), gender and race. Both non-additive genetic and common environmental contributions were significant in our model (P-values<0.0001). No significant additive genetic contribution was found. In all, 63.6% (95% confidence interval (CI) 51.8-75.3%) of the total variance of BMI was explained by a non-additive genetic component, 25.7% (95% CI 13.8-37.5%) by a common environmental component and the remaining 10.7% by an unshared component. Our results suggest that genetic components play an essential role in BMI and that common environmental factors such as diet or exercise also affect BMI. This conclusion is consistent with our earlier study using

  6. Genetic and Epigenetic Changes in Oilseed Rape (Brassica napus L.) Extracted from Intergeneric Allopolyploid and Additions with Orychophragmus.

    PubMed

    Gautam, Mayank; Dang, Yanwei; Ge, Xianhong; Shao, Yujiao; Li, Zaiyun

    2016-01-01

    Allopolyploidization with the merger of the genomes from different species has been shown to be associated with genetic and epigenetic changes. But the maintenance of such alterations related to one parental species after the genome is extracted from the allopolyploid remains to be detected. In this study, the genome of Brassica napus L. (2n = 38, genomes AACC) was extracted from its intergeneric allohexaploid (2n = 62, genomes AACCOO) with another crucifer Orychophragmus violaceus (2n = 24, genome OO), by backcrossing and development of alien addition lines. B. napus-type plants identified in the self-pollinated progenies of nine monosomic additions were analyzed by the methods of amplified fragment length polymorphism, sequence-specific amplified polymorphism, and methylation-sensitive amplified polymorphism. They showed modifications to certain extents in genomic components (loss and gain of DNA segments and transposons, introgression of alien DNA segments) and DNA methylation, compared with B. napus donor. The significant differences in the changes between the B. napus types extracted from these additions likely resulted from the different effects of individual alien chromosomes. Particularly, the additions which harbored the O. violaceus chromosome carrying dominant rRNA genes over those of B. napus tended to result in the development of plants which showed fewer changes, suggesting a role of the expression levels of alien rRNA genes in genomic stability. These results provided new cues for the genetic alterations in one parental genome that are maintained even after the genome becomes independent.

  7. Genetic and Epigenetic Changes in Oilseed Rape (Brassica napus L.) Extracted from Intergeneric Allopolyploid and Additions with Orychophragmus

    PubMed Central

    Gautam, Mayank; Dang, Yanwei; Ge, Xianhong; Shao, Yujiao; Li, Zaiyun

    2016-01-01

    Allopolyploidization with the merger of the genomes from different species has been shown to be associated with genetic and epigenetic changes. But the maintenance of such alterations related to one parental species after the genome is extracted from the allopolyploid remains to be detected. In this study, the genome of Brassica napus L. (2n = 38, genomes AACC) was extracted from its intergeneric allohexaploid (2n = 62, genomes AACCOO) with another crucifer Orychophragmus violaceus (2n = 24, genome OO), by backcrossing and development of alien addition lines. B. napus-type plants identified in the self-pollinated progenies of nine monosomic additions were analyzed by the methods of amplified fragment length polymorphism, sequence-specific amplified polymorphism, and methylation-sensitive amplified polymorphism. They showed modifications to certain extents in genomic components (loss and gain of DNA segments and transposons, introgression of alien DNA segments) and DNA methylation, compared with B. napus donor. The significant differences in the changes between the B. napus types extracted from these additions likely resulted from the different effects of individual alien chromosomes. Particularly, the additions which harbored the O. violaceus chromosome carrying dominant rRNA genes over those of B. napus tended to result in the development of plants which showed fewer changes, suggesting a role of the expression levels of alien rRNA genes in genomic stability. These results provided new cues for the genetic alterations in one parental genome that are maintained even after the genome becomes independent. PMID:27148282

  8. Heritability of somatotype components: a multivariate analysis.

    PubMed

    Peeters, M W; Thomis, M A; Loos, R J F; Derom, C A; Fagard, R; Claessens, A L; Vlietinck, R F; Beunen, G P

    2007-08-01

    To study the genetic and environmental determination of variation in Heath-Carter somatotype (ST) components (endomorphy, mesomorphy and ectomorphy). Multivariate path analysis on twin data. Eight hundred and three members of 424 adult Flemish twin pairs (18-34 years of age). The results indicate the significance of sex differences and the significance of the covariation between the three ST components. After age-regression, variation of the population in ST components and their covariation is explained by additive genetic sources of variance (A), shared (familial) environment (C) and unique environment (E). In men, additive genetic sources of variance explain 28.0% (CI 8.7-50.8%), 86.3% (71.6-90.2%) and 66.5% (37.4-85.1%) for endomorphy, mesomorphy and ectomorphy, respectively. For women, corresponding values are 32.3% (8.9-55.6%), 82.0% (67.7-87.7%) and 70.1% (48.9-81.8%). For all components in men and women, more than 70% of the total variation was explained by sources of variance shared between the three components, emphasising the importance of analysing the ST in a multivariate way. The findings suggest that the high heritabilities for mesomorphy and ectomorphy reported in earlier twin studies in adolescence are maintained in adulthood. For endomorphy, which represents a relative measure of subcutaneous adipose tissue, however, the results suggest heritability may be considerably lower than most values reported in earlier studies on adolescent twins. The heritability is also lower than values reported for, for example, body mass index (BMI), which next to the weight of organs and adipose tissue also includes muscle and bone tissue. Considering the differences in heritability between musculoskeletal robustness (mesomorphy) and subcutaneous adipose tissue (endomorphy) it may be questioned whether studying the genetics of BMI will eventually lead to a better understanding of the genetics of fatness, obesity and overweight.

  9. The correlation between reading and mathematics ability at age twelve has a substantial genetic component.

    PubMed

    Davis, Oliver S P; Band, Gavin; Pirinen, Matti; Haworth, Claire M A; Meaburn, Emma L; Kovas, Yulia; Harlaar, Nicole; Docherty, Sophia J; Hanscombe, Ken B; Trzaskowski, Maciej; Curtis, Charles J C; Strange, Amy; Freeman, Colin; Bellenguez, Céline; Su, Zhan; Pearson, Richard; Vukcevic, Damjan; Langford, Cordelia; Deloukas, Panos; Hunt, Sarah; Gray, Emma; Dronov, Serge; Potter, Simon C; Tashakkori-Ghanbaria, Avazeh; Edkins, Sarah; Bumpstead, Suzannah J; Blackwell, Jenefer M; Bramon, Elvira; Brown, Matthew A; Casas, Juan P; Corvin, Aiden; Duncanson, Audrey; Jankowski, Janusz A Z; Markus, Hugh S; Mathew, Christopher G; Palmer, Colin N A; Rautanen, Anna; Sawcer, Stephen J; Trembath, Richard C; Viswanathan, Ananth C; Wood, Nicholas W; Barroso, Ines; Peltonen, Leena; Dale, Philip S; Petrill, Stephen A; Schalkwyk, Leonard S; Craig, Ian W; Lewis, Cathryn M; Price, Thomas S; Donnelly, Peter; Plomin, Robert; Spencer, Chris C A

    2014-07-08

    Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children's ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child's cognitive abilities at age twelve.

  10. Additive Manufacturing Technology for Biomedical Components: A review

    NASA Astrophysics Data System (ADS)

    Aimi Zaharin, Haizum; Rani, Ahmad Majdi Abdul; Lenggo Ginta, Turnad; Azam, Farooq I.

    2018-03-01

    Over the last decades, additive manufacturing has shown potential application in ranging fields. No longer a prototyping technology, it is now being utilised as a manufacturing technology for giant industries such as the automotive, aircraft and recently in the medical industry. It is a very successful method that provides health-care solution in biomedical sectors by producing patient-specific prosthetics, improve tissues engineering and facilitate pre-operating session. This paper thus presents a brief overview of the most commercially important additive manufacturing technologies, which is currently available for fabricating biomedical components such as Stereolithography (SLA), Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Fused Deposition Modelling (FDM) and Electron Beam Melting (EBM). It introduces the basic principles of the main process, highlights some of the beneficial applications in medical industry and the current limitation of applied technology.

  11. Etiological Distinction of Working Memory Components in Relation to Mathematics

    PubMed Central

    Lukowski, Sarah L.; Soden, Brooke; Hart, Sara A.; Thompson, Lee A.; Kovas, Yulia; Petrill, Stephen A.

    2014-01-01

    Working memory has been consistently associated with mathematics achievement, although the etiology of these relations remains poorly understood. The present study examined the genetic and environmental underpinnings of math story problem solving, timed calculation, and untimed calculation alongside working memory components in 12-year-old monozygotic (n = 105) and same-sex dizygotic (n = 143) twin pairs. Results indicated significant phenotypic correlation between each working memory component and all mathematics outcomes (r = 0.18 – 0.33). Additive genetic influences shared between the visuo-spatial sketchpad and mathematics achievement was significant, accounting for roughly 89% of the observed correlation. In addition, genetic covariance was found between the phonological loop and math story problem solving. In contrast, despite there being a significant observed relationship between phonological loop and timed and untimed calculation, there was no significant genetic or environmental covariance between the phonological loop and timed or untimed calculation skills. Further analyses indicated that genetic overlap between the visuo-spatial sketchpad and math story problem solving and math fluency was distinct from general genetic factors, whereas g, phonological loop, and mathematics shared generalist genes. Thus, although each working memory component was related to mathematics, the etiology of their relationships may be distinct. PMID:25477699

  12. The correlation between reading and mathematics ability at age twelve has a substantial genetic component

    PubMed Central

    Davis, Oliver S. P.; Band, Gavin; Pirinen, Matti; Haworth, Claire M. A.; Meaburn, Emma L.; Kovas, Yulia; Harlaar, Nicole; Docherty, Sophia J.; Hanscombe, Ken B.; Trzaskowski, Maciej; Curtis, Charles J. C.; Strange, Amy; Freeman, Colin; Bellenguez, Céline; Su, Zhan; Pearson, Richard; Vukcevic, Damjan; Langford, Cordelia; Deloukas, Panos; Hunt, Sarah; Gray, Emma; Dronov, Serge; Potter, Simon C.; Tashakkori-Ghanbaria, Avazeh; Edkins, Sarah; Bumpstead, Suzannah J.; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Duncanson, Audrey; Jankowski, Janusz A. Z.; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N. A.; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Barroso, Ines; Peltonen, Leena; Dale, Philip S.; Petrill, Stephen A.; Schalkwyk, Leonard S.; Craig, Ian W.; Lewis, Cathryn M.; Price, Thomas S.; Donnelly, Peter; Plomin, Robert; Spencer, Chris C. A.

    2014-01-01

    Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children’s ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child’s cognitive abilities at age twelve. PMID:25003214

  13. Genetic variation maintained in multilocus models of additive quantitative traits under stabilizing selection.

    PubMed Central

    Bürger, R; Gimelfarb, A

    1999-01-01

    Stabilizing selection for an intermediate optimum is generally considered to deplete genetic variation in quantitative traits. However, conflicting results from various types of models have been obtained. While classical analyses assuming a large number of independent additive loci with individually small effects indicated that no genetic variation is preserved under stabilizing selection, several analyses of two-locus models showed the contrary. We perform a complete analysis of a generalization of Wright's two-locus quadratic-optimum model and investigate numerically the ability of quadratic stabilizing selection to maintain genetic variation in additive quantitative traits controlled by up to five loci. A statistical approach is employed by choosing randomly 4000 parameter sets (allelic effects, recombination rates, and strength of selection) for a given number of loci. For each parameter set we iterate the recursion equations that describe the dynamics of gamete frequencies starting from 20 randomly chosen initial conditions until an equilibrium is reached, record the quantities of interest, and calculate their corresponding mean values. As the number of loci increases from two to five, the fraction of the genome expected to be polymorphic declines surprisingly rapidly, and the loci that are polymorphic increasingly are those with small effects on the trait. As a result, the genetic variance expected to be maintained under stabilizing selection decreases very rapidly with increased number of loci. The equilibrium structure expected under stabilizing selection on an additive trait differs markedly from that expected under selection with no constraints on genotypic fitness values. The expected genetic variance, the expected polymorphic fraction of the genome, as well as other quantities of interest, are only weakly dependent on the selection intensity and the level of recombination. PMID:10353920

  14. Effect of the addition of mixture of plant components on the mechanical properties of wheat bread

    NASA Astrophysics Data System (ADS)

    Wójcik, Monika; Dziki, Dariusz; Biernacka, Beata; Różyło, Renata; Miś, Antoni; Hassoon, Waleed H.

    2017-10-01

    Instrumental methods of measuring the mechanical properties of bread can be used to determine changes in the properties of it during storage, as well as to determine the effect of various additives on the bread texture. The aim of this study was to investigate the effect of the mixture of plant components on the physical properties of wheat bread. In particular, the mechanical properties of the crumb and crust were studied. A sensory evaluation of the end product was also performed. The mixture of plant components included: carob fiber, milled grain red quinoa and black oat (1:2:2) - added at 0, 5, 10, 15, 20, 25 % - into wheat flour. The results showed that the increase of the addition of the proposed additive significantly increased the water absorption of flour mixtures. Moreover, the use of the mixture of plant components above 5% resulted in the increase of bread volume and decrease of crumb density. Furthermore, the addition of the mixture of plant components significantly affected the mechanical properties of bread crumb. The hardness of crumb also decreased as a result of the mixture of plant components addition. The highest cohesiveness was obtained for bread with 10% of additive and the lowest for bread with 25% of mixture of plant components. Most importantly, the enrichment of wheat flour with the mixture of plant components significantly reduced the crust failure force and crust failure work. The results of sensory evaluation showed that the addition of the mixture of plant components of up to 10% had little effect on bread quality.

  15. Additive Manufacturing of Low Cost Upper Stage Propulsion Components

    NASA Technical Reports Server (NTRS)

    Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda

    2014-01-01

    NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.

  16. Germline genetic variants in men with prostate cancer and one or more additional cancers.

    PubMed

    Pilié, Patrick G; Johnson, Anna M; Hanson, Kristen L; Dayno, Megan E; Kapron, Ashley L; Stoffel, Elena M; Cooney, Kathleen A

    2017-10-15

    Prostate cancer has a significant heritable component, and rare deleterious germline variants in certain genes can increase the risk of the disease. The aim of the current study was to describe the prevalence of pathogenic germline variants in cancer-predisposing genes in men with prostate cancer and at least 1 additional primary cancer. Using a multigene panel, the authors sequenced germline DNA from 102 men with prostate cancer and at least 1 additional primary cancer who also met ≥1 of the following criteria: 1) age ≤55 years at the time of diagnosis of the first malignancy; 2) rare tumor type or atypical presentation of a common tumor; and/or 3) ≥3 primary malignancies. Cancer family history and clinicopathologic data were independently reviewed by a clinical genetic counselor to determine whether the patient met established criteria for testing for a hereditary cancer syndrome. Sequencing identified approximately 3500 variants. Nine protein-truncating deleterious mutations were found across 6 genes, including BRCA2, ataxia telangiectasia mutated (ATM), mutL homolog 1 (MLH1), BRCA1 interacting protein C-terminal helicase 1 (BRIP1), partner and localizer of BRCA2 (PALB2), and fibroblast growth factor receptor 3 (FGFR3). Likely pathogenic missense variants were identified in checkpoint kinase 2 (CHEK2) and homeobox protein Hox-B13 (HOXB13). In total, 11 of 102 patients (10.8%) were found to have pathogenic or likely pathogenic mutations in cancer-predisposing genes. The majority of these men (64%) did not meet current clinical criteria for germline testing. Men with prostate cancer and at least 1 additional primary cancer are enriched for harboring a germline deleterious mutation in a cancer-predisposing gene that may impact cancer prognosis and treatment, but the majority do not meet current criteria for clinical genetic testing. Cancer 2017;123:3925-32. © 2017 American Cancer Society. © 2017 American Cancer Society.

  17. Towards the optimal design of an uncemented acetabular component using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Ghosh, Rajesh; Pratihar, Dilip Kumar; Gupta, Sanjay

    2015-12-01

    Aseptic loosening of the acetabular component (hemispherical socket of the pelvic bone) has been mainly attributed to bone resorption and excessive generation of wear particle debris. The aim of this study was to determine optimal design parameters for the acetabular component that would minimize bone resorption and volumetric wear. Three-dimensional finite element models of intact and implanted pelvises were developed using data from computed tomography scans. A multi-objective optimization problem was formulated and solved using a genetic algorithm. A combination of suitable implant material and corresponding set of optimal thicknesses of the component was obtained from the Pareto-optimal front of solutions. The ultra-high-molecular-weight polyethylene (UHMWPE) component generated considerably greater volumetric wear but lower bone density loss compared to carbon-fibre reinforced polyetheretherketone (CFR-PEEK) and ceramic. CFR-PEEK was located in the range between ceramic and UHMWPE. Although ceramic appeared to be a viable alternative to cobalt-chromium-molybdenum alloy, CFR-PEEK seems to be the most promising alternative material.

  18. Three-way parallel independent component analysis for imaging genetics using multi-objective optimization.

    PubMed

    Ulloa, Alvaro; Jingyu Liu; Vergara, Victor; Jiayu Chen; Calhoun, Vince; Pattichis, Marios

    2014-01-01

    In the biomedical field, current technology allows for the collection of multiple data modalities from the same subject. In consequence, there is an increasing interest for methods to analyze multi-modal data sets. Methods based on independent component analysis have proven to be effective in jointly analyzing multiple modalities, including brain imaging and genetic data. This paper describes a new algorithm, three-way parallel independent component analysis (3pICA), for jointly identifying genomic loci associated with brain function and structure. The proposed algorithm relies on the use of multi-objective optimization methods to identify correlations among the modalities and maximally independent sources within modality. We test the robustness of the proposed approach by varying the effect size, cross-modality correlation, noise level, and dimensionality of the data. Simulation results suggest that 3p-ICA is robust to data with SNR levels from 0 to 10 dB and effect-sizes from 0 to 3, while presenting its best performance with high cross-modality correlations, and more than one subject per 1,000 variables. In an experimental study with 112 human subjects, the method identified links between a genetic component (pointing to brain function and mental disorder associated genes, including PPP3CC, KCNQ5, and CYP7B1), a functional component related to signal decreases in the default mode network during the task, and a brain structure component indicating increases of gray matter in brain regions of the default mode region. Although such findings need further replication, the simulation and in-vivo results validate the three-way parallel ICA algorithm presented here as a useful tool in biomedical data decomposition applications.

  19. Shared additive genetic influences on DSM-IV criteria for alcohol dependence in subjects of European ancestry.

    PubMed

    Palmer, Rohan H C; McGeary, John E; Heath, Andrew C; Keller, Matthew C; Brick, Leslie A; Knopik, Valerie S

    2015-12-01

    Genetic studies of alcohol dependence (AD) have identified several candidate loci and genes, but most observed effects are small and difficult to reproduce. A plausible explanation for inconsistent findings may be a violation of the assumption that genetic factors contributing to each of the seven DSM-IV criteria point to a single underlying dimension of risk. Given that recent twin studies suggest that the genetic architecture of AD is complex and probably involves multiple discrete genetic factors, the current study employed common single nucleotide polymorphisms in two multivariate genetic models to examine the assumption that the genetic risk underlying DSM-IV AD is unitary. AD symptoms and genome-wide single nucleotide polymorphism (SNP) data from 2596 individuals of European descent from the Study of Addiction: Genetics and Environment were analyzed using genomic-relatedness-matrix restricted maximum likelihood. DSM-IV AD symptom covariance was described using two multivariate genetic factor models. Common SNPs explained 30% (standard error=0.136, P=0.012) of the variance in AD diagnosis. Additive genetic effects varied across AD symptoms. The common pathway model approach suggested that symptoms could be described by a single latent variable that had a SNP heritability of 31% (0.130, P=0.008). Similarly, the exploratory genetic factor model approach suggested that the genetic variance/covariance across symptoms could be represented by a single genetic factor that accounted for at least 60% of the genetic variance in any one symptom. Additive genetic effects on DSM-IV alcohol dependence criteria overlap. The assumption of common genetic effects across alcohol dependence symptoms appears to be a valid assumption. © 2015 Society for the Study of Addiction.

  20. Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures

    PubMed Central

    Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.

    2014-01-01

    Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE. PMID:24727289

  1. Additive Manufacture of Plasma Diagnostic Components Final Report Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Simon; Romero-Talamas, Carlos; You, Setthivoine

    There is now a well-established set of plasma diagnostics (see e.g. [3]), but these remain some of the mostexpensive assemblies in fusion systems since for every system they have to be custom built, and time fordiagnostic development can pace the project. Additive manufacturing (AM) has the potential to decreaseproduction cost and significantly lower design time of fusion diagnostic subsystems, which would realizesignificant cost reduction for standard diagnostics. In some cases, these basic components can be additivelymanufactured for less than 1/100th costs of conventional manufacturing.In our DOE Phase II SBIR, we examined the impact that AM can have on plasma diagnosticmore » cost bytaking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) tech-niques, then optimizing the design to exploit the benefits of AM. The impact of AM techniques on cost isfound to be in several areas. First, the cost of materials falls because AM parts can be manufactured withlittle to no waste, and engineered to use less material than CM. Next, the cost of fabrication falls for AMparts relative to CM since the fabrication time can be computed exactly, and often no post-processing isrequired for the part to be functional. We find that AM techniques are well suited for plasma diagnosticssince typical diagnostic complexity comes at no additional cost. Cooling channels, for example, can be builtin to plasma-facing components at no extra cost. Fabrication costs associated with assembly are lower forAM parts because many components can be combined and printed as monoliths, thereby mitigating the needfor alignment or calibration. Finally, the cost of engineering is impacted by exploiting AM design tools thatallow standard components to be customized through web-interfaces. Furthermore, we find that conceptdesign costs can be impacted by scripting interfaces for online engineering design tools.« less

  2. Additively Manufactured IN718 Components with Wirelessly Powered and Interrogated Embedded Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attridge, Paul; Bajekal, Sanjay; Klecka, Michael

    A methodology is described for embedding commercial-off-the-shelf sensors together with wireless communication and power circuit elements using direct laser metal sintered additively manufactured components. Physics based models of the additive manufacturing processes and sensor/wireless level performance models guided the design and embedment processes. A combination of cold spray deposition and laser engineered net shaping was used to fashion the transmitter/receiving elements and embed the sensors, thereby providing environmental protection and component robustness/survivability for harsh conditions. By design, this complement of analog and digital sensors were wirelessly powered and interrogated using a health and utilization monitoring system; enabling real-time, in situmore » prognostics and diagnostics.« less

  3. Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study.

    PubMed

    Greenwood, Tiffany A; Lazzeroni, Laura C; Calkins, Monica E; Freedman, Robert; Green, Michael F; Gur, Raquel E; Gur, Ruben C; Light, Gregory A; Nuechterlein, Keith H; Olincy, Ann; Radant, Allen D; Seidman, Larry J; Siever, Larry J; Silverman, Jeremy M; Stone, William S; Sugar, Catherine A; Swerdlow, Neal R; Tsuang, Debby W; Tsuang, Ming T; Turetsky, Bruce I; Braff, David L

    2016-01-01

    The Consortium on the Genetics of Schizophrenia Family Study (COGS-1) has previously reported our efforts to characterize the genetic architecture of 12 primary endophenotypes for schizophrenia. We now report the characterization of 13 additional measures derived from the same endophenotype test paradigms in the COGS-1 families. Nine of the measures were found to discriminate between schizophrenia patients and controls, were significantly heritable (31 to 62%), and were sufficiently independent of previously assessed endophenotypes, demonstrating utility as additional endophenotypes. Genotyping via a custom array of 1536 SNPs from 94 candidate genes identified associations for CTNNA2, ERBB4, GRID1, GRID2, GRIK3, GRIK4, GRIN2B, NOS1AP, NRG1, and RELN across multiple endophenotypes. An experiment-wide p value of 0.003 suggested that the associations across all SNPs and endophenotypes collectively exceeded chance. Linkage analyses performed using a genome-wide SNP array further identified significant or suggestive linkage for six of the candidate endophenotypes, with several genes of interest located beneath the linkage peaks (e.g., CSMD1, DISC1, DLGAP2, GRIK2, GRIN3A, and SLC6A3). While the partial convergence of the association and linkage likely reflects differences in density of gene coverage provided by the distinct genotyping platforms, it is also likely an indication of the differential contribution of rare and common variants for some genes and methodological differences in detection ability. Still, many of the genes implicated by COGS through endophenotypes have been identified by independent studies of common, rare, and de novo variation in schizophrenia, all converging on a functional genetic network related to glutamatergic neurotransmission that warrants further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer disease: short- and long-term modification by non-genetic risk factors.

    PubMed

    Sato, Naoyuki; Morishita, Ryuichi

    2013-11-05

    It is well known that a specific set of genetic and non-genetic risk factors contributes to the onset of Alzheimer disease (AD). Non-genetic risk factors include diabetes, hypertension in mid-life, and probably dyslipidemia in mid-life. This review focuses on the vascular and metabolic components of non-genetic risk factors. The mechanisms whereby non-genetic risk factors modify cognitive dysfunction are divided into four components, short- and long-term effects of vascular and metabolic factors. These consist of (1) compromised vascular reactivity, (2) vascular lesions, (3) hypo/hyperglycemia, and (4) exacerbated AD histopathological features, respectively. Vascular factors compromise cerebrovascular reactivity in response to neuronal activity and also cause irreversible vascular lesions. On the other hand, representative short-term effects of metabolic factors on cognitive dysfunction occur due to hypoglycemia or hyperglycemia. Non-genetic risk factors also modify the pathological manifestations of AD in the long-term. Therefore, vascular and metabolic factors contribute to aggravation of cognitive dysfunction in AD through short-term and long-term effects. β-amyloid could be involved in both vascular and metabolic components. It might be beneficial to support treatment in AD patients by appropriate therapeutic management of non-genetic risk factors, considering the contributions of these four elements to the manifestation of cognitive dysfunction in individual patients, though all components are not always present. It should be clarified how these four components interact with each other. To answer this question, a clinical prospective study that follows up clinical features with respect to these four components: (1) functional MRI or SPECT for cerebrovascular reactivity, (2) MRI for ischemic lesions and atrophy, (3) clinical episodes of hypoglycemia and hyperglycemia, (4) amyloid-PET and tau-PET for pathological features of AD, would be required.

  5. Mixed Model Methods for Genomic Prediction and Variance Component Estimation of Additive and Dominance Effects Using SNP Markers

    PubMed Central

    Da, Yang; Wang, Chunkao; Wang, Shengwen; Hu, Guo

    2014-01-01

    We established a genomic model of quantitative trait with genomic additive and dominance relationships that parallels the traditional quantitative genetics model, which partitions a genotypic value as breeding value plus dominance deviation and calculates additive and dominance relationships using pedigree information. Based on this genomic model, two sets of computationally complementary but mathematically identical mixed model methods were developed for genomic best linear unbiased prediction (GBLUP) and genomic restricted maximum likelihood estimation (GREML) of additive and dominance effects using SNP markers. These two sets are referred to as the CE and QM sets, where the CE set was designed for large numbers of markers and the QM set was designed for large numbers of individuals. GBLUP and associated accuracy formulations for individuals in training and validation data sets were derived for breeding values, dominance deviations and genotypic values. Simulation study showed that GREML and GBLUP generally were able to capture small additive and dominance effects that each accounted for 0.00005–0.0003 of the phenotypic variance and GREML was able to differentiate true additive and dominance heritability levels. GBLUP of the total genetic value as the summation of additive and dominance effects had higher prediction accuracy than either additive or dominance GBLUP, causal variants had the highest accuracy of GREML and GBLUP, and predicted accuracies were in agreement with observed accuracies. Genomic additive and dominance relationship matrices using SNP markers were consistent with theoretical expectations. The GREML and GBLUP methods can be an effective tool for assessing the type and magnitude of genetic effects affecting a phenotype and for predicting the total genetic value at the whole genome level. PMID:24498162

  6. Mixed model methods for genomic prediction and variance component estimation of additive and dominance effects using SNP markers.

    PubMed

    Da, Yang; Wang, Chunkao; Wang, Shengwen; Hu, Guo

    2014-01-01

    We established a genomic model of quantitative trait with genomic additive and dominance relationships that parallels the traditional quantitative genetics model, which partitions a genotypic value as breeding value plus dominance deviation and calculates additive and dominance relationships using pedigree information. Based on this genomic model, two sets of computationally complementary but mathematically identical mixed model methods were developed for genomic best linear unbiased prediction (GBLUP) and genomic restricted maximum likelihood estimation (GREML) of additive and dominance effects using SNP markers. These two sets are referred to as the CE and QM sets, where the CE set was designed for large numbers of markers and the QM set was designed for large numbers of individuals. GBLUP and associated accuracy formulations for individuals in training and validation data sets were derived for breeding values, dominance deviations and genotypic values. Simulation study showed that GREML and GBLUP generally were able to capture small additive and dominance effects that each accounted for 0.00005-0.0003 of the phenotypic variance and GREML was able to differentiate true additive and dominance heritability levels. GBLUP of the total genetic value as the summation of additive and dominance effects had higher prediction accuracy than either additive or dominance GBLUP, causal variants had the highest accuracy of GREML and GBLUP, and predicted accuracies were in agreement with observed accuracies. Genomic additive and dominance relationship matrices using SNP markers were consistent with theoretical expectations. The GREML and GBLUP methods can be an effective tool for assessing the type and magnitude of genetic effects affecting a phenotype and for predicting the total genetic value at the whole genome level.

  7. A Multi-Scale, Multi-Physics Optimization Framework for Additively Manufactured Structural Components

    NASA Astrophysics Data System (ADS)

    El-Wardany, Tahany; Lynch, Mathew; Gu, Wenjiong; Hsu, Arthur; Klecka, Michael; Nardi, Aaron; Viens, Daniel

    This paper proposes an optimization framework enabling the integration of multi-scale / multi-physics simulation codes to perform structural optimization design for additively manufactured components. Cold spray was selected as the additive manufacturing (AM) process and its constraints were identified and included in the optimization scheme. The developed framework first utilizes topology optimization to maximize stiffness for conceptual design. The subsequent step applies shape optimization to refine the design for stress-life fatigue. The component weight was reduced by 20% while stresses were reduced by 75% and the rigidity was improved by 37%. The framework and analysis codes were implemented using Altair software as well as an in-house loading code. The optimized design was subsequently produced by the cold spray process.

  8. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    PubMed

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  9. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  10. Feasibility of a multi-component additive for efficient control of activated sludge filamentous bulking.

    PubMed

    Seka, A M; Van De Wiele, T; Verstraete, W

    2001-08-01

    Instantaneous improvement of the settling of bulking filamentous activated sludge can be achieved by the addition of a polymer or a large amount (up to 100% of the MLSS concentration) of talc powder to the sludge. Long-term improvement relies on repeated additions, as these additives have no adverse effects on the causative filaments. A multi-component additive was compared to the traditional additives in lab-scale activated sludge units using three highly filamentous sludges from different industrial treatment plants. The study demonstrated that the multi-component additive was superior to the traditional remedies. It was shown that, in the case of severe filamentous bulking, a single addition of the new additive immediately improved sludge settling and exerted a destructive effect on the causative filamentous bacteria. Thus, the latter additive also ensured a long-term sludge sedimentation improvement. The traditional additives exhibited an immediate and short-term effect. The novel additive also retarded sludge rising due to denitrification and it improved sludge dewaterability. The study revealed Nostocoido limicola II, with slightly hydrophobic cell wall, to be somewhat resistant to the quaternary ammonium salt present as biocide in the additive.

  11. 78 FR 41840 - Indirect Food Additives: Adhesives and Components of Coatings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 175 [Docket No. FDA-2012-F-0728] Indirect Food Additives: Adhesives and Components of Coatings AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA or we) is amending the...

  12. Identification of Methylosome Components as Negative Regulators of Plant Immunity Using Chemical Genetics.

    PubMed

    Huang, Shuai; Balgi, Aruna; Pan, Yaping; Li, Meng; Zhang, Xiaoran; Du, Lilin; Zhou, Ming; Roberge, Michel; Li, Xin

    2016-12-05

    Nucleotide-binding leucine-rich repeat (NLR) proteins serve as immune receptors in both plants and animals. To identify components required for NLR-mediated immunity, we designed and carried out a chemical genetics screen to search for small molecules that can alter immune responses in Arabidopsis thaliana. From 13 600 compounds, we identified Ro 8-4304 that was able to specifically suppress the severe autoimmune phenotypes of chs3-2D (chilling sensitive 3, 2D), including the arrested growth morphology and heightened PR (Pathogenesis Related) gene expression. Further, six Ro 8-4304 insensitive mutants were uncovered from the Ro 8-4304-insensitive mutant (rim) screen using a mutagenized chs3-2D population. Positional cloning revealed that rim1 encodes an allele of AtICln (I, currents; Cl, chloride; n, nucleotide). Genetic and biochemical analysis demonstrated that AtICln is in the same protein complex with the methylosome components small nuclear ribonucleoprotein D3b (SmD3b) and protein arginine methyltransferase 5 (PRMT5), which are required for the biogenesis of small nuclear ribonucleoproteins (snRNPs) involved in mRNA splicing. Double mutant analysis revealed that SmD3b is also involved in the sensitivity to Ro 8-4304, and the prmt5-1 chs3-2D double mutant is lethal. Loss of AtICln, SmD3b, or PRMT5 function results in enhanced disease resistance against the virulent oomycete pathogen Hyaloperonospora arabidopsidis Noco2, suggesting that mRNA splicing plays a previously unknown negative role in plant immunity. The successful implementation of a high-throughput chemical genetic screen and the identification of a small-molecule compound affecting plant immunity indicate that chemical genetics is a powerful tool to study whole-organism plant defense pathways. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  13. Genetic support for the dual nature of attention deficit hyperactivity disorder: substantial genetic overlap between the inattentive and hyperactive-impulsive components.

    PubMed

    McLoughlin, Gráinne; Ronald, Angelica; Kuntsi, Jonna; Asherson, Philip; Plomin, Robert

    2007-12-01

    Attention deficit hyperactivity disorder (ADHD) is a common, complex and highly heritable disorder, characterised by inattentive, impulsive and overactive behaviour. Evidence for the heritability of ADHD measures in twin population samples has come from the analysis of total scores that combine inattentive and hyperactive-impulsive symptoms subscales. This study investigated, in a community sample, the aetiology of ADHD-like traits and the aetiological overlap between the two dimensions that define the ADHD disorder. Parents of 6,222 approximately 8-year-old twin pairs from the Twins Early Development Study (TEDS) population sample completed the two subscales of the Conners' 18-item DSMIV checklist, a screening instrument for ADHD symptoms. Both subscales were highly heritable (hyperactive-impulsive: 88%; inattentive: 79%). Bivariate genetic modelling indicated substantial genetic overlap between the two components; however, there were significant independent genetic effects. These findings suggest that many genes associated with the hyperactivity-impulsivity dimension will also be associated with the inattentive dimension but that there is significant genetic heterogeneity as well. These results provide genetic support for combining the two behavioural dimensions that define ADHD, but also suggest that some symptom-specific genes will also be identified.

  14. Genetic and Epigenetic Variations Induced by Wheat-Rye 2R and 5R Monosomic Addition Lines

    PubMed Central

    Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang

    2013-01-01

    Background Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. Methodology/Principal Findings In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. Conclusions/Significance The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat. PMID:23342073

  15. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    PubMed

    Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang

    2013-01-01

    Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  16. 15 CFR 921.33 - Boundary changes, amendments to the management plan, and addition of multiple-site components.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... management plan, and addition of multiple-site components. 921.33 Section 921.33 Commerce and Foreign Trade... management plan, and addition of multiple-site components. (a) Changes in the boundary of a Reserve and major... management plan shall address goals and objectives for all components of the multi-site Reserve and the...

  17. Full-scale evaluation of a multi-component additive for efficient control of activated sludge filamentous bulking.

    PubMed

    Seka, M A; Van DeWiele, T; Verstraete, W

    2002-01-01

    A multi-component additive formulated for a more efficient control of activated sludge filamentous bulking was evaluated at a full-scale treatment plant experiencing severe filamentous bulking. It was found that, besides offering an immediate improvement of sludge settling, the multi-component additive was able to eliminate the filamentous bacteria causing the bulking. Hence, contrary to ordinary additives, this novel additive yielded immediate as well as long-term improvements in sludge sedimentation upon a few additions. Preliminary lab-scale toxicity tests showed that the treatment of the sludge by the additive should not impart any toxicity to the resulting effluent.

  18. Pedigree-based estimation of covariance between dominance deviations and additive genetic effects in closed rabbit lines considering inbreeding and using a computationally simpler equivalent model.

    PubMed

    Fernández, E N; Legarra, A; Martínez, R; Sánchez, J P; Baselga, M

    2017-06-01

    Inbreeding generates covariances between additive and dominance effects (breeding values and dominance deviations). In this work, we developed and applied models for estimation of dominance and additive genetic variances and their covariance, a model that we call "full dominance," from pedigree and phenotypic data. Estimates with this model such as presented here are very scarce both in livestock and in wild genetics. First, we estimated pedigree-based condensed probabilities of identity using recursion. Second, we developed an equivalent linear model in which variance components can be estimated using closed-form algorithms such as REML or Gibbs sampling and existing software. Third, we present a new method to refer the estimated variance components to meaningful parameters in a particular population, i.e., final partially inbred generations as opposed to outbred base populations. We applied these developments to three closed rabbit lines (A, V and H) selected for number of weaned at the Polytechnic University of Valencia. Pedigree and phenotypes are complete and span 43, 39 and 14 generations, respectively. Estimates of broad-sense heritability are 0.07, 0.07 and 0.05 at the base versus 0.07, 0.07 and 0.09 in the final generations. Narrow-sense heritability estimates are 0.06, 0.06 and 0.02 at the base versus 0.04, 0.04 and 0.01 at the final generations. There is also a reduction in the genotypic variance due to the negative additive-dominance correlation. Thus, the contribution of dominance variation is fairly large and increases with inbreeding and (over)compensates for the loss in additive variation. In addition, estimates of the additive-dominance correlation are -0.37, -0.31 and 0.00, in agreement with the few published estimates and theoretical considerations. © 2017 Blackwell Verlag GmbH.

  19. Evolution in fluctuating environments: decomposing selection into additive components of the Robertson-Price equation.

    PubMed

    Engen, Steinar; Saether, Bernt-Erik

    2014-03-01

    We analyze the stochastic components of the Robertson-Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  20. 78 FR 52429 - Indirect Food Additives: Adhesives and Components of Coatings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 175 Indirect Food Additives: Adhesives and Components of Coatings CFR Correction In Title 21 of the Code of Federal Regulations, Parts 170 to 199, revised as of April 1, 2013, on page 196, in Sec. 175.320, in paragraph (c), in...

  1. QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide.

    PubMed

    Qin, Li-Tang; Chen, Yu-Han; Zhang, Xin; Mo, Ling-Yun; Zeng, Hong-Hu; Liang, Yan-Peng

    2018-05-01

    Antibiotics and pesticides may exist as a mixture in real environment. The combined effect of mixture can either be additive or non-additive (synergism and antagonism). However, no effective predictive approach exists on predicting the synergistic and antagonistic toxicities of mixtures. In this study, we developed a quantitative structure-activity relationship (QSAR) model for the toxicities (half effect concentration, EC 50 ) of 45 binary and multi-component mixtures composed of two antibiotics and four pesticides. The acute toxicities of single compound and mixtures toward Aliivibrio fischeri were tested. A genetic algorithm was used to obtain the optimized model with three theoretical descriptors. Various internal and external validation techniques indicated that the coefficient of determination of 0.9366 and root mean square error of 0.1345 for the QSAR model predicted that 45 mixture toxicities presented additive, synergistic, and antagonistic effects. Compared with the traditional concentration additive and independent action models, the QSAR model exhibited an advantage in predicting mixture toxicity. Thus, the presented approach may be able to fill the gaps in predicting non-additive toxicities of binary and multi-component mixtures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A Genome-Wide Association Analysis Reveals Epistatic Cancellation of Additive Genetic Variance for Root Length in Arabidopsis thaliana.

    PubMed

    Lachowiec, Jennifer; Shen, Xia; Queitsch, Christine; Carlborg, Örjan

    2015-01-01

    Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the genomic narrow-sense heritability for this trait in the examined population was statistically zero. The low amount of additive genetic variance that could be captured by the genome-wide genotypes likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, as the broad-sense heritability for root length was significantly larger, and primarily due to epistasis, we also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. Four interacting pairs of loci were revealed, involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. The genotype-phenotype maps for these pairs revealed epistasis that cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. The statistical epistatic analyses were thus indispensable for confirming known, and identifying new, candidate genes for root length in this population of wild-collected A. thaliana accessions. We also illustrate how epistatic cancellation of the additive genetic variance

  3. Factors affecting maternal participation in the genetic component of the National Birth Defects Prevention Study-United States, 1997-2007.

    PubMed

    Glidewell, Jill; Reefhuis, Jennita; Rasmussen, Sonja A; Woomert, Alison; Hobbs, Charlotte; Romitti, Paul A; Crider, Krista S

    2014-04-01

    As epidemiological studies expand to examine gene-environment interaction effects, it is important to identify factors associated with participation in genetic studies. The National Birth Defects Prevention Study is a multisite case-control study designed to investigate environmental and genetic risk factors for major birth defects. The National Birth Defects Prevention Study includes maternal telephone interviews and mailed buccal cell self-collection kits. Because subjects can participate in the interview, independent of buccal cell collection, detailed analysis of factors associated with participation in buccal cell collection was possible. Multivariable logistic regression models were used to identify the factors associated with participation in the genetic component of the study. Buccal cell participation rates varied by race/ethnicity (non-Hispanic whites, 66.9%; Hispanics, 60.4%; and non-Hispanic blacks, 47.3%) and study site (50.2-74.2%). Additional monetary incentive following return of buccal cell kit and shorter interval between infant's estimated date of delivery and interview were associated with increased participation across all racial/ethnic groups. Higher education and delivering an infant with a birth defect were associated with increased participation among non-Hispanic whites and Hispanics. Factors associated with participation varied by race/ethnicity. Improved understanding of factors associated with participation may facilitate strategies to increase participation, thereby improving generalizability of study findings.

  4. Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect.

    PubMed

    Bocianowski, Jan

    2013-03-01

    Epistasis, an additive-by-additive interaction between quantitative trait loci, has been defined as a deviation from the sum of independent effects of individual genes. Epistasis between QTLs assayed in populations segregating for an entire genome has been found at a frequency close to that expected by chance alone. Recently, epistatic effects have been considered by many researchers as important for complex traits. In order to understand the genetic control of complex traits, it is necessary to clarify additive-by-additive interactions among genes. Herein we compare estimates of a parameter connected with the additive gene action calculated on the basis of two models: a model excluding epistasis and a model with additive-by-additive interaction effects. In this paper two data sets were analysed: 1) 150 barley doubled haploid lines derived from the Steptoe × Morex cross, and 2) 145 DH lines of barley obtained from the Harrington × TR306 cross. The results showed that in cases when the effect of epistasis was different from zero, the coefficient of determination was larger for the model with epistasis than for the one excluding epistasis. These results indicate that epistatic interaction plays an important role in controlling the expression of complex traits.

  5. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    ERIC Educational Resources Information Center

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  6. Additive genetic variance in polyandry enables its evolution, but polyandry is unlikely to evolve through sexy or good sperm processes.

    PubMed

    Travers, L M; Simmons, L W; Garcia-Gonzalez, F

    2016-05-01

    Polyandry is widespread despite its costs. The sexually selected sperm hypotheses ('sexy' and 'good' sperm) posit that sperm competition plays a role in the evolution of polyandry. Two poorly studied assumptions of these hypotheses are the presence of additive genetic variance in polyandry and sperm competitiveness. Using a quantitative genetic breeding design in a natural population of Drosophila melanogaster, we first established the potential for polyandry to respond to selection. We then investigated whether polyandry can evolve through sexually selected sperm processes. We measured lifetime polyandry and offensive sperm competitiveness (P2 ) while controlling for sampling variance due to male × male × female interactions. We also measured additive genetic variance in egg-to-adult viability and controlled for its effect on P2 estimates. Female lifetime polyandry showed significant and substantial additive genetic variance and evolvability. In contrast, we found little genetic variance or evolvability in P2 or egg-to-adult viability. Additive genetic variance in polyandry highlights its potential to respond to selection. However, the low levels of genetic variance in sperm competitiveness suggest that the evolution of polyandry may not be driven by sexy sperm or good sperm processes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  7. Genetics Home Reference: complement component 8 deficiency

    MedlinePlus

    ... in people with Hispanic, Japanese, or African Caribbean heritage, whereas type II primarily occurs in people of Northern European descent. Related Information What information about a genetic condition can statistics provide? Why are some genetic ...

  8. Incorporating a New Bioinformatics Component into Genetics at a Historically Black College: Outcomes and Lessons

    ERIC Educational Resources Information Center

    Holtzclaw, J. David; Eisen, Arri; Whitney, Erika M.; Penumetcha, Meera; Hoey, J. Joseph; Kimbro, K. Sean

    2006-01-01

    Many students at minority-serving institutions are underexposed to Internet resources such as the human genome project, PubMed, NCBI databases, and other Web-based technologies because of a lack of financial resources. To change this, we designed and implemented a new bioinformatics component to supplement the undergraduate Genetics course at…

  9. Implementation of the Realized Genomic Relationship Matrix to Open-Pollinated White Spruce Family Testing for Disentangling Additive from Nonadditive Genetic Effects

    PubMed Central

    Gamal El-Dien, Omnia; Ratcliffe, Blaise; Klápště, Jaroslav; Porth, Ilga; Chen, Charles; El-Kassaby, Yousry A.

    2016-01-01

    The open-pollinated (OP) family testing combines the simplest known progeny evaluation and quantitative genetics analyses as candidates’ offspring are assumed to represent independent half-sib families. The accuracy of genetic parameter estimates is often questioned as the assumption of “half-sibling” in OP families may often be violated. We compared the pedigree- vs. marker-based genetic models by analysing 22-yr height and 30-yr wood density for 214 white spruce [Picea glauca (Moench) Voss] OP families represented by 1694 individuals growing on one site in Quebec, Canada. Assuming half-sibling, the pedigree-based model was limited to estimating the additive genetic variances which, in turn, were grossly overestimated as they were confounded by very minor dominance and major additive-by-additive epistatic genetic variances. In contrast, the implemented genomic pairwise realized relationship models allowed the disentanglement of additive from all nonadditive factors through genetic variance decomposition. The marker-based models produced more realistic narrow-sense heritability estimates and, for the first time, allowed estimating the dominance and epistatic genetic variances from OP testing. In addition, the genomic models showed better prediction accuracies compared to pedigree models and were able to predict individual breeding values for new individuals from untested families, which was not possible using the pedigree-based model. Clearly, the use of marker-based relationship approach is effective in estimating the quantitative genetic parameters of complex traits even under simple and shallow pedigree structure. PMID:26801647

  10. Genetic predisposition to coronary heart disease and stroke using an additive genetic risk score: a population-based study in Greece

    USDA-ARS?s Scientific Manuscript database

    Objective: To determine the extent to which the risk for incident coronary heart disease (CHD) increases in relation to a genetic risk score (GRS) that additively integrates the influence of high-risk alleles in nine documented single nucleotide polymorphisms (SNPs) for CHD, and to examine whether t...

  11. Variance component and breeding value estimation for genetic heterogeneity of residual variance in Swedish Holstein dairy cattle.

    PubMed

    Rönnegård, L; Felleki, M; Fikse, W F; Mulder, H A; Strandberg, E

    2013-04-01

    Trait uniformity, or micro-environmental sensitivity, may be studied through individual differences in residual variance. These differences appear to be heritable, and the need exists, therefore, to fit models to predict breeding values explaining differences in residual variance. The aim of this paper is to estimate breeding values for micro-environmental sensitivity (vEBV) in milk yield and somatic cell score, and their associated variance components, on a large dairy cattle data set having more than 1.6 million records. Estimation of variance components, ordinary breeding values, and vEBV was performed using standard variance component estimation software (ASReml), applying the methodology for double hierarchical generalized linear models. Estimation using ASReml took less than 7 d on a Linux server. The genetic standard deviations for residual variance were 0.21 and 0.22 for somatic cell score and milk yield, respectively, which indicate moderate genetic variance for residual variance and imply that a standard deviation change in vEBV for one of these traits would alter the residual variance by 20%. This study shows that estimation of variance components, estimated breeding values and vEBV, is feasible for large dairy cattle data sets using standard variance component estimation software. The possibility to select for uniformity in Holstein dairy cattle based on these estimates is discussed. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Systematic profiling of Caenorhabditis elegans locomotive behaviors reveals additional components in G-protein Gαq signaling.

    PubMed

    Yu, Hui; Aleman-Meza, Boanerges; Gharib, Shahla; Labocha, Marta K; Cronin, Christopher J; Sternberg, Paul W; Zhong, Weiwei

    2013-07-16

    Genetic screens have been widely applied to uncover genetic mechanisms of movement disorders. However, most screens rely on human observations of qualitative differences. Here we demonstrate the application of an automatic imaging system to conduct a quantitative screen for genes regulating the locomotive behavior in Caenorhabditis elegans. Two hundred twenty-seven neuronal signaling genes with viable homozygous mutants were selected for this study. We tracked and recorded each animal for 4 min and analyzed over 4,400 animals of 239 genotypes to obtain a quantitative, 10-parameter behavioral profile for each genotype. We discovered 87 genes whose inactivation causes movement defects, including 50 genes that had never been associated with locomotive defects. Computational analysis of the high-content behavioral profiles predicted 370 genetic interactions among these genes. Network partition revealed several functional modules regulating locomotive behaviors, including sensory genes that detect environmental conditions, genes that function in multiple types of excitable cells, and genes in the signaling pathway of the G protein Gαq, a protein that is essential for animal life and behavior. We developed quantitative epistasis analysis methods to analyze the locomotive profiles and validated the prediction of the γ isoform of phospholipase C as a component in the Gαq pathway. These results provided a system-level understanding of how neuronal signaling genes coordinate locomotive behaviors. This study also demonstrated the power of quantitative approaches in genetic studies.

  13. Genetic parameters and principal component analysis for egg production from White Leghorn hens.

    PubMed

    Venturini, G C; Savegnago, R P; Nunes, B N; Ledur, M C; Schmidt, G S; El Faro, L; Munari, D P

    2013-09-01

    The objectives of this study were to estimate genetic parameters for accumulated egg production over 3-wk periods and for total egg production over 54 wk of egg-laying, and using principal component analysis (PCA), to explore the relationships among the breeding values of these traits to identify the possible genetic relationships present among them and hence to observe which of them could be used as selection criteria for improving egg production. Egg production was measured among 1,512 females of a line of White Leghorn laying hens. The traits analyzed were the number of eggs produced over partial periods of 3 wk, thus totaling 18 partial periods (P1 to P18), and the total number of eggs produced over the period between the 17 and 70 wk of age (PTOT), thus totaling 54 wk of egg production. Estimates of genetic parameters were obtained by means of the restricted maximum likelihood method, using 2-trait animal models. The PCA was done using the breeding values of partial and total egg production. The heritability estimates ranged from 0.05 ± 0.03 (P1 and P8) to 0.27 ± 0.06 (P4) in the 2-trait analysis. The genetic correlations between PTOT and partial periods ranged from 0.19 ± 0.31 (P1) to 1.00 ± 0.05 (P10, P11, and P12). Despite the high genetic correlation, selection of birds based on P10, P11, and P12 did not result in an increase in PTOT because of the low heritability estimates for these periods (0.06 ± 0.03, 0.12 ± 0.04, and 0.10 ± 0.04, respectively). The PCA showed that egg production can be divided genetically into 4 periods, and that P1 and P2 are independent and have little genetic association with the other periods.

  14. Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments

    NASA Technical Reports Server (NTRS)

    Gardner, John M.; Sauti, Godfrey; Kim, Jae-Woo; Cano, Roberto J.; Wincheski, Russell A.; Stelter, Christopher J.; Grimsley, Brian W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way.

  15. Additive genetic risk from five serotonin system polymorphisms interacts with interpersonal stress to predict depression.

    PubMed

    Vrshek-Schallhorn, Suzanne; Stroud, Catherine B; Mineka, Susan; Zinbarg, Richard E; Adam, Emma K; Redei, Eva E; Hammen, Constance; Craske, Michelle G

    2015-11-01

    Behavioral genetic research supports polygenic models of depression in which many genetic variations each contribute a small amount of risk, and prevailing diathesis-stress models suggest gene-environment interactions (G×E). Multilocus profile scores of additive risk offer an approach that is consistent with polygenic models of depression risk. In a first demonstration of this approach in a G×E predicting depression, we created an additive multilocus profile score from 5 serotonin system polymorphisms (1 each in the genes HTR1A, HTR2A, HTR2C, and 2 in TPH2). Analyses focused on 2 forms of interpersonal stress as environmental risk factors. Using 5 years of longitudinal diagnostic and life stress interviews from 387 emerging young adults in the Youth Emotion Project, survival analyses show that this multilocus profile score interacts with major interpersonal stressful life events to predict major depressive episode onsets (hazard ratio [HR] = 1.815, p = .007). Simultaneously, there was a significant protective effect of the profile score without a recent event (HR = 0.83, p = .030). The G×E effect with interpersonal chronic stress was not significant (HR = 1.15, p = .165). Finally, effect sizes for genetic factors examined ignoring stress suggested such an approach could lead to overlooking or misinterpreting genetic effects. Both the G×E effect and the protective simple main effect were replicated in a sample of early adolescent girls (N = 105). We discuss potential benefits of the multilocus genetic profile score approach and caveats for future research. (c) 2015 APA, all rights reserved).

  16. Additive Genetic Risk from Five Serotonin System Polymorphisms Interacts with Interpersonal Stress to Predict Depression

    PubMed Central

    Vrshek-Schallhorn, Suzanne; Stroud, Catherine B.; Mineka, Susan; Zinbarg, Richard E.; Adam, Emma K.; Redei, Eva E.; Hammen, Constance; Craske, Michelle G.

    2016-01-01

    Behavioral genetic research supports polygenic models of depression in which many genetic variations each contribute a small amount of risk, and prevailing diathesis-stress models suggest gene-environment interactions (GxE). Multilocus profile scores of additive risk offer an approach that is consistent with polygenic models of depression risk. In a first demonstration of this approach in a GxE predicting depression, we created an additive multilocus profile score from five serotonin system polymorphisms (one each in the genes HTR1A, HTR2A, HTR2C, and two in TPH2). Analyses focused on two forms of interpersonal stress as environmental risk factors. Using five years of longitudinal diagnostic and life stress interviews from 387 emerging young adults in the Youth Emotion Project, survival analyses show that this multilocus profile score interacts with major interpersonal stressful life events to predict major depressive episode onsets (HR = 1.815, p = .007). Simultaneously, there was a significant protective effect of the profile score without a recent event (HR = 0.83, p = .030). The GxE effect with interpersonal chronic stress was not significant (HR = 1.15, p = .165). Finally, effect sizes for genetic factors examined ignoring stress suggested such an approach could lead to overlooking or misinterpreting genetic effects. Both the GxE effect and the protective simple main effect were replicated in a sample of early adolescent girls (N = 105). We discuss potential benefits of the multilocus genetic profile score approach and caveats for future research. PMID:26595467

  17. Genomic scan as a tool for assessing the genetic component of phenotypic variance in wild populations.

    PubMed

    Herrera, Carlos M

    2012-01-01

    Methods for estimating quantitative trait heritability in wild populations have been developed in recent years which take advantage of the increased availability of genetic markers to reconstruct pedigrees or estimate relatedness between individuals, but their application to real-world data is not exempt from difficulties. This chapter describes a recent marker-based technique which, by adopting a genomic scan approach and focusing on the relationship between phenotypes and genotypes at the individual level, avoids the problems inherent to marker-based estimators of relatedness. This method allows the quantification of the genetic component of phenotypic variance ("degree of genetic determination" or "heritability in the broad sense") in wild populations and is applicable whenever phenotypic trait values and multilocus data for a large number of genetic markers (e.g., amplified fragment length polymorphisms, AFLPs) are simultaneously available for a sample of individuals from the same population. The method proceeds by first identifying those markers whose variation across individuals is significantly correlated with individual phenotypic differences ("adaptive loci"). The proportion of phenotypic variance in the sample that is statistically accounted for by individual differences in adaptive loci is then estimated by fitting a linear model to the data, with trait value as the dependent variable and scores of adaptive loci as independent ones. The method can be easily extended to accommodate quantitative or qualitative information on biologically relevant features of the environment experienced by each sampled individual, in which case estimates of the environmental and genotype × environment components of phenotypic variance can also be obtained.

  18. Do Health Professionals Need Additional Competencies for Stratified Cancer Prevention Based on Genetic Risk Profiling?

    PubMed Central

    Chowdhury, Susmita; Henneman, Lidewij; Dent, Tom; Hall, Alison; Burton, Alice; Pharoah, Paul; Pashayan, Nora; Burton, Hilary

    2015-01-01

    There is growing evidence that inclusion of genetic information about known common susceptibility variants may enable population risk-stratification and personalized prevention for common diseases including cancer. This would require the inclusion of genetic testing as an integral part of individual risk assessment of an asymptomatic individual. Front line health professionals would be expected to interact with and assist asymptomatic individuals through the risk stratification process. In that case, additional knowledge and skills may be needed. Current guidelines and frameworks for genetic competencies of non-specialist health professionals place an emphasis on rare inherited genetic diseases. For common diseases, health professionals do use risk assessment tools but such tools currently do not assess genetic susceptibility of individuals. In this article, we compare the skills and knowledge needed by non-genetic health professionals, if risk-stratified prevention is implemented, with existing competence recommendations from the UK, USA and Europe, in order to assess the gaps in current competences. We found that health professionals would benefit from understanding the contribution of common genetic variations in disease risk, the rationale for a risk-stratified prevention pathway, and the implications of using genomic information in risk-assessment and risk management of asymptomatic individuals for common disease prevention. PMID:26068647

  19. Integrating Nonadditive Genomic Relationship Matrices into the Study of Genetic Architecture of Complex Traits.

    PubMed

    Nazarian, Alireza; Gezan, Salvador A

    2016-03-01

    The study of genetic architecture of complex traits has been dramatically influenced by implementing genome-wide analytical approaches during recent years. Of particular interest are genomic prediction strategies which make use of genomic information for predicting phenotypic responses instead of detecting trait-associated loci. In this work, we present the results of a simulation study to improve our understanding of the statistical properties of estimation of genetic variance components of complex traits, and of additive, dominance, and genetic effects through best linear unbiased prediction methodology. Simulated dense marker information was used to construct genomic additive and dominance matrices, and multiple alternative pedigree- and marker-based models were compared to determine if including a dominance term into the analysis may improve the genetic analysis of complex traits. Our results showed that a model containing a pedigree- or marker-based additive relationship matrix along with a pedigree-based dominance matrix provided the best partitioning of genetic variance into its components, especially when some degree of true dominance effects was expected to exist. Also, we noted that the use of a marker-based additive relationship matrix along with a pedigree-based dominance matrix had the best performance in terms of accuracy of correlations between true and estimated additive, dominance, and genetic effects. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Fragile X-associated primary ovarian insufficiency: evidence for additional genetic contributions to severity.

    PubMed

    Hunter, Jessica Ezzell; Epstein, Michael P; Tinker, Stuart W; Charen, Krista H; Sherman, Stephanie L

    2008-09-01

    The fragile X mental retardation gene (FMR1) contains a CGG repeat sequence in its 5' untranslated region that can become unstable and expand in length from generation to generation. Alleles with expanded repeats in the range of approximately 55-199, termed premutation alleles, are associated with an increased risk for fragile-X-associated primary ovarian insufficiency (FXPOI). However, not all women who carry the premutation develop FXPOI. To determine if additional genes could explain variability in onset and severity, we used a random-effects Cox proportional hazards model to analyze age at menopause on 680 women from 225 families who have a history of fragile X syndrome and 321 women from 219 families from the general population. We tested for the presence of a residual additive genetic effect after adjustment for FMR1 repeat length, race, smoking, body mass index, and method of ascertainment. Results showed significant familial aggregation of age at menopause with an estimated additive genetic variance of 0.55-0.96 depending on the parameterization of FMR1 repeat size and definition of age at menopause (P-values ranging between 0.0002 and 0.0027). This is the first study to analyze familial aggregation of FXPOI. This result is important for proper counseling of women who carry FMR1 premutation alleles and for guidance of future studies to identify additional genes that influence ovarian insufficiency. (c) 2008 Wiley-Liss, Inc.

  1. Microstructural Analysis of Ti-6Al-4V Components Made by Electron Beam Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Coleman, Rashadd L.

    Electron Beam Additive Manufacturing (EBAM) is a relatively new additive manufacturing (AM) technology that uses a high-energy electron beam to melt and fuse powders to build full-density parts in a layer by layer fashion. EBAM can fabricate metallic components, particularly, of complex shapes, in an efficient and cost-effective manner compared to conventional manufacturing means. EBAM is an enabling technology for rapid manufacturing (RM) of metallic components, and thus, can efficiently integrate the design and manufacturing of aerospace components. However, EBAM for aerospace-related applications remain limited because the effect of the EBAM process on part characteristics is not fully understood. In this study, various techniques including microhardness, optical microscopy (OM), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and electron backscatter diffraction (EBSD) were used to characterize Ti-6Al-4V components processed using EBAM. The results were compared to Ti-6Al-4V components processed using conventional techniques. In this study it is shown that EBAM built Ti-64 components have increased hardness, elastic modulus, and yield strength compared to wrought Ti-6Al-4V. Further, it is also shown in this study that the horizontal build EBAM Ti-6Al-4V has increased hardness, elastic modulus, and yield strength compared to vertical build EBAM due to a preferential growth of the beta phase.

  2. Optimizing simulated fertilizer additions using a genetic algorithm with a nutrient uptake model

    Treesearch

    Wendell P. Cropper; N.B. Comerford

    2005-01-01

    Intensive management of pine plantations in the southeastern coastal plain typically involves weed and pest control, and the addition of fertilizer to meet the high nutrient demand of rapidly growing pines. In this study we coupled a mechanistic nutrient uptake model (SSAND, soil supply and nutrient demand) with a genetic algorithm (GA) in order to estimate the minimum...

  3. Reflections on changeability versus stability of health-related quality of life: distinguishing between its environmental and genetic components

    PubMed Central

    Sprangers, Mirjam AG; Schwartz, Carolyn E

    2008-01-01

    The field of health-related quality of life (HRQOL) could benefit from a broadening of perspectives to include recent advancements in research on adaptation, positive psychology, and genetics. These advances shed new light on the extent to which HRQOL is changeable or fixed. The objective of this paper is to integrate these insights and to discuss their implications for HRQOL research. We describe the Hedonic Treadmill theory, which asserts that positive events only temporarily affect happiness since people quickly return to hedonic neutrality. New empirical evidence suggests important revisions of this theory, providing a more optimistic picture of the possibility for change. Advances in positive psychology show that relatively simple interventions have the power to induce a sustainable increase in levels of happiness. Finally, a small but growing number of studies have found independent genetic influences in well-being, life satisfaction, perceived health, and even HRQOL. Given the increasing empirical evidence that HRQOL can be sustainably enhanced and is in part genetically determined, it may be useful to consider HRQOL as a concept that has state (environmental) and trait (genetic) components. This distinction will allow us to explore new pathways of improving theory, methods, and clinical practice. The overarching novel questions concern the extent to which HRQOL components are environmentally or genetically determined, and which factors lead to lasting improvement. This distinction begs for new research approaches, such as time-sampling techniques and interdisciplinary research investigating the genetic variants of HRQOL. Distinguishing between those aspects that are amenable to change from those that are relatively fixed and stable will help better target specific support interventions. PMID:18976504

  4. Genetic predisposition to coronary heart disease and stroke using an additive genetic risk score: A population-based study in Greece

    PubMed Central

    Yiannakouris, N.; Katsoulis, M.; Dilis, V.; Parnell, L.D.; Trichopoulos, D.; Ordovas, J.M.; Trichopoulou, A.

    2012-01-01

    Objective To determine the extent to which the risk for incident coronary heart disease (CHD) increases in relation to a genetic risk score (GRS) that additively integrates the influence of high-risk alleles in nine documented single nucleotide polymorphisms (SNPs) for CHD, and to examine whether this GRS also predicts incident stroke. Methods Genotypes at nine CHD-relevant SNPs were determined in 494 cases of incident CHD, 320 cases of incident stroke and 1345 unaffected controls drawn from the population-based Greek component of the European Prospective Investigation into Cancer and nutrition (EPIC) cohort. An additive GRS was calculated for each study participant by adding one unit for the presence of each high-risk allele multiplied by the estimated effect size of that allele in the discovery samples. Statistical analysis was performed using logistic regression. Results The GRS was significantly associated with the incidence of CHD where the odds of CHD incidence in the highest quintile of the GRS were 1.74 times higher (95% confidence interval [CI] = 1.25–2.43, p for trend = 0.0004), compared to the lowest quintile. With respect to stroke, a weaker and non-significant positive association with GRS was apparent as the odds of stroke incidence in the highest quintile of the GRS were 1.36 times higher (95% CI = 0.90–2.06, p for trend = 0.188), compared to the lowest quintile. Conclusion A GRS relying on nine documented “CHD-specific” SNPs is significantly predictive of CHD but it was not found to be statistically significantly associated with incident stroke. PMID:22429504

  5. LOX/GOX sensitivity of fluoroelastomers. [effect of formulation components and addition of fire retardants

    NASA Technical Reports Server (NTRS)

    Kirshen, N.; Mill, T.

    1973-01-01

    The effect of formulation components and the addition of fire retardants on the impact sensitivity of Viton B fluoroelastomer in liquid oxygen was studied with the objective of developing a procedure for reliably reducing this sensitivity. Component evaluation, carried out on more than 40 combinations of components and cure cycles, showed that almost all the standard formulation agents, including carbon, MgO, Diak-3, and PbO2, will sensitize the Viton stock either singly or in combinations, some combinations being much more sensitive than others. Cure and postcure treatments usually reduced the sensitivity of a given formulation, often dramatically, but no formulated Viton was as insensitive as the pure Viton B stock. Coating formulated Viton with a thin layer of pure Viton gave some indication of reduced sensitivity, but additional tests are needed. It is concluded that sensitivity in formulated Viton arises from a variety of sources, some physical and some chemical in origin. Elemental analyses for all the formulated Vitons are reported as are the results of a literature search on the subject of LOX impact sensitivity.

  6. Implications of recurrent disturbance for genetic diversity.

    PubMed

    Davies, Ian D; Cary, Geoffrey J; Landguth, Erin L; Lindenmayer, David B; Banks, Sam C

    2016-02-01

    Exploring interactions between ecological disturbance, species' abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well-understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance-induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes.

  7. Molecular Genetics of Mitochondrial Disorders

    ERIC Educational Resources Information Center

    Wong, Lee-Jun C.

    2010-01-01

    Mitochondrial respiratory chain (RC) disorders (RCDs) are a group of genetically and clinically heterogeneous diseases because of the fact that protein components of the RC are encoded by both mitochondrial and nuclear genomes and are essential in all cells. In addition, the biogenesis, structure, and function of mitochondria, including DNA…

  8. Telomerase RNA Component (TERC) genetic variants interact with the mediterranean diet modifying the inflammatory status and its relationship with aging: CORDIOPREV study

    USDA-ARS?s Scientific Manuscript database

    Background: Leukocyte telomere length (LTL) attrition has been associated with age-related diseases. Telomerase RNA Component (TERC) genetic variants have been associated with LTL; whereas fatty acids (FAs) can interact with genetic factors and influence in aging. We explore whether variability at t...

  9. Two Genetic Loci Produce Distinct Carbohydrate-Rich Structural Components of the Pseudomonas aeruginosa Biofilm Matrix

    PubMed Central

    Friedman, Lisa; Kolter, Roberto

    2004-01-01

    Pseudomonas aeruginosa forms biofilms, which are cellular aggregates encased in an extracellular matrix. Molecular genetics studies of three common autoaggregative phenotypes, namely wrinkled colonies, pellicles, and solid-surface-associated biofilms, led to the identification of two loci, pel and psl, that are involved in the production of carbohydrate-rich components of the biofilm matrix. The pel gene cluster is involved in the production of a glucose-rich matrix material in P. aeruginosa strain PA14 (L. Friedman and R. Kolter, Mol. Microbiol. 51:675-690, 2004). Here we investigate the role of the pel gene cluster in P. aeruginosa strain ZK2870 and identify a second genetic locus, termed psl, involved in the production of a mannose-rich matrix material. The 11 predicted protein products of the psl genes are homologous to proteins involved in carbohydrate processing. P. aeruginosa is thus able to produce two distinct carbohydrate-rich matrix materials. Either carbohydrate-rich matrix component appears to be sufficient for mature biofilm formation, and at least one of them is required for mature biofilm formation in P. aeruginosa strains PA14 and ZK2870. PMID:15231777

  10. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix.

    PubMed

    Friedman, Lisa; Kolter, Roberto

    2004-07-01

    Pseudomonas aeruginosa forms biofilms, which are cellular aggregates encased in an extracellular matrix. Molecular genetics studies of three common autoaggregative phenotypes, namely wrinkled colonies, pellicles, and solid-surface-associated biofilms, led to the identification of two loci, pel and psl, that are involved in the production of carbohydrate-rich components of the biofilm matrix. The pel gene cluster is involved in the production of a glucose-rich matrix material in P. aeruginosa strain PA14 (L. Friedman and R. Kolter, Mol. Microbiol. 51:675-690, 2004). Here we investigate the role of the pel gene cluster in P. aeruginosa strain ZK2870 and identify a second genetic locus, termed psl, involved in the production of a mannose-rich matrix material. The 11 predicted protein products of the psl genes are homologous to proteins involved in carbohydrate processing. P. aeruginosa is thus able to produce two distinct carbohydrate-rich matrix materials. Either carbohydrate-rich matrix component appears to be sufficient for mature biofilm formation, and at least one of them is required for mature biofilm formation in P. aeruginosa strains PA14 and ZK2870. Copyright 2004 American Society for Microbiology

  11. Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease.

    PubMed

    Moreno-Moral, Aida; Pesce, Francesco; Behmoaras, Jacques; Petretto, Enrico

    2017-01-01

    Systems genetics stems from systems biology and similarly employs integrative modeling approaches to describe the perturbations and phenotypic effects observed in a complex system. However, in the case of systems genetics the main source of perturbation is naturally occurring genetic variation, which can be analyzed at the systems-level to explain the observed variation in phenotypic traits. In contrast with conventional single-variant association approaches, the success of systems genetics has been in the identification of gene networks and molecular pathways that underlie complex disease. In addition, systems genetics has proven useful in the discovery of master trans-acting genetic regulators of functional networks and pathways, which in many cases revealed unexpected gene targets for disease. Here we detail the central components of a fully integrated systems genetics approach to complex disease, starting from assessment of genetic and gene expression variation, linking DNA sequence variation to mRNA (expression QTL mapping), gene regulatory network analysis and mapping the genetic control of regulatory networks. By summarizing a few illustrative (and successful) examples, we highlight how different data-modeling strategies can be effectively integrated in a systems genetics study.

  12. Non-additive genetic variation in growth, carcass and fertility traits of beef cattle.

    PubMed

    Bolormaa, Sunduimijid; Pryce, Jennie E; Zhang, Yuandan; Reverter, Antonio; Barendse, William; Hayes, Ben J; Goddard, Michael E

    2015-04-02

    A better understanding of non-additive variance could lead to increased knowledge on the genetic control and physiology of quantitative traits, and to improved prediction of the genetic value and phenotype of individuals. Genome-wide panels of single nucleotide polymorphisms (SNPs) have been mainly used to map additive effects for quantitative traits, but they can also be used to investigate non-additive effects. We estimated dominance and epistatic effects of SNPs on various traits in beef cattle and the variance explained by dominance, and quantified the increase in accuracy of phenotype prediction by including dominance deviations in its estimation. Genotype data (729 068 real or imputed SNPs) and phenotypes on up to 16 traits of 10 191 individuals from Bos taurus, Bos indicus and composite breeds were used. A genome-wide association study was performed by fitting the additive and dominance effects of single SNPs. The dominance variance was estimated by fitting a dominance relationship matrix constructed from the 729 068 SNPs. The accuracy of predicted phenotypic values was evaluated by best linear unbiased prediction using the additive and dominance relationship matrices. Epistatic interactions (additive × additive) were tested between each of the 28 SNPs that are known to have additive effects on multiple traits, and each of the other remaining 729 067 SNPs. The number of significant dominance effects was greater than expected by chance and most of them were in the direction that is presumed to increase fitness and in the opposite direction to inbreeding depression. Estimates of dominance variance explained by SNPs varied widely between traits, but had large standard errors. The median dominance variance across the 16 traits was equal to 5% of the phenotypic variance. Including a dominance deviation in the prediction did not significantly increase its accuracy for any of the phenotypes. The number of additive × additive epistatic effects that were

  13. Anthropogenic alterations of genetic diversity within tree populations: Implications for forest ecosystem resilience

    Treesearch

    Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Samuel E. Nijensohn

    2008-01-01

    Healthy forests provide many of the essential ecosystem services upon which all life depends. Genetic diversity is an essential component of long-term forest health because it provides a basis for adaptation and resilience to environmental stress and change. In addition to natural processes, numerous anthropogenic factors deplete forest genetic resources. Genetic...

  14. Workshop Report on Additive Manufacturing for Large-Scale Metal Components - Development and Deployment of Metal Big-Area-Additive-Manufacturing (Large-Scale Metals AM) System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Peter, William H.

    Additive manufacturing (AM) is considered an emerging technology that is expected to transform the way industry can make low-volume, high value complex structures. This disruptive technology promises to replace legacy manufacturing methods for the fabrication of existing components in addition to bringing new innovation for new components with increased functional and mechanical properties. This report outlines the outcome of a workshop on large-scale metal additive manufacturing held at Oak Ridge National Laboratory (ORNL) on March 11, 2016. The charter for the workshop was outlined by the Department of Energy (DOE) Advanced Manufacturing Office program manager. The status and impact ofmore » the Big Area Additive Manufacturing (BAAM) for polymer matrix composites was presented as the background motivation for the workshop. Following, the extension of underlying technology to low-cost metals was proposed with the following goals: (i) High deposition rates (approaching 100 lbs/h); (ii) Low cost (<$10/lbs) for steel, iron, aluminum, nickel, as well as, higher cost titanium, (iii) large components (major axis greater than 6 ft) and (iv) compliance of property requirements. The above concept was discussed in depth by representatives from different industrial sectors including welding, metal fabrication machinery, energy, construction, aerospace and heavy manufacturing. In addition, DOE’s newly launched High Performance Computing for Manufacturing (HPC4MFG) program was reviewed. This program will apply thermo-mechanical models to elucidate deeper understanding of the interactions between design, process, and materials during additive manufacturing. Following these presentations, all the attendees took part in a brainstorming session where everyone identified the top 10 challenges in large-scale metal AM from their own perspective. The feedback was analyzed and grouped in different categories including, (i) CAD to PART software, (ii) selection of energy source, (iii

  15. Additive-dominance genetic model analyses for late-maturity alpha-amylase activity in a bread wheat factorial crossing population.

    PubMed

    Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Ibrahim, Amir M H

    2015-12-01

    Elevated level of late maturity α-amylase activity (LMAA) can result in low falling number scores, reduced grain quality, and downgrade of wheat (Triticum aestivum L.) class. A mating population was developed by crossing parents with different levels of LMAA. The F2 and F3 hybrids and their parents were evaluated for LMAA, and data were analyzed using the R software package 'qgtools' integrated with an additive-dominance genetic model and a mixed linear model approach. Simulated results showed high testing powers for additive and additive × environment variances, and comparatively low powers for dominance and dominance × environment variances. All variance components and their proportions to the phenotypic variance for the parents and hybrids were significant except for the dominance × environment variance. The estimated narrow-sense heritability and broad-sense heritability for LMAA were 14 and 54%, respectively. High significant negative additive effects for parents suggest that spring wheat cultivars 'Lancer' and 'Chester' can serve as good general combiners, and that 'Kinsman' and 'Seri-82' had negative specific combining ability in some hybrids despite of their own significant positive additive effects, suggesting they can be used as parents to reduce LMAA levels. Seri-82 showed very good general combining ability effect when used as a male parent, indicating the importance of reciprocal effects. High significant negative dominance effects and high-parent heterosis for hybrids demonstrated that the specific hybrid combinations; Chester × Kinsman, 'Lerma52' × Lancer, Lerma52 × 'LoSprout' and 'Janz' × Seri-82 could be generated to produce cultivars with significantly reduced LMAA level.

  16. Hemiclonal analysis reveals significant genetic, environmental and genotype x environment effects on sperm size in Drosophila melanogaster.

    PubMed

    Morrow, E H; Leijon, A; Meerupati, A

    2008-11-01

    Spermatozoa are the most diverse of all animal cells. Variation in size alone is enormous and yet there are still no clear evolutionary explanations that can account for such diversity. The basic genetics of sperm form is also poorly understood, although sperm size is known to have a strong genetic component. Here, using hemiclonal analysis of Drosophila melanogaster, we demonstrate that there is not only a significant additive genetic component contributing to phenotypic variation in sperm length but also a significant environmental effect. Furthermore, the plasticity of sperm size has a significant genetic component to it (a genotype x environment interaction). A genotype x environment interaction could contribute to the maintenance of the substantial genetic variation in this trait and thereby explain the persistent inter-male differences in sperm size seen in numerous taxa. We suggest that the low conditional dependence and high heritability but low evolvability (the coefficient of additive genetic variation) of sperm length is more consistent with a history of stabilizing selection rather than either sexual selection or strong directional selection.

  17. Neutron Characterization of Additively Manufactured Components. Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Thomas R.; Payzant, E. Andrew; Babu, Sudarsanam Suresh

    2015-09-01

    Additive manufacturing (AM) is a collection of promising manufacturing methods that industry is beginning to explore and adopt. Macroscopically complicated and near net shape components are being built using AM, but how the material behaves in service is a big question for industry. Consequently, AM components/materials need further research into exactly what is made and how it will behave in service. This one and a half day workshop included a series of invited presentations from academia, industry and national laboratories (see Appendix A for the workshop agenda and list of talks). The workshop was welcomed by Alan Tennant, Chief Scientist,more » Neutron Sciences Directorate, ORNL, and opened remotely by Rob Ivestor, Deputy Director, Advanced Manufacturing Office-DOE, who declared AM adoptees as titans who will be able to create customized 3-D structures with 1 million to 1 billion micro welds with locally tailored microstructures. Further he stated that characterization with neutrons is key to be able to bring critical insight/information into the AM process/property/behavior relationship. Subsequently, the presentations spanned a slice of the current state of the art AM techniques and many of the most relevant characterization techniques using neutrons. After the talks, a panel discussion was held; workshop participants (see Appendix B for a list of attendees) providing questions and the panel answers. The main purpose of the panel discussion was to build consensus regarding the critical research needs in AM that can be addressed with neutrons. These needs were placed into three categories: modes of access for neutrons, new capabilities needed, new AM material issues and neutrons. Recommendations from the workshop were determined based on the panel discussion.« less

  18. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raguvarun, K., E-mail: prajagopal@iitm.ac.in; Balasubramaniam, Krishnan, E-mail: prajagopal@iitm.ac.in; Rajagopal, Prabhu, E-mail: prajagopal@iitm.ac.in

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturingmore » process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.« less

  19. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    NASA Astrophysics Data System (ADS)

    Raguvarun, K.; Balasubramaniam, Krishnan; Rajagopal, Prabhu; Palanisamy, Suresh; Nagarajah, Romesh; Hoye, Nicholas; Curiri, Dominic; Kapoor, Ajay

    2015-03-01

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  20. Modifications to the Patient Rule-Induction Method that utilize non-additive combinations of genetic and environmental effects to define partitions that predict ischemic heart disease.

    PubMed

    Dyson, Greg; Frikke-Schmidt, Ruth; Nordestgaard, Børge G; Tybjaerg-Hansen, Anne; Sing, Charles F

    2009-05-01

    This article extends the Patient Rule-Induction Method (PRIM) for modeling cumulative incidence of disease developed by Dyson et al. (Genet Epidemiol 31:515-527) to include the simultaneous consideration of non-additive combinations of predictor variables, a significance test of each combination, an adjustment for multiple testing and a confidence interval for the estimate of the cumulative incidence of disease in each partition. We employ the partitioning algorithm component of the Combinatorial Partitioning Method to construct combinations of predictors, permutation testing to assess the significance of each combination, theoretical arguments for incorporating a multiple testing adjustment and bootstrap resampling to produce the confidence intervals. An illustration of this revised PRIM utilizing a sample of 2,258 European male participants from the Copenhagen City Heart Study is presented that assesses the utility of genetic variants in predicting the presence of ischemic heart disease beyond the established risk factors.

  1. Genetic Heterogeneity in Algerian Human Populations

    PubMed Central

    Deba, Tahria; Calafell, Francesc; Benhamamouch, Soraya; Comas, David

    2015-01-01

    The demographic history of human populations in North Africa has been characterized by complex processes of admixture and isolation that have modeled its current gene pool. Diverse genetic ancestral components with different origins (autochthonous, European, Middle Eastern, and sub-Saharan) and genetic heterogeneity in the region have been described. In this complex genetic landscape, Algeria, the largest country in Africa, has been poorly covered, with most of the studies using a single Algerian sample. In order to evaluate the genetic heterogeneity of Algeria, Y-chromosome, mtDNA and autosomal genome-wide makers have been analyzed in several Berber- and Arab-speaking groups. Our results show that the genetic heterogeneity found in Algeria is not correlated with geography or linguistics, challenging the idea of Berber groups being genetically isolated and Arab groups open to gene flow. In addition, we have found that external sources of gene flow into North Africa have been carried more often by females than males, while the North African autochthonous component is more frequent in paternally transmitted genome regions. Our results highlight the different demographic history revealed by different markers and urge to be cautious when deriving general conclusions from partial genomic information or from single samples as representatives of the total population of a region. PMID:26402429

  2. Shared Genetics and Couple-Associated Environment Are Major Contributors to the Risk of Both Clinical and Self-Declared Depression.

    PubMed

    Zeng, Yanni; Navarro, Pau; Xia, Charley; Amador, Carmen; Fernandez-Pujals, Ana M; Thomson, Pippa A; Campbell, Archie; Nagy, Reka; Clarke, Toni-Kim; Hafferty, Jonathan D; Smith, Blair H; Hocking, Lynne J; Padmanabhan, Sandosh; Hayward, Caroline; MacIntyre, Donald J; Porteous, David J; Haley, Chris S; McIntosh, Andrew M

    2016-12-01

    Both genetic and environmental factors contribute to risk of depression, but estimates of their relative contributions are limited. Commonalities between clinically-assessed major depressive disorder (MDD) and self-declared depression (SDD) are also unclear. Using data from a large Scottish family-based cohort (GS:SFHS, N=19,994), we estimated the genetic and environmental variance components for MDD and SDD. The components representing the genetic effect associated with genome-wide common genetic variants (SNP heritability), the additional pedigree-associated genetic effect and non-genetic effects associated with common environments were estimated in a linear mixed model (LMM). Both MDD and SDD had significant contributions from components representing the effect from common genetic variants, the additional genetic effect associated with the pedigree and the common environmental effect shared by couples. The estimate of correlation between SDD and MDD was high (r=1.00, se=0.20) for common-variant-associated genetic effect and lower for the additional genetic effect from the pedigree (r=0.57, se=0.08) and the couple-shared environmental effect (r=0.53, se=0.22). Both genetics and couple-shared environmental effects were major factors influencing liability to depression. SDD may provide a scalable alternative to MDD in studies seeking to identify common risk variants. Rarer variants and environmental effects may however differ substantially according to different definitions of depression. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Short communication: influence of composite casein genotypes on additive genetic variation of milk production traits and coagulation properties in Holstein-Friesian cows.

    PubMed

    Penasa, M; Cassandro, M; Pretto, D; De Marchi, M; Comin, A; Chessa, S; Dal Zotto, R; Bittante, G

    2010-07-01

    The aim of the study was to quantify the effects of composite beta- and kappa-casein (CN) genotypes on genetic variation of milk coagulation properties (MCP); milk yield; fat, protein, and CN contents; somatic cell score; pH; and titratable acidity (TA) in 1,042 Italian Holstein-Friesian cows. Milk coagulation properties were defined as rennet coagulation time (RCT) and curd firmness (a(30)). Variance components were estimated using 2 animal models: model 1 included herd, days in milk, and parity as fixed effects and animal and residual as random effects, and model 2 was model 1 with the addition of composite beta- and kappa-CN genotype as a fixed effect. Genetic correlations between RCT and a(30) and between these traits and milk production traits were obtained with bivariate analyses, based on the same models. The inclusion of casein genotypes led to a decrease of 47, 68, 18, and 23% in the genetic variance for RCT, a(30), pH, and TA, respectively, and less than 6% for other traits. Heritability of RCT and a(30) decreased from 0.248 to 0.143 and from 0.123 to 0.043, respectively. A moderate reduction was found for pH and TA, whereas negligible changes were detected for other milk traits. Estimates of genetic correlations were comparable between the 2 models. Results show that composite beta- and kappa-CN genotypes are important for RCT and a(30) but cannot replace the recording of MCP themselves. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Influence of Powder Characteristics on Formation of Porosity in Additive Manufacturing of Ti-6Al-4V Components

    NASA Astrophysics Data System (ADS)

    Iebba, Maurizio; Astarita, Antonello; Mistretta, Daniela; Colonna, Ivano; Liberini, Mariacira; Scherillo, Fabio; Pirozzi, Carmine; Borrelli, Rosario; Franchitti, Stefania; Squillace, Antonino

    2017-08-01

    This paper aims to study the genesis of defects in titanium components made through two different additive manufacturing technologies: selective laser melting and electron beam melting. In particular, we focussed on the influence of the powders used on the formation of porosities and cavities in the manufactured components. A detailed experimental campaign was carried out to characterize the components made through the two additive manufacturing techniques aforementioned and the powders used in the process. It was found that some defects of the final components can be attributed to internal porosities of the powders used in the manufacturing process. These internal porosities are a consequence of the gas atomization process used for the production of the powders themselves. Therefore, the importance of using tailored powders, free from porosities, in order to manufacture components with high mechanical properties is highlighted.

  5. Modeling genetic and nongenetic variation of feed efficiency and its partial relationships between component traits as a function of management and environmental factors.

    PubMed

    Lu, Y; Vandehaar, M J; Spurlock, D M; Weigel, K A; Armentano, L E; Staples, C R; Connor, E E; Wang, Z; Coffey, M; Veerkamp, R F; de Haas, Y; Tempelman, R J

    2017-01-01

    Feed efficiency (FE), characterized as the fraction of feed nutrients converted into salable milk or meat, is of increasing economic importance in the dairy industry. We conjecture that FE is a complex trait whose variation and relationships or partial efficiencies (PE) involving the conversion of dry matter intake to milk energy and metabolic body weight may be highly heterogeneous across environments or management scenarios. In this study, a hierarchical Bayesian multivariate mixed model was proposed to jointly infer upon such heterogeneity at both genetic and nongenetic levels on PE and variance components (VC). The heterogeneity was modeled by embedding mixed effects specifications on PE and VC in addition to those directly specified on the component traits. We validated the model by simulation and applied it to a joint analysis of a dairy FE consortium data set with 5,088 Holstein cows from 13 research stations in Canada, the Netherlands, the United Kingdom, and the United States. Although no differences were detected among research stations for PE at the genetic level, some evidence was found of heterogeneity in residual PE. Furthermore, substantial heterogeneity in VC across stations, parities, and ration was observed with heritability estimates of FE ranging from 0.16 to 0.46 across stations. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. A Hybrid Color Space for Skin Detection Using Genetic Algorithm Heuristic Search and Principal Component Analysis Technique

    PubMed Central

    2015-01-01

    Color is one of the most prominent features of an image and used in many skin and face detection applications. Color space transformation is widely used by researchers to improve face and skin detection performance. Despite the substantial research efforts in this area, choosing a proper color space in terms of skin and face classification performance which can address issues like illumination variations, various camera characteristics and diversity in skin color tones has remained an open issue. This research proposes a new three-dimensional hybrid color space termed SKN by employing the Genetic Algorithm heuristic and Principal Component Analysis to find the optimal representation of human skin color in over seventeen existing color spaces. Genetic Algorithm heuristic is used to find the optimal color component combination setup in terms of skin detection accuracy while the Principal Component Analysis projects the optimal Genetic Algorithm solution to a less complex dimension. Pixel wise skin detection was used to evaluate the performance of the proposed color space. We have employed four classifiers including Random Forest, Naïve Bayes, Support Vector Machine and Multilayer Perceptron in order to generate the human skin color predictive model. The proposed color space was compared to some existing color spaces and shows superior results in terms of pixel-wise skin detection accuracy. Experimental results show that by using Random Forest classifier, the proposed SKN color space obtained an average F-score and True Positive Rate of 0.953 and False Positive Rate of 0.0482 which outperformed the existing color spaces in terms of pixel wise skin detection accuracy. The results also indicate that among the classifiers used in this study, Random Forest is the most suitable classifier for pixel wise skin detection applications. PMID:26267377

  7. Pattern recognition and genetic algorithms for discrimination of orange juices and reduction of significant components from headspace solid-phase microextraction.

    PubMed

    Rinaldi, Maurizio; Gindro, Roberto; Barbeni, Massimo; Allegrone, Gianna

    2009-01-01

    Orange (Citrus sinensis L.) juice comprises a complex mixture of volatile components that are difficult to identify and quantify. Classification and discrimination of the varieties on the basis of the volatile composition could help to guarantee the quality of a juice and to detect possible adulteration of the product. To provide information on the amounts of volatile constituents in fresh-squeezed juices from four orange cultivars and to establish suitable discrimination rules to differentiate orange juices using new chemometric approaches. Fresh juices of four orange cultivars were analysed by headspace solid-phase microextraction (HS-SPME) coupled with GC-MS. Principal component analysis, linear discriminant analysis and heuristic methods, such as neural networks, allowed clustering of the data from HS-SPME analysis while genetic algorithms addressed the problem of data reduction. To check the quality of the results the chemometric techniques were also evaluated on a sample. Thirty volatile compounds were identified by HS-SPME and GC-MS analyses and their relative amounts calculated. Differences in composition of orange juice volatile components were observed. The chosen orange cultivars could be discriminated using neural networks, genetic relocation algorithms and linear discriminant analysis. Genetic algorithms applied to the data were also able to detect the most significant compounds. SPME is a useful technique to investigate orange juice volatile composition and a flexible chemometric approach is able to correctly separate the juices.

  8. Additive Genetic Effects on Circulating Periostin Contribute to the Heritability of Bone Microstructure.

    PubMed

    Bonnet, N; Biver, E; Durosier, C; Chevalley, T; Rizzoli, R; Ferrari, S

    2015-07-01

    Genetic factors account for 60-80% of the areal bone mineral density (aBMD) variance, whereas the heritability of bone microstructure is not clearly established. aBMD and microstructure are under the control of osteocytes, which regulate bone formation through the expression of molecules such as sclerostin (SOST) and periostin (POSTN). We hypothesized that additive genetic effects contribute to serum levels of SOST and POSTN and thereby to the individual variance of bone microstructure. In a retrospective analysis of 432 subjects from the Geneva Retiree Cohort age 64.9 ± 1.4 years and 96 of their offspring age 37.9 ± 5.7 years, we measured serum SOST (sSOST) and serum POSTN (sPOSTN), distal radius and tibia microstructure, hip and lumbar spine aBMD, and bone turnover markers, Heritability (h(2), %) was calculated as twice the slope of the regression (β) between parents and offspring. cPOSTN levels were significantly higher in men than women and in offspring than parents. h(2) values for bone microstructural traits ranged from 22-64% depending on the envelope (trabecular [Tb] or cortical [Ct]) and skeletal site (radius or tibia), whereas h(2) for sPOSTN and sSOST was 50% and 40%, respectively. sPOSTN was positively associated with Tb bone volume on total volume and Ct thickness, and negatively with Ct porosity. The associations for Ct parameters remain significant after adjustment for propetide of type-I procollagen, cross-linked telopeptide of type I collagen, femoral neck aBMD, sex or age. After adjustment of bone traits for sPOSTN, h(2) values decreased for several Tb and Ct bone parameters, but not for aBMD. In contrast, adjusting for sSOST did not alter h(2) values for bone traits. Additive genetic effects account for a substantial proportion of the individual variance of bone microstructure, sPOSTN, and sSOST. sPOSTN is largely inherited as a sex-related trait and carries an important contribution to the heritability of bone microstructure, indicating that

  9. Dissolving and melting phenomena of inorganic and organic crystals by addition of third or second components

    NASA Astrophysics Data System (ADS)

    Funakoshi, Kunio; Negishi, Rina; Nakagawa, Hiroshi; Kawasaki, Rentaro

    2017-06-01

    Dissolution of potassium sulphate (K2SO4) crystals was decelerated or stopped since the trivalent chrome ions (Cr(III)) or the iron ions were added into a K2SO4 aqueous solution, but inhibition mechanism of crystal dissolving by additives is not discussed well. Moreover, the melting inhibition of organic compound crystals by addition of the second components is not reported. In this study, inorganic or organic compound crystals are dissolved in a solution added the third component or were melted in a melt added the second one, and the dissolving and melting inhibition phenomena of the inorganic and organic crystals with additives are discussed. The dissolving rates of K2SO4 crystals decreased with the increasing of the amount of Cr(III) added into an K2SO4 unsaturated solution. The melting rates of m-chloronitrobenzene (CNB) crystals were also decreased by addition of p-CNB. The dissolving rates of a K2SO4 mother crystal and the melting rates of a m-CNB mother crystal were scattered during experiments and the dissolving and the melting phenomena would be caused by adsorption and detachments of additives on and from crystal surfaces.

  10. Acoustic emission monitoring of crack propagation in additively manufactured and conventional titanium components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strantza, Maria; Van Hemelrijck, Danny; Guillaume, Patrick

    We report that additive manufacturing (AM) is a novel and innovative production technology that can produce complex and lightweight engineering products. In AM components, as in all engineering materials, fatigue is considered as one of the principle causes of unexpected failure. In order to detect, localise and characterise cracks in various material components and metals, acoustic emission (AE) is used as a non-destructive monitoring technique. One of the main advantages of AE is that it can be also used for dynamic damage characterisation and specifically for crack propagation monitoring. In this research, we use AE to monitor the fatigue crackmore » growth behaviour of Ti6Al4V components under four-point bending. The samples were produced by means of AM as well as conventional material. Notched and unnotched specimens were investigated with respect to the crack severity and crack detection using AE. The main AE signal parameters –such as cumulative events, hits, duration, average frequency and rise time– were evaluated and indicate sensitivity to damage propagation in order to lead to a warning against the final fracture occurrence. Finally, this is the first time that AE is applied in AM components under fatigue.« less

  11. Acoustic emission monitoring of crack propagation in additively manufactured and conventional titanium components

    DOE PAGES

    Strantza, Maria; Van Hemelrijck, Danny; Guillaume, Patrick; ...

    2017-05-31

    We report that additive manufacturing (AM) is a novel and innovative production technology that can produce complex and lightweight engineering products. In AM components, as in all engineering materials, fatigue is considered as one of the principle causes of unexpected failure. In order to detect, localise and characterise cracks in various material components and metals, acoustic emission (AE) is used as a non-destructive monitoring technique. One of the main advantages of AE is that it can be also used for dynamic damage characterisation and specifically for crack propagation monitoring. In this research, we use AE to monitor the fatigue crackmore » growth behaviour of Ti6Al4V components under four-point bending. The samples were produced by means of AM as well as conventional material. Notched and unnotched specimens were investigated with respect to the crack severity and crack detection using AE. The main AE signal parameters –such as cumulative events, hits, duration, average frequency and rise time– were evaluated and indicate sensitivity to damage propagation in order to lead to a warning against the final fracture occurrence. Finally, this is the first time that AE is applied in AM components under fatigue.« less

  12. Addition of Alarm Pheromone Components Improves the Effectiveness of Desiccant Dusts Against Cimex lectularius

    PubMed Central

    BENOIT, JOSHUA B.; PHILLIPS, SETH A.; CROXALL, TRAVIS J.; CHRISTENSEN, BRADY S.; YODER, JAY A.; DENLINGER, DAVID L.

    2009-01-01

    We demonstrate that the addition of bed bug, Cimex lectularius, alarm pheromone to desiccant formulations greatly enhances their effectiveness during short-term exposure. Two desiccant formulations, diatomaceous earth (DE) and Dri-die (silica gel), were applied at the label rate with and without bed bug alarm pheromone components, (E)-2-hexenal, (E)-2-octenal, and a (E)-2-hexenal:(E)-2-octenal blend. First-instar nymphs and adult females were subjected to 10-min exposures, and water loss rates were used to evaluate the response. Optimal effectiveness was achieved with a pheromone concentration of 0.01 M. With Dri-die alone, the water loss was 21% higher than in untreated controls, and water loss increased nearly two times with (E)-2-hexenal and (E)-2-octenal and three times with the (E)-2-hexenal: (E)-2-octenal blend. This shortened survival of first-instar nymphs from 4 to 1 d, with a similar reduction noted in adult females. DE was effective only if supplemented with pheromone, resulting in a 50% increase in water loss over controls with the (E)-2-hexenal:(E)-2-octenal blend, and a survival decrease from 4 to 2 d in first-instar nymphs. Consistently, the addition of the pheromone blend to desiccant dust was more effective than adding either component by itself or by using Dri-die or DE alone. Based on observations in a small microhabitat, the addition of alarm pheromone components prompted bed bugs to leave their protective harborages and to move through the desiccant, improving the use of desiccants for control. We concluded that short exposure to Dri-die is a more effective treatment against bed bugs than DE and that the effectiveness of the desiccants can be further enhanced by incorporation of alarm pheromone. Presumably, the addition of alarm pheromone elevates excited crawling activity, thereby promoting cuticular changes that increase water loss. PMID:19496429

  13. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae).

    PubMed

    Zhang, Dong; Kong, Wenqian; Robertson, Jon; Goff, Valorie H; Epps, Ethan; Kerr, Alexandra; Mills, Gabriel; Cromwell, Jay; Lugin, Yelena; Phillips, Christine; Paterson, Andrew H

    2015-04-19

    Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures of selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved 'hotspots' in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.

  14. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dong; Kong, Wenqian; Robertson, Jon

    Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures ofmore » selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved ‘hotspots’ in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.« less

  15. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae)

    DOE PAGES

    Zhang, Dong; Kong, Wenqian; Robertson, Jon; ...

    2015-12-01

    Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures ofmore » selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved ‘hotspots’ in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.« less

  16. Additive genetic variation for tolerance to estrogen pollution in natural populations of Alpine whitefish (Coregonus sp., Salmonidae).

    PubMed

    Brazzola, Gregory; Chèvre, Nathalie; Wedekind, Claus

    2014-11-01

    The evolutionary potential of natural populations to adapt to anthropogenic threats critically depends on whether there exists additive genetic variation for tolerance to the threat. A major problem for water-dwelling organisms is chemical pollution, and among the most common pollutants is 17α-ethinylestradiol (EE2), the synthetic estrogen that is used in oral contraceptives and that can affect fish at various developmental stages, including embryogenesis. We tested whether there is variation in the tolerance to EE2 within Alpine whitefish. We sampled spawners from two species of different lakes, bred them in vitro in a full-factorial design each, and studied growth and mortality of embryos. Exposure to EE2 turned out to be toxic in all concentrations we tested (≥1 ng/L). It reduced embryo viability and slowed down embryogenesis. We found significant additive genetic variation in EE2-induced mortality in both species, that is, genotypes differed in their tolerance to estrogen pollution. We also found maternal effects on embryo development to be influenced by EE2, that is, some maternal sib groups were more susceptible to EE2 than others. In conclusion, the toxic effects of EE2 were strong, but both species demonstrated the kind of additive genetic variation that is necessary for an evolutionary response to this type of pollution.

  17. Additive genetic variation in the craniofacial skeleton of baboons (genus Papio) and its relationship to body and cranial size.

    PubMed

    Joganic, Jessica L; Willmore, Katherine E; Richtsmeier, Joan T; Weiss, Kenneth M; Mahaney, Michael C; Rogers, Jeffrey; Cheverud, James M

    2018-02-01

    Determining the genetic architecture of quantitative traits and genetic correlations among them is important for understanding morphological evolution patterns. We address two questions regarding papionin evolution: (1) what effect do body and cranial size, age, and sex have on phenotypic (V P ) and additive genetic (V A ) variation in baboon crania, and (2) how might additive genetic correlations between craniofacial traits and body mass affect morphological evolution? We use a large captive pedigreed baboon sample to estimate quantitative genetic parameters for craniofacial dimensions (EIDs). Our models include nested combinations of the covariates listed above. We also simulate the correlated response of a given EID due to selection on body mass alone. Covariates account for 1.2-91% of craniofacial V P . EID V A decreases across models as more covariates are included. The median genetic correlation estimate between each EID and body mass is 0.33. Analysis of the multivariate response to selection reveals that observed patterns of craniofacial variation in extant baboons cannot be attributed solely to correlated response to selection on body mass, particularly in males. Because a relatively large proportion of EID V A is shared with body mass variation, different methods of correcting for allometry by statistically controlling for size can alter residual V P patterns. This may conflate direct selection effects on craniofacial variation with those resulting from a correlated response to body mass selection. This shared genetic variation may partially explain how selection for increased body mass in two different papionin lineages produced remarkably similar craniofacial phenotypes. © 2017 Wiley Periodicals, Inc.

  18. Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: prediction accuracy implications

    PubMed Central

    Bouvet, J-M; Makouanzi, G; Cros, D; Vigneron, Ph

    2016-01-01

    Hybrids are broadly used in plant breeding and accurate estimation of variance components is crucial for optimizing genetic gain. Genome-wide information may be used to explore models designed to assess the extent of additive and non-additive variance and test their prediction accuracy for the genomic selection. Ten linear mixed models, involving pedigree- and marker-based relationship matrices among parents, were developed to estimate additive (A), dominance (D) and epistatic (AA, AD and DD) effects. Five complementary models, involving the gametic phase to estimate marker-based relationships among hybrid progenies, were developed to assess the same effects. The models were compared using tree height and 3303 single-nucleotide polymorphism markers from 1130 cloned individuals obtained via controlled crosses of 13 Eucalyptus urophylla females with 9 Eucalyptus grandis males. Akaike information criterion (AIC), variance ratios, asymptotic correlation matrices of estimates, goodness-of-fit, prediction accuracy and mean square error (MSE) were used for the comparisons. The variance components and variance ratios differed according to the model. Models with a parent marker-based relationship matrix performed better than those that were pedigree-based, that is, an absence of singularities, lower AIC, higher goodness-of-fit and accuracy and smaller MSE. However, AD and DD variances were estimated with high s.es. Using the same criteria, progeny gametic phase-based models performed better in fitting the observations and predicting genetic values. However, DD variance could not be separated from the dominance variance and null estimates were obtained for AA and AD effects. This study highlighted the advantages of progeny models using genome-wide information. PMID:26328760

  19. Marker-Based Estimates Reveal Significant Non-additive Effects in Clonally Propagated Cassava (Manihot esculenta): Implications for the Prediction of Total Genetic Value and the Selection of Varieties.

    PubMed

    Wolfe, Marnin D; Kulakow, Peter; Rabbi, Ismail Y; Jannink, Jean-Luc

    2016-08-31

    In clonally propagated crops, non-additive genetic effects can be effectively exploited by the identification of superior genetic individuals as varieties. Cassava (Manihot esculenta Crantz) is a clonally propagated staple food crop that feeds hundreds of millions. We quantified the amount and nature of non-additive genetic variation for three key traits in a breeding population of cassava from sub-Saharan Africa using additive and non-additive genome-wide marker-based relationship matrices. We then assessed the accuracy of genomic prediction for total (additive plus non-additive) genetic value. We confirmed previous findings based on diallel populations, that non-additive genetic variation is significant for key cassava traits. Specifically, we found that dominance is particularly important for root yield and epistasis contributes strongly to variation in CMD resistance. Further, we showed that total genetic value predicted observed phenotypes more accurately than additive only models for root yield but not for dry matter content, which is mostly additive or for CMD resistance, which has high narrow-sense heritability. We address the implication of these results for cassava breeding and put our work in the context of previous results in cassava, and other plant and animal species. Copyright © 2016 Author et al.

  20. Additive manufacture (3d printing) of plasma diagnostic components and assemblies for fusion experiments

    NASA Astrophysics Data System (ADS)

    Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander

    2015-11-01

    Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.

  1. Additive genetic variance and developmental plasticity in growth trajectories in a wild cooperative mammal.

    PubMed

    Huchard, E; Charmantier, A; English, S; Bateman, A; Nielsen, J F; Clutton-Brock, T

    2014-09-01

    Individual variation in growth is high in cooperative breeders and may reflect plastic divergence in developmental trajectories leading to breeding vs. helping phenotypes. However, the relative importance of additive genetic variance and developmental plasticity in shaping growth trajectories is largely unknown in cooperative vertebrates. This study exploits weekly sequences of body mass from birth to adulthood to investigate sources of variance in, and covariance between, early and later growth in wild meerkats (Suricata suricatta), a cooperative mongoose. Our results indicate that (i) the correlation between early growth (prior to nutritional independence) and adult mass is positive but weak, and there are frequent changes (compensatory growth) in post-independence growth trajectories; (ii) among parameters describing growth trajectories, those describing growth rate (prior to and at nutritional independence) show undetectable heritability while associated size parameters (mass at nutritional independence and asymptotic mass) are moderately heritable (0.09 ≤ h(2) < 0.3); and (iii) additive genetic effects, rather than early environmental effects, mediate the covariance between early growth and adult mass. These results reveal that meerkat growth trajectories remain plastic throughout development, rather than showing early and irreversible divergence, and that the weak effects of early growth on adult mass, an important determinant of breeding success, are partly genetic. In contrast to most cooperative invertebrates, the acquisition of breeding status is often determined after sexual maturity and strongly impacted by chance in many cooperative vertebrates, who may therefore retain the ability to adjust their morphology to environmental changes and social opportunities arising throughout their development, rather than specializing early. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  2. Chromosome 15q25.1 genetic markers associated with level of response to alcohol in humans.

    PubMed

    Joslyn, Geoff; Brush, Gerry; Robertson, Margaret; Smith, Tom L; Kalmijn, Jelger; Schuckit, Marc; White, Raymond L

    2008-12-23

    As with other genetically complex common psychiatric and medical conditions, multiple genetic and environmental components contribute to alcohol use disorders (AUDs), which can confound attempts to identify genetic components. Intermediate phenotypes are often more closely correlated with underlying biology and have often proven invaluable in genetic studies. Level of response (LR) to alcohol is an intermediate phenotype for AUDs, and individuals with a low LR are at increased risk. A high rate of concurrent alcohol and nicotine use and dependence suggests that these conditions may share biochemical and genetic mechanisms. Genetic association studies indicate that a genetic locus, which includes the CHRNA5-CHRNA3-CHRNB4 gene cluster, plays a role in nicotine consumption and dependence. Genetic association with alcohol dependence was also recently shown. We show here that two of the markers from the nicotine studies also show an association (multiple testing corrected P < 0.025) with several LR phenotypes in a sample of 367 siblings. Additional markers in the region were analyzed and shown to be located in a 250-kb expanse of high linkage disequilibrium containing three additional genes. These findings indicate that LR intermediate phenotypes have utility in genetic approaches to AUDs and will prove valuable in the identification of other genetic loci conferring susceptibility to AUDs.

  3. [Determination of the Plant Origin of Licorice Oil Extract, a Natural Food Additive, by Principal Component Analysis Based on Chemical Components].

    PubMed

    Tada, Atsuko; Ishizuki, Kyoko; Sugimoto, Naoki; Yoshimatsu, Kayo; Kawahara, Nobuo; Suematsu, Takako; Arifuku, Kazunori; Fukai, Toshio; Tamura, Yukiyoshi; Ohtsuki, Takashi; Tahara, Maiko; Yamazaki, Takeshi; Akiyama, Hiroshi

    2015-01-01

    "Licorice oil extract" (LOE) (antioxidant agent) is described in the notice of Japanese food additive regulations as a material obtained from the roots and/or rhizomes of Glycyrrhiza uralensis, G. inflata or G. glabra. In this study, we aimed to identify the original Glycyrrhiza species of eight food additive products using LC/MS. Glabridin, a characteristic compound in G. glabra, was specifically detected in seven products, and licochalcone A, a characteristic compound in G. inflata, was detected in one product. In addition, Principal Component Analysis (PCA) (a kind of multivariate analysis) using the data of LC/MS or (1)H-NMR analysis was performed. The data of thirty-one samples, including LOE products used as food additives, ethanol extracts of various Glycyrrhiza species and commercially available Glycyrrhiza species-derived products were assessed. Based on the PCA results, the majority of LOE products was confirmed to be derived from G. glabra. This study suggests that PCA using (1)H-NMR analysis data is a simple and useful method to identify the plant species of origin of natural food additive products.

  4. Evolutionary genetics of maternal effects

    PubMed Central

    Wolf, Jason B.; Wade, Michael J.

    2016-01-01

    Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single‐locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype‐phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype‐phenotype relationship frequency dependent, resulting in the appearance of negative frequency‐dependent selection, while additive MGEs contribute a component of parent‐of‐origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be “available” to the evolving population. PMID:26969266

  5. The genetic correlation between height and IQ: shared genes or assortative mating?

    PubMed

    Keller, Matthew C; Garver-Apgar, Christine E; Wright, Margaret J; Martin, Nicholas G; Corley, Robin P; Stallings, Michael C; Hewitt, John K; Zietsch, Brendan P

    2013-04-01

    Traits that are attractive to the opposite sex are often positively correlated when scaled such that scores increase with attractiveness, and this correlation typically has a genetic component. Such traits can be genetically correlated due to genes that affect both traits ("pleiotropy") and/or because assortative mating causes statistical correlations to develop between selected alleles across the traits ("gametic phase disequilibrium"). In this study, we modeled the covariation between monozygotic and dizygotic twins, their siblings, and their parents (total N = 7,905) to elucidate the nature of the correlation between two potentially sexually selected traits in humans: height and IQ. Unlike previous designs used to investigate the nature of the height-IQ correlation, the present design accounts for the effects of assortative mating and provides much less biased estimates of additive genetic, non-additive genetic, and shared environmental influences. Both traits were highly heritable, although there was greater evidence for non-additive genetic effects in males. After accounting for assortative mating, the correlation between height and IQ was found to be almost entirely genetic in nature. Model fits indicate that both pleiotropy and assortative mating contribute significantly and about equally to this genetic correlation.

  6. Additively Manufactured Combustion Devices Components for LOX/Methane Applications

    NASA Technical Reports Server (NTRS)

    Greene, Sandra Elam; Protz, Christopher; Garcia, Chance; Goodman, Dwight; Baker, Kevin

    2016-01-01

    Marshall Space Flight Center (MSFC) has designed, fabricated, and hot-fire tested a variety of successful injectors, chambers, and igniters for potential liquid oxygen (LOX) and methane (CH4) systems since 2005. The most recent efforts have focused on components with additive manufacturing (AM) to include unique design features, minimize joints, and reduce final machining efforts. Inconel and copper alloys have been used with AM processes to produce a swirl coaxial injector and multiple methane cooled thrust chambers. The initial chambers included unique thermocouple ports for measuring local coolant channel temperatures along the length of the chamber. Results from hot-fire testing were used to anchor thermal models and generate a regeneratively cooled thruster for a 4,000 lbf LOX/CH4 engine. The completed thruster will be hot-fire tested in the summer of 2016 at MSFC. The thruster design can also be easily scaled and used on a 25,000 lbf engine. To further support the larger engine design, an AM gas generator injector has been designed. Hot-fire testing on this injector is planned for the summer of 2016 at MSFC.

  7. Dominance genetic variance for traits under directional selection in Drosophila serrata.

    PubMed

    Sztepanacz, Jacqueline L; Blows, Mark W

    2015-05-01

    In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait-fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. Copyright © 2015 by the Genetics Society of America.

  8. Genetic influences in caries and periodontal diseases.

    PubMed

    Hassell, T M; Harris, E L

    1995-01-01

    Deciphering the relative roles of heredity and environmental factors ("nature vs. nurture") in the pathogenesis of dental caries and diseases of the periodontium has occupied clinical and basic researchers for decades. Success in the endeavor has come more easily in the case of caries; the complex interactions that occur between host-response mechanisms and putative microbiologic pathogens in periodontal disease have made elucidation of genetic factors in disease susceptibility more difficult. In addition, during the 30-year period between 1958 and 1987, only meager resources were targeted toward the "nature" side of the nature/nurture dipole in periodontology. In this article, we present a brief history of the development of genetic epistemology, then describe the three main research mechanisms by which questions about the hereditary component of diseases in humans can be addressed. A critical discussion of the evidence for a hereditary component in caries susceptibility is next presented, also from a historical perspective. The evolution of knowledge concerning possible genetic ("endogenous", "idiotypic") factors in the pathogenesis of inflammatory periodontal disease is initiated with an analysis of some foreign-language (primarily German) literature that is likely to be unfamiliar to the reader. We identify a turning point at about 1960, when the periodontal research community turned away from genetics in favor of microbiology research. During the past five years, investigators have re-initiated the search for the hereditary component in susceptibility to common adult periodontal disease; this small but growing body of literature is reviewed. Recent applications of in vitro methods for genetic analyses in periodontal research are presented, with an eye toward a future in which persons who are at risk--genetically predisposed--to periodontal disease may be identified and targeted for interventive strategies. Critical is the realization that genes and environment

  9. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed.

    PubMed

    Qian, W; Meng, J; Li, M; Frauen, M; Sass, O; Noack, J; Jung, C

    2006-06-01

    In spite of its short history of being an oil crop in China, the Chinese semi-winter rapeseed (Brassica napus L., 2n = 38, AACC) has been improved rapidly by intentional introgression of genomic components from Chinese B. rapa (2n = 20, AA). As a result, the Chinese semi-winter rapeseed has diversified genetically from the spring and winter rapeseed grown in the other regions such as Europe and North America. The objectives of this study were to investigate the roles of the introgression of the genomic components from the Chinese B. rapa in widening the genetic diversity of rapeseed and to verify the role of this introgression in the evolution of the Chinese rapeseed. Ten lines of the new type of rapeseed, which were produced by introgression of Chinese B. rapa to Chinese normal rapeseed, were compared for genetic diversity using amplified fragment length polymorphism (AFLP) with three groups of 35 lines of the normal rapeseed, including 9 semi-winter rapeseed lines from China, 9 winter rapeseed lines from Europe and 17 spring rapeseed lines from Northern Europe, Canada and Australia. Analysis of 799 polymorphic fragments revealed that within the groups, the new type rapeseed had the highest genetic diversity, followed by the semi-winter normal rapeseed from China. Spring and winter rapeseed had the lowest genetic diversity. Among the groups, the new type rapeseed group had the largest average genetic distance to the other three groups. Principal component analysis and cluster analysis, however, could not separate the new type rapeseed group from Chinese normal rapeseed group. Our data suggested that the introgression of Chinese B. rapa could significantly diversify the genetic basis of the rapeseed and play an important role in the evolution of Chinese rapeseed. The use of new genetic variation for the exploitation of heterosis in Brassica hybrid breeding is discussed.

  10. The genetic basis of female multiple mating in a polyandrous livebearing fish

    PubMed Central

    Evans, Jonathan P; Gasparini, Clelia

    2013-01-01

    The widespread occurrence of female multiple mating (FMM) demands evolutionary explanation, particularly in the light of the costs of mating. One explanation encapsulated by “good sperm” and “sexy-sperm” (GS-SS) theoretical models is that FMM facilitates sperm competition, thus ensuring paternity by males that pass on genes for elevated sperm competitiveness to their male offspring. While support for this component of GS-SS theory is accumulating, a second but poorly tested assumption of these models is that there should be corresponding heritable genetic variation in FMM – the proposed mechanism of postcopulatory preferences underlying GS-SS models. Here, we conduct quantitative genetic analyses on paternal half-siblings to test this component of GS-SS theory in the guppy (Poecilia reticulata), a freshwater fish with some of the highest known rates of FMM in vertebrates. As with most previous quantitative genetic analyses of FMM in other species, our results reveal high levels of phenotypic variation in this trait and a correspondingly low narrow-sense heritability (h2 = 0.11). Furthermore, although our analysis of additive genetic variance in FMM was not statistically significant (probably owing to limited statistical power), the ensuing estimate of mean-standardized additive genetic variance (IA = 0.7) was nevertheless relatively low compared with estimates published for life-history traits across a broad range of taxa. Our results therefore add to a growing body of evidence that FMM is characterized by relatively low additive genetic variation, thus apparently contradicting GS-SS theory. However, we qualify this conclusion by drawing attention to potential deficiencies in most designs (including ours) that have tested for genetic variation in FMM, particularly those that fail to account for intersexual interactions that underlie FMM in many systems. PMID:23403856

  11. On the additive and dominant variance and covariance of individuals within the genomic selection scope.

    PubMed

    Vitezica, Zulma G; Varona, Luis; Legarra, Andres

    2013-12-01

    Genomic evaluation models can fit additive and dominant SNP effects. Under quantitative genetics theory, additive or "breeding" values of individuals are generated by substitution effects, which involve both "biological" additive and dominant effects of the markers. Dominance deviations include only a portion of the biological dominant effects of the markers. Additive variance includes variation due to the additive and dominant effects of the markers. We describe a matrix of dominant genomic relationships across individuals, D, which is similar to the G matrix used in genomic best linear unbiased prediction. This matrix can be used in a mixed-model context for genomic evaluations or to estimate dominant and additive variances in the population. From the "genotypic" value of individuals, an alternative parameterization defines additive and dominance as the parts attributable to the additive and dominant effect of the markers. This approach underestimates the additive genetic variance and overestimates the dominance variance. Transforming the variances from one model into the other is trivial if the distribution of allelic frequencies is known. We illustrate these results with mouse data (four traits, 1884 mice, and 10,946 markers) and simulated data (2100 individuals and 10,000 markers). Variance components were estimated correctly in the model, considering breeding values and dominance deviations. For the model considering genotypic values, the inclusion of dominant effects biased the estimate of additive variance. Genomic models were more accurate for the estimation of variance components than their pedigree-based counterparts.

  12. Logistics for Working Together to Facilitate Genomic/Quantitative Genetic Prediction

    USDA-ARS?s Scientific Manuscript database

    The incorporation of DNA tests into the national cattle evaluation system will require estimation of variances of and covariances among the additive genetic components of the DNA tests and the phenotypic traits they are intended to predict. Populations with both DNA test results and phenotypes will ...

  13. Congruence of Additive and Non-Additive Effects on Gene Expression Estimated from Pedigree and SNP Data

    PubMed Central

    Powell, Joseph E.; Henders, Anjali K.; McRae, Allan F.; Kim, Jinhee; Hemani, Gibran; Martin, Nicholas G.; Dermitzakis, Emmanouil T.; Gibson, Greg

    2013-01-01

    There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted—in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts. For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects. PMID:23696747

  14. Congruence of additive and non-additive effects on gene expression estimated from pedigree and SNP data.

    PubMed

    Powell, Joseph E; Henders, Anjali K; McRae, Allan F; Kim, Jinhee; Hemani, Gibran; Martin, Nicholas G; Dermitzakis, Emmanouil T; Gibson, Greg; Montgomery, Grant W; Visscher, Peter M

    2013-05-01

    There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted--in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts. For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects.

  15. Dominance Genetic Variance for Traits Under Directional Selection in Drosophila serrata

    PubMed Central

    Sztepanacz, Jacqueline L.; Blows, Mark W.

    2015-01-01

    In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait–fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. PMID:25783700

  16. Imaging genetics approach to predict progression of Parkinson's diseases.

    PubMed

    Mansu Kim; Seong-Jin Son; Hyunjin Park

    2017-07-01

    Imaging genetics is a tool to extract genetic variants associated with both clinical phenotypes and imaging information. The approach can extract additional genetic variants compared to conventional approaches to better investigate various diseased conditions. Here, we applied imaging genetics to study Parkinson's disease (PD). We aimed to extract significant features derived from imaging genetics and neuroimaging. We built a regression model based on extracted significant features combining genetics and neuroimaging to better predict clinical scores of PD progression (i.e. MDS-UPDRS). Our model yielded high correlation (r = 0.697, p <; 0.001) and low root mean squared error (8.36) between predicted and actual MDS-UPDRS scores. Neuroimaging (from 123 I-Ioflupane SPECT) predictors of regression model were computed from independent component analysis approach. Genetic features were computed using image genetics approach based on identified neuroimaging features as intermediate phenotypes. Joint modeling of neuroimaging and genetics could provide complementary information and thus have the potential to provide further insight into the pathophysiology of PD. Our model included newly found neuroimaging features and genetic variants which need further investigation.

  17. Lightweight custom composite prosthetic components using an additive manufacturing-based molding technique.

    PubMed

    Leddy, Michael T; Belter, Joseph T; Gemmell, Kevin D; Dollar, Aaron M

    2015-01-01

    Additive manufacturing techniques are becoming more prominent and cost-effective as 3D printing becomes higher quality and more inexpensive. The idea of 3D printed prosthetics components promises affordable, customizable devices, but these systems currently have major shortcomings in durability and function. In this paper, we propose a fabrication method for custom composite prostheses utilizing additive manufacturing, allowing for customizability, as well the durability of professional prosthetics. The manufacturing process is completed using 3D printed molds in a multi-stage molding system, which creates a custom finger or palm with a lightweight epoxy foam core, a durable composite outer shell, and soft urethane gripping surfaces. The composite material was compared to 3D printed and aluminum materials using a three-point bending test to compare stiffness, as well as gravimetric measurements to compare weight. The composite finger demonstrates the largest stiffness with the lowest weight compared to other tested fingers, as well as having customizability and lower cost, proving to potentially be a substantial benefit to the development of upper-limb prostheses.

  18. Genetic transformation of fruit trees: current status and remaining challenges.

    PubMed

    Gambino, Giorgio; Gribaudo, Ivana

    2012-12-01

    Genetic transformation has emerged as a powerful tool for genetic improvement of fruit trees hindered by their reproductive biology and their high levels of heterozygosity. For years, genetic engineering of fruit trees has focussed principally on enhancing disease resistance (against viruses, fungi, and bacteria), although there are few examples of field cultivation and commercial application of these transgenic plants. In addition, over the years much work has been performed to enhance abiotic stress tolerance, to induce modifications of plant growth and habit, to produce marker-free transgenic plants and to improve fruit quality by modification of genes that are crucially important in the production of specific plant components. Recently, with the release of several genome sequences, studies of functional genomics are becoming increasingly important: by modification (overexpression or silencing) of genes involved in the production of specific plant components is possible to uncover regulatory mechanisms associated with the biosynthesis and catabolism of metabolites in plants. This review focuses on the main advances, in recent years, in genetic transformation of the most important species of fruit trees, devoting particular attention to functional genomics approaches and possible future challenges of genetic engineering for these species in the post-genomic era.

  19. An Assessment of Nondestructive Evaluation Capability for Complex Additive Manufacturing Aerospace Components

    NASA Technical Reports Server (NTRS)

    Walker, James; Beshears, Ron; Lambert, Dennis; Tilson, William

    2016-01-01

    The primary focus of this work is to investigate some of the fundamental relationships between processing, mechanical testing, materials characterization, and NDE for additively manufactured (AM) components using the powder bed fusion direct melt laser sintered process. The goal is to understand the criticality of defects unique to the AM process and then how conventional nondestructive evaluation methods as well as some of the more non-traditional methods such as computed tomography, are effected by the AM material. Specific defects including cracking, porosity and partially/unfused powder will be addressed. Besides line-of-site NDE, as appropriate these inspection capabilities will be put into the context of complex AM geometries where hidden features obscure, or inhibit traditional NDE methods.

  20. Clustering of immunological, metabolic and genetic features in latent autoimmune diabetes in adults: evidence from principal component analysis.

    PubMed

    Pes, Giovanni Mario; Delitala, Alessandro Palmerio; Errigo, Alessandra; Delitala, Giuseppe; Dore, Maria Pina

    2016-06-01

    Latent autoimmune diabetes in adults (LADA) which accounts for more than 10 % of all cases of diabetes is characterized by onset after age 30, absence of ketoacidosis, insulin independence for at least 6 months, and presence of circulating islet-cell antibodies. Its marked heterogeneity in clinical features and immunological markers suggests the existence of multiple mechanisms underlying its pathogenesis. The principal component (PC) analysis is a statistical approach used for finding patterns in data of high dimension. In this study the PC analysis was applied to a set of variables from a cohort of Sardinian LADA patients to identify a smaller number of latent patterns. A list of 11 variables including clinical (gender, BMI, lipid profile, systolic and diastolic blood pressure and insulin-free time period), immunological (anti-GAD65, anti-IA-2 and anti-TPO antibody titers) and genetic features (predisposing gene variants previously identified as risk factors for autoimmune diabetes) retrieved from clinical records of 238 LADA patients referred to the Internal Medicine Unit of University of Sassari, Italy, were analyzed by PC analysis. The predictive value of each PC on the further development of insulin dependence was evaluated using Kaplan-Meier curves. Overall 4 clusters were identified by PC analysis. In component PC-1, the dominant variables were: BMI, triglycerides, systolic and diastolic blood pressure and duration of insulin-free time period; in PC-2: genetic variables such as Class II HLA, CTLA-4 as well as anti-GAD65, anti-IA-2 and anti-TPO antibody titers, and the insulin-free time period predominated; in PC-3: gender and triglycerides; and in PC-4: total cholesterol. These components explained 18, 15, 12, and 12 %, respectively, of the total variance in the LADA cohort. The predictive power of insulin dependence of the four components was different. PC-2 (characterized mostly by high antibody titers and presence of predisposing genetic markers

  1. Genetic and Psychosocial Predictors of Aggression: Variable Selection and Model Building With Component-Wise Gradient Boosting.

    PubMed

    Suchting, Robert; Gowin, Joshua L; Green, Charles E; Walss-Bass, Consuelo; Lane, Scott D

    2018-01-01

    Rationale : Given datasets with a large or diverse set of predictors of aggression, machine learning (ML) provides efficient tools for identifying the most salient variables and building a parsimonious statistical model. ML techniques permit efficient exploration of data, have not been widely used in aggression research, and may have utility for those seeking prediction of aggressive behavior. Objectives : The present study examined predictors of aggression and constructed an optimized model using ML techniques. Predictors were derived from a dataset that included demographic, psychometric and genetic predictors, specifically FK506 binding protein 5 (FKBP5) polymorphisms, which have been shown to alter response to threatening stimuli, but have not been tested as predictors of aggressive behavior in adults. Methods : The data analysis approach utilized component-wise gradient boosting and model reduction via backward elimination to: (a) select variables from an initial set of 20 to build a model of trait aggression; and then (b) reduce that model to maximize parsimony and generalizability. Results : From a dataset of N = 47 participants, component-wise gradient boosting selected 8 of 20 possible predictors to model Buss-Perry Aggression Questionnaire (BPAQ) total score, with R 2 = 0.66. This model was simplified using backward elimination, retaining six predictors: smoking status, psychopathy (interpersonal manipulation and callous affect), childhood trauma (physical abuse and neglect), and the FKBP5_13 gene (rs1360780). The six-factor model approximated the initial eight-factor model at 99.4% of R 2 . Conclusions : Using an inductive data science approach, the gradient boosting model identified predictors consistent with previous experimental work in aggression; specifically psychopathy and trauma exposure. Additionally, allelic variants in FKBP5 were identified for the first time, but the relatively small sample size limits generality of results and calls for

  2. Towards programmable plant genetic circuits.

    PubMed

    Medford, June I; Prasad, Ashok

    2016-07-01

    Synthetic biology enables the construction of genetic circuits with predictable gene functions in plants. Detailed quantitative descriptions of the transfer function or input-output function for genetic parts (promoters, 5' and 3' untranslated regions, etc.) are collected. These data are then used in computational simulations to determine their robustness and desired properties, thereby enabling the best components to be selected for experimental testing in plants. In addition, the process forms an iterative workflow which allows vast improvement to validated elements with sub-optimal function. These processes enable computational functions such as digital logic in living plants and follow the pathway of technological advances which took us from vacuum tubes to cell phones. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  3. 45 CFR 146.122 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 1, the health risk assessment includes a request for genetic information (that is, the individual's... health risk assessment are a request for genetic information for underwriting purposes and are prohibited.... Individual A group health plan covers genetic testing for celiac disease for individuals who have family...

  4. 45 CFR 146.122 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 1, the health risk assessment includes a request for genetic information (that is, the individual's... health risk assessment are a request for genetic information for underwriting purposes and are prohibited.... Individual A group health plan covers genetic testing for celiac disease for individuals who have family...

  5. 45 CFR 146.122 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 1, the health risk assessment includes a request for genetic information (that is, the individual's... health risk assessment are a request for genetic information for underwriting purposes and are prohibited.... Individual A group health plan covers genetic testing for celiac disease for individuals who have family...

  6. 45 CFR 146.122 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 1, the health risk assessment includes a request for genetic information (that is, the individual's... health risk assessment are a request for genetic information for underwriting purposes and are prohibited.... Individual A group health plan covers genetic testing for celiac disease for individuals who have family...

  7. What is currently known about the genetics of venous thromboembolism at the dawn of next generation sequencing technologies.

    PubMed

    Trégouët, David-Alexandre; Morange, Pierre-Emmanuel

    2018-02-01

    Venous thromboembolism (VTE) has a strong genetic component. This review summarizes what is known at the seventeen genes that are now well established to harbour VTE-associated genetic variants. In addition, it discusses additional candidate genes that deserve further validation before being claimed as VTE associated genes. Finally, several research strategies are briefly described to identify other molecular determinants of the disease. © 2017 John Wiley & Sons Ltd.

  8. Dominance genetic and maternal effects for genetic evaluation of egg production traits in dual-purpose chickens.

    PubMed

    Jasouri, M; Zamani, P; Alijani, S

    2017-10-01

    1. A study was conducted to study direct dominance genetic and maternal effects on genetic evaluation of production traits in dual-purpose chickens. The data set consisted of records of body weight and egg production of 49 749 Mazandaran fowls from 19 consecutive generations. Based on combinations of different random effects, including direct additive and dominance genetic and maternal additive genetic and environmental effects, 8 different models were compared. 2. Inclusion of a maternal genetic effect in the models noticeably improved goodness of fit for all traits. Direct dominance genetic effect did not have noticeable effects on goodness of fit but simultaneous inclusion of both direct dominance and maternal additive genetic effects improved fitting criteria and accuracies of genetic parameter estimates for hatching body weight and egg production traits. 3. Estimates of heritability (h 2 ) for body weights at hatch, 8 weeks and 12 weeks of age (BW0, BW8 and BW12, respectively), age at sexual maturity (ASM), average egg weights at 28-32 weeks of laying period (AEW), egg number (EN) and egg production intensity (EI) were 0.08, 0.21, 0.22, 0.22, 0.21, 0.09 and 0.10, respectively. For BW0, BW8, BW12, ASM, AEW, EN and EI, proportion of dominance genetic to total phenotypic variance (d 2 ) were 0.06, 0.08, 0.01, 0.06, 0.06, 0.08 and 0.07 and maternal heritability estimates (m 2 ) were 0.05, 0.04, 0.03, 0.13, 0.21, 0.07 and 0.03, respectively. Negligible coefficients of maternal environmental effect (c 2 ) from 0.01 to 0.08 were estimated for all traits, other than BW0, which had an estimate of 0.30. 4. Breeding values (BVs) estimated for body weights at early ages (BW0 and BW8) were considerably affected by components of the models, but almost similar BVs were estimated by different models for higher age body weight (BW12) and egg production traits (ASM, AEW, EN and EI). Generally, it could be concluded that inclusion of maternal effects (both genetic and

  9. Quantitative genetics

    USDA-ARS?s Scientific Manuscript database

    The majority of economically important traits targeted for cotton improvement are quantitatively inherited. In this chapter, the current state of cotton quantitative genetics is described and separated into four components. These components include: 1) traditional quantitative inheritance analysis, ...

  10. Quantitative genetic versions of Hamilton's rule with empirical applications

    PubMed Central

    McGlothlin, Joel W.; Wolf, Jason B.; Brodie, Edmund D.; Moore, Allen J.

    2014-01-01

    Hamilton's theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton's perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton's rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton's rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton's rule. Research in social evolution has generated an extensive body of empirical work focusing—with good reason—almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution. PMID:24686930

  11. Smokers' unprompted comments on cigarette additives during conversations about the genetic basis for nicotine addiction: a focus group study.

    PubMed

    Philpott, Sydney E; Gehlert, Sarah; Waters, Erika A

    2018-04-13

    Research designed to elicit smokers' cognitive and affective reactions to information about chemicals that tobacco companies add to cigarettes ("additives") found that knowledge is limited. However, little is known about smokers' unprompted thoughts and feelings about additives. Such information could be used to shape future communication efforts. We explored the content and possible functions of spontaneous statements about cigarette additives made by smokers during a study examining reactions to learning about the genetic link to nicotine addiction. Adult smokers (N = 84) were recruited from a medium-sized Midwestern city. Focus groups (N = 13) were conducted between April-September 2012. Data were analyzed by 2 coders using thematic analysis. Comments about cigarette additives arose without prompting by the focus group moderator. Three main themes were identified: (1) discussing additives helped participants navigate the conceptual link between smoking and genetics, (2) additives were discussed as an alternative mechanism for addiction to cigarettes, and (3) additives provided an alternative mechanism by which cigarette smoking exacerbates physical harm. Notably, discussion of additives contained a pervasive tone of mistrust illustrated by words like "they" and "them," by statements of uncertainty such as "you don't know what they're putting into cigarettes," and by negative affective verbalizations such as "nasty" and "disgusting". Participants had distinct beliefs about cigarette additives, each of which seemed to serve a purpose. Although mistrust may complicate communication about the health risks of tobacco use, health communication experts could use smokers' existing beliefs and feelings to better design more effective anti-smoking messages.

  12. Additional self-monitoring tools in the dietary modification component of The Women's Health Initiative.

    PubMed

    Mossavar-Rahmani, Yasmin; Henry, Holly; Rodabough, Rebecca; Bragg, Charlotte; Brewer, Amy; Freed, Trish; Kinzel, Laura; Pedersen, Margaret; Soule, C Oehme; Vosburg, Shirley

    2004-01-01

    Self-monitoring promotes behavior changes by promoting awareness of eating habits and creates self-efficacy. It is an important component of the Women's Health Initiative dietary intervention. During the first year of intervention, 74% of the total sample of 19,542 dietary intervention participants self-monitored. As the study progressed the self-monitoring rate declined to 59% by spring 2000. Participants were challenged by inability to accurately estimate fat content of restaurant foods and the inconvenience of carrying bulky self-monitoring tools. In 1996, a Self-Monitoring Working Group was organized to develop additional self-monitoring options that were responsive to participant needs. This article describes the original and additional self-monitoring tools and trends in tool use over time. Original tools were the Food Diary and Fat Scan. Additional tools include the Keeping Track of Goals, Quick Scan, Picture Tracker, and Eating Pattern Changes instruments. The additional tools were used by the majority of participants (5,353 of 10,260 or 52% of participants who were self-monitoring) by spring 2000. Developing self-monitoring tools that are responsive to participant needs increases the likelihood that self-monitoring can enhance dietary reporting adherence, especially in long-term clinical trials.

  13. Genetic parameter estimation for long endurance trials in the Uruguayan Criollo horse.

    PubMed

    López-Correa, R D; Peñagaricano, F; Rovere, G; Urioste, J I

    2018-06-01

    The aim of this study was to estimate the genetic parameters of performance in a 750-km, 15-day ride in Criollo horses. Heritability (h 2 ) and maternal lineage effects (mt 2 ) were obtained for rank, a relative placing measure of performance. Additive genetic and maternal lineage (rmt) correlations among five medium-to-high intensity phase ranks (pRK) and final rank (RK) were also estimated. Individual records from 1,236 Criollo horses from 1979 to 2012 were used. A multivariate threshold animal model was applied to the pRK and RK. Heritability was moderate to low (0.156-0.275). Estimates of mt 2 were consistently low (0.04-0.06). Additive genetic correlations between individual pRK and RK were high (0.801-0.924), and the genetic correlations between individual pRKs ranged from 0.763 to 0.847. The pRK heritabilities revealed that some phases were explained by a greater additive component, whereas others showed stronger genetic relationships with RK. Thus, not all pRK may be considered as similar measures of performance in competition. © 2018 Blackwell Verlag GmbH.

  14. Genetics of human body size and shape: pleiotropic and independent genetic determinants of adiposity.

    PubMed

    Livshits, G; Yakovenko, K; Ginsburg, E; Kobyliansky, E

    1998-01-01

    The present study utilized pedigree data from three ethnically different populations of Kirghizstan, Turkmenia and Chuvasha. Principal component analysis was performed on a matrix of genetic correlations between 22 measures of adiposity, including skinfolds, circumferences and indices. Findings are summarized as follows: (1) All three genetic matrices were not positive definite and the first four factors retained even after exclusion RG > or = 1.0, explained from 88% to 97% of the total additive genetic variation in the 22 trials studied. This clearly emphasizes the massive involvement of pleiotropic gene effects in the variability of adiposity traits. (2) Despite the quite natural differences in pairwise correlations between the adiposity traits in the three ethnically different samples under study, factor analysis revealed a common basic pattern of covariability for the adiposity traits. In each of the three samples, four genetic factors were retained, namely, the amount of subcutaneous fat, the total body obesity, the pattern of distribution of subcutaneous fat and the central adiposity distribution. (3) Genetic correlations between the retained four factors were virtually non-existent, suggesting that several independent genetic sources may be governing the variation of adiposity traits. (4) Variance decomposition analysis on the obtained genetic factors leaves no doubt regarding the substantial familial and (most probably genetic) effects on variation of each factor in each studied population. The similarity of results in the three different samples indicates that the findings may be deemed valid and reliable descriptions of the genetic variation and covariation pattern of adiposity traits in the human species.

  15. Genome-Wide Association Study Reveals the Genetic Basis of Stalk Cell Wall Components in Maize

    PubMed Central

    Hu, Xiaojiao; Liu, Zhifang; Wu, Yujin; Huang, Changling

    2016-01-01

    Lignin, cellulose and hemicellulose are the three main components of the plant cell wall and can impact stalk quality by affecting cell wall structure and strength. In this study, we evaluated the lignin (LIG), cellulose (CEL) and hemicellulose (HC) contents in maize using an association mapping panel that included 368 inbred lines in seven environments. A genome-wide association study using approximately 0.56 million SNPs with a minor allele frequency of 0.05 identified 22, 18 and 24 loci significantly associated with LIG, CEL and HC at P < 1.0×10−4, respectively. The allelic variation of each significant association contributed 4 to 7% of the phenotypic variation. Candidate genes identified by GWAS mainly encode enzymes involved in cell wall metabolism, transcription factors, protein kinase and protein related to other biological processes. Among the association signals, six candidate genes had pleiotropic effects on lignin and cellulose content. These results provide valuable information for better understanding the genetic basis of stalk cell wall components in maize. PMID:27479588

  16. Genetic Interactions Between the Meiosis-Specific Cohesin Components, STAG3, REC8, and RAD21L.

    PubMed

    Ward, Ayobami; Hopkins, Jessica; Mckay, Matthew; Murray, Steve; Jordan, Philip W

    2016-06-01

    Cohesin is an essential structural component of chromosomes that ensures accurate chromosome segregation during mitosis and meiosis. Previous studies have shown that there are cohesin complexes specific to meiosis, required to mediate homologous chromosome pairing, synapsis, recombination, and segregation. Meiosis-specific cohesin complexes consist of two structural maintenance of chromosomes proteins (SMC1α/SMC1β and SMC3), an α-kleisin protein (RAD21, RAD21L, or REC8), and a stromal antigen protein (STAG1, 2, or 3). STAG3 is exclusively expressed during meiosis, and is the predominant STAG protein component of cohesin complexes in primary spermatocytes from mouse, interacting directly with each α-kleisin subunit. REC8 and RAD21L are also meiosis-specific cohesin components. Stag3 mutant spermatocytes arrest in early prophase ("zygotene-like" stage), displaying failed homolog synapsis and persistent DNA damage, as a result of unstable loading of cohesin onto the chromosome axes. Interestingly, Rec8, Rad21L double mutants resulted in an earlier "leptotene-like" arrest, accompanied by complete absence of STAG3 loading. To assess genetic interactions between STAG3 and α-kleisin subunits RAD21L and REC8, our lab generated Stag3, Rad21L, and Stag3, Rec8 double knockout mice, and compared them to the Rec8, Rad21L double mutant. These double mutants are phenotypically distinct from one another, and more severe than each single knockout mutant with regards to chromosome axis formation, cohesin loading, and sister chromatid cohesion. The Stag3, Rad21L, and Stag3, Rec8 double mutants both progress further into prophase I than the Rec8, Rad21L double mutant. Our genetic analysis demonstrates that cohesins containing STAG3 and REC8 are the main complex required for centromeric cohesion, and RAD21L cohesins are required for normal clustering of pericentromeric heterochromatin. Furthermore, the STAG3/REC8 and STAG3/RAD21L cohesins are the primary cohesins required for

  17. Quantifying introgression risk with realistic population genetics.

    PubMed

    Ghosh, Atiyo; Meirmans, Patrick G; Haccou, Patsy

    2012-12-07

    Introgression is the permanent incorporation of genes from the genome of one population into another. This can have severe consequences, such as extinction of endemic species, or the spread of transgenes. Quantification of the risk of introgression is an important component of genetically modified crop regulation. Most theoretical introgression studies aimed at such quantification disregard one or more of the most important factors concerning introgression: realistic genetical mechanisms, repeated invasions and stochasticity. In addition, the use of linkage as a risk mitigation strategy has not been studied properly yet with genetic introgression models. Current genetic introgression studies fail to take repeated invasions and demographic stochasticity into account properly, and use incorrect measures of introgression risk that can be manipulated by arbitrary choices. In this study, we present proper methods for risk quantification that overcome these difficulties. We generalize a probabilistic risk measure, the so-called hazard rate of introgression, for application to introgression models with complex genetics and small natural population sizes. We illustrate the method by studying the effects of linkage and recombination on transgene introgression risk at different population sizes.

  18. Quantitative genetic analysis of the body composition and blood pressure association in two ethnically diverse populations.

    PubMed

    Ghosh, Sudipta; Dosaev, Tasbulat; Prakash, Jai; Livshits, Gregory

    2017-04-01

    The major aim of this study was to conduct comparative quantitative-genetic analysis of the body composition (BCP) and somatotype (STP) variation, as well as their correlations with blood pressure (BP) in two ethnically, culturally and geographically different populations: Santhal, indigenous ethnic group from India and Chuvash, indigenous population from Russia. Correspondently two pedigree-based samples were collected from 1,262 Santhal and1,558 Chuvash individuals, respectively. At the first stage of the study, descriptive statistics and a series of univariate regression analyses were calculated. Finally, multiple and multivariate regression (MMR) analyses, with BP measurements as dependent variables and age, sex, BCP and STP as independent variables were carried out in each sample separately. The significant and independent covariates of BP were identified and used for re-examination in pedigree-based variance decomposition analysis. Despite clear and significant differences between the populations in BCP/STP, both Santhal and Chuvash were found to be predominantly mesomorphic irrespective of their sex. According to MMR analyses variation of BP significantly depended on age and mesomorphic component in both samples, and in addition on sex, ectomorphy and fat mass index in Santhal and on fat free mass index in Chuvash samples, respectively. Additive genetic component contributes to a substantial proportion of blood pressure and body composition variance. Variance component analysis in addition to above mentioned results suggests that additive genetic factors influence BP and BCP/STP associations significantly. © 2017 Wiley Periodicals, Inc.

  19. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton.

    PubMed

    Su, Junji; Li, Libei; Zhang, Chi; Wang, Caixiang; Gu, Lijiao; Wang, Hantao; Wei, Hengling; Liu, Qibao; Huang, Long; Yu, Shuxun

    2018-06-01

    Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton. A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation

  20. Additive Manufacture (3D Printing) of Plasma Diagnostic Components and Assemblies for Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Quinley, Morgan; Chun, Katherine; Melnik, Paul; Sieck, Paul; Smith, Trevor; Stuber, James; Woodruff, Simon; Romero-Talamas, Carlos; Rivera, William; Card, Alexander

    2016-10-01

    We are investigating the potential impact of additive manufacturing (3D printing) on the cost and complexity of plasma diagnostics. We present a survey of the current state-of-the-art in additive manufacture of metals, as well as the design of diagnostic components that have been optimized for and take advantage of these processes. Included among these is a set of retarding field analyzer probe heads that have been printed in tungsten with internal heat sinks and cooling channels. Finite element analysis of these probe heads shows the potential for a 750K reduction in peak temperature, allowing the probe to take data twice as often without melting. Results of the evaluation of these probe heads for mechanical strength and outgassing, as well as their use on Alcator C-Mod will be presented. Supported by DOE SBIR Grant DE-SC0011858.

  1. 3D additive manufactured 316L components microstructural features and changes induced by working life cycles

    NASA Astrophysics Data System (ADS)

    Pace, M. L.; Guarnaccio, A.; Dolce, P.; Mollica, D.; Parisi, G. P.; Lettino, A.; Medici, L.; Summa, V.; Ciancio, R.; Santagata, A.

    2017-10-01

    The ability of processing through laser beams different kinds of metallic powders for direct production of 3D components with complex geometries has been gaining an impressive and growing attention for specific industrial applications. The process which can be distinguished as Selective Laser Sintering or Selective Laser Melting is even considered, more generally, as Additive Manufacturing where layer by layer material is built by the interaction between a laser beam and a powder bed. The rapid heating of the powder due to the laser beam energy transfer process followed by a rapid cooling rate induces within the manufactured material a cellular structure with fine sub-grains, which are in the range of few hundreds of micrometers. These metastable structures, which are smaller than the grain size in conventionally manufactured 316L stainless steel components, can undertake towards a recrystallization process due to either heat or mechanical treatments. For instance, when sub-grain boundaries of the cells are enriched with Mo and higher concentration of dislocation, dynamical processes occur generating local residual stresses. In these circumstances the segregation of Mo in cell boundaries is out of thermodynamic equilibrium conditions so that microstructures and phases are metastable. In the range of 1100-1400 °C heat treatments a complete dissolution of Mo in the Fe matrix with a gradual disappearance of sub-microns cell is observed feeding the growth of larger austenitic sub-grains formation. It follows a higher degree of Mo dissolution in the material matrix and a decrease of dislocation's concentration (Saeidi et al., 2015) [1]. In the work here presented we point out which are the microstructural features of stainless steel 316L components realized by Additive Manufacturing. Furthermore, the occurrence of a microstructural evolution is presented after experiencing to fatigue of 80000 cycles some door joints obtained by this technique. A decrease of dislocation

  2. Variable pleiotropic effects from mutations at the same locus hamper prediction of fitness from a fitness component.

    PubMed

    Pepin, Kim M; Samuel, Melanie A; Wichman, Holly A

    2006-04-01

    The relationship of genotype, fitness components, and fitness can be complicated by genetic effects such as pleiotropy and epistasis and by heterogeneous environments. However, because it is often difficult to measure genotype and fitness directly, fitness components are commonly used to estimate fitness without regard to genetic architecture. The small bacteriophage X174 enables direct evaluation of genetic and environmental effects on fitness components and fitness. We used 15 mutants to study mutation effects on attachment rate and fitness in six hosts. The mutants differed from our lab strain of X174 by only one or two amino acids in the major capsid protein (gpF, sites 101 and 102). The sites are variable in natural and experimentally evolved X174 populations and affect phage attachment rate. Within the limits of detection of our assays, all mutations were neutral or deleterious relative to the wild type; 11 mutants had decreased host range. While fitness was predictable from attachment rate in most cases, 3 mutants had rapid attachment but low fitness on most hosts. Thus, some mutations had a pleiotropic effect on a fitness component other than attachment rate. In addition, on one host most mutants had high attachment rate but decreased fitness, suggesting that pleiotropic effects also depended on host. The data highlight that even in this simple, well-characterized system, prediction of fitness from a fitness component depends on genetic architecture and environment.

  3. Genetic Cancer Risk Assessment for Breast Cancer in Latin America

    PubMed Central

    Chavarri-Guerra, Yanin; Blazer, Kathleen Reilly; Weitzel, Jeffrey Nelson

    2017-01-01

    In Latin America, breast cancer is the most common malignancy in women, and limited available data suggest that up to 15% of all breast cancer cases in the region are hereditary. Genetic cancer risk assessment and counseling is a critical component of the appropriate clinical care of patients with hereditary breast cancer and their families. Unfortunately, genetic services are underdeveloped across Latin America, and access to genetic testing and counseling is very scarce in the region. Barriers contributing to the access to genetic care are high cost and lack of insurance coverage for genetic tests, insufficient oncogenetics training or expertise, nonexistence of genetic counseling as a clinical discipline and lack of supportive healthcare policies. In this review, we highlight relevant initiatives undertaken in several Latin American countries aimed at creating genetic cancer risk assessment programs. Additionally, we present a review of the scientific literature on the current status of breast cancer genomics in Latin America, with specific emphasis on demographic indicators, access to cancer genetic care, training and strategies to improve outcomes and international collaborations. PMID:28453507

  4. Additive Manufacturing of Hierarchical Multi-Phase High-Entropy Alloys for Nuclear Component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan

    In recent years, high entropy alloys (HEAs), composed of four or more metallic elements mixed in equal or near equal atomic percent, have attracted significant attention due to their excellent mechanical properties and good corrosion resistance. They show significant promise as candidates for high temperature fission and fusion structural applications. However, the conventional synthesis methods are unlikely to present an industrially suitable route for the production and use of HEAs. Recognizing rapidly evolving additive manufacturing (AM) techniques, the goal of this proposal is to optimize the AM process to fabricate HEAs with predesigned chemical compositions and phase morphologies for nuclearmore » components. For this project, two HEAs FeCrNiMn and FeCrNiMnAl have been successfully synthesized. Correlated mechanical response has been systematically characterized under a variety of laser processing and ion irradiations. Both high entropy alloys are found to present comparable swelling and extraordinary irradiation tolerance (limited voids and stabilized phase structure under high irradiation dose). In addition, the microstructure and radiation-induced hardening can be tailored by laser processing under additive manufacturing. And we have assembled at LANL a unique database of HEAs containing a total of 674 compositions with Phase Stability information. Based on this, the machine learning and Artificial Intelligence capability now are established to predict the microstructure of casted HEAs by given chemical compositions. This unique integration will lead to an optimal AM recipe for fabricating radiation tolerant HEAs. The development of both modeling models and experimental capability will also benefit other programs at LANL.« less

  5. GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics.

    PubMed

    Ledda, Mirko; Kutalik, Zoltán; Souza Destito, Maria C; Souza, Milena M; Cirillo, Cintia A; Zamboni, Amabilene; Martin, Nathalie; Morya, Edgard; Sameshima, Koichi; Beckmann, Jacques S; le Coutre, Johannes; Bergmann, Sven; Genick, Ulrich K

    2014-01-01

    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88- 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10(-13), r(2) = 8.9%, β = -0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with-but is statistically distinct from-the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10(-37), r(2) = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception.

  6. Estimation of genetic parameters for heat stress, including dominance gene effects, on milk yield in Thai Holstein dairy cattle.

    PubMed

    Boonkum, Wuttigrai; Duangjinda, Monchai

    2015-03-01

    Heat stress in tropical regions is a major cause that strongly negatively affects to milk production in dairy cattle. Genetic selection for dairy heat tolerance is powerful technique to improve genetic performance. Therefore, the current study aimed to estimate genetic parameters and investigate the threshold point of heat stress for milk yield. Data included 52 701 test-day milk yield records for the first parity from 6247 Thai Holstein dairy cattle, covering the period 1990 to 2007. The random regression test day model with EM-REML was used to estimate variance components, genetic parameters and milk production loss. A decline in milk production was found when temperature and humidity index (THI) exceeded a threshold of 74, also it was associated with the high percentage of Holstein genetics. All variance component estimates increased with THI. The estimate of heritability of test-day milk yield was 0.231. Dominance variance as a proportion to additive variance (0.035) indicated that non-additive effects might not be of concern for milk genetics studies in Thai Holstein cattle. Correlations between genetic and permanent environmental effects, for regular conditions and due to heat stress, were - 0.223 and - 0.521, respectively. The heritability and genetic correlations from this study show that simultaneous selection for milk production and heat tolerance is possible. © 2014 Japanese Society of Animal Science.

  7. 29 CFR 2590.702-1 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...). Because completing the health risk assessment results in a premium reduction, the request for genetic.... (ii) Conclusion. In this Example 3, because the health risk assessment includes a request for genetic.... Individual A's group health plan covers genetic testing for celiac disease for individuals who have family...

  8. 29 CFR 2590.702-1 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...). Because completing the health risk assessment results in a premium reduction, the request for genetic.... (ii) Conclusion. In this Example 3, because the health risk assessment includes a request for genetic.... Individual A's group health plan covers genetic testing for celiac disease for individuals who have family...

  9. 29 CFR 2590.702-1 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...). Because completing the health risk assessment results in a premium reduction, the request for genetic.... (ii) Conclusion. In this Example 3, because the health risk assessment includes a request for genetic.... Individual A's group health plan covers genetic testing for celiac disease for individuals who have family...

  10. 29 CFR 2590.702-1 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...). Because completing the health risk assessment results in a premium reduction, the request for genetic.... (ii) Conclusion. In this Example 3, because the health risk assessment includes a request for genetic.... Individual A's group health plan covers genetic testing for celiac disease for individuals who have family...

  11. Genetics Home Reference: adiposis dolorosa

    MedlinePlus

    ... are some genetic conditions more common in particular ethnic groups? Genetic Changes The cause of adiposis dolorosa is unknown. The condition is thought to have a genetic component because a few families with multiple affected family members have been reported. ...

  12. Estimation of test-day model (co)variance components across breeds using New Zealand dairy cattle data.

    PubMed

    Vanderick, S; Harris, B L; Pryce, J E; Gengler, N

    2009-03-01

    In New Zealand, a large proportion of cows are currently crossbreds, mostly Holstein-Friesians (HF) x Jersey (JE). The genetic evaluation system for milk yields is considering the same additive genetic effects for all breeds. The objective was to model different additive effects according to parental breeds to obtain first estimates of correlations among breed-specific effects and to study the usefulness of this type of random regression test-day model. Estimates of (co)variance components for purebred HF and JE cattle in purebred herds were computed by using a single-breed model. This analysis showed differences between the 2 breeds, with a greater variability in the HF breed. (Co)variance components for purebred HF and JE and crossbred HF x JE cattle were then estimated by using a complete multibreed model in which computations of complete across-breed (co)variances were simplified by correlating only eigenvectors for HF and JE random regressions of the same order as obtained from the single-breed analysis. Parameter estimates differed more strongly than expected between the single-breed and multibreed analyses, especially for JE. This could be due to differences between animals and management in purebred and non-purebred herds. In addition, the model used only partially accounted for heterosis. The multibreed analysis showed additive genetic differences between the HF and JE breeds, expressed as genetic correlations of additive effects in both breeds, especially in linear and quadratic Legendre polynomials (respectively, 0.807 and 0.604). The differences were small for overall milk production (0.926). Results showed that permanent environmental lactation curves were highly correlated across breeds; however, intraherd lactation curves were also affected by the breed-environment interaction. This result may indicate the existence of breed-specific competition effects that vary through the different lactation stages. In conclusion, a multibreed model similar to the

  13. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Runze; Riddle, Matthew; Graziano, Diane

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM), and AM has been increasingly adopted by aircraft component manufacturers for lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integrates engineering criteria, life-cycle environmental data, aircraft fleet stockmore » and fuel use models under different AM adoption scenarios. Estimated fleet-wide life-cycle primary energy savings at most reach 70-173 million GJ/year in 2050, with cumulative savings of 1.2–2.8 billion GJ. Associated cumulative GHG emission reductions were estimated at 92.1–215.0 million metric tons. In addition, thousands of tons of aluminum, titanium and nickel alloys could be potentially saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  14. Synthesis and Properties of Size-expanded DNAs: Toward Designed, Functional Genetic Systems

    PubMed Central

    Krueger, Andrew T.; Lu, Haige; Lee, Alex H. F.; Kool, Eric T.

    2008-01-01

    We describe the design, synthesis, and properties of DNA-like molecules in which the base pairs are expanded by benzo homologation. The resulting size-expanded genetic helices are called xDNA (“expanded DNA”) and yDNA (“wide DNA”). The large component bases are fluorescent, and they display high stacking affinity. When singly substituted into natural DNA, they are destabilizing because the benzo-expanded base pair size is too large for the natural helix. However, when all base pairs are expanded, xDNA and yDNA form highly stable, sequence-selective double helices. The size-expanded DNAs are candidates for components of new, functioning genetic systems. In addition, the fluorescence of expanded DNA bases makes them potentially useful in probing nucleic acids. PMID:17309194

  15. Non-additive Effects in Genomic Selection

    PubMed Central

    Varona, Luis; Legarra, Andres; Toro, Miguel A.; Vitezica, Zulma G.

    2018-01-01

    In the last decade, genomic selection has become a standard in the genetic evaluation of livestock populations. However, most procedures for the implementation of genomic selection only consider the additive effects associated with SNP (Single Nucleotide Polymorphism) markers used to calculate the prediction of the breeding values of candidates for selection. Nevertheless, the availability of estimates of non-additive effects is of interest because: (i) they contribute to an increase in the accuracy of the prediction of breeding values and the genetic response; (ii) they allow the definition of mate allocation procedures between candidates for selection; and (iii) they can be used to enhance non-additive genetic variation through the definition of appropriate crossbreeding or purebred breeding schemes. This study presents a review of methods for the incorporation of non-additive genetic effects into genomic selection procedures and their potential applications in the prediction of future performance, mate allocation, crossbreeding, and purebred selection. The work concludes with a brief outline of some ideas for future lines of that may help the standard inclusion of non-additive effects in genomic selection. PMID:29559995

  16. Non-additive Effects in Genomic Selection.

    PubMed

    Varona, Luis; Legarra, Andres; Toro, Miguel A; Vitezica, Zulma G

    2018-01-01

    In the last decade, genomic selection has become a standard in the genetic evaluation of livestock populations. However, most procedures for the implementation of genomic selection only consider the additive effects associated with SNP (Single Nucleotide Polymorphism) markers used to calculate the prediction of the breeding values of candidates for selection. Nevertheless, the availability of estimates of non-additive effects is of interest because: (i) they contribute to an increase in the accuracy of the prediction of breeding values and the genetic response; (ii) they allow the definition of mate allocation procedures between candidates for selection; and (iii) they can be used to enhance non-additive genetic variation through the definition of appropriate crossbreeding or purebred breeding schemes. This study presents a review of methods for the incorporation of non-additive genetic effects into genomic selection procedures and their potential applications in the prediction of future performance, mate allocation, crossbreeding, and purebred selection. The work concludes with a brief outline of some ideas for future lines of that may help the standard inclusion of non-additive effects in genomic selection.

  17. Chemosensory responsiveness to ethanol and its individual sensory components in alcohol-preferring, -nonpreferring and genetically heterogeneous rats

    PubMed Central

    Brasser, Susan M.; Silbaugh, Bryant C.; Ketchum, Myles J.; Olney, Jeffrey J.; Lemon, Christian H.

    2011-01-01

    Alcohol activates orosensory circuits that project to motivationally relevant limbic forebrain areas that control appetite, feeding and drinking. To date, limited data exists regarding the contribution of chemosensory-derived ethanol reinforcement to ethanol preference and consumption. Measures of taste reactivity to intra-orally infused ethanol have not found differences in initial orofacial responses to alcohol between alcohol-preferring (P) and – nonpreferring (NP) genetically selected rat lines. Yet, in voluntary intake tests P rats prefer highly-concentrated ethanol upon initial exposure, suggesting an early sensory-mediated attraction. Here, we directly compared self-initiated chemosensory responding for alcohol and prototypic sweet, bitter, and oral trigeminal stimuli among selectively bred P, NP, and non-selected Wistar (WI) outbred lines to determine whether differential sensory responsiveness to ethanol and its putative sensory components are phenotypically associated with genetically-influenced alcohol preference. Rats were tested for immediate short-term lick responses to alcohol (3–40%), sucrose (0.01–1 M), quinine (0.01–3 mM) and capsaicin (0.003–1 mM) in a brief-access assay designed to index orosensory-guided behavior. P rats exhibited elevated short-term lick responses to both alcohol and sucrose relative to NP and WI lines across a broad range of concentrations of each stimulus and in the absence of blood alcohol levels that would produce significant postabsorptive effects. There was no consistent relationship between genetically-mediated alcohol preference and orosensory avoidance of quinine or capsaicin. These data indicate that enhanced initial chemosensory attraction to ethanol and sweet stimuli are phenotypes associated with genetic alcohol preference and are considered within the framework of downstream activation of oral appetitive reward circuits. PMID:22129513

  18. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP).

    PubMed

    Scheithauer, Uwe; Weingarten, Steven; Johne, Robert; Schwarzer, Eric; Abel, Johannes; Richter, Hans-Jürgen; Moritz, Tassilo; Michaelis, Alexander

    2017-11-28

    In our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Diverse zirconia-based suspensions were prepared and used for the AM of single- and multi-material test components. All of the samples were sintered defect-free, and in the end, we could realize a brick wall-like component consisting of dense (<1% porosity) and porous (approx. 5% porosity) zirconia areas to combine different properties in one component. T3DP opens the door to the AM of further ceramic-based 4D components, such as multi-color, multi-material, or especially, multi-functional components.

  19. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP)

    PubMed Central

    Weingarten, Steven; Johne, Robert; Schwarzer, Eric; Richter, Hans-Jürgen; Michaelis, Alexander

    2017-01-01

    In our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Diverse zirconia-based suspensions were prepared and used for the AM of single- and multi-material test components. All of the samples were sintered defect-free, and in the end, we could realize a brick wall-like component consisting of dense (<1% porosity) and porous (approx. 5% porosity) zirconia areas to combine different properties in one component. T3DP opens the door to the AM of further ceramic-based 4D components, such as multi-color, multi-material, or especially, multi-functional components. PMID:29182541

  20. Detrimental effect of selection for milk yield on genetic tolerance to heat stress in purebred Zebu cattle: Genetic parameters and trends.

    PubMed

    Santana, M L; Pereira, R J; Bignardi, A B; Filho, A E Vercesi; Menéndez-Buxadera, A; El Faro, L

    2015-12-01

    In an attempt to determine the possible detrimental effects of continuous selection for milk yield on the genetic tolerance of Zebu cattle to heat stress, genetic parameters and trends of the response to heat stress for 86,950 test-day (TD) milk yield records from 14,670 first lactations of purebred dairy Gir cows were estimated. A random regression model with regression on days in milk (DIM) and temperature-humidity index (THI) values was applied to the data. The most detrimental effect of THI on milk yield was observed in the stage of lactation with higher milk production, DIM 61 to 120 (-0.099kg/d per THI). Although modest variations were observed for the THI scale, a reduction in additive genetic variance as well as in permanent environmental and residual variance was observed with increasing THI values. The heritability estimates showed a slight increase with increasing THI values for any DIM. The correlations between additive genetic effects across the THI scale showed that, for most of the THI values, genotype by environment interactions due to heat stress were less important for the ranking of bulls. However, for extreme THI values, this type of genotype by environment interaction may lead to an important error in selection. As a result of the selection for milk yield practiced in the dairy Gir population for 3 decades, the genetic trend of cumulative milk yield was significantly positive for production in both high (51.81kg/yr) and low THI values (78.48kg/yr). However, the difference between the breeding values of animals at high and low THI may be considered alarming (355kg in 2011). The genetic trends observed for the regression coefficients related to general production level (intercept of the reaction norm) and specific ability to respond to heat stress (slope of the reaction norm) indicate that the dairy Gir population is heading toward a higher production level at the expense of lower tolerance to heat stress. These trends reflect the genetic

  1. 'Faceness' and affectivity: evidence for genetic contributions to distinct components of electrocortical response to human faces.

    PubMed

    Shannon, Robert W; Patrick, Christopher J; Venables, Noah C; He, Sheng

    2013-12-01

    The ability to recognize a variety of different human faces is undoubtedly one of the most important and impressive functions of the human perceptual system. Neuroimaging studies have revealed multiple brain regions (including the FFA, STS, OFA) and electrophysiological studies have identified differing brain event-related potential (ERP) components (e.g., N170, P200) possibly related to distinct types of face information processing. To evaluate the heritability of ERP components associated with face processing, including N170, P200, and LPP, we examined ERP responses to fearful and neutral face stimuli in monozygotic (MZ) and dizygotic (DZ) twins. Concordance levels for early brain response indices of face processing (N170, P200) were found to be stronger for MZ than DZ twins, providing evidence of a heritable basis to each. These findings support the idea that certain key neural mechanisms for face processing are genetically coded. Implications for understanding individual differences in recognition of facial identity and the emotional content of faces are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Genetic parameters and expected responses to selection for components of feed efficiency in a Duroc pig line.

    PubMed

    Sánchez, Juan P; Ragab, Mohamed; Quintanilla, Raquel; Rothschild, Max F; Piles, Miriam

    2017-12-01

    Improving feed efficiency ([Formula: see text]) is a key factor for any pig breeding company. Although this can be achieved by selection on an index of multi-trait best linear unbiased prediction of breeding values with optimal economic weights, considering deviations of feed intake from actual needs ([Formula: see text]) should be of value for further research on biological aspects of [Formula: see text]. Here, we present a random regression model that extends the classical definition of [Formula: see text] by including animal-specific needs in the model. Using this model, we explore the genetic determinism of several [Formula: see text] components: use of feed for growth ([Formula: see text]), use of feed for backfat deposition ([Formula: see text]), use of feed for maintenance ([Formula: see text]), and unspecific efficiency in the use of feed ([Formula: see text]). Expected response to alternative selection indexes involving different components is also studied. Based on goodness-of-fit to the available feed intake ([Formula: see text]) data, the model that assumes individual (genetic and permanent) variation in the use of feed for maintenance, [Formula: see text] and [Formula: see text] showed the best performance. Joint individual variation in feed allocation to maintenance, growth and backfat deposition comprised 37% of the individual variation of [Formula: see text]. The estimated heritabilities of [Formula: see text] using the model that accounts for animal-specific needs and the traditional [Formula: see text] model were 0.12 and 0.18, respectively. The estimated heritabilities for the regression coefficients were 0.44, 0.39 and 0.55 for [Formula: see text], [Formula: see text] and [Formula: see text], respectively. Estimates of genetic correlations of [Formula: see text] were positive with amount of feed used for [Formula: see text] and [Formula: see text] but negative for [Formula: see text]. Expected response in overall efficiency, reducing [Formula

  3. Modifications to the Patient Rule-Induction Method that utilize non-additive combinations of genetic and environmental effects to define partitions that predict ischemic heart disease

    PubMed Central

    Dyson, Greg; Frikke-Schmidt, Ruth; Nordestgaard, Børge G.; Tybjærg-Hansen, Anne; Sing, Charles F.

    2009-01-01

    This paper extends the Patient Rule-Induction Method (PRIM) for modeling cumulative incidence of disease developed by Dyson et al. (2007) to include the simultaneous consideration of non-additive combinations of predictor variables, a significance test of each combination, an adjustment for multiple testing and a confidence interval for the estimate of the cumulative incidence of disease in each partition. We employ the partitioning algorithm component of the Combinatorial Partitioning Method (CPM) to construct combinations of predictors, permutation testing to assess the significance of each combination, theoretical arguments for incorporating a multiple testing adjustment and bootstrap resampling to produce the confidence intervals. An illustration of this revised PRIM utilizing a sample of 2258 European male participants from the Copenhagen City Heart Study is presented that assesses the utility of genetic variants in predicting the presence of ischemic heart disease beyond the established risk factors. PMID:19025787

  4. Quantifying introgression risk with realistic population genetics

    PubMed Central

    Ghosh, Atiyo; Meirmans, Patrick G.; Haccou, Patsy

    2012-01-01

    Introgression is the permanent incorporation of genes from the genome of one population into another. This can have severe consequences, such as extinction of endemic species, or the spread of transgenes. Quantification of the risk of introgression is an important component of genetically modified crop regulation. Most theoretical introgression studies aimed at such quantification disregard one or more of the most important factors concerning introgression: realistic genetical mechanisms, repeated invasions and stochasticity. In addition, the use of linkage as a risk mitigation strategy has not been studied properly yet with genetic introgression models. Current genetic introgression studies fail to take repeated invasions and demographic stochasticity into account properly, and use incorrect measures of introgression risk that can be manipulated by arbitrary choices. In this study, we present proper methods for risk quantification that overcome these difficulties. We generalize a probabilistic risk measure, the so-called hazard rate of introgression, for application to introgression models with complex genetics and small natural population sizes. We illustrate the method by studying the effects of linkage and recombination on transgene introgression risk at different population sizes. PMID:23055068

  5. GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics

    PubMed Central

    Ledda, Mirko; Kutalik, Zoltán; Souza Destito, Maria C.; Souza, Milena M.; Cirillo, Cintia A.; Zamboni, Amabilene; Martin, Nathalie; Morya, Edgard; Sameshima, Koichi; Beckmann, Jacques S.; le Coutre, Johannes; Bergmann, Sven; Genick, Ulrich K.

    2014-01-01

    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88– 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10−13, r2 = 8.9%, β = −0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with—but is statistically distinct from—the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10−37, r2 = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception. PMID:23966204

  6. Genetic Model Fitting in IQ, Assortative Mating & Components of IQ Variance.

    ERIC Educational Resources Information Center

    Capron, Christiane; Vetta, Adrian R.; Vetta, Atam

    1998-01-01

    The biometrical school of scientists who fit models to IQ data traces their intellectual ancestry to R. Fisher (1918), but their genetic models have no predictive value. Fisher himself was critical of the concept of heritability, because assortative mating, such as for IQ, introduces complexities into the study of a genetic trait. (SLD)

  7. Sex-specific genetic effects in physical activity: results from a quantitative genetic analysis.

    PubMed

    Diego, Vincent P; de Chaves, Raquel Nichele; Blangero, John; de Souza, Michele Caroline; Santos, Daniel; Gomes, Thayse Natacha; dos Santos, Fernanda Karina; Garganta, Rui; Katzmarzyk, Peter T; Maia, José A R

    2015-08-01

    The objective of this study is to present a model to estimate sex-specific genetic effects on physical activity (PA) levels and sedentary behaviour (SB) using three generation families. The sample consisted of 100 families covering three generations from Portugal. PA and SB were assessed via the International Physical Activity Questionnaire short form (IPAQ-SF). Sex-specific effects were assessed by genotype-by-sex interaction (GSI) models and sex-specific heritabilities. GSI effects and heterogeneity were tested in the residual environmental variance. SPSS 17 and SOLAR v. 4.1 were used in all computations. The genetic component for PA and SB domains varied from low to moderate (11% to 46%), when analyzing both genders combined. We found GSI effects for vigorous PA (p = 0.02) and time spent watching television (WT) (p < 0.001) that showed significantly higher additive genetic variance estimates in males. The heterogeneity in the residual environmental variance was significant for moderate PA (p = 0.02), vigorous PA (p = 0.006) and total PA (p = 0.001). Sex-specific heritability estimates were significantly higher in males only for WT, with a male-to-female difference in heritability of 42.5 (95% confidence interval: 6.4, 70.4). Low to moderate genetic effects on PA and SB traits were found. Results from the GSI model show that there are sex-specific effects in two phenotypes, VPA and WT with a stronger genetic influence in males.

  8. Genetic Counseling as an Educational Process.

    ERIC Educational Resources Information Center

    Eddy, James M.; St. Pierre, Richard

    Historically genetic counseling programs have not included strong educational components or sound educational foundations. This paper deals with some of the drawbacks of current genetic counseling programs and the implications for education in the genetic counseling process. The author adopts a broad definition of genetic counseling which…

  9. Early onset prostate cancer has a significant genetic component.

    PubMed

    Lange, Ethan M; Salinas, Claudia A; Zuhlke, Kimberly A; Ray, Anna M; Wang, Yunfei; Lu, Yurong; Ho, Lindsey A; Luo, Jingchun; Cooney, Kathleen A

    2012-02-01

    Prostate cancer (PCa) affects more than 190,000 men each year with ∼10% of men diagnosed at ≤55 years, that is, early onset (EO) PCa. Based on historical findings for other cancers, EO PCa likely reflects a stronger underlying genetic etiology. We evaluated the association between EO PCa and previously identified single nucleotide polymorphisms (SNPs) in 754 Caucasian cases from the Michigan Prostate Cancer Genetics Project (mean 49.8 years at diagnosis), 2,713 Caucasian controls from Illumina's iControlDB database and 1,163 PCa cases diagnosed at >55 years from the Cancer Genetic Markers of Susceptibility Study (CGEMS). Significant associations existed for 13 of 14 SNPs (rs9364554 on 6q25, rs10486567 on 7p15, rs6465657 on 7q21, rs6983267 on 8q24, rs1447295 on 8q24, rs1571801 on 9q33, rs10993994 on 10q11, rs4962416 on 10q26, rs7931342 on 11q13, rs4430796 on 17q12, rs1859962 on 17q24.3, rs2735839 on 19q13, and rs5945619 on Xp11.22, but not rs2660753 on 3p12). EO PCa cases had a significantly greater cumulative number of risk alleles (mean 12.4) than iControlDB controls (mean 11.2; P = 2.1 × 10(-33)) or CGEMS cases (mean 11.9; P = 1.7 × 10(-5)). Notably, EO PCa cases had a higher frequency of the risk allele than CGEMS cases at 11 of 13 associated SNPs, with significant differences for five SNPs. EO PCa cases diagnosed at <50 (mean 12.8) also had significantly more risk alleles than those diagnosed at 50-55 years (mean 12.1; P = 0.0003). These results demonstrate the potential for identifying PCa-associated genetic variants by focusing on the subgroup of men diagnosed with EO disease. Copyright © 2011 Wiley Periodicals, Inc.

  10. Early Onset Prostate Cancer Has A Significant Genetic Component

    PubMed Central

    Lange, Ethan M.; Salinas, Claudia A.; Zuhlke, Kimberly A.; Ray, Anna M.; Wang, Yunfei; Lu, Yurong; Ho, Lindsey A.; Luo, Jingchun; Cooney, Kathleen A.

    2011-01-01

    BACKGROUND Prostate cancer (PCa) affects more than 190,000 men each year with ~10% of men diagnosed at ≤ 55 years, i.e., early onset (EO) PCa. Based on historical findings for other cancers, EO PCa likely reflects a stronger underlying genetic etiology. METHODS We evaluated the association between EO PCa and previously identified single nucleotide polymorphisms (SNPs) in 754 Caucasian cases from the Michigan Prostate Cancer Genetics Project (mean 49.8 years at diagnosis), 2,713 Caucasian controls from Illumina’s iControlDB database and 1,163 PCa cases diagnosed at >55 years from the Cancer Genetic Markers of Susceptibility Study (CGEMS). RESULTS Significant associations existed for 13 of 14 SNPs (rs9364554 on 6q25, rs10486567 on 7p15, rs6465657 on 7q21, rs6983267 on 8q24, rs1447295 on 8q24, rs1571801 on 9q33, rs10993994 on 10q11, rs4962416 on 10q26, rs7931342 on 11q13, rs4430796 on 17q12, rs1859962 on 17q24.3, rs2735839 on 19q13, and rs5945619 on Xp11.22, but not rs2660753 on 3p12). EO PCa cases had a significantly greater cumulative number of risk alleles (mean 12.4) than iControlDB controls (mean 11.2; p=2.1×10−33) or CGEMS cases (mean 11.9; p=1.7 × 10−5). Notably, EO PCa cases had a higher frequency of the risk allele than CGEMS cases at 11 of13 associated SNPs, with significant differences for five SNPs. EO PCa cases diagnosed at <50 (mean 12.8) also had significantly more risk alleles than those diagnosed at 50–55 years (mean 12.1; p = 0.0003). CONCLUSIONS These results demonstrate the potential for identifying PCa-associated genetic variants by focusing on the subgroup of men diagnosed with EO disease. PMID:21538423

  11. Innovations in human genetics education. Incorporation of genetics into a problem-based medical school curriculum.

    PubMed Central

    Swinford, A E; McKeag, D B

    1990-01-01

    There has been recent interest in the development of problem-based human genetics curricula in U.S. medical schools. The College of Human Medicine at Michigan State University has had a problem-based curriculum since 1974. The vertical integration of genetics within the problem-based curriculum, called "Track II," has recently been revised. On first inspection, the curriculum appeared to lack a significant genetics component; however, on further analysis it was found that many genetics concepts were covered in the biochemistry, microbiology, pathology, and clinical science components. Both basic science concepts and clinical applications of genetics are covered in the curriculum by providing appropriate references for basic concepts and including inherited conditions within the differential diagnosis in the cases studied. Evaluations consist of a multiple-choice content exam and a modified essay exam based on a clinical case, allowing evaluation of both basic concepts and problem-solving ability. This curriculum prepares students to use genetics in a clinical context in their future careers. PMID:2220816

  12. Hcn1 Is a Tremorgenic Genetic Component in a Rat Model of Essential Tremor

    PubMed Central

    Ohno, Yukihiro; Shimizu, Saki; Tatara, Ayaka; Imaoku, Takuji; Ishii, Takahiro; Sasa, Masashi; Serikawa, Tadao; Kuramoto, Takashi

    2015-01-01

    Genetic factors are thought to play a major role in the etiology of essential tremor (ET); however, few genetic changes that induce ET have been identified to date. In the present study, to find genes responsible for the development of ET, we employed a rat model system consisting of a tremulous mutant strain, TRM/Kyo (TRM), and its substrain TRMR/Kyo (TRMR). The TRM rat is homozygous for the tremor (tm) mutation and shows spontaneous tremors resembling human ET. The TRMR rat also carries a homozygous tm mutation but shows no tremor, leading us to hypothesize that TRM rats carry one or more genes implicated in the development of ET in addition to the tm mutation. We used a positional cloning approach and found a missense mutation (c. 1061 C>T, p. A354V) in the hyperpolarization-activated cyclic nucleotide-gated 1 channel (Hcn1) gene. The A354V HCN1 failed to conduct hyperpolarization-activated currents in vitro, implicating it as a loss-of-function mutation. Blocking HCN1 channels with ZD7288 in vivo evoked kinetic tremors in nontremulous TRMR rats. We also found neuronal activation of the inferior olive (IO) in both ZD7288-treated TRMR and non-treated TRM rats and a reduced incidence of tremor in the IO-lesioned TRM rats, suggesting a critical role of the IO in tremorgenesis. A rat strain carrying the A354V mutation alone on a genetic background identical to that of the TRM rats showed no tremor. Together, these data indicate that body tremors emerge when the two mutant loci, tm and Hcn1A354V, are combined in a rat model of ET. In this model, HCN1 channels play an important role in the tremorgenesis of ET. We propose that oligogenic, most probably digenic, inheritance is responsible for the genetic heterogeneity of ET. PMID:25970616

  13. Estimates of direct and maternal (co)variance components as well as genetic parameters of growth traits in Nellore sheep.

    PubMed

    I, Satish Kumar; C, Vijaya Kumar; G, Gangaraju; Nath, Sapna; A K, Thiruvenkadan

    2017-10-01

    In the present study, (co)variance components and genetic parameters in Nellore sheep were obtained by restricted maximum likelihood (REML) method using six different animal models with various combinations of direct and maternal genetic effects for birth weight (BW), weaning weight (WW), 6-month weight (6MW), 9-month weight (9MW) and 12-month weight (YW). Evaluated records of 2075 lambs descended from 69 sires and 478 dams over a period of 8 years (2007-2014) were collected from the Livestock Research Station, Palamaner, India. Lambing year, sex of lamb, season of lambing and parity of dam were the fixed effects in the model, and ewe weight was used as a covariate. Best model for each trait was determined by log-likelihood ratio test. Direct heritability for BW, WW, 6MW, 9MW and YW were 0.08, 0.03, 0.12, 0.16 and 0.10, respectively, and their corresponding maternal heritabilities were 0.07, 0.10, 0.09, 0.08 and 0.11. The proportions of maternal permanent environment variance to phenotypic variance (Pe 2 ) were 0.07, 0.10, 0.07, 0.06 and 0.10 for BW, WW, 6MW, 9MW and YW, respectively. The estimates of direct genetic correlations among the growth traits were positive and ranged from 0.44(BW-WW) to 0.96(YW-9MW), and the estimates of phenotypic and environmental correlations were found to be lower than those of genetic correlations. Exclusion of maternal effects in the model resulted in biased estimates of genetic parameters in Nellore sheep. Hence, to implement optimum breeding strategies for improvement of traits in Nellore sheep, maternal effects should be considered.

  14. Use of additives, scaffolds and extracellular matrix components for improvement of human pancreatic islet outcomes in vitro: A systematic review.

    PubMed

    Lemos, Natália Emerim; de Almeida Brondani, Letícia; Dieter, Cristine; Rheinheimer, Jakeline; Bouças, Ana Paula; Bauermann Leitão, Cristiane; Crispim, Daisy; Bauer, Andrea Carla

    2017-09-03

    Pancreatic islet transplantation is an established treatment to restore insulin independence in type 1 diabetic patients. Its success rates have increased lately based on improvements in immunosuppressive therapies and on islet isolation and culture. It is known that the quality and quantity of viable transplanted islets are crucial for the achievement of insulin independence and some studies have shown that a significant number of islets are lost during culture time. Thus, in an effort to improve islet yield during culture period, researchers have tested a variety of additives in culture media as well as alternative culture devices, such as scaffolds. However, due to the use of different categories of additives or devices, it is difficult to draw a conclusion on the benefits of these strategies. Therefore, the aim of this systematic review was to summarize the results of studies that described the use of medium additives, scaffolds or extracellular matrix (ECM) components during human pancreatic islets culture. PubMed and Embase repositories were searched. Of 5083 articles retrieved, a total of 37 articles fulfilled the eligibility criteria and were included in the review. After data extraction, articles were grouped as follows: 1) "antiapoptotic/anti-inflammatory/antioxidant," 2) "hormone," 3) "sulphonylureas," 4) "serum supplements," and 5) "scaffolds or ECM components." The effects of the reviewed additives, ECM or scaffolds on islet viability, apoptosis and function (glucose-stimulated insulin secretion - GSIS) were heterogeneous, making any major conclusion hard to sustain. Overall, some "antiapoptotic/anti-inflammatory/antioxidant" additives decreased apoptosis and improved GSIS. Moreover, islet culture with ECM components or scaffolds increased GSIS. More studies are needed to define the real impact of these strategies in improving islet transplantation outcomes.

  15. Genomic BLUP including additive and dominant variation in purebreds and F1 crossbreds, with an application in pigs.

    PubMed

    Vitezica, Zulma G; Varona, Luis; Elsen, Jean-Michel; Misztal, Ignacy; Herring, William; Legarra, Andrès

    2016-01-29

    Most developments in quantitative genetics theory focus on the study of intra-breed/line concepts. With the availability of massive genomic information, it becomes necessary to revisit the theory for crossbred populations. We propose methods to construct genomic covariances with additive and non-additive (dominance) inheritance in the case of pure lines and crossbred populations. We describe substitution effects and dominant deviations across two pure parental populations and the crossbred population. Gene effects are assumed to be independent of the origin of alleles and allelic frequencies can differ between parental populations. Based on these assumptions, the theoretical variance components (additive and dominant) are obtained as a function of marker effects and allelic frequencies. The additive genetic variance in the crossbred population includes the biological additive and dominant effects of a gene and a covariance term. Dominance variance in the crossbred population is proportional to the product of the heterozygosity coefficients of both parental populations. A genomic BLUP (best linear unbiased prediction) equivalent model is presented. We illustrate this approach by using pig data (two pure lines and their cross, including 8265 phenotyped and genotyped sows). For the total number of piglets born, the dominance variance in the crossbred population represented about 13 % of the total genetic variance. Dominance variation is only marginally important for litter size in the crossbred population. We present a coherent marker-based model that includes purebred and crossbred data and additive and dominant actions. Using this model, it is possible to estimate breeding values, dominant deviations and variance components in a dataset that comprises data on purebred and crossbred individuals. These methods can be exploited to plan assortative mating in pig, maize or other species, in order to generate superior crossbred individuals in terms of performance.

  16. Good genes, genetic compatibility and the evolution of polyandry: use of the diallel cross to address competing hypotheses.

    PubMed

    Ivy, T M

    2007-03-01

    Genetic benefits can enhance the fitness of polyandrous females through the high intrinsic genetic quality of females' mates or through the interaction between female and male genes. I used a full diallel cross, a quantitative genetics design that involves all possible crosses among a set of genetically homogeneous lines, to determine the mechanism through which polyandrous female decorated crickets (Gryllodes sigillatus) obtain genetic benefits. I measured several traits related to fitness and partitioned the phenotypic variance into components representing the contribution of additive genetic variance ('good genes'), nonadditive genetic variance (genetic compatibility), as well as maternal and paternal effects. The results reveal a significant variance attributable to both nonadditive and additive sources in the measured traits, and their influence depended on which trait was considered. The lack of congruence in sources of phenotypic variance among these fitness-related traits suggests that the evolution and maintenance of polyandry are unlikely to have resulted from one selective influence, but rather are the result of the collective effects of a number of factors.

  17. Biokinetics of food additive silica nanoparticles and their interactions with food components.

    PubMed

    Lee, Jeong-A; Kim, Mi-Kyung; Song, Jae Ho; Jo, Mi-Rae; Yu, Jin; Kim, Kyoung-Min; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin

    2017-02-01

    Nanomaterials have been widely utilized in the food industry in production, packaging, sensors, nutrient delivery systems, and food additives. However, research on the interactions between food-grade nanoparticles and biomolecules as well as their potential toxicity is limited. In the present study, the in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of one of the most extensively used food additives, silica (SiO 2 ) were evaluated with respect to particle size (nano vs bulk) following single-dose oral administration to rats. Intestinal transport mechanism was investigated using a 3D culture system, in vitro model of human intestinal follicle-associated epithelium (FAE). The effect of the presence of food components, such as sugar and protein, on the oral absorption of nanoparticles was also evaluated with focus on their interactions. The results obtained demonstrated that the oral absorption of nanoparticles (3.94±0.38%) was greater than that of bulk materials (2.95±0.37%), possibly due to intestinal transport by microfold (M) cells. On the other hand, particle size was found to have no significant effect on in vivo dissolution property, biodistribution, or excretion kinetics. Oral absorption profile of silica nanoparticles was highly dependent on the presence of sugar or protein, showing rapid absorption rate in glucose, presumably due to their surface interaction on nanoparticles. These findings will be useful for predicting the potential toxicity of food-grade nanoparticles and for understanding biological interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effects of strains, strain crosses and environments on additive genetic and phenotypic variances in Drosophila melanogaster.

    PubMed

    Noor, R R; Barker, J S; Kinghorn, B P

    1993-01-12

    The stability of phenotypic, additive genetic and environmental variances of thorax length of Drosophila melanogaster in pure and synthetic strains was examined in two different environments. Two pure strains from different geographic locations (Melbourne and Townsville) were used, together with three synthetic populations formed from them. The existence of differences in thorax length between the Melbourne and Townsville populations, genotype by environment interaction, and heterosis in crosses between these populations indicate that they are genetically different. Thus geographic separation can cause differences in mean thorax length of flies from different populations. Both the difference in selection histories between the two localities and drift could lead to these differences. Up to the thirty fifth generation there was no evidence of any reduction in the difference between the Melbourne and Townsville populations, in either laboratory environment. The genetic differentiation of strains therefore may be maintained over many generations under new environmental conditions. The fluctuation over generations of heterosis of thorax length is possibly caused by the fluctuation of the rate of loss of favourable epistatic interaction in crossbred genotypes in combination with natural selection effects. V(p) was significantly higher in poor than in the good environment. This higher V(p) in the poor environment is most likly due to higher non additive genetic variance. V(p) was also significantly influenced by strain. In general, V(p) values of synthetic strains were higher than those of pure strains in both environments. Finally, the additive and environmental variances of thorax length were relatively stable across strains, generations and environments. ZUSAMMENFASSUNG: Wirkung von Herkünften, Kreuzungen und Umwelten auf additiv-genetische und phänotypische Varianzen in Drosophila melanogaster Die Stabilität phänotypischer, additiv-genetischer und umweltbedingter

  19. Genetic component in learning ability in bees.

    PubMed

    Kerr, W E; Moura Duarte, F A; Oliveira, R S

    1975-10-01

    Twenty-five bees, five from each of five hives, were trained to collect food at a table. When the bee reached the table, time was recorded for 12 visits. Then a blue and yellow pan was substituted for the original metal pan, and time and correct responses were recorded for 30 trips (discrimination phase). Finally, food was taken from the pan and extinction was recorded as incorrect responses for 20 visits. Variance analysis was carried out, and genetic variance was undetected for discrimination, but was detected for extinction. It is concluded that learning is very important for bees, so that any impairment in such ability affects colony survival.

  20. Review: Genetically modified plants for the promotion of human health.

    PubMed

    Yonekura-Sakakibara, Keiko; Saito, Kazuki

    2006-12-01

    Plants are attractive biological resources because of their ability to produce a huge variety of chemical compounds, and the familiarity of production in even the most rural settings. Genetic engineering gives plants additional characteristics and value for cultivation and post-harvest. Genetically modified (GM) plants of the "first generation" were conferred with traits beneficial to producers, whereas GM plants in subsequent "generations" are intended to provide beneficial traits for consumers. Golden Rice is a promising example of a GM plant in the second generation, and has overcome a number of obstacles for practical use. Furthermore, consumer-acceptable plants with health-promoting properties that are genetically modified using native genes are being developed. The emerging technology of metabolomics will also support the commercial realization of GM plants by providing comprehensive analyzes of plant biochemical components.

  1. An examination of environmental and genetic contributions to the determinants of suicidal behavior among male twins

    PubMed Central

    Smith, April Rose; Ribeiro, Jessica; Mikolajewski, Amy; Taylor, Jeanette; Joiner, Thomas; Iacono, William G.

    2012-01-01

    The purpose of the present study was to examine the relative association of genetic and environmental factors with individual differences in each of the proximal, jointly necessary, and sufficient causes for suicidal behavior, according to the Interpersonal-Psychological Theory of Suicide (IPTS; Joiner, 2005). We examined data on derived scales measuring acquired capability, belongingness, and burdensomeness (the determinants of suicidal behavior, according to theory) from 348 adolescent male twins. Univariate biometrical models were used to estimate the magnitude of additive genetic (A), non-additive genetic (D), shared environmental (C), and nonshared environmental (E) effects associated with the variance in acquired capability, belongingness, and burdensomeness. The best fitting model for the acquired capability allowed for additive genetic and environmental effects, whereas the best fitting model for burdensomeness and belongingness allowed for shared and nonshared environmental effects. The present research extends prior work by specifying the environmental and genetic contributions to the components of the IPTS, and our findings suggest that belongingness and burdensomeness may be more appropriate targets for clinical intervention than acquired capability as these factors may be more malleable or amenable to change. PMID:22417928

  2. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE PAGES

    Huang, Runze; Riddle, Matthew; Graziano, Diane; ...

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  3. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Runze; Riddle, Matthew; Graziano, Diane

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  4. Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids.

    PubMed

    Bonnafous, Fanny; Fievet, Ghislain; Blanchet, Nicolas; Boniface, Marie-Claude; Carrère, Sébastien; Gouzy, Jérôme; Legrand, Ludovic; Marage, Gwenola; Bret-Mestries, Emmanuelle; Munos, Stéphane; Pouilly, Nicolas; Vincourt, Patrick; Langlade, Nicolas; Mangin, Brigitte

    2018-02-01

    This study compares five models of GWAS, to show the added value of non-additive modeling of allelic effects to identify genomic regions controlling flowering time of sunflower hybrids. Genome-wide association studies are a powerful and widely used tool to decipher the genetic control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals. Here, we compared two additive and three non-additive association models for their ability to identify genomic regions associated with flowering time in sunflower hybrids. A panel of 452 sunflower hybrids, corresponding to incomplete crossing between 36 male lines and 36 female lines, was phenotyped in five environments and genotyped for 2,204,423 SNPs. Intra-locus effects were estimated in multi-locus models to detect genomic regions associated with flowering time using the different models. Thirteen quantitative trait loci were identified in total, two with both model categories and one with only non-additive models. A quantitative trait loci on LG09, detected by both the additive and non-additive models, is located near a GAI homolog and is presented in detail. Overall, this study shows the added value of non-additive modeling of allelic effects for identifying genomic regions that control traits of interest and that could participate in the heterosis observed in hybrids.

  5. Patient and Genetic Counselor Perceptions of In-person versus Telephone Genetic Counseling for Hereditary Breast/Ovarian Cancer

    PubMed Central

    Jacobs, Aryana S.; Schwartz, Marc D.; Valdimarsdottir, Heiddis; Nusbaum, Rachel H.; Hooker, Gillian W.; DeMarco, Tiffani A.; Heinzmann, Jessica E.; McKinnon, Wendy; McCormick, Shelley R.; Davis, Claire; Forman, Andrea D.; Lebensohn, Alexandra Perez; Dalton, Emily; Tully, Diana Moglia; Graves, Kristi D.; Similuk, Morgan; Kelly, Scott; Peshkin, Beth N.

    2016-01-01

    Telephone genetic counseling (TC) for high-risk women interested in BRCA1/2 testing has been shown to yield positive outcomes comparable to usual care (UC; in-person) genetic counseling. However, little is known about how genetic counselors perceive the delivery of these alternate forms of genetic counseling. As part of a randomized trial of TC versus UC, genetic counselors completed a 5-item genetic counselor process questionnaire (GCQ) assessing key elements of pre-test sessions (information delivery, emotional support, addressing questions and concerns, tailoring of session, and facilitation of decision- making) with the 479 female participants (TC, N=236; UC, N=243). The GCQ scores did not differ for TC vs. UC sessions (t (477) = 0.11, p = 0.910). However, multivariate analysis showed that participant race/ethnicity significantly predicted genetic counselor perceptions (β = 0.172, p<0.001) in that the GCQ scores were lower for minorities in TC and UC. Exploratory analyses suggested that GCQ scores may be associated with patient preference for UC versus TC (t (79) = 2.21, p=0.030). Additionally, we found that genetic counselor ratings of session effectiveness were generally concordant with patient perceptions of the session. These data indicate that genetic counselors perceive that key components of TC can be delivered as effectively as UC, and that these elements may contribute to specific aspects of patient satisfaction. However, undefined process differences may be present which account for lower counselor perceptions about the effectiveness of their sessions with minority women (i.e., those other than non-Hispanic Whites). We discuss other potential clinical and research implications of our findings. PMID:26969308

  6. Dissection of additive, dominance, and imprinting effects for production and reproduction traits in Holstein cattle.

    PubMed

    Jiang, Jicai; Shen, Botong; O'Connell, Jeffrey R; VanRaden, Paul M; Cole, John B; Ma, Li

    2017-05-30

    Although genome-wide association and genomic selection studies have primarily focused on additive effects, dominance and imprinting effects play an important role in mammalian biology and development. The degree to which these non-additive genetic effects contribute to phenotypic variation and whether QTL acting in a non-additive manner can be detected in genetic association studies remain controversial. To empirically answer these questions, we analyzed a large cattle dataset that consisted of 42,701 genotyped Holstein cows with genotyped parents and phenotypic records for eight production and reproduction traits. SNP genotypes were phased in pedigree to determine the parent-of-origin of alleles, and a three-component GREML was applied to obtain variance decomposition for additive, dominance, and imprinting effects. The results showed a significant non-zero contribution from dominance to production traits but not to reproduction traits. Imprinting effects significantly contributed to both production and reproduction traits. Interestingly, imprinting effects contributed more to reproduction traits than to production traits. Using GWAS and imputation-based fine-mapping analyses, we identified and validated a dominance association signal with milk yield near RUNX2, a candidate gene that has been associated with milk production in mice. When adding non-additive effects into the prediction models, however, we observed little or no increase in prediction accuracy for the eight traits analyzed. Collectively, our results suggested that non-additive effects contributed a non-negligible amount (more for reproduction traits) to the total genetic variance of complex traits in cattle, and detection of QTLs with non-additive effect is possible in GWAS using a large dataset.

  7. Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogous).

    PubMed

    Hemmateenejad, Bahram; Akhond, Morteza; Miri, Ramin; Shamsipur, Mojtaba

    2003-01-01

    A QSAR algorithm, principal component-genetic algorithm-artificial neural network (PC-GA-ANN), has been applied to a set of newly synthesized calcium channel blockers, which are of special interest because of their role in cardiac diseases. A data set of 124 1,4-dihydropyridines bearing different ester substituents at the C-3 and C-5 positions of the dihydropyridine ring and nitroimidazolyl, phenylimidazolyl, and methylsulfonylimidazolyl groups at the C-4 position with known Ca(2+) channel binding affinities was employed in this study. Ten different sets of descriptors (837 descriptors) were calculated for each molecule. The principal component analysis was used to compress the descriptor groups into principal components. The most significant descriptors of each set were selected and used as input for the ANN. The genetic algorithm (GA) was used for the selection of the best set of extracted principal components. A feed forward artificial neural network with a back-propagation of error algorithm was used to process the nonlinear relationship between the selected principal components and biological activity of the dihydropyridines. A comparison between PC-GA-ANN and routine PC-ANN shows that the first model yields better prediction ability.

  8. Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation.

    PubMed

    Yang, Ye; Christensen, Ole F; Sorensen, Daniel

    2011-02-01

    Over recent years, statistical support for the presence of genetic factors operating at the level of the environmental variance has come from fitting a genetically structured heterogeneous variance model to field or experimental data in various species. Misleading results may arise due to skewness of the marginal distribution of the data. To investigate how the scale of measurement affects inferences, the genetically structured heterogeneous variance model is extended to accommodate the family of Box-Cox transformations. Litter size data in rabbits and pigs that had previously been analysed in the untransformed scale were reanalysed in a scale equal to the mode of the marginal posterior distribution of the Box-Cox parameter. In the rabbit data, the statistical evidence for a genetic component at the level of the environmental variance is considerably weaker than that resulting from an analysis in the original metric. In the pig data, the statistical evidence is stronger, but the coefficient of correlation between additive genetic effects affecting mean and variance changes sign, compared to the results in the untransformed scale. The study confirms that inferences on variances can be strongly affected by the presence of asymmetry in the distribution of data. We recommend that to avoid one important source of spurious inferences, future work seeking support for a genetic component acting on environmental variation using a parametric approach based on normality assumptions confirms that these are met.

  9. Potential Response to Selection of HSP70 as a Component of Innate Immunity in the Abalone Haliotis rufescens

    PubMed Central

    Brokordt, Katherina B.; González, Roxana C.; Farías, William J.; Winkler, Federico M.

    2015-01-01

    Assessing components of the immune system may reflect disease resistance. In some invertebrates, heat shock proteins (HSPs) are immune effectors and have been described as potent activators of the innate immune response. Several diseases have become a threat to abalone farming worldwide; therefore, increasing disease resistance is considered to be a long-term goal for breeding programs. A trait will respond to selection only if it is determined partially by additive genetic variation. The aim of this study was to estimate the heritability (h 2) and the additive genetic coefficient of variation (CV A) of HSP70 as a component of innate immunity of the abalone Haliotis rufescens, in order to assess its potential response to selection. These genetic components were estimated for the variations in the intracellular (in haemocytes) and extracellular (serum) protein levels of HSP70 in response to an immunostimulant agent in 60 full-sib families of H. rufescens. Levels of HSP70 were measured twice in the same individuals, first when they were young and again when they were pre-harvest adults, to estimate the repeatability (R), the h 2 and the potential response to selection of these traits at these life stages. High HSP70 levels were observed in abalones subjected to immunostimulation in both the intracellular and extracellular haemolymph fractions. This is the first time that changes in serum levels of HSP70 have been reported in response to an immune challenge in molluscs. HSP70 levels in both fractions and at both ages showed low h 2 and R, with values that were not significantly different from zero. However, HSP70 induced levels had a CV A of 13.3–16.2% in young adults and of 2.7–8.1% in pre-harvest adults. Thus, despite its low h 2, HSP70 synthesis in response to an immune challenge in red abalone has the potential to evolve through selection because of its large phenotypic variation and the presence of additive genetic variance, especially in young animals. PMID

  10. Potential Response to Selection of HSP70 as a Component of Innate Immunity in the Abalone Haliotis rufescens.

    PubMed

    Brokordt, Katherina B; González, Roxana C; Farías, William J; Winkler, Federico M

    2015-01-01

    Assessing components of the immune system may reflect disease resistance. In some invertebrates, heat shock proteins (HSPs) are immune effectors and have been described as potent activators of the innate immune response. Several diseases have become a threat to abalone farming worldwide; therefore, increasing disease resistance is considered to be a long-term goal for breeding programs. A trait will respond to selection only if it is determined partially by additive genetic variation. The aim of this study was to estimate the heritability (h2) and the additive genetic coefficient of variation (CVA) of HSP70 as a component of innate immunity of the abalone Haliotis rufescens, in order to assess its potential response to selection. These genetic components were estimated for the variations in the intracellular (in haemocytes) and extracellular (serum) protein levels of HSP70 in response to an immunostimulant agent in 60 full-sib families of H. rufescens. Levels of HSP70 were measured twice in the same individuals, first when they were young and again when they were pre-harvest adults, to estimate the repeatability (R), the h2 and the potential response to selection of these traits at these life stages. High HSP70 levels were observed in abalones subjected to immunostimulation in both the intracellular and extracellular haemolymph fractions. This is the first time that changes in serum levels of HSP70 have been reported in response to an immune challenge in molluscs. HSP70 levels in both fractions and at both ages showed low h2 and R, with values that were not significantly different from zero. However, HSP70 induced levels had a CVA of 13.3-16.2% in young adults and of 2.7-8.1% in pre-harvest adults. Thus, despite its low h2, HSP70 synthesis in response to an immune challenge in red abalone has the potential to evolve through selection because of its large phenotypic variation and the presence of additive genetic variance, especially in young animals.

  11. Marker-based estimates reveal significant non-additive effects in clonally propagated cassava (Manihot esculenta): implications for the prediction of total genetic value and the selection of varieties

    USDA-ARS?s Scientific Manuscript database

    In clonally propagated crops, non-additive genetic effects can be effectively exploited by the identification of superior genetic individuals as varieties. Cassava (Manihot esculenta Crantz) is a clonally propagated staple food crop that feeds hundreds of millions. We quantified the amount and natur...

  12. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    PubMed Central

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082

  13. Genetic analysis of growth traits in Polled Nellore cattle raised on pasture in tropical region using Bayesian approaches.

    PubMed

    Lopes, Fernando Brito; Magnabosco, Cláudio Ulhôa; Paulini, Fernanda; da Silva, Marcelo Corrêa; Miyagi, Eliane Sayuri; Lôbo, Raysildo Barbosa

    2013-01-01

    Components of (co)variance and genetic parameters were estimated for adjusted weights at ages 120 (W120), 240 (W240), 365 (W365) and 450 (W450) days of Polled Nellore cattle raised on pasture and born between 1987 and 2010. Analyses were performed using an animal model, considering fixed effects: herd-year-season of birth and calf sex as contemporary groups and the age of cow as a covariate. Gibbs Samplers were used to estimate (co)variance components, genetic parameters and additive genetic effects, which accounted for great proportion of total variation in these traits. High direct heritability estimates for the growth traits were revealed and presented mean 0.43, 0.61, 0.72 and 0.67 for W120, W240, W365 and W450, respectively. Maternal heritabilities were 0.07 and 0.08 for W120 and W240, respectively. Direct additive genetic correlations between the weight at 120, 240, 365 and 450 days old were strong and positive. These estimates ranged from 0.68 to 0.98. Direct-maternal genetic correlations were negative for W120 and W240. The estimates ranged from -0.31 to -0.54. Estimates of maternal heritability ranged from 0.056 to 0.092 for W120 and from 0.064 to 0.096 for W240. This study showed that genetic progress is possible for the growth traits we studied, which is a novel and favorable indicator for an upcoming and promising Polled Zebu breed in Tropical regions. Maternal effects influenced the performance of weight at 120 and 240 days old. These effects should be taken into account in genetic analyses of growth traits by fitting them as a genetic or a permanent environmental effect, or even both. In general, due to a medium-high estimate of environmental (co)variance components, management and feeding conditions for Polled Nellore raised at pasture in tropical regions of Brazil needs improvement and growth performance can be enhanced.

  14. Genetic Analysis of Growth Traits in Polled Nellore Cattle Raised on Pasture in Tropical Region Using Bayesian Approaches

    PubMed Central

    Lopes, Fernando Brito; Magnabosco, Cláudio Ulhôa; Paulini, Fernanda; da Silva, Marcelo Corrêa; Miyagi, Eliane Sayuri; Lôbo, Raysildo Barbosa

    2013-01-01

    Components of (co)variance and genetic parameters were estimated for adjusted weights at ages 120 (W120), 240 (W240), 365 (W365) and 450 (W450) days of Polled Nellore cattle raised on pasture and born between 1987 and 2010. Analyses were performed using an animal model, considering fixed effects: herd-year-season of birth and calf sex as contemporary groups and the age of cow as a covariate. Gibbs Samplers were used to estimate (co)variance components, genetic parameters and additive genetic effects, which accounted for great proportion of total variation in these traits. High direct heritability estimates for the growth traits were revealed and presented mean 0.43, 0.61, 0.72 and 0.67 for W120, W240, W365 and W450, respectively. Maternal heritabilities were 0.07 and 0.08 for W120 and W240, respectively. Direct additive genetic correlations between the weight at 120, 240, 365 and 450 days old were strong and positive. These estimates ranged from 0.68 to 0.98. Direct-maternal genetic correlations were negative for W120 and W240. The estimates ranged from −0.31 to −0.54. Estimates of maternal heritability ranged from 0.056 to 0.092 for W120 and from 0.064 to 0.096 for W240. This study showed that genetic progress is possible for the growth traits we studied, which is a novel and favorable indicator for an upcoming and promising Polled Zebu breed in Tropical regions. Maternal effects influenced the performance of weight at 120 and 240 days old. These effects should be taken into account in genetic analyses of growth traits by fitting them as a genetic or a permanent environmental effect, or even both. In general, due to a medium-high estimate of environmental (co)variance components, management and feeding conditions for Polled Nellore raised at pasture in tropical regions of Brazil needs improvement and growth performance can be enhanced. PMID:24040412

  15. Genetic Variance Partitioning and Genome-Wide Prediction with Allele Dosage Information in Autotetraploid Potato.

    PubMed

    Endelman, Jeffrey B; Carley, Cari A Schmitz; Bethke, Paul C; Coombs, Joseph J; Clough, Mark E; da Silva, Washington L; De Jong, Walter S; Douches, David S; Frederick, Curtis M; Haynes, Kathleen G; Holm, David G; Miller, J Creighton; Muñoz, Patricio R; Navarro, Felix M; Novy, Richard G; Palta, Jiwan P; Porter, Gregory A; Rak, Kyle T; Sathuvalli, Vidyasagar R; Thompson, Asunta L; Yencho, G Craig

    2018-05-01

    As one of the world's most important food crops, the potato ( Solanum tuberosum L.) has spurred innovation in autotetraploid genetics, including in the use of SNP arrays to determine allele dosage at thousands of markers. By combining genotype and pedigree information with phenotype data for economically important traits, the objectives of this study were to (1) partition the genetic variance into additive vs. nonadditive components, and (2) determine the accuracy of genome-wide prediction. Between 2012 and 2017, a training population of 571 clones was evaluated for total yield, specific gravity, and chip fry color. Genomic covariance matrices for additive ( G ), digenic dominant ( D ), and additive × additive epistatic ( G # G ) effects were calculated using 3895 markers, and the numerator relationship matrix ( A ) was calculated from a 13-generation pedigree. Based on model fit and prediction accuracy, mixed model analysis with G was superior to A for yield and fry color but not specific gravity. The amount of additive genetic variance captured by markers was 20% of the total genetic variance for specific gravity, compared to 45% for yield and fry color. Within the training population, including nonadditive effects improved accuracy and/or bias for all three traits when predicting total genotypic value. When six F 1 populations were used for validation, prediction accuracy ranged from 0.06 to 0.63 and was consistently lower (0.13 on average) without allele dosage information. We conclude that genome-wide prediction is feasible in potato and that it will improve selection for breeding value given the substantial amount of nonadditive genetic variance in elite germplasm. Copyright © 2018 by the Genetics Society of America.

  16. Assessing Attitudes about Genetic Testing as a Component of Continuing Medical Education

    ERIC Educational Resources Information Center

    Mrazek, Michael; Koenig, Barbara; Skime, Michelle; Snyder, Karen; Hook, Christopher; Black, John, III; Mrazek, David

    2007-01-01

    Objective: To investigate the attitudes among mental health professionals regarding the use of genetic testing. Methods: Psychiatrists and other mental health professionals (N = 41) who were enrolled in a week-long course in psychiatric genomics completed questionnaires before and after the course designed to assess how diagnostic genetic tests…

  17. Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes.

    PubMed

    Wu, Huixia; Doherty, Angela; Jones, Huw D

    2008-06-01

    Genetic transformation of wheat, using biolistics or Agrobacterium, underpins a range of specific research methods for identifying genes and studying their function in planta. Transgenic approaches to study and modify traits in durum wheat have lagged behind those for bread wheat. Here we report the use of Agrobacterium strain AGL1, with additional vir genes housed in a helper plasmid, to transform and regenerate the durum wheat variety Ofanto. The use of the basic pSoup helper plasmid with no additional vir genes failed to generate transformants, whereas the presence of either virG542 or the 15 kb Komari fragment containing virB, virC and virG542 produced transformation efficiencies of between 0.6 and 9.7%. Of the 42 transgenic plants made, all but one (which set very few seeds) appeared morphologically normal and produced between 100 and 300 viable seeds. The transgene copy number and the segregation ratios were found to be very similar to those previously reported for bread wheat. We believe that this is the first report describing successful genetic transformation of tetraploid durum wheat (Triticum turgidum L. var. durum) mediated by Agrobacterium tumefaciens using immature embryos as the explant.

  18. Complex and unexpected dynamics in simple genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey

    2014-03-01

    One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.

  19. Decomposing Additive Genetic Variance Revealed Novel Insights into Trait Evolution in Synthetic Hexaploid Wheat.

    PubMed

    Jighly, Abdulqader; Joukhadar, Reem; Singh, Sukhwinder; Ogbonnaya, Francis C

    2018-01-01

    Whole genome duplication (WGD) is an evolutionary phenomenon, which causes significant changes to genomic structure and trait architecture. In recent years, a number of studies decomposed the additive genetic variance explained by different sets of variants. However, they investigated diploid populations only and none of the studies examined any polyploid organism. In this research, we extended the application of this approach to polyploids, to differentiate the additive variance explained by the three subgenomes and seven sets of homoeologous chromosomes in synthetic allohexaploid wheat (SHW) to gain a better understanding of trait evolution after WGD. Our SHW population was generated by crossing improved durum parents ( Triticum turgidum; 2n = 4x = 28, AABB subgenomes) with the progenitor species Aegilops tauschii (syn Ae. squarrosa, T. tauschii ; 2n = 2x = 14, DD subgenome). The population was phenotyped for 10 fungal/nematode resistance traits as well as two abiotic stresses. We showed that the wild D subgenome dominated the additive effect and this dominance affected the A more than the B subgenome. We provide evidence that this dominance was not inflated by population structure, relatedness among individuals or by longer linkage disequilibrium blocks observed in the D subgenome within the population used for this study. The cumulative size of the three homoeologs of the seven chromosomal groups showed a weak but significant positive correlation with their cumulative explained additive variance. Furthermore, an average of 69% for each chromosomal group's cumulative additive variance came from one homoeolog that had the highest explained variance within the group across all 12 traits. We hypothesize that structural and functional changes during diploidization may explain chromosomal group relations as allopolyploids keep balanced dosage for many genes. Our results contribute to a better understanding of trait evolution mechanisms in polyploidy, which will

  20. Decomposing Additive Genetic Variance Revealed Novel Insights into Trait Evolution in Synthetic Hexaploid Wheat

    PubMed Central

    Jighly, Abdulqader; Joukhadar, Reem; Singh, Sukhwinder; Ogbonnaya, Francis C.

    2018-01-01

    Whole genome duplication (WGD) is an evolutionary phenomenon, which causes significant changes to genomic structure and trait architecture. In recent years, a number of studies decomposed the additive genetic variance explained by different sets of variants. However, they investigated diploid populations only and none of the studies examined any polyploid organism. In this research, we extended the application of this approach to polyploids, to differentiate the additive variance explained by the three subgenomes and seven sets of homoeologous chromosomes in synthetic allohexaploid wheat (SHW) to gain a better understanding of trait evolution after WGD. Our SHW population was generated by crossing improved durum parents (Triticum turgidum; 2n = 4x = 28, AABB subgenomes) with the progenitor species Aegilops tauschii (syn Ae. squarrosa, T. tauschii; 2n = 2x = 14, DD subgenome). The population was phenotyped for 10 fungal/nematode resistance traits as well as two abiotic stresses. We showed that the wild D subgenome dominated the additive effect and this dominance affected the A more than the B subgenome. We provide evidence that this dominance was not inflated by population structure, relatedness among individuals or by longer linkage disequilibrium blocks observed in the D subgenome within the population used for this study. The cumulative size of the three homoeologs of the seven chromosomal groups showed a weak but significant positive correlation with their cumulative explained additive variance. Furthermore, an average of 69% for each chromosomal group's cumulative additive variance came from one homoeolog that had the highest explained variance within the group across all 12 traits. We hypothesize that structural and functional changes during diploidization may explain chromosomal group relations as allopolyploids keep balanced dosage for many genes. Our results contribute to a better understanding of trait evolution mechanisms in polyploidy, which will

  1. Web-Based Genome-Wide Association Study Identifies Two Novel Loci and a Substantial Genetic Component for Parkinson's Disease

    PubMed Central

    Do, Chuong B.; Tung, Joyce Y.; Dorfman, Elizabeth; Kiefer, Amy K.; Drabant, Emily M.; Francke, Uta; Mountain, Joanna L.; Goldman, Samuel M.; Tanner, Caroline M.; Langston, J. William; Wojcicki, Anne; Eriksson, Nicholas

    2011-01-01

    Although the causes of Parkinson's disease (PD) are thought to be primarily environmental, recent studies suggest that a number of genes influence susceptibility. Using targeted case recruitment and online survey instruments, we conducted the largest case-control genome-wide association study (GWAS) of PD based on a single collection of individuals to date (3,426 cases and 29,624 controls). We discovered two novel, genome-wide significant associations with PD–rs6812193 near SCARB2 (, ) and rs11868035 near SREBF1/RAI1 (, )—both replicated in an independent cohort. We also replicated 20 previously discovered genetic associations (including LRRK2, GBA, SNCA, MAPT, GAK, and the HLA region), providing support for our novel study design. Relying on a recently proposed method based on genome-wide sharing estimates between distantly related individuals, we estimated the heritability of PD to be at least 0.27. Finally, using sparse regression techniques, we constructed predictive models that account for 6%–7% of the total variance in liability and that suggest the presence of true associations just beyond genome-wide significance, as confirmed through both internal and external cross-validation. These results indicate a substantial, but by no means total, contribution of genetics underlying susceptibility to both early-onset and late-onset PD, suggesting that, despite the novel associations discovered here and elsewhere, the majority of the genetic component for Parkinson's disease remains to be discovered. PMID:21738487

  2. Chemosensory responsiveness to ethanol and its individual sensory components in alcohol-preferring, alcohol-nonpreferring and genetically heterogeneous rats.

    PubMed

    Brasser, Susan M; Silbaugh, Bryant C; Ketchum, Myles J; Olney, Jeffrey J; Lemon, Christian H

    2012-03-01

    Alcohol activates orosensory circuits that project to motivationally relevant limbic forebrain areas that control appetite, feeding and drinking. To date, limited data exists regarding the contribution of chemosensory-derived ethanol reinforcement to ethanol preference and consumption. Measures of taste reactivity to intra-orally infused ethanol have not found differences in initial orofacial responses to alcohol between alcohol-preferring (P) and alcohol-non-preferring (NP) genetically selected rat lines. Yet, in voluntary intake tests, P rats prefer highly concentrated ethanol upon initial exposure, suggesting an early sensory-mediated attraction. Here, we directly compared self-initiated chemosensory responding for alcohol and prototypic sweet, bitter and oral trigeminal stimuli among selectively bred P, NP and non-selected Wistar (WI) outbred lines to determine whether differential sensory responsiveness to ethanol and its putative sensory components are phenotypically associated with genetically influenced alcohol preference. Rats were tested for immediate short-term lick responses to alcohol (3-40%), sucrose (0.01-1 M), quinine (0.01-3 mM) and capsaicin (0.003-1 mM) in a brief-access assay designed to index orosensory-guided behavior. P rats exhibited elevated short-term lick responses to both alcohol and sucrose relative to NP and WI lines across a broad range of concentrations of each stimulus and in the absence of blood alcohol levels that would produce significant post-absorptive effects. There was no consistent relationship between genetically mediated alcohol preference and orosensory avoidance of quinine or capsaicin. These data indicate that enhanced initial chemosensory attraction to ethanol and sweet stimuli are phenotypes associated with genetic alcohol preference and are considered within the framework of downstream activation of oral appetitive reward circuits. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of

  3. Application of molecular genetic tools for forest pathology

    Treesearch

    Mee-Sook Kim; John Hanna; Amy Ross-Davis; Ned Klopfenstein

    2012-01-01

    In recent years, advances in molecular genetics have provided powerful tools to address critical issues in forest pathology to help promote resilient forests. Although molecular genetic tools are initially applied to understand individual components of forest pathosystems, forest pathosystems involve dynamic interactions among biotic and abiotic components of the...

  4. Nursing and genetic biobanks.

    PubMed

    Sanner, Jennifer E; Yu, Erica; Udtha, Malini; Williams, Pamela Holtzclaw

    2013-12-01

    Biobanks function as vital components in genetic research, which often requires large disease-based or population-based biospecimens and clinical data to study complex or rare diseases. Genetic biobanks aim to provide resources for translational research focusing on rapidly moving scientific findings from the laboratory into health care practice. The nursing profession must evolve as genetic biobanking practices advance. Nursing involvement in genetic biobanking practices comes with a distinct set of educational, ethical, and practice competencies. In response to these growing competency standards, nursing science developed a conceptual framework and continues to study ethical considerations to guide genetic biobanking initiatives. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Estimation of genetic parameters for milk yield in Murrah buffaloes by Bayesian inference.

    PubMed

    Breda, F C; Albuquerque, L G; Euclydes, R F; Bignardi, A B; Baldi, F; Torres, R A; Barbosa, L; Tonhati, H

    2010-02-01

    Random regression models were used to estimate genetic parameters for test-day milk yield in Murrah buffaloes using Bayesian inference. Data comprised 17,935 test-day milk records from 1,433 buffaloes. Twelve models were tested using different combinations of third-, fourth-, fifth-, sixth-, and seventh-order orthogonal polynomials of weeks of lactation for additive genetic and permanent environmental effects. All models included the fixed effects of contemporary group, number of daily milkings and age of cow at calving as covariate (linear and quadratic effect). In addition, residual variances were considered to be heterogeneous with 6 classes of variance. Models were selected based on the residual mean square error, weighted average of residual variance estimates, and estimates of variance components, heritabilities, correlations, eigenvalues, and eigenfunctions. Results indicated that changes in the order of fit for additive genetic and permanent environmental random effects influenced the estimation of genetic parameters. Heritability estimates ranged from 0.19 to 0.31. Genetic correlation estimates were close to unity between adjacent test-day records, but decreased gradually as the interval between test-days increased. Results from mean squared error and weighted averages of residual variance estimates suggested that a model considering sixth- and seventh-order Legendre polynomials for additive and permanent environmental effects, respectively, and 6 classes for residual variances, provided the best fit. Nevertheless, this model presented the largest degree of complexity. A more parsimonious model, with fourth- and sixth-order polynomials, respectively, for these same effects, yielded very similar genetic parameter estimates. Therefore, this last model is recommended for routine applications. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Principles in genetic risk assessment.

    PubMed

    Baptista, Pedro Viana

    2005-03-01

    Risk assessment constitutes an essential component of genetic counseling and testing, and the genetic risk should be estimated as accurately as possible for individual and family decision making. All relevant information retrieved from population studies and pedigree and genetic testing enhances the accuracy of the assessment of an individual's genetic risk. This review will focus on the following general aspects implicated in risk assessment: the increasing genetic information regarding disease; complex traits versus Mendelian disorders; and the influence of the environment and disease susceptibility. The influence of these factors on risk assessment will be discussed.

  7. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle.

    PubMed

    Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan

    2016-12-01

    The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran.

  8. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle

    PubMed Central

    Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan

    2016-01-01

    The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran. PMID:26954192

  9. 26 CFR 1.23-6 - Procedure and criteria for additions to the approved list of energy-conserving components or...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... geothermal energy, the energy source must be an inexhaustible energy supply. Accordingly, wood and... approved list of energy-conserving components or renewable energy sources. 1.23-6 Section 1.23-6 Internal... During A Taxable Year § 1.23-6 Procedure and criteria for additions to the approved list of energy...

  10. 26 CFR 1.23-6 - Procedure and criteria for additions to the approved list of energy-conserving components or...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... geothermal energy, the energy source must be an inexhaustible energy supply. Accordingly, wood and... approved list of energy-conserving components or renewable energy sources. 1.23-6 Section 1.23-6 Internal... During A Taxable Year § 1.23-6 Procedure and criteria for additions to the approved list of energy...

  11. WONOEP appraisal: new genetic approaches to study epilepsy

    PubMed Central

    Rossignol, Elsa; Kobow, Katja; Simonato, Michele; Loeb, Jeffrey A.; Grisar, Thierry; Gilby, Krista L.; Vinet, Jonathan; Kadam, Shilpa D.; Becker, Albert J.

    2014-01-01

    Objective New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming and optogenetic manipulations within epileptic networks are progressively unravelling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiological impacts of mutations in epilepsy-associated genes on a multilayer level, from cells to circuits. Methods This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy in Quebec, Canada. Results Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and have revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell-types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knockdown approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. Genetically-encoded cell-type labeling is also providing new means to assess the role of the non-neuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and non

  12. Estimating non-genetic and genetic parameters of pre-weaning growth traits in Raini Cashmere goat.

    PubMed

    Barazandeh, Arsalan; Moghbeli, Sadrollah Molaei; Vatankhah, Mahmood; Mohammadabadi, Mohammadreza

    2012-04-01

    Data and pedigree information used in the present study were 3,022 records of kids obtained from the breeding station of Raini goat. The studied traits were birth weight (BW), weaning weight (WW), average daily gain from birth to weaning (ADG) and Kleiber ratio at weaning (KR). The model included the fixed effects of sex of kid, type of birth, age of dam, year of birth, month of birth, and age of kid (days) as covariate that had significant effects, and random effects direct additive genetic, maternal additive genetic, maternal permanent environmental effects and residual. (Co) variance components were estimated using univariate and multivariate analysis by WOMBAT software applying four animal models including and ignoring maternal effects. Likelihood ratio test used to determine the most appropriate models. Heritability (h(a)(2)) estimates for BW, WW, ADG, and KR according to suitable model were 0.12 ± 0.05, 0.08 ± 0.06, 0.10 ± 0.06, and 0.06 ± 0.05, respectively. Estimates of the proportion of maternal permanent environmental effect to phenotypic variance (c(2)) were 0.17 ± 0.03, 0.07 ± 0.03, and 0.07 ± 0.03 for BW, WW, and ADG, respectively. Genetic correlations among traits were positive and ranged from 0.53 (BW-ADG) to 1.00 (WW-ADG, WW-KR, and ADG-KR). The maternal permanent environmental correlations between BW-WW, BW-ADG, and WW-ADG were 0.54, 0.48, and 0.99, respectively. Results indicated that maternal effects, especially maternal permanent environmental effects are an important source of variation in pre-weaning growth trait and ignoring those in the model redound incorrect genetic evaluation of kids.

  13. Comparison of electron beam and laser beam powder bed fusion additive manufacturing process for high temperature turbine component materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N; Pint, Bruce A; Ryan, Daniel

    2016-04-01

    The evolving 3D printer technology is now at the point where some turbine components could be additive manufactured (AM) for both development and production purposes. However, this will require a significant evaluation program to qualify the process and components to meet current design and quality standards. The goal of the project was to begin characterization of the microstructure and mechanical properties of Nickel Alloy X (Ni-22Cr-18Fe-9Mo) test bars fabricated by powder bed fusion (PBF) AM processes that use either an electron beam (EB) or laser beam (LB) power source. The AM materials produced with the EB and LB processes displayedmore » significant differences in microstructure and resultant mechanical properties. Accordingly, during the design analysis of AM turbine components, the specific mechanical behavior of the material produced with the selected AM process should be considered. Comparison of the mechanical properties of both the EB and LB materials to those of conventionally processed Nickel Alloy X materials indicates the subject AM materials are viable alternatives for manufacture of some turbine components.« less

  14. A genetic algorithm for solving supply chain network design model

    NASA Astrophysics Data System (ADS)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  15. The genetic structure of a relict population of wood frogs

    USGS Publications Warehouse

    Scherer, Rick; Muths, Erin; Noon, Barry; Oyler-McCance, Sara

    2012-01-01

    Habitat fragmentation and the associated reduction in connectivity between habitat patches are commonly cited causes of genetic differentiation and reduced genetic variation in animal populations. We used eight microsatellite markers to investigate genetic structure and levels of genetic diversity in a relict population of wood frogs (Lithobates sylvatica) in Rocky Mountain National Park, Colorado, where recent disturbances have altered hydrologic processes and fragmented amphibian habitat. We also estimated migration rates among subpopulations, tested for a pattern of isolation-by-distance, and looked for evidence of a recent population bottleneck. The results from the clustering algorithm in Program STRUCTURE indicated the population is partitioned into two genetic clusters (subpopulations), and this result was further supported by factorial component analysis. In addition, an estimate of FST (FST = 0.0675, P value \\0.0001) supported the genetic differentiation of the two clusters. Estimates of migration rates among the two subpopulations were low, as were estimates of genetic variability. Conservation of the population of wood frogs may be improved by increasing the spatial distribution of the population and improving gene flow between the subpopulations. Construction or restoration of wetlands in the landscape between the clusters has the potential to address each of these objectives.

  16. ASHG activities relative to education: Human genetics as a component of medical school curricula: A report to the American society of human genetics

    PubMed Central

    Riccardi, Vincent M.; Schmickel, Roy D.

    1988-01-01

    In recent years, there has been a remarkable increase in both the rate of acquiring new information about human genetics and the importance of human genetics for modern health care. As a result, human genetics educators have queried whether the teaching of human genetics in North-American medical schools has kept pace with these increases. To address this question, a survey of these medical schools was undertaken to assess how human geneticists perceive the teaching of human genetics in their respective institutions. The results of the survey, begun and completed in 1985, indicate the following: (1) the teaching of human genetics in medical schools is extremely variable from one institution to another, with some schools having no identifiable human genetics teaching at all; (2) the relevance of human genetics to other basic science and clinical disciplines apparently leads to noncategorical or fragmented teaching of human genetics, which may also contribute to the absence of a specific medical school course in the subject; and (3) there is a need for closer collaboration between human genetics educators and their respective medical school administrators and curriculum committees. PMID:17948585

  17. Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS.

    PubMed

    Kim, Nora Chung; Andrews, Peter C; Asselbergs, Folkert W; Frost, H Robert; Williams, Scott M; Harris, Brent T; Read, Cynthia; Askland, Kathleen D; Moore, Jason H

    2012-07-28

    It is increasingly clear that common human diseases have a complex genetic architecture characterized by both additive and nonadditive genetic effects. The goal of the present study was to determine whether patterns of both additive and nonadditive genetic associations aggregate in specific functional groups as defined by the Gene Ontology (GO). We first estimated all pairwise additive and nonadditive genetic effects using the multifactor dimensionality reduction (MDR) method that makes few assumptions about the underlying genetic model. Statistical significance was evaluated using permutation testing in two genome-wide association studies of ALS. The detection data consisted of 276 subjects with ALS and 271 healthy controls while the replication data consisted of 221 subjects with ALS and 211 healthy controls. Both studies included genotypes from approximately 550,000 single-nucleotide polymorphisms (SNPs). Each SNP was mapped to a gene if it was within 500 kb of the start or end. Each SNP was assigned a p-value based on its strongest joint effect with the other SNPs. We then used the Exploratory Visual Analysis (EVA) method and software to assign a p-value to each gene based on the overabundance of significant SNPs at the α = 0.05 level in the gene. We also used EVA to assign p-values to each GO group based on the overabundance of significant genes at the α = 0.05 level. A GO category was determined to replicate if that category was significant at the α = 0.05 level in both studies. We found two GO categories that replicated in both studies. The first, 'Regulation of Cellular Component Organization and Biogenesis', a GO Biological Process, had p-values of 0.010 and 0.014 in the detection and replication studies, respectively. The second, 'Actin Cytoskeleton', a GO Cellular Component, had p-values of 0.040 and 0.046 in the detection and replication studies, respectively. Pathway analysis of pairwise genetic associations in two GWAS of sporadic ALS

  18. Genetic factors in exercise adoption, adherence and obesity.

    PubMed

    Herring, M P; Sailors, M H; Bray, M S

    2014-01-01

    Physical activity and exercise play critical roles in energy balance. While many interventions targeted at increasing physical activity have demonstrated efficacy in promoting weight loss or maintenance in the short term, long term adherence to such programmes is not frequently observed. Numerous factors have been examined for their ability to predict and/or influence physical activity and exercise adherence. Although physical activity has been demonstrated to have a strong genetic component in both animals and humans, few studies have examined the association between genetic variation and exercise adherence. In this review, we provide a detailed overview of the non-genetic and genetic predictors of physical activity and adherence to exercise. In addition, we report the results of analysis of 26 single nucleotide polymorphisms in six candidate genes examined for association to exercise adherence, duration, intensity and total exercise dose in young adults from the Training Interventions and Genetics of Exercise Response (TIGER) Study. Based on both animal and human research, neural signalling and pleasure/reward systems in the brain may drive in large part the propensity to be physically active and to adhere to an exercise programme. Adherence/compliance research in other fields may inform future investigation of the genetics of exercise adherence. © 2013 The Authors. obesity reviews © 2013 International Association for the Study of Obesity.

  19. Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels

    DOEpatents

    Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

    2013-04-30

    A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

  20. A Comparison of Telephone Genetic Counseling and In-Person Genetic Counseling from the Genetic Counselor's Perspective.

    PubMed

    Burgess, Kelly R; Carmany, Erin P; Trepanier, Angela M

    2016-02-01

    Growing demand for and limited geographic access to genetic counseling services is increasing the need for alternative service delivery models (SDM) like telephone genetic counseling (TGC). Little research has been done on genetic counselors' perspectives of the practice of TGC. We created an anonymous online survey to assess whether telephone genetic counselors believed the tasks identified in the ABGC (American Board of Genetic Counseling) Practice Analysis were performed similarly or differently in TGC compared to in person genetic counseling (IPGC). If there were differences noted, we sought to determine the nature of the differences and if additional training might be needed to address them. Eighty eight genetic counselors with experience in TGC completed some or all of the survey. Respondents identified differences in 13 (14.8%) of the 88 tasks studied. The tasks identified as most different in TGC were: "establishing rapport through verbal and nonverbal interactions" (60.2%; 50/83 respondents identified the task as different), "recognizing factors affecting the counseling interaction" (47.8%; 32/67), "assessing client/family emotions, support, etc." (40.1%; 27/66) and "educating clients about basic genetic concepts" (35.6%; 26/73). A slight majority (53.8%; 35/65) felt additional training was needed to communicate information without visual aids and more effectively perform psychosocial assessments. In summary, although a majority of genetic counseling tasks are performed similarly between TGC and IPGC, TGC counselors recognize that specific training in the TGC model may be needed to address the key differences.

  1. Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: Comparing meta and megaanalytical approaches for data pooling.

    PubMed

    Kochunov, Peter; Jahanshad, Neda; Sprooten, Emma; Nichols, Thomas E; Mandl, René C; Almasy, Laura; Booth, Tom; Brouwer, Rachel M; Curran, Joanne E; de Zubicaray, Greig I; Dimitrova, Rali; Duggirala, Ravi; Fox, Peter T; Hong, L Elliot; Landman, Bennett A; Lemaitre, Hervé; Lopez, Lorna M; Martin, Nicholas G; McMahon, Katie L; Mitchell, Braxton D; Olvera, Rene L; Peterson, Charles P; Starr, John M; Sussmann, Jessika E; Toga, Arthur W; Wardlaw, Joanna M; Wright, Margaret J; Wright, Susan N; Bastin, Mark E; McIntosh, Andrew M; Boomsma, Dorret I; Kahn, René S; den Braber, Anouk; de Geus, Eco J C; Deary, Ian J; Hulshoff Pol, Hilleke E; Williamson, Douglas E; Blangero, John; van 't Ent, Dennis; Thompson, Paul M; Glahn, David C

    2014-07-15

    Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9-85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large "mega-family". We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Nature vs nurture: are leaders born or made? A behavior genetic investigation of leadership style.

    PubMed

    Johnson, A M; Vernon, P A; McCarthy, J M; Molson, M; Harris, J A; Jang, K L

    1998-12-01

    With the recent resurgence in popularity of trait theories of leadership, it is timely to consider the genetic determination of the multiple factors comprising the leadership construct. Individual differences in personality traits have been found to be moderately to highly heritable, and so it follows that if there are reliable personality trait differences between leaders and non-leaders, then there may be a heritable component to these individual differences. Despite this connection between leadership and personality traits, however, there are no studies of the genetic basis of leadership using modern behavior genetic methodology. The present study proposes to address the lack of research in this area by examining the heritability of leadership style, as measured by self-report psychometric inventories. The Multifactor Leadership Questionnaire (MLQ), the Leadership Ability Evaluation, and the Adjective Checklist were completed by 247 adult twin pairs (183 monozygotic and 64 same-sex dizygotic). Results indicated that most of the leadership dimensions examined in this study are heritable, as are two higher level factors (resembling transactional and transformational leadership) derived from an obliquely rotated principal components factors analysis of the MLQ. Univariate analyses suggested that 48% of the variance in transactional leadership may be explained by additive heritability, and 59% of the variance in transformational leadership may be explained by non-additive (dominance) heritability. Multivariate analyses indicated that most of the variables studied shared substantial genetic covariance, suggesting a large overlap in the underlying genes responsible for the leadership dimensions.

  3. Latest Research: Genetic Links

    MedlinePlus

    ... additional genetic risk factors. The network will also explore the relationship between a genetic disease and its ... surgery involves inserting a hollow needle into the space between the eye's retinal layers and transferring genetic ...

  4. 26 CFR 54.9802-3T - Additional requirements prohibiting discrimination based on genetic information (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... history. (ii) Conclusion. In this Example 1, the health risk assessment includes a request for genetic... the health risk assessment includes a request for genetic information (that is, the individual's... about family medical history on the health risk assessment are a request for genetic information for...

  5. 26 CFR 54.9802-3T - Additional requirements prohibiting discrimination based on genetic information (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... history. (ii) Conclusion. In this Example 1, the health risk assessment includes a request for genetic... the health risk assessment includes a request for genetic information (that is, the individual's... about family medical history on the health risk assessment are a request for genetic information for...

  6. 26 CFR 54.9802-3T - Additional requirements prohibiting discrimination based on genetic information (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... history. (ii) Conclusion. In this Example 1, the health risk assessment includes a request for genetic... the health risk assessment includes a request for genetic information (that is, the individual's... about family medical history on the health risk assessment are a request for genetic information for...

  7. 26 CFR 54.9802-3T - Additional requirements prohibiting discrimination based on genetic information (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... history. (ii) Conclusion. In this Example 1, the health risk assessment includes a request for genetic... the health risk assessment includes a request for genetic information (that is, the individual's... about family medical history on the health risk assessment are a request for genetic information for...

  8. Principles in genetic risk assessment

    PubMed Central

    Baptista, Pedro Viana

    2005-01-01

    Risk assessment constitutes an essential component of genetic counseling and testing, and the genetic risk should be estimated as accurately as possible for individual and family decision making. All relevant information retrieved from population studies and pedigree and genetic testing enhances the accuracy of the assessment of an individual's genetic risk. This review will focus on the following general aspects implicated in risk assessment: the increasing genetic information regarding disease; complex traits versus Mendelian disorders; and the influence of the environment and disease susceptibility. The influence of these factors on risk assessment will be discussed. PMID:18360538

  9. Demographic history and genetic adaptation in the Himalayan region inferred from genome-wide SNP genotypes of 49 populations.

    PubMed

    Arciero, Elena; Kraaijenbrink, Thirsa; Asan; Haber, Marc; Mezzavilla, Massimo; Ayub, Qasim; Wang, Wei; Pingcuo, Zhaxi; Yang, Huanming; Wang, Jian; Jobling, Mark A; van Driem, George; Xue, Yali; de Knijff, Peter; Tyler-Smith, Chris

    2018-05-22

    We genotyped 738 individuals belonging to 49 populations from Nepal, Bhutan, North India or Tibet at over 500,000 SNPs, and analysed the genotypes in the context of available worldwide population data in order to investigate the demographic history of the region and the genetic adaptations to the harsh environment. The Himalayan populations resembled other South and East Asians, but in addition displayed their own specific ancestral component and showed strong population structure and genetic drift. We also found evidence for multiple admixture events involving Himalayan populations and South/East Asians between 200 and 2,000 years ago. In comparisons with available ancient genomes, the Himalayans, like other East and South Asian populations, showed similar genetic affinity to Eurasian hunter-gatherers (a 24,000-year-old Upper Palaeolithic Siberian), and the related Bronze Age Yamnaya. The high-altitude Himalayan populations all shared a specific ancestral component, suggesting that genetic adaptation to life at high altitude originated only once in this region and subsequently spread. Combining four approaches to identifying specific positively-selected loci, we confirmed that the strongest signals of high-altitude adaptation were located near the Endothelial PAS domain-containing protein 1 (EPAS1) and Egl-9 Family Hypoxia Inducible Factor 1 (EGLN1) loci, and discovered eight additional robust signals of high-altitude adaptation, five of which have strong biological functional links to such adaptation. In conclusion, the demographic history of Himalayan populations is complex, with strong local differentiation, reflecting both genetic and cultural factors; these populations also display evidence of multiple genetic adaptations to high-altitude environments.

  10. Genetics Home Reference: nonsyndromic aplasia cutis congenita

    MedlinePlus

    ... are some genetic conditions more common in particular ethnic groups? Genetic Changes Nonsyndromic aplasia cutis congenita can have different causes, and often the cause is unknown. Because the condition is sometimes found in multiple members of a family, it is thought to have a genetic component; ...

  11. VARIABLE SELECTION IN NONPARAMETRIC ADDITIVE MODELS

    PubMed Central

    Huang, Jian; Horowitz, Joel L.; Wei, Fengrong

    2010-01-01

    We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is “small” relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expansions with B-spline bases. With this approximation, the problem of component selection becomes that of selecting the groups of coefficients in the expansion. We apply the adaptive group Lasso to select nonzero components, using the group Lasso to obtain an initial estimator and reduce the dimension of the problem. We give conditions under which the group Lasso selects a model whose number of components is comparable with the underlying model, and the adaptive group Lasso selects the nonzero components correctly with probability approaching one as the sample size increases and achieves the optimal rate of convergence. The results of Monte Carlo experiments show that the adaptive group Lasso procedure works well with samples of moderate size. A data example is used to illustrate the application of the proposed method. PMID:21127739

  12. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits.

    PubMed

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-12-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.

  13. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits

    PubMed Central

    Yadav, Anupama; Dhole, Kaustubh

    2016-01-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852

  14. Genetic progress in multistage dairy cattle breeding schemes using genetic markers.

    PubMed

    Schrooten, C; Bovenhuis, H; van Arendonk, J A M; Bijma, P

    2005-04-01

    The aim of this paper was to explore general characteristics of multistage breeding schemes and to evaluate multistage dairy cattle breeding schemes that use information on quantitative trait loci (QTL). Evaluation was either for additional genetic response or for reduction in number of progeny-tested bulls while maintaining the same response. The reduction in response in multistage breeding schemes relative to comparable single-stage breeding schemes (i.e., with the same overall selection intensity and the same amount of information in the final stage of selection) depended on the overall selection intensity, the selection intensity in the various stages of the breeding scheme, and the ratio of the accuracies of selection in the various stages of the breeding scheme. When overall selection intensity was constant, reduction in response increased with increasing selection intensity in the first stage. The decrease in response was highest in schemes with lower overall selection intensity. Reduction in response was limited in schemes with low to average emphasis on first-stage selection, especially if the accuracy of selection in the first stage was relatively high compared with the accuracy in the final stage. Closed nucleus breeding schemes in dairy cattle that use information on QTL were evaluated by deterministic simulation. In the base scheme, the selection index consisted of pedigree information and own performance (dams), or pedigree information and performance of 100 daughters (sires). In alternative breeding schemes, information on a QTL was accounted for by simulating an additional index trait. The fraction of the variance explained by the QTL determined the correlation between the additional index trait and the breeding goal trait. Response in progeny test schemes relative to a base breeding scheme without QTL information ranged from +4.5% (QTL explaining 5% of the additive genetic variance) to +21.2% (QTL explaining 50% of the additive genetic variance). A

  15. Additive influence of genetic predisposition and conventional risk factors in the incidence of coronary heart disease: a population-based study in Greece

    USDA-ARS?s Scientific Manuscript database

    An additive genetic risk score (GRS) for coronary heart disease (CHD) has previously been associated with incident CHD in the population-based Greek European Prospective Investigation into Cancer and nutrition (EPIC) cohort. In this study, we explore GRS-‘environment’ joint actions on CHD for severa...

  16. Relationship between genetic parameters in maize (Zea mays) with seedling growth parameters under 40-100% soil moisture conditions.

    PubMed

    Muhammad, R W; Qayyum, A

    2013-10-18

    We estimated the association of genetic parameters with production characters in 64 maize (Zea mays) genotypes in a green house in soil with 40-100% moisture levels (percent of soil moisture capacity). To identify the major parameters that account for variation among the genotypes, we used single linkage cluster analysis and principle component analysis. Ten plant characters were measured. The first two, four, three, and again three components, with eigen values > 1 contributed 75.05, 80.11, 68.67, and 75.87% of the variability among the genotypes under the different moisture levels, i.e., 40, 60, 80, and 100%, respectively. Other principal components (3-10, 5-10, and 4-10) had eigen values less than 1. The highest estimates of heritability were found for root fresh weight, root volume (0.99), and shoot fresh weight (0.995) in 40% soil moisture. Values of genetic advance ranged from 23.4024 for SR at 40% soil moisture to 0.2538 for shoot dry weight in 60% soil moisture. The high magnitude of broad sense heritability provides evidence that these plant characters are under the control of additive genetic effects. This indicates that selection should lead to fast genetic improvement of the material. The superior agronomic types that we identified may be exploited for genetic potential to improve yield potential of the maize crop.

  17. Genetic parameters for milk, fat and protein yields in Murrah buffaloes (Bubalus bubalis Artiodactyla, Bovidae)

    PubMed Central

    2010-01-01

    The objective of the present study was to estimate genetic parameters for test-day milk, fat and protein yields and 305-day-yields in Murrah buffaloes. 4,757 complete lactations of Murrah buffaloes were analyzed. Co-variance components were estimated by the restricted maximum likelihood method. The models included additive direct genetic and permanent environmental effects as random effects, and the fixed effects of contemporary group, milking number and age of the cow at calving as linear and quadratic covariables. Contemporary groups were defined by herd-year-month of test for test-day yields and by herd-year-season of calving for 305-day yields. The heritability estimates obtained by two-trait analysis ranged from 0.15 to 0.24 for milk, 0.16 to 0.23 for protein and 0.13 to 0.22 for fat, yields. Genetic and phenotypic correlations were all positive. The observed population additive genetic variation indicated that selection might be an effective tool in changing population means in milk, fat and protein yields. PMID:21637608

  18. Investigation of plasma arc welding as a method for the additive manufacturing of titanium-(6)aluminum-(4)vanadium alloy components

    NASA Astrophysics Data System (ADS)

    Stavinoha, Joe N.

    The process of producing near net-shape components by material deposition is known as additive manufacturing. All additive manufacturing processes are based on the addition of material with the main driving forces being cost reduction and flexibility in both manufacturing and product design. With wire metal deposition, metal is deposited as beads side-by-side and layer-by-layer in a desired pattern to build a complete component or add features on a part. There are minimal waste products, low consumables, and an efficient use of energy and feedstock associated with additive manufacturing processes. Titanium and titanium alloys are useful engineering materials that possess an extraordinary combination of properties. Some of the properties that make titanium advantageous for structural applications are its high strength-to-weight ratio, low density, low coefficient of thermal expansion, and good corrosion resistance. The most commonly used titanium alloy, Ti-6Al-4V, is typically used in aerospace applications, pressure vessels, aircraft gas turbine disks, cases and compressor blades, and surgical implants. Because of the high material prices associated with titanium alloys, the production of near net-shape components by additive manufacturing is an attractive option for the manufacturing of Ti-6Al-4V alloy components. In this thesis, the manufacturing of cylindrical Ti-6Al-4V alloy specimens by wire metal deposition utilizing the plasma arc welding process was demonstrated. Plasma arc welding is a cost effective additive manufacturing technique when compared to other current additive manufacturing methods such as laser beam welding and electron beam welding. Plasma arc welding is considered a high-energy-density welding processes which is desirable for the successful welding of titanium. Metal deposition was performed using a constant current plasma arc welding power supply, flow-purged welding chamber, argon shielding and orifice gas, ERTi-5 filler metal, and Ti-6Al

  19. Molecular Genetics of Mycobacteriophages

    PubMed Central

    HATFULL, GRAHAM F.

    2014-01-01

    Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond. PMID:25328854

  20. Linear score tests for variance components in linear mixed models and applications to genetic association studies.

    PubMed

    Qu, Long; Guennel, Tobias; Marshall, Scott L

    2013-12-01

    Following the rapid development of genome-scale genotyping technologies, genetic association mapping has become a popular tool to detect genomic regions responsible for certain (disease) phenotypes, especially in early-phase pharmacogenomic studies with limited sample size. In response to such applications, a good association test needs to be (1) applicable to a wide range of possible genetic models, including, but not limited to, the presence of gene-by-environment or gene-by-gene interactions and non-linearity of a group of marker effects, (2) accurate in small samples, fast to compute on the genomic scale, and amenable to large scale multiple testing corrections, and (3) reasonably powerful to locate causal genomic regions. The kernel machine method represented in linear mixed models provides a viable solution by transforming the problem into testing the nullity of variance components. In this study, we consider score-based tests by choosing a statistic linear in the score function. When the model under the null hypothesis has only one error variance parameter, our test is exact in finite samples. When the null model has more than one variance parameter, we develop a new moment-based approximation that performs well in simulations. Through simulations and analysis of real data, we demonstrate that the new test possesses most of the aforementioned characteristics, especially when compared to existing quadratic score tests or restricted likelihood ratio tests. © 2013, The International Biometric Society.

  1. A three-way parallel ICA approach to analyze links among genetics, brain structure and brain function.

    PubMed

    Vergara, Victor M; Ulloa, Alvaro; Calhoun, Vince D; Boutte, David; Chen, Jiayu; Liu, Jingyu

    2014-09-01

    Multi-modal data analysis techniques, such as the Parallel Independent Component Analysis (pICA), are essential in neuroscience, medical imaging and genetic studies. The pICA algorithm allows the simultaneous decomposition of up to two data modalities achieving better performance than separate ICA decompositions and enabling the discovery of links between modalities. However, advances in data acquisition techniques facilitate the collection of more than two data modalities from each subject. Examples of commonly measured modalities include genetic information, structural magnetic resonance imaging (MRI) and functional MRI. In order to take full advantage of the available data, this work extends the pICA approach to incorporate three modalities in one comprehensive analysis. Simulations demonstrate the three-way pICA performance in identifying pairwise links between modalities and estimating independent components which more closely resemble the true sources than components found by pICA or separate ICA analyses. In addition, the three-way pICA algorithm is applied to real experimental data obtained from a study that investigate genetic effects on alcohol dependence. Considered data modalities include functional MRI (contrast images during alcohol exposure paradigm), gray matter concentration images from structural MRI and genetic single nucleotide polymorphism (SNP). The three-way pICA approach identified links between a SNP component (pointing to brain function and mental disorder associated genes, including BDNF, GRIN2B and NRG1), a functional component related to increased activation in the precuneus area, and a gray matter component comprising part of the default mode network and the caudate. Although such findings need further verification, the simulation and in-vivo results validate the three-way pICA algorithm presented here as a useful tool in biomedical data fusion applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Genetic and Quantitative Trait Locus Analysis of Cell Wall Components and Forage Digestibility in the Zheng58 × HD568 Maize RIL Population at Anthesis Stage.

    PubMed

    Li, Kun; Wang, Hongwu; Hu, Xiaojiao; Ma, Feiqian; Wu, Yujin; Wang, Qi; Liu, Zhifang; Huang, Changling

    2017-01-01

    The plant cell wall plays vital roles in various aspects of the plant life cycle. It provides a basic structure for cells and gives mechanical rigidity to the whole plant. Some complex cell wall components are involved in signal transduction during pathogenic infection and pest infestations. Moreover, the lignification level of cell walls strongly influences the digestibility of forage plants. To determine the genetic bases of cell wall components and digestibility, quantitative trait locus (QTL) analyses for six related traits were performed using a recombinant inbred line (RIL) population from a cross between Zheng58 and HD568. Eight QTL for in vitro neutral detergent fiber (NDF) digestibility were observed, out of which only two increasing alleles came from HD568. Three QTL out of ten with alleles increasing in vitro dry matter digestibility also originated from HD568. Five-ten QTL were detected for lignin, cellulose content, acid detergent fiber, and NDF content. Among these results, 29.8% (14/47) of QTL explained >10% of the phenotypic variation in the RIL population, whereas 70.2% (33/47) explained ≤10%. These results revealed that in maize stalks, a few large-effect QTL and a number of minor-effect QTL contributed to most of the genetic components involved in cell wall biosynthesis and digestibility.

  3. Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    NASA Technical Reports Server (NTRS)

    Garcia, Chance P.; Cross, Matthew

    2014-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  4. Genome wide association studies on yield components using a lentil genetic diversity panel

    USDA-ARS?s Scientific Manuscript database

    The cool season food legume research community are now at the threshold of deploying the cutting-edge molecular genetics and genomics tools that have led to significant and rapid expansion of gene discovery, knowledge of gene function (including tolerance to biotic and abiotic stresses) and genetic ...

  5. Individual responsiveness to shock and colony-level aggression in honey bees: evidence for a genetic component

    PubMed Central

    Avalos, Arian; Rodríguez-Cruz, Yoselyn; Giray, Tugrul

    2015-01-01

    The phenotype of the social group is related to phenotypes of individuals that form that society. We examined how honey bee colony aggressiveness relates to individual response of male drones and foraging workers. Although the natural focus in colony aggression has been on the worker caste, the sterile females engaged in colony maintenance and defense, males carry the same genes. We measured aggressiveness scores of colonies and examined components of individual aggressive behavior in workers and haploid sons of workers from the same colony. We describe for the first time, that males, although they have no stinger, do bend their abdomen (abdominal flexion) in a posture similar to stinging behavior of workers in response to electric shock. Individual worker sting response and movement rates in response to shock were significantly correlated with colony scores. In the case of drones, sons of workers from the same colonies, abdominal flexion significantly correlated but their movement rates did not correlate with colony aggressiveness. Furthermore, the number of workers responding at increasing levels of voltage exhibits a threshold-like response, whereas the drones respond in increasing proportion to shock. We conclude that there are common and caste-specific components to aggressive behavior in honey bees. We discuss implications of these results on social and behavioral regulation and genetics of aggressive response. PMID:25729126

  6. Assessing non-additive effects in GBLUP model.

    PubMed

    Vieira, I C; Dos Santos, J P R; Pires, L P M; Lima, B M; Gonçalves, F M A; Balestre, M

    2017-05-10

    Understanding non-additive effects in the expression of quantitative traits is very important in genotype selection, especially in species where the commercial products are clones or hybrids. The use of molecular markers has allowed the study of non-additive genetic effects on a genomic level, in addition to a better understanding of its importance in quantitative traits. Thus, the purpose of this study was to evaluate the behavior of the GBLUP model in different genetic models and relationship matrices and their influence on the estimates of genetic parameters. We used real data of the circumference at breast height in Eucalyptus spp and simulated data from a population of F 2 . Three commonly reported kinship structures in the literature were adopted. The simulation results showed that the inclusion of epistatic kinship improved prediction estimates of genomic breeding values. However, the non-additive effects were not accurately recovered. The Fisher information matrix for real dataset showed high collinearity in estimates of additive, dominant, and epistatic variance, causing no gain in the prediction of the unobserved data and convergence problems. Estimates presented differences of genetic parameters and correlations considering the different kinship structures. Our results show that the inclusion of non-additive effects can improve the predictive ability or even the prediction of additive effects. However, the high distortions observed in the variance estimates when the Hardy-Weinberg equilibrium assumption is violated due to the presence of selection or inbreeding can converge at zero gains in models that consider epistasis in genomic kinship.

  7. A Genealogical Interpretation of Principal Components Analysis

    PubMed Central

    McVean, Gil

    2009-01-01

    Principal components analysis, PCA, is a statistical method commonly used in population genetics to identify structure in the distribution of genetic variation across geographical location and ethnic background. However, while the method is often used to inform about historical demographic processes, little is known about the relationship between fundamental demographic parameters and the projection of samples onto the primary axes. Here I show that for SNP data the projection of samples onto the principal components can be obtained directly from considering the average coalescent times between pairs of haploid genomes. The result provides a framework for interpreting PCA projections in terms of underlying processes, including migration, geographical isolation, and admixture. I also demonstrate a link between PCA and Wright's fst and show that SNP ascertainment has a largely simple and predictable effect on the projection of samples. Using examples from human genetics, I discuss the application of these results to empirical data and the implications for inference. PMID:19834557

  8. Mapping quantitative trait loci with additive effects and additive x additive epistatic interactions for biomass yield, grain yield, and straw yield using a doubled haploid population of wheat (Triticum aestivum L.).

    PubMed

    Li, Z K; Jiang, X L; Peng, T; Shi, C L; Han, S X; Tian, B; Zhu, Z L; Tian, J C

    2014-02-28

    Biomass yield is one of the most important traits for wheat (Triticum aestivum L.)-breeding programs. Increasing the yield of the aerial parts of wheat varieties will be an integral component of future wheat improvement; however, little is known regarding the genetic control of aerial part yield. A doubled haploid population, comprising 168 lines derived from a cross between two winter wheat cultivars, 'Huapei 3' (HP3) and 'Yumai 57' (YM57), was investigated. Quantitative trait loci (QTL) for total biomass yield, grain yield, and straw yield were determined for additive effects and additive x additive epistatic interactions using the QTLNetwork 2.0 software based on the mixed-linear model. Thirteen QTL were determined to have significant additive effects for the three yield traits, of which six also exhibited epistatic effects. Eleven significant additive x additive interactions were detected, of which seven occurred between QTL showing epistatic effects only, two occurred between QTL showing epistatic effects and additive effects, and two occurred between QTL with additive effects. These QTL explained 1.20 to 10.87% of the total phenotypic variation. The QTL with an allele originating from YM57 on chromosome 4B and another QTL contributed by HP3 alleles on chromosome 4D were simultaneously detected on the same or adjacent chromosome intervals for the three traits in two environments. Most of the repeatedly detected QTL across environments were not significant (P > 0.05). These results have implications for selection strategies in wheat biomass yield and for increasing the yield of the aerial part of wheat.

  9. Evolution of the additive genetic variance–covariance matrix under continuous directional selection on a complex behavioural phenotype

    PubMed Central

    Careau, Vincent; Wolak, Matthew E.; Carter, Patrick A.; Garland, Theodore

    2015-01-01

    Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance–covariance matrix (G). Yet knowledge of G in a population experiencing new or altered selection is not sufficient to predict selection response because G itself evolves in ways that are poorly understood. We experimentally evaluated changes in G when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change. PMID:26582016

  10. Evolution of the additive genetic variance-covariance matrix under continuous directional selection on a complex behavioural phenotype.

    PubMed

    Careau, Vincent; Wolak, Matthew E; Carter, Patrick A; Garland, Theodore

    2015-11-22

    Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance-covariance matrix ( G: ). Yet knowledge of G: in a population experiencing new or altered selection is not sufficient to predict selection response because G: itself evolves in ways that are poorly understood. We experimentally evaluated changes in G: when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G: induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G: induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G: and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change. © 2015 The Author(s).

  11. Characterizing cosmochemical materials with genetic affinities to the Earth: Genetic and chronological diversity within the IAB iron meteorite complex

    NASA Astrophysics Data System (ADS)

    Worsham, Emily A.; Bermingham, Katherine R.; Walker, Richard J.

    2017-06-01

    The IAB iron meteorite complex consists of a main group (MG) and five chemical subgroups (sLL, sLM, sLH, sHL, and sHH). Here, mass-independent Mo and radiogenic 182W isotope compositions are reported for IAB complex meteorites to evaluate the genetics and chronology, respectively, of the MG and subgroups. Osmium isotopes are used to correct for cosmic ray exposure effects on isotopes of Mo and W. The MG and three subgroups (i.e., sLL, sLM, and sLH), characterized by low Au abundances, have the same Mo isotopic compositions within analytical uncertainty, consistent with a common genetic origin. These meteorites, together with winonaites, are the only cosmochemical materials yet identified with Mo isotopic compositions that are identical to Earth. The Mo isotopic compositions of two subgroups characterized by higher Au abundances (sHL and sHH) are identical to one another within uncertainty, but differ from the low Au subgroups, indicating derivation from genetically distinct materials. The MG has a 182W, post calcium-aluminum inclusion (CAI) formation model age of 3.4 ± 0.7 Ma. One of the low Au subgroups (sLM) is ∼1.7 Ma younger, whereas the high Au subgroups are ∼1.5-3 Ma older. The new Mo-W data, coupled with chemical data, indicate that the MG and the low Au subgroups formed in different impact-generated melts, some of which evidently formed on a chemically disparate, but genetically identical parent body. The high Au subgroups likely formed via core-formation processes on separate, internally-heated parent bodies from other IAB subgroups. The IAB complex meteorites fall on a linear trend defined by 94Mo/96Mo vs. 95Mo/96Mo, along with most other iron meteorite groups. Variation along this line was caused by mixing between at least two nebular components. One component was likely a pure s-process enriched nucleosynthetic carrier, and the other a homogenized nebular component. Sombrerete, currently classified as an sHL iron, has a Mo isotopic composition that

  12. Human genetics as a tool to identify progranulin regulators.

    PubMed

    Nicholson, Alexandra M; Finch, NiCole A; Rademakers, Rosa

    2011-11-01

    Frontotemporal lobar degeneration (FTLD) is a common neurodegenerative disorder that predominantly affects individuals under the age of 65. It is known that the most common pathological subtype is FTLD with TAR DNA-binding protein 43 inclusions (FTLD-TDP). FTLD has a strong genetic component with about 50% of cases having a positive family history. Mutations identified in the progranulin gene (GRN) have been shown to cause FTLD-TDP as a result of progranulin haploinsufficiency. These findings suggest a progranulin-dependent mechanism in this pathological FTLD subtype. Thus, identifying regulators of progranulin levels is essential for new therapies and treatments for FTLD and related disorders. In this review, we discuss the role of genetic studies in identifying progranulin regulators, beginning with the discovery of pathogenic GRN mutations and additional GRN risk variants. We also cover more recent genetic advances, including the detection of variants in the transmembrane protein 106 B gene that increase FTLD-TDP risk presumably by modulating progranulin levels and the identification of a potential progranulin receptor, sortilin. This review highlights the importance of genetic studies in the context of FTLD and further emphasizes the need for future genetic and cell biology research to continue the effort in finding a cure for progranulin-related diseases.

  13. HUMAN GENETICS AS A TOOL TO IDENTIFY PROGRANULIN REGULATORS

    PubMed Central

    Nicholson, Alexandra M.; Finch, NiCole A.; Rademakers, Rosa

    2012-01-01

    Frontotemporal lobar degeneration (FTLD) is a common neurodegenerative disorder that predominantly affects individuals under the age of 65. It is known that the most common pathological subtype is FTLD with TAR DNA-binding protein 43 inclusions (FTLD-TDP). FTLD has a strong genetic component with about 50% of cases having a positive family history. Mutations identified in the progranulin gene (GRN) have been shown to cause FTLD-TDP as a result of progranulin haploinsufficiency. These findings suggest a progranulin-dependent mechanism in this pathological FTLD subtype. Thus, identifying regulators of progranulin levels is essential for new therapies and treatments for FTLD and related disorders. In this review, we discuss the role of genetic studies in identifying progranulin regulators, beginning with the discovery of pathogenic GRN mutations and additional GRN risk variants. We also cover more recent genetic advances, including the detection of variants in the transmembrane protein 106 B gene that increase FTLD-TDP risk presumably by modulating progranulin levels and the identification of a potential progranulin receptor, sortilin. This review highlights the importance of genetic studies in the context of FTLD and further emphasizes the need for future genetic and cell biology research to continue the effort in finding a cure for progranulin-related diseases. PMID:21626010

  14. Genomic Model with Correlation Between Additive and Dominance Effects.

    PubMed

    Xiang, Tao; Christensen, Ole Fredslund; Vitezica, Zulma Gladis; Legarra, Andres

    2018-05-09

    Dominance genetic effects are rarely included in pedigree-based genetic evaluation. With the availability of single nucleotide polymorphism markers and the development of genomic evaluation, estimates of dominance genetic effects have become feasible using genomic best linear unbiased prediction (GBLUP). Usually, studies involving additive and dominance genetic effects ignore possible relationships between them. It has been often suggested that the magnitude of functional additive and dominance effects at the quantitative trait loci are related, but there is no existing GBLUP-like approach accounting for such correlation. Wellmann and Bennewitz showed two ways of considering directional relationships between additive and dominance effects, which they estimated in a Bayesian framework. However, these relationships cannot be fitted at the level of individuals instead of loci in a mixed model and are not compatible with standard animal or plant breeding software. This comes from a fundamental ambiguity in assigning the reference allele at a given locus. We show that, if there has been selection, assigning the most frequent as the reference allele orients the correlation between functional additive and dominance effects. As a consequence, the most frequent reference allele is expected to have a positive value. We also demonstrate that selection creates negative covariance between genotypic additive and dominance genetic values. For parameter estimation, it is possible to use a combined additive and dominance relationship matrix computed from marker genotypes, and to use standard restricted maximum likelihood (REML) algorithms based on an equivalent model. Through a simulation study, we show that such correlations can easily be estimated by mixed model software and accuracy of prediction for genetic values is slightly improved if such correlations are used in GBLUP. However, a model assuming uncorrelated effects and fitting orthogonal breeding values and dominant

  15. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... test; and Cp = the filtrate concentration measured during the challenge test. Equivalent units must be... or the applicability of the non-destructive performance test and associated QCRV, additional...

  16. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... test; and Cp = the filtrate concentration measured during the challenge test. Equivalent units must be... or the applicability of the non-destructive performance test and associated QCRV, additional...

  17. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... test; and Cp = the filtrate concentration measured during the challenge test. Equivalent units must be... or the applicability of the non-destructive performance test and associated QCRV, additional...

  18. Evaluation of Additive Manufacturing for Stainless Steel Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, William H.; Lou, Xiaoyuan; List, III, Frederick Alyious

    This collaboration between Oak Ridge National Laboratory and General Electric Company aimed to evaluate the mechanical properties, microstructure, and porosity of the additively manufactured 316L stainless steel by ORNL’s Renishaw AM250 machine for nuclear application. The program also evaluated the stress corrosion cracking and corrosion fatigue crack growth rate of the same material in high temperature water environments. Results show the properties of this material to be similar to the properties of 316L stainless steel fabricated additively with equipment from other manufacturers with slightly higher porosity. The stress corrosion crack growth rate is similar to that for wrought 316L stainlessmore » steel for an oxygenated high temperature water environment and slightly higher for a hydrogenated high temperature water environment. Optimized heat treatment of this material is expected to improve performance in high temperature water environments.« less

  19. Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components

    DOE PAGES

    Kishore, Vidya; Ajinjeru, Christine; Nycz, Andrzej; ...

    2017-03-01

    The Big Area Additive Manufacturing (BAAM) system can print structures on the order of several meters at high extrusion rates, thereby having the potential to significantly impact automotive, aerospace and energy sectors. The functional use of such parts, however, may be limited by mechanical anisotropy in which the strength of printed parts across successive layers in the build direction (z-direction) is significantly lower than the corresponding in-plane strength (x-y directions). This has been primarily attributed to poor bonding between printed layers as the lower layers cool below the glass transition temperature (Tg) before the next layer is deposited. Therefore, themore » potential of using infrared heating is considered for increasing the surface temperature of the printed layer just prior to deposition of new material to improve the interlayer strength of the components. This study found significant improvements in bond strength for the deposition of acrylonitrile butadiene styrene (ABS) reinforced with 20% chopped carbon fiber when the surface temperature of the substrate material was increased from below Tg to close to or above Tg using infrared heating.« less

  20. Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishore, Vidya; Ajinjeru, Christine; Nycz, Andrzej

    The Big Area Additive Manufacturing (BAAM) system can print structures on the order of several meters at high extrusion rates, thereby having the potential to significantly impact automotive, aerospace and energy sectors. The functional use of such parts, however, may be limited by mechanical anisotropy in which the strength of printed parts across successive layers in the build direction (z-direction) is significantly lower than the corresponding in-plane strength (x-y directions). This has been primarily attributed to poor bonding between printed layers as the lower layers cool below the glass transition temperature (Tg) before the next layer is deposited. Therefore, themore » potential of using infrared heating is considered for increasing the surface temperature of the printed layer just prior to deposition of new material to improve the interlayer strength of the components. This study found significant improvements in bond strength for the deposition of acrylonitrile butadiene styrene (ABS) reinforced with 20% chopped carbon fiber when the surface temperature of the substrate material was increased from below Tg to close to or above Tg using infrared heating.« less

  1. Laser Additive Manufacturing of F/M Steels for Radiation Tolerant Nuclear Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienert, Thomas J.; Maloy, Stuart Andrew

    According to the Nuclear Energy R&D Roadmap Report submitted to Congress in 2010, one the key challenges facing the nuclear energy industry involves development of new reactor designs with reduced capital costs. Two related R&D objectives outlined in the report include: 1) Making improvements in the affordability of new reactors; and 2) Development of structural materials to withstand irradiation for longer periods. Laser additive manufacturing (LAM) is particularly well suited for more rapid and economical fabrication of reactor components relative to current fabrication methods. The proposed work involving LAM directly addresses the two R&D objectives outlined above relevant to themore » pertinent mission problems. The classical Materials Science approach involving development of Process/Structure/Property/Performance (P/S/P/P) relations was employed in this project. Processing included LAM and heat-treating. Thermal cycling during LAM is discussed here, and phase diagrams and continuous cooling transformation (CCT) diagrams are used to rationalize microstructural evolution. Structures were characterized including grain size & morphology, volume fraction, morphology, composition and location of carbides in as-deposited and heat-treated conditions. In the simplest sense, the goal was to control microstructures through process manipulation with a view toward optimizing properties and performance in service.« less

  2. Sample design effects in landscape genetics

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Fedy, Bradley C.; Landguth, Erin L.

    2012-01-01

    An important research gap in landscape genetics is the impact of different field sampling designs on the ability to detect the effects of landscape pattern on gene flow. We evaluated how five different sampling regimes (random, linear, systematic, cluster, and single study site) affected the probability of correctly identifying the generating landscape process of population structure. Sampling regimes were chosen to represent a suite of designs common in field studies. We used genetic data generated from a spatially-explicit, individual-based program and simulated gene flow in a continuous population across a landscape with gradual spatial changes in resistance to movement. Additionally, we evaluated the sampling regimes using realistic and obtainable number of loci (10 and 20), number of alleles per locus (5 and 10), number of individuals sampled (10-300), and generational time after the landscape was introduced (20 and 400). For a simulated continuously distributed species, we found that random, linear, and systematic sampling regimes performed well with high sample sizes (>200), levels of polymorphism (10 alleles per locus), and number of molecular markers (20). The cluster and single study site sampling regimes were not able to correctly identify the generating process under any conditions and thus, are not advisable strategies for scenarios similar to our simulations. Our research emphasizes the importance of sampling data at ecologically appropriate spatial and temporal scales and suggests careful consideration for sampling near landscape components that are likely to most influence the genetic structure of the species. In addition, simulating sampling designs a priori could help guide filed data collection efforts.

  3. Examining consumer behavior toward genetically modified (GM) food in Britain.

    PubMed

    Spence, Alexa; Townsend, Ellen

    2006-06-01

    This study examined behavior toward genetically modified (GM) food in a British community-based sample. We used an equivalent gain task in which participants actually received the options they chose to encourage truthful responding. In conjunction with this, theory of planned behavior (TPB) components were evaluated so as to examine the relative importance of behavioral influences in this domain. Here, the TPB was extended to include additional components to measure self-identity, moral norms, and emotional involvement. Results indicated that the monetary amounts participants accepted in preference to GM food were significantly lower than those accepted in preference to non-GM food. However, the vast majority of participants were indifferent between GM and non-GM food options. All TPB components significantly predicted behavioral intentions to try GM food, with attitudes toward GM being the strongest predictor. Self-identity and emotional involvement were also found to be significant predictors of behavioral intentions but moral norms were not. In addition, behavioral intentions significantly predicted behavior; however, PBC did not. An additional measure of participants' propensity to respond in a socially desirable manner indicated that our results were not influenced by self-presentation issues, giving confidence to our findings. Overall, it appears that the majority of participants (74.5%) would purchase GM food at some price.

  4. Expansion Under Climate Change: The Genetic Consequences.

    PubMed

    Garnier, Jimmy; Lewis, Mark A

    2016-11-01

    Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

  5. Genetics and Personal Insurance: the Perspectives of Canadian Cancer Genetic Counselors.

    PubMed

    Lane, Michelle; Ngueng Feze, Ida; Joly, Yann

    2015-12-01

    Genetic discrimination in the context of genetic testing has been identified as a concern for symptomatic and asymptomatic individuals for more than three decades. Genetic counselors are often the health care professionals who discuss risks and benefits of genetic testing with patients, thereby making them most appropriate to address patient concerns about genetics and personal insurance (i.e., life, life as related to mortgage or group insurance, disability, critical illness and travel). A pilot study was conducted to ascertain the current practices of Canadian cancer genetic counselors in regard to their discussions with patients about genetic testing and access to personal insurance. Among the 36 counselors surveyed, 100 % reported discussing the issue of genetic testing and personal insurance with their patients. Several factors influenced the content, depth and length of these discussions including age, cancer status, family members, and patients' current and future insurance needs. Counselors reported discussing with patients the possible impact of genetic test results on access to personal insurance, possible access and use of patient genetic information by insurance companies, and whom patients should contact if they have additional questions. The most commonly reported inquiries from patients included questions about the possible impact of genetic testing on their ability to obtain insurance, and the insurability of family members. While 28 % of counselors reported having been contacted by an insurer requesting access to patient information, only one counselor was aware of or could recall the outcome of such a request. This pilot study revealed that issues concerning genetics and personal insurance are commonly discussed in Canadian cancer genetic counseling sessions. Counselors furthermore expressed a need for additional educational resources on the topic of genetics and personal insurance for themselves and their patients.

  6. Additivity and maximum likelihood estimation of nonlinear component biomass models

    Treesearch

    David L.R. Affleck

    2015-01-01

    Since Parresol's (2001) seminal paper on the subject, it has become common practice to develop nonlinear tree biomass equations so as to ensure compatibility among total and component predictions and to fit equations jointly using multi-step least squares (MSLS) methods. In particular, many researchers have specified total tree biomass models by aggregating the...

  7. Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection.

    PubMed

    Brooks, R; Endler, J A

    2001-08-01

    Variation among females in mate choice may influence evolution by sexual selection. The genetic basis of this variation is of interest because the elaboration of mating preferences requires additive genetic variation in these traits. Here we measure the repeatability and heritability of two components of female choosiness (responsiveness and discrimination) and of female preference functions for the multiple ornaments borne by male guppies (Poecilia reticulata). We show that there is significant repeatable variation in both components of choosiness and in some preference functions but not in others. There appear to be several male ornaments that females find uniformly attractive and others for which females differ in preference. One consequence is that there is no universally attractive male phenotype. Only responsiveness shows significant additive genetic variation. Variation in responsiveness appears to mask variation in discrimination and some preference functions and may be the most biologically relevant source of phenotypic and genetic variation in mate-choice behavior. To test the potential evolutionary importance of the phenotypic variation in mate choice that we report, we estimated the opportunity for and the intensity of sexual selection under models of mate choice that excluded and that incorporated individual female variation. We then compared these estimates with estimates based on measured mating success. Incorporating individual variation in mate choice generally did not predict the outcome of sexual selection any better than models that ignored such variation.

  8. Genetic effects of heat stress on milk yield of Thai Holstein crossbreds.

    PubMed

    Boonkum, W; Misztal, I; Duangjinda, M; Pattarajinda, V; Tumwasorn, S; Sanpote, J

    2011-01-01

    The threshold for heat stress on milk yield of Holstein crossbreds under climatic conditions in Thailand was investigated, and genetic effects of heat stress on milk yield were estimated. Data included 400,738 test-day milk yield records for the first 3 parities from 25,609 Thai crossbred Holsteins between 1990 and 2008. Mean test-day milk yield ranged from 12.6 kg for cows with <87.5% Holstein genetics to 14.4 kg for cows with ≥93.7% Holstein genetics. Daily temperature and humidity data from 26 provincial weather stations were used to calculate a temperature-humidity index (THI). Test-day milk yield varied little with THI for first parity except above a THI of 82 for cows with ≥93.7% Holstein genetics. For third parity, test-day milk yield started to decline after a THI of 74 for cows with ≥87.5% Holstein genetics and declined more rapidly after a THI of 82. A repeatability test-day model with parities as correlated traits was used to estimate heat stress parameters; fixed effects included herd-test month-test year and breed groups, days in milk, calving age, and parity; random effects included 2 additive genetic effects, regular and heat stress, and 2 permanent environment, regular and heat stress. The threshold for effect of heat stress on test-day milk yield was set to a THI of 80. All variance component estimates increased with parity; the largest increases were found for effects associated with heat stress. In particular, genetic variance associated with heat stress quadrupled from first to third parity, whereas permanent environmental variance only doubled. However, permanent environmental variance for heat stress was at least 10 times larger than genetic variance. Genetic correlations among parities for additive effects without heat stress considered ranged from 0.88 to 0.96. Genetic correlations among parities for additive effects of heat stress ranged from 0.08 to 0.22, and genetic correlations between effects regular and heat stress effects ranged

  9. Microstructural architecture developed in the fabrication of solid and open-cellular copper components by additive manufacturing using electron beam melting

    NASA Astrophysics Data System (ADS)

    Ramirez, Diana Alejandra

    The fabrication of Cu components were first built by additive manufacturing using electron beam melting (EBM) from low-purity, atomized Cu powder containing a high density of Cu2O precipitates leading to a novel example of precipitate-dislocation architecture. These microstructures exhibit cell-like arrays (1-3microm) in the horizontal reference plane perpendicular to the build direction with columnar-like arrays extending from ~12 to >60 microm in length and corresponding spatial dimensions of 1-3 microm. These observations were observed by the use of optical metallography, and scanning and transmission electron microscopy. The hardness measurements were taken both on the atomized powder and the Cu components. The hardness for these architectures ranged from ~HV 83 to 88, in contrast to the original Cu powder microindentation hardness of HV 72 and the commercial Cu base plate hardness of HV 57. These observations were utilized for the fabrication of open-cellular copper structures by additive manufacturing using EBM and illustrated the ability to fabricate some form of controlled microstructural architecture by EBM parameter alteration or optimizing. The fabrication of these structures ranged in densities from 0.73g/cm3 to 6.67g/cm3. These structures correspond to four different articulated mesh arrays. While these components contained some porosity as a consequence of some unmelted regions, the Cu2O precipitates also contributed to a reduced density. Using X-ray Diffraction showed the approximate volume fraction estimated to be ~2%. The addition of precipitates created in the EBM melt scan formed microstructural arrays which contributed to hardening contributing to the strength of mesh struts and foam ligaments. The measurements of relative stiffness versus relative density plots for Cu compared very closely with Ti-6Al-4V open cellular structures - both mesh and foams. The Cu reticulated mesh structures exhibit a slope of n = 2 in contrast to a slope of n = 2

  10. The genetics of normal and defective color vision

    PubMed Central

    Neitz, Jay; Neitz, Maureen

    2011-01-01

    The contributions of genetics research to the science of normal and defective color vision over the previous few decades are reviewed emphasizing the developments in the 25 years since the last anniversary issue of Vision Research. Understanding of the biology underlying color vision has been vaulted forward through the application of the tools of molecular genetics. For all their complexity, the biological processes responsible for color vision are more accessible than for many other neural systems. This is partly because of the wealth of genetic variations that affect color perception, both within and across species, and because components of the color vision system lend themselves to genetic manipulation. Mutations and rearrangements in the genes encoding the long, middle, and short wavelength sensitive cone pigments are responsible for color vision deficiencies and mutations have been identified that affect the number of cone types, the absorption spectrum of the pigments, the functionality and viability of the cones, and the topography of the cone mosaic. The addition of an opsin gene, as occurred in the evolution of primate color vision, and has been done in experimental animals can produce expanded color vision capacities and this has provided insight into the underlying neural circuitry. PMID:21167193

  11. The genetics of normal and defective color vision.

    PubMed

    Neitz, Jay; Neitz, Maureen

    2011-04-13

    The contributions of genetics research to the science of normal and defective color vision over the previous few decades are reviewed emphasizing the developments in the 25years since the last anniversary issue of Vision Research. Understanding of the biology underlying color vision has been vaulted forward through the application of the tools of molecular genetics. For all their complexity, the biological processes responsible for color vision are more accessible than for many other neural systems. This is partly because of the wealth of genetic variations that affect color perception, both within and across species, and because components of the color vision system lend themselves to genetic manipulation. Mutations and rearrangements in the genes encoding the long, middle, and short wavelength sensitive cone pigments are responsible for color vision deficiencies and mutations have been identified that affect the number of cone types, the absorption spectra of the pigments, the functionality and viability of the cones, and the topography of the cone mosaic. The addition of an opsin gene, as occurred in the evolution of primate color vision, and has been done in experimental animals can produce expanded color vision capacities and this has provided insight into the underlying neural circuitry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Genomic landscapes of endogenous retroviruses unveil intricate genetics of conventional and genetically-engineered laboratory mouse strains.

    PubMed

    Lee, Kang-Hoon; Lim, Debora; Chiu, Sophia; Greenhalgh, David; Cho, Kiho

    2016-04-01

    Laboratory strains of mice, both conventional and genetically engineered, have been introduced as critical components of a broad range of studies investigating normal and disease biology. Currently, the genetic identity of laboratory mice is primarily confirmed by surveying polymorphisms in selected sets of "conventional" genes and/or microsatellites in the absence of a single completely sequenced mouse genome. First, we examined variations in the genomic landscapes of transposable repetitive elements, named the TREome, in conventional and genetically engineered mouse strains using murine leukemia virus-type endogenous retroviruses (MLV-ERVs) as a probe. A survey of the genomes from 56 conventional strains revealed strain-specific TREome landscapes, and certain families (e.g., C57BL) of strains were discernible with defined patterns. Interestingly, the TREome landscapes of C3H/HeJ (toll-like receptor-4 [TLR4] mutant) inbred mice were different from its control C3H/HeOuJ (TLR4 wild-type) strain. In addition, a CD14 knock-out strain had a distinct TREome landscape compared to its control/backcross C57BL/6J strain. Second, an examination of superantigen (SAg, a "TREome gene") coding sequences of mouse mammary tumor virus-type ERVs in the genomes of the 46 conventional strains revealed a high diversity, suggesting a potential role of SAgs in strain-specific immune phenotypes. The findings from this study indicate that unexplored and intricate genomic variations exist in laboratory mouse strains, both conventional and genetically engineered. The TREome-based high-resolution genetics surveillance system for laboratory mice would contribute to efficient study design with quality control and accurate data interpretation. This genetics system can be easily adapted to other species ranging from plants to humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. TNF-α Genetic Predisposition and Higher Expression of Inflammatory Pathway Components in Keratoconus.

    PubMed

    Arbab, Muneeza; Tahir, Saira; Niazi, Muhammad Khizar; Ishaq, Mazhar; Hussain, Alamdar; Siddique, Pir Muhammad; Saeed, Sadia; Khan, Wajid Ali; Qamar, Raheel; Butt, Azeem Mehmood; Azam, Maleeha

    2017-07-01

    To date keratoconus (KC) pathogenesis is undefined; however, the involvement of inflammatory pathways in disease development is becoming apparent. In the present study, we investigated the role of a promoter region polymorphism rs1800629 (-308G>A) in the inflammatory pathway component TNF-α and its effects on the expression of TNF-α and downstream molecules tumor necrosis factor receptor 1 and 2 (TNFR1 and TNFR2), v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), and interleukin 6 (IL-6) in KC development. TNF-α promoter polymorphism rs1800629 (-308G>A), was genotyped in 257 sporadic KC patients and 253 healthy controls. Enzyme-linked immunosorbent assay (ELISA) was performed to assess for the -308G>A genotypes. Quantitative polymerase chain reaction (qPCR) was carried out to compare the mRNA expression of TNF-α, TNFR1, TNFR2, RELA, and IL6 in the corneal tissues of 20 KC patients and 20 donor controls. The -308G>A genotype GA was found to be significantly associated with KC development (dominant model [odds ratio (OR) = 6.67 (95% confidence interval [CI] = 4.28-10.42), P < 0.001]) and allele-A (OR = 4.30, 95%CI = 2.93-6.34, P < 0.001). TNF-α serum levels were significantly raised in patients with GA genotype (196.5 ± 69.5 pg/mL) compared to reference genotype GG (21.7 ± 8.2 pg/mL) (P < 0.0001). There was a significant overexpression of TNF-α (P = 0.002), TNFR2 (P = 0.0001), RELA (P = 0.0117), and IL6 (P = 0.0007) in the KC corneal tissues as compared to the control. The GA genotype of the TNF-α -308G>A polymorphism is a significant genetic risk factor for the pathogenesis of KC. Moreover, this single nucleotide polymorphism (SNP) was observed to be associated with deregulated expression of downstream molecules, thus further reinforcing the role of the inflammatory pathway components in the development of KC.

  14. Assessment of the environmental and genetic factors influencing prevalence of metabolic syndrome in Saudi Arabia

    PubMed Central

    Gosadi, Ibrahim M.

    2016-01-01

    Metabolic syndrome (MS) is a combination of factors that increases the risk of cardiovascular atherosclerotic diseases including diabetes, obesity, dyslipidemia, and high blood pressure. Cardiovascular diseases are one of the leading causes of death in the adult Saudi population where the increase in cardiovascular-related mortality is augmented by the rise in the prevalence of MS. Metabolic syndrome is a multi-factorial disorder influenced by interactions between genetic and environmental components. This review aims to provide a comprehensive assessment of studied environmental and genetic factors explaining the prevalence of MS in the Kingdom of Saudi Arabia. Additionally, this review aims to illustrate factors related to the population genetics of Saudi Arabia, which might explain a proportion of the prevalence of MS. PMID:26739969

  15. Investigating the modulation of genetic effects on late AMD by age and sex: Lessons learned and two additional loci

    PubMed Central

    Grassmann, Felix; Gorski, Mathias; Loss, Julika; Heid, Iris M.

    2018-01-01

    Late-stage age-related macular degeneration (AMD) is the leading cause of visual impairment in the elderly with a complex etiology. The most important non-modifiable risk factors for onset and progression of late AMD are age and genetic risk factors, however, little is known about the interplay between genetics and age or sex. Here, we conducted a large-scale age- and sex-stratified genome-wide association study (GWAS) using 1000 Genomes imputed genome-wide and ExomeChip data (>12 million variants). The data were established by the International Age-related Macular Degeneration Genomics Consortium (IAMDGC) from 16,144 late AMD cases and 17,832 controls. Our systematic search for interaction effects yielded significantly stronger effects among younger individuals at two known AMD loci (near CFH and ARMS2/HTRA1). Accounting for age and gene-age interaction using a joint test identified two additional AMD loci compared to the previous main effect scan. One of these two is a novel AMD GWAS locus, near the retinal clusterin-like protein (CLUL1) gene, and the other, near the retinaldehyde binding protein 1 (RLBP1), was recently identified in a joint analysis of nuclear and mitochondrial variants. Despite considerable power in our data, neither sex-dependent effects nor effects with opposite directions between younger and older individuals were observed. This is the first genome-wide interaction study to incorporate age, sex and their interaction with genetic effects for late AMD. Results diminish the potential for a role of sex in the etiology of late AMD yet highlight the importance and existence of age-dependent genetic effects. PMID:29529059

  16. Genetic and Quantitative Trait Locus Analysis of Cell Wall Components and Forage Digestibility in the Zheng58 × HD568 Maize RIL Population at Anthesis Stage

    PubMed Central

    Li, Kun; Wang, Hongwu; Hu, Xiaojiao; Ma, Feiqian; Wu, Yujin; Wang, Qi; Liu, Zhifang; Huang, Changling

    2017-01-01

    The plant cell wall plays vital roles in various aspects of the plant life cycle. It provides a basic structure for cells and gives mechanical rigidity to the whole plant. Some complex cell wall components are involved in signal transduction during pathogenic infection and pest infestations. Moreover, the lignification level of cell walls strongly influences the digestibility of forage plants. To determine the genetic bases of cell wall components and digestibility, quantitative trait locus (QTL) analyses for six related traits were performed using a recombinant inbred line (RIL) population from a cross between Zheng58 and HD568. Eight QTL for in vitro neutral detergent fiber (NDF) digestibility were observed, out of which only two increasing alleles came from HD568. Three QTL out of ten with alleles increasing in vitro dry matter digestibility also originated from HD568. Five–ten QTL were detected for lignin, cellulose content, acid detergent fiber, and NDF content. Among these results, 29.8% (14/47) of QTL explained >10% of the phenotypic variation in the RIL population, whereas 70.2% (33/47) explained ≤10%. These results revealed that in maize stalks, a few large-effect QTL and a number of minor-effect QTL contributed to most of the genetic components involved in cell wall biosynthesis and digestibility. PMID:28883827

  17. Biobanking genetic material for agricultural animal species

    USDA-ARS?s Scientific Manuscript database

    Biobanking animal germplasm and tissues is a major component of conserving genetic resources. Effectively constructing such gene banks requires an understanding and evaluation of genetic resources, the ability to conserve various tissues through cryopreservation, and a robust information technology ...

  18. Specialized Genetic Recombination Systems in Bacteria: Their Involvement in Gene Expression and Evolution,

    DTIC Science & Technology

    1980-01-01

    genetics (Hayes 1968). This marvelous process is important in providing us with the breadth of phenotypic diversity that one sees within a single plant or...separate overall pro- cesses, but may share common components of DNA metabolism, such as winding/unwinding enzymes, ligase, polymerases , various nucle...incorpuoted DNA segmnent are re- paired by DNA polymerase and ligase. Any diffoernces (base mispairing’S, nil- cleotide additions or deletions) between

  19. Genetics Home Reference: Alexander disease

    MedlinePlus

    ... the prognosis of a genetic condition? Genetic and Rare Diseases Information Center Frequency The prevalence of Alexander disease ... Degenerative Nerve Diseases Health Topic: Leukodystrophies Genetic and Rare Diseases Information Center (1 link) Alexander disease Additional NIH ...

  20. Genetic and environmental transmission of body mass index fluctuation.

    PubMed

    Bergin, Jocilyn E; Neale, Michael C; Eaves, Lindon J; Martin, Nicholas G; Heath, Andrew C; Maes, Hermine H

    2012-11-01

    This study sought to determine the relationship between body mass index (BMI) fluctuation and cardiovascular disease phenotypes, diabetes, and depression and the role of genetic and environmental factors in individual differences in BMI fluctuation using the extended twin-family model (ETFM). This study included 14,763 twins and their relatives. Health and Lifestyle Questionnaires were obtained from 28,492 individuals from the Virginia 30,000 dataset including twins, parents, siblings, spouses, and children of twins. Self-report cardiovascular disease, diabetes, and depression data were available. From self-reported height and weight, BMI fluctuation was calculated as the difference between highest and lowest BMI after age 18, for individuals 18-80 years. Logistic regression analyses were used to determine the relationship between BMI fluctuation and disease status. The ETFM was used to estimate the significance and contribution of genetic and environmental factors, cultural transmission, and assortative mating components to BMI fluctuation, while controlling for age. We tested sex differences in additive and dominant genetic effects, parental, non-parental, twin, and unique environmental effects. BMI fluctuation was highly associated with disease status, independent of BMI. Genetic effects accounted for ~34 % of variance in BMI fluctuation in males and ~43 % of variance in females. The majority of the variance was accounted for by environmental factors, about a third of which were shared among twins. Assortative mating, and cultural transmission accounted for only a small proportion of variance in this phenotype. Since there are substantial health risks associated with BMI fluctuation and environmental components of BMI fluctuation account for over 60 % of variance in males and over 50 % of variance in females, environmental risk factors may be appropriate targets to reduce BMI fluctuation.

  1. Overview of the Genetics of Alcohol Use Disorder

    PubMed Central

    Tawa, Elisabeth A.; Hall, Samuel D.; Lohoff, Falk W.

    2016-01-01

    Aims Alcohol Use Disorder (AUD) is a chronic psychiatric illness characterized by harmful drinking patterns leading to negative emotional, physical, and social ramifications. While the underlying pathophysiology of AUD is poorly understood, there is substantial evidence for a genetic component; however, identification of universal genetic risk variants for AUD has been difficult. Recent efforts in the search for AUD susceptibility genes will be reviewed in this article. Methods In this review, we provide an overview of genetic studies on AUD, including twin studies, linkage studies, candidate gene studies, and genome-wide association studies (GWAS). Results Several potential genetic susceptibility factors for AUD have been identified, but the genes of alcohol metabolism, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), have been found to be protective against the development of AUD. GWAS have also identified a heterogeneous list of SNPs associated with AUD and alcohol-related phenotypes, emphasizing the complexity and heterogeneity of the disorder. In addition, many of these findings have small effect sizes when compared to alcohol metabolism genes, and biological relevance is often unknown. Conclusions Although studies spanning multiple approaches have suggested a genetic basis for AUD, identification of the genetic risk variants has been challenging. Some promising results are emerging from GWAS studies; however, larger sample sizes are needed to improve GWAS results and resolution. As the field of genetics is rapidly developing, whole genome sequencing could soon become the new standard of interrogation of the genes and neurobiological pathways which contribute to the complex phenotype of AUD. Short summary This review examines the genetic underpinnings of Alcohol Use Disorder (AUD), with an emphasis on GWAS approaches for identifying genetic risk variants. The most promising results associated with AUD and alcohol-related phenotypes have included

  2. Mixed endometrial carcinomas with a "low-grade serous"-like component: a clinicopathologic, immunohistochemical, and molecular genetic study.

    PubMed

    Espinosa, Iñigo; D'Angelo, Emanuela; Corominas, Marina; Gonzalez, Alan; Prat, Jaime

    2018-01-01

    Recently, we reported 2 mixed endometrioid endometrial carcinomas with a "low-grade serous"-like component, which does not fit into any of the 4 molecular groups described by The Cancer Genome Atlas. To understand the nature of these tumors, we have done an immunohistochemical and molecular genetic study of these 2 cases and added a third case. Immunoreactivity for p53, ER, Ki67, WT1, MLH1, PMS2, MSH2, and MSH6 was assessed. Targeted next-generation sequencing for somatic mutations, including genes commonly implicated in carcinogenesis including TP53, KRAS, and PIK3CA, and Sanger sequencing for PTEN and POLE were also performed. All patients were nulliparous and had morbid obesity. Their tumors showed a micropapillary component that resembled that of ovarian low-grade serous carcinoma and merged with villoglandular endometrioid carcinoma. The invasive tumor glands exhibited a microcystic, elongated, or fragmented pattern and contained psammoma bodies. Two tumors showed aberrant p53 expression, and all 3 were positive for ER. All showed KRAS mutations, and TP53 mutations were found in 2 cases. One patient developed peritoneal carcinomatosis, one patient is alive with disease, and another died of a brain tumor. The third patient, whose tumor was confined to the uterus (stage IA), is alive without evidence of disease, but she has been followed for only 6 months. Mixed endometrial carcinomas with a "low-grade" serous-like component exhibit a morphologic spectrum of endometrioid and serous differentiation with microcystic, elongated, or fragmented features; ER expression; KRAS and TP53 mutations; and aggressive behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. An integrated multi-layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize.

    PubMed

    Wen, Weiwei; Jin, Min; Li, Kun; Liu, Haijun; Xiao, Yingjie; Zhao, Mingchao; Alseekh, Saleh; Li, Wenqiang; de Abreu E Lima, Francisco; Brotman, Yariv; Willmitzer, Lothar; Fernie, Alisdair R; Yan, Jianbing

    2018-03-01

    Primary metabolism plays a pivotal role in normal plant growth, development and reproduction. As maize is a major crop worldwide, the primary metabolites produced by maize plants are of immense importance from both calorific and nutritional perspectives. Here a genome-wide association study (GWAS) of 61 primary metabolites using a maize association panel containing 513 inbred lines identified 153 significant loci associated with the level of these metabolites in four independent tissues. The genome-wide expression level of 760 genes was also linked with metabolite levels within the same tissue. On average, the genetic variants at each locus or transcriptional variance of each gene identified here were estimated to have a minor effect (4.4-7.8%) on primary metabolic variation. Thirty-six loci or genes were prioritized as being worthy of future investigation, either with regard to functional characterization or for their utility for genetic improvement. This target list includes the well-known opaque 2 (O2) and lkr/sdh genes as well as many less well-characterized genes. During our investigation of these 36 loci, we analyzed the genetic components and variations underlying the trehalose, aspartate and aromatic amino acid pathways, thereby functionally characterizing four genes involved in primary metabolism in maize. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  4. Genetic parameters for direct and maternal calving ease in Walloon dairy cattle based on linear and threshold models.

    PubMed

    Vanderick, S; Troch, T; Gillon, A; Glorieux, G; Gengler, N

    2014-12-01

    Calving ease scores from Holstein dairy cattle in the Walloon Region of Belgium were analysed using univariate linear and threshold animal models. Variance components and derived genetic parameters were estimated from a data set including 33,155 calving records. Included in the models were season, herd and sex of calf × age of dam classes × group of calvings interaction as fixed effects, herd × year of calving, maternal permanent environment and animal direct and maternal additive genetic as random effects. Models were fitted with the genetic correlation between direct and maternal additive genetic effects either estimated or constrained to zero. Direct heritability for calving ease was approximately 8% with linear models and approximately 12% with threshold models. Maternal heritabilities were approximately 2 and 4%, respectively. Genetic correlation between direct and maternal additive effects was found to be not significantly different from zero. Models were compared in terms of goodness of fit and predictive ability. Criteria of comparison such as mean squared error, correlation between observed and predicted calving ease scores as well as between estimated breeding values were estimated from 85,118 calving records. The results provided few differences between linear and threshold models even though correlations between estimated breeding values from subsets of data for sires with progeny from linear model were 17 and 23% greater for direct and maternal genetic effects, respectively, than from threshold model. For the purpose of genetic evaluation for calving ease in Walloon Holstein dairy cattle, the linear animal model without covariance between direct and maternal additive effects was found to be the best choice. © 2014 Blackwell Verlag GmbH.

  5. Mutagenicity and cytoxicity of irradiated foods and food components*

    PubMed Central

    Schubert, Jack

    1969-01-01

    The preservation of foods by treatment with ionizing radiation can significantly increase the world's food resources by reducing spoilage and waste. However, irradiation can bring about chemical transformations in food and food components resulting in the formation of potential mutagens, particularly hydrogen peroxide and various organic peroxides. In order to evaluate the safety of irradiated foods for general consumption by the public, and, indeed, the safety of all foods subjected to environmental factors such as food additives, pesticides, drugs, air and water pollutants, etc., it is necessary to supplement the usual feeding tests with procedures designed to detect all classes of genetic damage. This article includes a comprehensive critical review of (1) the experimental evidence relating to the presence of mutagenic and cytotoxic agents in irradiated media, as detected by their effects on mammalian and non-mammalian cells; (2) the chemical changes produced in irradiated media, especially those which produce known mutagenic substances; and (3) new and convenient in vivo methods for the detection and evaluation of genetic damage in mammals. PMID:4908553

  6. Guided Exploration of Genomic Risk for Gray Matter Abnormalities in Schizophrenia Using Parallel Independent Component Analysis with Reference

    PubMed Central

    Chen, Jiayu; Calhoun, Vince D.; Pearlson, Godfrey D.; Perrone-Bizzozero, Nora; Sui, Jing; Turner, Jessica A.; Bustillo, Juan R; Ehrlich, Stefan; Sponheim, Scott R.; Cañive, José M.; Ho, Beng-Choon; Liu, Jingyu

    2013-01-01

    One application of imaging genomics is to explore genetic variants associated with brain structure and function, presenting a new means of mapping genetic influences on mental disorders. While there is growing interest in performing genome-wide searches for determinants, it remains challenging to identify genetic factors of small effect size, especially in limited sample sizes. In an attempt to address this issue, we propose to take advantage of a priori knowledge, specifically to extend parallel independent component analysis (pICA) to incorporate a reference (pICA-R), aiming to better reveal relationships between hidden factors of a particular attribute. The new approach was first evaluated on simulated data for its performance under different configurations of effect size and dimensionality. Then pICA-R was applied to a 300-participant (140 schizophrenia (SZ) patients versus 160 healthy controls) dataset consisting of structural magnetic resonance imaging (sMRI) and single nucleotide polymorphism (SNP) data. Guided by a reference SNP set derived from ANK3, a gene implicated by the Psychiatric Genomic Consortium SZ study, pICA-R identified one pair of SNP and sMRI components with a significant loading correlation of 0.27 (p = 1.64×10−6). The sMRI component showed a significant group difference in loading parameters between patients and controls (p = 1.33×10−15), indicating SZ-related reduction in gray matter concentration in prefrontal and temporal regions. The linked SNP component also showed a group difference (p = 0.04) and was predominantly contributed to by 1,030 SNPs. The effect of these top contributing SNPs was verified using association test results of the Psychiatric Genomic Consortium SZ study, where the 1,030 SNPs exhibited significant SZ enrichment compared to the whole genome. In addition, pathway analyses indicated the genetic component majorly relating to neurotransmitter and nervous system signaling pathways. Given the simulation and

  7. Quantitative genetic analysis of cellular adhesion molecules: the Fels Longitudinal Study.

    PubMed

    Lee, Miryoung; Czerwinski, Stefan A; Choh, Audrey C; Demerath, Ellen W; Sun, Shumei S; Chumlea, Wm C; Towne, Bradford; Siervogel, Roger M

    2006-03-01

    Circulating concentrations of inflammatory markers predict cardiovascular disease (CVD) risk and are closely associated with obesity. However, little is known concerning genetic influences on serum levels of inflammatory markers. In this study, we estimated the heritability (h2) of soluble cellular adhesion molecule (sCAM) concentrations and examined the correlational architecture between different sCAMs. The study population included 234 men and 270 women aged 18-76 years, belonging to 121 families participating in the Fels Longitudinal Study. Serum levels of soluble intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sESEL-1) and P-selectin (sPSEL-1) were assayed using commercially available kits. A variance components-based maximum likelihood method was used to estimate the h2 of the different serum inflammatory markers while simultaneously adjusting for the effects of known CVD risk factors, such as age and smoking. Additionally, we used bivariate extensions of these methods to estimate genetic and random environmental correlations among sCAMs. Levels of sCAMs were significantly heritable: h2=0.24+/-0.10 for sICAM-1, h2=0.22+/-0.10 for sVCAM-1, h2=0.50+/-0.11 for sESEL-1, and h2=0.46+/-0.10 for sPSEL-1. In addition, a significant genetic correlation (rho(G)=0.63) was found between sICAM-1 and sVCAM-1 indicating some degree of shared genetic control. In the Fels Longitudinal Study, the levels of four sCAMs are significantly influenced by genetic effects, and sICAM-1 shares a common genetic background with sVCAM-1.

  8. Ridge, Lasso and Bayesian additive-dominance genomic models.

    PubMed

    Azevedo, Camila Ferreira; de Resende, Marcos Deon Vilela; E Silva, Fabyano Fonseca; Viana, José Marcelo Soriano; Valente, Magno Sávio Ferreira; Resende, Márcio Fernando Ribeiro; Muñoz, Patricio

    2015-08-25

    A complete approach for genome-wide selection (GWS) involves reliable statistical genetics models and methods. Reports on this topic are common for additive genetic models but not for additive-dominance models. The objective of this paper was (i) to compare the performance of 10 additive-dominance predictive models (including current models and proposed modifications), fitted using Bayesian, Lasso and Ridge regression approaches; and (ii) to decompose genomic heritability and accuracy in terms of three quantitative genetic information sources, namely, linkage disequilibrium (LD), co-segregation (CS) and pedigree relationships or family structure (PR). The simulation study considered two broad sense heritability levels (0.30 and 0.50, associated with narrow sense heritabilities of 0.20 and 0.35, respectively) and two genetic architectures for traits (the first consisting of small gene effects and the second consisting of a mixed inheritance model with five major genes). G-REML/G-BLUP and a modified Bayesian/Lasso (called BayesA*B* or t-BLASSO) method performed best in the prediction of genomic breeding as well as the total genotypic values of individuals in all four scenarios (two heritabilities x two genetic architectures). The BayesA*B*-type method showed a better ability to recover the dominance variance/additive variance ratio. Decomposition of genomic heritability and accuracy revealed the following descending importance order of information: LD, CS and PR not captured by markers, the last two being very close. Amongst the 10 models/methods evaluated, the G-BLUP, BAYESA*B* (-2,8) and BAYESA*B* (4,6) methods presented the best results and were found to be adequate for accurately predicting genomic breeding and total genotypic values as well as for estimating additive and dominance in additive-dominance genomic models.

  9. Quantitative genetics of immunity and life history under different photoperiods.

    PubMed

    Hammerschmidt, K; Deines, P; Wilson, A J; Rolff, J

    2012-05-01

    Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality.

  10. The genetics of behavioral alcohol responses in Drosophila.

    PubMed

    Rodan, Aylin R; Rothenfluh, Adrian

    2010-01-01

    Drosophila melanogaster is commonly found near rotting or fermenting fruit, reflected in its name pomace, or vinegar fly. In such environments, flies often encounter significant levels of ethanol. Three observations have made Drosophila a very promising model organism to understand the genetic contributions to the behavioral responses to alcohol. First, similar to higher vertebrates, flies show hyperactivation upon exposure to a low to medium dose of alcohol, while high doses can lead to sedation. In addition, when given a choice, flies will actually prefer alcohol-containing food over regular food. Second, the genes and biochemical pathways implicated in controlling these behavioral responses in flies are also participating in determining alcohol responses, and drinking behavior in mammals. Third, the fact that flies have been studied genetically for over one hundred years means that an exceptional repertoire of genetic tools are at our disposal. Here, we will review some of these tools and experimental approaches, survey the methods for, and measures after Drosophila ethanol exposure, and discuss the different molecular components and functional pathways involved in these behavioral responses to alcohol. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Replication of a gene-environment interaction Via Multimodel inference: additive-genetic variance in adolescents' general cognitive ability increases with family-of-origin socioeconomic status.

    PubMed

    Kirkpatrick, Robert M; McGue, Matt; Iacono, William G

    2015-03-01

    The present study of general cognitive ability attempts to replicate and extend previous investigations of a biometric moderator, family-of-origin socioeconomic status (SES), in a sample of 2,494 pairs of adolescent twins, non-twin biological siblings, and adoptive siblings assessed with individually administered IQ tests. We hypothesized that SES would covary positively with additive-genetic variance and negatively with shared-environmental variance. Important potential confounds unaddressed in some past studies, such as twin-specific effects, assortative mating, and differential heritability by trait level, were found to be negligible. In our main analysis, we compared models by their sample-size corrected AIC, and base our statistical inference on model-averaged point estimates and standard errors. Additive-genetic variance increased with SES-an effect that was statistically significant and robust to model specification. We found no evidence that SES moderated shared-environmental influence. We attempt to explain the inconsistent replication record of these effects, and provide suggestions for future research.

  12. Replication of a Gene-Environment Interaction via Multimodel Inference: Additive-Genetic Variance in Adolescents’ General Cognitive Ability Increases with Family-of-Origin Socioeconomic Status

    PubMed Central

    Kirkpatrick, Robert M.; McGue, Matt; Iacono, William G.

    2015-01-01

    The present study of general cognitive ability attempts to replicate and extend previous investigations of a biometric moderator, family-of-origin socioeconomic status (SES), in a sample of 2,494 pairs of adolescent twins, non-twin biological siblings, and adoptive siblings assessed with individually administered IQ tests. We hypothesized that SES would covary positively with additive-genetic variance and negatively with shared-environmental variance. Important potential confounds unaddressed in some past studies, such as twin-specific effects, assortative mating, and differential heritability by trait level, were found to be negligible. In our main analysis, we compared models by their sample-size corrected AIC, and base our statistical inference on model-averaged point estimates and standard errors. Additive-genetic variance increased with SES—an effect that was statistically significant and robust to model specification. We found no evidence that SES moderated shared-environmental influence. We attempt to explain the inconsistent replication record of these effects, and provide suggestions for future research. PMID:25539975

  13. The genetic basis of music ability

    PubMed Central

    Tan, Yi Ting; McPherson, Gary E.; Peretz, Isabelle; Berkovic, Samuel F.; Wilson, Sarah J.

    2014-01-01

    Music is an integral part of the cultural heritage of all known human societies, with the capacity for music perception and production present in most people. Researchers generally agree that both genetic and environmental factors contribute to the broader realization of music ability, with the degree of music aptitude varying, not only from individual to individual, but across various components of music ability within the same individual. While environmental factors influencing music development and expertise have been well investigated in the psychological and music literature, the interrogation of possible genetic influences has not progressed at the same rate. Recent advances in genetic research offer fertile ground for exploring the genetic basis of music ability. This paper begins with a brief overview of behavioral and molecular genetic approaches commonly used in human genetic analyses, and then critically reviews the key findings of genetic investigations of the components of music ability. Some promising and converging findings have emerged, with several loci on chromosome 4 implicated in singing and music perception, and certain loci on chromosome 8q implicated in absolute pitch and music perception. The gene AVPR1A on chromosome 12q has also been implicated in music perception, music memory, and music listening, whereas SLC6A4 on chromosome 17q has been associated with music memory and choir participation. Replication of these results in alternate populations and with larger samples is warranted to confirm the findings. Through increased research efforts, a clearer picture of the genetic mechanisms underpinning music ability will hopefully emerge. PMID:25018744

  14. Genetic mixed linear models for twin survival data.

    PubMed

    Ha, Il Do; Lee, Youngjo; Pawitan, Yudi

    2007-07-01

    Twin studies are useful for assessing the relative importance of genetic or heritable component from the environmental component. In this paper we develop a methodology to study the heritability of age-at-onset or lifespan traits, with application to analysis of twin survival data. Due to limited period of observation, the data can be left truncated and right censored (LTRC). Under the LTRC setting we propose a genetic mixed linear model, which allows general fixed predictors and random components to capture genetic and environmental effects. Inferences are based upon the hierarchical-likelihood (h-likelihood), which provides a statistically efficient and unified framework for various mixed-effect models. We also propose a simple and fast computation method for dealing with large data sets. The method is illustrated by the survival data from the Swedish Twin Registry. Finally, a simulation study is carried out to evaluate its performance.

  15. Influence of mom and dad: quantitative genetic models for maternal effects and genomic imprinting.

    PubMed

    Santure, Anna W; Spencer, Hamish G

    2006-08-01

    The expression of an imprinted gene is dependent on the sex of the parent it was inherited from, and as a result reciprocal heterozygotes may display different phenotypes. In contrast, maternal genetic terms arise when the phenotype of an offspring is influenced by the phenotype of its mother beyond the direct inheritance of alleles. Both maternal effects and imprinting may contribute to resemblance between offspring of the same mother. We demonstrate that two standard quantitative genetic models for deriving breeding values, population variances and covariances between relatives, are not equivalent when maternal genetic effects and imprinting are acting. Maternal and imprinting effects introduce both sex-dependent and generation-dependent effects that result in differences in the way additive and dominance effects are defined for the two approaches. We use a simple example to demonstrate that both imprinting and maternal genetic effects add extra terms to covariances between relatives and that model misspecification may over- or underestimate true covariances or lead to extremely variable parameter estimation. Thus, an understanding of various forms of parental effects is essential in correctly estimating quantitative genetic variance components.

  16. Genetic variation and forensic characterization of highland Tibetan ethnicity reveled by autosomal STR markers.

    PubMed

    He, Guanglin; Wang, Zheng; Su, Yongdong; Zou, Xing; Wang, Mengge; Liu, Jing; Hou, Yiping

    2018-01-08

    Understanding the origin and genetic background of Chinese high-altitude Tibetans play a pivotal role in medical genetics, archeology, anthropology, and forensics. In this study, to investigate the forensic characterization and genetic diversity of Chinese Tibetan, allele frequencies and corresponding forensic statistical parameters of 15 autosomal STRs included in the AmpFℓSTR® Sinofiler™ kit were obtained from 1220 Tibetan individuals residing in Lhasa country, Tibet Autonomous Region. We identified 191 alleles with corresponding allele frequencies varied from 0.0004 to 0.3984. The combined probability of discrimination and the combined probability of exclusion are 0.9999999999999999997 and 0.9999996, respectively. Our study provided the valuable dataset for forensic individual identification and parentage testing in the high-altitude Tibetan population. In addition, comprehensive population comparisons among 30 Chinese populations via PCA, AMOVA, MDS, and N-J tree demonstrated that the genetic components of Tibet Tibetan have received gene introgression from surrounding lowland populations (Such as Gansu Hui and Yunnan Bai) and Tibetan keeps the close genetic relationship with geographic neighboring populations.

  17. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  18. Expanding the eukaryotic genetic code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  19. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2009-10-27

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  20. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G

    2015-02-03

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  1. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2009-12-01

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  2. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2012-02-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  3. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2009-11-17

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  4. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2010-09-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  5. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2012-05-08

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  6. Sex-specific genetic variance and the evolution of sexual dimorphism: a systematic review of cross-sex genetic correlations.

    PubMed

    Poissant, Jocelyn; Wilson, Alastair J; Coltman, David W

    2010-01-01

    The independent evolution of the sexes may often be constrained if male and female homologous traits share a similar genetic architecture. Thus, cross-sex genetic covariance is assumed to play a key role in the evolution of sexual dimorphism (SD) with consequent impacts on sexual selection, population dynamics, and speciation processes. We compiled cross-sex genetic correlations (r(MF)) estimates from 114 sources to assess the extent to which the evolution of SD is typically constrained and test several specific hypotheses. First, we tested if r(MF) differed among trait types and especially between fitness components and other traits. We also tested the theoretical prediction of a negative relationship between r(MF) and SD based on the expectation that increases in SD should be facilitated by sex-specific genetic variance. We show that r(MF) is usually large and positive but that it is typically smaller for fitness components. This demonstrates that the evolution of SD is typically genetically constrained and that sex-specific selection coefficients may often be opposite in sign due to sub-optimal levels of SD. Most importantly, we confirm that sex-specific genetic variance is an important contributor to the evolution of SD by validating the prediction of a negative correlation between r(MF) and SD.

  7. Analysis and Application of European Genetic Substructure Using 300 K SNP Information

    PubMed Central

    Tian, Chao; Plenge, Robert M; Ransom, Michael; Lee, Annette; Villoslada, Pablo; Selmi, Carlo; Klareskog, Lars; Pulver, Ann E; Qi, Lihong; Gregersen, Peter K; Seldin, Michael F

    2008-01-01

    European population genetic substructure was examined in a diverse set of >1,000 individuals of European descent, each genotyped with >300 K SNPs. Both STRUCTURE and principal component analyses (PCA) showed the largest division/principal component (PC) differentiated northern from southern European ancestry. A second PC further separated Italian, Spanish, and Greek individuals from those of Ashkenazi Jewish ancestry as well as distinguishing among northern European populations. In separate analyses of northern European participants other substructure relationships were discerned showing a west to east gradient. Application of this substructure information was critical in examining a real dataset in whole genome association (WGA) analyses for rheumatoid arthritis in European Americans to reduce false positive signals. In addition, two sets of European substructure ancestry informative markers (ESAIMs) were identified that provide substantial substructure information. The results provide further insight into European population genetic substructure and show that this information can be used for improving error rates in association testing of candidate genes and in replication studies of WGA scans. PMID:18208329

  8. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability.

    PubMed

    Colotta, Francesco; Allavena, Paola; Sica, Antonio; Garlanda, Cecilia; Mantovani, Alberto

    2009-07-01

    Inflammatory conditions in selected organs increase the risk of cancer. An inflammatory component is present also in the microenvironment of tumors that are not epidemiologically related to inflammation. Recent studies have begun to unravel molecular pathways linking inflammation and cancer. In the tumor microenvironment, smoldering inflammation contributes to proliferation and survival of malignant cells, angiogenesis, metastasis, subversion of adaptive immunity, reduced response to hormones and chemotherapeutic agents. Recent data suggest that an additional mechanism involved in cancer-related inflammation (CRI) is induction of genetic instability by inflammatory mediators, leading to accumulation of random genetic alterations in cancer cells. In a seminal contribution, Hanahan and Weinberg [(2000) Cell, 100, 57-70] identified the six hallmarks of cancer. We surmise that CRI represents the seventh hallmark.

  9. Optimisation of Ferrochrome Addition Using Multi-Objective Evolutionary and Genetic Algorithms for Stainless Steel Making via AOD Converter

    NASA Astrophysics Data System (ADS)

    Behera, Kishore Kumar; Pal, Snehanshu

    2018-03-01

    This paper describes a new approach towards optimum utilisation of ferrochrome added during stainless steel making in AOD converter. The objective of optimisation is to enhance end blow chromium content of steel and reduce the ferrochrome addition during refining. By developing a thermodynamic based mathematical model, a study has been conducted to compute the optimum trade-off between ferrochrome addition and end blow chromium content of stainless steel using a predator prey genetic algorithm through training of 100 dataset considering different input and output variables such as oxygen, argon, nitrogen blowing rate, duration of blowing, initial bath temperature, chromium and carbon content, weight of ferrochrome added during refining. Optimisation is performed within constrained imposed on the input parameters whose values fall within certain ranges. The analysis of pareto fronts is observed to generate a set of feasible optimal solution between the two conflicting objectives that provides an effective guideline for better ferrochrome utilisation. It is found out that after a certain critical range, further addition of ferrochrome does not affect the chromium percentage of steel. Single variable response analysis is performed to study the variation and interaction of all individual input parameters on output variables.

  10. The 4-Celled Tetrabaena socialis Nuclear Genome Reveals the Essential Components for Genetic Control of Cell Number at the Origin of Multicellularity in the Volvocine Lineage.

    PubMed

    Featherston, Jonathan; Arakaki, Yoko; Hanschen, Erik R; Ferris, Patrick J; Michod, Richard E; Olson, Bradley J S C; Nozaki, Hisayoshi; Durand, Pierre M

    2018-04-01

    Multicellularity is the premier example of a major evolutionary transition in individuality and was a foundational event in the evolution of macroscopic biodiversity. The volvocine chlorophyte lineage is well suited for studying this process. Extant members span unicellular, simple colonial, and obligate multicellular taxa with germ-soma differentiation. Here, we report the nuclear genome sequence of one of the most morphologically simple organisms in this lineage-the 4-celled colonial Tetrabaena socialis and compare this to the three other complete volvocine nuclear genomes. Using conservative estimates of gene family expansions a minimal set of expanded gene families was identified that associate with the origin of multicellularity. These families are rich in genes related to developmental processes. A subset of these families is lineage specific, which suggests that at a genomic level the evolution of multicellularity also includes lineage-specific molecular developments. Multiple points of evidence associate modifications to the ubiquitin proteasomal pathway (UPP) with the beginning of coloniality. Genes undergoing positive or accelerating selection in the multicellular volvocines were found to be enriched in components of the UPP and gene families gained at the origin of multicellularity include components of the UPP. A defining feature of colonial/multicellular life cycles is the genetic control of cell number. The genomic data presented here, which includes diversification of cell cycle genes and modifications to the UPP, align the genetic components with the evolution of this trait.

  11. Genetic parameters for first lactation test-day milk flow in Holstein cows.

    PubMed

    Laureano, M M M; Bignardi, A B; El Faro, L; Cardoso, V L; Albuquerque, L G

    2012-01-01

    Genetic parameters for test-day milk flow (TDMF) of 2175 first lactations of Holstein cows were estimated using multiple-trait and repeatability models. The models included the direct additive genetic effect as a random effect and contemporary group (defined as the year and month of test) and age of cow at calving (linear and quadratic effect) as fixed effects. For the repeatability model, in addition to the effects cited, the permanent environmental effect of the animal was also included as a random effect. Variance components were estimated using the restricted maximum likelihood method in single- and multiple-trait and repeatability analyses. The heritability estimates for TDMF ranged from 0.23 (TDMF 6) to 0.32 (TDMF 2 and TDMF 4) in single-trait analysis and from 0.28 (TDMF 7 and TDMF 10) to 0.37 (TDMF 4) in multiple-trait analysis. In general, higher heritabilities were observed at the beginning of lactation until the fourth month. Heritability estimated with the repeatability model was 0.27 and the coefficient of repeatability for first lactation TDMF was 0.66. The genetic correlations were positive and ranged from 0.72 (TDMF 1 and 10) to 0.97 (TDMF 4 and 5). The results indicate that milk flow should respond satisfactorily to selection, promoting rapid genetic gains because the estimated heritabilities were moderate to high. Higher genetic gains might be obtained if selection was performed in the TDMF 4. Both the repeatability model and the multiple-trait model are adequate for the genetic evaluation of animals in terms of milk flow, but the latter provides more accurate estimates of breeding values.

  12. Explanatory Models of Genetics and Genetic Risk among a Selected Group of Students.

    PubMed

    Goltz, Heather Honoré; Bergman, Margo; Goodson, Patricia

    2016-01-01

    This exploratory qualitative study focuses on how college students conceptualize genetics and genetic risk, concepts essential for genetic literacy (GL) and genetic numeracy (GN), components of overall health literacy (HL). HL is dependent on both the background knowledge and culture of a patient, and lower HL is linked to increased morbidity and mortality for a number of chronic health conditions (e.g., diabetes and cancer). A purposive sample of 86 students from three Southwestern universities participated in eight focus groups. The sample ranged in age from 18 to 54 years, and comprised primarily of female (67.4%), single (74.4%), and non-White (57%) participants, none of whom were genetics/biology majors. A holistic-content approach revealed broad categories concerning participants' explanatory models (EMs) of genetics and genetic risk. Participants' EMs were grounded in highly contextualized narratives that only partially overlapped with biomedical models. While higher education levels should be associated with predominately knowledge-based EM of genetic risk, this study shows that even in well-educated populations cultural factors can dominate. Study findings reveal gaps in how this sample of young adults obtains, processes, and understands genetic/genomic concepts. Future studies should assess how individuals with low GL and GN obtain and process genetics and genetic risk information and incorporate this information into health decision making. Future work should also address the interaction of communication between health educators, providers, and genetic counselors, to increase patient understanding of genetic risk.

  13. Genetic secrets: Protecting privacy and confidentiality in the genetic era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothstein, M.A.

    1998-07-01

    Few developments are likely to affect human beings more profoundly in the long run than the discoveries resulting from advances in modern genetics. Although the developments in genetic technology promise to provide many additional benefits, their application to genetic screening poses ethical, social, and legal questions, many of which are rooted in issues of privacy and confidentiality. The ethical, practical, and legal ramifications of these and related questions are explored in depth. The broad range of topics includes: the privacy and confidentiality of genetic information; the challenges to privacy and confidentiality that may be projected to result from the emergingmore » genetic technologies; the role of informed consent in protecting the confidentiality of genetic information in the clinical setting; the potential uses of genetic information by third parties; the implications of changes in the health care delivery system for privacy and confidentiality; relevant national and international developments in public policies, professional standards, and laws; recommendations; and the identification of research needs.« less

  14. 45 CFR 146.122 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-degree relatives include parents, spouses, siblings, and children. (B) Second-degree relatives include... include great-great grandparents, great-great grandchildren, and children of first cousins. (3) Genetic... a health care professional with appropriate training and expertise in the field of medicine involved...

  15. Genetic analysis of motor milestones attainment in early childhood.

    PubMed

    Peter, I; Vainder, M; Livshits, G

    1999-03-01

    The age of attainment for four motor developmental traits, such as turning over, sitting up without support, pulling up to a standing position and walking without support, was examined in 822 children, including 626 siblings from families with 2 to 6 children, 68 pairs of dizygotic twins and 30 pairs of monozygotic twins. Correlation analysis, carried out separately for each type of sibship, showed the highest pairwise correlations in monozygotic twins and the lowest correlation in non-twin siblings for all motor milestones. Variance component analysis was used to decompose the different independent components forming the variation of the studied trait, such as genetic effect, common twin environment, common sib environment and residual factors. The results revealed that the major proportion of the total variance after adjustment for gestation age for the attainment of each motor skill, except pulling up to standing position, is explained by the common twin environment (50.5 to 66.6%), whilst a moderate proportion is explained by additive genetic factors (22.2 to 33.5%). Gestational age was found to be an important predictor of appearance of all motor milestones, affecting delay of 4.5 to 8.6 days for the attainment of the motor abilities for each week of earlier gestation. The age of attainment of the standing position was affected only by shared sibs environment (33.3% of the total variance) and showed no influence of either genetic or common twin environment. Phenotypic between trait correlations were high and significant for all studied traits (range between 0.40 and 0.67, P < 0.01 in all instances). Genetic cross correlations, however, were not easily interpreted and did not show clear variance trends among the different groups of children.

  16. "What is this genetics, anyway?" Understandings of genetics, illness causality and inheritance among British Pakistani users of genetic services.

    PubMed

    Shaw, Alison; Hurst, Jane A

    2008-08-01

    Misconceptions about basic genetic concepts and inheritance patterns may be widespread in the general population. This paper investigates understandings of genetics, illness causality and inheritance among British Pakistanis referred to a UK genetics clinic. During participant observation of genetics clinic consultations and semi-structured interviews in Urdu or English in respondents' homes, we identified an array of environmental, behavioral and spiritual understandings of the causes of medical and intellectual problems. Misconceptions about the location of genetic information in the body and of genetic mechanisms of inheritance were common, reflected the range of everyday theories observed for White British patients and included the belief that a child receives more genetic material from the father than the mother. Despite some participants' conversational use of genetic terminology, some patients had assimilated genetic information in ways that conflict with genetic theory with potentially serious clinical consequences. Additionally, skepticism of genetic theories of illness reflected a rejection of a dominant discourse of genetic risk that stigmatizes cousin marriages. Patients referred to genetics clinics may not easily surrender their lay or personal theories about the causes of their own or their child's condition and their understandings of genetic risk. Genetic counselors may need to identify, work with and at times challenge patients' understandings of illness causality and inheritance.

  17. Genetic Basis of Sjögren's Syndrome. How Strong is the Evidence?

    PubMed Central

    Anaya, Juan-Manuel; Delgado-Vega, Angélica María; Castiblanco, John

    2006-01-01

    Sjögren's syndrome (SS) is a late-onset chronic autoimmune disease (AID) affecting the exocrine glands, mainly the salivary and lachrymal. Genetic studies on twins with primary SS have not been performed, and only a few case reports describing twins have been published. The prevalence of primary SS in siblings has been estimated to be 0.09% while the reported general prevalence of the disease is approximately 0.1%. The observed aggregation of AIDs in families of patients with primary SS is nevertheless supportive for a genetic component in its etiology. In the absence of chromosomal regions identified by linkage studies, research has focused on candidate gene approaches (by biological plausibility) rather than on positional approaches. Ancestral haplotype 8.1 as well as TNF, IL10 and SSA1 loci have been consistently associated with the disease although they are not specific for SS. In this review, the genetic component of SS is discussed on the basis of three known observations: (a) age at onset and sex-dependent presentation, (b) familial clustering of the disease, and (c) dissection of the genetic component. Since there is no strong evidence for a specific genetic component in SS, a large international and collaborative study would be suitable to assess the genetics of this disorder. PMID:17162364

  18. Genetic conflict between sexual signalling and juvenile survival in the three-spined stickleback.

    PubMed

    Kim, Sin-Yeon; Velando, Alberto

    2016-02-29

    Secondary sexual traits and mating preferences may evolve in part because the offspring of attractive males inherit attractiveness and other genetically correlated traits such as fecundity and viability. A problem regarding these indirect genetic mechanisms is how sufficient genetic variation in the traits subject to sexual selection is maintained within a population. Here we explored the additive genetic correlations between carotenoid-based male ornament colouration, female fecundity and juvenile survival rate in the three-spined stickleback (Gasterosteus aculeatus) to test the possibility that attractiveness genes reduce important fitness components in the bearers not expressing the sexual trait. Male sexual attractiveness (i.e., red nuptial colouration) as well as female fecundity and juvenile viability showed heritable variations in the three-spined stickleback. Thus, females can gain indirect benefits by mating with an attractive male. There was a strong positive genetic correlation between female fecundity and juvenile viability. However, red sexual signal of male sticklebacks was negatively genetically correlated with juvenile survival, suggesting genetic conflict between attractiveness and viability. There was no significant correlation between attractiveness of brothers and fecundity of sisters, suggesting no intra-locus sexual conflict. The negative effects of mating with a colourful male on offspring viability may contribute to maintaining the heritable variation under strong directional sexual selection. The strength of indirect sexual selection may be weaker than previously thought due to the hidden genetic conflicts.

  19. Present-Day Genetic Structure of Atlantic Salmon (Salmo salar) in Icelandic Rivers and Ice-Cap Retreat Models

    PubMed Central

    Olafsson, Kristinn; Pampoulie, Christophe; Hjorleifsdottir, Sigridur; Gudjonsson, Sigurdur; Hreggvidsson, Gudmundur O.

    2014-01-01

    Due to an improved understanding of past climatological conditions, it has now become possible to study the potential concordance between former climatological models and present-day genetic structure. Genetic variability was assessed in 26 samples from different rivers of Atlantic salmon in Iceland (total of 2,352 individuals), using 15 microsatellite loci. F-statistics revealed significant differences between the majority of the populations that were sampled. Bayesian cluster analyses using both prior information and no prior information on sampling location revealed the presence of two distinguishable genetic pools - namely, the Northern (Group 1) and Southern (Group 2) regions of Iceland. Furthermore, the random permutation of different allele sizes among allelic states revealed a significant mutational component to the genetic differentiation at four microsatellite loci (SsaD144, Ssa171, SSsp2201 and SsaF3), and supported the proposition of a historical origin behind the observed variation. The estimated time of divergence, using two different ABC methods, suggested that the observed genetic pattern originated from between the Last Glacial Maximum to the Younger Dryas, which serves as additional evidence of the relative immaturity of Icelandic fish populations, on account of the re-colonisation of this young environment following the Last Glacial Maximum. Additional analyses suggested the presence of several genetic entities which were likely to originate from the original groups detected. PMID:24498283

  20. Genetic Causes of Recurrent Pregnancy Loss.

    PubMed

    Page, Jessica M; Silver, Robert M

    2016-09-01

    Pregnancy loss is one of the most common obstetric complications, affecting over 30% of conceptions. A considerable proportion of losses are due to genetic abnormalities. Indeed, over 50% of early pregnancy losses have been associated with chromosomal abnormalities. Most are due to de novo nondisjunctional events but balanced parental translocations are responsible for a small but important percentage of genetic abnormalities in couples with recurrent pregnancy loss. In the past, assessment of genetic abnormalities was limited to karyotype performed on placental or fetal tissue. However, advances in molecular genetic technology now provide rich genetic information about additional genetic causes of and risk factors for pregnancy loss. In addition, the use of preimplantation genetic testing in couples undergoing in vitro fertilization has the potential to decrease the risk of pregnancy loss from genetic abnormalities. To date, efficacy is uncertain but considerable potential remains. This chapter will review what is known about genetic causes of recurrent pregnancy loss with a focus on novel causes and potential treatments. Remaining knowledge gaps will be highlighted.

  1. A High Density Consensus Genetic Map of Tetraploid Cotton That Integrates Multiple Component Maps through Molecular Marker Redundancy Check

    PubMed Central

    Blenda, Anna; Fang, David D.; Rami, Jean-François; Garsmeur, Olivier; Luo, Feng; Lacape, Jean-Marc

    2012-01-01

    A consensus genetic map of tetraploid cotton was constructed using six high-density maps and after the integration of a sequence-based marker redundancy check. Public cotton SSR libraries (17,343 markers) were curated for sequence redundancy using 90% as a similarity cutoff. As a result, 20% of the markers (3,410) could be considered as redundant with some other markers. The marker redundancy information had been a crucial part of the map integration process, in which the six most informative interspecific Gossypium hirsutum×G. barbadense genetic maps were used for assembling a high density consensus (HDC) map for tetraploid cotton. With redundant markers being removed, the HDC map could be constructed thanks to the sufficient number of collinear non-redundant markers in common between the component maps. The HDC map consists of 8,254 loci, originating from 6,669 markers, and spans 4,070 cM, with an average of 2 loci per cM. The HDC map presents a high rate of locus duplications, as 1,292 markers among the 6,669 were mapped in more than one locus. Two thirds of the duplications are bridging homoeologous AT and DT chromosomes constitutive of allopolyploid cotton genome, with an average of 64 duplications per AT/DT chromosome pair. Sequences of 4,744 mapped markers were used for a mutual blast alignment (BBMH) with the 13 major scaffolds of the recently released Gossypium raimondii genome indicating high level of homology between the diploid D genome and the tetraploid cotton genetic map, with only a few minor possible structural rearrangements. Overall, the HDC map will serve as a valuable resource for trait QTL comparative mapping, map-based cloning of important genes, and better understanding of the genome structure and evolution of tetraploid cotton. PMID:23029214

  2. Combinatorial effects of diet and genetics on inflammatory bowel disease pathogenesis.

    PubMed

    Dixon, Laura J; Kabi, Amrita; Nickerson, Kourtney P; McDonald, Christine

    2015-04-01

    Inflammatory bowel disease (IBD) encompasses a group of disorders affecting the gastrointestinal tract characterized by acute and chronic inflammation. These are complex and multifactorial disorders that arise in part from a genetic predisposition. However, the increasing incidence of IBD in developing countries suggests that environmental factors, such as diet, are also critical components of disease susceptibility. Evidence suggests that consumption of a Western diet, enriched with saturated fat, refined carbohydrates, and food additives, is associated with increased IBD risk. Dietary components, such as omega-6 fatty acids, long-chain fatty acids, protein, and digestible carbohydrates, may contribute to IBD pathogenesis through altering intestinal microbiota, increasing intestinal permeability, and promoting inflammation; whereas omega-3 fatty acids, medium chain triglycerides, and nondigestible carbohydrates improve these parameters and intestinal health. However, the limited amount of prospective studies, small sample sizes, and the heterogeneity of disease subtype result in inconsistencies between studies and difficulty in conclusively determining the specific effects of diet on intestinal homeostasis. There are no standard clinical dietary recommendations for patients with IBD. However, exclusionary diet interventions have shown some efficacy in relieving symptoms or inducing remission, suggesting more research is needed to fully understand how diet influences disease behavior or combines with other IBD risk factors to promote disease. This review focuses on the associations of various dietary components and IBD risk in clinical studies and genetically susceptible IBD models.

  3. Cerivastatin, Genetic Variants, and the Risk of Rhabdomyolysis

    PubMed Central

    Marciante, Kristin D.; Durda, Jon P.; Heckbert, Susan R.; Lumley, Thomas; Rice, Ken; McKnight, Barbara; Totah, Rheem A.; Tamraz, Bani; Kroetz, Deanna L.; Fukushima, Hisayo; Kaspera, Rüdiger; Bis, Joshua C.; Glazer, Nicole L.; Li, Guo; Austin, Thomas R.; Taylor, Kent D.; Rotter, Jerome I.; Jaquish, Cashell E.; Kwok, Pui-Yan; Tracy, Russell P.; Psaty, Bruce M.

    2011-01-01

    Objective The withdrawal of cerivastatin involved an uncommon but serious adverse reaction, rhabdomyolysis. The bimodal response--rhabdomyolysis in a small proportion of users-- points to genetic factors as a potential cause. We conducted a case-control study to evaluate genetic markers for cerivastatin-associated rhabdomyolysis. Methods The study had two components: a candidate gene study to evaluate variants in CYP2C8, UGT1A1, UGT1A3, and SLCO1B1; and a genome-wide association (GWA) study to identify risk factors in other regions of the genome. 185 rhabdomyolysis cases were frequency matched to statin-using controls from the Cardiovascular Health Study (n=374) and the Heart and Vascular Health Study (n=358). Validation relied on functional studies. Results Permutation test results suggested an association between cerivastatin-associated rhabdomyolysis and variants in SLCO1B1 (p = 0.002), but not variants in CYP2C8 (p = 0.073) or the UGTs (p = 0.523). An additional copy of the minor allele of SLCO1B1 rs4149056 (p.Val174Ala) was associated with the risk of rhabdomyolysis (OR: 1.89, 95% CI: 1.40 to 2.56). In transfected cells, this variant reduced cerivastatin transport by 40% compared with the reference transporter (p < 0.001). The GWA identified an intronic variant (rs2819742) in the ryanodine receptor 2 gene (RYR2) as significant (p=1.74E-07). An additional copy of the minor allele of the RYR2 variant was associated with a reduced risk of rhabdomyolysis (OR: 0.48; 95% CI: 0.36 to 0.63). Conclusion We identified modest genetic risk factors for an extreme response to cerivastatin. Disabling genetic variants in the candidate genes were not responsible for the bimodal response to cerivastatin. PMID:21386754

  4. Apollo 16 regolith breccias and soils - Recorders of exotic component addition to the Descartes region of the moon

    NASA Technical Reports Server (NTRS)

    Simon, S. B.; Papike, J. J.; Laul, J. C.; Hughes, S. S.; Schmitt, R. A.

    1988-01-01

    Using the subdivision of Apollo 16 regolith breccias into ancient (about 4 Gyr) and younger samples (McKay et al., 1986), with the present-day soils as a third sample, a petrologic and chemical determination of regolith evolution and exotic component addition at the A-16 site was performed. The modal petrologies and mineral and chemical compositions of the regolith breccias in the region are presented. It is shown that the early regolith was composed of fragments of plutonic rocks, impact melt rocks, and minerals and impact glasses. It is found that KREEP lithologies and impact melts formed early in lunar history. The mare components, mainly orange high-TiO2 glass and green low-TiO2 glass, were added to the site after formation of the ancient breccias and prior to the formation of young breccias. The major change in the regolith since the formation of the young breccias is an increase in maturity represented by the formation of fused soil particles with prolonged exposure to micrometeorite impacts.

  5. Linkage of Type 2 Diabetes on Chromosome 9p24 in Mexican Americans: Additional Evidence from the Veterans Administration Genetic Epidemiology Study (VAGES)

    PubMed Central

    Farook, Vidya S.; Coletta, Dawn K.; Puppala, Sobha; Schneider, Jennifer; Chittoor, Geetha; Hu, Shirley L.; Winnier, Deidre A.; Norton, Luke; Dyer, Thomas D.; Arya, Rector; Cole, Shelley A.; Carless, Melanie; Göring, Harald H.; Almasy, Laura; Mahaney, Michael C.; Comuzzie, Anthony G.; Curran, Joanne E.; Blangero, John; Duggirala, Ravindranath; Lehman, Donna M.; Jenkinson, Christopher P.; DeFronzo, Ralph A.

    2014-01-01

    Objective Type 2 diabetes (T2DM) is a complex metabolic disease and is more prevalent in certain ethnic groups such as the Mexican Americans. The goal of our study was to perform a genome-wide linkage analysis to localize T2DM susceptibility loci in Mexican Americans. Methods We used the phenotypic and genotypic data from 1,122 Mexican American individuals (307 families) who participated in the Veterans Administration Genetic Epidemiology Study (VAGES). Genome-wide linkage analysis was performed, using the variance components approach. Data from two additional Mexican American family studies, the San Antonio Family Heart Study (SAFHS) and the San Antonio Family Diabetes/Gallbladder Study (SAFDGS), were combined with the VAGES data to test for improved linkage evidence. Results After adjusting for covariate effects, T2DM was found to be under significant genetic influences (h2 = 0.62, P = 2.7 × 10−6). The strongest evidence for linkage of T2DM occurred between markers D9S1871 and D9S2169 on chromosome 9p24.2-p24.1 (LOD = 1.8). Given that we previously reported suggestive evidence for linkage of T2DM at this region in SAFDGS also, we found the significant and increased linkage evidence (LOD = 4.3, empirical P = 1.0 × 10−5, genome-wide P = 1.6 × 10−3) for T2DM at the same chromosomal region when we performed genome-wide linkage analysis of the VAGES data combined with SAFHS and SAFDGS data. Conclusion Significant T2DM linkage evidence was found on chromosome 9p24 in Mexican Americans. Importantly, the chromosomal region of interest in this study overlaps with several recent genome-wide association studies (GWASs) involving T2DM related traits. Given its overlap with such findings and our own initial T2DM association findings in the 9p24 chromosomal region, high throughput sequencing of the linked chromosomal region could identify the potential causal T2DM genes. PMID:24060607

  6. Combined zebrafish-yeast chemical-genetic screens reveal gene-copper-nutrition interactions that modulate melanocyte pigmentation.

    PubMed

    Ishizaki, Hironori; Spitzer, Michaela; Wildenhain, Jan; Anastasaki, Corina; Zeng, Zhiqiang; Dolma, Sonam; Shaw, Michael; Madsen, Erik; Gitlin, Jonathan; Marais, Richard; Tyers, Mike; Patton, E Elizabeth

    2010-01-01

    Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu(2+)) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.

  7. Genetics of hereditary disorders of magnesium homeostasis.

    PubMed

    Schlingmann, Karl P; Konrad, Martin; Seyberth, Hannsjörg W

    2004-01-01

    Magnesium plays an essential role in many biochemical and physiological processes. Homeostasis of magnesium is tightly regulated and depends on the balance between intestinal absorption and renal excretion. During the last decades, various hereditary disorders of magnesium handling have been clinically characterized and genetic studies in affected individuals have led to the identification of some molecular components of cellular magnesium transport. In addition to these hereditary forms of magnesium deficiency, recent studies have revealed a high prevalence of latent hypomagnesemia in the general population. This finding is of special interest in view of the association between hypomagnesemia and common chronic diseases such as diabetes, coronary heart disease, hypertension, and asthma. However, valuable methods for the diagnosis of body and tissue magnesium deficiency are still lacking. This review focuses on clinical and genetic aspects of hereditary disorders of magnesium homeostasis. We will review primary defects of epithelial magnesium transport, disorders associated with defects in Ca(2+)/ Mg(2+) sensing, as well as diseases characterized by renal salt wasting and hypokalemic alkalosis, with special emphasis on disturbed magnesium homeostasis.

  8. Working Memory and Parent-Rated Components of Attention in Middle Childhood: A Behavioral Genetic Study

    PubMed Central

    Deater-Deckard, Kirby; Cutting, Laurie; Thompson, Lee A.; Petrill, Stephen A.

    2012-01-01

    The purpose of the current study was to investigate potential genetic and environmental correlations between working memory and three behavioral aspects of the attention network (i.e., executive, alerting, and orienting) using a twin design. Data were from 90 monozygotic (39% male) and 112 same-sex dizygotic (41% male) twins. Individual differences in working memory performance (digit span) and parent-rated measures of executive, alerting, and orienting attention included modest to moderate genetic variance, modest shared environmental variance, and modest to moderate nonshared environmental variance. As hypothesized, working memory performance was correlated with executive and alerting attention, but not orienting attention. The correlation between working memory, executive attention, and alerting attention was completely accounted for by overlapping genetic covariance, suggesting a common genetic mechanism or mechanisms underlying the links between working memory and certain parent-rated indicators of attentive behavior. PMID:21948215

  9. Genetic and environmental influences on female sexual orientation, childhood gender typicality and adult gender identity.

    PubMed

    Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi

    2011-01-01

    Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates--childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation.

  10. Unraveling Genetic and Environmental Components of Early Literacy: A Twin Study

    ERIC Educational Resources Information Center

    Bus, A. G.; Out, D.

    2009-01-01

    Even though the acquisition of early literacy skills obviously depends on stimuli and incentives in children's environment we may expect that genes define the constraints for acquiring some or all early literacy skills. Therefore behavior genetic analyses were carried out on twin data including 27 identical and 39 same sex dizygotic twins, 4 years…

  11. Genetic effects and genotype × environment interactions govern seed oil content in Brassica napus L.

    PubMed

    Guo, Yanli; Si, Ping; Wang, Nan; Wen, Jing; Yi, Bin; Ma, Chaozhi; Tu, Jinxing; Zou, Jitao; Fu, Tingdong; Shen, Jinxiong

    2017-01-05

    As seed oil content (OC) is a key measure of rapeseed quality, better understanding the genetic basis of OC would greatly facilitate the breeding of high-oil cultivars. Here, we investigated the components of genetic effects and genotype × environment interactions (GE) that govern OC using a full diallel set of nine parents, which represented a wide range of the Chinese rapeseed cultivars and pure lines with various OCs. Our results from an embryo-cytoplasm-maternal (GoCGm) model for diploid seeds showed that OC was primarily determined by genetic effects (V G ) and GE (V GE ), which together accounted for 86.19% of the phenotypic variance (V P ). GE (V GE ) alone accounted for 51.68% of the total genetic variance, indicating the importance of GE interaction for OC. Furthermore, maternal variance explained 75.03% of the total genetic variance, embryo and cytoplasmic effects accounted for 21.02% and 3.95%, respectively. We also found that the OC of F 1 seeds was mainly determined by maternal effect and slightly affected by xenia. Thus, the OC of rapeseed was simultaneously affected by various genetic components, including maternal, embryo, cytoplasm, xenia and GE effects. In addition, general combining ability (GCA), specific combining ability (SCA), and maternal variance had significant influence on OC. The lines H2 and H1 were good general combiners, suggesting that they would be the best parental candidates for OC improvement. Crosses H3 × M2 and H1 × M3 exhibited significant SCA, suggesting their potentials in hybrid development. Our study thoroughly investigated and reliably quantified various genetic factors associated with OC of rapeseed by using a full diallel and backcross and reciprocal backcross. This findings lay a foundation for future genetic studies of OC and provide guidance for breeding of high-oil rapeseed cultivars.

  12. [Genetic aspects of the Stroop test].

    PubMed

    Nánási, Tibor; Katonai, Enikő Rózsa; Sasvári-Székely, Mária; Székely, Anna

    2012-12-01

    Impairment of executive control functions in depression is well documented, and performance on the Stroop Test is one of the most widely used markers to measure the decline. This tool provides reliable quantitative phenotype data that can be used efficiently in candidate gene studies investigating inherited components of executive control. Aim of the present review is to summarize research on genetic factors of Stroop performance. Interestingly, only a few such candidate gene studies have been carried out to date. Twin studies show a 30-60% heritability estimate for the Stroop test, suggesting a significant genetic component. A single genome-wide association study has been carried out on Stroop performance, and it did not show any significant association with any of the tested polymorphisms after correction for multiple testing. Candidate gene studies to date pointed to the polymorphisms of several neurotransmitter systems (dopamine, serotonin, acetylcholine) and to the role of the APOE ε4 allele. Surprisingly, little is known about the genetic role of neurothrophic factors and survival factors. In conclusion, further studies are needed for clarifying the genetic background of Stroop performance, characterizing attentional functions.

  13. Host genetics of response to porcine reproductive and respiratory syndrome in nursery pigs.

    PubMed

    Dekkers, Jack; Rowland, Raymond R R; Lunney, Joan K; Plastow, Graham

    2017-09-01

    PRRS is the most costly disease in the US pig industry. While vaccination, biosecurity and eradication effort have had some success, the variability and infectiousness of PRRS virus strains have hampered the effectiveness of these measures. We propose the use of genetic selection of pigs as an additional and complementary effort. Several studies have shown that host response to PRRS infection has a sizeable genetic component and recent advances in genomics provide opportunities to capitalize on these genetic differences and improve our understanding of host response to PRRS. While work is also ongoing to understand the genetic basis of host response to reproductive PRRS, the focus of this review is on research conducted on host response to PRRS in the nursery and grow-finish phase as part of the PRRS Host Genetics Consortium. Using experimental infection of large numbers of commercial nursery pigs, combined with deep phenotyping and genomics, this research has identified a major gene that is associated with host response to PRRS. Further functional genomics work identified the GBP5 gene as harboring the putative causative mutation. GBP5 is associated with innate immune response. Subsequent work has validated the effect of this genomic region on host response to a second PRRSV strain and to PRRS vaccination and co-infection of nursery pigs with PRRSV and PCV2b. A genetic marker near GBP5 is available to the industry for use in selection. Genetic differences in host response beyond GBP5 appear to be highly polygenic, i.e. controlled by many genes across the genome, each with a small effect. Such effects can by capitalized on in a selection program using genomic prediction on large numbers of genetic markers across the genome. Additional work has also identified the genetic basis of antibody response to PRRS, which could lead to the use of vaccine response as an indicator trait to select for host response to PRRS. Other genomic analyses, including gene expression

  14. Genetics educational needs in China: physicians' experience and knowledge of genetic testing.

    PubMed

    Li, Jing; Xu, Tengda; Yashar, Beverly M

    2015-09-01

    The aims of this study were to explore the relationship between physicians' knowledge and utilization of genetic testing and to explore genetics educational needs in China. An anonymous survey about experience, attitudes, and knowledge of genetic testing was conducted among physicians affiliated with Peking Union Medical College Hospital during their annual health evaluation. A personal genetics knowledge score was developed and predictors of personal genetics knowledge score were evaluated. Sixty-four physicians (33% male) completed the survey. Fifty-eight percent of them had used genetic testing in their clinical practice. Using a 4-point scale, mean knowledge scores of six common genetic testing techniques ranged from 1.7 ± 0.9 to 2.4 ± 1.0, and the average personal genetics knowledge score was 2.1 ± 0.8. In regression analysis, significant predictors of higher personal genetics knowledge score were ordering of genetic testing, utilization of pedigrees, higher medical degree, and recent genetics training (P < 0.05). Sixty-six percent of physicians indicated a desire for specialized genetic services, and 84% reported a desire for additional genetics education. This study demonstrated a sizable gap between Chinese physicians' knowledge and utilization of genetic testing. Participants had high self-perceived genetics educational needs. Development of genetics educational platforms is both warranted and desired in China.Genet Med 17 9, 757-760.

  15. Genetic and Environmental Influences on Female Sexual Orientation, Childhood Gender Typicality and Adult Gender Identity

    PubMed Central

    Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi

    2011-01-01

    Background Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates – childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Methodology/Principal Findings Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. Conclusions/Significance This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation. PMID:21760939

  16. Additive influence of genetic predisposition and conventional risk factors in the incidence of coronary heart disease: a population-based study in Greece

    PubMed Central

    Yiannakouris, Nikos; Katsoulis, Michail; Trichopoulou, Antonia; Ordovas, Jose M; Trichopoulos, Dimitrios

    2014-01-01

    Objectives An additive genetic risk score (GRS) for coronary heart disease (CHD) has previously been associated with incident CHD in the population-based Greek European Prospective Investigation into Cancer and nutrition (EPIC) cohort. In this study, we explore GRS-‘environment’ joint actions on CHD for several conventional cardiovascular risk factors (ConvRFs), including smoking, hypertension, type-2 diabetes mellitus (T2DM), body mass index (BMI), physical activity and adherence to the Mediterranean diet. Design A case–control study. Setting The general Greek population of the EPIC study. Participants and outcome measures 477 patients with medically confirmed incident CHD and 1271 controls participated in this study. We estimated the ORs for CHD by dividing participants at higher or lower GRS and, alternatively, at higher or lower ConvRF, and calculated the relative excess risk due to interaction (RERI) as a measure of deviation from additivity. Results The joint presence of higher GRS and higher risk ConvRF was in all instances associated with an increased risk of CHD, compared with the joint presence of lower GRS and lower risk ConvRF. The OR (95% CI) was 1.7 (1.2 to 2.4) for smoking, 2.7 (1.9 to 3.8) for hypertension, 4.1 (2.8 to 6.1) for T2DM, 1.9 (1.4 to 2.5) for lower physical activity, 2.0 (1.3 to 3.2) for high BMI and 1.5 (1.1 to 2.1) for poor adherence to the Mediterranean diet. In all instances, RERI values were fairly small and not statistically significant, suggesting that the GRS and the ConvRFs do not have effects beyond additivity. Conclusions Genetic predisposition to CHD, operationalised through a multilocus GRS, and ConvRFs have essentially additive effects on CHD risk. PMID:24500614

  17. Application of molecular genetic tools to studies of forest pathosystems [Chapter 2

    Treesearch

    Mee-Sook Kim; Ned B. Klopfenstein; Richard C. Hamelin

    2005-01-01

    The use of molecular genetics in forest pathology has greatly increased over the past 10 years. For the most part, molecular genetic tools were initially developed to focus on individual components (e.g., pathogen, host) of forest pathosystems. As part of broader forest ecosystem complexes, forest pathosystems involve dynamic interactions among living components (e.g...

  18. Additive genetic variation in resistance traits of an exotic pine species: little evidence for constraints on evolution of resistance against native herbivores.

    PubMed

    Moreira, X; Zas, R; Sampedro, L

    2013-05-01

    The apparent failure of invasions by alien pines in Europe has been explained by the co-occurrence of native pine congeners supporting herbivores that might easily recognize the new plants as hosts. Previous studies have reported that exotic pines show reduced tolerance and capacity to induce resistance to those native herbivores. We hypothesize that limited genetic variation in resistance to native herbivores and the existence of evolutionary trade-offs between growth and resistance could represent additional potential constraints on the evolution of invasiveness of exotic pines outside their natural range. In this paper, we examined genetic variation for constitutive and induced chemical defences (measured as non-volatile resin in the stem and total phenolics in the needles) and resistance to two major native generalist herbivores of pines in cafeteria bioassays (the phloem-feeder Hylobius abietis and the defoliator Thaumetopoea pityocampa) using half-sib families drawn from a sample of the population of Pinus radiata introduced to Spain in the mid-19th century. We found (i) significant genetic variation, with moderate-to-high narrow-sense heritabilities for both the production of constitutive non-volatile resin and induced total phenolics, and for constitutive resistance against T. pityocampa in bioassays, (ii) no evolutionary trade-offs between plant resistance and growth traits or between the production of different quantitative chemical defences and (iii) a positive genetic correlation between constitutive resistance to the two studied herbivores. Overall, results of our study indicate that the exotic pine P. radiata has limited genetic constraints on the evolution of resistance against herbivores in its introduced range, suggesting that, at least in terms of interactions with these enemies, this pine species has potential to become invasive in the future.

  19. Molecular characterization of an unauthorized genetically modified Bacillus subtilis production strain identified in a vitamin B2 feed additive.

    PubMed

    Paracchini, Valentina; Petrillo, Mauro; Reiting, Ralf; Angers-Loustau, Alexandre; Wahler, Daniela; Stolz, Andrea; Schönig, Birgit; Matthies, Anastasia; Bendiek, Joachim; Meinel, Dominik M; Pecoraro, Sven; Busch, Ulrich; Patak, Alex; Kreysa, Joachim; Grohmann, Lutz

    2017-09-01

    Many food and feed additives result from fermentation of genetically modified (GM) microorganisms. For vitamin B2 (riboflavin), GM Bacillus subtilis production strains have been developed and are often used. The presence of neither the GM strain nor its recombinant DNA is allowed for fermentation products placed on the EU market as food or feed additive. A vitamin B 2 product (80% feed grade) imported from China was analysed. Viable B. subtilis cells were identified and DNAs of two bacterial isolates (LHL and LGL) were subjected to three whole genome sequencing (WGS) runs with different devices (MiSeq, 454 or HiSeq system). WGS data revealed the integration of a chloramphenicol resistance gene, the deletion of the endogenous riboflavin (rib) operon and presence of four putative plasmids harbouring rib operons. Event- and construct-specific real-time PCR methods for detection of the GM strain and its putative plasmids in food and feed products have been developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm–Artificial Neural Network

    PubMed Central

    Ramadan Suleiman, Ahmed; Nehdi, Moncef L.

    2017-01-01

    This paper presents an approach to predicting the intrinsic self-healing in concrete using a hybrid genetic algorithm–artificial neural network (GA–ANN). A genetic algorithm was implemented in the network as a stochastic optimizing tool for the initial optimal weights and biases. This approach can assist the network in achieving a global optimum and avoid the possibility of the network getting trapped at local optima. The proposed model was trained and validated using an especially built database using various experimental studies retrieved from the open literature. The model inputs include the cement content, water-to-cement ratio (w/c), type and dosage of supplementary cementitious materials, bio-healing materials, and both expansive and crystalline additives. Self-healing indicated by means of crack width is the model output. The results showed that the proposed GA–ANN model is capable of capturing the complex effects of various self-healing agents (e.g., biochemical material, silica-based additive, expansive and crystalline components) on the self-healing performance in cement-based materials. PMID:28772495

  1. Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm-Artificial Neural Network.

    PubMed

    Ramadan Suleiman, Ahmed; Nehdi, Moncef L

    2017-02-07

    This paper presents an approach to predicting the intrinsic self-healing in concrete using a hybrid genetic algorithm-artificial neural network (GA-ANN). A genetic algorithm was implemented in the network as a stochastic optimizing tool for the initial optimal weights and biases. This approach can assist the network in achieving a global optimum and avoid the possibility of the network getting trapped at local optima. The proposed model was trained and validated using an especially built database using various experimental studies retrieved from the open literature. The model inputs include the cement content, water-to-cement ratio (w/c), type and dosage of supplementary cementitious materials, bio-healing materials, and both expansive and crystalline additives. Self-healing indicated by means of crack width is the model output. The results showed that the proposed GA-ANN model is capable of capturing the complex effects of various self-healing agents (e.g., biochemical material, silica-based additive, expansive and crystalline components) on the self-healing performance in cement-based materials.

  2. Genetics of fat intake in the determination of body mass.

    PubMed

    Chmurzynska, Agata; Mlodzik, Monika A

    2017-06-01

    Body mass and fat intake are multifactorial traits that have genetic and environmental components. The gene with the greatest effect on body mass is FTO (fat mass and obesity-associated), but several studies have shown that the effect of FTO (and of other genes) on body mass can be modified by the intake of nutrients. The so-called gene-environment interactions may also be important for the effectiveness of weight-loss strategies. Food choices, and thus fat intake, depend to some extent on individual preferences. The most important biological component of food preference is taste, and the role of fat sensitivity in fat intake has recently been pointed out. Relatively few studies have analysed the genetic components of fat intake or fatty acid sensitivity in terms of their relation to obesity. It has been proposed that decreased oral fatty acid sensitivity leads to increased fat intake and thus increased body mass. One of the genes that affect fatty acid sensitivity is CD36 (cluster of differentiation 36). However, little is known so far about the genetic component of fat sensing. We performed a literature review to identify the state of knowledge regarding the genetics of fat intake and its relation to body-mass determination, and to identify the priorities for further investigations.

  3. Early- versus late-onset obsessive-compulsive disorder: investigating genetic and clinical correlates.

    PubMed

    Hemmings, Sîan M J; Kinnear, Craig J; Lochner, Christine; Niehaus, Dana J H; Knowles, James A; Moolman-Smook, Johanna C; Corfield, Valerie A; Stein, Dan J

    2004-09-30

    There is increasing evidence that obsessive-compulsive disorder (OCD) is mediated by genetic factors. Although the precise mechanism of inheritance is unclear, recent evidence has pointed towards the involvement of the serotonergic and dopaminergic systems in the disorder's development. Furthermore, early-onset OCD appears to be a subtype that exhibits distinct clinical features and that is associated with greater familial loading. In the present investigation, South African OCD patients (n=252) were stratified according to age of onset and were clinically assessed. Additionally, selected variants in genes encoding serotonergic and dopaminergic components were investigated in a Caucasian OCD subset (n=180). This subgroup was further stratified to evaluate the role that these candidate genes may play in the genetically homogeneous Afrikaner subset (n=80). Analysis of the clinical data revealed an association between early age of onset and an increased frequency of tics, Tourette's disorder, and trichotillomania (TTM). The genetic studies yielded statistically significant results when the allelic distributions of genetic variants in the dopamine receptor type 4 gene (DRD4) were analysed in the Caucasian OCD cohort. These data support a role for the dopaminergic system, which may be relevant to the development of early-onset OCD.

  4. Genetics of ischemic stroke: future clinical applications.

    PubMed

    Wang, Michael M

    2006-11-01

    Ischemic stroke has long been thought to have a genetic component that is independent of conventional vascular risk factors. It has been estimated that over one half of stroke risk is determined by inherited genes. However, until recently, strong evidence of genetic influence on ischemic stroke has been subject to criticism because the risk factors for stroke are also inherited and because previous studies suffered from limitations imposed by this highly heterogeneous neurological disorder. Recent advances in molecular genetics have led to the identification of specific genetic loci that impart susceptibility to ischemic stroke. We review the studies of these genes and discuss the future potential applications of genetic markers on the management of ischemic stroke patients.

  5. Genetic parameters for milk mineral content and acidity predicted by mid-infrared spectroscopy in Holstein-Friesian cows.

    PubMed

    Toffanin, V; Penasa, M; McParland, S; Berry, D P; Cassandro, M; De Marchi, M

    2015-05-01

    The aim of the present study was to estimate genetic parameters for calcium (Ca), phosphorus (P) and titratable acidity (TA) in bovine milk predicted by mid-IR spectroscopy (MIRS). Data consisted of 2458 Italian Holstein-Friesian cows sampled once in 220 farms. Information per sample on protein and fat percentage, pH and somatic cell count, as well as test-day milk yield, was also available. (Co)variance components were estimated using univariate and bivariate animal linear mixed models. Fixed effects considered in the analyses were herd of sampling, parity, lactation stage and a two-way interaction between parity and lactation stage; an additive genetic and residual term were included in the models as random effects. Estimates of heritability for Ca, P and TA were 0.10, 0.12 and 0.26, respectively. Positive moderate to strong phenotypic correlations (0.33 to 0.82) existed between Ca, P and TA, whereas phenotypic weak to moderate correlations (0.00 to 0.45) existed between these traits with both milk quality and yield. Moderate to strong genetic correlations (0.28 to 0.92) existed between Ca, P and TA, and between these predicted traits with both fat and protein percentage (0.35 to 0.91). The existence of heritable genetic variation for Ca, P and TA, coupled with the potential to predict these components for routine cow milk testing, imply that genetic gain in these traits is indeed possible.

  6. DNA in soil: adsorption, genetic transformation, molecular evolution and genetic microchip.

    PubMed

    Trevors, J T

    1996-07-01

    This review examines interactions between DNA and soil with an emphasis on the persistence and stability of DNA in soil. The role of DNA in genetic transformation in soil microorganisms will also be discussed. In addition, a postulated mechanism for stabilization and elongation/assembly of primitive genetic material and the role of soil particles, salt concentrations, temperature cycling and crystal formation is examined.

  7. Human Facial Shape and Size Heritability and Genetic Correlations.

    PubMed

    Cole, Joanne B; Manyama, Mange; Larson, Jacinda R; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Li, Mao; Mio, Washington; Klein, Ophir D; Santorico, Stephanie A; Hallgrímsson, Benedikt; Spritz, Richard A

    2017-02-01

    The human face is an array of variable physical features that together make each of us unique and distinguishable. Striking familial facial similarities underscore a genetic component, but little is known of the genes that underlie facial shape differences. Numerous studies have estimated facial shape heritability using various methods. Here, we used advanced three-dimensional imaging technology and quantitative human genetics analysis to estimate narrow-sense heritability, heritability explained by common genetic variation, and pairwise genetic correlations of 38 measures of facial shape and size in normal African Bantu children from Tanzania. Specifically, we fit a linear mixed model of genetic relatedness between close and distant relatives to jointly estimate variance components that correspond to heritability explained by genome-wide common genetic variation and variance explained by uncaptured genetic variation, the sum representing total narrow-sense heritability. Our significant estimates for narrow-sense heritability of specific facial traits range from 28 to 67%, with horizontal measures being slightly more heritable than vertical or depth measures. Furthermore, for over half of facial traits, >90% of narrow-sense heritability can be explained by common genetic variation. We also find high absolute genetic correlation between most traits, indicating large overlap in underlying genetic loci. Not surprisingly, traits measured in the same physical orientation (i.e., both horizontal or both vertical) have high positive genetic correlations, whereas traits in opposite orientations have high negative correlations. The complex genetic architecture of facial shape informs our understanding of the intricate relationships among different facial features as well as overall facial development. Copyright © 2017 by the Genetics Society of America.

  8. Mathematical Modeling of Intestinal Iron Absorption Using Genetic Programming

    PubMed Central

    Colins, Andrea; Gerdtzen, Ziomara P.; Nuñez, Marco T.; Salgado, J. Cristian

    2017-01-01

    Iron is a trace metal, key for the development of living organisms. Its absorption process is complex and highly regulated at the transcriptional, translational and systemic levels. Recently, the internalization of the DMT1 transporter has been proposed as an additional regulatory mechanism at the intestinal level, associated to the mucosal block phenomenon. The short-term effect of iron exposure in apical uptake and initial absorption rates was studied in Caco-2 cells at different apical iron concentrations, using both an experimental approach and a mathematical modeling framework. This is the first report of short-term studies for this system. A non-linear behavior in the apical uptake dynamics was observed, which does not follow the classic saturation dynamics of traditional biochemical models. We propose a method for developing mathematical models for complex systems, based on a genetic programming algorithm. The algorithm is aimed at obtaining models with a high predictive capacity, and considers an additional parameter fitting stage and an additional Jackknife stage for estimating the generalization error. We developed a model for the iron uptake system with a higher predictive capacity than classic biochemical models. This was observed both with the apical uptake dataset used for generating the model and with an independent initial rates dataset used to test the predictive capacity of the model. The model obtained is a function of time and the initial apical iron concentration, with a linear component that captures the global tendency of the system, and a non-linear component that can be associated to the movement of DMT1 transporters. The model presented in this paper allows the detailed analysis, interpretation of experimental data, and identification of key relevant components for this complex biological process. This general method holds great potential for application to the elucidation of biological mechanisms and their key components in other complex

  9. The genetics of phaeochromocytoma: using clinical features to guide genetic testing.

    PubMed

    Jafri, Mariam; Maher, Eamonn R

    2012-02-01

    Phaeochromocytoma is a rare, usually benign, tumour predominantly managed by endocrinologists. Over the last decade, major advances have been made in understanding the molecular genetic basis of adrenal and extra-adrenal phaeochromocytoma (also referred to as adrenal phaeochromocytoma (aPCA) and extra-adrenal functional paraganglioma (eFPGL)). In contrast to the previously held belief that only 10% of cases had a genetic component, currently about one-third of all aPCA/eFPGL cases are thought to be attributable to germline mutations in at least nine genes (NF1, RET, SDHA, SDHB, SDHC, SDHD, TMEM127, MAX and VHL). Recognition of inherited cases of aPCA/eFPGL is critical for optimal patient management. Thus, the identification of a germline mutation can predict risks of malignancy, recurrent disease, associated non-chromaffin tumours and risks to other family members. Mutation carriers should be offered specific surveillance programmes (according to the relevant gene). In this review, we will describe the genetics of aPCA/eFPGL and strategies for genetic testing.

  10. Non-additive and epistatic effects of HLA polymorphisms contributing to risk of adult glioma.

    PubMed

    Zhang, Chenan; de Smith, Adam J; Smirnov, Ivan V; Wiencke, John K; Wiemels, Joseph L; Witte, John S; Walsh, Kyle M

    2017-11-01

    Although genome-wide association studies have identified several susceptibility loci for adult glioma, little is known regarding the potential contribution of genetic variation in the human leukocyte antigen (HLA) region to glioma risk. HLA associations have been reported for various malignancies, with many studies investigating selected candidate HLA polymorphisms. However, no systematic analysis has been conducted in glioma patients, and no investigation into potential non-additive effects has been described. We conducted comprehensive genetic analyses of HLA variants among 1746 adult glioma patients and 2312 controls of European-ancestry from the GliomaScan Consortium. Genotype data were generated with the Illumina 660-Quad array, and we imputed HLA alleles using a reference panel of 5225 individuals in the Type 1 Diabetes Genetics Consortium who underwent high-resolution HLA typing via next-generation sequencing. Case-control comparisons were adjusted for population stratification using ancestry-informative principal components. Because alleles in different loci across the HLA region are linked, we created multigene haplotypes consisting of the genes DRB1, DQA1, and DQB1. Although none of the haplotypes were associated with glioma in additive models, inclusion of a dominance term significantly improved the model for multigene haplotype HLA-DRB1*1501-DQA1*0102-DQB1*0602 (P = 0.002). Heterozygous carriers of the haplotype had an increased risk of glioma [odds ratio (OR) 1.23; 95% confidence interval (CI) 1.01-1.49], while homozygous carriers were at decreased risk compared with non-carriers (OR 0.64; 95% CI 0.40-1.01). Our results suggest that the DRB1*1501-DQA1*0102-DQB1*0602 haplotype may contribute to the risk of glioma in a non-additive manner, with the positive dominance effect partly explained by an epistatic interaction with HLA-DRB1*0401-DQA1*0301-DQB1*0301.

  11. The genetic architecture of maize (Zea mays L.) kernel weight determination.

    PubMed

    Alvarez Prado, Santiago; López, César G; Senior, M Lynn; Borrás, Lucas

    2014-09-18

    Individual kernel weight is an important trait for maize yield determination. We have identified genomic regions controlling this trait by using the B73xMo17 population; however, the effect of genetic background on control of this complex trait and its physiological components is not yet known. The objective of this study was to understand how genetic background affected our previous results. Two nested stable recombinant inbred line populations (N209xMo17 and R18xMo17) were designed for this purpose. A total of 408 recombinant inbred lines were genotyped and phenotyped at two environments for kernel weight and five other traits related to kernel growth and development. All traits showed very high and significant (P < 0.001) phenotypic variability and medium-to-high heritability (0.60-0.90). When N209xMo17 and R18xMo17 were analyzed separately, a total of 23 environmentally stable quantitative trait loci (QTL) and five epistatic interactions were detected for N209xMo17. For R18xMo17, 59 environmentally stable QTL and 17 epistatic interactions were detected. A joint analysis detected 14 stable QTL regardless of the genetic background. Between 57 and 83% of detected QTL were population specific, denoting medium-to-high genetic background effects. This percentage was dependent on the trait. A meta-analysis including our previous B73xMo17 results identified five relevant genomic regions deserving further characterization. In summary, our grain filling traits were dominated by small additive QTL with several epistatic and few environmental interactions and medium-to-high genetic background effects. This study demonstrates that the number of detected QTL and additive effects for different physiologically related grain filling traits need to be understood relative to the specific germplasm. Copyright © 2014 Alvarez Prado et al.

  12. A novel approach to analyzing fMRI and SNP data via parallel independent component analysis

    NASA Astrophysics Data System (ADS)

    Liu, Jingyu; Pearlson, Godfrey; Calhoun, Vince; Windemuth, Andreas

    2007-03-01

    There is current interest in understanding genetic influences on brain function in both the healthy and the disordered brain. Parallel independent component analysis, a new method for analyzing multimodal data, is proposed in this paper and applied to functional magnetic resonance imaging (fMRI) and a single nucleotide polymorphism (SNP) array. The method aims to identify the independent components of each modality and the relationship between the two modalities. We analyzed 92 participants, including 29 schizophrenia (SZ) patients, 13 unaffected SZ relatives, and 50 healthy controls. We found a correlation of 0.79 between one fMRI component and one SNP component. The fMRI component consists of activations in cingulate gyrus, multiple frontal gyri, and superior temporal gyrus. The related SNP component is contributed to significantly by 9 SNPs located in sets of genes, including those coding for apolipoprotein A-I, and C-III, malate dehydrogenase 1 and the gamma-aminobutyric acid alpha-2 receptor. A significant difference in the presences of this SNP component is found between the SZ group (SZ patients and their relatives) and the control group. In summary, we constructed a framework to identify the interactions between brain functional and genetic information; our findings provide new insight into understanding genetic influences on brain function in a common mental disorder.

  13. Overlap of heritable influences between cannabis use disorder, frequency of use and opportunity to use cannabis: trivariate twin modelling and implications for genetic design.

    PubMed

    Hines, Lindsey A; Morley, Katherine I; Rijsdijk, Fruhling; Strang, John; Agrawal, Arpana; Nelson, Elliot C; Statham, Dixie; Martin, Nicholas G; Lynskey, Michael T

    2018-03-13

    The genetic component of Cannabis Use Disorder may overlap with influences acting more generally on early stages of cannabis use. This paper aims to determine the extent to which genetic influences on the development of cannabis abuse/dependence are correlated with those acting on the opportunity to use cannabis and frequency of use. A cross-sectional study of 3303 Australian twins, measuring age of onset of cannabis use opportunity, lifetime frequency of cannabis use, and lifetime DSM-IV cannabis abuse/dependence. A trivariate Cholesky decomposition estimated additive genetic (A), shared environment (C) and unique environment (E) contributions to the opportunity to use cannabis, the frequency of cannabis use, cannabis abuse/dependence, and the extent of overlap between genetic and environmental factors associated with each phenotype. Variance components estimates were A = 0.64 [95% confidence interval (CI) 0.58-0.70] and E = 0.36 (95% CI 0.29-0.42) for age of opportunity to use cannabis, A = 0.74 (95% CI 0.66-0.80) and E = 0.26 (95% CI 0.20-0.34) for cannabis use frequency, and A = 0.78 (95% CI 0.65-0.88) and E = 0.22 (95% CI 0.12-0.35) for cannabis abuse/dependence. Opportunity shares 45% of genetic influences with the frequency of use, and only 17% of additive genetic influences are unique to abuse/dependence from those acting on opportunity and frequency. There are significant genetic contributions to lifetime cannabis abuse/dependence, but a large proportion of this overlaps with influences acting on opportunity and frequency of use. Individuals without drug use opportunity are uninformative, and studies of drug use disorders must incorporate individual exposure to accurately identify aetiology.

  14. Nontraditional inheritance: Genetics and the nature of science, now titled, The puzzle of inheritance: Genetics and the methods of science. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInerney, J.D.

    1998-08-31

    This project led to the development of an instructional module designed for use in high school biology classes. The module contains two major components. The first is an overview for teachers, which introduces the module, describes the Human Genome Project, and addresses issues in the philosophy of science and some of the ethical, legal, and social implications of research in genetics. It provides a survey of fundamental genetics concepts and of new, nontraditional concepts of inheritance. The second component provides six instructional activities appropriate for high school or introductory college students.

  15. Marital assortment for genetic similarity.

    PubMed

    Eckman, Ronael E; Williams, Robert; Nagoshi, Craig

    2002-10-01

    The present study involved analyses of a Caucasian American sample (n=949) and a Japanese American sample (n=400) for factors supporting Genetic Similarity Theory (GST). The analyses found no evidence for the presence of genetic similarity between spouses in either sample for the blood group analyses of nine loci. All results indicated random mating for blood group genes. The results did not provide consistent substantial support to show that spousal similarity is correlated with the degree of genetic component of a trait for a set of seventeen individual differences variables, with only the Caucasian sample yielding significant correlations for this analysis. A third analysis examining the correlation between presence of spousal genetic similarity and spousal similarity on observable traits was not performed because spousal genetic similarity was not observed in either sample. The overall implication of the study is that GST is not supported as an explanation for spousal similarity in humans.

  16. Genetic secrets: Protecting privacy and confidentiality in the genetic era. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothstein, M.A.

    1998-09-01

    Few developments are likely to affect human beings more profoundly in the long run than the discoveries resulting from advances in modern genetics. Although the developments in genetic technology promise to provide many additional benefits, their application to genetic screening poses ethical, social, and legal questions, many of which are rooted in issues of privacy and confidentiality. The ethical, practical, and legal ramifications of these and related questions are explored in depth. The broad range of topics includes: the privacy and confidentiality of genetic information; the challenges to privacy and confidentiality that may be projected to result from the emergingmore » genetic technologies; the role of informed consent in protecting the confidentiality of genetic information in the clinical setting; the potential uses of genetic information by third parties; the implications of changes in the health care delivery system for privacy and confidentiality; relevant national and international developments in public policies, professional standards, and laws; recommendations; and the identification of research needs.« less

  17. The fine-scale genetic structure and evolution of the Japanese population.

    PubMed

    Takeuchi, Fumihiko; Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua; Teo, Yik-Ying; Kato, Norihiro

    2017-01-01

    The contemporary Japanese populations largely consist of three genetically distinct groups-Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics.

  18. The fine-scale genetic structure and evolution of the Japanese population

    PubMed Central

    Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua

    2017-01-01

    The contemporary Japanese populations largely consist of three genetically distinct groups—Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics. PMID:29091727

  19. Genetic Relationships among Different Chemotypes of Lupinus sulphureus.

    PubMed

    Cook, Daniel; Mott, Ivan W; Larson, Steven R; Lee, Stephen T; Johnson, Robert; Stonecipher, Clinton A

    2018-02-28

    Lupines (Lupinus spp.) are a common plant legume species found on western U.S. rangelands. Lupinus spp. may contain quinolizidine and/or piperidine alkaloids that can be toxic and/or teratogenic to grazing livestock. Alkaloid profiles may vary between and within a species. The objectives of this study were to (1) further explore the characteristic alkaloid profiles of Lupinus sulphureus using field collections and (2) explore the phylogenetic relationship of the different populations and chemotypes of L. sulphureus using the amplified fragment length polymorphism method of DNA fingerprinting, thus providing possible explanations to the phenomena of multiple chemotypes within a species. A total of 49 accessions of L. sulphureus were classified into seven chemotypes. The DNA profiles showed that one L. sulphureus chemotype, chemotype A, is genetically divergent from the other chemotypes of L. sulphureus, suggesting that it represents an unresolved lupine taxon, possibly a new lupine species. Additionally, the different chemotypes of L. sulphureus represented different genetic groups, as shown by Bayesian cluster analysis and principle component analysis.

  20. Combinatorial Effects of Diet and Genetics on Inflammatory Bowel Disease Pathogenesis

    PubMed Central

    Dixon, Laura J.; Kabi, Amrita; Nickerson, Kourtney P.; McDonald, Christine

    2014-01-01

    Inflammatory bowel disease (IBD) encompasses a group of disorders affecting the gastrointestinal tract characterized by acute and chronic inflammation. These are complex and multifactorial disorders that arise in part from a genetic predisposition. However, the increasing incidence of IBD in developing countries suggests that environmental factors, such as diet, are also critical components of disease susceptibility. Evidence suggests that consumption of a Western diet, enriched with saturated fat, refined carbohydrates, and food additives, is associated with increased IBD risk. Dietary components, such as omega-6 fatty acids, long chain fatty acids, protein, and digestible carbohydrates, may contribute to IBD pathogenesis through altering intestinal microbiota, increasing intestinal permeability, and promoting inflammation; whereas omega-3 fatty acids, medium chain triglycerides, and non-digestible carbohydrates improve these parameters and intestinal health. However, the limited amount of prospective studies, small sample sizes, and the heterogeneity of disease subtype result in inconsistencies between studies and difficulty in conclusively determining the specific effects of diet on intestinal homeostasis. There are no standard clinical dietary recommendations for IBD patients. However, exclusionary diet interventions have shown some efficacy in relieving symptoms or inducing remission, suggesting more research is needed to fully understand how diet influences disease behavior or combines with other IBD risk factors to promote disease. This review focuses on the associations of various dietary components and IBD risk in clinical studies and genetically susceptible IBD models. PMID:25581832

  1. Infrared Preheating to Enhance Interlayer Strength of Components Printed on the Big Area Additive Manufacturing (BAAM) System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishore, Vidya; Ajinjeru, Christine; Duty, Chad E

    The Big Area Additive Manufacturing (BAAM) system has the capacity to print structures on the order of several meters at a rate exceeding 50 kg/h, thereby having the potential to significantly impact the production of components in automotive, aerospace and energy sectors. However, a primary issue that limits the functional use of such parts is mechanical anisotropy. The strength of printed parts across successive layers in the build direction (z-direction) is significantly lower than the corresponding in-plane strength (x-y directions). This is largely due to poor bonding between the printed layers as the lower layers cool below the glass transitionmore » temperature (Tg) before the next layer is deposited. This work explores the use of infrared heating to increase the surface temperature of the printed layer just prior to deposition of new material to improve the interlayer strength of the components. The material used in this study was acrylonitrile butadiene styrene (ABS) reinforced with 20% chopped carbon fiber by weight. Significant improvements in z-strength were observed for the parts whose surface temperature was increased from below Tg to close to or above Tg using infrared heating. Parameters such as print speed, nozzle diameter and extrusion temperature were also found to impact the heat input required to enhance interlayer adhesion without significantly degrading the polymer and compromising on surface finish.« less

  2. Additional sex combs-like 1 belongs to the enhancer of trithorax and Polycomb Group and genetically interacts with Cbx2 in mice

    PubMed Central

    Fisher, C.L.; Lee, I.; Bloyer, S.; Bozza, S.; Chevalier, J.; Dahl, A; Bodner, C.; Helgason, C. D.; Hess, J.L.; Humphries, R.K.; Brock, H.W.

    2009-01-01

    The Additional sex combs (Asx) gene of Drosophila behaves genetically as an enhancer of trithorax and Polycomb (ETP) in displaying bidirectional homeotic phenotypes, suggesting that is required for maintenance of both activation and silencing of Hox genes. There are 3 murine homologs of Asx called Additional sex combs-like1, 2, and-3. Asxl1 is required for normal adult hematopoiesis; however its embryonic function is unknown. We used a targeted mouse mutant line Asxl1tm1Bc to determine if Asxl1 is required to silence and activate Hox genes in mice during axial patterning. The mutant embryos exhibit simultaneous anterior and posterior transformations of the axial skeleton, consistent with a role for Asxl1 in activation and silencing of Hox genes. Transformations of the axial skeleton are enhanced in compound mutant embryos for the Polycomb group gene M33/Cbx2. Hox a4, a7, and c8 are derepressed in Asxl1tm1Bc mutants in the antero-posterior axis, but Hox c8 expression is reduced in the brain of mutants, consistent with Asxl1 being required both for activation and repression of Hox genes. We discuss the genetic and molecular definition of ETPs, and suggest that the function of Asxl1 depends on its cellular context. PMID:19833123

  3. Depth as an Organizing Force in Pocillopora damicornis: Intra-Reef Genetic Architecture

    PubMed Central

    Gorospe, Kelvin D.; Karl, Stephen A.

    2015-01-01

    Relative to terrestrial plants, and despite similarities in life history characteristics, the potential for corals to exhibit intra-reef local adaptation in the form of genetic differentiation along an environmental gradient has received little attention. The potential for natural selection to act on such small scales is likely increased by the ability of coral larval dispersal and settlement to be influenced by environmental cues. Here, we combine genetic, spatial, and environmental data for a single patch reef in Kāne‘ohe Bay, O‘ahu, Hawai‘i, USA in a landscape genetics framework to uncover environmental drivers of intra-reef genetic structuring. The genetic dataset consists of near-exhaustive sampling (n = 2352) of the coral, Pocillopora damicornis at our study site and six microsatellite genotypes. In addition, three environmental parameters – depth and two depth-independent temperature indices – were collected on a 4 m grid across 85 locations throughout the reef. We use ordinary kriging to spatially interpolate our environmental data and estimate the three environmental parameters for each colony. Partial Mantel tests indicate a significant correlation between genetic relatedness and depth while controlling for space. These results are also supported by multi-model inference. Furthermore, spatial Principle Component Analysis indicates a statistically significant genetic cline along a depth gradient. Binning the genetic dataset based on size-class revealed that the correlation between genetic relatedness and depth was significant for new recruits and increased for larger size classes, suggesting a possible role of larval habitat selection as well as selective mortality in structuring intra-reef genetic diversity. That both pre- and post-recruitment processes may be involved points to the adaptive role of larval habitat selection in increasing adult survival. The conservation importance of uncovering intra-reef patterns of genetic diversity is

  4. Mutations in the NHEJ component XRCC4 cause primordial dwarfism.

    PubMed

    Murray, Jennie E; van der Burg, Mirjam; IJspeert, Hanna; Carroll, Paula; Wu, Qian; Ochi, Takashi; Leitch, Andrea; Miller, Edward S; Kysela, Boris; Jawad, Alireza; Bottani, Armand; Brancati, Francesco; Cappa, Marco; Cormier-Daire, Valerie; Deshpande, Charu; Faqeih, Eissa A; Graham, Gail E; Ranza, Emmanuelle; Blundell, Tom L; Jackson, Andrew P; Stewart, Grant S; Bicknell, Louise S

    2015-03-05

    Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Genetic control of inflorescence architecture in legumes

    PubMed Central

    Benlloch, Reyes; Berbel, Ana; Ali, Latifeh; Gohari, Gholamreza; Millán, Teresa; Madueño, Francisco

    2015-01-01

    The architecture of the inflorescence, the shoot system that bears the flowers, is a main component of the huge diversity of forms found in flowering plants. Inflorescence architecture has also a strong impact on the production of fruits and seeds, and on crop management, two highly relevant agronomical traits. Elucidating the genetic networks that control inflorescence development, and how they vary between different species, is essential to understanding the evolution of plant form and to being able to breed key architectural traits in crop species. Inflorescence architecture depends on the identity and activity of the meristems in the inflorescence apex, which determines when flowers are formed, how many are produced and their relative position in the inflorescence axis. Arabidopsis thaliana, where the genetic control of inflorescence development is best known, has a simple inflorescence, where the primary inflorescence meristem directly produces the flowers, which are thus borne in the main inflorescence axis. In contrast, legumes represent a more complex inflorescence type, the compound inflorescence, where flowers are not directly borne in the main inflorescence axis but, instead, they are formed by secondary or higher order inflorescence meristems. Studies in model legumes such as pea (Pisum sativum) or Medicago truncatula have led to a rather good knowledge of the genetic control of the development of the legume compound inflorescence. In addition, the increasing availability of genetic and genomic tools for legumes is allowing to rapidly extending this knowledge to other grain legume crops. This review aims to describe the current knowledge of the genetic network controlling inflorescence development in legumes. It also discusses how the combination of this knowledge with the use of emerging genomic tools and resources may allow rapid advances in the breeding of grain legume crops. PMID:26257753

  6. Phenotypic and genetic structure of traits delineating personality disorder.

    PubMed

    Livesley, W J; Jang, K L; Vernon, P A

    1998-10-01

    The evidence suggests that personality traits are hierarchically organized with more specific or lower-order traits combining to form more generalized higher-order traits. Agreement exists across studies regarding the lower-order traits that delineate personality disorder but not the higher-order traits. This study seeks to identify the higher-order structure of personality disorder by examining the phenotypic and genetic structures underlying lower-order traits. Eighteen lower-order traits were assessed using the Dimensional Assessment of Personality Disorder-Basic Questionnaire in samples of 656 personality disordered patients, 939 general population subjects, and a volunteer sample of 686 twin pairs. Principal components analysis yielded 4 components, labeled Emotional Dysregulation, Dissocial Behavior, Inhibitedness, and Compulsivity, that were similar across the 3 samples. Multivariate genetic analyses also yielded 4 genetic and environmental factors that were remarkably similar to the phenotypic factors. Analysis of the residual heritability of the lower-order traits when the effects of the higher-order factors were removed revealed a substantial residual heritable component for 12 of the 18 traits. The results support the following conclusions. First, the stable structure of traits across clinical and nonclinical samples is consistent with dimensional representations of personality disorders. Second, the higher-order traits of personality disorder strongly resemble dimensions of normal personality. This implies that a dimensional classification should be compatible with normative personality. Third, the residual heritability of the lower-order traits suggests that the personality phenotypes are based on a large number of specific genetic components.

  7. Metabolism, growth, and the energetic definition of fitness: a quantitative genetic study in the land snail Cornu aspersum.

    PubMed

    Bruning, Andrea; Gaitán-Espitia, Juan Diego; González, Avia; Bartheld, José Luis; Nespolo, Roberto F

    2013-01-01

    Life-history evolution-the way organisms allocate time and energy to reproduction, survival, and growth-is a central question in evolutionary biology. One of its main tenets, the allocation principle, predicts that selection will reduce energy costs of maintenance in order to divert energy to survival and reproduction. The empirical support for this principle is the existence of a negative relationship between fitness and metabolic rate, which has been observed in some ectotherms. In juvenile animals, a key function affecting fitness is growth rate, since fast growers will reproduce sooner and maximize survival. In principle, design constraints dictate that growth rate cannot be reduced without affecting maintenance costs. Hence, it is predicted that juveniles will show a positive relationship between fitness (growth rate) and metabolic rate, contrarily to what has been observed in adults. Here we explored this problem using land snails (Cornu aspersum). We estimated the additive genetic variance-covariance matrix for growth and standard metabolic rate (SMR; rate of CO2 production) using 34 half-sibling families. We measured eggs, hatchlings, and juveniles in 208 offspring that were isolated right after egg laying (i.e., minimizing maternal and common environmental variance). Surprisingly, our results showed that additive genetic effects (narrow-sense heritabilities, h(2)) and additive genetic correlations (rG) were small and nonsignificant. However, the nonadditive proportion of phenotypic variances and correlations (rC) were unexpectedly large and significant. In fact, nonadditive genetic effects were positive for growth rate and SMR ([Formula: see text]; [Formula: see text]), supporting the idea that fitness (growth rate) cannot be maximized without incurring maintenance costs. Large nonadditive genetic variances could result as a consequence of selection eroding the additive genetic component, which suggests that past selection could have produced nonadditive

  8. Genetic evaluation of weekly body weight in Japanese quail using random regression models.

    PubMed

    Karami, K; Zerehdaran, S; Tahmoorespur, M; Barzanooni, B; Lotfi, E

    2017-02-01

    1. A total of 11 826 records from 2489 quails, hatched between 2012 and 2013, were used to estimate genetic parameters for BW (body weight) of Japanese quail using random regression models. Weekly BW was measured from hatch until 49 d of age. WOMBAT software (University of New England, Australia) was used for estimating genetic and phenotypic parameters. 2. Nineteen models were evaluated to identify the best orders of Legendre polynomials. A model with Legendre polynomial of order 3 for additive genetic effect, order 3 for permanent environmental effects and order 1 for maternal permanent environmental effects was chosen as the best model. 3. According to the best model, phenotypic and genetic variances were higher at the end of the rearing period. Although direct heritability for BW reduced from 0.18 at hatch to 0.12 at 7 d of age, it gradually increased to 0.42 at 49 d of age. It indicates that BW at older ages is more controlled by genetic components in Japanese quail. 4. Phenotypic and genetic correlations between adjacent periods except hatching weight were more closely correlated than remote periods. The present results suggested that BW at earlier ages, especially at hatch, are different traits compared to BW at older ages. Therefore, BW at earlier ages could not be used as a selection criterion for improving BW at slaughter age.

  9. 29 CFR 2590.702-1 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-degree relatives include parents, spouses, siblings, and children. (B) Second-degree relatives include... include great-great grandparents, great-great grandchildren, and children of first cousins. (3) Genetic... a health care professional with appropriate training and expertise in the field of medicine involved...

  10. Regulating genetic privacy in the online health information era.

    PubMed

    Magnusson, Roger S

    As the clinical implications of the genetic components of disease come to be better understood, there is likely to be a significant increase in the volume of genetic information held within clinical records. As patient health care records, in turn, come on-line as part of broader health information networks, there is likely to be considerable pressure in favour of special laws protecting genetic privacy. This paper reviews some of the privacy challenges posed by electronic health records, some government initiatives in this area, and notes the impact that developments in genetic testing will have upon the 'genetic content' of e-health records. Despite the sensitivity of genetic information, the paper argues against a policy of 'genetic exceptionalism', and its implications for genetic privacy laws.

  11. The genetics of obesity.

    USDA-ARS?s Scientific Manuscript database

    All definitions of the metabolic syndrome include some form of obesity as one of the possible features. Body mass index (BMI) has a known genetic component, currently estimated to account for about 70% of the population variance in weight status for non-syndromal obesity. Much research effort has be...

  12. Reaching a Consensus on the Definition of Genetic Literacy that Is Required from a Twenty-First-Century Citizen

    NASA Astrophysics Data System (ADS)

    Boerwinkel, Dirk Jan; Yarden, Anat; Waarlo, Arend Jan

    2017-12-01

    To determine what knowledge of genetics is needed for decision-making on genetic-related issues, a consensus-reaching approach was used. An international group of 57 experts, involved in teaching, studying, or developing genetic education and communication or working with genetic applications in medicine, agriculture, or forensics, answered the questions: "What knowledge of genetics is relevant to those individuals not professionally involved in science?" and "Why is this knowledge relevant?" The answers were classified in different knowledge components following the PISA 2015 science framework. During a workshop with the participants, the results were discussed and applied to seven cases in which genetic knowledge is relevant for decision-making. The analysis of these discussions resulted in a revised framework consisting of nine conceptual knowledge components, three sociocultural components, and four epistemic components. The framework can be used in curricular decisions; its open character allows for including new technologies and applications and facilitates comparisons of different cases.

  13. Common genetic variation and novel loci associated with volumetric mammographic density.

    PubMed

    Brand, Judith S; Humphreys, Keith; Li, Jingmei; Karlsson, Robert; Hall, Per; Czene, Kamila

    2018-04-17

    Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but much of its genetic variation remains unexplained. We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort (n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index, menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive contributions from single-nucleotide polymorphisms (SNP-based heritability [h 2 SNP ]) in 4948 participants of the cohort. In total, three novel MD loci were identified (at P < 5 × 10 - 8 ): one for percent dense volume (HABP2) and two for the absolute dense volume (INHBB, LINC01483). INHBB is an established locus for ER-negative breast cancer, and HABP2 and LINC01483 represent putative new breast cancer susceptibility loci, because both loci were associated with breast cancer in available meta-analysis data including 122,977 breast cancer cases and 105,974 control subjects (P < 0.05). h 2 SNP (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07), and 0.25 (0.07), respectively. Corresponding ratios of h 2 SNP to previously observed narrow-sense h 2 estimates in the same cohort were 0.46, 0.72, and 0.41, respectively. These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is explained by common genetic variation with h 2 SNP /h 2 ratios varying between dense and nondense MD components.

  14. Genetic variation facilitates seedling establishment but not population growth rate of a perennial invader

    PubMed Central

    Li, Shou-Li; Vasemägi, Anti; Ramula, Satu

    2016-01-01

    Background and Aims Assessing the demographic consequences of genetic variation is fundamental to invasion biology. However, genetic and demographic approaches are rarely combined to explore the effects of genetic variation on invasive populations in natural environments. This study combined population genetics, demographic data and a greenhouse experiment to investigate the consequences of genetic variation for the population fitness of the perennial, invasive herb Lupinus polyphyllus. Methods Genetic and demographic data were collected from 37 L. polyphyllus populations representing different latitudes in Finland, and genetic variation was characterized based on 13 microsatellite loci. Associations between genetic variation and population size, population density, latitude and habitat were investigated. Genetic variation was then explored in relation to four fitness components (establishment, survival, growth, fecundity) measured at the population level, and the long-term population growth rate (λ). For a subset of populations genetic variation was also examined in relation to the temporal variability of λ. A further assessment was made of the role of natural selection in the observed variation of certain fitness components among populations under greenhouse conditions. Key Results It was found that genetic variation correlated positively with population size, particularly at higher latitudes, and differed among habitat types. Average seedling establishment per population increased with genetic variation in the field, but not under greenhouse conditions. Quantitative genetic divergence (QST) based on seedling establishment in the greenhouse was smaller than allelic genetic divergence (F′ST), indicating that unifying selection has a prominent role in this fitness component. Genetic variation was not associated with average survival, growth or fecundity measured at the population level, λ or its variability. Conclusions The study suggests that although genetic

  15. The Effects of Pre-Fermentative Addition of Oenological Tannins on Wine Components and Sensorial Qualities of Red Wine.

    PubMed

    Chen, Kai; Escott, Carlos; Loira, Iris; Del Fresno, Juan Manuel; Morata, Antonio; Tesfaye, Wendu; Calderon, Fernando; Benito, Santiago; Suárez-Lepe, Jose Antonio

    2016-10-31

    Today in the wine industry, oenological tannins are widely used to improve wine quality and prevent oxidation in wine aging. With the development of tannin products, new oenological tannins are developed with many specific functions, such as modifying antioxidant effect, colour stabilization and aroma modifications. The aim of this work is to investigate effects of pre-fermentative addition of oenological tannins on wine colour, anthocyanins, volatile compounds and sensorial properties. In this case, Syrah juice was extracted with classic flash thermovinification from fresh must in order to release more colour and tannins. Three types of oenological tannins, which are, respectively, derived from grape skin, seed ( Vitis vinifera ) and French oak ( Quercus robur and Querrus petraea ), were selected to carry out the experiments with seven treatments. Results indicated that tannin treatments significantly improved wine aroma complexity and sensorial properties. However, the concentration of some stable pigments such as Vitisin A, Vitisin A-Ac and Vitisin B was negatively affected by tannin additions. Nevertheless, by means of cluster analysis and principal component analysis, it was observed that higher alcohols were significantly promoted by grape seed tannin while most anthocyanins can be improved by addition of grape tannins. In conclusion, low amount of oenological tannin derived from grape seed is a promising method to be applied especially for young red wine making.

  16. Genetic erosion of Phoenix dactylifera L.: Perceptible, probable or possible?

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity of date palm (Phoenix dactylefera L.) encompasses genetic differences among and within species, subspecies, populations, cultivars, and individual clones in traditional oases and plantations. Components of this diversity can be estimated, throughout the tree’s ontogeny, at the phen...

  17. Sousse: extreme genetic heterogeneity in North Africa.

    PubMed

    Fadhlaoui-Zid, Karima; Garcia-Bertrand, Ralph; Alfonso-Sánchez, Miguel A; Zemni, Ramzi; Benammar-Elgaaied, Amel; Herrera, Rene J

    2015-01-01

    The male genetic landscape of the territory currently known as Tunisia is hampered by the scarcity of data, especially from cosmopolitan areas such as the coastal city of Sousse. In order to alleviate this lacuna, 220 males from Sousse were examined, for the first time, for more than 50 Y-chromosome single-nucleotide polymorphisms (Y-SNPs) markers and compared with 3099 individuals from key geographically targeted locations in North Africa, Europe and the Near East. The paternal lineages observed belong to a common set of Y haplogroups previously described in North Africa. In addition to the prominent autochthonous North African E-M81 haplogroup which is exclusively represented by its subclade E-M183 (44.55% of Y-chromosomes), a number of Near Eastern Neolithic lineages including E-M78, J-M267 and J-M172 account for 39% of the Y-chromosomes detected. Principal component analysis based on haplogroup frequencies, multidimensional scaling based on Rst genetic distances and analyses of molecular variance using both Y-chromosome short tandem repeat haplotypes and Y-SNP haplogroup data revealed that the Tunisian and North African groups, as a whole, are intra- and inter-specific diverse with Sousse being highly heterogeneous.

  18. 21 CFR 71.4 - Samples; additional information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL COLOR... samples of the color additive, articles used as components thereof, or of the food, drug, or cosmetic in... additive, or articles used as components thereof, or of the food, drug, or cosmetic in which the color...

  19. 21 CFR 71.4 - Samples; additional information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL COLOR... samples of the color additive, articles used as components thereof, or of the food, drug, or cosmetic in... additive, or articles used as components thereof, or of the food, drug, or cosmetic in which the color...

  20. 21 CFR 71.4 - Samples; additional information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL COLOR... samples of the color additive, articles used as components thereof, or of the food, drug, or cosmetic in... additive, or articles used as components thereof, or of the food, drug, or cosmetic in which the color...

  1. 21 CFR 71.4 - Samples; additional information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL COLOR... samples of the color additive, articles used as components thereof, or of the food, drug, or cosmetic in... additive, or articles used as components thereof, or of the food, drug, or cosmetic in which the color...

  2. 21 CFR 71.4 - Samples; additional information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL COLOR... samples of the color additive, articles used as components thereof, or of the food, drug, or cosmetic in... additive, or articles used as components thereof, or of the food, drug, or cosmetic in which the color...

  3. Genetic Variation in Complement Component 2 of the Classical Complement Pathway is Associated with Increased Mortality and Infection: A Study of 627 Trauma Patients

    PubMed Central

    Morris, John A.; Francois, Cedric; Olson, Paul K.; Cotton, Bryan A.; Summar, Marshall; Jenkins, Judith M.; Norris, Patrick R.; Moore, Jason H.; Williams, Anna E.; McNew, Brent S.; Canter, Jeffrey A.

    2009-01-01

    Trauma is a disease of inflammation. Complement Component 2 (C2) is a protease involved in activation of complement through the classical pathway and has been implicated in a variety of chronic inflammatory diseases. We hypothesized that genetic variation in C2 (E318D) identifies a high-risk subgroup of trauma patients reflecting increased mortality and infection (Ventilator associated pneumonia: VAP). Consequently, genetic variation in C2 may stratify patient risk and illuminate underlying mechanisms for therapeutic intervention. Methods DNA samples from 702 trauma patients were genotyped for C2 E318D and linked with covariates (age: mean 42.8 years, gender: 74% male, ethnicity: 80% Caucasian, mechanism: 84% blunt, ISS: mean 25.0, admission lactate: mean 3.13 mEq/L) and outcomes: mortality 9.9% and VAP: 18.5%. VAP was defined by quantitative bronchoalveolar lavage (>104). Multivariate regression determined the relationship of genotype and covariates to risk of death and VAP. However, patients with ISS ≥ 45 were excluded from the multivariate analysis, as magnitude of injury overwhelms genetics and covariates in determining outcome. Results 52 patients (8.3%) had the high-risk heterozygous genotype, associated with a significant increase in mortality and VAP. Conclusion In 702 trauma patients, 8.3% had a high-risk genetic variation in C2 associated with increased mortality (OR=2.65) and infection (OR=2.00). This variation: 1) Identifies a previously unknown high risk group for infection and mortality; 2) Can be determined on admission; 3) May provide opportunity for early therapeutic intervention; and 4) Requires validation in a distinct cohort of patients. PMID:19430225

  4. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 80 [EPA-HQ-OAR-2011-0542; FRL-9642-3] RIN 2060-AR07 Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under... of Sec. 80.1426 to identify additional renewable fuel production pathways and pathway components that...

  5. Direct and social genetic effects on body weight at 270 days and carcass and ham quality traits in heavy pigs.

    PubMed

    Rostellato, R; Sartori, C; Bonfatti, V; Chiarot, G; Carnier, P

    2015-01-01

    The aims of this study were to estimate covariance components for BW at 270 d (BW270) and carcass and ham quality traits in heavy pigs using models accounting for social effects and to compare the ability of such models to fit the data relative to models ignoring social interactions. Phenotypic records were from 9,871 pigs sired by 293 purebred boars mated to 456 crossbred sows. Piglets were born and reared at the same farm and randomly assigned at 60 d of age to groups (6.1 pigs per group on average) housed in finishing pens, each having an area of 6 m(2). The average additive genetic relationship among group mates was 0.11. Pigs were slaughtered at 277 ± 3 d of age and 169.7 ± 13.9 kg BW in groups of nearly 70 animals each. Four univariate animal models were compared: a basic model (M1) including only direct additive genetic effects, a model (M2) with nonheritable social group (pen) effects in addition to effects in M1, a model (M3) accounting for litter effects in addition to M2, and a model (M4) accounting for social genetic effects in addition to effects in M3. Restricted maximum likelihood estimates of covariance components were obtained for BW270; carcass backfat depth; carcass lean meat content (CLM); iodine number (IOD); and linoleic acid content (LIA) of raw ham subcutaneous fat; subcutaneous fat depth in the proximity of semimembranosus muscle (SFD1) and quadriceps femoris muscle (SFD2); and linear scores for ham round shape (RS), subcutaneous fat (SF), and marbling. Likelihood ratio tests indicated that, for all traits, M2 fit the data better than M1 and that M3 was superior to M2 except for SFD1 and SFD2. Model M4 was significantly better than M3 for BW270 (P < 0.001) and CLM, IOD, RS, and SF (P < 0.05). The contribution of social genetic effects to the total heritable variance was large for CLM and BW270, ranging from 33.2 to 35%, whereas the one for ham quality traits ranged from 6.8 (RS) to 11.2% (SF). Direct and social genetic effects on BW270

  6. Experimental Population Genetics in the Introductory Genetics Laboratory Using "Drosophila" as a Model Organism

    ERIC Educational Resources Information Center

    Johnson, Ronald; Kennon, Tillman

    2009-01-01

    Hypotheses of population genetics are derived and tested by students in the introductory genetics laboratory classroom as they explore the effects of biotic variables (physical traits of fruit flies) and abiotic variables (island size and distance) on fruit fly populations. In addition to this hypothesis-driven experiment, the development of…

  7. Feature selection for neural network based defect classification of ceramic components using high frequency ultrasound.

    PubMed

    Kesharaju, Manasa; Nagarajah, Romesh

    2015-09-01

    The motivation for this research stems from a need for providing a non-destructive testing method capable of detecting and locating any defects and microstructural variations within armour ceramic components before issuing them to the soldiers who rely on them for their survival. The development of an automated ultrasonic inspection based classification system would make possible the checking of each ceramic component and immediately alert the operator about the presence of defects. Generally, in many classification problems a choice of features or dimensionality reduction is significant and simultaneously very difficult, as a substantial computational effort is required to evaluate possible feature subsets. In this research, a combination of artificial neural networks and genetic algorithms are used to optimize the feature subset used in classification of various defects in reaction-sintered silicon carbide ceramic components. Initially wavelet based feature extraction is implemented from the region of interest. An Artificial Neural Network classifier is employed to evaluate the performance of these features. Genetic Algorithm based feature selection is performed. Principal Component Analysis is a popular technique used for feature selection and is compared with the genetic algorithm based technique in terms of classification accuracy and selection of optimal number of features. The experimental results confirm that features identified by Principal Component Analysis lead to improved performance in terms of classification percentage with 96% than Genetic algorithm with 94%. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Analysis of genetic diversity in banana cultivars (Musa cvs.) from the South of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analyses*

    PubMed Central

    Opara, Umezuruike Linus; Jacobson, Dan; Al-Saady, Nadiya Abubakar

    2010-01-01

    Banana is an important crop grown in Oman and there is a dearth of information on its genetic diversity to assist in crop breeding and improvement programs. This study employed amplified fragment length polymorphism (AFLP) to investigate the genetic variation in local banana cultivars from the southern region of Oman. Using 12 primer combinations, a total of 1094 bands were scored, of which 1012 were polymorphic. Eighty-two unique markers were identified, which revealed the distinct separation of the seven cultivars. The results obtained show that AFLP can be used to differentiate the banana cultivars. Further classification by phylogenetic, hierarchical clustering and principal component analyses showed significant differences between the clusters found with molecular markers and those clusters created by previous studies using morphological analysis. Based on the analytical results, a consensus dendrogram of the banana cultivars is presented. PMID:20443211

  9. Genetic surgery - a right strategy to attack cancer.

    PubMed

    Sverdlov, Eugene D

    2011-12-01

    The approaches now united under the term "gene therapy" can be divided into two broad strategies: (1) strategy using the ideology of molecular targeted therapy, but with genes in the role of agents targeted at certain molecular component(s) or pathways presumably crucial for cancer maintenance; (ii) strategy aimed at the destruction of tumors as a whole exploiting the features shared by all cancers, for example relatively fast mitotic cell division. While the first strategy is "true" gene therapy, the second one, as e.g. suicide gene therapy, is more like genetic surgery, when a surgeon just cuts off a tumor being not interested in subtle genetic mechanisms of cancer emergence and progression. This approach inherits the ideology of chemotherapy but escapes its severe toxic effects due to intracellular formation of toxic agents. Genetic surgery seems to be the most appropriate approach to combat cancer, and its simplicity is paradoxically adequate to the super-complexity of tumors. The review consists of three parts: (i) analysis of the reasons of tumor supercomplexity and fatally inevitable failure of molecular targeted therapy, (ii) general principles of the genetic surgery strategy, and (iii) examples of genetic surgery approaches with analysis of their drawbacks and the ways for their improvement.

  10. Genetic influences of sports participation in Portuguese families.

    PubMed

    Seabra, André F; Mendonça, Denisa M; Göring, Harald H H; Thomis, Martine A; Maia, José A

    2014-01-01

    To estimate familial aggregation and quantify the genetic and environmental contribution to the phenotypic variation on sports participation (SP) among Portuguese families. The sample consisted of 2375 nuclear families (parents and two offspring each) from different regions of Portugal with a total of 9500 subjects. SP assessment was based on a psychometrically established questionnaire. Phenotypes used were based on the participation in sports (yes/no), intensity of sport, weekly amount of time in SP and the proportion of the year in which a sport was regularly played. Familial correlations were calculated using family correlations (FCOR) in the SAGE software. Heritability was estimated using variance-components methods implemented in Sequential Oligogenic Linkage Analysis Routines (SOLAR) software. Subjects of the same generation tend to be more similar in their SP habits than the subjects of different generations. In all SP phenotypes studied, adjusted for the effects of multiple covariates, the proportion of phenotypic variance due to additive genetic factors ranged between 40% and 50%. The proportion of variance attributable to environmental factors ranged from 50% for the participation in sports to 60% for intensity of sport. In this large population-based family study, there was significant familial aggregation on SP. These results highlight that the variation on SP phenotypes have a significant genetic contribution although environmental factors are also important in the familial resemblance of SP.

  11. [Genetics and family medicine].

    PubMed

    Bugarín-González, R; Carracedo, Á

    There have been spectacular advances in genetics in the last decades. Their implications in medicine have been so relevant that the family doctor cannot ignore them. However, interestingly, our specialty training program has hardly any contents related to this discipline. For this reason, several publications have warned of the need to correct this deficit and to determine the knowledge, skills and abilities in genetics that should be acquired by family physicians. It is considered that, in addition to some general concepts, we must have training related to genetic testing, genetic counselling, aspects related to hereditary cancers, and to be aware of the ethical and legal limits of genetic information. It is also necessary to establish guidelines for collaboration with the genetic services. Copyright © 2017 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Genetic relatedness of previously Plant-Variety-Protected commercial maize inbreds.

    PubMed

    Beckett, Travis J; Morales, A Jason; Koehler, Klaus L; Rocheford, Torbert R

    2017-01-01

    The emergence of high-throughput, high-density genotyping methods combined with increasingly powerful computing systems has created opportunities to further discover and exploit the genes controlling agronomic performance in elite maize breeding populations. Understanding the genetic basis of population structure in an elite set of materials is an essential step in this genetic discovery process. This paper presents a genotype-based population analysis of all maize inbreds whose Plant Variety Protection certificates had expired as of the end of 2013 (283 inbreds) as well as 66 public founder inbreds. The results provide accurate population structure information and allow for important inferences in context of the historical development of North American elite commercial maize germplasm. Genotypic data was obtained via genotyping-by-sequencing on 349 inbreds. After filtering for missing data, 77,314 high-quality markers remained. The remaining missing data (average per individual was 6.22 percent) was fully imputed at an accuracy of 83 percent. Calculation of linkage disequilibrium revealed that the average r2 of 0.20 occurs at approximately 1.1 Kb. Results of population genetics analyses agree with previously published studies that divide North American maize germplasm into three heterotic groups: Stiff Stalk, Non-Stiff Stalk, and Iodent. Principal component analysis shows that population differentiation is indeed very complex and present at many levels, yet confirms that division into three main sub-groups is optimal for population description. Clustering based on Nei's genetic distance provides an additional empirical representation of the three main heterotic groups. Overall fixation index (FST), indicating the degree of genetic divergence between the three main heterotic groups, was 0.1361. Understanding the genetic relationships and population differentiation of elite germplasm may help breeders to maintain and potentially increase the rate of genetic gain

  13. Shared genetic factors underlie migraine and depression

    PubMed Central

    Yang, Yuanhao; Zhao, Huiying; Heath, Andrew C; Madden, Pamela AF; Martin, Nicholas G; Nyholt, Dale R

    2017-01-01

    Migraine frequently co-occurs with depression. Using a large sample of Australian twin pairs, we aimed to characterise the extent to which shared genetic factors underlie these two disorders. Migraine was classified using three diagnostic measures, including self-reported migraine, the ID migraine™ screening tool, or migraine without aura (MO) and migraine with aura (MA) based on International Headache Society (IHS) diagnostic criteria. Major depressive disorder (MDD) and minor depressive disorder (MiDD) were classified using the Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria. Univariate and bivariate twin models, with and without sex-limitation, were constructed to estimate the univariate and bivariate variance components and genetic correlation for migraine and depression. The univariate heritability of broad migraine (self-reported, ID migraine or IHS MO/MA) and broad depression (MiDD or MDD) was estimated at 56% (95% confidence interval [CI]: 53–60%) and 42% (95% CI: 37–46%), respectively. A significant additive genetic correlation (rG=0.36, 95% CI: 0.29–0.43) and bivariate heritability (h2=5.5%, 95% CI: 3.6–7.8%) was observed between broad migraine and depression using the bivariate Cholesky model. Notably, both the bivariate h2 (13.3%, 95% CI: 7.0–24.5%) and rG (0.51, 95% CI: 0.37–0.69) estimates significantly increased when analysing the more narrow clinically-accepted diagnoses of IHS MO/MA and MDD. Our results indicate that for both broad and narrow definitions, the observed comorbidity between migraine and depression can be explained almost entirely by shared underlying genetically determined disease mechanisms. PMID:27302564

  14. Numerical and Experimental Study of Ti6Al4V Components Manufactured Using Powder Bed Fusion Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Zielinski, Jonas; Mindt, Hans-Wilfried; Düchting, Jan; Schleifenbaum, Johannes Henrich; Megahed, Mustafa

    2017-12-01

    Powder bed fusion additive manufacturing of titanium alloys is an interesting manufacturing route for many applications requiring high material strength combined with geometric complexity. Managing powder bed fusion challenges, including porosity, surface finish, distortions and residual stresses of as-built material, is the key to bringing the advantages of this process to production main stream. This paper discusses the application of experimental and numerical analysis towards optimizing the manufacturing process of a demonstration component. Powder characterization including assessment of the reusability, assessment of material consolidation and process window optimization is pursued prior to applying the identified optima to study the distortion and residual stresses of the demonstrator. Comparisons of numerical predictions with measurements show good correlations along the complete numerical chain.

  15. Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer.

    PubMed

    Fusco, Nicola; Geyer, Felipe C; De Filippo, Maria R; Martelotto, Luciano G; Ng, Charlotte K Y; Piscuoglio, Salvatore; Guerini-Rocco, Elena; Schultheis, Anne M; Fuhrmann, Laetitia; Wang, Lu; Jungbluth, Achim A; Burke, Kathleen A; Lim, Raymond S; Vincent-Salomon, Anne; Bamba, Masamichi; Moritani, Suzuko; Badve, Sunil S; Ichihara, Shu; Ellis, Ian O; Reis-Filho, Jorge S; Weigelt, Britta

    2016-11-01

    Adenoid cystic carcinoma of the breast is a rare histological type of triple-negative breast cancer with an indolent clinical behavior, often driven by the MYB-NFIB fusion gene. Here we sought to define the repertoire of somatic genetic alterations in two adenoid cystic carcinomas associated with high-grade triple-negative breast cancer. The different components of each case were subjected to copy number profiling and massively parallel sequencing targeting all exons and selected regulatory and intronic regions of 488 genes. Reverse transcription PCR and fluorescence in situ hybridization were employed to investigate the presence of the MYB-NFIB translocation. The MYB-NFIB fusion gene was detected in both adenoid cystic carcinomas and their associated high-grade triple-negative breast cancer components. Although the distinct components of both cases displayed similar patterns of gene copy number alterations, massively parallel sequencing analysis revealed intratumor genetic heterogeneity. In case 1, progression from the trabecular adenoid cystic carcinoma to the high-grade triple-negative breast cancer was found to involve clonal shifts with enrichment of mutations affecting EP300, NOTCH1, ERBB2 and FGFR1 in the high-grade triple-negative breast cancer. In case 2, a clonal KMT2C mutation was present in the cribriform adenoid cystic carcinoma, solid adenoid cystic carcinoma and high-grade triple-negative breast cancer components, whereas a mutation affecting MYB was present only in the solid and high-grade triple-negative breast cancer areas and additional three mutations targeting STAG2, KDM6A and CDK12 were restricted to the high-grade triple-negative breast cancer. In conclusion, adenoid cystic carcinomas of the breast with high-grade transformation are underpinned by the MYB-NFIB fusion gene and, akin to other forms of cancer, may be constituted by a mosaic of cancer cell clones at diagnosis. The progression from adenoid cystic carcinoma to high-grade triple

  16. Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer

    PubMed Central

    Fusco, Nicola; Geyer, Felipe C; De Filippo, Maria R; Martelotto, Luciano G; Ng, Charlotte K Y; Piscuoglio, Salvatore; Guerini-Rocco, Elena; Schultheis, Anne M; Fuhrmann, Laetitia; Wang, Lu; Jungbluth, Achim A; Burke, Kathleen A; Lim, Raymond S; Vincent-Salomon, Anne; Bamba, Masamichi; Moritani, Suzuko; Badve, Sunil S; Ichihara, Shu; Ellis, Ian O; Reis-Filho, Jorge S; Weigelt, Britta

    2016-01-01

    Adenoid cystic carcinoma of the breast is a rare histologic type of triple-negative breast cancer with an indolent clinical behavior, often driven by the MYB-NFIB fusion gene. Here we sought to define the repertoire of somatic genetic alterations in two adenoid cystic carcinomas associated with high-grade triple-negative breast cancer. The different components of each case were subjected to copy number profiling and massively parallel sequencing targeting all exons and selected regulatory and intronic regions of 488 genes. Reverse transcription PCR and fluorescence in situ hybridization were employed to investigate the presence of the MYB-NFIB translocation. The MYB-NFIB fusion gene was detected in both adenoid cystic carcinomas and their associated high-grade triple-negative breast cancer components. Whilst the distinct components of both cases displayed similar patterns of gene copy number alterations, massively parallel sequencing analysis revealed intra-tumor genetic heterogeneity. In case 1, progression from the trabecular adenoid cystic carcinoma to the high-grade triple-negative breast cancer was found to involve clonal shifts with enrichment of mutations affecting EP300, NOTCH1, ERBB2 and FGFR1 in the high-grade triple-negative breast cancer. In case 2, a clonal KMT2C mutation was present in the cribriform adenoid cystic carcinoma, solid adenoid cystic carcinoma and high-grade triple-negative breast cancer components, whereas a mutation affecting MYB was present only in the solid and high-grade triple-negative breast cancer areas and additional three mutations targeting STAG2, KDM6A and CDK12 were restricted to the high-grade triple-negative breast cancer. In conclusion, adenoid cystic carcinomas of the breast with high-grade transformation are underpinned by MYB-NFIB fusion gene, and, akin to other forms of cancer, may be constituted by a mosaic of cancer cell clones at diagnosis. The progression from adenoid cystic carcinoma to high-grade triple

  17. [Analytic methods for seed models with genotype x environment interactions].

    PubMed

    Zhu, J

    1996-01-01

    Genetic models with genotype effect (G) and genotype x environment interaction effect (GE) are proposed for analyzing generation means of seed quantitative traits in crops. The total genetic effect (G) is partitioned into seed direct genetic effect (G0), cytoplasm genetic of effect (C), and maternal plant genetic effect (Gm). Seed direct genetic effect (G0) can be further partitioned into direct additive (A) and direct dominance (D) genetic components. Maternal genetic effect (Gm) can also be partitioned into maternal additive (Am) and maternal dominance (Dm) genetic components. The total genotype x environment interaction effect (GE) can also be partitioned into direct genetic by environment interaction effect (G0E), cytoplasm genetic by environment interaction effect (CE), and maternal genetic by environment interaction effect (GmE). G0E can be partitioned into direct additive by environment interaction (AE) and direct dominance by environment interaction (DE) genetic components. GmE can also be partitioned into maternal additive by environment interaction (AmE) and maternal dominance by environment interaction (DmE) genetic components. Partitions of genetic components are listed for parent, F1, F2 and backcrosses. A set of parents, their reciprocal F1 and F2 seeds is applicable for efficient analysis of seed quantitative traits. MINQUE(0/1) method can be used for estimating variance and covariance components. Unbiased estimation for covariance components between two traits can also be obtained by the MINQUE(0/1) method. Random genetic effects in seed models are predictable by the Adjusted Unbiased Prediction (AUP) approach with MINQUE(0/1) method. The jackknife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects, which can be further used in a t-test for parameter. Unbiasedness and efficiency for estimating variance components and predicting genetic effects are tested by

  18. Genetic Diversity of Plasmodium falciparum in Haiti: Insights from Microsatellite Markers

    PubMed Central

    Carter, Tamar E.; Malloy, Halley; Existe, Alexandre; Memnon, Gladys; St. Victor, Yves; Okech, Bernard A.; Mulligan, Connie J.

    2015-01-01

    Hispaniola, comprising Haiti and the Dominican Republic, has been identified as a candidate for malaria elimination. However, incomplete surveillance data in Haiti hamper efforts to assess the impact of ongoing malaria control interventions. Characteristics of the genetic diversity of Plasmodium falciparum populations can be used to assess parasite transmission, which is information vital to evaluating malaria elimination efforts. Here we characterize the genetic diversity of P. falciparum samples collected from patients at seven sites in Haiti using 12 microsatellite markers previously employed in population genetic analyses of global P. falciparum populations. We measured multiplicity of infections, level of genetic diversity, degree of population geographic substructure, and linkage disequilibrium (defined as non-random association of alleles from different loci). For low transmission populations like Haiti, we expect to see few multiple infections, low levels of genetic diversity, high degree of population structure, and high linkage disequilibrium. In Haiti, we found low levels of multiple infections (12.9%), moderate to high levels of genetic diversity (mean number of alleles per locus = 4.9, heterozygosity = 0.61), low levels of population structure (highest pairwise Fst = 0.09 and no clustering in principal components analysis), and moderate linkage disequilibrium (ISA = 0.05, P<0.0001). In addition, population bottleneck analysis revealed no evidence for a reduction in the P. falciparum population size in Haiti. We conclude that the high level of genetic diversity and lack of evidence for a population bottleneck may suggest that Haiti’s P. falciparum population has been stable and discuss the implications of our results for understanding the impact of malaria control interventions. We also discuss the relevance of parasite population history and other host and vector factors when assessing transmission intensity from genetic diversity data. PMID:26462203

  19. Identification of exotic genetic components and DNA methylation pattern analysis of three cotton introgression lines from Gossypium bickii.

    PubMed

    He, Shou-Pu; Sun, Jun-Ling; Zhang, Chao; Du, Xiong-Ming

    2011-01-01

    The impact of alien DNA fragments on plant genome has been studied in many species. However, little is known about the introgression lines of Gossypium. To study the consequences of introgression in Gossypium, we investigated 2000 genomic and 800 epigenetic sites in three typical cotton introgression lines, as well as their cultivar (Gossypium hirsutum) and wild parents (Gossypium bickii), by amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP). The results demonstrate that an average of 0.5% of exotic DNA segments from wild cotton is transmitted into the genome of each introgression line, with the addition of other forms of genetic variation. In total, an average of 0.7% of genetic variation sites is identified in introgression lines. Simultaneously, the overall cytosine methylation level in each introgression line is very close to that of the upland cotton parent (an average of 22.6%). Further dividing patterns reveal that both hypomethylation and hypermethylation occurred in introgression lines in comparison with the upland cotton parent. Sequencing of nine methylation polymorphism fragments showed that most (7 of 9) of the methylation alternations occurred in the noncoding sequences. The molecular evidence of introgression from wild cotton into introgression lines in our study is identified by AFLP. Moreover, the causes of petal variation in introgression lines are discussed.

  20. Characterization of the triple-component linoleic acid isomerase in Lactobacillus plantarum ZS2058 by genetic manipulation.

    PubMed

    Yang, B; Qi, H; Gu, Z; Zhang, H; Chen, W; Chen, H; Chen, Y Q

    2017-11-01

    To assess the mechanism for conjugated linoleic acid (CLA) production in Lactobacillus plantarum ZS2058. CLA has attracted great interests for decades due to its health-associated benefits including anticancer, anti-atherogenic, anti-obesity and modulation of the immune system. A number of microbial CLA producers were widely reported including lactic acid bacteria. Lactobacillus plantarum ZS2058, an isolate from Chinese traditional fermented food, could convert LA to CLA with various intermediates. To characterize the genetic determinants for generating CLA, a cre-lox-based system was utilized to delete the genes encoding myosin cross-reactive antigen (MCRA), short-chain dehydrogenase/oxidoreductase (DH) and acetoacetate decarboxylase (DC) in Lact. plantarum ZS2058, respectively. Neither intermediate was detected in the corresponding gene deletion mutant. Meanwhile all those mutants could recover the ability to convert linoleic acid to CLA when the corresponding gene was completed. The results indicated that CLA production was a multiple-step reaction catalysed by triple-component linoleate isomerase system encoded by mcra, dh and dc. Multicomponent linoleic acid isomerase provided important results for illustration unique mechanism for CLA production in Lact. plantarum ZS2058. Lactobacilli with CLA production ability offer novel opportunities for functional food development. © 2017 The Society for Applied Microbiology.

  1. Systematic design methodology for robust genetic transistors based on I/O specifications via promoter-RBS libraries.

    PubMed

    Lee, Yi-Ying; Hsu, Chih-Yuan; Lin, Ling-Jiun; Chang, Chih-Chun; Cheng, Hsiao-Chun; Yeh, Tsung-Hsien; Hu, Rei-Hsing; Lin, Che; Xie, Zhen; Chen, Bor-Sen

    2013-10-27

    Synthetic genetic transistors are vital for signal amplification and switching in genetic circuits. However, it is still problematic to efficiently select the adequate promoters, Ribosome Binding Sides (RBSs) and inducer concentrations to construct a genetic transistor with the desired linear amplification or switching in the Input/Output (I/O) characteristics for practical applications. Three kinds of promoter-RBS libraries, i.e., a constitutive promoter-RBS library, a repressor-regulated promoter-RBS library and an activator-regulated promoter-RBS library, are constructed for systematic genetic circuit design using the identified kinetic strengths of their promoter-RBS components.According to the dynamic model of genetic transistors, a design methodology for genetic transistors via a Genetic Algorithm (GA)-based searching algorithm is developed to search for a set of promoter-RBS components and adequate concentrations of inducers to achieve the prescribed I/O characteristics of a genetic transistor. Furthermore, according to design specifications for different types of genetic transistors, a look-up table is built for genetic transistor design, from which we could easily select an adequate set of promoter-RBS components and adequate concentrations of external inducers for a specific genetic transistor. This systematic design method will reduce the time spent using trial-and-error methods in the experimental procedure for a genetic transistor with a desired I/O characteristic. We demonstrate the applicability of our design methodology to genetic transistors that have desirable linear amplification or switching by employing promoter-RBS library searching.

  2. Systematic design methodology for robust genetic transistors based on I/O specifications via promoter-RBS libraries

    PubMed Central

    2013-01-01

    Background Synthetic genetic transistors are vital for signal amplification and switching in genetic circuits. However, it is still problematic to efficiently select the adequate promoters, Ribosome Binding Sides (RBSs) and inducer concentrations to construct a genetic transistor with the desired linear amplification or switching in the Input/Output (I/O) characteristics for practical applications. Results Three kinds of promoter-RBS libraries, i.e., a constitutive promoter-RBS library, a repressor-regulated promoter-RBS library and an activator-regulated promoter-RBS library, are constructed for systematic genetic circuit design using the identified kinetic strengths of their promoter-RBS components. According to the dynamic model of genetic transistors, a design methodology for genetic transistors via a Genetic Algorithm (GA)-based searching algorithm is developed to search for a set of promoter-RBS components and adequate concentrations of inducers to achieve the prescribed I/O characteristics of a genetic transistor. Furthermore, according to design specifications for different types of genetic transistors, a look-up table is built for genetic transistor design, from which we could easily select an adequate set of promoter-RBS components and adequate concentrations of external inducers for a specific genetic transistor. Conclusion This systematic design method will reduce the time spent using trial-and-error methods in the experimental procedure for a genetic transistor with a desired I/O characteristic. We demonstrate the applicability of our design methodology to genetic transistors that have desirable linear amplification or switching by employing promoter-RBS library searching. PMID:24160305

  3. The Genetic-Environmental Etiology of Cognitive School Readiness and Later Academic Achievement in Early Childhood

    ERIC Educational Resources Information Center

    Lemelin, Jean-Pascal; Boivin, Michel; Forget-Dubois, Nadine; Dionne, Ginette; Seguin, Jean R.; Brendgen, Mara; Vitaro, Frank; Tremblay, Richard E.; Perusse, Daniel

    2007-01-01

    Using a genetic design of 840 60-month-old twins, this study investigated the genetic and environmental contributions to (a) individual differences in four components of cognitive school readiness, (b) the general ability underlying these four components, and (c) the predictive association between school readiness and school achievement. Results…

  4. Facial averageness and genetic quality: Testing heritability, genetic correlation with attractiveness, and the paternal age effect.

    PubMed

    Lee, Anthony J; Mitchem, Dorian G; Wright, Margaret J; Martin, Nicholas G; Keller, Matthew C; Zietsch, Brendan P

    2016-01-01

    Popular theory suggests that facial averageness is preferred in a partner for genetic benefits to offspring. However, whether facial averageness is associated with genetic quality is yet to be established. Here, we computed an objective measure of facial averageness for a large sample ( N = 1,823) of identical and nonidentical twins and their siblings to test two predictions from the theory that facial averageness reflects genetic quality. First, we use biometrical modelling to estimate the heritability of facial averageness, which is necessary if it reflects genetic quality. We also test for a genetic association between facial averageness and facial attractiveness. Second, we assess whether paternal age at conception (a proxy of mutation load) is associated with facial averageness and facial attractiveness. Our findings are mixed with respect to our hypotheses. While we found that facial averageness does have a genetic component, and a significant phenotypic correlation exists between facial averageness and attractiveness, we did not find a genetic correlation between facial averageness and attractiveness (therefore, we cannot say that the genes that affect facial averageness also affect facial attractiveness) and paternal age at conception was not negatively associated with facial averageness. These findings support some of the previously untested assumptions of the 'genetic benefits' account of facial averageness, but cast doubt on others.

  5. Genetics of human body size and shape: body proportions and indices.

    PubMed

    Livshits, Gregory; Roset, A; Yakovenko, K; Trofimov, S; Kobyliansky, E

    2002-01-01

    The study of the genetic component in morphological variables such as body height and weight, head and chest circumference, etc. has a rather long history. However, only a few studies investigated body proportions and configuration. The major aim of the present study was to evaluate the extent of the possible genetic effects on the inter-individual variation of a number of body configuration indices amenable to clear functional interpretation. Two ethnically different pedigree samples were used in the study: (1) Turkmenians (805 individuals) from Central Asia, and (2) Chuvasha (732 individuals) from the Volga riverside, Russian Federation. To achieve the aim of the present study we proposed three new indices, which were subjected to a statistical-genetic analysis using modified version of "FISHER" software. The proposed indices were: (1) an integral index of torso volume (IND#1), an index reflecting a predisposition of body proportions to maintain a balance in a vertical position (IND#2), and an index of skeletal extremities volume (IND#3). Additionally, the first two principal factors (PF1 and PF2) obtained on 19 measurements of body length and breadth were subjected to genetic analysis. Variance decomposition analysis that simultaneously assess the contribution of gender, age, additive genetic effects and effects of environment shared by the nuclear family members, was applied to fit variation of the above three indices, and PF1 and PF2. The raw familial correlation of all study traits and in both samples showed: (1) all marital correlations did not differ significantly from zero; (2) parent-offspring and sibling correlations were all positive and statistically significant. The parameter estimates obtained in variance analyses showed that from 40% to 75% of inter-individual variation of the studied traits (adjusted for age and sex) were attributable to genetic effects. For PF1 and PF2 in both samples, and for IND#2 (in Chuvasha pedigrees), significant common sib

  6. The contributions of admixture and genetic drift to diversity among post-contact populations in the Americas.

    PubMed

    Koehl, Anthony J; Long, Jeffrey C

    2018-02-01

    We present a model that partitions Nei's minimum genetic distance between admixed populations into components of admixture and genetic drift. We applied this model to 17 admixed populations in the Americas to examine how admixture and drift have contributed to the patterns of genetic diversity. We analyzed 618 short tandem repeat loci in 949 individuals from 49 population samples. Thirty-two samples serve as proxies for continental ancestors. Seventeen samples represent admixed populations: (4) African-American and (13) Latin American. We partition genetic distance, and then calculate fixation indices and principal coordinates to interpret our results. A computer simulation confirms that our method correctly estimates drift and admixture components of genetic distance when the assumptions of the model are met. The partition of genetic distance shows that both admixture and genetic drift contribute to patterns of genetic diversity. The admixture component of genetic distance provides evidence for two distinct axes of continental ancestry. However, the genetic distances show that ancestry contributes to only one axis of genetic differentiation. The genetic distances among the 13 Latin American populations in this analysis show contributions from both differences in ancestry and differences in genetic drift. By contrast, the genetic distances among the four African American populations in this analysis owe mostly to genetic drift because these groups have similar fractions of European and African ancestry. The genetic structure of admixed populations in the Americas reflects more than admixture. We show that the history of serial founder effects constrains the impact of admixture on allele frequencies to a single dimension. Genetic drift in the admixed populations imposed a new level of genetic structure onto that created by admixture. © 2017 Wiley Periodicals, Inc.

  7. Understanding the Cognitive and Genetic Underpinnings of Procrastination: Evidence for Shared Genetic Influences with Goal Management and Executive Function Abilities

    PubMed Central

    Gustavson, Daniel E.; Miyake, Akira; Hewitt, John K.; Friedman, Naomi P.

    2015-01-01

    Previous research has suggested that individual differences in procrastination are tied to everyday goal-management abilities, but little research has been conducted on specific cognitive abilities that may underlie tendencies for procrastination, such as executive functions (EFs). In this study, we used behavioral genetics methodology to investigate two hypotheses about the relationships between procrastination and EF ability: (a) that procrastination is negatively correlated with general EF ability, and (b) that this relationship is due to the genetic components of procrastination that are most related to other everyday goal-management abilities. The results confirmed both of these hypotheses. Procrastination was related to worse general EF ability at both the phenotypic and genetic levels, and this relationship was due to the component of procrastination shared with self-report measures of everyday goal-management failures. These results were observed even after controlling for potential self-report biases stemming from the urge to respond in a socially desirable manner. Together, these findings provide strong evidence for growing theories of procrastination emphasizing the importance of goal-related cognitive abilities and further highlight important genetic influences that underlie procrastination. PMID:26389573

  8. Understanding the cognitive and genetic underpinnings of procrastination: Evidence for shared genetic influences with goal management and executive function abilities.

    PubMed

    Gustavson, Daniel E; Miyake, Akira; Hewitt, John K; Friedman, Naomi P

    2015-12-01

    Previous research has suggested that individual differences in procrastination are tied to everyday goal-management abilities, but little research has been conducted on specific cognitive abilities that may underlie tendencies for procrastination, such as executive functions (EFs). In this study, we used behavioral genetics methodology to investigate 2 hypotheses about the relationships between procrastination and EF ability: (a) that procrastination is negatively correlated with general EF ability, and (b) that this relationship is due to the genetic components of procrastination that are most related to other everyday goal-management abilities. The results confirmed both of these hypotheses. Procrastination was related to worse general EF ability at both the phenotypic and genetic levels, and this relationship was due to the component of procrastination shared with self-report measures of everyday goal-management failures. These results were observed even after controlling for potential self-report biases stemming from the urge to respond in a socially desirable manner. Together, these findings provide strong evidence for growing theories of procrastination emphasizing the importance of goal-related cognitive abilities and further highlight important genetic influences that underlie procrastination. (c) 2015 APA, all rights reserved).

  9. Differential contribution of genomic regions to marked genetic variation and prediction of quantitative traits in broiler chickens.

    PubMed

    Abdollahi-Arpanahi, Rostam; Morota, Gota; Valente, Bruno D; Kranis, Andreas; Rosa, Guilherme J M; Gianola, Daniel

    2016-02-03

    Genome-wide association studies in humans have found enrichment of trait-associated single nucleotide polymorphisms (SNPs) in coding regions of the genome and depletion of these in intergenic regions. However, a recent release of the ENCyclopedia of DNA elements showed that ~80 % of the human genome has a biochemical function. Similar studies on the chicken genome are lacking, thus assessing the relative contribution of its genic and non-genic regions to variation is relevant for biological studies and genetic improvement of chicken populations. A dataset including 1351 birds that were genotyped with the 600K Affymetrix platform was used. We partitioned SNPs according to genome annotation data into six classes to characterize the relative contribution of genic and non-genic regions to genetic variation as well as their predictive power using all available quality-filtered SNPs. Target traits were body weight, ultrasound measurement of breast muscle and hen house egg production in broiler chickens. Six genomic regions were considered: intergenic regions, introns, missense, synonymous, 5' and 3' untranslated regions, and regions that are located 5 kb upstream and downstream of coding genes. Genomic relationship matrices were constructed for each genomic region and fitted in the models, separately or simultaneously. Kernel-based ridge regression was used to estimate variance components and assess predictive ability. Contribution of each class of genomic regions to dominance variance was also considered. Variance component estimates indicated that all genomic regions contributed to marked additive genetic variation and that the class of synonymous regions tended to have the greatest contribution. The marked dominance genetic variation explained by each class of genomic regions was similar and negligible (~0.05). In terms of prediction mean-square error, the whole-genome approach showed the best predictive ability. All genic and non-genic regions contributed to

  10. Landscape genetic structure of coastal tailed frogs (Ascaphus truei) in protected vs. managed forests.

    PubMed

    Spear, Stephen F; Storfer, Andrew

    2008-11-01

    Habitat loss and fragmentation are the leading causes of species' declines and extinctions. A key component of studying population response to habitat alteration is to understand how fragmentation affects population connectivity in disturbed landscapes. We used landscape genetic analyses to determine how habitat fragmentation due to timber harvest affects genetic population connectivity of the coastal tailed frog (Ascaphus truei), a forest-dwelling, stream-breeding amphibian. We compared rates of gene flow across old-growth (Olympic National Park) and logged landscapes (Olympic National Forest) and used spatial autoregression to estimate the effect of landscape variables on genetic structure. We detected higher overall genetic connectivity across the managed forest, although this was likely a historical signature of continuous forest before timber harvest began. Gene flow also occurred terrestrially, as connectivity was high across unconnected river basins. Autoregressive models demonstrated that closed forest and low solar radiation were correlated with increased gene flow. In addition, there was evidence for a temporal lag in the correlation of decreased gene flow with harvest, suggesting that the full genetic impact may not appear for several generations. Furthermore, we detected genetic evidence of population bottlenecks across the Olympic National Forest, including at sites that were within old-growth forest but surrounded by harvested patches. Collectively, this research suggests that absence of forest (whether due to natural or anthropogenic changes) is a key restrictor of genetic connectivity and that intact forested patches in the surrounding environment are necessary for continued gene flow and population connectivity.

  11. A method to optimize the shield compact and lightweight combining the structure with components together by genetic algorithm and MCNP code.

    PubMed

    Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao

    2018-05-17

    To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Genetic contribution to patent ductus arteriosus in the premature newborn.

    PubMed

    Bhandari, Vineet; Zhou, Gongfu; Bizzarro, Matthew J; Buhimschi, Catalin; Hussain, Naveed; Gruen, Jeffrey R; Zhang, Heping

    2009-02-01

    The most common congenital heart disease in the newborn population, patent ductus arteriosus, accounts for significant morbidity in preterm newborns. In addition to prematurity and environmental factors, we hypothesized that genetic factors play a significant role in this condition. The objective of this study was to quantify the contribution of genetic factors to the variance in liability for patent ductus arteriosus in premature newborns. A retrospective study (1991-2006) from 2 centers was performed by using zygosity data from premature twins born at < or =36 weeks' gestational age and surviving beyond 36 weeks' postmenstrual age. Patent ductus arteriosus was diagnosed by echocardiography at each center. Mixed-effects logistic regression was used to assess the effect of specific covariates. Latent variable probit modeling was then performed to estimate the heritability of patent ductus arteriosus, and mixed-effects probit modeling was used to quantify the genetic component. We obtained data from 333 dizygotic twin pairs and 99 monozygotic twin pairs from 2 centers (Yale University and University of Connecticut). Data on chorioamnionitis, antenatal steroids, gestational age, body weight, gender, respiratory distress syndrome, patent ductus arteriosus, necrotizing enterocolitis, oxygen supplementation, and bronchopulmonary dysplasia were comparable between monozygotic and dizygotic twins. We found that gestational age, respiratory distress syndrome, and institution were significant covariates for patent ductus arteriosus. After controlling for specific covariates, genetic factors or the shared environment accounted for 76.1% of the variance in liability for patent ductus arteriosus. Preterm patent ductus arteriosus is highly familial (contributed to by genetic and environmental factors), with the effect being mainly environmental, after controlling for known confounders.

  13. Entering the second century of maize quantitative genetics

    USDA-ARS?s Scientific Manuscript database

    Maize is the most widely grown cereal in the world. In addition to its role in global agriculture, it has also long served as a model organism for genetic research. Maize stands at a genetic crossroads, as it has access to all the tools available for plant genetics but exhibits a genetic architectur...

  14. Global Mapping of the Yeast Genetic Interaction Network

    NASA Astrophysics Data System (ADS)

    Tong, Amy Hin Yan; Lesage, Guillaume; Bader, Gary D.; Ding, Huiming; Xu, Hong; Xin, Xiaofeng; Young, James; Berriz, Gabriel F.; Brost, Renee L.; Chang, Michael; Chen, YiQun; Cheng, Xin; Chua, Gordon; Friesen, Helena; Goldberg, Debra S.; Haynes, Jennifer; Humphries, Christine; He, Grace; Hussein, Shamiza; Ke, Lizhu; Krogan, Nevan; Li, Zhijian; Levinson, Joshua N.; Lu, Hong; Ménard, Patrice; Munyana, Christella; Parsons, Ainslie B.; Ryan, Owen; Tonikian, Raffi; Roberts, Tania; Sdicu, Anne-Marie; Shapiro, Jesse; Sheikh, Bilal; Suter, Bernhard; Wong, Sharyl L.; Zhang, Lan V.; Zhu, Hongwei; Burd, Christopher G.; Munro, Sean; Sander, Chris; Rine, Jasper; Greenblatt, Jack; Peter, Matthias; Bretscher, Anthony; Bell, Graham; Roth, Frederick P.; Brown, Grant W.; Andrews, Brenda; Bussey, Howard; Boone, Charles

    2004-02-01

    A genetic interaction network containing ~1000 genes and ~4000 interactions was mapped by crossing mutations in 132 different query genes into a set of ~4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.

  15. Genetic background of osteoporosis.

    PubMed

    Obermayer-Pietsch, B; Chararas, C; Kotschan, S; Walter, D; Leb, G

    2000-01-01

    Osteoporosis is a systemic disorder of decreased skeletal mass as measured by bone mineral density (BMD), and disturbed skeletal architecture and function which results in an increased risk for bone fractures with consecutively increased morbidity and mortality. Twin and family studies have shown an important genetic component of BMD of about 40-60%. This exceeds other well known factors influencing BMD such as environmental factors like dietary calcium, physical activity or several drugs and diseases. Therefore, interest increased in the genetic background of bone mineral density. Polymorphisms of the Vitamin D receptor gene were the first to be published in this area. Studies on other loci or candidate genes such as the estrogen receptor gene or the collagen type I alpha1 gene also showed associations with bone mineral density that could explain at least a part of the genetic background of osteoporosis. Recently published data suggest that these genetic markers of bone metabolism are important in interaction with each other or in certain bone-affecting diseases. In the future, genetic studies on osteoporosis will have to screen further relevant genes and markers for bone metabolism as well as to evaluate the complex interactions of genetic influences, so that it would be possible to calculate a patient's individual risk for osteoporosis in the context of environmental influences.

  16. Integrated Predictive Tools for Customizing Microstructure and Material Properties of Additively Manufactured Aerospace Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhakrishnan, Balasubramaniam; Fattebert, Jean-Luc; Gorti, Sarma B.

    Additive Manufacturing (AM) refers to a process by which digital three-dimensional (3-D) design data is converted to build up a component by depositing material layer-by-layer. United Technologies Corporation (UTC) is currently involved in fabrication and certification of several AM aerospace structural components made from aerospace materials. This is accomplished by using optimized process parameters determined through numerous design-of-experiments (DOE)-based studies. Certification of these components is broadly recognized as a significant challenge, with long lead times, very expensive new product development cycles and very high energy consumption. Because of these challenges, United Technologies Research Center (UTRC), together with UTC business unitsmore » have been developing and validating an advanced physics-based process model. The specific goal is to develop a physics-based framework of an AM process and reliably predict fatigue properties of built-up structures as based on detailed solidification microstructures. Microstructures are predicted using process control parameters including energy source power, scan velocity, deposition pattern, and powder properties. The multi-scale multi-physics model requires solution and coupling of governing physics that will allow prediction of the thermal field and enable solution at the microstructural scale. The state-of-the-art approach to solve these problems requires a huge computational framework and this kind of resource is only available within academia and national laboratories. The project utilized the parallel phase-fields codes at Oak Ridge National Laboratory (ORNL) and Lawrence Livermore National Laboratory (LLNL), along with the high-performance computing (HPC) capabilities existing at the two labs to demonstrate the simulation of multiple dendrite growth in threedimensions (3-D). The LLNL code AMPE was used to implement the UTRC phase field model that was previously developed for a model binary

  17. Update on the integrated histopathological and genetic classification of medulloblastoma - a practical diagnostic guideline.

    PubMed

    Pietsch, Torsten; Haberler, Christine

    The revised WHO classification of tumors of the CNS 2016 has introduced the concept of the integrated diagnosis. The definition of medulloblastoma entities now requires a combination of the traditional histological information with additional molecular/genetic features. For definition of the histopathological component of the medulloblastoma diagnosis, the tumors should be assigned to one of the four entities classic, desmoplastic/nodular (DNMB), extensive nodular (MBEN), or large cell/anaplastic (LC/A) medulloblastoma. The genetically defined component comprises the four entities WNT-activated, SHH-activated and TP53 wildtype, SHH-activated and TP53 mutant, or non-WNT/non-SHH medulloblastoma. Robust and validated methods are available to allow a precise diagnosis of these medulloblastoma entities according to the updated WHO classification, and for differential diagnostic purposes. A combination of immunohistochemical markers including β-catenin, Yap1, p75-NGFR, Otx2, and p53, in combination with targeted sequencing and copy number assessment such as FISH analysis for MYC genes allows a precise assignment of patients for risk-adapted stratification. It also allows comparison to results of study cohorts in the past and provides a robust basis for further treatment refinement.
.

  18. Aggregate blood pressure responses to serial dietary sodium and potassium intervention: defining responses using independent component analysis.

    PubMed

    Chen, Gengsheng; de las Fuentes, Lisa; Gu, Chi C; He, Jiang; Gu, Dongfeng; Kelly, Tanika; Hixson, James; Jacquish, Cashell; Rao, D C; Rice, Treva K

    2015-06-20

    Hypertension is a complex trait that often co-occurs with other conditions such as obesity and is affected by genetic and environmental factors. Aggregate indices such as principal components among these variables and their responses to environmental interventions may represent novel information that is potentially useful for genetic studies. In this study of families participating in the Genetic Epidemiology Network of Salt Sensitivity (GenSalt) Study, blood pressure (BP) responses to dietary sodium interventions are explored. Independent component analysis (ICA) was applied to 20 variables indexing obesity and BP measured at baseline and during low sodium, high sodium and high sodium plus potassium dietary intervention periods. A "heat map" protocol that classifies subjects based on risk for hypertension is used to interpret the extracted components. ICA and heat map suggest four components best describe the data: (1) systolic hypertension, (2) general hypertension, (3) response to sodium intervention and (4) obesity. The largest heritabilities are for the systolic (64%) and general hypertension (56%) components. There is a pattern of higher heritability for the component response to intervention (40-42%) as compared to those for the traditional intervention responses computed as delta scores (24%-40%). In summary, the present study provides intermediate phenotypes that are heritable. Using these derived components may prove useful in gene discovery applications.

  19. The genetics of human obesity.

    PubMed

    Xia, Qianghua; Grant, Struan F A

    2013-04-01

    It has long been known that there is a genetic component to obesity, and that characterizing this underlying factor would likely offer the possibility of better intervention in the future. Monogenic obesity has proved to be relatively straightforward, with a combination of linkage analysis and mouse models facilitating the identification of multiple genes. In contrast, genome-wide association studies have successfully revealed a variety of genetic loci associated with the more common form of obesity, allowing for very strong consensus on the underlying genetic architecture of the phenotype for the first time. Although a number of significant findings have been made, it appears that very little of the apparent heritability of body mass index has actually been explained to date. New approaches for data analyses and advances in technology will be required to uncover the elusive missing heritability, and to aid in the identification of the key causative genetic underpinnings of obesity. © 2013 New York Academy of Sciences.

  20. 3D Microstructural Architectures for Metal and Alloy Components Fabricated by 3D Printing/Additive Manufacturing Technologies

    NASA Astrophysics Data System (ADS)

    Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.

    The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.

  1. Genetic variation facilitates seedling establishment but not population growth rate of a perennial invader.

    PubMed

    Li, Shou-Li; Vasemägi, Anti; Ramula, Satu

    2016-01-01

    Assessing the demographic consequences of genetic variation is fundamental to invasion biology. However, genetic and demographic approaches are rarely combined to explore the effects of genetic variation on invasive populations in natural environments. This study combined population genetics, demographic data and a greenhouse experiment to investigate the consequences of genetic variation for the population fitness of the perennial, invasive herb Lupinus polyphyllus. Genetic and demographic data were collected from 37 L. polyphyllus populations representing different latitudes in Finland, and genetic variation was characterized based on 13 microsatellite loci. Associations between genetic variation and population size, population density, latitude and habitat were investigated. Genetic variation was then explored in relation to four fitness components (establishment, survival, growth, fecundity) measured at the population level, and the long-term population growth rate (λ). For a subset of populations genetic variation was also examined in relation to the temporal variability of λ. A further assessment was made of the role of natural selection in the observed variation of certain fitness components among populations under greenhouse conditions. It was found that genetic variation correlated positively with population size, particularly at higher latitudes, and differed among habitat types. Average seedling establishment per population increased with genetic variation in the field, but not under greenhouse conditions. Quantitative genetic divergence (Q(ST)) based on seedling establishment in the greenhouse was smaller than allelic genetic divergence (F'(ST)), indicating that unifying selection has a prominent role in this fitness component. Genetic variation was not associated with average survival, growth or fecundity measured at the population level, λ or its variability. The study suggests that although genetic variation may facilitate plant invasions by

  2. Environmental rather than genetic factors determine the variation in the age of the infancy to childhood transition: a twins study.

    PubMed

    German, Alina; Livshits, Gregory; Peter, Inga; Malkin, Ida; Dubnov, Jonathan; Akons, Hannah; Shmoish, Michael; Hochberg, Ze'ev

    2015-03-01

    Using a twins study, we sought to assess the contribution of genetic against environmental factor as they affect the age at transition from infancy to childhood (ICT). The subjects were 56 pairs of monozygotic twins, 106 pairs of dizygotic twins, and 106 pairs of regular siblings (SBs), for a total of 536 children. Their ICT was determined, and a variance component analysis was implemented to estimate components of the familial variance, with simultaneous adjustment for potential covariates. We found substantial contribution of the common environment shared by all types of SBs that explained 27.7% of the total variance in ICT, whereas the common twin environment explained 9.2% of the variance, gestational age 3.5%, and birth weight 1.8%. In addition, 8.7% was attributable to sex difference, but we found no detectable contribution of genetic factors to inter-individual variation in ICT age. Developmental plasticity impacts much of human growth. Here we show that of the ∼50% of the variance provided to adult height by the ICT, 42.2% is attributable to adaptive cues represented by shared twin and SB environment, with no detectable genetic involvement. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems

    PubMed Central

    Medford, June; Prasad, Ashok

    2014-01-01

    Biological protein interactions networks such as signal transduction or gene transcription networks are often treated as modular, allowing motifs to be analyzed in isolation from the rest of the network. Modularity is also a key assumption in synthetic biology, where it is similarly expected that when network motifs are combined together, they do not lose their essential characteristics. However, the interactions that a network module has with downstream elements change the dynamical equations describing the upstream module and thus may change the dynamic and static properties of the upstream circuit even without explicit feedback. In this work we analyze the behavior of a ubiquitous motif in gene transcription and signal transduction circuits: the switch. We show that adding an additional downstream component to the simple genetic toggle switch changes its dynamical properties by changing the underlying potential energy landscape, and skewing it in favor of the unloaded side, and in some situations adding loads to the genetic switch can also abrogate bistable behavior. We find that an additional positive feedback motif found in naturally occurring toggle switches could tune the potential energy landscape in a desirable manner. We also analyze autocatalytic signal transduction switches and show that a ubiquitous positive feedback switch can lose its switch-like properties when connected to a downstream load. Our analysis underscores the necessity of incorporating the effects of downstream components when understanding the physics of biochemical network motifs, and raises the question as to how these effects are managed in real biological systems. This analysis is particularly important when scaling synthetic networks to more complex organisms. PMID:24676102

  4. Rate of evolutionary change in cranial morphology of the marsupial genus Monodelphis is constrained by the availability of additive genetic variation

    PubMed Central

    Porto, Arthur; Sebastião, Harley; Pavan, Silvia Eliza; VandeBerg, John L.; Marroig, Gabriel; Cheverud, James M.

    2015-01-01

    We tested the hypothesis that the rate of marsupial cranial evolution is dependent on the distribution of genetic variation in multivariate space. To do so, we carried out a genetic analysis of cranial morphological variation in laboratory strains of Monodelphis domestica and used estimates of genetic covariation to analyze the morphological diversification of the Monodelphis brevicaudata species group. We found that within-species genetic variation is concentrated in only a few axes of the morphospace and that this strong genetic covariation influenced the rate of morphological diversification of the brevicaudata group, with between-species divergence occurring fastest when occurring along the genetic line of least resistance. Accounting for the geometric distribution of genetic variation also increased our ability to detect the selective regimen underlying species diversification, with several instances of selection only being detected when genetic covariances were taken into account. Therefore, this work directly links patterns of genetic covariation among traits to macroevolutionary patterns of morphological divergence. Our findings also suggest that the limited distribution of Monodelphis species in morphospace is the result of a complex interplay between the limited dimensionality of available genetic variation and strong stabilizing selection along two major axes of genetic variation. PMID:25818173

  5. Genetic parameters of legendre polynomials for first parity lactation curves.

    PubMed

    Pool, M H; Janss, L L; Meuwissen, T H

    2000-11-01

    Variance components of the covariance function coefficients in a random regression test-day model were estimated by Legendre polynomials up to a fifth order for first-parity records of Dutch dairy cows using Gibbs sampling. Two Legendre polynomials of equal order were used to model the random part of the lactation curve, one for the genetic component and one for permanent environment. Test-day records from cows registered between 1990 to 1996 and collected by regular milk recording were available. For the data set, 23,700 complete lactations were selected from 475 herds sired by 262 sires. Because the application of a random regression model is limited by computing capacity, we investigated the minimum order needed to fit the variance structure in the data sufficiently. Predictions of genetic and permanent environmental variance structures were compared with bivariate estimates on 30-d intervals. A third-order or higher polynomial modeled the shape of variance curves over DIM with sufficient accuracy for the genetic and permanent environment part. Also, the genetic correlation structure was fitted with sufficient accuracy by a third-order polynomial, but, for the permanent environmental component, a fourth order was needed. Because equal orders are suggested in the literature, a fourth-order Legendre polynomial is recommended in this study. However, a rank of three for the genetic covariance matrix and of four for permanent environment allows a simpler covariance function with a reduced number of parameters based on the eigenvalues and eigenvectors.

  6. Capturing neutral and adaptive genetic diversity for conservation in a highly structured tree species.

    PubMed

    Rodríguez-Quilón, Isabel; Santos-Del-Blanco, Luis; Serra-Varela, María Jesús; Koskela, Jarkko; González-Martínez, Santiago C; Alía, Ricardo

    2016-10-01

    Preserving intraspecific genetic diversity is essential for long-term forest sustainability in a climate change scenario. Despite that, genetic information is largely neglected in conservation planning, and how conservation units should be defined is still heatedly debated. Here, we use maritime pine (Pinus pinaster Ait.), an outcrossing long-lived tree with a highly fragmented distribution in the Mediterranean biodiversity hotspot, to prove the importance of accounting for genetic variation, of both neutral molecular markers and quantitative traits, to define useful conservation units. Six gene pools associated to distinct evolutionary histories were identified within the species using 12 microsatellites and 266 single nucleotide polymorphisms (SNPs). In addition, height and survival standing variation, their genetic control, and plasticity were assessed in a multisite clonal common garden experiment (16 544 trees). We found high levels of quantitative genetic differentiation within previously defined neutral gene pools. Subsequent cluster analysis and post hoc trait distribution comparisons allowed us to define 10 genetically homogeneous population groups with high evolutionary potential. They constitute the minimum number of units to be represented in a maritime pine dynamic conservation program. Our results uphold that the identification of conservation units below the species level should account for key neutral and adaptive components of genetic diversity, especially in species with strong population structure and complex evolutionary histories. The environmental zonation approach currently used by the pan-European genetic conservation strategy for forest trees would be largely improved by gradually integrating molecular and quantitative trait information, as data become available. © 2016 by the Ecological Society of America.

  7. Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia.

    PubMed

    Tapio, Miika; Ozerov, Mikhail; Tapio, Ilma; Toro, Miguel A; Marzanov, Nurbiy; Cinkulov, Mirjana; Goncharenko, Galina; Kiselyova, Tatyana; Murawski, Maziek; Kantanen, Juha

    2010-08-10

    Identification of global livestock diversity hotspots and their importance in diversity maintenance is essential for making global conservation efforts. We screened 52 sheep breeds from the Eurasian subcontinent with 20 microsatellite markers. By estimating and weighting differently within- and between-breed genetic variation our aims were to identify genetic diversity hotspots and prioritize the importance of each breed for conservation, respectively. In addition we estimated how important within-species diversity hotspots are in livestock conservation. Bayesian clustering analysis revealed three genetic clusters, termed Nordic, Composite and Fat-tailed. Southern breeds from close to the region of sheep domestication were more variable, but less genetically differentiated compared with more northern populations. Decreasing weight for within-breed diversity component led to very high representation of genetic clusters or regions containing more diverged breeds, but did not increase phenotypic diversity among the high ranked breeds. Sampling populations throughout 14 regional groups was suggested for maximized total genetic diversity. During initial steps of establishing a livestock conservation program populations from the diversity hot-spot area are the most important ones, but for the full design our results suggested that approximately equal population presentation across environments should be considered. Even in this case, higher per population emphasis in areas of high diversity is appropriate. The analysis was based on neutral data, but we have no reason to think the general trend is limited to this type of data. However, a comprehensive valuation of populations should balance production systems, phenotypic traits and available genetic information, and include consideration of probability of success.

  8. Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia

    PubMed Central

    2010-01-01

    Background Identification of global livestock diversity hotspots and their importance in diversity maintenance is essential for making global conservation efforts. We screened 52 sheep breeds from the Eurasian subcontinent with 20 microsatellite markers. By estimating and weighting differently within- and between-breed genetic variation our aims were to identify genetic diversity hotspots and prioritize the importance of each breed for conservation, respectively. In addition we estimated how important within-species diversity hotspots are in livestock conservation. Results Bayesian clustering analysis revealed three genetic clusters, termed Nordic, Composite and Fat-tailed. Southern breeds from close to the region of sheep domestication were more variable, but less genetically differentiated compared with more northern populations. Decreasing weight for within-breed diversity component led to very high representation of genetic clusters or regions containing more diverged breeds, but did not increase phenotypic diversity among the high ranked breeds. Sampling populations throughout 14 regional groups was suggested for maximized total genetic diversity. Conclusions During initial steps of establishing a livestock conservation program populations from the diversity hot-spot area are the most important ones, but for the full design our results suggested that approximately equal population presentation across environments should be considered. Even in this case, higher per population emphasis in areas of high diversity is appropriate. The analysis was based on neutral data, but we have no reason to think the general trend is limited to this type of data. However, a comprehensive valuation of populations should balance production systems, phenotypic traits and available genetic information, and include consideration of probability of success. PMID:20698974

  9. Genetic Diversity Strategy for the Management and Use of Rubber Genetic Resources: More than 1,000 Wild and Cultivated Accessions in a 100-Genotype Core Collection

    PubMed Central

    Cerqueira-Silva, Carlos Bernardo Moreno; Silva, Carla Cristina; Mantello, Camila Campos; Conson, Andre Ricardo Oliveira; Vianna, João Paulo Gomes; Zucchi, Maria Imaculada; Scaloppi Junior, Erivaldo José; Fialho, Josefino de Freitas; de Moraes, Mario Luis Teixeira; Gonçalves, Paulo de Souza; de Souza, Anete Pereira

    2015-01-01

    The rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell. Arg.] is the only plant species worldwide that is cultivated for the commercial production of natural rubber. This study describes the genetic diversity of the Hevea spp. complex that is available in the main ex situ collections of South America, including Amazonian populations that have never been previously described. Genetic data were analyzed to determine the genetic structure of the wild populations, quantify the allelic diversity and suggest the composition of a core collection to capture the maximum genetic diversity within a minimal sample size. A total of 1,117 accessions were genotyped with 13 microsatellite markers. We identified a total of 408 alleles, 319 of which were shared between groups and 89 that were private in different groups of accessions. In a population structure and principal component analysis, the level of clustering reflected a primary division into the following two subgroups: cluster 1, which consisted of varieties from the advanced breeding germplasm that originated from the Wickham and Mato Grosso accessions; and cluster 2, which consisted of the wild germplasm from the Acre, Amazonas, Pará and Rondônia populations and Hevea spp. The analyses revealed a high frequency of gene flow between the groups, with the genetic differentiation coefficient (GST) estimated to be 0.018. Additionally, no distinct separation among the H. brasiliensis accessions and the other species from Amazonas was observed. A core collection of 99 accessions was identified that captured the maximum genetic diversity. Rubber tree breeders can effectively utilize this core collection for cultivar improvement. Furthermore, such a core collection could provide resources for forming an association panel to evaluate traits with agronomic and commercial importance. Our study generated a molecular database that should facilitate the management of the Hevea germplasm and its use for subsequent genetic

  10. Chemistry of Food Additives: Direct and Indirect Effects.

    ERIC Educational Resources Information Center

    Pauli, George H.

    1984-01-01

    The primary component(s), impurities, and degradation products of polysorbate 80, nitrate and nitrite salts, and diethylpyrocarbonate (DEPC) are discussed. Safety considerations related to these food additives are also noted. The chick-edema factor which results from an additive in poultry feed is also discussed. (JN)

  11. On the Genetics of Altruism and the Counter-Hedonic Components in Human Culture

    ERIC Educational Resources Information Center

    Campbell, Donald T.

    1972-01-01

    Unlike the social insect, man is profoundly ambivalent in his social role: the behavioral dispositions which produce complex social interdependence and self-sacrificial altruism must be produced by culturally evolved indoctrination, which has had to counter self-serving genetic tendencies. (Author/JM)

  12. Genetic diversity among 16 genotypes of Coffea arabica in the Brazilian cerrado.

    PubMed

    Machado, C M S; Pimentel, N S; Golynsk, A; Ferreira, A; Vieira, H D; Partelli, F L

    2017-09-21

    For the selection of coffee plants that have favorable characteristics, it is necessary to evaluate variables related to production. Knowledge of the genetic divergence of arabica coffee is of extreme importance, as this knowledge can be associated with plant breeding programs in order to combine genetic divergence with good productive performance. The objective of this study was to evaluate the genetic divergence among 16 genotypes of Coffea arabica with the purpose of identifying the most dissimilar genotypes for the establishment of breeding programs and adaptation to the Brazilian cerrado. The genetic divergence was evaluated using multivariate procedures, the analysis of the average grouping unweighted pair group method with arithmetic mean (UPGMA) and main components in 2013 and 2014. Eight characters were evaluated in an experiment conducted in Morrinhos, Goiás. The presence of genetic divergence among the 16 C. arabica genotypes under cerrado conditions was recorded. The formation of UPGMA groups for the evaluated characteristics was pertinent due to the number of genotypes. The first three major components accounted for 81.77% of the total variance. The genotype H-419-3-4-4-13(C-241) of low size was the most divergent, followed by Catucaí 2 SL and Catiguá MG2, according to the main components.

  13. Comparing estimates of genetic variance across different relationship models.

    PubMed

    Legarra, Andres

    2016-02-01

    Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities". Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Disentangling privacy from property: toward a deeper understanding of genetic privacy.

    PubMed

    Suter, Sonia M

    2004-04-01

    With the mapping of the human genome, genetic privacy has become a concern to many. People care about genetic privacy because genes play an important role in shaping us--our genetic information is about us, and it is deeply connected to our sense of ourselves. In addition, unwanted disclosure of our genetic information, like a great deal of other personal information, makes us vulnerable to unwanted exposure, stigmatization, and discrimination. One recent approach to protecting genetic privacy is to create property rights in genetic information. This Article argues against that approach. Privacy and property are fundamentally different concepts. At heart, the term "property" connotes control within the marketplace and over something that is disaggregated or alienable from the self. "Privacy," in contrast, connotes control over access to the self as well as things close to, intimately connected to, and about the self. Given these different meanings, a regime of property rights in genetic information would impoverish our understanding of that information, ourselves, and the relationships we hope will be built around and through its disclosure. This Article explores our interests in genetic information in order to deepen our understanding of the ongoing discourse about the distinction between property and privacy. It develops a conception of genetic privacy with a strong relational component. We ordinarily share genetic information in the context of relationships in which disclosure is important to the relationship--family, intimate, doctor-patient, researcher-participant, employer-employee, and insurer-insured relationships. Such disclosure makes us vulnerable to and dependent on the person to whom we disclose it. As a result, trust is essential to the integrity of these relationships and our sharing of genetic information. Genetic privacy can protect our vulnerability in these relationships and enhance the trust we hope to have in them. Property, in contrast, by

  15. Genetic counselling issues in cystic fibrosis.

    PubMed

    Culling, Bronwyn; Ogle, Robert

    2010-06-01

    Cystic fibrosis is a chronic condition for which genetic testing offers much for the individuals affected in terms of an early diagnosis and offers timely additional information for families with regard to family planning and prenatal testing. Genetic counselling encompasses a range of clinical issues for families and forms a complementary resource for clinicians caring for people with cystic fibrosis. This review will discuss the range of genetic information readily available to patients and families through genetic counselling. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Males and Females Contribute Unequally to Offspring Genetic Diversity in the Polygynandrous Mating System of Wild Boar

    PubMed Central

    Pérez-González, Javier; Costa, Vânia; Santos, Pedro; Slate, Jon; Carranza, Juan; Fernández-Llario, Pedro; Zsolnai, Attila; Monteiro, Nuno M.; Anton, István; Buzgó, József; Varga, Gyula; Beja-Pereira, Albano

    2014-01-01

    The maintenance of genetic diversity across generations depends on both the number of reproducing males and females. Variance in reproductive success, multiple paternity and litter size can all affect the relative contributions of male and female parents to genetic variation of progeny. The mating system of the wild boar (Sus scrofa) has been described as polygynous, although evidence of multiple paternity in litters has been found. Using 14 microsatellite markers, we evaluated the contribution of males and females to genetic variation in the next generation in independent wild boar populations from the Iberian Peninsula and Hungary. Genetic contributions of males and females were obtained by distinguishing the paternal and maternal genetic component inherited by the progeny. We found that the paternally inherited genetic component of progeny was more diverse than the maternally inherited component. Simulations showed that this finding might be due to a sampling bias. However, after controlling for the bias by fitting both the genetic diversity in the adult population and the number of reproductive individuals in the models, paternally inherited genotypes remained more diverse than those inherited maternally. Our results suggest new insights into how promiscuous mating systems can help maintain genetic variation. PMID:25541986

  17. General Methods for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models.

    PubMed

    de Villemereuil, Pierre; Schielzeth, Holger; Nakagawa, Shinichi; Morrissey, Michael

    2016-11-01

    Methods for inference and interpretation of evolutionary quantitative genetic parameters, and for prediction of the response to selection, are best developed for traits with normal distributions. Many traits of evolutionary interest, including many life history and behavioral traits, have inherently nonnormal distributions. The generalized linear mixed model (GLMM) framework has become a widely used tool for estimating quantitative genetic parameters for nonnormal traits. However, whereas GLMMs provide inference on a statistically convenient latent scale, it is often desirable to express quantitative genetic parameters on the scale upon which traits are measured. The parameters of fitted GLMMs, despite being on a latent scale, fully determine all quantities of potential interest on the scale on which traits are expressed. We provide expressions for deriving each of such quantities, including population means, phenotypic (co)variances, variance components including additive genetic (co)variances, and parameters such as heritability. We demonstrate that fixed effects have a strong impact on those parameters and show how to deal with this by averaging or integrating over fixed effects. The expressions require integration of quantities determined by the link function, over distributions of latent values. In general cases, the required integrals must be solved numerically, but efficient methods are available and we provide an implementation in an R package, QGglmm. We show that known formulas for quantities such as heritability of traits with binomial and Poisson distributions are special cases of our expressions. Additionally, we show how fitted GLMM can be incorporated into existing methods for predicting evolutionary trajectories. We demonstrate the accuracy of the resulting method for evolutionary prediction by simulation and apply our approach to data from a wild pedigreed vertebrate population. Copyright © 2016 de Villemereuil et al.

  18. Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials

    PubMed Central

    2018-01-01

    Objective The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. Methods A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. Results All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from 0.78±0.01 to 0.82±0.03, between the first and second parities, from 0.73±0.03 to 0.8±0.04 between the first and third parities, and from 0.82±0.02 to 0.84±0.04 between the second and third parities. Conclusion These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins. PMID:28823122

  19. Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials.

    PubMed

    Ben Zaabza, Hafedh; Ben Gara, Abderrahmen; Rekik, Boulbaba

    2018-05-01

    The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from 0.78±0.01 to 0.82±0.03, between the first and second parities, from 0.73±0.03 to 0.8±0.04 between the first and third parities, and from 0.82±0.02 to 0.84±0.04 between the second and third parities. These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins.

  20. Genetic and environmental effects on myopia development and progression

    PubMed Central

    Goldschmidt, E; Jacobsen, N

    2014-01-01

    This review aims at elucidating the interaction between genetic and environmental factors in the aetiology of primarily low myopia. Genetics greatly influence the growth of the eye, but the fine correlation between the components of refraction for the eye to become emmetrope is affected by environmental factors such as education, metabolism, physical activity, and outdoor activity. PMID:24357837