Science.gov

Sample records for additive manufacturing technology

  1. Emerging technologies in arthroplasty: additive manufacturing.

    PubMed

    Banerjee, Samik; Kulesha, Gene; Kester, Mark; Mont, Michael A

    2014-06-01

    Additive manufacturing is an industrial technology whereby three-dimensional visual computer models are fabricated into physical components by selectively curing, depositing, or consolidating various materials in consecutive layers. Although initially developed for production of simulated models, the technology has undergone vast improvements and is currently increasingly being used for the production of end-use components in various aerospace, automotive, and biomedical specialties. The ability of this technology to be used for the manufacture of solid-mesh-foam monolithic and coated components of complex geometries previously considered unmanufacturable has attracted the attention of implant manufacturers, bioengineers, and orthopedic surgeons. Currently, there is a paucity of reports describing this fabrication method in the orthopedic literature. Therefore, we aimed to briefly describe this technology, some of the applications in other orthopedic subspecialties, its present use in hip and knee arthroplasty, and concerns with the present form of the technology. As there are few reports of clinical trials presently available, the true benefits of this technology can only be realized when studies evaluating the clinical and radiographic outcomes of cementless implants manufactured with additive manufacturing report durable fixation, less stress shielding, and better implant survivorship. Nevertheless, the authors believe that this technology holds great promise and may potentially change the conventional methods of casting, machining, and tooling for implant manufacturing in the future. PMID:24764230

  2. Emerging technologies in arthroplasty: additive manufacturing.

    PubMed

    Banerjee, Samik; Kulesha, Gene; Kester, Mark; Mont, Michael A

    2014-06-01

    Additive manufacturing is an industrial technology whereby three-dimensional visual computer models are fabricated into physical components by selectively curing, depositing, or consolidating various materials in consecutive layers. Although initially developed for production of simulated models, the technology has undergone vast improvements and is currently increasingly being used for the production of end-use components in various aerospace, automotive, and biomedical specialties. The ability of this technology to be used for the manufacture of solid-mesh-foam monolithic and coated components of complex geometries previously considered unmanufacturable has attracted the attention of implant manufacturers, bioengineers, and orthopedic surgeons. Currently, there is a paucity of reports describing this fabrication method in the orthopedic literature. Therefore, we aimed to briefly describe this technology, some of the applications in other orthopedic subspecialties, its present use in hip and knee arthroplasty, and concerns with the present form of the technology. As there are few reports of clinical trials presently available, the true benefits of this technology can only be realized when studies evaluating the clinical and radiographic outcomes of cementless implants manufactured with additive manufacturing report durable fixation, less stress shielding, and better implant survivorship. Nevertheless, the authors believe that this technology holds great promise and may potentially change the conventional methods of casting, machining, and tooling for implant manufacturing in the future.

  3. Hybrid Additive Manufacturing Technologies - An Analysis Regarding Potentials and Applications

    NASA Astrophysics Data System (ADS)

    Merklein, Marion; Junker, Daniel; Schaub, Adam; Neubauer, Franziska

    Imposing the trend of mass customization of lightweight construction in industry, conventional manufacturing processes like forming technology and chipping production are pushed to their limits for economical manufacturing. More flexible processes are needed which were developed by the additive manufacturing technology. This toolless production principle offers a high geometrical freedom and an optimized utilization of the used material. Thus load adjusted lightweight components can be produced in small lot sizes in an economical way. To compensate disadvantages like inadequate accuracy and surface roughness hybrid machines combining additive and subtractive manufacturing are developed. Within this paper the principles of mainly used additive manufacturing processes of metals and their possibility to be integrated into a hybrid production machine are summarized. It is pointed out that in particular the integration of deposition processes into a CNC milling center supposes high potential for manufacturing larger parts with high accuracy. Furthermore the combination of additive and subtractive manufacturing allows the production of ready to use products within one single machine. Additionally actual research for the integration of additive manufacturing processes into the production chain will be analyzed. For the long manufacturing time of additive production processes the combination with conventional manufacturing processes like sheet or bulk metal forming seems an effective solution. Especially large volumes can be produced by conventional processes. In an additional production step active elements can be applied by additive manufacturing. This principle is also investigated for tool production to reduce chipping of the high strength material used for forming tools. The aim is the addition of active elements onto a geometrical simple basis by using Laser Metal Deposition. That process allows the utilization of several powder materials during one process what

  4. A new application for food customization with additive manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Serenó, L.; Vallicrosa, G.; Delgado, J.; Ciurana, J.

    2012-04-01

    Additive Manufacturing (AM) technologies have emerged as a freeform approach capable of producing almost any complete three dimensional (3D) objects from computer-aided design (CAD) data by successively adding material layer by layer. Despite the broad range of possibilities, commercial AM technologies remain complex and expensive, making them suitable only for niche applications. The developments of the Fab@Home system as an open AM technology discovered a new range of possibilities of processing different materials such as edible products. The main objective of this work is to analyze and optimize the manufacturing capacity of this system when producing 3D edible objects. A new heated syringe deposition tool was developed and several process parameters were optimized to adapt this technology to consumers' needs. The results revealed in this study show the potential of this system to produce customized edible objects without qualified personnel knowledge, therefore saving manufacturing costs compared to traditional technologies.

  5. Accelerating Industrial Adoption of Metal Additive Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Vartanian, Kenneth; McDonald, Tom

    2016-03-01

    While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.

  6. Developing novel 3D antennas using advanced additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  7. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    NASA Technical Reports Server (NTRS)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  8. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  9. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  10. Manufacturing technologies

    NASA Astrophysics Data System (ADS)

    The Manufacturing Technologies Center is at the core of Sandia National Laboratories' advanced manufacturing effort which spans the entire product realization process. The center's capabilities in product and process development are summarized in the following disciplines: (1) mechanical - rapid prototyping, manufacturing engineering, machining and computer-aided manufacturing, measurement and calibration, and mechanical and electronic manufacturing liaison; (2) electronics - advanced packaging for microelectronics, printed circuits, and electronic fabrication; and (3) materials - ceramics, glass, thin films, vacuum technology, brazing, polymers, adhesives, composite materials, and process analysis.

  11. Quality control of laser- and powder bed-based Additive Manufacturing (AM) technologies

    NASA Astrophysics Data System (ADS)

    Berumen, Sebastian; Bechmann, Florian; Lindner, Stefan; Kruth, Jean-Pierre; Craeghs, Tom

    The quality of metal components manufactured by laser- and powder bed-based additive manufacturing technologies has continuously been improved over the last years. However, to establish this production technology in industries with very high quality standards the accessibility of prevalent quality management methods to all steps of the process chain needs still to be enhanced. This publication describes which tools are and will be available to fulfil those requirements from the perspective of a laser machine manufacturer. Generally five aspects of the part building process are covered by separate Quality Management (QM) modules: the powder quality, the temperature management, the process gas atmosphere, the melt pool behaviour and the documentation module. This paper sets the focus on melt pool analysis and control.

  12. Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review

    NASA Astrophysics Data System (ADS)

    Kumbhar, N. N.; Mulay, A. V.

    2016-08-01

    The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.

  13. Emerging Technologies in the Built Environment: Geographic Information Science (GIS), 3D Printing, and Additive Manufacturing

    SciTech Connect

    New, Joshua Ryan

    2014-01-01

    Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: This presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.

  14. Perspectives on Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Bourell, David L.

    2016-07-01

    Additive manufacturing (AM) has skyrocketed in visibility commercially and in the public sector. This article describes the development of this field from early layered manufacturing approaches of photosculpture, topography, and material deposition. Certain precursors to modern AM processes are also briefly described. The growth of the field over the last 30 years is presented. Included is the standard delineation of AM technologies into seven broad categories. The economics of AM part generation is considered, and the impacts of the economics on application sectors are described. On the basis of current trends, the future outlook will include a convergence of AM fabricators, mass-produced AM fabricators, enabling of topology optimization designs, and specialization in the AM legal arena. Long-term developments with huge impact are organ printing and volume-based printing.

  15. The method of manufacture of nylon dental partially removable prosthesis using additive technologies

    NASA Astrophysics Data System (ADS)

    Kashapov, R. N.; Korobkina, A. I.; Platonov, E. V.; Saleeva, G. T.

    2014-12-01

    The article is devoted to the topic of creating new methods of dental prosthesis. The aim of this work is to investigate the possibility of using additive technology to create nylon prosthesis. As a result of experimental studies, was made a sample of nylon partially removable prosthesis using 3D printing has allowed to simplify, accelerate and reduce the coat of manufacturing high-precision nylon dentures.

  16. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  17. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  18. Manufacturing technology

    SciTech Connect

    Blaedel, K.L.

    1997-02-01

    The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

  19. Additive manufacturing of optical components

    NASA Astrophysics Data System (ADS)

    Heinrich, Andreas; Rank, Manuel; Maillard, Philippe; Suckow, Anne; Bauckhage, Yannick; Rößler, Patrick; Lang, Johannes; Shariff, Fatin; Pekrul, Sven

    2016-08-01

    The development of additive manufacturing methods has enlarged rapidly in recent years. Thereby, the work mainly focuses on the realization of mechanical components, but the additive manufacturing technology offers a high potential in the field of optics as well. Owing to new design possibilities, completely new solutions are possible. This article briefly reviews and compares the most important additive manufacturing methods for polymer optics. Additionally, it points out the characteristics of additive manufactured polymer optics. Thereby, surface quality is of crucial importance. In order to improve it, appropriate post-processing steps are necessary (e.g. robot polishing or coating), which will be discussed. An essential part of this paper deals with various additive manufactured optical components and their use, especially in optical systems for shape metrology (e.g. borehole sensor, tilt sensor, freeform surface sensor, fisheye lens). The examples should demonstrate the potentials and limitations of optical components produced by additive manufacturing.

  20. [INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Delaporte, Philippe; Alloncle, Anne-Patricia

    2016-04-01

    Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.

  1. Cost-Effective Additive Manufacturing in Space: HELIOS Technology Challenge Guide

    NASA Technical Reports Server (NTRS)

    DeVieneni, Alayna; Velez, Carlos Andres; Benjamin, David; Hollenbeck, Jay

    2012-01-01

    Welcome to the HELIOS Technology Challenge Guide. This document is intended to serve as a general road map for participants of the HELIOS Technology Challenge [HTC] Program and the associated inaugural challenge: HTC-01: Cost-Effective Additive Manufacturing in Space. Please note that this guide is not a rule book and is not meant to hinder the development of innovative ideas. Its primary goal is to highlight the objectives of the HTC-01 Challenge and to describe possible solution routes and pitfalls that such technology may encounter in space. Please also note that participants wishing to demonstrate any hardware developed under this program during any future HELIOS Technology Challenge showcase event(s) may be subject to event regulations to be published separately at a later date.

  2. Metal Additive Manufacturing: A Review

    NASA Astrophysics Data System (ADS)

    Frazier, William E.

    2014-06-01

    This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

  3. The role and future of the Laser Technology in the Additive Manufacturing environment

    NASA Astrophysics Data System (ADS)

    Levy, Gideon N.

    The Additive Manufacturing (AM) was, in the early days, strongly inspired by upcoming laser technologies. The trend to apply lasers in manufacturing in the 1970's might be also be seen as the ignition point, as is evident in early precedent patents. During the evolvement of AM processes, many new systems based on various physical principals were evident; alternative energy sources for AM are in use today. Starting with the 'historical' background followed by a detailed classification analyzing the enablers in use, relevant laser technologies have been identified. This paper focuses on powder bed technologies for plastics and metals as the relevant Laser technology. It concentrates on laser influences and state-of-the-art knowledge. The paper will present a generalized, 'big picture' overview indicating 'lessons learned' and where future emphasis should be focused. Opportunities and challenges, including actual development status, will be described in view of the desired outcomes. Finally, future research challenges and conclusions will be stated and several relevant references for further readings will be given.

  4. Additive Manufacturing and High-Performance Computing: a Disruptive Latent Technology

    NASA Astrophysics Data System (ADS)

    Goodwin, Bruce

    2015-03-01

    This presentation will discuss the relationship between recent advances in Additive Manufacturing (AM) technology, High-Performance Computing (HPC) simulation and design capabilities, and related advances in Uncertainty Quantification (UQ), and then examines their impacts upon national and international security. The presentation surveys how AM accelerates the fabrication process, while HPC combined with UQ provides a fast track for the engineering design cycle. The combination of AM and HPC/UQ almost eliminates the engineering design and prototype iterative cycle, thereby dramatically reducing cost of production and time-to-market. These methods thereby present significant benefits for US national interests, both civilian and military, in an age of austerity. Finally, considering cyber security issues and the advent of the ``cloud,'' these disruptive, currently latent technologies may well enable proliferation and so challenge both nuclear and non-nuclear aspects of international security.

  5. [INVITED] Lasers in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Pinkerton, Andrew J.

    2016-04-01

    Additive manufacturing is a topic of considerable ongoing interest, with forecasts predicting it to have major impact on industry in the future. This paper focusses on the current status and potential future development of the technology, with particular reference to the role of lasers within it. It begins by making clear the types and roles of lasers in the different categories of additive manufacturing. This is followed by concise reviews of the economic benefits and disadvantages of the technology, current state of the market and use of additive manufacturing in different industries. Details of these fields are referenced rather than expanded in detail. The paper continues, focusing on current indicators to the future of additive manufacturing. Barriers to its development, trends and opportunities in major industrial sectors, and wider opportunities for its development are covered. Evidence indicates that additive manufacturing may not become the dominant manufacturing technology in all industries, but represents an excellent opportunity for lasers to increase their influence in manufacturing as a whole.

  6. Manufacturing technology

    SciTech Connect

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  7. Thermographic In-Situ Process Monitoring of the Electron Beam Melting Technology used in Additive Manufacturing

    SciTech Connect

    Dinwiddie, Ralph Barton; Dehoff, Ryan R; Lloyd, Peter D; Lowe, Larry E; Ulrich, Joseph B

    2013-01-01

    Oak Ridge National Laboratory (ORNL) has been utilizing the ARCAM electron beam melting technology to additively manufacture complex geometric structures directly from powder. Although the technology has demonstrated the ability to decrease costs, decrease manufacturing lead-time and fabricate complex structures that are impossible to fabricate through conventional processing techniques, certification of the component quality can be challenging. Because the process involves the continuous deposition of successive layers of material, each layer can be examined without destructively testing the component. However, in-situ process monitoring is difficult due to metallization on inside surfaces caused by evaporation and condensation of metal from the melt pool. This work describes a solution to one of the challenges to continuously imaging inside of the chamber during the EBM process. Here, the utilization of a continuously moving Mylar film canister is described. Results will be presented related to in-situ process monitoring and how this technique results in improved mechanical properties and reliability of the process.

  8. 3D Printing, Additive Manufacturing, and Solid Freeform Fabrication: The Technologies of the Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Beaman, Joseph

    2015-03-01

    Starting in the late 1980's, several new technologies were created that have the potential to revolutionize manufacturing. These technologies are, for the most part, additive processes that build up parts layer by layer. In addition, the processes that are being touted for hard-core manufacturing are primarily laser or e-beam based processes. This presentation gives a brief history of Additive Manufacturing and gives an assessment for these technologies. These technologies initially grew out of a commercial need for rapid prototyping. This market has a different requirement for process and quality control than traditional manufacturing. The relatively poor process control of the existing commercial Additive Manufacturing equipment is a vestige of this history. This presentation discusses this history and improvements in quality over time. The emphasis will be on Additive Manufacturing processes that are being considered for direct manufacturing, which is a different market than the 3D Printing ``Makerbot'' market. Topics discussed include past and present machine sensors, materials, and operational methods that were used in the past and those that are used today to create manufactured parts. Finally, a discussion of new methods and future directions of AM is presented.

  9. Study of mandible reconstruction using a fibula flap with application of additive manufacturing technology

    PubMed Central

    2014-01-01

    Background This study aimed to establish surgical guiding techniques for completing mandible lesion resection and reconstruction of the mandible defect area with fibula sections in one surgery by applying additive manufacturing technology, which can reduce the surgical duration and enhance the surgical accuracy and success rate. Methods A computer assisted mandible reconstruction planning (CAMRP) program was used to calculate the optimal cutting length and number of fibula pieces and design the fixtures for mandible cutting, registration, and arrangement of the fibula segments. The mandible cutting and registering fixtures were then generated using an additive manufacturing system. The CAMRP calculated the optimal fibula cutting length and number of segments based on the location and length of the defective portion of the mandible. The mandible cutting jig was generated according to the boundary surface of the lesion resection on the mandible STL model. The fibular cutting fixture was based on the length of each segment, and the registered fixture was used to quickly arrange the fibula pieces into the shape of the defect area. In this study, the mandibular lesion was reconstructed using registered fibular sections in one step, and the method is very easy to perform. Results and conclusion The application of additive manufacturing technology provided customized models and the cutting fixtures and registered fixtures, which can improve the efficiency of clinical application. This study showed that the cutting fixture helped to rapidly complete lesion resection and fibula cutting, and the registered fixture enabled arrangement of the fibula pieces and allowed completion of the mandible reconstruction in a timely manner. Our method can overcome the disadvantages of traditional surgery, which requires a long and different course of treatment and is liable to cause error. With the help of optimal cutting planning by the CAMRP and the 3D printed mandible resection jig and

  10. Manufacturing technology

    SciTech Connect

    Blaedel, K L

    1998-01-01

    The mission of the Manufacturing Technology thrust area at Lawrence Livermore National Laboratory (LLNL) has been to have an adequate base of manufacturing technology, not necessarily resident at LLNL, to conduct their future business. The specific goals were (1) to develop an understanding of fundamental fabrication processes; (2) to construct general purpose process models that have wide applicability; (3) to document their findings and models in journals; (4) to transfer technology to LLNL programs, industry, and colleagues; and (5) to develop continuing relationships with the industrial and academic communities to advance their collective understanding of fabrication processes. In support of this mission, two projects were reported here, each of which explores a way to bring higher precision to the manufacturing challenges that we face over the next few years. The first, ''A Spatial-Frequency-Domain Approach to Designing a Precision Machine Tools,'' is an overall view of how they design machine tools and instruments to make or measure workpieces that are specified in terms of the spatial frequency content of the residual errors of the workpiece surface. This represents an improvement of an ''error budget,'' a design tool that saw significant development in the early 1980's, and has been in active use since then. The second project, ''Micro-Drilling of ICF Capsules,'' is an attempt to define the current state in commercial industry for drilling small holes, particularly laser-drilling. The report concludes that 1-{micro}m diameter holes cannot currently be drilled to high aspect ratios, and then defines the engineering challenges that will have to be overcome to machine holes small enough for NIF capsules.

  11. Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies.

    PubMed

    Hengsbach, Stefan; Lantada, Andrés Díaz

    2014-08-01

    The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.

  12. Additive Manufacturing of Hybrid Circuits

    NASA Astrophysics Data System (ADS)

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.

    2016-07-01

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  13. Evaluation Of Electrochemical Machining Technology For Surface Improvements In Additive Manufactured Components

    SciTech Connect

    Dehoff, Ryan R.; List, III, Frederick Alyious; Carver, Keith

    2015-09-23

    ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to polish the surface of parts created by Arcam electron beam melting. The goals for phase one of this project have been met. The project goal was to determine whether electro-chemical machining is a viable method to improve the surface finish of Inconel 718 parts fabricated using the Arcam EBM method. The project partner (ECM) demonstrated viability for parts of both simple and complex geometry. During the course of the project, detailed process knowledge was generated. This project has resulted in the expansion of United States operations for ECM Technologies.

  14. Neutron Characterization for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.

    2013-01-01

    Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL

  15. Additive manufacturing of hybrid circuits

    DOE PAGES

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  16. Out of bounds additive manufacturing

    DOE PAGES

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  17. Cincinnati Big Area Additive Manufacturing (BAAM)

    SciTech Connect

    Duty, Chad E.; Love, Lonnie J.

    2015-03-04

    Oak Ridge National Laboratory (ORNL) worked with Cincinnati Incorporated (CI) to demonstrate Big Area Additive Manufacturing which increases the speed of the additive manufacturing (AM) process by over 1000X, increases the size of parts by over 10X and shows a cost reduction of over 100X. ORNL worked with CI to transition the Big Area Additive Manufacturing (BAAM) technology from a proof-of-principle (TRL 2-3) demonstration to a prototype product stage (TRL 7-8).

  18. [Additive Manufacturing and Its Medical Applications].

    PubMed

    Song, Zewen; Wang, Guohui; Gao, Qin; Zhu, Shaihong

    2015-04-01

    Additive manufacturing (AM) is a collection of technologies based on the layer-by-layer manufacturing. Characterized by its direct manufacturing and rapidity, it has been regarded by the Economist Journal as one of the key techniques which will trigger the third industry reformation. The present article, beginning with a brief introduction of the history of AM and the process of its major technologies, focuses on the advantages and disadvantages and medical applications of the technique.

  19. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting.

  20. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting. PMID:25500631

  1. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  2. An Additive Manufacturing Test Artifact.

    PubMed

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039

  3. An Additive Manufacturing Test Artifact

    PubMed Central

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039

  4. An Additive Manufacturing Test Artifact.

    PubMed

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system.

  5. Thermographic in-situ process monitoring of the electron-beam melting technology used in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Dinwiddie, Ralph B.; Dehoff, Ryan R.; Lloyd, Peter D.; Lowe, Larry E.; Ulrich, Joe B.

    2013-05-01

    Oak Ridge National Laboratory (ORNL) has been utilizing the ARCAM electron beam melting technology to additively manufacture complex geometric structures directly from powder. Although the technology has demonstrated the ability to decrease costs, decrease manufacturing lead-time and fabricate complex structures that are impossible to fabricate through conventional processing techniques, certification of the component quality can be challenging. Because the process involves the continuous deposition of successive layers of material, each layer can be examined without destructively testing the component. However, in-situ process monitoring is difficult due to metallization on inside surfaces caused by evaporation and condensation of metal from the melt pool. This work describes a solution to one of the challenges to continuously imaging inside of the chamber during the EBM process. Here, the utilization of a continuously moving Mylar film canister is described. Results will be presented related to in-situ process monitoring and how this technique results in improved mechanical properties and reliability of the process.

  6. Additive manufacturing in production: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Ahuja, Bhrigu; Karg, Michael; Schmidt, Michael

    2015-03-01

    Additive manufacturing, characterized by its inherent layer by layer fabrication methodology has been coined by many as the latest revolution in the manufacturing industry. Due to its diversification of Materials, processes, system technology and applications, Additive Manufacturing has been synonymized with terminology such as Rapid prototyping, 3D printing, free-form fabrication, Additive Layer Manufacturing, etc. A huge media and public interest in the technology has led to an innovative attempt of exploring the technology for applications beyond the scope of the traditional engineering industry. Nevertheless, it is believed that a critical factor for the long-term success of Additive Manufacturing would be its ability to fulfill the requirements defined by the traditional manufacturing industry. A parallel development in market trends and product requirements has also lead to a wider scope of opportunities for Additive Manufacturing. The presented paper discusses some of the key challenges which are critical to ensure that Additive Manufacturing is truly accepted as a mainstream production technology in the industry. These challenges would highlight on various aspects of production such as product requirements, process management, data management, intellectual property, work flow management, quality assurance, resource planning, etc. In Addition, changing market trends such as product life cycle, mass customization, sustainability, environmental impact and localized production will form the foundation for the follow up discussion on the current limitations and the corresponding research opportunities. A discussion on ongoing research to address these challenges would include topics like process monitoring, design complexity, process standardization, multi-material and hybrid fabrication, new material development, etc.

  7. Breaking Barriers in Polymer Additive Manufacturing

    SciTech Connect

    Love, Lonnie J; Duty, Chad E; Post, Brian K; Lind, Randall F; Lloyd, Peter D; Kunc, Vlastimil; Peter, William H; Blue, Craig A

    2015-01-01

    Additive Manufacturing (AM) enables the creation of complex structures directly from a computer-aided design (CAD). There are limitations that prevent the technology from realizing its full potential. AM has been criticized for being slow and expensive with limited build size. Oak Ridge National Laboratory (ORNL) has developed a large scale AM system that improves upon each of these areas by more than an order of magnitude. The Big Area Additive Manufacturing (BAAM) system directly converts low cost pellets into a large, three-dimensional part at a rate exceeding 25 kg/h. By breaking these traditional barriers, it is possible for polymer AM to penetrate new manufacturing markets.

  8. Sustainability Characterization for Additive Manufacturing

    PubMed Central

    Mani, Mahesh; Lyons, Kevin W; Gupta, SK

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts. PMID:26601038

  9. Sustainability Characterization for Additive Manufacturing.

    PubMed

    Mani, Mahesh; Lyons, Kevin W; Gupta, S K

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts.

  10. Evaluation of advanced polymers for additive manufacturing

    SciTech Connect

    Rios, Orlando; Morrison, Crystal

    2015-09-01

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficient mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and is inherently low-cost.

  11. The Importance of Carbon Fiber to Polymer Additive Manufacturing

    SciTech Connect

    Love, Lonnie J; Kunc, Vlastimil; Rios, Orlando; Duty, Chad E; Post, Brian K; Blue, Craig A

    2014-01-01

    Additive manufacturing holds tremendous promise in terms of revolutionizing manufacturing. However, fundamental hurdles limit mass adoption of the technology. First, production rates are extremely low. Second, the physical size of parts is generally small, less than a cubic foot. Third, while there is much excitement about metal additive manufacturing, the major growth area is in polymer additive manufacturing systems. Unfortunately, the mechanical properties of the polymer parts are poor, limiting the potential for direct part replacement. To address this issue, we describe three benefits of blending carbon fiber with polymer additive manufacturing. First, development of carbon fiber reinforced polymers for additive manufacturing achieves specific strengths approaching aerospace quality aluminum. Second, carbon fiber radically changes the behavior of the material during deposition, enabling large scale, out-of-the-oven, high deposition rate manufacturing. Finally, carbon fiber technology and additive manufacturing complement each other. Merging the two manufacturing processes enables the construction of complex components that would not be possible otherwise.

  12. Advanced manufacturing: Technology diffusion

    SciTech Connect

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  13. Additive Manufacturing for Affordable Rocket Engines

    NASA Technical Reports Server (NTRS)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  14. Manufacturing and producibility technology

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.; Dreshfield, R. L.

    1985-01-01

    Activities of the manufacturing/producibility working group within the Advanced High-Pressure O2/H2 Technology Program are summarized. The objectives of the M/P working group are: to develop and evaluate process and manufacturing techniques for advanced propulsion hardware design and selected materials; and to optimize the producibility of (SSME) components and assemblies by improved performance, increased life, greater reliability, and/or reduced cost. The technologies being developed include: plasma arc, laser, and inertia welding; combustion chamber and turbine blade coatings; coating processes; high performance alloy electroforming; and process control technology.

  15. Additive manufacturing of biologically-inspired materials.

    PubMed

    Studart, André R

    2016-01-21

    Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities.

  16. Additive Manufacturing of Aerospace Propulsion Components

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  17. Additive manufacturing of materials: Opportunities and challenges

    SciTech Connect

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Dehoff, Ryan R.; Peter, William H.; Watkins, Thomas R.; Pannala, Sreekanth

    2015-11-01

    Additive manufacturing (also known as 3D printing) is considered a disruptive technology for producing components with topologically optimized complex geometries as well as functionalities that are not achievable by traditional methods. The realization of the full potential of 3D printing is stifled by a lack of computational design tools, generic material feedstocks, techniques for monitoring thermomechanical processes under in situ conditions, and especially methods for minimizing anisotropic static and dynamic properties brought about by microstructural heterogeneity. In this paper, we discuss the role of interdisciplinary research involving robotics and automation, process control, multiscale characterization of microstructure and properties, and high-performance computational tools to address each of these challenges. In addition, emerging pathways to scale up additive manufacturing of structural materials to large sizes (>1 m) and higher productivities (5–20 kg/h) while maintaining mechanical performance and geometrical flexibility are also discussed.

  18. Additive manufacturing of materials: Opportunities and challenges

    DOE PAGES

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Dehoff, Ryan R.; Peter, William H.; Watkins, Thomas R.; Pannala, Sreekanth

    2015-11-01

    Additive manufacturing (also known as 3D printing) is considered a disruptive technology for producing components with topologically optimized complex geometries as well as functionalities that are not achievable by traditional methods. The realization of the full potential of 3D printing is stifled by a lack of computational design tools, generic material feedstocks, techniques for monitoring thermomechanical processes under in situ conditions, and especially methods for minimizing anisotropic static and dynamic properties brought about by microstructural heterogeneity. In this paper, we discuss the role of interdisciplinary research involving robotics and automation, process control, multiscale characterization of microstructure and properties, and high-performancemore » computational tools to address each of these challenges. In addition, emerging pathways to scale up additive manufacturing of structural materials to large sizes (>1 m) and higher productivities (5–20 kg/h) while maintaining mechanical performance and geometrical flexibility are also discussed.« less

  19. Additive technology of soluble mold tooling for embedded devices in composite structures: A study on manufactured tolerances

    NASA Astrophysics Data System (ADS)

    Roy, Madhuparna

    Composite textiles have found widespread use and advantages in various industries and applications. The constant demand for high quality products and services requires companies to minimize their manufacturing costs, and delivery time in order to compete in general and niche marketplaces. Advanced manufacturing methods aim to provide economical methods of mold production. Creation of molding and tooling options for advanced composites encompasses a large portion of the fabrication time, making it a costly process and restraining factor. This research discusses a preliminary investigation into the use of soluble polymer compounds and additive manufacturing to fabricate soluble molds. These molds suffer from dimensional errors due to several factors, which have also been characterized. The basic soluble mold of a composite is 3D printed to meet the desired dimensions and geometry of holistic structures or spliced components. The time taken to dissolve the mold depends on the rate of agitation of the solvent. This process is steered towards enabling the implantation of optoelectronic devices within the composite to provide sensing capability for structural health monitoring. The shape deviation of the 3D printed mold is also studied and compared to its original dimensions to optimize the dimensional quality to produce dimensionally accurate parts. Mechanical tests were performed on compact tension (CT) resin samples prepared from these 3D printed molds and revealed crack propagation towards an embedded intact optical fiber.

  20. Additive manufacturing: Overview and NDE challenges

    NASA Astrophysics Data System (ADS)

    Slotwinski, J. A.

    2014-02-01

    Additive manufacturing (AM) processes are capable of producing highly complex and customized parts, without the need for dedicated tooling, and can produce parts directly from the part design information. These types of processes are poised to revolutionize the manufacturing industry, yet there are several challenges that are currently preventing more widespread adoption of AM technologies. Traditional Non-Destructive Evaluation (NDE) methods could be utilized in both in-process and post-process applications to help overcome these challenges, although currently there are very few examples of in-situ sensors for monitoring AM processes. This paper gives an overview of AM technology, and discusses the potential benefits and challenges of using NDE in AM applications.

  1. Manufacturing Technology. Curriculum Guide.

    ERIC Educational Resources Information Center

    North Dakota State Board for Vocational Education, Bismarck.

    This guide provides the basic foundation to develop a one-semester course based on the cluster concept, manufacturing technology. One of a set of six guides for an industrial arts curriculum at the junior high school level, it suggests activities that allow students (1) to become familiar with and use some of the tools, materials, and processes…

  2. Illinois Manufacturing Technology Curriculum.

    ERIC Educational Resources Information Center

    Cliffe, Roger; And Others

    This manufacturing technology curriculum involves students in learning problem-solving, communication, team building, quality control, safety, math, science, and technical skills. The document begins with a section on implementation, which gives background information on the purposes and development of the curriculum, explains its rationale,…

  3. Turbine airfoil manufacturing technology

    SciTech Connect

    Kortovich, C.

    1995-12-31

    The specific goal of this program is to define manufacturing methods that will allow single crystal technology to be applied to complex-cored airfoils components for power generation applications. Tasks addressed include: alloy melt practice to reduce the sulfur content; improvement of casting process; core materials design; and grain orientation control.

  4. Photovoltaic manufacturing technology

    SciTech Connect

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. )

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  5. Design and additive manufacture for flow chemistry.

    PubMed

    Capel, Andrew J; Edmondson, Steve; Christie, Steven D R; Goodridge, Ruth D; Bibb, Richard J; Thurstans, Matthew

    2013-12-01

    We review the use of additive manufacturing (AM) as a novel manufacturing technique for the production of milli-scale reactor systems. Five well-developed additive manufacturing techniques: stereolithography (SL), multi-jet modelling (MJM), selective laser melting (SLM), laser sintering (LS) and fused deposition modelling (FDM) were used to manufacture a number of miniaturised reactors which were tested using a range of organic and inorganic reactions. PMID:24100659

  6. Additive manufacturing: From implants to organs.

    PubMed

    Douglas, Tania S

    2014-06-01

    Additive manufacturing (AM) constructs 3D objects layer by layer under computer control from 3D models. 3D printing is one example of this kind of technology. AM offers geometric flexibility in its products and therefore allows customisation to suit individual needs. Clinical success has been shown with models for surgical planning, implants, assistive devices and scaffold-based tissue engineering. The use of AM to print tissues and organs that mimic nature in structure and function remains an elusive goal, but has the potential to transform personalised medicine, drug development and scientific understanding of the mechanisms of disease.  PMID:25214247

  7. Additive manufacturing: From implants to organs.

    PubMed

    Douglas, Tania S

    2014-05-12

    Additive manufacturing (AM) constructs 3D objects layer by layer under computer control from 3D models. 3D printing is one example of this kind of technology. AM offers geometric flexibility in its products and therefore allows customisation to suit individual needs. Clinical success has been shown with models for surgical planning, implants, assistive devices and scaffold-based tissue engineering. The use of AM to print tissues and organs that mimic nature in structure and function remains an elusive goal, but has the potential to transform personalised medicine, drug development and scientific understanding of the mechanisms of disease. 

  8. Additive Manufacturing: Making Imagination the Major Limitation

    NASA Astrophysics Data System (ADS)

    Zhai, Yuwei; Lados, Diana A.; LaGoy, Jane L.

    2014-05-01

    Additive manufacturing (AM) refers to an advanced technology used for the fabrication of three-dimensional near-net-shaped functional components directly from computer models, using unit materials. The fundamentals and working principle of AM offer several advantages, including near-net-shape capabilities, superior design and geometrical flexibility, innovative multi-material fabrication, reduced tooling and fixturing, shorter cycle time for design and manufacturing, instant local production at a global scale, and material, energy, and cost efficiency. Well suiting the requests of modern manufacturing climate, AM is viewed as the new industrial revolution, making its way into a continuously increasing number of industries, such as aerospace, defense, automotive, medical, architecture, art, jewelry, and food. This overview was created to relate the historical evolution of the AM technology to its state-of-the-art developments and emerging applications. Generic thoughts on the microstructural characteristics, properties, and performance of AM-fabricated materials will also be discussed, primarily related to metallic materials. This write-up will introduce the general reader to specifics of the AM field vis-à-vis advantages and common techniques, materials and properties, current applications, and future opportunities.

  9. Desktop Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Snyder, Mark

    1991-01-01

    Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)

  10. Additive manufacturing of tools for lapping glass

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2013-09-01

    Additive manufacturing technologies have the ability to directly produce parts with complex geometries without the need for secondary processes, tooling or fixtures. This ability was used to produce concave lapping tools with a VFlash 3D printer from 3D Systems. The lapping tools were first designed in Creo Parametric with a defined constant radius and radial groove pattern. The models were converted to stereolithography files which the VFlash used in building the parts, layer by layer, from a UV curable resin. The tools were rotated at 60 rpm and used with 120 grit and 220 grit silicon carbide lapping paste to lap 0.750" diameter fused silica workpieces. The samples developed a matte appearance on the lapped surface that started as a ring at the edge of the workpiece and expanded to the center. This indicated that as material was removed, the workpiece radius was beginning to match the tool radius. The workpieces were then cleaned and lapped on a second tool (with equivalent geometry) using a 3000 grit corundum aluminum oxide lapping paste, until a near specular surface was achieved. By using lapping tools that have been additively manufactured, fused silica workpieces can be lapped to approach a specified convex geometry. This approach may enable more rapid lapping of near net shape workpieces that minimize the material removal required by subsequent polishing. This research may also enable development of new lapping tool geometry and groove patterns for improved loose abrasive finishing.

  11. Additively Manufactured Metals in Oxygen Systems Project

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan

    2015-01-01

    Metals produced by additive manufacturing methods, such as Powder Bed Fusion Technology, are now mature enough to be considered for qualification in human spaceflight oxygen systems. The mechanical properties of metals produced through AM processes are being systematically studied. However, it is unknown whether AM metals in oxygen applications may present an increased risk of flammability or ignition as compared to wrought metals of the same metallurgical composition due to increased porosity. Per NASA-STD-6001B materials to be used in oxygen system applications shall be based on flammability and combustion test data, followed by a flammability assessment. Without systematic flammability and ignition testing in oxygen there is no credible method for NASA to accurately evaluate the risk of using AM metals in oxygen systems.

  12. Training for New Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Jacobs, James

    1988-01-01

    Examines the effects of computer-based manufacturing technologies on employment opportunities and job skills. Describes the establishment of the Industrial Technology Institute in Michigan to develop and utilize advanced manufacturing technologies, and the institute's relationship to the state's community colleges. Reviews lessons learned from…

  13. Wireless technology for integrated manufacturing

    SciTech Connect

    Manges, W.W.; Allgood, G.O.; Shourbaji, A.A.

    1996-08-01

    This paper describes the ground breaking work in Oak Ridge facilities that now leads us to the brink of the wireless revolution in manufacturing. The focus is on solving tough technological problems necessary for success and addressing the critical issues of throughput, security, reliability, and robustness in applying wireless technology to manufacturing processes. Innovative solutions to these problems are highlighted through detailed designs and testbed implementations that demonstrate key concepts. The DOE-Oak Ridge complex represented by the Oak Ridge Centers for Manufacturing Technologies (ORCMT) continues to develop these technologies and will continue to focus on solving tough manufacturing problems.

  14. Challenges in teaching modern manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Ngaile, Gracious; Wang, Jyhwen; Gau, Jenn-Terng

    2015-07-01

    Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in executing various projects. Lectures are developed to contain materials featuring advanced manufacturing technologies, R&D trends in manufacturing. Pre- and post-surveys were conducted by an external evaluator to assess the impact of the course on increase in student's knowledge of manufacturing; increase students' preparedness and confidence in effective communication and; increase students' interest in pursuing additional academic studies and/or a career path in manufacturing and high technology. The surveyed data indicate that the students perceived significant gains in manufacturing knowledge and preparedness in effective communication. The study also shows that implementation of a collaborative course within multiple institutions requires a robust and collective communication platform.

  15. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    SciTech Connect

    Love, Lonnie J.

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  16. Energetic additive manufacturing process with feed wire

    DOEpatents

    Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.

    2000-11-07

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  17. Additive Manufacturing: From Rapid Prototyping to Flight

    NASA Technical Reports Server (NTRS)

    Prater, Tracie

    2015-01-01

    Additive manufacturing (AM) offers tremendous promise for the rocket propulsion community. Foundational work must be performed to ensure the safe performance of AM parts. Government, industry, and academia must collaborate in the characterization, design, modeling, and process control to accelerate the certification of AM parts for human-rated flight.

  18. Fabricating specialised orthopaedic implants using additive manufacturing

    NASA Astrophysics Data System (ADS)

    Unwin, Paul

    2014-03-01

    It has been hypothesised that AM is ideal for patient specific orthopaedic implants such as those used in bone cancer treatment, that can rapidly build structures such as lattices for bone and tissues to in-grow, that would be impossible using current conventional subtractive manufacturing techniques. The aim of this study was to describe the adoption of AM (direct metal laser sintering and electron beam melting) into the design manufacturing and post-manufacturing processes and the early clinical use. Prior to the clinical use of AM implants, extensive metallurgical and mechanical testing of both laser and electron beam fabrications were undertaken. Concurrently, post-manufacturing processes evaluated included hipping, cleaning and coating treatments. The first clinical application of a titanium alloy mega-implant was undertaken in November 2010. A 3D model of the pelvic wing implant was designed from CT scans. Novel key features included extensive lattice structures at the bone interfaces and integral flanges to fix the implant to the bone. The pelvic device was implanted with the aid of navigation and to date the patient remains active. A further 18 patient specific mega-implants have now been implanted. The early use of this advanced manufacturing route for patient specific implants has been very encouraging enabling the engineer to produce more advanced and anatomical conforming implants. However, there are a new set of design, manufacturing and regulatory challenges that require addressing to permit this technique to be used more widely. This technology is changing the design and manufacturing paradigm for the fabrication of specialised orthopaedic implants.

  19. Bubble formation in additive manufacturing of glass

    NASA Astrophysics Data System (ADS)

    Luo, Junjie; Gilbert, Luke J.; Peters, Daniel C.; Bristow, Douglas A.; Landers, Robert G.; Goldstein, Jonathan T.; Urbas, Augustine M.; Kinzel, Edward C.

    2016-05-01

    Bubble formation is a common problem in glass manufacturing. The spatial density of bubbles in a piece of glass is a key limiting factor to the optical quality of the glass. Bubble formation is also a common problem in additive manufacturing, leading to anisotropic material properties. In glass Additive Manufacturing (AM) two separate types of bubbles have been observed: a foam layer caused by the reboil of the glass melt and a periodic pattern of bubbles which appears to be unique to glass additive manufacturing. This paper presents a series of studies to relate the periodicity of bubble formation to part scan speed, laser power, and filament feed rate. These experiments suggest that bubbles are formed by the reboil phenomena why periodic bubbles result from air being trapped between the glass filament and the substrate. Reboil can be detected using spectroscopy and avoided by minimizing the laser power while periodic bubbles can be avoided by a two-step laser melting process to first establish good contact between the filament and substrate before reflowing the track with higher laser power.

  20. Technology: Manufacturing, Transportation, Construction, Communication.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.

    The technology-based student activities in this curriculum resource book are intended to be incorporated into any industrial arts/technology education program. The activities are classified according to one of four technological systems--construction, communications, manufacturing, and transportation. Within the four parts of the guide, individual…

  1. Computational Process Modeling for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2014-01-01

    Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.

  2. Surface texture measurement for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Triantaphyllou, Andrew; Giusca, Claudiu L.; Macaulay, Gavin D.; Roerig, Felix; Hoebel, Matthias; Leach, Richard K.; Tomita, Ben; Milne, Katherine A.

    2015-06-01

    The surface texture of additively manufactured metallic surfaces made by powder bed methods is affected by a number of factors, including the powder’s particle size distribution, the effect of the heat source, the thickness of the printed layers, the angle of the surface relative to the horizontal build bed and the effect of any post processing/finishing. The aim of the research reported here is to understand the way these surfaces should be measured in order to characterise them. In published research to date, the surface texture is generally reported as an Ra value, measured across the lay. The appropriateness of this method for such surfaces is investigated here. A preliminary investigation was carried out on two additive manufacturing processes—selective laser melting (SLM) and electron beam melting (EBM)—focusing on the effect of build angle and post processing. The surfaces were measured using both tactile and optical methods and a range of profile and areal parameters were reported. Test coupons were manufactured at four angles relative to the horizontal plane of the powder bed using both SLM and EBM. The effect of lay—caused by the layered nature of the manufacturing process—was investigated, as was the required sample area for optical measurements. The surfaces were also measured before and after grit blasting.

  3. Photovoltaic Manufacturing Technology Phase 1

    SciTech Connect

    Stern, M.J. )

    1991-11-01

    This report documents Utility Power Group's (UPG) contract under Phase 1 of the Photovoltaic Manufacturing Technology (PVMaT) project. Specifically, the report contains the results of a manufacturing technology cost analysis based on an existing PV module production facility. It also projects the cost analysis of a future production facility based on a larger module area, a larger production rate, and the elimination of several technical obstacles. With a coordinated 18-month engineering effort, the technical obstacles could be overcome. Therefore, if solutions to the financial obstacles concerning production expansion were found, UPG would be able to manufacture PV modules at a cost of under $1.25 per watt by 1994.

  4. Additive Manufacturing in Production: A Study Case Applying Technical Requirements

    NASA Astrophysics Data System (ADS)

    Ituarte, Iñigo Flores; Coatanea, Eric; Salmi, Mika; Tuomi, Jukka; Partanen, Jouni

    Additive manufacturing (AM) is expanding the manufacturing capabilities. However, quality of AM produced parts is dependent on a number of machine, geometry and process parameters. The variability of these parameters affects the manufacturing drastically and therefore standardized processes and harmonized methodologies need to be developed to characterize the technology for end use applications and enable the technology for manufacturing. This research proposes a composite methodology integrating Taguchi Design of Experiments, multi-objective optimization and statistical process control, to optimize the manufacturing process and fulfil multiple requirements imposed to an arbitrary geometry. The proposed methodology aims to characterize AM technology depending upon manufacturing process variables as well as to perform a comparative assessment of three AM technologies (Selective Laser Sintering, Laser Stereolithography and Polyjet). Results indicate that only one machine, laser-based Stereolithography, was feasible to fulfil simultaneously macro and micro level geometrical requirements but mechanical properties were not at required level. Future research will study a single AM system at the time to characterize AM machine technical capabilities and stimulate pre-normative initiatives of the technology for end use applications.

  5. Evolution of solidification texture during additive manufacturing.

    PubMed

    Wei, H L; Mazumder, J; DebRoy, T

    2015-01-01

    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components.

  6. Additive manufacturing of polymer-derived ceramics.

    PubMed

    Eckel, Zak C; Zhou, Chaoyin; Martin, John H; Jacobsen, Alan J; Carter, William B; Schaedler, Tobias A

    2016-01-01

    The extremely high melting point of many ceramics adds challenges to additive manufacturing as compared with metals and polymers. Because ceramics cannot be cast or machined easily, three-dimensional (3D) printing enables a big leap in geometrical flexibility. We report preceramic monomers that are cured with ultraviolet light in a stereolithography 3D printer or through a patterned mask, forming 3D polymer structures that can have complex shape and cellular architecture. These polymer structures can be pyrolyzed to a ceramic with uniform shrinkage and virtually no porosity. Silicon oxycarbide microlattice and honeycomb cellular materials fabricated with this approach exhibit higher strength than ceramic foams of similar density. Additive manufacturing of such materials is of interest for propulsion components, thermal protection systems, porous burners, microelectromechanical systems, and electronic device packaging.

  7. Evolution of solidification texture during additive manufacturing

    DOE PAGES

    Wei, H. L.; Mazumder, J.; DebRoy, T.

    2015-11-10

    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Furthermore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numericalmore » modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components.« less

  8. Additive manufacturing of polymer-derived ceramics.

    PubMed

    Eckel, Zak C; Zhou, Chaoyin; Martin, John H; Jacobsen, Alan J; Carter, William B; Schaedler, Tobias A

    2016-01-01

    The extremely high melting point of many ceramics adds challenges to additive manufacturing as compared with metals and polymers. Because ceramics cannot be cast or machined easily, three-dimensional (3D) printing enables a big leap in geometrical flexibility. We report preceramic monomers that are cured with ultraviolet light in a stereolithography 3D printer or through a patterned mask, forming 3D polymer structures that can have complex shape and cellular architecture. These polymer structures can be pyrolyzed to a ceramic with uniform shrinkage and virtually no porosity. Silicon oxycarbide microlattice and honeycomb cellular materials fabricated with this approach exhibit higher strength than ceramic foams of similar density. Additive manufacturing of such materials is of interest for propulsion components, thermal protection systems, porous burners, microelectromechanical systems, and electronic device packaging. PMID:26721993

  9. Femtosecond fiber laser additive manufacturing of tungsten

    NASA Astrophysics Data System (ADS)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  10. Weldability of Additive Manufactured Stainless Steel

    NASA Astrophysics Data System (ADS)

    Matilainen, Ville-Pekka; Pekkarinen, Joonas; Salminen, Antti

    Part size in additive manufacturing is limited by the size of building area of AM equipment. Occasionally, larger constructions that AM machines are able to produce, are needed, and this creates demand for welding AM parts together. However there is very little information on welding of additive manufactured stainless steels. The aim of this study was to investigate the weldability aspects of AM material. In this study, comparison of the bead on plate welds between AM parts and sheet metal parts is done. Used material was 316L stainless steel, AM and sheet metal, and parts were welded with laser welding. Weld quality was evaluated visually from macroscopic images. Results show that there are certain differences in the welds in AM parts compared to the welds in sheet metal parts. Differences were found in penetration depths and in type of welding defects. Nevertheless, this study presents that laser welding is suitable process for welding AM parts.

  11. Additive manufacturing of polymer-derived ceramics

    NASA Astrophysics Data System (ADS)

    Eckel, Zak C.; Zhou, Chaoyin; Martin, John H.; Jacobsen, Alan J.; Carter, William B.; Schaedler, Tobias A.

    2016-01-01

    The extremely high melting point of many ceramics adds challenges to additive manufacturing as compared with metals and polymers. Because ceramics cannot be cast or machined easily, three-dimensional (3D) printing enables a big leap in geometrical flexibility. We report preceramic monomers that are cured with ultraviolet light in a stereolithography 3D printer or through a patterned mask, forming 3D polymer structures that can have complex shape and cellular architecture. These polymer structures can be pyrolyzed to a ceramic with uniform shrinkage and virtually no porosity. Silicon oxycarbide microlattice and honeycomb cellular materials fabricated with this approach exhibit higher strength than ceramic foams of similar density. Additive manufacturing of such materials is of interest for propulsion components, thermal protection systems, porous burners, microelectromechanical systems, and electronic device packaging.

  12. Evolution of solidification texture during additive manufacturing

    PubMed Central

    Wei, H. L.; Mazumder, J.; DebRoy, T.

    2015-01-01

    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components. PMID:26553246

  13. Evolution of solidification texture during additive manufacturing

    SciTech Connect

    Wei, H. L.; Mazumder, J.; DebRoy, T.

    2015-11-10

    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Furthermore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components.

  14. Additive Manufacturing a Liquid Hydrogen Rocket Engine

    NASA Technical Reports Server (NTRS)

    Jones, Carl P.; Robertson, Elizabeth H.; Koelbl, Mary Beth; Singer, Chris

    2016-01-01

    Space Propulsion is a 5 day event being held from 2nd May to the 6th May 2016 at the Rome Marriott Park Hotel in Rome, Italy. This event showcases products like Propulsion sub-systems and components, Production and manufacturing issues, Liquid, Solid, Hybrid and Air-breathing Propulsion Systems for Launcher and Upper Stages, Overview of current programmes, AIV issues and tools, Flight testing and experience, Technology building blocks for Future Space Transportation Propulsion Systems : Launchers, Exploration platforms & Space Tourism, Green Propulsion for Space Transportation, New propellants, Rocket propulsion & global environment, Cost related aspects of Space Transportation propulsion, Modelling, Pressure-Thrust oscillations issues, Impact of new requirements and regulations on design etc. in the Automotive, Manufacturing, Fabrication, Repair & Maintenance industries.

  15. Additive Manufacturing of Low Cost Upper Stage Propulsion Components

    NASA Technical Reports Server (NTRS)

    Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda

    2014-01-01

    NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.

  16. Computed tomography characterisation of additive manufacturing materials.

    PubMed

    Bibb, Richard; Thompson, Darren; Winder, John

    2011-06-01

    Additive manufacturing, covering processes frequently referred to as rapid prototyping and rapid manufacturing, provides new opportunities in the manufacture of highly complex and custom-fitting medical devices and products. Whilst many medical applications of AM have been explored and physical properties of the resulting parts have been studied, the characterisation of AM materials in computed tomography has not been explored. The aim of this study was to determine the CT number of commonly used AM materials. There are many potential applications of the information resulting from this study in the design and manufacture of wearable medical devices, implants, prostheses and medical imaging test phantoms. A selection of 19 AM material samples were CT scanned and the resultant images analysed to ascertain the materials' CT number and appearance in the images. It was found that some AM materials have CT numbers very similar to human tissues, FDM, SLA and SLS produce samples that appear uniform on CT images and that 3D printed materials show a variation in internal structure.

  17. Turbine airfoil manufacturing technology

    SciTech Connect

    Kortovich, C.

    1995-10-01

    The efficiency and effectiveness of the gas turbine engine is directly related to the turbine inlet temperatures. The ability to increase these temperatures has occurred as a result of improvements in materials, design, and processing techniques. A generic sequence indicating the relationship of these factors to temperature capability is schematically shown in Figure 1 for aircraft engine and land based engine materials. A basic contribution that is not captured by the Figure is the significant improvement in process and manufacturing capability that has accompanied each of these innovations. It is this capability that has allowed the designs and innovations to be applied on a high volume, cost effective scale in the aircraft gas turbine market.

  18. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  19. Printability of alloys for additive manufacturing.

    PubMed

    Mukherjee, T; Zuback, J S; De, A; DebRoy, T

    2016-01-01

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts.

  20. Printability of alloys for additive manufacturing

    PubMed Central

    Mukherjee, T.; Zuback, J. S.; De, A.; DebRoy, T.

    2016-01-01

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts. PMID:26796864

  1. Printability of alloys for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Mukherjee, T.; Zuback, J. S.; de, A.; Debroy, T.

    2016-01-01

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts.

  2. Printability of alloys for additive manufacturing.

    PubMed

    Mukherjee, T; Zuback, J S; De, A; DebRoy, T

    2016-01-01

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts. PMID:26796864

  3. Printability of alloys for additive manufacturing

    DOE PAGES

    Mukherjee, T.; Zuback, J. S.; De, A.; DebRoy, T.

    2016-01-22

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is usedmore » to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. Here, the findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts.« less

  4. Dielectric breakdown of additively manufactured polymeric materials

    DOE PAGES

    Monzel, W. Jacob; Hoff, Brad W.; Maestas, Sabrina S.; French, David M.; Hayden, Steven C.

    2016-01-11

    Dielectric strength testing of selected Polyjet-printed polymer plastics was performed in accordance with ASTM D149. This dielectric strength data is compared to manufacturer-provided dielectric strength data for selected plastics printed using the stereolithography (SLA), fused deposition modeling (FDM), and selective laser sintering (SLS) methods. Tested Polyjet samples demonstrated dielectric strengths as high as 47.5 kV/mm for a 0.5 mm thick sample and 32.1 kV/mm for a 1.0 mm sample. As a result, the dielectric strength of the additively manufactured plastics evaluated as part of this study was lower than the majority of non-printed plastics by at least 15% (with themore » exception of polycarbonate).« less

  5. Laser Additive Manufacturing and Bionics: Redefining Lightweight Design

    NASA Astrophysics Data System (ADS)

    Emmelmann, C.; Sander, P.; Kranz, J.; Wycisk, E.

    New layer wise manufacturing technologies such as Laser Additive Manufacturing (LAM) allow innovative approaches to product design. Especially for lightweight design in aircraft applications LAM offers new possibilities for load-adapted structures. However, to fully capture lightweight potential of LAM technologies new design guidelines and processes have to be developed. A novel approach to extreme lightweight design is realized by incorporating structural optimization tools, bionic structures and LAM guidelines into one design process. By consequently following this design process designers can achieve lightweight savings in designing new aircraft structures.

  6. Evaluation of direct and indirect additive manufacture of maxillofacial prostheses.

    PubMed

    Eggbeer, Dominic; Bibb, Richard; Evans, Peter; Ji, Lu

    2012-09-01

    The efficacy of computer-aided technologies in the design and manufacture of maxillofacial prostheses has not been fully proven. This paper presents research into the evaluation of direct and indirect additive manufacture of a maxillofacial prosthesis against conventional laboratory-based techniques. An implant/magnet-retained nasal prosthesis case from a UK maxillofacial unit was selected as a case study. A benchmark prosthesis was fabricated using conventional laboratory-based techniques for comparison against additive manufactured prostheses. For the computer-aided workflow, photogrammetry, computer-aided design and additive manufacture (AM) methods were evaluated in direct prosthesis body fabrication and indirect production using an additively manufactured mould. Qualitative analysis of position, shape, colour and edge quality was undertaken. Mechanical testing to ISO standards was also used to compare the silicone rubber used in the conventional prosthesis with the AM material. Critical evaluation has shown that utilising a computer-aided work-flow can produce a prosthesis body that is comparable to that produced using existing best practice. Technical limitations currently prevent the direct fabrication method demonstrated in this paper from being clinically viable. This research helps prosthesis providers understand the application of a computer-aided approach and guides technology developers and researchers to address the limitations identified.

  7. Rhenium Rocket Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  8. Inspection of additive-manufactured layered components.

    PubMed

    Cerniglia, D; Scafidi, M; Pantano, A; Rudlin, J

    2015-09-01

    Laser powder deposition (LPD) is a rapid additive manufacturing process to produce, layer upon layer, 3D geometries or to repair high-value components. Currently there is no nondestructive technique that can guarantee absence of flaws in LPD products during manufacturing. In this paper a laser ultrasonic technique for in-line inspection of LPD components is proposed. Reference samples were manufactured from Inconel and machined flaws were created to establish the sensitivity of the technique. Numerical models of laser-generated ultrasonic waves have been created to gain a deeper understanding of physics, to optimize the set-up and to verify the experimental measurements. Results obtained on two sets of reference samples are shown. A proof-of-concept prototype has been demonstrated on some specific deposition samples with induced flaws, that were confirmed by an ultra-high sensitivity X-ray technique. Experimental outcomes prove that typical micro-defects due to the layer-by-layer deposition process, such as near-surface and surface flaws in a single layer deposit, can be detected.

  9. Mechanical properties of additively manufactured octagonal honeycombs.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. PMID:27612831

  10. Mechanical properties of additively manufactured octagonal honeycombs.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs.

  11. Manipulation of microstructure in laser additive manufacturing

    NASA Astrophysics Data System (ADS)

    Bai, Shuang; Yang, Lihmei; Liu, Jian

    2016-05-01

    In this paper, additive manufacturing (AM) of tungsten parts is investigated by using femtosecond fiber lasers. For the first time, manipulating microstructures of AM parts is systematically investigated and reported. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, and microstructural and mechanical properties of the processed components. Fully dense tungsten part with refined grain and increased hardness was obtained for femtosecond laser, compared with parts made with different pulse widths and CW laser. Micro-hardness is investigated for the fabricated samples. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  12. 3D-additive manufactured optical mount

    NASA Astrophysics Data System (ADS)

    Mammini, Paul V.; Ciscel, David; Wooten, John

    2015-09-01

    The Area Defense Anti-Munitions (ADAM) is a low cost and effective high power laser weapon system. It's designed to address and negate important threats such as short-range rockets, UAVs, and small boats. Many critical optical components operate in the system. The optics and mounts must accommodate thermal and mechanical stresses, plus maintain an exceptional wave front during operation. Lockheed Martin Space Systems Company (LMSSC) developed, designed, and currently operates ADAM. This paper covers the design and development of a key monolithic, flexured, titanium mirror mount that was manufactured by CalRAM using additive processes.

  13. Material Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.

  14. Materials Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.

  15. Additive manufacturing of glass for optical applications

    NASA Astrophysics Data System (ADS)

    Luo, Junjie; Gilbert, Luke J.; Bristow, Douglas A.; Landers, Robert G.; Goldstein, Jonathan T.; Urbas, Augustine M.; Kinzel, Edward C.

    2016-04-01

    Glasses including fused quartz have significant scientific and engineering applications including optics, communications, electronics, and hermetic seals. This paper investigates a filament fed process for Additive Manufacturing (AM) of fused quartz. Additive manufacturing has several potential benefits including increased design freedom, faster prototyping, and lower processing costs for small production volumes. However, current research in AM of glasses is limited and has focused on non-optical applications. Fused quartz is studied here because of its desirability for high-quality optics due to its high transmissivity and thermal stability. Fused quartz also has a higher working temperature than soda lime glass which poses a challenge for AM. In this work, fused quartz filaments are fed into a CO2 laser generated melt pool, smoothly depositing material onto the work piece. Single tracks are printed to explore the effects that different process parameters have on the morphology of printed fused quartz. A spectrometer is used to measure the thermal radiation incandescently emitted from the melt pool. Thin-walls are printed to study the effects of layer-to-layer height. Finally, a 3D fused quartz cube is printed using the newly acquired layer height and polished on each surface. The transmittance and index homogeneity of the polished cube are both measured. These results show that the filament fed process has the potential to print fused quartz with optical transparency and of index of refraction uniformity approaching bulk processed glass.

  16. Additive Manufacturing Design Considerations for Liquid Engine Components

    NASA Technical Reports Server (NTRS)

    Whitten, Dave; Hissam, Andy; Baker, Kevin; Rice, Darron

    2014-01-01

    The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.

  17. Benchmark Study of Industrial Needs for Additive Manufacturing in Finland

    NASA Astrophysics Data System (ADS)

    Lindqvist, Markku; Piili, Heidi; Salminen, Antti

    Additive manufacturing (AM) is a modern way to produce parts for industrial use. Even though the technical knowledge and research of AM processes are strong in Finland, there are only few industrial applications. Aim of this study is to collect practical knowledge of companies who are interested in industrial use of AM, especially in South-Eastern Finland. Goal of this study is also to investigate demands and requirements of applications for industrial use of AM in this area of Finland. It was concluded, that two of the reasons prohibiting wider industrial use of AM in Finland, are wrong expectations against this technology as well as lack of basic knowledge of possibilities of the technology. Especially, it was noticed that strong 3D-hype is even causing misunderstandings. Nevertheless, the high-level industrial know-how in the area, built around Finnish lumber industry is a strong foundation for the additive manufacturing technology.

  18. IN718 Additive Manufacturing Properties and Influences

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.

    2015-01-01

    The results of tensile, fracture, and fatigue testing of IN718 coupons produced using the selective laser melting (SLM) additive manufacturing technique are presented. The data has been "generalized" to remove the numerical values, although certain references to material standards are provided. This document provides some knowledge of the effect of variation of controlled build parameters used in the SLM process, a snapshot of the capabilities of SLM in industry at present, and shares some of the lessons learned along the way. For the build parameter characterization, the parameters were varied over a range about the machine manufacturer's recommended value, and in each case they were varied individually, although some co-variance of those parameters would be expected. SLM-produced IN718, tensile, fracture, and high-cycle fatigue properties equivalent to wrought IN718 are achievable. Build and post-build processes need to be determined and then controlled to established limits to accomplish this. It is recommended that a multi-variable evaluation, e.g., design-of-experiment (DOE), of the build parameters be performed to better evaluate the co-variance of the parameters.

  19. Computational Process Modeling for Additive Manufacturing (OSU)

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2015-01-01

    Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.

  20. IN718 Additive Manufacturing Properties and Influences

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.

    2015-01-01

    The results of tensile, fracture, and fatigue testing of IN718 coupons produced using the selective laser melting (SLM) additive manufacturing technique are presented. The data have been "sanitized" to remove the numerical values, although certain references to material standards are provided. This document provides some knowledge of the effect of variation of controlled build parameters used in the SLM process, a snapshot of the capabilities of SLM in industry at present, and shares some of the lessons learned along the way. For the build parameter characterization, the parameters were varied over a range that was centered about the machine manufacturer's recommended value, and in each case they were varied individually, although some co-variance of those parameters would be expected. Tensile, fracture, and high-cycle fatigue properties equivalent to wrought IN718 are achievable with SLM-produced IN718. Build and post-build processes need to be determined and then controlled to established limits to accomplish this. It is recommended that a multi-variable evaluation, e.g., design-of experiment (DOE), of the build parameters be performed to better evaluate the co-variance of the parameters.

  1. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  2. Combined additive manufacturing approaches in tissue engineering.

    PubMed

    Giannitelli, S M; Mozetic, P; Trombetta, M; Rainer, A

    2015-09-01

    Advances introduced by additive manufacturing (AM) have significantly improved the control over the microarchitecture of scaffolds for tissue engineering. This has led to the flourishing of research works addressing the optimization of AM scaffolds microarchitecture to optimally trade-off between conflicting requirements (e.g. mechanical stiffness and porosity level). A fascinating trend concerns the integration of AM with other scaffold fabrication methods (i.e. "combined" AM), leading to hybrid architectures with complementary structural features. Although this innovative approach is still at its beginning, significant results have been achieved in terms of improved biological response to the scaffold, especially targeting the regeneration of complex tissues. This review paper reports the state of the art in the field of combined AM, posing the accent on recent trends, challenges, and future perspectives.

  3. Microstructural Control of Additively Manufactured Metallic Materials

    NASA Astrophysics Data System (ADS)

    Collins, P. C.; Brice, D. A.; Samimi, P.; Ghamarian, I.; Fraser, H. L.

    2016-07-01

    In additively manufactured (AM) metallic materials, the fundamental interrelationships that exist between composition, processing, and microstructure govern these materials’ properties and potential improvements or reductions in performance. For example, by using AM, it is possible to achieve highly desirable microstructural features (e.g., highly refined precipitates) that could not otherwise be achieved by using conventional approaches. Simultaneously, opportunities exist to manage macro-level microstructural characteristics such as residual stress, porosity, and texture, the last of which might be desirable. To predictably realize optimal microstructures, it is necessary to establish a framework that integrates processing variables, alloy composition, and the resulting microstructure. Although such a framework is largely lacking for AM metallic materials, the basic scientific components of the framework exist in literature. This review considers these key components and presents them in a manner that highlights key interdependencies that would form an integrated framework to engineer microstructures using AM.

  4. Solid-State Additive Manufacturing for Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Norfolk, Mark; Johnson, Hilary

    2015-03-01

    Energy densities in devices are increasing across many industries including power generation, high power electronics, manufacturing, and automotive. Increasingly, there is a need for very high efficiency thermal management devices that can pull heat out of a small area at higher and higher rates. Metal additive manufacturing (AM) technologies have the promise of creating parts with complex internal geometries required for integral thermal management. However, this goal has not been met due to constraints in fusion-based metal 3D printers. This work presents a new strategy for metal AM of heat exchangers using an ultrasonic sheet lamination approach.

  5. Application of Additive Manufacturing in Oral and Maxillofacial Surgery.

    PubMed

    Farré-Guasch, Elisabet; Wolff, Jan; Helder, Marco N; Schulten, Engelbert A J M; Forouzanfar, Tim; Klein-Nulend, Jenneke

    2015-12-01

    Additive manufacturing is the process of joining materials to create objects from digital 3-dimensional (3D) model data, which is a promising technology in oral and maxillofacial surgery. The management of lost craniofacial tissues owing to congenital abnormalities, trauma, or cancer treatment poses a challenge to oral and maxillofacial surgeons. Many strategies have been proposed for the management of such defects, but autogenous bone grafts remain the gold standard for reconstructive bone surgery. Nevertheless, cell-based treatments using adipose stem cells combined with osteoconductive biomaterials or scaffolds have become a promising alternative to autogenous bone grafts. Such treatment protocols often require customized 3D scaffolds that fulfill functional and esthetic requirements, provide adequate blood supply, and meet the load-bearing requirements of the head. Currently, such customized 3D scaffolds are being manufactured using additive manufacturing technology. In this review, 2 of the current and emerging modalities for reconstruction of oral and maxillofacial bone defects are highlighted and discussed, namely human maxillary sinus floor elevation as a valid model to test bone tissue-engineering approaches enabling the application of 1-step surgical procedures and seeding of Good Manufacturing Practice-level adipose stem cells on computer-aided manufactured scaffolds to reconstruct large bone defects in a 2-step surgical procedure, in which cells are expanded ex vivo and seeded on resorbable scaffolds before implantation. Furthermore, imaging-guided tissue-engineering technologies to predetermine the surgical location and to facilitate the manufacturing of custom-made implants that meet the specific patient's demands are discussed. The potential of tissue-engineered constructs designed for the repair of large oral and maxillofacial bone defects in load-bearing situations in a 1-step surgical procedure combining these 2 innovative approaches is

  6. Exploring Technology Education: Exploring Manufacturing Technology.

    ERIC Educational Resources Information Center

    Joerschke, John D.

    These instructional materials include a teacher's guide designed to assist instructors in organizing and presenting a unit of study on manufacturing technology and a student guide. The materials are based on the curriculum-alignment concept of first stating the objectives, developing instructional strategies for teaching those objectives, and then…

  7. Additive Manufacturing: Ensuring Quality for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore; Stephenson, Timothy

    2014-01-01

    Reliable manufacturing requires that material properties and fabrication processes be well defined in order to insure that the manufactured parts meet specified requirements. While this issue is now relatively straightforward for traditional processes such as subtractive manufacturing and injection molding, this capability is still evolving for AM products. Hence, one of the principal challenges within AM is in qualifying and verifying source material properties and process control. This issue is particularly critical for applications in harsh environments and demanding applications, such as spacecraft.

  8. Variation in mechanical behavior due to different build directions of Titanium6Aluminum4Vanadium fabricated by electron beam additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Roy, Lalit

    Titanium has always been a metal of great interest since its discovery especially for critical applications because of its excellent mechanical properties such as light weight (almost half of that of the steel), low density (4.4 gm/cc) and high strength (almost similar to steel). It creates a stable and adherent oxide layer on its surface upon exposure to air or water which gives it a great resistance to corrosion and has made it a great choice for structures in severe corrosive environment and sea water. Its non-allergic property has made it suitable for biomedical application for manufacturing implants. Having a very high melting temperature, it has a very good potential for high temperature applications. But high production and processing cost has limited its application. Ti6Al4V is the most used titanium alloy for which it has acquired the title as `workhouse' of the Ti family. Additive layer Manufacturing (ALM) has brought revolution in manufacturing industries. Today, this additive manufacturing has developed into several methods and formed a family. This method fabricates a product by adding layer after layer as per the geometry given as input into the system. Though the conception was developed to fabricate prototypes and making tools initially, but its highly economic aspect i.e., very little waste material for less machining and comparatively lower production lead time, obviation of machine tools have drawn attention for its further development towards mass production. Electron Beam Melting (EBM) is the latest addition to ALM family developed by Arcam, ABRTM located in Sweden. The electron beam that is used as heat source melts metal powder to form layers. For this thesis work, three different types of specimens have been fabricated using EBM system. These specimens differ in regard of direction of layer addition. Mechanical properties such as ultimate tensile strength, elastic modulus and yield strength, have been measured and compared with standard data

  9. Application of Additively Manufactured Components in Rocket Engine Turbopumps

    NASA Technical Reports Server (NTRS)

    Calvert, Marty, Jr.; Hanks, Andrew; Schmauch, Preston; Delessio, Steve

    2015-01-01

    The use of additive manufacturing technology has the potential to revolutionize the development of turbopump components in liquid rocket engines. When designing turbomachinery with the additive process there are several benefits and risks that are leveraged relative to a traditional development cycle. This topic explores the details and development of a 90,000 RPM Liquid Hydrogen Turbopump from which 90% of the parts were derived from the additive process. This turbopump was designed, developed and will be tested later this year at Marshall Space Flight Center.

  10. Monitoring system for the quality assessment in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Carl, Volker

    2015-03-01

    Additive Manufacturing (AM) refers to a process by which a set of digital data -representing a certain complex 3dim design - is used to grow the respective 3dim real structure equal to the corresponding design. For the powder-based EOS manufacturing process a variety of plastic and metal materials can be used. Thereby, AM is in many aspects a very powerful tool as it can help to overcome particular limitations in conventional manufacturing. AM enables more freedom of design, complex, hollow and/or lightweight structures as well as product individualisation and functional integration. As such it is a promising approach with respect to the future design and manufacturing of complex 3dim structures. On the other hand, it certainly calls for new methods and standards in view of quality assessment. In particular, when utilizing AM for the design of complex parts used in aviation and aerospace technologies, appropriate monitoring systems are mandatory. In this respect, recently, sustainable progress has been accomplished by joining the common efforts and concerns of a manufacturer Additive Manufacturing systems and respective materials (EOS), along with those of an operator of such systems (MTU Aero Engines) and experienced application engineers (Carl Metrology), using decent know how in the field of optical and infrared methods regarding non-destructive-examination (NDE). The newly developed technology is best described by a high-resolution layer by layer inspection technique, which allows for a 3D tomography-analysis of the complex part at any time during the manufacturing process. Thereby, inspection costs are kept rather low by using smart image-processing methods as well as CMOS sensors instead of infrared detectors. Moreover, results from conventional physical metallurgy may easily be correlated with the predictive results of the monitoring system which not only allows for improvements of the AM monitoring system, but finally leads to an optimisation of the quality

  11. Monitoring system for the quality assessment in additive manufacturing

    SciTech Connect

    Carl, Volker

    2015-03-31

    Additive Manufacturing (AM) refers to a process by which a set of digital data -representing a certain complex 3dim design - is used to grow the respective 3dim real structure equal to the corresponding design. For the powder-based EOS manufacturing process a variety of plastic and metal materials can be used. Thereby, AM is in many aspects a very powerful tool as it can help to overcome particular limitations in conventional manufacturing. AM enables more freedom of design, complex, hollow and/or lightweight structures as well as product individualisation and functional integration. As such it is a promising approach with respect to the future design and manufacturing of complex 3dim structures. On the other hand, it certainly calls for new methods and standards in view of quality assessment. In particular, when utilizing AM for the design of complex parts used in aviation and aerospace technologies, appropriate monitoring systems are mandatory. In this respect, recently, sustainable progress has been accomplished by joining the common efforts and concerns of a manufacturer Additive Manufacturing systems and respective materials (EOS), along with those of an operator of such systems (MTU Aero Engines) and experienced application engineers (Carl Metrology), using decent know how in the field of optical and infrared methods regarding non-destructive-examination (NDE). The newly developed technology is best described by a high-resolution layer by layer inspection technique, which allows for a 3D tomography-analysis of the complex part at any time during the manufacturing process. Thereby, inspection costs are kept rather low by using smart image-processing methods as well as CMOS sensors instead of infrared detectors. Moreover, results from conventional physical metallurgy may easily be correlated with the predictive results of the monitoring system which not only allows for improvements of the AM monitoring system, but finally leads to an optimisation of the quality

  12. Colloidal-based additive manufacturing of bio-inspired composites

    NASA Astrophysics Data System (ADS)

    Studart, Andre R.

    Composite materials in nature exhibit heterogeneous architectures that are tuned to fulfill the functional demands of the surrounding environment. Examples range from the cellulose-based organic structure of plants to highly mineralized collagen-based skeletal parts like bone and teeth. Because they are often utilized to combine opposing properties such as strength and low-density or stiffness and wear resistance, the heterogeneous architecture of natural materials can potentially address several of the technical limitations of artificial homogeneous composites. However, current man-made manufacturing technologies do not allow for the level of composition and fiber orientation control found in natural heterogeneous systems. In this talk, I will present two additive manufacturing technologies recently developed in our group to build composites with exquisite architectures only rivaled by structures made by living organisms in nature. Since the proposed techniques utilize colloidal suspensions as feedstock, understanding the physics underlying the stability, assembly and rheology of the printing inks is key to predict and control the architecture of manufactured parts. Our results will show that additive manufacturing routes offer a new exciting pathway for the fabrication of biologically-inspired composite materials with unprecedented architectures and functionalities.

  13. Additive Manufacturing of Ultem Polymers and Composites

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.

    2015-01-01

    The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimdes Ultem 9085 and experimental Ultem 1000 filled with 10 chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties.

  14. Structure Property Studies for Additively Manufactured Parts

    SciTech Connect

    Milenski, Helen M; Schmalzer, Andrew Michael; Kelly, Daniel

    2015-08-17

    Since the invention of modern Additive Manufacturing (AM) processes engineers and designers have worked hard to capitalize on the unique building capabilities that AM allows. By being able to customize the interior fill of parts it is now possible to design components with a controlled density and customized internal structure. The creation of new polymers and polymer composites allow for even greater control over the mechanical properties of AM parts. One of the key reasons to explore AM, is to bring about a new paradigm in part design, where materials can be strategically optimized in a way that conventional subtractive methods cannot achieve. The two processes investigated in my research were the Fused Deposition Modeling (FDM) process and the Direct Ink Write (DIW) process. The objectives of the research were to determine the impact of in-fill density and morphology on the mechanical properties of FDM parts, and to determine if DIW printed samples could be produced where the filament diameter was varied while the overall density remained constant.

  15. Advanced Technology Composite Fuselage - Manufacturing

    NASA Technical Reports Server (NTRS)

    Wilden, K. S.; Harris, C. G.; Flynn, B. W.; Gessel, M. G.; Scholz, D. B.; Stawski, S.; Winston, V.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program is to develop the technology required for cost-and weight-efficient use of composite materials in transport fuselage structure. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements, and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of stringer-stiffened and sandwich skin panels. Circumferential and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant-section stiffening elements. Drape forming was chosen for stringers and other stiffening elements cocured to skin structures. Significant process development efforts included AFP, braiding, RTM, autoclave cure, and core blanket fabrication for both sandwich and stiffened-skin structure. Outer-mold-line and inner-mold-line tooling was developed for sandwich structures and stiffened-skin structure. The effect of design details, process control and tool design on repeatable, dimensionally stable, structure for low cost barrel assembly was assessed. Subcomponent panels representative of crown, keel, and side quadrant panels were fabricated to assess scale-up effects and manufacturing anomalies for full-scale structures. Manufacturing database including time studies, part quality, and manufacturing plans were generated to support the development of designs and analytical models to access cost, structural performance, and dimensional tolerance.

  16. Nano-Magnets and Additive Manufacturing for Electric Motors

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2014-01-01

    High power density is required for application of electric motors in hybrid electric propulsion. Potential path to achieve high power density in electric motors include advanced materials, lightweight thermal management, lightweight structural concepts, high power density power electronics, and advanced manufacturing. This presentation will focus on two key technologies for achieving high power density, advanced magnets and additive manufacturing. The maximum energy product in current magnets is reaching their theoretical limits as a result of material and process improvements. Future improvements in the maximum energy product for magnets can be achieved through development of nanocomposite magnets combining the hard magnetic phase and soft magnetic phase at the nanoscale level. The presentation will provide an overview of the current state of development for nanocomposite magnets and the future path for doubling the maximum energy product. The other part of the presentation will focus on the role of additive manufacturing in fabrication of high power density electric motors. The presentation will highlight the potential opportunities for applying additive manufacturing to fabricate electric motors.

  17. Inspection of additive manufactured parts using laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Lévesque, D.; Bescond, C.; Lord, M.; Cao, X.; Wanjara, P.; Monchalin, J.-P.

    2016-02-01

    Additive manufacturing is a novel technology of high importance for global sustainability of resources. As additive manufacturing involves typically layer-by-layer fusion of the feedstock (wire or powder), an important characteristic of the fabricated metallic structural parts, such as those used in aero-engines, is the performance, which is highly related to the presence of defects, such as cracks, lack of fusion or bonding between layers, and porosity. For this purpose, laser ultrasonics is very attractive due to its non-contact nature and is especially suited for the analysis of parts of complex geometries. In addition, the technique is well adapted to online implementation and real-time measurement during the manufacturing process. The inspection can be performed from either the top deposited layer or the underside of the substrate and the defects can be visualized using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). In this work, a variety of results obtained off-line on INCONEL® 718 and Ti-6Al-4V coupons that were manufactured using laser powder, laser wire, or electron beam wire deposition are reported and most defects detected were further confirmed by X-ray micro-computed tomography.

  18. Multiscale Modeling of Powder Bed-Based Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Markl, Matthias; Körner, Carolin

    2016-07-01

    Powder bed fusion processes are additive manufacturing technologies that are expected to induce the third industrial revolution. Components are built up layer by layer in a powder bed by selectively melting confined areas, according to sliced 3D model data. This technique allows for manufacturing of highly complex geometries hardly machinable with conventional technologies. However, the underlying physical phenomena are sparsely understood and difficult to observe during processing. Therefore, an intensive and expensive trial-and-error principle is applied to produce components with the desired dimensional accuracy, material characteristics, and mechanical properties. This review presents numerical modeling approaches on multiple length scales and timescales to describe different aspects of powder bed fusion processes. In combination with tailored experiments, the numerical results enlarge the process understanding of the underlying physical mechanisms and support the development of suitable process strategies and component topologies.

  19. Multiscale Modeling of Powder Bed–Based Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Markl, Matthias; Körner, Carolin

    2016-07-01

    Powder bed fusion processes are additive manufacturing technologies that are expected to induce the third industrial revolution. Components are built up layer by layer in a powder bed by selectively melting confined areas, according to sliced 3D model data. This technique allows for manufacturing of highly complex geometries hardly machinable with conventional technologies. However, the underlying physical phenomena are sparsely understood and difficult to observe during processing. Therefore, an intensive and expensive trial-and-error principle is applied to produce components with the desired dimensional accuracy, material characteristics, and mechanical properties. This review presents numerical modeling approaches on multiple length scales and timescales to describe different aspects of powder bed fusion processes. In combination with tailored experiments, the numerical results enlarge the process understanding of the underlying physical mechanisms and support the development of suitable process strategies and component topologies.

  20. Additive Manufacturing of Functional Elements on Sheet Metal

    NASA Astrophysics Data System (ADS)

    Schaub, Adam; Ahuja, Bhrigu; Butzhammer, Lorenz; Osterziel, Johannes; Schmidt, Michael; Merklein, Marion

    Laser Beam Melting (LBM) process with its advantages of high design flexibility and free form manufacturing methodology is often applied limitedly due to its low productivity and unsuitability for mass production compared to conventional manufacturing processes. In order to overcome these limitations, a hybrid manufacturing methodology is developed combining the additive manufacturing process of laser beam melting with sheet forming processes. With an interest towards aerospace and medical industry, the material in focus is Ti-6Al-4V. Although Ti-6Al-4V is a commercially established material and its application for LBM process has been extensively investigated, the combination of LBM of Ti-6Al-4V with sheet metal still needs to be researched. Process dynamics such as high temperature gradients and thermally induced stresses lead to complex stress states at the interaction zone between the sheet and LBM structure. Within the presented paper mechanical characterization of hybrid parts will be performed by shear testing. The association of shear strength with process parameters is further investigated by analyzing the internal structure of the hybrid geometry at varying energy inputs during the LBM process. In order to compare the hybrid manufacturing methodology with conventional fabrication, the conventional methodologies subtractive machining and state of the art Laser Beam Melting is evaluated within this work. These processes will be analyzed for their mechanical characteristics and productivity by determining the build time and raw material consumption for each case. The paper is concluded by presenting the characteristics of the hybrid manufacturing methodology compared to alternative manufacturing technologies.

  1. An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures

    NASA Astrophysics Data System (ADS)

    Liu, Shutian; Li, Quhao; Chen, Wenjiong; Tong, Liyong; Cheng, Gengdong

    2015-06-01

    Additive manufacturing (AM) technologies, such as selective laser sintering (SLS) and fused deposition modeling (FDM), have become the powerful tools for direct manufacturing of complex parts. This breakthrough in manufacturing technology makes the fabrication of new geometrical features and multiple materials possible. Past researches on designs and design methods often focused on how to obtain desired functional performance of the structures or parts, specific manufacturing capabilities as well as manufacturing constraints of AM were neglected. However, the inherent constraints in AM processes should be taken into account in design process. In this paper, the enclosed voids, one type of manufacturing constraints of AM, are investigated. In mathematics, enclosed voids restriction expressed as the solid structure is simplyconnected. We propose an equivalent description of simply-connected constraint for avoiding enclosed voids in structures, named as virtual temperature method (VTM). In this method, suppose that the voids in structure are filled with a virtual heating material with high heat conductivity and solid areas are filled with another virtual material with low heat conductivity. Once the enclosed voids exist in structure, the maximum temperature value of structure will be very high. Based upon this method, the simplyconnected constraint is equivalent to maximum temperature constraint. And this method can be easily used to formulate the simply-connected constraint in topology optimization. The effectiveness of this description method is illustrated by several examples. Based upon topology optimization, an example of 3D cantilever beam is used to illustrate the trade-off between manufacturability and functionality. Moreover, the three optimized structures are fabricated by FDM technology to indicate further the necessity of considering the simply-connected constraint in design phase for AM.

  2. Anomaly Detection In Additively Manufactured Parts Using Laser Doppler Vibrometery

    SciTech Connect

    Hernandez, Carlos A.

    2015-09-29

    Additively manufactured parts are susceptible to non-uniform structure caused by the unique manufacturing process. This can lead to structural weakness or catastrophic failure. Using laser Doppler vibrometry and frequency response analysis, non-contact detection of anomalies in additively manufactured parts may be possible. Preliminary tests show promise for small scale detection, but more future work is necessary.

  3. Mechanical and Thermal Characterization of Ultrasonic Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Foster, Daniel R.

    Additive manufacturing is an emerging production technology used to create net shaped 3-D objects from a digital model. Ultrasonic Additive Manufacturing (UAM) is a relatively new type of additive manufacturing that uses ultrasonic energy to sequentially bond layers of metal foils at temperatures much lower than the melting temperature of the material. Constructing metal structures without melting allows UAM to have distinct advantages over beam based additive manufacturing and other traditional manufacturing processes. This is because solidification defects can be avoided, structures can be composed of dissimilar material and secondary materials (both metallic and non-metallic) can be successfully embedded into the metal matrix. These advantages allow UAM to have tremendous potential to create metal matrix composite structures that cannot be built using any other manufacturing technique. Although UAM has tremendous engineering potential, the effect of interfacial bonding defects on the mechanical and thermal properties have not be characterized. Incomplete interfacial bonding at the laminar surfaces due to insufficient welding energy can result in interfacial voids. Voids create discontinuities in the structure which change the mechanical and thermal properties of the component, resulting in a structure that has different properties than the monolithic material used to create it. In-situ thermal experiments and thermal modeling demonstrates that voids at partially bonded interfaces significantly affected heat generation and thermal conductivity in. UAM parts during consolidation as well as in the final components. Using ultrasonic testing, elastic properties of UAM structures were found to be significantly reduced due to the presence of voids, with the reduction being the most severe in the transverse (foil staking) direction. Elastic constants in all three material directions decreased linearly with a reduction in the interfacial bonded area. The linear trend

  4. Developing gradient metal alloys through radial deposition additive manufacturing.

    PubMed

    Hofmann, Douglas C; Roberts, Scott; Otis, Richard; Kolodziejska, Joanna; Dillon, R Peter; Suh, Jong-ook; Shapiro, Andrew A; Liu, Zi-Kui; Borgonia, John-Paul

    2014-01-01

    Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels.

  5. Developing Gradient Metal Alloys through Radial Deposition Additive Manufacturing

    PubMed Central

    Hofmann, Douglas C.; Roberts, Scott; Otis, Richard; Kolodziejska, Joanna; Dillon, R. Peter; Suh, Jong-ook; Shapiro, Andrew A.; Liu, Zi-Kui; Borgonia, John-Paul

    2014-01-01

    Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels. PMID:24942329

  6. 21 CFR 1140.12 - Additional responsibilities of manufacturers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) TOBACCO PRODUCTS CIGARETTES AND SMOKELESS TOBACCO Prohibition of Sale and Distribution... addition to the other responsibilities under this part, each manufacturer shall remove from each point of... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Additional responsibilities of manufacturers....

  7. 21 CFR 1140.12 - Additional responsibilities of manufacturers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) TOBACCO PRODUCTS CIGARETTES AND SMOKELESS TOBACCO Prohibition of Sale and Distribution... addition to the other responsibilities under this part, each manufacturer shall remove from each point of... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Additional responsibilities of manufacturers....

  8. 21 CFR 1140.12 - Additional responsibilities of manufacturers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) TOBACCO PRODUCTS CIGARETTES AND SMOKELESS TOBACCO Prohibition of Sale and Distribution... addition to the other responsibilities under this part, each manufacturer shall remove from each point of... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Additional responsibilities of manufacturers....

  9. NASA OSMA NDE Program Additive Manufacturing Foundational Effort

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Walker, James; Burke, Eric; Wells, Douglas; Nichols, Charles

    2016-01-01

    NASA is providing key leadership in an international effort linking NASA and non-NASA resources to speed adoption of additive manufacturing (AM) to meet NASA's mission goals. Participants include industry, NASA's space partners, other government agencies, standards organizations and academia. Nondestructive Evaluation (NDE) is identified as a universal need for all aspects of additive manufacturing.

  10. Overview of Materials Qualification Needs for Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Salem, Ayman; Beuth, Jack; Harrysson, Ola; Lewandowski, John J.

    2016-03-01

    This overview highlights some of the key aspects regarding materials qualification needs across the additive manufacturing (AM) spectrum. AM technology has experienced considerable publicity and growth in the past few years with many successful insertions for non-mission-critical applications. However, to meet the full potential that AM has to offer, especially for flight-critical components (e.g., rotating parts, fracture-critical parts, etc.), qualification and certification efforts are necessary. While development of qualification standards will address some of these needs, this overview outlines some of the other key areas that will need to be considered in the qualification path, including various process-, microstructure-, and fracture-modeling activities in addition to integrating these with lifing activities targeting specific components. Ongoing work in the Advanced Manufacturing and Mechanical Reliability Center at Case Western Reserve University is focusing on fracture and fatigue testing to rapidly assess critical mechanical properties of some titanium alloys before and after post-processing, in addition to conducting nondestructive testing/evaluation using micro-computerized tomography at General Electric. Process mapping studies are being conducted at Carnegie Mellon University while large area microstructure characterization and informatics (EBSD and BSE) analyses are being conducted at Materials Resources LLC to enable future integration of these efforts via an Integrated Computational Materials Engineering approach to AM. Possible future pathways for materials qualification are provided.

  11. Electroacoustics modeling of piezoelectric welders for ultrasonic additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Hehr, Adam; Dapino, Marcelo J.

    2016-04-01

    Ultrasonic additive manufacturing (UAM) is a recent 3D metal printing technology which utilizes ultrasonic vibrations from high power piezoelectric transducers to additively weld similar and dissimilar metal foils. CNC machining is used intermittent of welding to create internal channels, embed temperature sensitive components, sensors, and materials, and for net shaping parts. Structural dynamics of the welder and work piece influence the performance of the welder and part quality. To understand the impact of structural dynamics on UAM, a linear time-invariant model is used to relate system shear force and electric current inputs to the system outputs of welder velocity and voltage. Frequency response measurements are combined with in-situ operating measurements of the welder to identify model parameters and to verify model assumptions. The proposed LTI model can enhance process consistency, performance, and guide the development of improved quality monitoring and control strategies.

  12. X-ray computed tomography for additive manufacturing: a review

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Maskery, I.; Leach, R. K.

    2016-07-01

    In this review, the use of x-ray computed tomography (XCT) is examined, identifying the requirement for volumetric dimensional measurements in industrial verification of additively manufactured (AM) parts. The XCT technology and AM processes are summarised, and their historical use is documented. The use of XCT and AM as tools for medical reverse engineering is discussed, and the transition of XCT from a tool used solely for imaging to a vital metrological instrument is documented. The current states of the combined technologies are then examined in detail, separated into porosity measurements and general dimensional measurements. In the conclusions of this review, the limitation of resolution on improvement of porosity measurements and the lack of research regarding the measurement of surface texture are identified as the primary barriers to ongoing adoption of XCT in AM. The limitations of both AM and XCT regarding slow speeds and high costs, when compared to other manufacturing and measurement techniques, are also noted as general barriers to continued adoption of XCT and AM.

  13. Organizational Considerations for Advanced Manufacturing Technology

    ERIC Educational Resources Information Center

    DeRuntz, Bruce D.; Turner, Roger M.

    2003-01-01

    In the last several decades, the United States has experienced a decline in productivity, while the world has seen a maturation of the global marketplace. Nations have moved manufacturing strategy and process technology issues to the top of management priority lists. The issues surrounding manufacturing technologies and their implementations have…

  14. Additive manufacturing techniques for the production of tissue engineering constructs.

    PubMed

    Mota, Carlos; Puppi, Dario; Chiellini, Federica; Chiellini, Emo

    2015-03-01

    'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt-extrusion-based techniques, solution/slurry extrusion-based techniques, and tissue and organ printing) employed for the development of tissue-engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions.

  15. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; Patterson, Clark; Santelle, Tom; Mehl, Jeremy

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  16. Energy intensity, electricity consumption, and advanced manufacturing-technology usage

    SciTech Connect

    Doms, M.E.; Dunne, T.

    1995-07-01

    This article reports on the relationship between the usage of advanced manufacturing technologies (AMTs) and energy consumption patterns in manufacturing plants. Using data from the Survey of Manufacturing Technology and the 1987 Census of Manufactures, we model the energy intensity and the electricity intensity of plants as functions of AMT usage and plant age. The main findings are that plants that utilize AMTs are less-energy intensive than plants not using AMTs, but consume proportionately more electricity as a fuel source. Additionally, older plants are generally more energy intensive and rely on fossil fuels to a greater extent than younger plants. 25 refs., 3 tabs.

  17. Applications of Metal Additive Manufacturing in Veterinary Orthopedic Surgery

    NASA Astrophysics Data System (ADS)

    Harrysson, Ola L. A.; Marcellin-Little, Denis J.; Horn, Timothy J.

    2015-03-01

    Veterinary medicine has undergone a rapid increase in specialization over the last three decades. Veterinarians now routinely perform joint replacement, neurosurgery, limb-sparing surgery, interventional radiology, radiation therapy, and other complex medical procedures. Many procedures involve advanced imaging and surgical planning. Evidence-based medicine has also become part of the modus operandi of veterinary clinicians. Modeling and additive manufacturing can provide individualized or customized therapeutic solutions to support the management of companion animals with complex medical problems. The use of metal additive manufacturing is increasing in veterinary orthopedic surgery. This review describes and discusses current and potential applications of metal additive manufacturing in veterinary orthopedic surgery.

  18. THE DURABILITY OF LARGE-SCALE ADDITIVE MANUFACTURING COMPOSITE MOLDS

    SciTech Connect

    Post, Brian K; Love, Lonnie J; Duty, Chad; Vaidya, Uday; Pipes, R. Byron; Kunc, Vlastimil

    2016-01-01

    Oak Ridge National Laboratory s Big Area Additive Manufacturing (BAAM) technology permits the rapid production of thermoplastic composite molds using a carbon fiber filled Acrylonitrile-Butadiene-Styrene (ABS) thermoplastic. Demonstration tools (i.e. 0.965 m X 0.559 m X 0.152 m) for composite part fabrication have been printed, coated, and finished with a traditional tooling gel. We present validation results demonstrating the stability of thermoplastic printed molds for room temperature Vacuum Assisted Resin Transfer Molding (VARTM) processes. Arkema s Elium thermoplastic resin was investigated with a variety of reinforcement materials. Experimental results include dimensional characterization of the tool surface using laser scanning technique following demolding of 10 parts. Thermoplastic composite molds offer rapid production compared to traditionally built thermoset molds in that near-net deposition allows direct digital production of the net geometry at production rate of 45 kg/hr.

  19. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  20. An evaluation of personalised insoles developed using additive manufacturing.

    PubMed

    Salles, Andre S; Gyi, Diane E

    2013-01-01

    The aim of the study was to evaluate the short and medium term use of personalised insoles, produced by combining additive manufacturing (AM) with three-dimensional (3-D) foot scanning and computer aided design (CAD) systems. For that, 38 runners (19 pairings) were recruited. The experimental conditions were: personalised and control. The personalised condition consisted of trainers fitted with personalised glove fit insoles manufactured using AM and using foot scans to match the plantar geometry of the feet. The control condition consisted of the same trainers fitted with insoles also manufactured using AM but using scans of the original insole shape. Participants were allocated to one of the experimental conditions and wore the trainers for 3 months. Over this period they attended three laboratory sessions (at months 0, 1.5 and 3) and completed an Activity Diary after each training session. The footwear was evaluated in terms of discomfort and biomechanics. Lower discomfort ratings were found in the heel area (P ≤ 0.05) and for overall fit (P ≤ 0.05), with the personalised insole. However, discomfort was reported under the arch region for both conditions. With regard to the biomechanical data, differences between conditions were detected for ankle dorsiflexion at footstrike (P ≤ 0.05), maximum ankle eversion (P ≤ 0.05) and peak mean pressure under the heel (P ≤ 0.01): the personalised condition had lower values which may reduce injury risk. The personalisation of the geometry of insoles through advances in AM together with 3-D scanning and CAD technologies can provide benefits and has potential.

  1. Overview of additive manufacturing activities at MTU aero engines

    NASA Astrophysics Data System (ADS)

    Bamberg, Joachim; Dusel, Karl-Heinz; Satzger, Wilhelm

    2015-03-01

    Additive Manufacturing (AM) is a promising technology to produce parts easily and effectively, just by using metallic powder or wire as starting material and a sophisticated melting process. In contrast to milling or turning technologies complex shaped and hollow parts can be built up in one step. That reduces the production costs and allows the implementation of complete new 3D designs. Therefore AM is also of great interest for aerospace and aero engine industry. MTU Aero Engines has focused its AM activities to the selective laser melting technique (SLM). This technique uses metallic powder and a laser for melting and building up the part layer by layer. It is shown which lead part was selected for AM and how the first production line was established. A special focus is set on the quality assurance of the selective laser melting process. In addition to standard non-destructive inspection techniques a new online monitoring tool was developed and integrated into the SLM machines. The basics of this technique is presented.

  2. Isotope separation and advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  3. Computed Tomography Inspection and Analysis for Additive Manufacturing Components

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2016-01-01

    Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws were inspected using a 2MeV linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed using standard image analysis techniques to determine the impact of additive manufacturing on inspectability of objects with complex geometries.

  4. The design of impact absorbing structures for additive manufacture

    NASA Astrophysics Data System (ADS)

    Brennan-Craddock, J.; Brackett, D.; Wildman, R.; Hague, R.

    2012-08-01

    Additive manufacturing (AM) is increasingly becoming a viable manufacturing process due to dramatic advantages that it facilitates in the area of design complexity. This paper investigates the potential of additively manufactured lattice structures for the application of tailored impact absorption specifically for conformal body protection. It explores lattice cell types based on foam microstructures and assesses their suitability for impact absorption. The effect of varying the cell strut edge design is also investigated. The implications of scaling these cells up for AM are discussed as well as the design issues regarding the handling of geometric complexity and the requirement for body conformity. The suitability of AM materials for this application is also discussed.

  5. Challenges in Teaching Modern Manufacturing Technologies

    ERIC Educational Resources Information Center

    Ngaile, Gracious; Wang, Jyhwen; Gau, Jenn-Terng

    2015-01-01

    Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in…

  6. FMS: The New Wave of Manufacturing Technology.

    ERIC Educational Resources Information Center

    Industrial Education, 1986

    1986-01-01

    Flexible manufacturing systems (FMS) are described as a marriage of all of the latest technologies--robotics, numerical control, CAD/CAM (computer-assisted design/computer-assisted manufacturing), etc.--into a cost-efficient, optimized production process yielding the greatest flexibility in making various parts. A typical curriculum to teach FMS…

  7. Thermodynamically consistent microstructure prediction of additively manufactured materials

    NASA Astrophysics Data System (ADS)

    Smith, Jacob; Xiong, Wei; Cao, Jian; Liu, Wing Kam

    2016-03-01

    Additive manufacturing has risen to the top of research interest in advanced manufacturing in recent years due to process flexibility, achievability of geometric complexity, and the ability to locally modify and optimize materials. The present work is focused on providing an approach for incorporating thermodynamically consistent properties and microstructure evolution for non-equilibrium supercooling, as observed in additive manufacturing processes, into finite element analysis. There are two primary benefits of this work: (1) the resulting prediction is based on the material composition and (2) the nonlinear behavior caused by the thermodynamic properties of the material during the non-equilibrium solution is accounted for with extremely high resolution. The predicted temperature response and microstructure evolution for additively manufactured stainless steel 316L using standard handbook-obtained thermodynamic properties are compared with the thermodynamic properties calculated using the CALculation of PHAse Diagrams (CALPHAD) approach. Data transfer from the CALPHAD approach to finite element analysis is discussed.

  8. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect

    Izu, M. )

    1992-03-01

    This report examines manufacturing multiple-band-gap, multiple- junction solar cells and photovoltaic modules. Amorphous silicon alloy material is deposited (using microwave plasma-assisted chemical vapor deposition) on a stainless-steel substrate using a roll-to-roll process that is continuous and automated. Rapid thermal equilibration of the metal substrate allows rapid throughput of large-area devices in smaller production machines. Potential improvements in the design, deposition, and module fabrication process are described. Problems are also discussed that could impede using these potential improvements. Energy Conversion Devices, Inc. (ECD) proposes cost and time estimates for investigating and solving these problems. Manufacturing modules for less than $1.00 per peak watt and stable module efficiencies of greater than 10% are near-term goals proposed by ECD. 18 refs.

  9. Manufacturing Technology bulletin, July 1994

    SciTech Connect

    Not Available

    1994-07-01

    Inside this issue: (1) Robotic cleaning safer, faster, more reliable; robots taught how to clean in seconds instead of days. (2) Microporous insulating films can boost microcircuit performance; films display improved dielectric constant, mechanical properties, (3) Life-cycle analysis: the big picture; cradle-to-grave environmental analysis tailored to the needs of defense manufacturing, (4) New simulation tool predicts properties of forged metal; internal state variable model improves design, speeds development time.

  10. Additive manufacturing metrology: State of the art and needs assessment

    NASA Astrophysics Data System (ADS)

    Koester, L.; Taheri, H.; Bond, L. J.; Barnard, D.; Gray, J.

    2016-02-01

    Additive manufacturing (AM) is a technology that first emerged in 1987 with stereolithography (SL) of plastic materials from 3D Systems. It saw light use for rapid prototyping and very low volume production for a number of years. However, in the past few years AM of metallic materials has become a practical fabrication technology, use is rapidly increasing and is projected to continue with double digit growth in coming years. The promise and flexibility shown by AM has spurred efforts to begin standardization of this type of process. This paper provides an assessment of the state of the art for in-situ process monitoring of AM processes with an emphasis on the production of metallic components. It is seen that with the implementation of proper process control there is potential to create reliable and reproducible materials and geometries previously unachievable using metal removal based means of production. A reliable methodology for detection and control of microstructure and defects would be of great value in terms of enabling broader AM utilization.

  11. Recommended Protocol for Round Robin Studies in Additive Manufacturing

    PubMed Central

    Moylan, Shawn; Brown, Christopher U.; Slotwinski, John

    2016-01-01

    One way to improve confidence and encourage proliferation of additive manufacturing (AM) technologies and parts is by generating more high quality data describing the performance of AM processes and parts. Many in the AM community see round robin studies as a way to generate large data sets while distributing the cost among the participants, thereby reducing the cost to individual users. The National Institute of Standards and Technology (NIST) has conducted and participated in several of these AM round robin studies. While the results of these studies are interesting and informative, many of the lessons learned in conducting these studies concern the logistics and methods of the study and unique issues presented by AM. Existing standards for conducting interlaboratory studies of measurement methods, along with NIST’s experience, form the basis for recommended protocols for conducting AM round robin studies. The role of round robin studies in AM qualification, some of the limitations of round robin studies, and the potential benefit of less formal collaborative experiments where multiple factors, AM machine being only one, are varied simultaneously are also discussed. PMID:27274602

  12. Hybrid additive manufacturing of 3D electronic systems

    NASA Astrophysics Data System (ADS)

    Li, J.; Wasley, T.; Nguyen, T. T.; Ta, V. D.; Shephard, J. D.; Stringer, J.; Smith, P.; Esenturk, E.; Connaughton, C.; Kay, R.

    2016-10-01

    A novel hybrid additive manufacturing (AM) technology combining digital light projection (DLP) stereolithography (SL) with 3D micro-dispensing alongside conventional surface mount packaging is presented in this work. This technology overcomes the inherent limitations of individual AM processes and integrates seamlessly with conventional packaging processes to enable the deposition of multiple materials. This facilitates the creation of bespoke end-use products with complex 3D geometry and multi-layer embedded electronic systems. Through a combination of four-point probe measurement and non-contact focus variation microscopy, it was identified that there was no obvious adverse effect of DLP SL embedding process on the electrical conductivity of printed conductors. The resistivity maintained to be less than 4  ×  10-4 Ω · cm before and after DLP SL embedding when cured at 100 °C for 1 h. The mechanical strength of SL specimens with thick polymerized layers was also identified through tensile testing. It was found that the polymerization thickness should be minimised (less than 2 mm) to maximise the bonding strength. As a demonstrator a polymer pyramid with embedded triple-layer 555 LED blinking circuitry was successfully fabricated to prove the technical viability.

  13. Applying Additive Manufacturing to a New Liquid Oxygen Turbopump Design

    NASA Technical Reports Server (NTRS)

    O'Neal, Derek

    2016-01-01

    A liquid oxygen turbopump has been designed at Marshall Space Flight Center as part of the in-house, Advanced Manufacturing Demonstrator Engine (AMDE) project. Additive manufacturing, specifically direct metal laser sintering (DMLS) of Inconel 718, is used for 77% of the parts by mass. These parts include the impeller, turbine components, and housings. The near-net shape DMLS parts have been delivered and final machining is underway. Fabrication of the traditionally manufactured hardware is also proceeding. Testing in liquid oxygen is planned for Q2 of FY2017. This topic explores the design of the turbopump along with fabrication and material testing of the DMLS hardware.

  14. Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization

    NASA Astrophysics Data System (ADS)

    Halloran, John W.

    2016-07-01

    Ceramic stereolithography and related additive manufacturing methods involving photopolymerization of ceramic powder suspensions are reviewed in terms of the capabilities of current devices. The practical fundamentals of the cure depth, cure width, and cure profile are related to the optical properties of the monomer, ceramic, and photo-active components. Postpolymerization steps, including harvesting and cleaning the objects, binder burnout, and sintering, are discussed and compared with conventional methods. The prospects for practical manufacturing are discussed.

  15. Evaluation of Additive Manufacturing for Composite Part Molds

    SciTech Connect

    Duty, Chad E.; Springfield, Robert M.

    2015-02-01

    The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.

  16. Imaging requirements for medical applications of additive manufacturing.

    PubMed

    Huotilainen, Eero; Paloheimo, Markku; Salmi, Mika; Paloheimo, Kaija-Stiina; Björkstrand, Roy; Tuomi, Jukka; Markkola, Antti; Mäkitie, Antti

    2014-02-01

    Additive manufacturing (AM), formerly known as rapid prototyping, is steadily shifting its focus from industrial prototyping to medical applications as AM processes, bioadaptive materials, and medical imaging technologies develop, and the benefits of the techniques gain wider knowledge among clinicians. This article gives an overview of the main requirements for medical imaging affected by needs of AM, as well as provides a brief literature review from existing clinical cases concentrating especially on the kind of radiology they required. As an example application, a pair of CT images of the facial skull base was turned into 3D models in order to illustrate the significance of suitable imaging parameters. Additionally, the model was printed into a preoperative medical model with a popular AM device. Successful clinical cases of AM are recognized to rely heavily on efficient collaboration between various disciplines - notably operating surgeons, radiologists, and engineers. The single main requirement separating tangible model creation from traditional imaging objectives such as diagnostics and preoperative planning is the increased need for anatomical accuracy in all three spatial dimensions, but depending on the application, other specific requirements may be present as well. This article essentially intends to narrow the potential communication gap between radiologists and engineers who work with projects involving AM by showcasing the overlap between the two disciplines.

  17. Carbon fiber manufacturing via plasma technology

    DOEpatents

    Paulauskas, Felix L.; Yarborough, Kenneth D.; Meek, Thomas T.

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  18. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  19. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  20. Efficient manufacturing technology of metal optics

    NASA Astrophysics Data System (ADS)

    Zhang, Jizhen; Wu, Yanxiong; Zhang, Xin; Zhang, Liping; Wang, Lingjie; Qu, Hemeng

    2015-10-01

    The efficient manufacturing technologies greatly accelerate the development and production process. Optical components have higher precision requirements than mechanical parts. This provides great challenge for rapid manufacturing. Metallic optical system is featured high resolution, wide spectral range, light weight, compact design, low cost and short manufacturing period. Reflective mirrors and supporting structures can be made from the same material to improve athermal performance of the system. Common materials for metal mirrors in optical applications include aluminum, copper, beryllium, aluminum beryllium alloy and so on. Their physical characteristics and relative advantages are presented. Most kinds of metals have good machinability and can be manufactured by many kinds of producing methods. This makes metallic optical system saving 30%~60% cost and time than others. The manufacturing process of metal mirror is different due to its working spectral. The metal mirror can be directly manufactured by single point diamond turning. This is an outstanding technique in point of ultra-precision as well as economical manufacture of mirrors. The roughness values and form accuracy of optical surfaces after diamond turning can satisfy the quality level for applications in the near infrared and infrared range. And for visible light spectral the turning structures must be removed with a smoothing procedure in order to minimize the scatter losses. Some smoothing methods to obtain visible quality metal mirrors are given in this paper. Some new manufacturing technology, such as 3D printing, can be used for metallic optical system and several promising techniques are presented.

  1. Advanced manufacturing technologies on color plasma displays

    NASA Astrophysics Data System (ADS)

    Betsui, Keiichi

    2000-06-01

    The mass production of the color plasma display started from 1996. However, since the price of the panel is still expensive, PDPs are not in widespread use at home. It is necessary to develop the new and low-cost manufacturing technologies to reduce the price of the panel. This paper describes some of the features of new fabrication technologies of PDPs.

  2. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect

    Somberg, H. )

    1991-11-01

    This report describes existing integrated processes for solar cell manufacturing and lists as the primary opportunity for improvement the following areas: low-cost silicon sheets with improved characteristics; improved large-scale and automated solar cell processes that can lead to cell efficiencies in the range of 14% (encapsulated) for direct-cast wafers; improved handling and lamination of large-area modules for the emerging utility market. The proposed solutions can lead to finished module costs on the order of $1.55 per square meter or a selling price of less than $2.00/Watt. The problems that may be considered generic to the industry and that have been addressed in this work are as follows: gettering and passivation of silicon wafers; spray-on passivation layers; dual antireflection coatings; ink-jet printing of metallizations; and automated handling of large-area modules and associated vertical lamination. 14 refs.

  3. Additive manufacturing method for SRF components of various geometries

    SciTech Connect

    Rimmer, Robert; Frigola, Pedro E; Murokh, Alex Y

    2015-05-05

    An additive manufacturing method for forming nearly monolithic SRF niobium cavities and end group components of arbitrary shape with features such as optimized wall thickness and integral stiffeners, greatly reducing the cost and technical variability of conventional cavity construction. The additive manufacturing method for forming an SRF cavity, includes atomizing niobium to form a niobium powder, feeding the niobium powder into an electron beam melter under a vacuum, melting the niobium powder under a vacuum in the electron beam melter to form an SRF cavity; and polishing the inside surface of the SRF cavity.

  4. 3D/Additive Printing Manufacturing: A Brief History and Purchasing Guide

    ERIC Educational Resources Information Center

    Hughes, Bill; Wilson, Greg

    2016-01-01

    3D printing is recognized as a collection of technologies known as rapid prototyping, solid freeform fabrication, and most commonly, additive manufacturing (AM). With these emerging technologies it is possible to print (but not limited to): architectural models, discontinued car-part foundry patterns, industry-wide prototypes, human tissues, the…

  5. Embracing additive manufacture: implications for foot and ankle orthosis design

    PubMed Central

    2012-01-01

    Background The design of foot and ankle orthoses is currently limited by the methods used to fabricate the devices, particularly in terms of geometric freedom and potential to include innovative new features. Additive manufacturing (AM) technologies, where objects are constructed via a series of sub-millimetre layers of a substrate material, may present the opportunity to overcome these limitations and allow novel devices to be produced that are highly personalised for the individual, both in terms of fit and functionality. Two novel devices, a foot orthosis (FO) designed to include adjustable elements to relieve pressure at the metatarsal heads, and an ankle foot orthosis (AFO) designed to have adjustable stiffness levels in the sagittal plane, were developed and fabricated using AM. The devices were then tested on a healthy participant to determine if the intended biomechanical modes of action were achieved. Results The adjustable, pressure relieving FO was found to be able to significantly reduce pressure under the targeted metatarsal heads. The AFO was shown to have distinct effects on ankle kinematics which could be varied by adjusting the stiffness level of the device. Conclusions The results presented here demonstrate the potential design freedom made available by AM, and suggest that it may allow novel personalised orthotic devices to be produced which are beyond the current state of the art. PMID:22642941

  6. Cleaning and Cleanliness Measurement of Additive Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Welker, Roger W.; Mitchell, Mark A.

    2015-01-01

    The successful acquisition and utilization of piece parts and assemblies for contamination sensitive applications requires application of cleanliness acceptance criteria. Contamination can be classified using many different schemes. One common scheme is classification as organic, ionic and particulate contaminants. These may be present in and on the surface of solid components and assemblies or may be dispersed in various gaseous or liquid media. This discussion will focus on insoluble particle contamination on the surface of piece parts and assemblies. Cleanliness of parts can be controlled using two strategies, referred to as gross cleanliness and precision cleanliness. Under a gross cleanliness strategy acceptance is based on visual cleanliness. This approach introduces a number of concerns that render it unsuitable for controlling cleanliness of high technology products. Under the precision cleanliness strategy, subjective, visual assessment of cleanliness is replaced by objective measurement of cleanliness. When a precision cleanliness strategy is adopted there naturally arises the question: How clean is clean enough? The six commonly used methods for establishing objective cleanliness acceptance limits will be discussed. Special emphasis shall focus on the use of multiple extraction, a technique that has been demonstrated for additively manufactured parts.

  7. Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Stampfl, J.; Pettermann, H. E.; Liska, R.

    Biological materials (e.g., wood, trabecular bone, marine skeletons) rely heavily on the use of cellular architecture, which provides several advantages. (1) The resulting structures can bear the variety of "real life" load spectra using a minimum of a given bulk material, featuring engineering lightweight design principles. (2) The inside of the structures is accessible to body fluids which deliver the required nutrients. (3) Furthermore, cellular architectures can grow organically by adding or removing individual struts or by changing the shape of the constituting elements. All these facts make the use of cellular architectures a reasonable choice for nature. Using additive manufacturing technologies (AMT), it is now possible to fabricate such structures for applications in engineering and biomedicine. In this chapter, we present methods that allow the 3D computational analysis of the mechanical properties of cellular structures with open porosity. Various different cellular architectures including disorder are studied. In order to quantify the influence of architecture, the apparent density is always kept constant. Furthermore, it is shown that how new advanced photopolymers can be used to tailor the mechanical and functional properties of the fabricated structures.

  8. Characterization of Metal Powders Used for Additive Manufacturing.

    PubMed

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  9. Characterization of Metal Powders Used for Additive Manufacturing

    PubMed Central

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  10. Composite fuselage crown panel manufacturing technology

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.

    1992-01-01

    Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.

  11. A review of advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Broughton, T.

    1981-03-01

    Joining techniques, hot forming technology, forging technology, investment casting, small cooling hole manufacturing, combustor technology, quality assurance, and chip forming machining of gas turbine engine components are discussed. Electron and laser beam welding; laser hard facing techniques; automatic TIG and plasma welding; diffusion brazing of titanium and nickel alloys; heated die forming: blow forming; superplastic forming; fan and compressor blade forging; and wheel and disk forging from powder superalloys are described.

  12. A Modular Aerospike Engine Design Using Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Peugeot, John; Garcia, Chance; Burkhardt, Wendel

    2014-01-01

    A modular aerospike engine concept has been developed with the objective of demonstrating the viability of the aerospike design using additive manufacturing techniques. The aerospike system is a self-compensating design that allows for optimal performance over the entire flight regime and allows for the lowest possible mass vehicle designs. At low altitudes, improvements in Isp can be traded against chamber pressure, staging, and payload. In upper stage applications, expansion ratio and engine envelope can be traded against nozzle efficiency. These features provide flexibility to the System Designer optimizing a complete vehicle stage. The aerospike concept is a good example of a component that has demonstrated improved performance capability, but traditionally has manufacturing requirements that are too expensive and complex to use in a production vehicle. In recent years, additive manufacturing has emerged as a potential method for improving the speed and cost of building geometrically complex components in rocket engines. It offers a reduction in tooling overhead and significant improvements in the integration of the designer and manufacturing method. In addition, the modularity of the engine design provides the ability to perform full scale testing on the combustion devices outside of the full engine configuration. The proposed design uses a hydrocarbon based gas-generator cycle, with plans to take advantage of existing powerhead hardware while focusing DDT&E resources on manufacturing and sub-system testing of the combustion devices. The major risks for the modular aerospike concept lie in the performance of the propellant feed system, the structural integrity of the additive manufactured components, and the aerodynamic efficiency of the exhaust flow.

  13. 21 CFR 1140.12 - Additional responsibilities of manufacturers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Additional responsibilities of manufacturers. 1140.12 Section 1140.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) TOBACCO PRODUCTS CIGARETTES AND SMOKELESS TOBACCO Prohibition of Sale and...

  14. 21 CFR 1140.12 - Additional responsibilities of manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... each point of sale all self-service displays, advertising, labeling, and other items that the... SERVICES (CONTINUED) TOBACCO PRODUCTS CIGARETTES AND SMOKELESS TOBACCO; Eff. 6-22-10 Prohibition of Sale... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Additional responsibilities of manufacturers....

  15. Porosity of additive manufacturing parts for process monitoring

    SciTech Connect

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-18

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  16. Porosity of additive manufacturing parts for process monitoring

    NASA Astrophysics Data System (ADS)

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-01

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  17. Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Parker, Bradford H.; Hodges, Kenneth L.; Burke, Eric R.; Walker, James L.

    2014-01-01

    This report summarizes the National Aeronautics and Space Administrations (NASA) state of the art of nondestructive evaluation (NDE) for additive manufacturing (AM), or "3-D printed", hardware. NASA's unique need for highly customized spacecraft and instrumentation is suited for AM, which offers a compelling alternative to traditional subtractive manufacturing approaches. The Agency has an opportunity to push the envelope on how this technology is used in zero gravity, an enable in-space manufacturing of flight spares and replacement hardware crucial for long-duration, manned missions to Mars. The Agency is leveraging AM technology developed internally and by industry, academia, and other government agencies for its unique needs. Recent technical interchange meetings and workshops attended by NASA have identified NDE as a universal need for all aspects of additive manufacturing. The impact of NDE on AM is cross cutting and spans materials, processing quality assurance, testing and modeling disciplines. Appropriate NDE methods are needed before, during, and after the AM production process.

  18. Summary of NDE of Additive Manufacturing Efforts in NASA

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Saulsberry, Regor; Parker, Bradford; Hodges, Kenneth; Burke, Eric; Taminger, Karen

    2014-01-01

    (1) General Rationale for Additive Manufacturing (AM): (a) Operate under a 'design-to-constraint' paradigm, make parts too complicated to fabricate otherwise, (b) Reduce weight by 20 percent with monolithic parts, (c) Reduce waste (green manufacturing), (e) Eliminate reliance on Original Equipment Manufacturers for critical spares, and (f) Extend life of in-service parts by innovative repair methods; (2) NASA OSMA NDE of AM State-of-the-Discipline Report; (3) Overview of NASA AM Efforts at Various Centers: (a) Analytical Tools, (b) Ground-Based Fabrication (c) Space-Based Fabrication; and (d) Center Activity Summaries; (4) Overview of NASA NDE data to date on AM parts; and (5) Gap Analysis/Recommendations for NDE of AM.

  19. Additive manufacturing of stretchable tactile sensors: Processes, materials, and applications

    NASA Astrophysics Data System (ADS)

    Vatani, Morteza

    3D printing technology is becoming more ubiquitous every day especially in the area of smart structures. However, fabrication of multi-material, functional, and smart structures is problematic because of the process and material limitations. This thesis sought to develop a Direct Print Photopolymerization (DPP) fabrication technique that appreciably extends the manufacturing space for the 3D smart structures. This method employs a robotically controlled micro-extrusion of a filament equipped with a photopolymerization process. The ability to use polymers and ultimately their nanocomposites in this process is the advantage of the proposed process over the current fabrication methods in the fabrication of 3D structures featuring mechanical, physical, and electrical functionalities. In addition, this study focused to develop a printable, conductive, and stretchable nanocomposite based on a photocurable and stretchable liquid resin filled with multi-walled carbon nanotubes (MWNTs). This nanocomposite exhibited piezoresistivity, means its resistivity changes as it deforms. This property is a favorable factor in developing resistance based tactile sensors. They were also able to resist high tensile strains while they showed conductivity. Furthermore, this study offered a possible and low-cost method to have a unique and highly stretchable pressure sensitive polymer. This disruptive pressure sensitive polymer composed of an Ionic Liquid (IL) and a stretchable photopolymer embedded between two layers of Carbon Nanotube (CNTs) based stretchable electrodes. The developed IL-polymer showed both field effect property and piezoresistivity that can detect large tensile strains up 30%. In summary, this research study focused to present feasible methods and materials for printing a 3D smart structure especially in the context of flexible tactile sensors. This study provides a foundation for the future efforts in fabrication of skin like tactile sensors in three-dimensional motifs

  20. Mechanical characterisation of additively manufactured material having lattice microstructure

    NASA Astrophysics Data System (ADS)

    Cuan-Urquizo, E.; Yang, S.; Bhaskar, A.

    2015-02-01

    Many natural and engineered structures possess cellular and porous architecture. This paper is focused on the mechanical characterisation of additively manufactured lattice structures. The lattice consists of a stack of polylactic acid (PLA) filaments in a woodpile arrangement fabricated using a fused deposition modelling 3D printer. Some of the most promising applications of this 3D lattice material of this type include scaffolds for tissue engineering and the core for sandwich panels. While there is a significant body of work concerning the manufacture of such lattice materials, attempts to understand their mechanical properties are very limited. This paper brings together manufacturing with the need to understand the structure-property relationship for this class of materials. In order to understand the elastic response of the PLA-based lattice structures obtained from the fused deposition modelling process, single filaments manufactured using the same process were experimentally characterised first. The single PLA filaments were manufactured under different temperatures. These filaments were then characterised by using tensile testing. The stress-strain curves are presented. The variability of the measured results is discussed. The measured properties are then taken as input to a finite element model of the lattice material. This model uses simple one-dimensional elements in conjunction with a novel method achieving computational economy which precludes the use of fine meshes. Using this novel model, the apparent elastic modulus of lattice along the filaments has been obtained and is presented in this paper.

  1. Cost Estimation of Laser Additive Manufacturing of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Piili, Heidi; Happonen, Ari; Väistö, Tapio; Venkataramanan, Vijaikrishnan; Partanen, Jouni; Salminen, Antti

    Laser additive manufacturing (LAM) is a layer wise fabrication method in which a laser beam melts metallic powder to form solid objects. Although 3D printing has been invented 30 years ago, the industrial use is quite limited whereas the introduction of cheap consumer 3D printers, in recent years, has familiarized the 3D printing. Interest is focused more and more in manufacturing of functional parts. Aim of this study is to define and discuss the current economic opportunities and restrictions of LAM process. Manufacturing costs were studied with different build scenarios each with estimated cost structure by calculated build time and calculating the costs of the machine, material and energy with optimized machine utilization. All manufacturing and time simulations in this study were carried out with a research machine equal to commercial EOS M series equipment. The study shows that the main expense in LAM is the investment cost of the LAM machine, compared to which the relative proportions of the energy and material costs are very low. The manufacturing time per part is the key factor to optimize costs of LAM.

  2. Metal Additive Manufacturing: A Review of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lewandowski, John J.; Seifi, Mohsen

    2016-07-01

    This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test orientation/build direction on properties, when available, are also provided, along with discussion of the potential source(s) (e.g., texture, microstructure changes, defects) of anisotropy in properties. Recommendations for additional work are also provided.

  3. An academic, clinical and industrial update on electrospun, additive manufactured and imprinted medical devices.

    PubMed

    Ryan, Christina N M; Fuller, Kieran P; Larrañaga, Aitor; Biggs, Manus; Bayon, Yves; Sarasua, Jose R; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-01-01

    Electrospinning, additive manufacturing and imprint lithography scaffold fabrication technologies have attracted great attention in biomedicine, as they allow production of two- and three- dimensional constructs with tuneable topographical and geometrical features. In vitro data demonstrate that electrospun and imprinted substrates offer control over permanently differentiated and stem cell function. Advancements in functionalisation strategies have further enhanced the bioactivity and reparative capacity of electrospun and additive manufactured devices, as has been evidenced in several preclinical models. Despite this overwhelming success in academic setting, only a few technologies have reached the clinic and only a fraction of them have become commercially available products.

  4. Highly oriented carbon fiber–polymer composites via additive manufacturing

    SciTech Connect

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; Duty, Chad E.; Love, Lonnie J.; Naskar, Amit K.; Blue, Craig A.; Ozcan, Soydan

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructure and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.

  5. Highly oriented carbon fiber–polymer composites via additive manufacturing

    DOE PAGES

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; Duty, Chad E.; Love, Lonnie J.; Naskar, Amit K.; Blue, Craig A.; Ozcan, Soydan

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less

  6. Emerging Materials Technologies That Matter to Manufacturers

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2015-01-01

    A brief overview of emerging materials technologies. Exploring the weight reduction benefit of replacing Carbon Fiber with Carbon Nanotube (CNT) in Polymer Composites. Review of the benign purification method developed for CNT sheets. The future of manufacturing will include the integration of computational material design and big data analytics, along with Nanomaterials as building blocks.

  7. Fabrication of Turbine Disk Materials by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal; Bean, Quincy A.; Cooper, Ken; Carter, Robert; Semiatin, S. Lee; Gabb, Tim

    2014-01-01

    Precipitation-strengthened, nickel-based superalloys are widely used in the aerospace and energy industries due to their excellent environmental resistance and outstanding mechanical properties under extreme conditions. Powder-bed additive manufacturing (AM) technologies offer the potential to revolutionize the processing of superalloy turbine components by eliminating the need for extensive inventory or expensive legacy tooling. Like selective laser melting (SLM), electron beam melting (EBM) constructs three-dimensional dense components layer-by-layer by melting and solidification of atomized, pre-alloyed powder feedstock within 50-200 micron layers. While SLM has been more widely used for AM of nickel alloys like 718, EBM offers several distinct advantages, such as less retained residual stress, lower risk of contamination, and faster build rates with multiple-electron-beam configurations. These advantages are particularly attractive for turbine disks, for which excessive residual stress and contamination can shorten disk life during high-temperature operation. In this presentation, we will discuss the feasibility of fabricating disk superalloy components using EBM AM. Originally developed using powder metallurgy forging processing, disk superalloys contain a higher refractory content and precipitate volume fraction than alloy 718, thus making them more prone to thermal cracking during AM. This and other challenges to produce homogeneous builds with desired properties will be presented. In particular, the quality of lab-scale samples fabricated via a design of experiments, in which the beam current, build temperature, and beam velocity were varied, will be summarized. The relationship between processing parameters, microstructure, grain orientation, and mechanical response will be discussed.

  8. Photovoltaic industry manufacturing technology. Final report

    SciTech Connect

    Vanecek, D.; Diver, M.; Fernandez, R.

    1998-08-01

    This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

  9. Bioceramic 3D Implants Produced by Laser Assisted Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Lusquiños, Fernando; del Val, Jesús; Arias-González, Felipe; Comesaña, Rafael; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Jones, Julian R.; Hill, Robert G.; Pou, Juan

    Cranial defect restoration requires a suitable implant capable to fulfill protective and aesthetic functions, such as polymeric and metallic implants. Nevertheless, the former materials cannot provide osteointegration of the implant within the host bone nor implant resorption, which is also required in pediatricorthopedics for normal patient growth. Resorbable and osteoconductivebioceramics are employed, such as silicate bioactive glasses. Nevertheless, manufacturing based on conventional casting in graphite moulds is not effective for warped shape implants suitable for patient tailored treatments. In this work, we analyze the application of rapid prototyping based on laser cladding to manufacture bioactive glass implants for low load bearing bone restoration. This laser-assisted additive technique is capable to produce three-dimensional geometries tailored to patient, with reduced fabrication time and implant composition modification. The obtained samples were characterized; the relationships between the processing conditions and the measured features were studied, in addition to the biological behavior analysis.

  10. Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.

    PubMed

    Gür, Y

    2014-12-01

    The purpose of the study presented here was to investigate the manufacturability of human anatomical models from Computed Tomography (CT) scan data via a 3D desktop printer which uses fused deposition modelling (FDM) technology. First, Digital Imaging and Communications in Medicine (DICOM) CT scan data were converted to 3D Standard Triangle Language (STL) format by using In Vaselius digital imaging program. Once this STL file is obtained, a 3D physical version of the anatomical model can be fabricated by a desktop 3D FDM printer. As a case study, a patient's skull CT scan data was considered, and a tangible version of the skull was manufactured by a 3D FDM desktop printer. During the 3D printing process, the skull was built using acrylonitrile-butadiene-styrene (ABS) co-polymer plastic. The printed model showed that the 3D FDM printing technology is able to fabricate anatomical models with high accuracy. As a result, the skull model can be used for preoperative surgical planning, medical training activities, implant design and simulation to show the potential of the FDM technology in medical field. It will also improve communication between medical stuff and patients. Current result indicates that a 3D desktop printer which uses FDM technology can be used to obtain accurate anatomical models.

  11. Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.

    PubMed

    Gür, Y

    2014-12-01

    The purpose of the study presented here was to investigate the manufacturability of human anatomical models from Computed Tomography (CT) scan data via a 3D desktop printer which uses fused deposition modelling (FDM) technology. First, Digital Imaging and Communications in Medicine (DICOM) CT scan data were converted to 3D Standard Triangle Language (STL) format by using In Vaselius digital imaging program. Once this STL file is obtained, a 3D physical version of the anatomical model can be fabricated by a desktop 3D FDM printer. As a case study, a patient's skull CT scan data was considered, and a tangible version of the skull was manufactured by a 3D FDM desktop printer. During the 3D printing process, the skull was built using acrylonitrile-butadiene-styrene (ABS) co-polymer plastic. The printed model showed that the 3D FDM printing technology is able to fabricate anatomical models with high accuracy. As a result, the skull model can be used for preoperative surgical planning, medical training activities, implant design and simulation to show the potential of the FDM technology in medical field. It will also improve communication between medical stuff and patients. Current result indicates that a 3D desktop printer which uses FDM technology can be used to obtain accurate anatomical models. PMID:26336695

  12. Calculation of laser absorption by metal powders in additive manufacturing.

    PubMed

    Boley, C D; Khairallah, S A; Rubenchik, A M

    2015-03-20

    We have calculated the absorption of laser light by a powder of metal spheres, typical of the powder employed in laser powder-bed fusion additive manufacturing. Using ray-trace simulations, we show that the absorption is significantly larger than its value for normal incidence on a flat surface, due to multiple scattering. We investigate the dependence of absorption on powder content (material, size distribution, and geometry) and on beam size.

  13. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  14. Elastic constants of Ultrasonic Additive Manufactured Al 3003-H18.

    PubMed

    Foster, D R; Dapino, M J; Babu, S S

    2013-01-01

    Ultrasonic Additive Manufacturing (UAM), also known as Ultrasonic Consolidation (UC), is a layered manufacturing process in which thin metal foils are ultrasonically bonded to a previously bonded foil substrate to create a net part. Optimization of process variables (amplitude, normal load and velocity) is done to minimize voids along the bonded interfaces. This work pertains to the evaluation of bonds in UAM builds through ultrasonic testing of a build's elastic constants. Results from ultrasonic testing on UAM parts indicate orthotropic material symmetry and a reduction of up to 48% in elastic constant values compared to a control sample. The reduction in elastic constant values is attributed to interfacial voids. In addition, the elastic constants in the plane of the Al foils have nearly the same value, while the constants normal to the foil direction have much different values. In contrast, measurements from builds made with Very High Power Ultrasonic Additive Manufacturing (VHP UAM) show a drastic improvement in elastic properties, approaching values similar to that of bulk aluminum.

  15. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  16. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  17. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    NASA Astrophysics Data System (ADS)

    Ocelík, V.; Janssen, N.; Smith, S. N.; De Hosson, J. Th. M.

    2016-07-01

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with different amounts of aluminum prepared by arc melting were investigated and compared with the laser beam remelted HEAs with the same composition. Attempts to form HEAs coatings with a direct laser deposition from the mixture of elemental powders were made for AlCoCrFeNi and AlCrFeNiTa composition. A strong influence of solidification rate on the amounts of face-centered cubic and body-centered cubic phase, their chemical composition, and spatial distribution was detected for two-phase AlCoCrFeNi HEAs. It is concluded that a high-power laser is a versatile tool to synthesize interesting HEAs with additive manufacturing processing. Critical issues are related to the rate of (re)solidification, the dilution with the substrate, powder efficiency during cladding, and differences in melting points of clad powders making additive manufacturing processing from a simple mixture of elemental powders a challenging approach.

  18. Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.

    2013-01-01

    Recently, additive manufacturing (AM) techniques have been developed that may shift the paradigm of traditional metal production by allowing complex net-shaped hardware to be built up layer-by-layer, rather than being machined from a billet. The AM process is ubiquitous with polymers due to their low melting temperatures, fast curing, and controllable viscosity, and 3D printers are widely available as commercial or consumer products. 3D printing with metals is inherently more complicated than with polymers due to their higher melting temperatures and reactivity with air, particularly when heated or molten. The process generally requires a high-power laser or other focused heat source, like an electron beam, for precise melting and deposition. Several promising metal AM techniques have been developed, including laser deposition (also called laser engineered net shaping or LENS® and laser deposition technology (LDT)), direct metal laser sintering (DMLS), and electron beam free-form (EBF). These machines typically use powders or wire feedstock that are melted and deposited using a laser or electron beam. Complex net-shape parts have been widely demonstrated using these (and other) AM techniques and the process appears to be a promising alternative to machining in some cases. Rather than simply competing with traditional machining for cost and time savings, the true advantage of AM involves the fabrication of hardware that cannot be produced using other techniques. This could include parts with "blind" features (like foams or trusses), parts that are difficult to machine conventionally, or parts made from materials that do not exist in bulk forms. In this work, the inventors identify that several AM techniques can be used to develop metal parts that change composition from one location in the part to another, allowing for complete control over the mechanical or physical properties. This changes the paradigm for conventional metal fabrication, which relies on an

  19. Ubiquitous Robotic Technology for Smart Manufacturing System.

    PubMed

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  20. Ubiquitous Robotic Technology for Smart Manufacturing System

    PubMed Central

    Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  1. The specification of personalised insoles using additive manufacturing.

    PubMed

    Salles, André S; Gyi, Diane E

    2012-01-01

    Research has been conducted to explore a process that delivers insoles for personalised footwear for the high street using additive manufacturing (AM) and to evaluate the use of such insoles in terms of discomfort. Therefore, the footwear personalisation process was first identified: (1) foot capture; (2) anthropometric measurements; (3) insole design; and (4) additive manufacturing. In order to explore and evaluate this process, recreational runners were recruited. They had both feet scanned and 15 anthropometric measurements taken. Personalised insoles were designed from the scans and manufactured using AM. Participants were fitted with footwear under two experimental conditions: personalised and control, which were compared in terms of discomfort. The mean ratings for discomfort variables were generally low for both conditions and no significant differences were detected between conditions. In general, the personalisation process showed promise in terms of the scan data, although the foot capture position may not be considered 'gold standard'. Polyamide, the material used for the insoles, demonstrated positive attributes: visual inspection revealed no signs of breaking. The footwear personalisation process described and explored in this study shows potential and can be considered a good starting point for designer and researchers.

  2. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  3. Manufacturing costs, equipment needs and technological opportunities among small and medium-size manufacturers

    NASA Astrophysics Data System (ADS)

    Kirsch, F. W.

    1984-05-01

    During a series of 54 performance evaluation interviews conducted during March and April, 1984, 15 plant representatives were chosen for a further confidential interview about their plants' overall manufacturing costs, their equipment needs, and the opportunities they envision for research, development, and technology transfer. Manufacturers' response are summarized to a series of questions designed to elicit useful information about: the factors that contribute most to their plants' manufacturing costs; the manufacturers' preferred approaches to increasing their plants' profitability; perceived management needs for new equipment, its availability, and barriers to purchasing it; plant management's attitude toward the potential for research and development (R and D) to improve product quality; and the same persons' estimates of whether the R and D will be done within five years (if needed) and by whom. In addition to summarizing that information, an analysis of the patterns which these responses reveal and observations about the priorities which they indicate are described.

  4. Investigation of an investment casting method combined with additive manufacturing methods for manufacturing lattice structures

    NASA Astrophysics Data System (ADS)

    Kodira, Ganapathy D.

    Cellular metals exhibit combinations of mechanical, thermal and acoustic properties that provide opportunities for various implementations and applications; light weight aerospace and automobile structures, impact and noise absorption, heat dissipation, and heat exchange. Engineered cell topologies enable one to control mechanical, thermal, and acoustic properties of the gross cell structures. A possible way to manufacture complex 3D metallic cellular solids for mass production with a relatively low cost, the investment casting (IC) method may be used by combining the rapid prototyping (RP) of wax or injection molding. In spite of its potential to produce mass products of various 3D cellular metals, the method is known to have significant casting porosity as a consequence of the complex cellular topology which makes continuous fluid's access to the solidification interface difficult. The effects of temperature on the viscosity of the fluids were studied. A comparative cost analysis between AM-IC and additive manufacturing methods is carried out. In order to manufacture 3D cellular metals with various topologies for multi-functional applications, the casting porosity should be resolved. In this study, the relations between casting porosity and processing conditions of molten metals while interconnecting with complex cellular geometries are investigated. Temperature and pressure conditions on the rapid prototyping -- investment casting (RP-IC) method are reported, thermal stresses induced are also studied. The manufactured samples are compared with those made by additive manufacturing methods.

  5. The metallurgy and processing science of metal additive manufacturing

    DOE PAGES

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-03-07

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developedmore » for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.« less

  6. Development of Advanced Ceramic Manufacturing Technology

    SciTech Connect

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  7. Electrostatic Levitation for Studies of Additive Manufactured Materials

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Tramel, Terri

    2014-01-01

    The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center is a unique facility for investigators studying high temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation. The lab also has a high temperature emissivity measurement system, which provides normal spectral and normal total emissivity measurements at use temperature. The ESL lab has been instrumental in many pioneering materials investigations of thermophysical properties, e.g., creep measurements, solidification, triggered nucleation, and emissivity at high temperatures. Research in the ESL lab has already led to the development of advanced high temperature materials for aerospace applications, coatings for rocket nozzles, improved medical and industrial optics, metallic glasses, ablatives for reentry vehicles, and materials with memory. Modeling of additive manufacturing materials processing is necessary for the study of their resulting materials properties. In addition, the modeling of the selective laser melting processes and its materials property predictions are also underway. Unfortunately, there is very little data for the properties of these materials, especially of the materials in the liquid state. Some method to measure thermophysical properties of additive manufacturing materials is necessary. The ESL lab is ideal for these studies. The lab can provide surface tension and viscosity of molten materials, density measurements, emissivity measurements, and even creep strength measurements. The ESL lab can also determine melting temperature, surface temperatures, and phase transition temperatures of additive manufactured materials. This presentation will provide background on the ESL lab and its capabilities, provide an approach to using the ESL

  8. Manufacturing technology: A Sandia Technology Bulletin, Volume 1, No. 1

    SciTech Connect

    Maydew, R.C.; Leonard, J.A.; Hey, N.S.

    1990-08-01

    Welcome to this first issue of Manufacturing Technology, one of three new technology bulletins published at Sandia National Laboratories in which we seek to share information with US industry about applications of technology. Inside this issue: industry/DOE/Sandia agreement to strengthen specialty metals competitiveness; silicon micromachining produces microscopic parts; Sandia develops state-of-the-art capacitor winding machine; new robotic system spells finis to manual edge finishing; and milling assistant speeds numerically controlled machine programming.

  9. Fundamental Aspects of Selective Melting Additive Manufacturing Processes

    SciTech Connect

    van Swol, Frank B.; Miller, James E.

    2014-12-01

    Certain details of the additive manufacturing process known as selective laser melting (SLM) affect the performance of the final metal part. To unleash the full potential of SLM it is crucial that the process engineer in the field receives guidance about how to select values for a multitude of process variables employed in the building process. These include, for example, the type of powder (e.g., size distribution, shape, type of alloy), orientation of the build axis, the beam scan rate, the beam power density, the scan pattern and scan rate. The science-based selection of these settings con- stitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy, reactive, dynamic wetting followed by re-solidification. In addition, inherent to the process is its considerable variability that stems from the powder packing. Each time a limited number of powder particles are placed, the stacking is intrinsically different from the previous, possessing a different geometry, and having a different set of contact areas with the surrounding particles. As a result, even if all other process parameters (scan rate, etc) are exactly the same, the shape and contact geometry and area of the final melt pool will be unique to that particular configuration. This report identifies the most important issues facing SLM, discusses the fundamental physics associated with it and points out how modeling can support the additive manufacturing efforts.

  10. System and method for high power diode based additive manufacturing

    DOEpatents

    El-Dasher, Bassem S.; Bayramian, Andrew; Demuth, James A.; Farmer, Joseph C.; Torres, Sharon G.

    2016-04-12

    A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.

  11. Cases for Additive Manufacturing on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth G.; McLemore, Carole; Anderson, Theodore " Ted"

    2012-01-01

    There are thousands of plastic or non-structural metal components on the International Space Station (ISS), any of which could require replacing sometime between resupply missions. While these may not be life critical, it can cause significant delays to flight projects that have to wait several weeks to months to receive a key part one that could have been designed and built on-board the ISS within a few hours. A plastic deposition additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS.

  12. Additive Manufacturing of Medical Models--Applications in Rhinology.

    PubMed

    Raos, Pero; Klapan, Ivica; Galeta, Tomislav

    2015-09-01

    In the paper we are introducing guidelines and suggestions for use of 3D image processing SW in head pathology diagnostic and procedures for obtaining physical medical model by additive manufacturing/rapid prototyping techniques, bearing in mind the improvement of surgery performance, its maximum security and faster postoperative recovery of patients. This approach has been verified in two case reports. In the treatment we used intelligent classifier-schemes for abnormal patterns using computer-based system for 3D-virtual and endoscopic assistance in rhinology, with appropriate visualization of anatomy and pathology within the nose, paranasal sinuses, and scull base area.

  13. The Application of Powder Rheology in Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Clayton, Jamie; Millington-Smith, Doug; Armstrong, Brian

    2015-03-01

    Additive manufacturing (AM) is sensitive to powder variability when applying fine layers in a uniform manner. This demands a high degree of consistency and repeatability in the feedstock. Particle size is often used as a critical quality attribute, but this is not sufficient to fully qualify a feedstock. Indeed, it is inadequate to suggest that any parameter from a single test, e.g., Hall flowmeter or Hausner ratio, can comprehensively describe a powder's characteristics. This article uses four case studies to demonstrate the limitations of single parameter characterization and how the rheological properties of several metal powders used in AM applications are used to establish in-process performance. In the first study, the significantly reduced permeability and increased specific energy of a one batch of powder demonstrate a clear link to poor layer uniformity. The second study investigates the impact of metal powder manufacturing methods and suppliers, and it shows how shear properties alone cannot be relied on to identify properties that influence the process. The effect of additives on the processability of polymer blends used in AM is also evaluated, and the results show that even small quantities can have a significant effect on the permeability and basic flowability energy of feedstocks. The final study demonstrates the how rheological measurements can be used to identify the optimum blend of fresh and used material when reusing metal powders to manufacture components. These case studies illustrate the ability of a modern powder rheometer to detect minor variations in powders that are directly relevant to performance in AM processes in a way that traditional characterization methods cannot.

  14. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    PubMed

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.

  15. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    PubMed

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented. PMID:26601041

  16. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control

    PubMed Central

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part’s porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented. PMID:26601041

  17. Wood lens design philosophy based on a binary additive manufacturing technique

    NASA Astrophysics Data System (ADS)

    Marasco, Peter L.; Bailey, Christopher

    2016-04-01

    Using additive manufacturing techniques in optical engineering to construct a gradient index (GRIN) optic may overcome a number of limitations of GRIN technology. Such techniques are maturing quickly, yielding additional design degrees of freedom for the engineer. How best to employ these degrees of freedom is not completely clear at this time. This paper describes a preliminary design philosophy, including assumptions, pertaining to a particular printing technique for GRIN optics. It includes an analysis based on simulation and initial component measurement.

  18. 48 CFR 235.006-70 - Manufacturing Technology Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive...

  19. 48 CFR 235.006-70 - Manufacturing Technology Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive...

  20. 48 CFR 235.006-70 - Manufacturing Technology Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive...

  1. 48 CFR 235.006-70 - Manufacturing Technology Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive...

  2. 48 CFR 235.006-70 - Manufacturing Technology Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive...

  3. Preliminary Investigation of Keyhole Phenomena during Single Layer Fabrication in Laser Additive Manufacturing of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti; Nyrhilä, Olli

    Laser additive manufacturing (LAM) is a fabrication technology that enables production of complex parts from metallic materials with mechanical properties comparable to conventionally manufactured parts. In the LAM process, parts are manufactured by melting metallic powder layer-by-layer with a laser beam. This manufacturing technology is nowadays called powder bed fusion (PBF) according to the ASTM F2792-12a standard. This strategy involves several different independent and dependent thermal cycles, all of which have an influence on the final properties of the manufactured part. The quality of PBF parts depends strongly on the characteristics of each single laser-melted track and each single layer. This study consequently concentrates on investigating the effects of process parameters such as laser power on single track and layer formation and laser-material interaction phenomena occurring during the PBF process. Experimental tests were done with two different machines: a modified research machine based on an EOS EOSINT M-series system and an EOS EOSINT M280 system. The material used was EOS stainless steel 17-4 PH. Process monitoring was done with an active illuminated high speed camera system. After microscopy analysis, it was concluded that a keyhole can form during laser additive manufacturing of stainless steel. It was noted that heat input has an important effect on the likelihood of keyhole formation. The threshold intensity value for keyhole formation of 106 W/cm2 was exceeded in all manufactured single tracks. Laser interaction time was found to have an effect on penetration depth and keyhole formation, since the penetration depth increased with increased laser interaction time. It was also concluded that active illuminated high speed camera systems are suitable for monitoring of the manufacturing process and facilitate process control.

  4. High School Science Technology Additions, Midland Public Schools.

    ERIC Educational Resources Information Center

    Design Cost Data, 2001

    2001-01-01

    Discusses design goals, space requirements, and need for mobile furniture and "imagination stations" at Michigan's Midland Public High School science technology addition. Describes the architectural design, costs, and specifications. Includes floor plans, general description, photos and a list of consultants, manufacturers, and suppliers used for…

  5. Neutron Characterization of Additively Manufactured Components. Workshop Report

    SciTech Connect

    Watkins, Thomas R.; Payzant, E. Andrew; Babu, Sudarsanam Suresh

    2015-09-01

    Additive manufacturing (AM) is a collection of promising manufacturing methods that industry is beginning to explore and adopt. Macroscopically complicated and near net shape components are being built using AM, but how the material behaves in service is a big question for industry. Consequently, AM components/materials need further research into exactly what is made and how it will behave in service. This one and a half day workshop included a series of invited presentations from academia, industry and national laboratories (see Appendix A for the workshop agenda and list of talks). The workshop was welcomed by Alan Tennant, Chief Scientist, Neutron Sciences Directorate, ORNL, and opened remotely by Rob Ivestor, Deputy Director, Advanced Manufacturing Office-DOE, who declared AM adoptees as titans who will be able to create customized 3-D structures with 1 million to 1 billion micro welds with locally tailored microstructures. Further he stated that characterization with neutrons is key to be able to bring critical insight/information into the AM process/property/behavior relationship. Subsequently, the presentations spanned a slice of the current state of the art AM techniques and many of the most relevant characterization techniques using neutrons. After the talks, a panel discussion was held; workshop participants (see Appendix B for a list of attendees) providing questions and the panel answers. The main purpose of the panel discussion was to build consensus regarding the critical research needs in AM that can be addressed with neutrons. These needs were placed into three categories: modes of access for neutrons, new capabilities needed, new AM material issues and neutrons. Recommendations from the workshop were determined based on the panel discussion.

  6. 40 CFR 80.1613 - Standards and other requirements for gasoline additive manufacturers and blenders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacturers, as defined in 40 CFR 79.2(f), who manufacture additives with a maximum allowed treatment rate of... gasoline additive manufacturers and blenders. 80.1613 Section 80.1613 Protection of Environment... Gasoline Sulfur § 80.1613 Standards and other requirements for gasoline additive manufacturers and...

  7. Additive manufacturing of ceramic structures by laser engineered net shaping

    NASA Astrophysics Data System (ADS)

    Niu, Fangyong; Wu, Dongjiang; Ma, Guangyi; Zhang, Bi

    2015-11-01

    Ceramic is an important material with outstanding physical properties whereas impurities and porosities generated by traditional manufacturing methods limits its further industrial applications. In order to solve this problem, direct fabrication of Al2O3 ceramic structures is conducted by laser engineered net shaping system and pure ceramic powders. Grain refinement strengthening method by doping ZrO2 and dispersion strengthening method by doping SiC are proposed to suppress cracks in fabricating Al2O3 structure. Phase compositions, microstructures as well as mechanical properties of fabricated specimens are then analyzed. The results show that the proposed two methods are effective in suppressing cracks and structures of single-bead wall, arc and cylinder ring are successfully deposited. Stable phase of α-Al2O3 and t-ZrO2 are obtained in the fabricated specimens. Micro-hardness higher than 1700 HV are also achieved for both Al2O3 and Al2O3/ZrO2, which are resulted from fine directional crystals generated by the melting-solidification process. Results presented indicate that additive manufacturing is a very attractive technique for the production of high-performance ceramic structures in a single step.

  8. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy

    2015-01-01

    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.

  9. Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms.

    PubMed

    Içten, Elçin; Giridhar, Arun; Taylor, Lynne S; Nagy, Zoltan K; Reklaitis, Gintaras V

    2015-05-01

    The US Food and Drug Administration introduced the quality by design approach and process analytical technology guidance to encourage innovation and efficiency in pharmaceutical development, manufacturing, and quality assurance. As part of this renewed emphasis on the improvement of manufacturing, the pharmaceutical industry has begun to develop more efficient production processes with more intensive use of online measurement and sensing, real-time quality control, and process control tools. Here, we present dropwise additive manufacturing of pharmaceutical products (DAMPP) as an alternative to conventional pharmaceutical manufacturing methods. This mini-manufacturing process for the production of pharmaceuticals utilizes drop on demand printing technology for automated and controlled deposition of melt-based formulations onto edible substrates. The advantages of drop-on-demand technology, including reproducible production of small droplets, adjustable drop sizing, high placement accuracy, and flexible use of different formulations, enable production of individualized dosing even for low-dose and high-potency drugs. In this work, DAMPP is used to produce solid oral dosage forms from hot melts of an active pharmaceutical ingredient and a polymer. The dosage forms are analyzed to show the reproducibility of dosing and the dissolution behavior of different formulations.

  10. Terahertz imaging and tomography as efficient instruments for testing polymer additive manufacturing objects.

    PubMed

    Perraud, J B; Obaton, A F; Bou-Sleiman, J; Recur, B; Balacey, H; Darracq, F; Guillet, J P; Mounaix, P

    2016-05-01

    Additive manufacturing (AM) technology is not only used to make 3D objects but also for rapid prototyping. In industry and laboratories, quality controls for these objects are necessary though difficult to implement compared to classical methods of fabrication because the layer-by-layer printing allows for very complex object manufacturing that is unachievable with standard tools. Furthermore, AM can induce unknown or unexpected defects. Consequently, we demonstrate terahertz (THz) imaging as an innovative method for 2D inspection of polymer materials. Moreover, THz tomography may be considered as an alternative to x-ray tomography and cheaper 3D imaging for routine control. This paper proposes an experimental study of 3D polymer objects obtained by additive manufacturing techniques. This approach allows us to characterize defects and to control dimensions by volumetric measurements on 3D data reconstructed by tomography.

  11. Terahertz imaging and tomography as efficient instruments for testing polymer additive manufacturing objects.

    PubMed

    Perraud, J B; Obaton, A F; Bou-Sleiman, J; Recur, B; Balacey, H; Darracq, F; Guillet, J P; Mounaix, P

    2016-05-01

    Additive manufacturing (AM) technology is not only used to make 3D objects but also for rapid prototyping. In industry and laboratories, quality controls for these objects are necessary though difficult to implement compared to classical methods of fabrication because the layer-by-layer printing allows for very complex object manufacturing that is unachievable with standard tools. Furthermore, AM can induce unknown or unexpected defects. Consequently, we demonstrate terahertz (THz) imaging as an innovative method for 2D inspection of polymer materials. Moreover, THz tomography may be considered as an alternative to x-ray tomography and cheaper 3D imaging for routine control. This paper proposes an experimental study of 3D polymer objects obtained by additive manufacturing techniques. This approach allows us to characterize defects and to control dimensions by volumetric measurements on 3D data reconstructed by tomography. PMID:27140357

  12. Additive manufacturing. Continuous liquid interface production of 3D objects.

    PubMed

    Tumbleston, John R; Shirvanyants, David; Ermoshkin, Nikita; Janusziewicz, Rima; Johnson, Ashley R; Kelly, David; Chen, Kai; Pinschmidt, Robert; Rolland, Jason P; Ermoshkin, Alexander; Samulski, Edward T; DeSimone, Joseph M

    2015-03-20

    Additive manufacturing processes such as 3D printing use time-consuming, stepwise layer-by-layer approaches to object fabrication. We demonstrate the continuous generation of monolithic polymeric parts up to tens of centimeters in size with feature resolution below 100 micrometers. Continuous liquid interface production is achieved with an oxygen-permeable window below the ultraviolet image projection plane, which creates a "dead zone" (persistent liquid interface) where photopolymerization is inhibited between the window and the polymerizing part. We delineate critical control parameters and show that complex solid parts can be drawn out of the resin at rates of hundreds of millimeters per hour. These print speeds allow parts to be produced in minutes instead of hours.

  13. Laser Assisted Additively Manufactured Transition Metal Coating on Aluminum

    NASA Astrophysics Data System (ADS)

    Vora, Hitesh D.; Rajamure, Ravi Shanker; Roy, Anurag; Srinivasan, S. G.; Sundararajan, G.; Banerjee, Rajarshi; Dahotre, Narendra B.

    2016-07-01

    Various physical and chemical properties of surface and subsurface regions of Al can be improved by the formation of transition metal intermetallic phases (Al x TM y ) via coating of the transition metal (TM). The lower equilibrium solid solubility of TM in Al (<1 at.%) is a steep barrier to the formation of solid solutions using conventional alloying methods. In contrast, as demonstrated in the present work, surface engineering via a laser-aided additive manufacturing approach can effectively synthesize TM intermetallic coatings on the surface of Al. The focus of the present work included the development of process control to achieve thermodynamic and kinetic conditions necessary for desirable physical, microstructural and compositional attributes. A multiphysics finite element model was developed to predict the temperature profile, cooling rate, melt depth, dilution of W in Al matrix and corresponding micro-hardness in the coating, and the interface between the coating and the base material and the base material.

  14. Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG)

    NASA Astrophysics Data System (ADS)

    Beaucamp, Anthony T.; Namba, Yoshiharu; Charlton, Phillip; Jain, Samyak; Graziano, Arthur A.

    2015-06-01

    In recent years, rapid prototyping of titanium alloy components for medical and aeronautics application has become viable thanks to advances in technologies such as electron beam melting (EBM) and selective laser sintering (SLS). However, for many applications the high surface roughness generated by additive manufacturing techniques demands a post-finishing operation to improve the surface quality prior to usage. In this paper, the novel shape adaptive grinding process has been applied to finishing titanium alloy (Ti6Al4V) additively manufactured by EBM and SLS. It is shown that the micro-structured surface layer resulting from the melting process can be removed, and the surface can then be smoothed down to less than 10 nm Ra (starting from 4-5 μm Ra) using only three different diamond grit sizes. This paper also demonstrates application of the technology to freeform shapes, and documents the dimensional accuracy of finished artifacts.

  15. Thermal imaging for assessment of electron-beam freeform fabrication (EBF3) additive manufacturing deposits

    NASA Astrophysics Data System (ADS)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy; Martin, Richard E.

    2013-05-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA's electron beam freeform fabrication (EBF3) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF3 technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF3 system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality deposit, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for deposit assessment metrics.

  16. Spall fracture in additive manufactured Ti-6Al-4V

    DOE PAGES

    Jones, David Robert; Fensin, Saryu Jindal; Dippo, Olivia; Beal, Roberta Ann; Livescu, Verpnica; Martinez, Daniel Tito; Trujillo, Carl Patrick; Florando, J. N.; Kumar, M.; Gray, III, George Thompson

    2016-10-04

    Here, we present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on amore » plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.« less

  17. Spall fracture in additive manufactured Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Jones, D. R.; Fensin, S. J.; Dippo, O.; Beal, R. A.; Livescu, V.; Martinez, D. T.; Trujillo, C. P.; Florando, J. N.; Kumar, M.; Gray, G. T.

    2016-10-01

    We present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on a plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.

  18. A brief survey of sensing for metal-based powder bed fusion additive manufacturing

    NASA Astrophysics Data System (ADS)

    Foster, Bryant K.; Reutzel, Edward W.; Nassar, Abdalla R.; Dickman, Corey J.; Hall, Benjamin T.

    2015-05-01

    Purpose - Powder bed fusion additive manufacturing (PBFAM) of metal components has attracted much attention, but the inability to quickly and easily ensure quality has limited its industrial use. Since the technology is currently being investigated for critical engineered components and is largely considered unsuitable for high volume production, traditional statistical quality control methods cannot be readily applied. An alternative strategy for quality control is to monitor the build in real time with a variety of sensing methods and, when possible, to correct any defects as they occur. This article reviews the cause of common defects in powder bed additive manufacturing, briefly surveys process monitoring strategies in the literature, and summarizes recently-developed strategies to monitor part quality during the build process. Design/methodology/approach - Factors that affect part quality in powder bed additive manufacturing are categorized as those influenced by machine variables and those affected by other build attributes. Within each category, multiple process monitoring methods are presented. Findings - A multitude of factors contribute to the overall quality of a part built using PBFAM. Rather than limiting processing to a pre-defined build recipe and assuming complete repeatability, part quality will be ensured by monitoring the process as it occurs and, when possible, altering the process conditions or build plan in real-time. Recent work shows promise in this area and brings us closer to the goal of wide-spread adoption of additive manufacturing technology. Originality/value - This work serves to introduce and define the possible sources of defects and errors in metal-based PBFAM, and surveys sensing and control methods which have recently been investigated to increase overall part quality. Emphasis has been placed on novel developments in the field and their contribution to the understanding of the additive manufacturing process.

  19. Dropwise additive manufacturing of pharmaceutical products for solvent-based dosage forms.

    PubMed

    Hirshfield, Laura; Giridhar, Arun; Taylor, Lynne S; Harris, Michael T; Reklaitis, Gintaras V

    2014-02-01

    In recent years, the US Food and Drug Administration has encouraged pharmaceutical companies to develop more innovative and efficient manufacturing methods with improved online monitoring and control. Mini-manufacturing of medicine is one such method enabling the creation of individualized product forms for each patient. This work presents dropwise additive manufacturing of pharmaceutical products (DAMPP), an automated, controlled mini-manufacturing method that deposits active pharmaceutical ingredients (APIs) directly onto edible substrates using drop-on-demand (DoD) inkjet printing technology. The use of DoD technology allows for precise control over the material properties, drug solid state form, drop size, and drop dynamics and can be beneficial in the creation of high-potency drug forms, combination drugs with multiple APIs or individualized medicine products tailored to a specific patient. In this work, DAMPP was used to create dosage forms from solvent-based formulations consisting of API, polymer, and solvent carrier. The forms were then analyzed to determine the reproducibility of creating an on-target dosage form, the morphology of the API of the final form and the dissolution behavior of the drug over time. DAMPP is found to be a viable alternative to traditional mass-manufacturing methods for solvent-based oral dosage forms.

  20. A Fully Non-metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2014-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute (NARI), represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies for fabricating polymer matrix composite (PMC) and ceramic matrix composite (CMC) gas turbine engine components. The benefits of the proposed effort include: 50 weight reduction compared to metallic parts, reduced manufacturing costs due to less machining and no tooling requirements, reduced part count due to net shape single component fabrication, and rapid design change and production iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature capable polymer filaments. The first component is an acoustic panel treatment with a honeycomb structure with an integrated back sheet and perforated front sheet. The second component is a compressor inlet guide vane. The CMC effort, which is starting at a lower technology readiness level, will use a binder jet process to fabricate silicon carbide test coupons and demonstration articles. The polymer and ceramic additive manufacturing efforts will advance from monolithic materials toward silicon carbide and carbon fiber reinforced composites for improved properties. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The proposed effort will be focused on a small 7000 lbf gas turbine engine. However, the concepts are equally applicable to large gas turbine engines. The proposed effort includes a multidisciplinary, multiorganization NASA - industry team that includes experts in

  1. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2015-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute, represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies to fabricate polymer matrix composite and ceramic matrix composite turbine engine components. The benefits include: 50 weight reduction compared to metallic parts, reduced manufacturing costs, reduced part count and rapid design iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature polymer filaments. The CMC effort uses a binder jet process to fabricate silicon carbide test coupons and demonstration articles. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The research project includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  2. CVD-Enabled Graphene Manufacture and Technology

    PubMed Central

    2015-01-01

    Integrated manufacturing is arguably the most challenging task in the development of technology based on graphene and other 2D materials, particularly with regard to the industrial demand for “electronic-grade” large-area films. In order to control the structure and properties of these materials at the monolayer level, their nucleation, growth and interfacing needs to be understood to a level of unprecedented detail compared to existing thin film or bulk materials. Chemical vapor deposition (CVD) has emerged as the most versatile and promising technique to develop graphene and 2D material films into industrial device materials and this Perspective outlines recent progress, trends, and emerging CVD processing pathways. A key focus is the emerging understanding of the underlying growth mechanisms, in particular on the role of the required catalytic growth substrate, which brings together the latest progress in the fields of heterogeneous catalysis and classic crystal/thin-film growth. PMID:26240694

  3. Laser-based additive manufacturing: where it has been, where it needs to go

    NASA Astrophysics Data System (ADS)

    Cooper, Khershed P.

    2014-03-01

    It is no secret that the laser was the driver for additive manufacturing (AM) of 3D objects since such objects were first demonstrated in the mid-1980s. A myriad of techniques utilizing the directed energy of lasers were invented. Lasers are used to selectively sinter or fuse incremental layers in powder-beds, melt streaming powder following a programmed path, and polymerize photopolymers in a liquid vat layer-by-layer. The laser is an energy source of choice for repair of damaged components, for manufacture of new or replacement parts, and for rapid prototyping of concept designs. Lasers enable microstructure gradients and heterogeneous structures designed to exhibit unique properties and behavior. Laserbased additive manufacturing has been successful in producing relatively simple near net-shape metallic parts saving material and cost, but requiring finish-machining and in repair and refurbishment of worn components. It has been routinely used to produce polymer parts. These capabilities have been widely recognized as evidenced by the explosion in interest in AM technology, nationally. These successes are, however, tempered by challenges facing practitioners such as process and part qualification and verification, which are needed to bring AM as a true manufacturing technology. The ONR manufacturing science program, in collaboration with other agencies, invested in basic R&D in AM since its beginnings. It continues to invest, currently focusing on developing cyber-enabled manufacturing systems for AM. It is believed that such computation, communication and control approaches will help in validating AM and moving it to the factory floor along side CNC machines.

  4. Epitaxy and Microstructure Evolution in Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Das, Suman

    2016-07-01

    Metal additive manufacturing (AM) works on the principle of incremental layer-by-layer material consolidation, facilitating the fabrication of objects of arbitrary complexity through the controlled melting and resolidification of feedstock materials by using high-power energy sources. The focus of metal AM is to produce complex-shaped components made of metals and alloys to meet demands from various industrial sectors such as defense, aerospace, automotive, and biomedicine. Metal AM involves a complex interplay between multiple modes of energy and mass transfer, fluid flow, phase change, and microstructural evolution. Understanding the fundamental physics of these phenomena is a key requirement for metal AM process development and optimization. The effects of material characteristics and processing conditions on the resulting epitaxy and microstructure are of critical interest in metal AM. This article reviews various metal AM processes in the context of fabricating metal and alloy parts through epitaxial solidification, with material systems ranging from pure-metal and prealloyed to multicomponent materials. The aim is to cover the relationships between various AM processes and the resulting microstructures in these material systems.

  5. Sensitivity analysis of geometric errors in additive manufacturing medical models.

    PubMed

    Pinto, Jose Miguel; Arrieta, Cristobal; Andia, Marcelo E; Uribe, Sergio; Ramos-Grez, Jorge; Vargas, Alex; Irarrazaval, Pablo; Tejos, Cristian

    2015-03-01

    Additive manufacturing (AM) models are used in medical applications for surgical planning, prosthesis design and teaching. For these applications, the accuracy of the AM models is essential. Unfortunately, this accuracy is compromised due to errors introduced by each of the building steps: image acquisition, segmentation, triangulation, printing and infiltration. However, the contribution of each step to the final error remains unclear. We performed a sensitivity analysis comparing errors obtained from a reference with those obtained modifying parameters of each building step. Our analysis considered global indexes to evaluate the overall error, and local indexes to show how this error is distributed along the surface of the AM models. Our results show that the standard building process tends to overestimate the AM models, i.e. models are larger than the original structures. They also show that the triangulation resolution and the segmentation threshold are critical factors, and that the errors are concentrated at regions with high curvatures. Errors could be reduced choosing better triangulation and printing resolutions, but there is an important need for modifying some of the standard building processes, particularly the segmentation algorithms.

  6. Summary of NDE of additive manufacturing efforts in NASA

    NASA Astrophysics Data System (ADS)

    Waller, Jess M.; Saulsberry, Regor L.; Parker, Bradford H.; Hodges, Kenneth L.; Burke, Eric R.; Taminger, Karen M.

    2015-03-01

    One of the major obstacles slowing the acceptance of parts made by additive manufacturing (AM) in NASA applications is the lack of a broadly accepted materials and process quality systems; and more specifically, the lack of adequate nondestructive evaluation (NDE) processes integrated into AM. Matching voluntary consensus standards are also needed to control the consistency of input materials, process equipment, process methods, finished part properties, and how those properties are characterized. As for nondestructive characterization, procedures are needed to interrogate features unique to parts made by AM, such as fine-scale porosity, deeply embedded flaws, complex part geometry, and intricate internal features. The NDE methods developed must be tailored to meet materials, design and test requirements encountered throughout the part life cycle, whether during process optimization, real-time process monitoring, finished part qualification and certification (especially of flight hardware), or in situ health monitoring. Restated, individualized process/product-specific NDE methods are needed to satisfy NASA's various quality assurance requirements. To date, only limited data have been acquired by NASA on parts made by AM. This paper summarizes the NASA AM effort, highlights available NDE data, and outlines the approach NASA is taking to apply NDE to its various AM efforts.

  7. Additive Manufacturing and Characterization of Ultem Polymers and Composites

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.

    2015-01-01

    The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides - Ultem 9085 and experimental Ultem 1000 mixed with 10 percent chopped carbon fiber. A property comparison between FDM-printed and injection-molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31 percent. Coupons of Ultem 9085 and experimental Ultem 1000 composites were tested at room temperature and 400 degrees Fahrenheit to evaluate their corresponding mechanical properties.

  8. Additively Manufactured Combustion Devices Components for LOX/Methane Applications

    NASA Technical Reports Server (NTRS)

    Greene, Sandra Elam; Protz, Christopher; Garcia, Chance; Goodman, Dwight; Baker, Kevin

    2016-01-01

    Marshall Space Flight Center (MSFC) has designed, fabricated, and hot-fire tested a variety of successful injectors, chambers, and igniters for potential liquid oxygen (LOX) and methane (CH4) systems since 2005. The most recent efforts have focused on components with additive manufacturing (AM) to include unique design features, minimize joints, and reduce final machining efforts. Inconel and copper alloys have been used with AM processes to produce a swirl coaxial injector and multiple methane cooled thrust chambers. The initial chambers included unique thermocouple ports for measuring local coolant channel temperatures along the length of the chamber. Results from hot-fire testing were used to anchor thermal models and generate a regeneratively cooled thruster for a 4,000 lbf LOX/CH4 engine. The completed thruster will be hot-fire tested in the summer of 2016 at MSFC. The thruster design can also be easily scaled and used on a 25,000 lbf engine. To further support the larger engine design, an AM gas generator injector has been designed. Hot-fire testing on this injector is planned for the summer of 2016 at MSFC.

  9. Process monitoring of additive manufacturing by using optical tomography

    SciTech Connect

    Zenzinger, Guenter E-mail: alexander.ladewig@mtu.de; Bamberg, Joachim E-mail: alexander.ladewig@mtu.de; Ladewig, Alexander E-mail: alexander.ladewig@mtu.de; Hess, Thomas E-mail: alexander.ladewig@mtu.de; Henkel, Benjamin E-mail: alexander.ladewig@mtu.de; Satzger, Wilhelm E-mail: alexander.ladewig@mtu.de

    2015-03-31

    Parts fabricated by means of additive manufacturing are usually of complex shape and owing to the fabrication procedure by using selective laser melting (SLM), potential defects and inaccuracies are often very small in lateral size. Therefore, an adequate quality inspection of such parts is rather challenging, while non-destructive-techniques (NDT) are difficult to realize, but considerable efforts are necessary in order to ensure the quality of SLM-parts especially used for aerospace components. Thus, MTU Aero Engines is currently focusing on the development of an Online Process Control system which monitors and documents the complete welding process during the SLM fabrication procedure. A high-resolution camera system is used to obtain images, from which tomographic data for a 3dim analysis of SLM-parts are processed. From the analysis, structural irregularities and structural disorder resulting from any possible erroneous melting process become visible and may be allocated anywhere within the 3dim structure. Results of our optical tomography (OT) method as obtained on real defects are presented.

  10. 22 CFR 124.9 - Additional clauses required only in manufacturing license agreements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... manufacturing license agreements. 124.9 Section 124.9 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL... Additional clauses required only in manufacturing license agreements. (a) Clauses for all manufacturing license agreements. The following clauses must be included only in manufacturing license agreements:...

  11. 22 CFR 124.9 - Additional clauses required only in manufacturing license agreements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... manufacturing license agreements. 124.9 Section 124.9 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL... Additional clauses required only in manufacturing license agreements. (a) Clauses for all manufacturing license agreements. The following clauses must be included only in manufacturing license agreements:...

  12. 22 CFR 124.9 - Additional clauses required only in manufacturing license agreements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... manufacturing license agreements. 124.9 Section 124.9 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL... Additional clauses required only in manufacturing license agreements. (a) Clauses for all manufacturing license agreements. The following clauses must be included only in manufacturing license agreements:...

  13. 22 CFR 124.9 - Additional clauses required only in manufacturing license agreements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... manufacturing license agreements. 124.9 Section 124.9 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL... Additional clauses required only in manufacturing license agreements. (a) Clauses for all manufacturing license agreements. The following clauses must be included only in manufacturing license agreements:...

  14. A novel classification and online platform for planning and documentation of medical applications of additive manufacturing.

    PubMed

    Tuomi, Jukka; Paloheimo, Kaija-Stiina; Vehviläinen, Juho; Björkstrand, Roy; Salmi, Mika; Huotilainen, Eero; Kontio, Risto; Rouse, Stephen; Gibson, Ian; Mäkitie, Antti A

    2014-12-01

    Additive manufacturing technologies are widely used in industrial settings and now increasingly also in several areas of medicine. Various techniques and numerous types of materials are used for these applications. There is a clear need to unify and harmonize the patterns of their use worldwide. We present a 5-class system to aid planning of these applications and related scientific work as well as communication between various actors involved in this field. An online, matrix-based platform and a database were developed for planning and documentation of various solutions. This platform will help the medical community to structurally develop both research innovations and clinical applications of additive manufacturing. The online platform can be accessed through http://www.medicalam.info. PMID:24616012

  15. A novel classification and online platform for planning and documentation of medical applications of additive manufacturing.

    PubMed

    Tuomi, Jukka; Paloheimo, Kaija-Stiina; Vehviläinen, Juho; Björkstrand, Roy; Salmi, Mika; Huotilainen, Eero; Kontio, Risto; Rouse, Stephen; Gibson, Ian; Mäkitie, Antti A

    2014-12-01

    Additive manufacturing technologies are widely used in industrial settings and now increasingly also in several areas of medicine. Various techniques and numerous types of materials are used for these applications. There is a clear need to unify and harmonize the patterns of their use worldwide. We present a 5-class system to aid planning of these applications and related scientific work as well as communication between various actors involved in this field. An online, matrix-based platform and a database were developed for planning and documentation of various solutions. This platform will help the medical community to structurally develop both research innovations and clinical applications of additive manufacturing. The online platform can be accessed through http://www.medicalam.info.

  16. Simulation of Laser Additive Manufacturing and its Applications

    NASA Astrophysics Data System (ADS)

    Lee, Yousub

    Laser and metal powder based additive manufacturing (AM), a key category of advanced Direct Digital Manufacturing (DDM), produces metallic components directly from a digital representation of the part such as a CAD file. It is well suited for the production of high-value, customizable components with complex geometry and the repair of damaged components. Currently, the main challenges for laser and metal powder based AM include the formation of defects (e.g., porosity), low surface finish quality, and spatially non-uniform properties of material. Such challenges stem largely from the limited knowledge of complex physical processes in AM especially the molten pool physics such as melting, molten metal flow, heat conduction, vaporization of alloying elements, and solidification. Direct experimental measurement of melt pool phenomena is highly difficult since the process is localized (on the order of 0.1 mm to 1 mm melt pool size) and transient (on the order of 1 m/s scanning speed). Furthermore, current optical and infrared cameras are limited to observe the melt pool surface. As a result, fluid flows in the melt pool, melt pool shape and formation of sub-surface defects are difficult to be visualized by experiment. On the other hand, numerical simulation, based on rigorous solution of mass, momentum and energy transport equations, can provide important quantitative knowledge of complex transport phenomena taking place in AM. The overarching goal of this dissertation research is to develop an analytical foundation for fundamental understanding of heat transfer, molten metal flow and free surface evolution. Two key types of laser AM processes are studied: a) powder injection, commonly used for repairing of turbine blades, and b) powder bed, commonly used for manufacturing of new parts with complex geometry. In the powder injection simulation, fluid convection, temperature gradient (G), solidification rate (R) and melt pool shape are calculated using a heat transfer

  17. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  18. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    SciTech Connect

    Huang, Runze; Riddle, Matthew; Graziano, Diane; Warren, Joshua; Das, Sujit; Nimbalkar, Sachin; Cresko, Joe; Masanet, Eric

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integrates engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.

  19. The technology base for agile manufacturing

    NASA Technical Reports Server (NTRS)

    Brost, R. C.; Strip, D. R.; Eicker, P. J.

    1993-01-01

    The effective use of information is a critical problem faced by manufacturing organizations that must respond quickly to market changes. As product runs become shorter, rapid and efficient development of product manufacturing facilities becomes crucial to commercial success. Effective information utilization is a key element to successfully meeting these requirements. This paper reviews opportunities for developing technical solutions to information utilization problems within a manufacturing enterprise and outlines a research agenda for solving these problems.

  20. Invited Review Article: Review of post-process optical form metrology for industrial-grade metal additive manufactured parts.

    PubMed

    Stavroulakis, P I; Leach, R K

    2016-04-01

    The scope of this review is to investigate the main post-process optical form measurement technologies available in industry today and to determine whether they are applicable to industrial-grade metal additive manufactured parts. An in-depth review of the operation of optical three-dimensional form measurement technologies applicable to metal additive manufacturing is presented, with a focus on their fundamental limitations. Looking into the future, some alternative candidate measurement technologies potentially applicable to metal additive manufacturing will be discussed, which either provide higher accuracy than currently available techniques but lack measurement volume, or inversely, which operate in the appropriate measurement volume but are not currently accurate enough to be used for industrial measurement. PMID:27131645

  1. Invited Review Article: Review of post-process optical form metrology for industrial-grade metal additive manufactured parts.

    PubMed

    Stavroulakis, P I; Leach, R K

    2016-04-01

    The scope of this review is to investigate the main post-process optical form measurement technologies available in industry today and to determine whether they are applicable to industrial-grade metal additive manufactured parts. An in-depth review of the operation of optical three-dimensional form measurement technologies applicable to metal additive manufacturing is presented, with a focus on their fundamental limitations. Looking into the future, some alternative candidate measurement technologies potentially applicable to metal additive manufacturing will be discussed, which either provide higher accuracy than currently available techniques but lack measurement volume, or inversely, which operate in the appropriate measurement volume but are not currently accurate enough to be used for industrial measurement.

  2. Invited Review Article: Review of post-process optical form metrology for industrial-grade metal additive manufactured parts

    NASA Astrophysics Data System (ADS)

    Stavroulakis, P. I.; Leach, R. K.

    2016-04-01

    The scope of this review is to investigate the main post-process optical form measurement technologies available in industry today and to determine whether they are applicable to industrial-grade metal additive manufactured parts. An in-depth review of the operation of optical three-dimensional form measurement technologies applicable to metal additive manufacturing is presented, with a focus on their fundamental limitations. Looking into the future, some alternative candidate measurement technologies potentially applicable to metal additive manufacturing will be discussed, which either provide higher accuracy than currently available techniques but lack measurement volume, or inversely, which operate in the appropriate measurement volume but are not currently accurate enough to be used for industrial measurement.

  3. The Potential for High Technology Manufacturing in Nonmetropolitan Areas.

    ERIC Educational Resources Information Center

    Barkley, David L.; And Others

    This paper asks whether manufacturers of high technology are locating production facilities in nonmetropolitan areas and, if so, which industries and geographical areas are affected. It identifies high-technology manufacturers and estimates national employment trends for the sector from 1975 to 1982. National and regional employment data for…

  4. A synopsis of the Defense Advanced Research Projects Agency (DARPA) investment in additive manufacture and what challenges remain

    NASA Astrophysics Data System (ADS)

    Maher, Michael; Smith, Adrien; Margiotta, Jesse

    2014-03-01

    DARPA's interest in additive manufacture dates back to the mid-80s with seedling programs that developed the foundational knowledge and equipment that led to the Solid Freeform Fabrication program in 1990. The drivers for this program included reducing development times by enabling "tool-less" manufacturing as well as integration of design and fabrication tools. DARPA consistently pushed the boundaries of additive manufacture with follow-on programs that expanded the material suite available for 3-D printing as well as new processes that expanded the technology's capability base. Programs such as the Mesoscopic Integrated Conformal Electronics (MICE) program incorporated functionality to the manufacturing processes through direct write of electronics. DARPA's investment in additive manufacture continues to this day but the focus has changed. DARPA's early investments were focused on developing and demonstrating the technology's capabilities. Now that the technology has been demonstrated, there is serious interest in taking advantage of the attributes unique to the processing methodology (such as customization and new design possibilities) for producing production parts. Accordingly, today's investment at DARPA addresses the systematic barriers to implementation rather than the technology itself. The Open Manufacturing program is enabling rapid qualification of new technologies for the manufacturing environment through the development of new modeling and informatics tools. While the technology is becoming more mainstream, there are plenty of challenges that need to be addressed. And as the technology continues to mature, the agency will continue to look for those "DARPA-hard" challenges that enable revolutionary changes in capability and performance for the Department of Defense.

  5. Manufacturing Systems. Curriculum Guide for Technology Education.

    ERIC Educational Resources Information Center

    Lloyd, Theodore J.

    This curriculum for a 1-semester or 1-year course in manufacturing is designed to give students experience in applying knowledge from other courses and some basic production skills as they become involved in a manufacturing enterprise. Course content is organized around the laboratory activities necessary to organize and operate a process to mass…

  6. Technological Impacts: Manufacturing and the Economy

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2012-01-01

    For the past two decades, and recently with the economic recession, the media has emphasized the decline of manufacturing in the United States and other developed countries. In the U.S., some initially blamed the North American Free Trade Agreement (NAFTA) for this decline. Hearing that manufacturing is on the decline, one might reason that its…

  7. Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration.

    PubMed

    Costa, Pedro F; Puga, Ana M; Díaz-Gomez, Luis; Concheiro, Angel; Busch, Dirk H; Alvarez-Lorenzo, Carmen

    2015-12-30

    The adoption of additive manufacturing in tissue engineering and regenerative medicine (TERM) strategies greatly relies on the development of novel 3D printable materials with advanced properties. In this work we have developed a material for bone TERM applications with tunable bioerosion rate and dexamethasone release profile which can be further employed in fused deposition modelling (the most common and accessible 3D printing technology in the market). The developed material consisted of a blend of poly-ϵ-caprolactone (PCL) and poloxamine (Tetronic®) and was processed into a ready-to-use filament form by means of a simplified melt-based methodology, therefore eliminating the utilization of solvents. 3D scaffolds composed of various blend formulations were additively manufactured and analyzed revealing blend ratio-specific degradation rates and dexamethasone release profiles. Furthermore, in vitro culture studies revealed a similar blend ratio-specific trend concerning the osteoinductive activity of the fabricated scaffolds when these were seeded and cultured with human mesenchymal stem cells. The developed material enables to specifically address different regenerative requirements found in various tissue defects. The versatility of such strategy is further increased by the ability of additive manufacturing to accurately fabricate implants matching any given defect geometry.

  8. Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Trelewicz, Jason R.; Halada, Gary P.; Donaldson, Olivia K.; Manogharan, Guha

    2016-03-01

    Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing-structure-properties-performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

  9. Fabrication of Flex Joint Utilizing Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Eddleman, David; Richard, Jim

    2015-01-01

    The Selective Laser Melting (SLM) manufacturing technique has been utilized in the manufacture of a flex joint typical of those found in rocket engine and main propulsion system ducting. The SLM process allowed for the combination of parts that are typically machined separately and welded together. This resulted in roughly a 65% reduction of the total number of parts, roughly 70% reduction in the total number of welds, and an estimated 60% reduction in the number of machining operations. The majority of the new design was in three SLM pieces. These pieces, as well as a few traditionally fabricated parts, were assembled into a complete unit, which has been pressure tested. The design and planned cryogenic testing of the unit will be presented.

  10. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John

    2014-02-01

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  11. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    SciTech Connect

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John

    2014-02-18

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  12. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow.

    PubMed

    Costa, Pedro F; Vaquette, Cédryck; Baldwin, Jeremy; Chhaya, Mohit; Gomes, Manuela E; Reis, Rui L; Theodoropoulos, Christina; Hutmacher, Dietmar W

    2014-09-01

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications.

  13. Hydrodynamic Instability in High-speed Direct Laser Deposition for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Turichin, Gleb; Zemlyakov, Evgeny; Klimova, Olga; Babkin, Konstantin

    High speed direct laser deposition, when product forms from metal powder, transferred by gas-powder jet, supplied coaxially or non-coaxially to focused laser beam, in one of most prospective additive technologies for production parts for aircraft engines. The limit of process productivity is connected with development of hydrodynamic instability of the melt pool in conditions of high power laser action and material supply by gas-powder jet. Theoretical analysis and experiments allowed clarified a physical nature of instability appearance, determine a stability conditions and invent a methods which allow avoid instability in deposition process. Nozzles for direct laser deposition, designed with consideration of stability conditions, allow get a level of process productivity more then 2 kg/h. The developed technology of deposition and technological equipment, based on high power fiber laser, has been used for manufacturing of parts for "high temperature" unit of aircraft engine.

  14. Multi-material additive manufacturing of robot components with integrated sensor arrays

    NASA Astrophysics Data System (ADS)

    Saari, Matt; Cox, Bryan; Galla, Matt; Krueger, Paul S.; Richer, Edmond; Cohen, Adam L.

    2015-06-01

    Fabricating a robotic component comprising 100s of distributed, connected sensors can be very difficult with current approaches. To address these challenges, we are developing a novel additive manufacturing technology to enable the integrated fabrication of robotic structural elements with distributed, interconnected sensors and actuators. The focus is on resistive and capacitive sensors and electromagnetic actuators, though others are anticipated. Anticipated applications beyond robotics include advanced prosthetics, wearable electronics, and defense electronics. This paper presents preliminary results for printing polymers and conductive material simultaneously to form small sensor arrays. Approaches to optimizing sensor performance are discussed.

  15. Temperature Profile and Imaging Analysis of Laser Additive Manufacturing of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Islam, M.; Purtonen, T.; Piili, H.; Salminen, A.; Nyrhilä, O.

    Powder bed fusion is a laser additive manufacturing (LAM) technology which is used to manufacture parts layer-wise from powdered metallic materials. The technology has advanced vastly in the recent years and current systems can be used to manufacture functional parts for e.g. aerospace industry. The performance and accuracy of the systems have improved also, but certain difficulties in the powder fusion process are reducing the final quality of the parts. One of these is commonly known as the balling phenomenon. The aim of this study was to define some of the process characteristics in powder bed fusion by performing comparative studies with two different test setups. This was done by comparing measured temperature profiles and on-line photography of the process. The material used during the research was EOS PH1 stainless steel. Both of the test systems were equipped with 200 W single mode fiber lasers. The main result of the research was that some of the process instabilities are resulting from the energy input during the process.

  16. Using Additive Manufacturing to Print a CubeSat Propulsion System

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Zemba, Michael; Shemelya, Corey; Wicker, Ryan; Espalin, David; MacDonald, Eric; Keif, Craig; Kwas, Andrew

    2015-01-01

    Small satellites, such as CubeSats, are increasingly being called upon to perform missions traditionally ascribed to larger satellite systems. However, the market of components and hardware for small satellites, particularly CubeSats, still falls short of providing the necessary capabilities required by ever increasing mission demands. One way to overcome this shortfall is to develop the ability to customize every build. By utilizing fabrication methods such as additive manufacturing, mission specific capabilities can be built into a system, or into the structure, that commercial off-the-shelf components may not be able to provide. A partnership between the University of Texas at El Paso, COSMIAC at the University of New Mexico, Northrop Grumman, and the NASA Glenn Research Center is looking into using additive manufacturing techniques to build a complete CubeSat, under the Small Spacecraft Technology Program. The W. M. Keck Center at the University of Texas at El Paso has previously demonstrated the ability to embed electronics and wires into the addtively manufactured structures. Using this technique, features such as antennas and propulsion systems can be included into the CubeSat structural body. Of interest to this paper, the team is investigating the ability to take a commercial micro pulsed plasma thruster and embed it into the printing process. Tests demonstrating the dielectric strength of the printed material and proof-of-concept demonstration of the printed thruster will be shown.

  17. Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments

    NASA Technical Reports Server (NTRS)

    Gardner, John M.; Sauti, Godfrey; Kim, Jae-Woo; Cano, Roberto J.; Wincheski, Russell A.; Stelter, Christopher J.; Grimsley, Brian W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way.

  18. Gender differences on the job satisfaction in the phase of implementing advanced manufacturing technology in the Chinese manufacturing firms.

    PubMed

    Yu, Na; Shen, Li Ming; Lewark, Siegfried

    2012-01-01

    This research gave an effort to study on gender differences in the job satisfaction for technological innovation at Chinese manufacturing firm. The exploratory study was conducted in four Chinese furniture manufacturing firms, which are all in the phases of introducing advanced manufacturing system. The results of statistical analysis show that general satisfaction of female employees to their jobs is significantly higher than male employees. In addition, supervisory satisfaction of female employees is significantly higher than male employees. The findings of the study reveal that activities are suggested to be carried out to increase the job satisfaction of male employees, especially improve communication and relationship between the managerial and the non-managerial levels in the innovation process. In addition, the higher job satisfaction of female employees could be considered a positive factor for the successful implementation of AMT in the technological innovation, although male employees are still dominated work force in the case study firms. PMID:22317383

  19. 40 CFR 79.21 - Information and assurances to be provided by the additive manufacturer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fuel additive will be sold, offered for sale, or introduced into commerce, and the fuel additive manufacturer's recommended range of concentration and purpose-in-use for each such type of fuel. (e) Such other... (e) of this section as provided in § 79.5(b). (g) Assurances that the additive manufacturer will...

  20. Single-use disposable technologies for biopharmaceutical manufacturing.

    PubMed

    Shukla, Abhinav A; Gottschalk, Uwe

    2013-03-01

    The manufacture of protein biopharmaceuticals is conducted under current good manufacturing practice (cGMP) and involves multiple unit operations for upstream production and downstream purification. Until recently, production facilities relied on the use of relatively inflexible, hard-piped equipment including large stainless steel bioreactors and tanks to hold product intermediates and buffers. However, there is an increasing trend towards the adoption of single-use technologies across the manufacturing process. Technical advances have now made an end-to-end single-use manufacturing facility possible, but several aspects of single-use technology require further improvement and are continually evolving. This article provides a perspective on the current state-of-the-art in single-use technologies and highlights trends that will improve performance and increase the market penetration of disposable manufacturing in the future.

  1. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing.

    PubMed

    Jardini, André Luiz; Larosa, Maria Aparecida; Maciel Filho, Rubens; Zavaglia, Cecília Amélia de Carvalho; Bernardes, Luis Fernando; Lambert, Carlos Salles; Calderoni, Davi Reis; Kharmandayan, Paulo

    2014-12-01

    Additive manufacturing (AM) technology from engineering has helped to achieve several advances in the medical field, particularly as far as fabrication of implants is concerned. The use of AM has made it possible to carry out surgical planning and simulation using a three-dimensional physical model which accurately represents the patient's anatomy. AM technology enables the production of models and implants directly from a 3D virtual model, facilitating surgical procedures and reducing risks. Furthermore, AM has been used to produce implants designed for individual patients in areas of medicine such as craniomaxillofacial surgery, with optimal size, shape and mechanical properties. This work presents AM technologies which were applied to design and fabricate a biomodel and customized implant for the surgical reconstruction of a large cranial defect. A series of computed tomography data was obtained and software was used to extract the cranial geometry. The protocol presented was used to create an anatomic biomodel of the bone defect for surgical planning and, finally, the design and manufacture of the patient-specific implant.

  2. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing.

    PubMed

    Jardini, André Luiz; Larosa, Maria Aparecida; Maciel Filho, Rubens; Zavaglia, Cecília Amélia de Carvalho; Bernardes, Luis Fernando; Lambert, Carlos Salles; Calderoni, Davi Reis; Kharmandayan, Paulo

    2014-12-01

    Additive manufacturing (AM) technology from engineering has helped to achieve several advances in the medical field, particularly as far as fabrication of implants is concerned. The use of AM has made it possible to carry out surgical planning and simulation using a three-dimensional physical model which accurately represents the patient's anatomy. AM technology enables the production of models and implants directly from a 3D virtual model, facilitating surgical procedures and reducing risks. Furthermore, AM has been used to produce implants designed for individual patients in areas of medicine such as craniomaxillofacial surgery, with optimal size, shape and mechanical properties. This work presents AM technologies which were applied to design and fabricate a biomodel and customized implant for the surgical reconstruction of a large cranial defect. A series of computed tomography data was obtained and software was used to extract the cranial geometry. The protocol presented was used to create an anatomic biomodel of the bone defect for surgical planning and, finally, the design and manufacture of the patient-specific implant. PMID:25175080

  3. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    NASA Technical Reports Server (NTRS)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  4. Photovoltaic Manufacturing Technology, Phase 1, Final report

    SciTech Connect

    Easoz, J.R.; Herlocher, R.H. )

    1991-12-01

    This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

  5. Computer-Integrated Manufacturing Technology. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Lakeland Tech Prep Consortium, Kirtland, OH.

    This tech prep competency profile for computer-integrated manufacturing technology begins with definitions for four occupations: manufacturing technician, quality technician, mechanical engineering technician, and computer-assisted design/drafting (CADD) technician. A chart lists competencies by unit and indicates whether entire or partial unit is…

  6. Arizona Industrial Arts Manufacturing Technology. Teacher's Curriculum Guide.

    ERIC Educational Resources Information Center

    Miller, Milton; And Others

    This curriculum guide is intended to assist junior and senior high school vocational instructors in presenting a course in manufacturing technology. The package contains a competency/skill and task list, an instructor's guide, and a bibliography. The following competencies are covered: the historical development of manufacturing (the…

  7. Centers for manufacturing technology: Industrial Advisory Committee Review

    SciTech Connect

    1995-10-01

    An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

  8. Computer integrated manufacturing and technology transfer for improving aerospace productivity

    NASA Astrophysics Data System (ADS)

    Farrington, P. A.; Sica, J.

    1992-03-01

    This paper reviews a cooperative effort, between the Alabama Industial Development Training Institute and the University of Alabama in Huntsville, to implement a prototype computer integrated manufacturing system. The primary use of this system will be to educate Alabama companies on the organizational and technological issues involved in the implementation of advanced manufacturing systems.

  9. Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive Manufacturing

    SciTech Connect

    List III, Frederick Alyious; Dehoff, Ryan R; Lowe, Larry E; Sames, William J

    2014-01-01

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand better these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology.

  10. Border Scouting the New Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Jacobs, James

    A discussion is provided of how breakthroughs in the application of computers in the manufacturing of automobiles affect the development of community college programs, with particular emphasis on how Michigan community colleges have developed a capacity to respond to changes in this field. First, the paper explains what computer-based…

  11. TECHNOLOGICAL CHANGES IN THE CEMENT MANUFACTURING INDUSTRY.

    ERIC Educational Resources Information Center

    WESSON, CARL E.

    THE PURPOSE OF THIS STUDY IS TO PRESENT A PRELIMINARY PICTURE OF OCCUPATIONAL CHANGES BROUGHT ABOUT IN THE MANUFACTURE OF CEMENT AS A RESULT OF INTRODUCING AUTOMATED EQUIPMENT. ONE AUTOMATED AND SEVERAL CONVENTIONAL TYPE CEMENT PLANTS WERE STUDIED. ANALYSIS OF DATA OBTAINED THROUGH RESEARCH AND DATA COLLECTED DURING THE STUDY REVEALED THAT…

  12. Effect of bovine lactoferrin addition to milk in yogurt manufacturing.

    PubMed

    Franco, I; Castillo, E; Pérez, M D; Calvo, M; Sánchez, L

    2010-10-01

    The aim of this work was to study the effect of milk supplementation with lactoferrin of different iron saturation on the manufacturing and characteristics of yogurt. Bovine lactoferrin was added at concentrations of 0.5, 1, and 2 mg/mL in the holo (iron saturated) and apo (without iron) forms. Some physicochemical properties, such as pH, concentration of lactic acid, and texture of supplemented yogurts, were determined throughout the shelf-life period storage (28 d) at 4°C. We also evaluated the stability of lactoferrin in supplemented yogurt throughout the storage time. The supplementation of milk with bovine lactoferrin did not greatly affect the physical properties of the yogurt, though apo-lactoferrin slightly delayed the decrease of pH. This could be attributed to the partial inhibition observed on the growth of Streptococcus thermophilus. The integrity and immunoreactive concentration of lactoferrin, determined by Western blotting and noncompetitive ELISA, respectively, remained constant throughout the shelf life of yogurt.

  13. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants.

    PubMed

    Cox, Sophie C; Jamshidi, Parastoo; Eisenstein, Neil M; Webber, Mark A; Hassanin, Hany; Attallah, Moataz M; Shepherd, Duncan E T; Addison, Owen; Grover, Liam M

    2016-07-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p=0.01) improved the compressive strength (5.8±0.7MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6hour period (<28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16μg/mL) and Staphylococcus epidermidis (1μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections.

  14. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE PAGES

    Huang, Runze; Riddle, Matthew; Graziano, Diane; Warren, Joshua; Das, Sujit; Nimbalkar, Sachin; Cresko, Joe; Masanet, Eric

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  15. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants.

    PubMed

    Cox, Sophie C; Jamshidi, Parastoo; Eisenstein, Neil M; Webber, Mark A; Hassanin, Hany; Attallah, Moataz M; Shepherd, Duncan E T; Addison, Owen; Grover, Liam M

    2016-07-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p=0.01) improved the compressive strength (5.8±0.7MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6hour period (<28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16μg/mL) and Staphylococcus epidermidis (1μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections. PMID:27127071

  16. Toward engineering functional organ modules by additive manufacturing.

    PubMed

    Marga, Francoise; Jakab, Karoly; Khatiwala, Chirag; Shepherd, Benjamin; Dorfman, Scott; Hubbard, Bradley; Colbert, Stephen; Gabor, Forgacs

    2012-06-01

    Tissue engineering is emerging as a possible alternative to methods aimed at alleviating the growing demand for replacement tissues and organs. A major pillar of most tissue engineering approaches is the scaffold, a biocompatible network of synthetic or natural polymers, which serves as an extracellular matrix mimic for cells. When the scaffold is seeded with cells it is supposed to provide the appropriate biomechanical and biochemical conditions for cell proliferation and eventual tissue formation. Numerous approaches have been used to fabricate scaffolds with ever-growing complexity. Recently, novel approaches have been pursued that do not rely on artificial scaffolds. The most promising ones utilize matrices of decellularized organs or methods based on multicellular self-assembly, such as sheet-based and bioprinting-based technologies. We briefly overview some of the scaffold-free approaches and detail one that employs biological self-assembly and bioprinting. We describe the technology and its specific applications to engineer vascular and nerve grafts.

  17. Manufacturing Technology Information Analysis Center: Knowledge is strength

    NASA Astrophysics Data System (ADS)

    Safar, Michal

    1992-04-01

    The Center's primary function is to facilitate technology transfer within DoD, other government agencies and industry. The DoD has recognized the importance of technology transfer, not only to support specific weapon system manufacture, but to strengthen the industrial base that sustains DoD. MTIAC uses an experienced technical staff of engineers and information specialists to acquire, analyze, and disseminate technical information. Besides ManTech project data, MTIAC collects manufacturing technology from other government agencies, commercial publications, proceedings, and various international sources. MTIAC has various means of disseminating this information. Much of the technical data is on user accessible data bases. The Center researches and writes a number of technical reports each year and publishes a newsletter monthly. Customized research is performed in response to specific inquiries from government and industry. MTIAC serves as a link between Government and Industry to strengthen the manufacturing technology base through the dissemination of advanced manufacturing information.

  18. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  19. Multiprocessing and Correction Algorithm of 3D-models for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Anamova, R. R.; Zelenov, S. V.; Kuprikov, M. U.; Ripetskiy, A. V.

    2016-07-01

    This article addresses matters related to additive manufacturing preparation. A layer-by-layer model presentation was developed on the basis of a routing method. Methods for correction of errors in the layer-by-layer model presentation were developed. A multiprocessing algorithm for forming an additive manufacturing batch file was realized.

  20. 76 FR 82308 - Guidance for Industry: Current Good Tissue Practice and Additional Requirements for Manufacturers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... 16, 2009 (74 FR 3055), FDA announced the availability of the draft guidance of the same title dated... Additional Requirements for Manufacturers of Human Cells, Tissues, and Cellular and Tissue-Based Products... Tissue Practice (CGTP) and Additional Requirements for Manufacturers of Human Cells, Tissues,...

  1. Additive manufacturing of patient-specific tubular continuum manipulators

    NASA Astrophysics Data System (ADS)

    Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica

    2015-03-01

    Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.

  2. Silicon Film[trademark] photovoltaic manufacturing technology

    SciTech Connect

    Bottenberg, W.R.; Hall, R.B.; Jackson, E.L.; Lampo, S.; Mulligan, W.E.; Barnett, A.M. )

    1993-04-01

    This report describes work on a project to develop an advanced low-cost manufacturing process for a new utility-scale flatplate module based on thin active layers of polycrystalline silicon on a low-cost substrate. This is called the Silicon-Film[trademark] process. This new power module is based on a new large solar cell that is 675 cm[sup 2] in area. Eighteen of these solar cells form a 170-W module. Twelve ofthese modules form a 2-kW array. The program has three components: (1) development of a Silicon-Film[trademark] wafer machine that can manufacture wafer 675 cm[sup 2] in size with a total product cost reductionof 70%; (2) development of an advanced solar cell manufacturing process that will turn the Silicon-Film[trademark] wafer into a 14%-efficient solar cell; and (3) development of an advanced module design based on these large-area, efficient silicon solar cells with an average power of 170 watts. The completion of these three tasks will lead to a new power module designed for utility and other power applications with asubstantially lower cost.

  3. Electron Beam Melting Manufacturing Technology for Individually Manufactured Jaw Prosthesis: A Case Report.

    PubMed

    Suska, Felicia; Kjeller, Göran; Tarnow, Peter; Hryha, Eduard; Nyborg, Lars; Snis, Anders; Palmquist, Anders

    2016-08-01

    In the field of maxillofacial reconstruction, additive manufacturing technologies, specifically electron beam melting (EBM), offer clinicians the potential for patient-customized design of jaw prostheses, which match both load-bearing and esthetic demands. The technique allows an innovative, functional design, combining integrated porous regions for bone ingrowth and secondary biological fixation with solid load-bearing regions ensuring the biomechanical performance. A patient-specific mandibular prosthesis manufactured using EBM was successfully used to reconstruct a patient's mandibular defect after en bloc resection. Over a 9-month follow-up period, the patient had no complications. A short operating time, good esthetic outcome, and high level of patient satisfaction as measured by quality-of-life questionnaires-the European Organisation for Research and Treatment of Cancer QLQ-C30 (30-item quality-of-life core questionnaire) and H&N35 (head and neck cancer module)-were reported for this case. Individually planned and designed EBM-produced prostheses may be suggested as a possible future alternative to fibular grafts or other reconstructive methods. However, the role of porosity, the role of geometry, and the optimal combination of solid and porous parts, as well as surface properties in relation to soft tissues, should be carefully evaluated in long-term clinical trials. PMID:27178123

  4. Electron Beam Melting Manufacturing Technology for Individually Manufactured Jaw Prosthesis: A Case Report.

    PubMed

    Suska, Felicia; Kjeller, Göran; Tarnow, Peter; Hryha, Eduard; Nyborg, Lars; Snis, Anders; Palmquist, Anders

    2016-08-01

    In the field of maxillofacial reconstruction, additive manufacturing technologies, specifically electron beam melting (EBM), offer clinicians the potential for patient-customized design of jaw prostheses, which match both load-bearing and esthetic demands. The technique allows an innovative, functional design, combining integrated porous regions for bone ingrowth and secondary biological fixation with solid load-bearing regions ensuring the biomechanical performance. A patient-specific mandibular prosthesis manufactured using EBM was successfully used to reconstruct a patient's mandibular defect after en bloc resection. Over a 9-month follow-up period, the patient had no complications. A short operating time, good esthetic outcome, and high level of patient satisfaction as measured by quality-of-life questionnaires-the European Organisation for Research and Treatment of Cancer QLQ-C30 (30-item quality-of-life core questionnaire) and H&N35 (head and neck cancer module)-were reported for this case. Individually planned and designed EBM-produced prostheses may be suggested as a possible future alternative to fibular grafts or other reconstructive methods. However, the role of porosity, the role of geometry, and the optimal combination of solid and porous parts, as well as surface properties in relation to soft tissues, should be carefully evaluated in long-term clinical trials.

  5. Repurposing mainstream CNC machine tools for laser-based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Jones, Jason B.

    2016-04-01

    The advent of laser technology has been a key enabler for industrial 3D printing, known as Additive Manufacturing (AM). Despite its commercial success and unique technical capabilities, laser-based AM systems are not yet able to produce parts with the same accuracy and surface finish as CNC machining. To enable the geometry and material freedoms afforded by AM, yet achieve the precision and productivity of CNC machining, hybrid combinations of these two processes have started to gain traction. To achieve the benefits of combined processing, laser technology has been integrated into mainstream CNC machines - effectively repurposing them as hybrid manufacturing platforms. This paper reviews how this engineering challenge has prompted beam delivery innovations to allow automated changeover between laser processing and machining, using standard CNC tool changers. Handling laser-processing heads using the tool changer also enables automated change over between different types of laser processing heads, further expanding the breadth of laser processing flexibility in a hybrid CNC. This paper highlights the development, challenges and future impact of hybrid CNCs on laser processing.

  6. Evaluation of laser ultrasonic testing for inspection of metal additive manufacturing

    NASA Astrophysics Data System (ADS)

    Everton, Sarah; Dickens, Phill; Tuck, Chris; Dutton, Ben

    2015-03-01

    Additive Manufacturing (AM) offers a number of benefits over conventional processes. However, in order for these benefits to be realised, further development and integration of suitable monitoring and closed loop control systems are needed. Laser Ultrasonic Testing (LUT) is an inspection technology which shows potential for in-situ monitoring of metallic AM processes. Non-contact measurements can be performed on curved surfaces and in difficult to reach areas, even at elevated temperatures. Interrogation of each build layer generates defect information which can be used to highlight processing errors and allow for real-time modification of processing parameters, enabling improved component quality and yield. This study evaluates the use of laser-generated surface waves to detect artificially generated defects in titanium alloy (Ti- 6Al-4V) samples produced by laser-based Powder Bed Fusion. The trials undertaken utilise the latest LUT equipment, recently installed at Manufacturing Technology Centre which is capable of being controlled remotely. This will allow the system to optimise or adapt "on-the-fly", simplifying the eventual integration of the system within an AM machine.

  7. The Effect of the Implementation of Advanced Manufacturing Technologies on Training in the Manufacturing Sector

    ERIC Educational Resources Information Center

    Castrillon, Isabel Dieguez; Cantorna, Ana I. Sinde

    2005-01-01

    Purpose: The aim of this article is to gain insight into some of the factors that determine personnel-training efforts in companies introducing advanced manufacturing technologies (AMTs). The study provides empirical evidence from a sector with high rates of technological modernisation. Design/methodology/approach: "Ad hoc" survey of 90 firms in…

  8. Impact of advanced manufacturing technology on prosthetic and orthotic practice.

    PubMed

    Jones, D

    1988-04-01

    Radical changes in the technology applied to prosthetics and orthotics are being proposed. This paper attempts to define the scope and character of advanced manufacturing technology and examines the rehabilitation problems which are or could be tackled. Lower-limb prosthetics has been the major area under investigation so far, but orthopaedic footwear, spinal orthotics and custom seating for the disabled have also been investigated using similar technological approaches. The whole process of patient measurement, device design, and component manufacture is conceived as an integrated system relying upon shape or tissue property sensing, computer based device design and computer-numerically-controlled or robot manufacturing processes. The aim is to retain flexibility for custom design which is necessary to provide for individual patients, and yet improve the rapidity and precision of overall device manufacture and service delivery.

  9. Cleaning and Cleanliness Measurement of Additive Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark A.; Raley, Randy

    2016-01-01

    The successful acquisition and utilization of piece parts and assemblies for contamination sensitive applications requires application of cleanliness acceptance criteria. Contamination can be classified using many different schemes. One common scheme is classification as organic, ionic and particulate contaminants. These may be present in and on the surface of solid components and assemblies or may be dispersed in various gaseous or liquid media. This discussion will focus on insoluble particle contamination on the surfaces of piece parts and assemblies. Cleanliness of parts can be controlled using two strategies, referred to as gross cleanliness and precision cleanliness. Under a gross cleanliness strategy acceptance is based on visual cleanliness. This approach introduces a number of concerns that render it unsuitable for controlling cleanliness of high technology products. Under the precision cleanliness strategy, subjective, visual assessment of cleanliness is replaced by objective measurement of cleanliness. When a precision cleanliness strategy is adopted there naturally arises the question: How clean is clean enough? The methods for establishing objective cleanliness acceptance limits will be discussed.

  10. Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing

    SciTech Connect

    Dehoff, Ryan R.; Watkins, Thomas R.; List, III, Frederick Alyious; Carver, Keith; England, Roger

    2015-12-01

    The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offers an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.

  11. Micro-Plasma Transferred Arc Additive Manufacturing for Die and Mold Surface Remanufacturing

    NASA Astrophysics Data System (ADS)

    Jhavar, Suyog; Paul, Christ Prakash; Jain, Neelesh Kumar

    2016-07-01

    Micro-plasma transferred arc ( µPTA) additive manufacturing is one of the newest options for remanufacturing of dies and molds surfaces in the near-millimeter range leading to extended usage of the same. We deployed an automatic micro-plasma deposition setup to deposit a wire of 300 µm of AISI P20 tool steel on the substrate of same material for the potential application in remanufacturing of the die and mold surface. Our present research effort is to establish µPTA additive manufacturing as a viable economical and cleaner methodology for potential industrial applications. We undertook the optimization of single weld bead geometry as the first step in our present study. Bead-on-plate trials were conducted to deposit single bead geometry at various processing parameters. The bead geometry (shape and size) and dilution were measured and the parametric dependence was derived. A set of parameters leading to reproducible regular and smooth single bead geometry were identified and used to prepare a thin wall for mechanical testing. The deposits were subjected to material characterization such as microscopic studies, micro-hardness measurements and tensile testing. The process was compared qualitatively with other deposition processes involving high-energy density beams and was found to be advantageous in terms of low initial and running costs with comparable properties. The outcome of the study confirmed the process capability of µPTA deposition leading to deployment of cost-effective and environmentally friendlier technology for die and mold remanufacturing.

  12. Comparative Shock Response of Additively Manufactured Versus Conventionally Wrought 304L Stainless Steel*

    NASA Astrophysics Data System (ADS)

    Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.

    2015-06-01

    Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology allows direct fabrication of metal parts. For the present study, a velocity interferometer (VISAR) measured the time-resolved motion of samples subjected to one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.5 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. Observed differences in shock loading and unloading characteristics for the two 304L source variants have been correlated to complementary Kolsky bar results for compressive and tensile testing at lower strain rates. The effects of composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and sample axis orientation relative to the additive manufacturing deposition trajectory have been assessed to explain differences between the AM and baseline 304L dynamic mechanical properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  13. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production

    DOE PAGES

    Mo, Jingke; Zhang, Feng -Yuan; Dehoff, Ryan R.; Peter, William H.; Toops, Todd J.; Green, Jr., Johney Boyd

    2016-01-14

    The electron beam melting (EBM) additive manufacturing technology was used to fabricate titanium liquid/gas diffusion media with high-corrosion resistances and well-controllable multifunctional parameters, including two-phase transport and excellent electric/thermal conductivities, has been first demonstrated. Their applications in proton exchange membrane eletrolyzer cells have been explored in-situ in a cell and characterized ex-situ with SEM and XRD. Compared with the conventional woven liquid/gas diffusion layers (LGDLs), much better performance with EBM fabricated LGDLs is obtained due to their significant reduction of ohmic loss. The EBM technology components exhibited several distinguished advantages in fabricating gas diffusion layer: well-controllable pore morphology and structure,more » rapid prototyping, fast manufacturing, highly customizing and economic. In addition, by taking advantage of additive manufacturing, it possible to fabricate complicated three-dimensional designs of virtually any shape from a digital model into one single solid object faster, cheaper and easier, especially for titanium. More importantly, this development will provide LGDLs with control of pore size, pore shape, pore distribution, and therefore porosity and permeability, which will be very valuable to develop modeling and to validate simulations of electrolyzers with optimal and repeatable performance. Further, it will lead to a manufacturing solution to greatly simplify the PEMEC/fuel cell components and to couple the LGDLs with other parts, since they can be easily integrated together with this advanced manufacturing process« less

  14. Fabrication of Thermoelectric Devices Using Additive-Subtractive Manufacturing Techniques: Application to Waste-Heat Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are well suited for waste-heat energy harvesting applications as opposed to primary energy generation. Commercially available thermoelectric modules are flat, inflexible and have limited sizes available. State-of-art manufacturing of TEG devices relies on assembling prefabricated parts with soldering, epoxy bonding, and mechanical clamping. Furthermore, efforts to incorporate them onto curved surfaces such as exhaust pipes, pump housings, steam lines, mixing containers, reaction chambers, etc. require custom-built heat exchangers. This is costly and labor-intensive, in addition to presenting challenges in terms of space, thermal coupling, added weight and long-term reliability. Additive manufacturing technologies are beginning to address many of these issues by reducing part count in complex designs and the elimination of sub-assembly requirements. This work investigates the feasibility of utilizing such novel manufacturing routes for improving the manufacturing process of thermoelectric devices. Much of the research in thermoelectricity is primarily focused on improving thermoelectric material properties by developing of novel materials or finding ways to improve existing ones. Secondary to material development is improving the manufacturing process of TEGs to provide significant cost benefits. To improve the device fabrication process, this work explores additive manufacturing technologies to provide an integrated and scalable approach for TE device manufacturing directly onto engineering component surfaces. Additive manufacturing techniques like thermal spray and ink-dispenser printing are developed with the aim of improving the manufacturing process of TEGs. Subtractive manufacturing techniques like laser micromachining are also studied in detail. This includes the laser processing parameters for cutting the thermal spray materials efficiently by

  15. Progress update on the US photovoltaic manufacturing technology project

    SciTech Connect

    Mitchell, R.L.; Witt, C.E.; Thomas, H.P.

    1997-10-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is helping the U.S. photovoltaic (PV) industry extend its world leadership role in manufacturing and stimulate the commercial development of PV modules and systems. Initiated in 1990, PVMaT is being carried out in several directed and staggered phases to support industry`s continued progress. Thirteen subcontracts awarded in FY 1996 under Phase 4A emphasize improvement and cost reduction in the manufacture of full-system PV products. Areas of work in Phase 4A included, but were not limited to, issues such as improving module-manufacturing processes; system and system-component packaging, integration, manufacturing, and assembly; product manufacturing flexibility; and balance-of-system development with the goal of product manufacturing improvements. These Phase 4A, product-driven manufacturing research and development (R&D) activities are now completing their second phase. Progress under these Phase 4A and remaining Phase 2B subcontracts from the earlier PVMaT solicitation are summarized in this paper. Evaluations of the success of this project have been carried out in FY 1995 and late FY 1996. This paper examines the 1997 cost/capacity data that have been collected from active PVMaT manufacturers.

  16. Characterization of Ti and Co based biomaterials processed via laser based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Himanshu

    Titanium and Cobalt based metallic materials are currently the most ideal materials for load-bearing metallic bio medical applications. However, the long term tribological degradation of these materials still remains a problem that needs a solution. To improve the tribological performance of these two metallic systems, three different research approaches were adapted, stemming out four different research projects. First, the simplicity of laser gas nitriding was utilized with a modern LENS(TM) technology to form an in situ nitride rich later in titanium substrate material. This nitride rich composite coating improved the hardness by as much as fifteen times and reduced the wear rate by more than a magnitude. The leaching of metallic ions during wear was also reduced by four times. In the second research project, a mixture of titanium and silicon were processed on a titanium substrate in a nitrogen rich environment. The results of this reactive, in situ additive manufacturing process were Ti-Si-Nitride coatings that were harder than the titanium substrate by more than twenty times. These coatings also reduced the wear rate by more than two magnitudes. In the third research approach, composites of CoCrMo alloy and Calcium phosphate (CaP) bio ceramic were processed using LENS(TM) based additive manufacturing. These composites were effective in reducing the wear in the CoCrMo alloy by more than three times as well as reduce the leaching of cobalt and chromium ions during wear. The novel composite materials were found to develop a tribofilm during wear. In the final project, a combination of hard nitride coating and addition of CaP bioceramic was investigated by processing a mixture of Ti6Al4V alloy and CaP in a nitrogen rich environment using the LENS(TM) technology. The resultant Ti64-CaP-Nitride coatings significantly reduced the wear damage on the substrate. There was also a drastic reduction in the metal ions leached during wear. The results indicate that the three

  17. Preliminary Comparison of Properties between Ni-electroplated Stainless Steel Parts Fabricated with Laser Additive Manufacturing and Conventional Machining

    NASA Astrophysics Data System (ADS)

    Mäkinen, Mika; Jauhiainen, Eeva; Matilainen, Ville-Pekka; Riihimäki, Jaakko; Ritvanen, Jussi; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing (LAM) is a fabrication technology, which enables production of complex parts from metallic materials with mechanical properties comparable to those of conventionally machined parts. These LAM parts are manufactured via melting metallic powder layer by layer with laser beam. Aim of this study is to define preliminarily the possibilities of using electroplating to supreme surface properties. Electrodeposited nickel and chromium as well as electroless (autocatalytic) deposited nickel was used to enhance laser additive manufactured and machined parts properties, like corrosion resistance, friction and wearing. All test pieces in this study were manufactured with a modified research AM equipment, equal to commercial EOS M series. The laser system used for tests was IPG 200 W CW fiber laser. The material used in this study for additive manufacturing was commercial stainless steel powder grade named SS316L. This SS316L is not equal to AISI 316L grade, but commercial name of this kind of powder is widely known in additive manufacturing as SS316L. Material used for fabrication of comparison test pieces (i.e. conventionally manufactured) was AISI 316L stainless steel bar. Electroplating was done in matrix cell and electroless was done in plastic sink properties of plated parts were tested within acetic acid salt spray corrosion chamber (AASS, SFS-EN-ISO 9227 standard). Adhesion of coating, friction and wearing properties were tested with Pin-On-Rod machine. Results show that in these preliminary tests, LAM parts and machined parts have certain differences due to manufacturing route and surface conditions. These have an effect on electroplated and electroless parts features on adhesion, corrosion, wearing and friction. However, further and more detailed studies are needed to fully understand these phenomena.

  18. Reducing the Manufacturing Cost of Tubular SOFC Technology

    SciTech Connect

    George, R.A.; Bessette, N.F.

    1997-12-31

    In recent years, Westinghouse Electric Corporation has made great strides in advancing tubular solid oxide fuel cell (SOFC) technology towards commercialization by the year 2001. In 1993, Westinghouse initiated a program to develop a `MWe Class` (1-3 MWe) pressurized SOFC (PSOFC) gas turbine (GT) combined cycle power system for distributed power applications because of its: (1) ultra high efficiency (approx. 63% net AC/LHV CH{sub 4}), (2) its compatibility with a factory packaged, minimum site work philosophy, and (3) its cost effectiveness. Since then two cost studies on this market entry product performed by consultants to the U.S. Department of Energy have confirmed Westinghouse cost studies that fully installed costs of under $1300/kWe can be achieved in the early commercialization years for such small PSOFC/GT power systems. The paper will present the results of these cost studies in the areas of cell manufacturing cost, PSOFC generator manufacturing cost, balance-of-plant (BOP) cost, and system installation cost. In addition, cost of electricity calculations will be presented.

  19. Use of additive technologies for practical working with complex models for foundry technologies

    NASA Astrophysics Data System (ADS)

    Olkhovik, E.; Butsanets, A. A.; Ageeva, A. A.

    2016-07-01

    The article presents the results of research of additive technology (3D printing) application for developing a geometrically complex model of castings parts. Investment casting is well known and widely used technology for the production of complex parts. The work proposes the use of a 3D printing technology for manufacturing models parts, which are removed by thermal destruction. Traditional methods of equipment production for investment casting involve the use of manual labor which has problems with dimensional accuracy, and CNC technology which is less used. Such scheme is low productive and demands considerable time. We have offered an alternative method which consists in printing the main knots using a 3D printer (PLA and ABS) with a subsequent production of castings models from them. In this article, the main technological methods are considered and their problems are discussed. The dimensional accuracy of models in comparison with investment casting technology is considered as the main aspect.

  20. Additive Manufacturing Modeling and Simulation A Literature Review for Electron Beam Free Form Fabrication

    NASA Technical Reports Server (NTRS)

    Seufzer, William J.

    2014-01-01

    Additive manufacturing is coming into industrial use and has several desirable attributes. Control of the deposition remains a complex challenge, and so this literature review was initiated to capture current modeling efforts in the field of additive manufacturing. This paper summarizes about 10 years of modeling and simulation related to both welding and additive manufacturing. The goals were to learn who is doing what in modeling and simulation, to summarize various approaches taken to create models, and to identify research gaps. Later sections in the report summarize implications for closed-loop-control of the process, implications for local research efforts, and implications for local modeling efforts.

  1. Additive Manufacturing of a Microbial Fuel Cell--A detailed study.

    PubMed

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-01-01

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m(-3) per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments.

  2. Application and testing of additive manufacturing for mirrors and precision structures

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael; Acreman, Martyn; Vettese, Tom; Myatt, Ray; Thompson, Mike

    2015-09-01

    Additive Manufacturing (aka AM, and 3-D printing) is widely touted in the media as the foundation for the next industrial revolution. Beneath the hype, AM does indeed offer profound advantages in lead-time, dramatically reduced consumption of expensive raw materials, while enabling new and innovative design forms that cannot be produced by other means. General Dynamics and their industry partners have begun to embrace this technology for mirrors and precision structures used in the aerospace, defense, and precision optical instrumentation industries. Aggressively lightweighted, open and closed back test mirror designs, 75-150 mm in size, were first produced by AM from several different materials. Subsequent optical finishing and test experiments have exceeded expectations for density, surface finish, dimensional stability and isotropy of thermal expansion on the optical scale of measurement. Materials currently under examination include aluminum, titanium, beryllium, aluminum beryllium, Inconel 625, stainless steel/bronze, and PEKK polymer.

  3. Additive Manufacturing of a Microbial Fuel Cell—A detailed study

    PubMed Central

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-01-01

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m−3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments. PMID:26611142

  4. Additive Manufacturing of a Microbial Fuel Cell—A detailed study

    NASA Astrophysics Data System (ADS)

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-11-01

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m-3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments.

  5. Measurement of powder bed density in powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Jacob, G.; Donmez, A.; Slotwinski, J.; Moylan, S.

    2016-11-01

    Many factors influence the performance of additive manufacturing (AM) processes, resulting in a high degree of variation in process outcomes. Therefore, quantifying these factors and their correlations to process outcomes are important challenges to overcome to enable widespread adoption of emerging AM technologies. In the powder bed fusion AM process, the density of the powder layers in the powder bed is a key influencing factor. This paper introduces a method to determine the powder bed density (PBD) during the powder bed fusion (PBF) process. A complete uncertainty analysis associated with the measurement method was also described. The resulting expanded measurement uncertainty, U PBD (k  =  2), was determined as 0.004 g · cm‑3. It was shown that this expanded measurement uncertainty is about three orders of magnitude smaller than the typical powder bed density. This method enables establishing correlations between the changes in PBD and the direction of motion of the powder recoating arm.

  6. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    NASA Astrophysics Data System (ADS)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M.

    2015-12-01

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  7. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    SciTech Connect

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubencik, A. M.

    2015-12-29

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this study, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  8. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    DOE PAGES

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubencik, A. M.

    2015-12-29

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In thismore » study, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.« less

  9. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    SciTech Connect

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Khairallah, S. A.; Kamath, C.; Rubenchik, A. M.

    2015-12-15

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  10. 3D printed microfluidic circuitry via multijet-based additive manufacturing.

    PubMed

    Sochol, R D; Sweet, E; Glick, C C; Venkatesh, S; Avetisyan, A; Ekman, K F; Raulinaitis, A; Tsai, A; Wienkers, A; Korner, K; Hanson, K; Long, A; Hightower, B J; Slatton, G; Burnett, D C; Massey, T L; Iwai, K; Lee, L P; Pister, K S J; Lin, L

    2016-02-21

    The miniaturization of integrated fluidic processors affords extensive benefits for chemical and biological fields, yet traditional, monolithic methods of microfabrication present numerous obstacles for the scaling of fluidic operators. Recently, researchers have investigated the use of additive manufacturing or "three-dimensional (3D) printing" technologies - predominantly stereolithography - as a promising alternative for the construction of submillimeter-scale fluidic components. One challenge, however, is that current stereolithography methods lack the ability to simultaneously print sacrificial support materials, which limits the geometric versatility of such approaches. In this work, we investigate the use of multijet modelling (alternatively, polyjet printing) - a layer-by-layer, multi-material inkjetting process - for 3D printing geometrically complex, yet functionally advantageous fluidic components comprised of both static and dynamic physical elements. We examine a fundamental class of 3D printed microfluidic operators, including fluidic capacitors, fluidic diodes, and fluidic transistors. In addition, we evaluate the potential to advance on-chip automation of integrated fluidic systems via geometric modification of component parameters. Theoretical and experimental results for 3D fluidic capacitors demonstrated that transitioning from planar to non-planar diaphragm architectures improved component performance. Flow rectification experiments for 3D printed fluidic diodes revealed a diodicity of 80.6 ± 1.8. Geometry-based gain enhancement for 3D printed fluidic transistors yielded pressure gain of 3.01 ± 0.78. Consistent with additional additive manufacturing methodologies, the use of digitally-transferrable 3D models of fluidic components combined with commercially-available 3D printers could extend the fluidic routing capabilities presented here to researchers in fields beyond the core engineering community.

  11. Manufacturing road map for tissue engineering and regenerative medicine technologies.

    PubMed

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James; Atala, Anthony

    2015-02-01

    The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM.

  12. Manufacturing Road Map for Tissue Engineering and Regenerative Medicine Technologies

    PubMed Central

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James

    2015-01-01

    Summary The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM. PMID:25575525

  13. The Use of Additive Manufacturing for Fabrication of Multi-Function Small Satellite Structures

    SciTech Connect

    Horais, Brian J; Love, Lonnie J; Dehoff, Ryan R

    2013-01-01

    The use of small satellites in constellations is limited only by the growing functionality of smallsats themselves. Additive manufacturing provides exciting new design opportunities for development of multifunction CubeSat structures that integrate such functions as propulsion and thermal control into the satellite structures themselves. Manufacturing of these complex multifunction structures is now possible in lightweight, high strength, materials such as titanium by using existing electron beam melting additive manufacturing processes. However, the use of today's additive manufacturing capabilities is often cost-prohibitive for small companies due to the large capital investments required. To alleviate this impediment the U.S. Department of Energy has established a Manufacturing Demonstration Facility (MDF) at their Oak Ridge National Laboratory (ORNL) in Tennessee that provides industry access to a broad range of energy-efficient additive manufacturing equipment for collaborative use by both small and large organizations. This paper presents a notional CubeSat multifunction design that integrates the propulsion system into a three-unit (3U) CubeSat structure. The full-scale structure has been designed and fabricated at the ORNL MDF. The use of additive manufacturing for spacecraft fabrication is opening up many new possibilities in design and fabrication capabilities for what had previously been impossible structures to fabricate.

  14. Technology for the manufacture of Diabetic Rosogolla.

    PubMed

    Chavan, R S; Prajapati, P S; Chavan, S R; Jana, A

    2014-01-01

    Diabetic Rosogolla was manufactured by using low-fat cow milk. Six different combinations viz. type of chhana and two different concentrations (40° and 50° Brix) of cooking medium. All of the experimental samples and control were analyzed for physico-chemical, textural, and sensory properties. A 40° Brix concentration of cooking medium was preferred to give a highly acceptable Diabetic Rosogolla. The average composition of Diabetic Rosogolla is moisture-52.20%, fat-4.46%, protein-12.78%, sorbitol-29.66%, and ash-0.89%. Similarly, the rheological properties were hardness-7.85 N, cohesiveness-0.54, springiness-6.06 mm, gumminess-3.8 N, chewiness-26.07 Nmm, fracture force-4.1 N, adhesiveness-0.0272 Nmm, and stiffness-2.17 N/mm. This protocol can be adopted at commercial level and be used to serve the customers who desire fewer calories but cannot resist having the sweets after their meal.

  15. Recent progress in the photovoltaic manufacturing technology project (PVMaT)

    SciTech Connect

    Witt, C.E.; Mitchell, R.L.; Thomas, H. ); Herwig, L.O. ); Ruby, D.S. ); Sellers, R.

    1994-12-09

    The Photovoltaic Manufacturing Technology (PVMaT) Project was initiated in 1990 to help the US photovoltaic (PV) industry extend its world leadership role in manufacturing and commercially developing PV modules and systems. It is being conducted in several phases, staggered to support industry progress. The four most recently awarded subcontracts (Phase 2B) are now completing their first year of research. They include two subcontracts on CdTe, one on Spheral Solar[trademark] Cells, and one on cast polysilicon. These subcontracts represent new technology additions to the PVMaT Project. Subcontracts initiated in earlier phases are nearing completion, and their progress is summarized. An additional phase of PVMaT, Phase 4A, is being initiated which will emphasize product-driven manufacturing research and development. The intention of Phase 4A is to emphasize improvement and cost reduction in the manufacture of full-system PV products. The work areas may include, but are not limited to, issues such as improvement of module manufacturing processes; system and system component packaging, integration, manufacturing, and assembly; product manufacturing flexibility; and balance-of-system development with the goal of product manufacturing improvements.

  16. Welding technologies as applied to nuclear manufacturing

    NASA Astrophysics Data System (ADS)

    Roper, J. R.

    1992-10-01

    This is the trip report of John R. Roper, who traveled to England 25 Sep. through 8 Oct. 1992. Dr. Roper attended the US/UK JOWOG 22-D Joining Technical Exchange meeting and gave a presentation on Welding Finite Element Analysis and the Precision Joining Center at the Atomic Weapons Establishment in Aldermaston, United Kingdom. Dr. Roper also toured the Welding Institute in Abington, UK and discussed technology exchange of weld thermal and mechanical material responses.

  17. Transfer of advanced manufacturing technologies to eastern Kentucky industries

    SciTech Connect

    Gillies, J.A.; Kruzich, R.

    1988-05-01

    This study concludes that there are opportunities to provide assistance in the adoption of manufacturing technologies for small- and medium-sized firms in eastern Kentucky. However, the new markets created by Toyota are not adequate to justify a directed technology transfer program targeting the auto supply industry in eastern Kentucky because supplier markets have been determined for some time, and manufacturers in eastern Kentucky were not competitive in this early selection process. The results of the study strongly reinforce a reorientation of state business-assistance programs. The study also concludes that the quality and quantity of available labor is a pervasive problem in eastern Kentucky and has particular relevance as the economy changes. The study also investigated what type of technology-transfer programs would be appropriate to assist manufacturing firms in eastern Kentucky and if there were a critical number of firms to make such a program feasible.

  18. Thermal Imaging for Assessment of Electron-Beam Free Form Fabrication (EBF(sup 3)) Additive Manufacturing Welds

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy R.; Martin, Richard E.

    2013-01-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA s electron beam free-form fabrication (EBF(sup 3)) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF(sup 3) technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF(sup 3) system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality weld, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for weld assessment metrics.

  19. Development of flexible, free-standing, thin films for additive manufacturing and localized energy generation

    SciTech Connect

    Clark, Billy; McCollum, Jena; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Film energetics are becoming increasingly popular because a variety of technologies are driving a need for localized energy generation in a stable, safe and flexible form. Aluminum (Al) and molybdenum trioxide (MoO₃) composites were mixed into a silicon binder and extruded using a blade casting technique to form flexible free-standing films ideal for localized energy generation. Since this material can be extruded onto a surface it is well suited to additive manufacturing applications. This study examines the influence of 0-35% by mass potassium perchlorate (KClO₄) additive on the combustion behavior of these energetic films. Without KClO₄ the film exhibits thermal instabilities that produce unsteady energy propagation upon reaction. All films were cast at a thickness of 1 mm with constant volume percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was measured. The results show that as the mass percent KClO₄ increased, the flame speed increased and peaked at 0.43 cm/s and 30 wt% KClO₄. Thermochemical equilibrium simulations show that the heat of combustion increases with increasing KClO₄ concentration up to a maximum at 20 wt% when the heat of combustion plateaus, indicating that the increased chemical energy liberated by the additional KClO₄ promotes stable energy propagation. Differential scanning calorimeter and thermogravimetric analysis show that the silicone binder participates as a fuel and reacts with KClO₄ adding energy to the reaction and promoting propagation.

  20. 3D Machine Vision and Additive Manufacturing: Concurrent Product and Process Development

    NASA Astrophysics Data System (ADS)

    Ilyas, Ismet P.

    2013-06-01

    The manufacturing environment rapidly changes in turbulence fashion. Digital manufacturing (DM) plays a significant role and one of the key strategies in setting up vision and strategic planning toward the knowledge based manufacturing. An approach of combining 3D machine vision (3D-MV) and an Additive Manufacturing (AM) may finally be finding its niche in manufacturing. This paper briefly overviews the integration of the 3D machine vision and AM in concurrent product and process development, the challenges and opportunities, the implementation of the 3D-MV and AM at POLMAN Bandung in accelerating product design and process development, and discusses a direct deployment of this approach on a real case from our industrial partners that have placed this as one of the very important and strategic approach in research as well as product/prototype development. The strategic aspects and needs of this combination approach in research, design and development are main concerns of the presentation.

  1. The photovoltaic manufacturing technology project: A government/industry partnership

    SciTech Connect

    Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

    1991-12-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

  2. The photovoltaic manufacturing technology project: A government/industry partnership

    SciTech Connect

    Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

    1991-12-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

  3. Spacesuit glove manufacturing enhancements through the use of advanced technologies

    NASA Technical Reports Server (NTRS)

    Cadogan, David; Bradley, David; Kosmo, Joseph

    1993-01-01

    The sucess of astronauts performing extravehicular activity (EVA) on orbit is highly dependent upon the performance of their spacesuit gloves.A study has recently been conducted to advance the development and manufacture of spacesuit gloves. The process replaces the manual techniques of spacesuit glove manufacture by utilizing emerging technologies such as laser scanning, Computer Aided Design (CAD), computer generated two-dimensional patterns from three-dimensionl surfaces, rapid prototyping technology, and laser cutting of materials, to manufacture the new gloves. Results of the program indicate that the baseline process will not increase the cost of the gloves as compared to the existing styles, and in production, may reduce the cost of the gloves. perhaps the most important outcome of the Laserscan process is that greater accuracy and design control can be realized. Greater accuracy was achieved in the baseline anthropometric measurement and CAD data measurement which subsequently improved the design feature. This effectively enhances glove performance through better fit and comfort.

  4. Spacesuit glove manufacturing enhancements through the use of advanced technologies

    NASA Astrophysics Data System (ADS)

    Cadogan, David; Bradley, David; Kosmo, Joseph

    The sucess of astronauts performing extravehicular activity (EVA) on orbit is highly dependent upon the performance of their spacesuit gloves.A study has recently been conducted to advance the development and manufacture of spacesuit gloves. The process replaces the manual techniques of spacesuit glove manufacture by utilizing emerging technologies such as laser scanning, Computer Aided Design (CAD), computer generated two-dimensional patterns from three-dimensionl surfaces, rapid prototyping technology, and laser cutting of materials, to manufacture the new gloves. Results of the program indicate that the baseline process will not increase the cost of the gloves as compared to the existing styles, and in production, may reduce the cost of the gloves. perhaps the most important outcome of the Laserscan process is that greater accuracy and design control can be realized. Greater accuracy was achieved in the baseline anthropometric measurement and CAD data measurement which subsequently improved the design feature. This effectively enhances glove performance through better fit and comfort.

  5. Modeling Manufacturing Processes to Mitigate Technological Risk

    SciTech Connect

    Allgood, G.O.; Manges, W.W.

    1999-10-24

    An economic model is a tool for determining the justifiable cost of new sensors and subsystems with respect to value and operation. This process balances the R and D costs against the expense of maintaining current operations and allows for a method to calculate economic indices of performance that can be used as control points in deciding whether to continue development or suspend actions. The model can also be used as an integral part of an overall control loop utilizing real-time process data from the sensor groups to make production decisions (stop production and repair machine, continue and warn of anticipated problems, queue for repairs, etc.). This model has been successfully used and deployed in the CAFE Project. The economic model was one of seven (see Fig. 1) elements critical in developing an investment strategy. It has been successfully used in guiding the R and D activities on the CAFE Project, suspending activities on three new sensor technologies, and continuing development o f two others. The model has also been used to justify the development of a new prognostic approach for diagnosing machine health using COTS equipment and a new algorithmic approach. maintaining current operations and allows for a method to calculate economic indices of performance that can be used as control points in deciding whether to continue development or suspend actions. The model can also be used as an integral part of an overall control loop utilizing real-time process data from the sensor groups to make production decisions (stop production and repair machine, continue and warn of anticipated problems, queue for repairs, etc.).

  6. Using Innovative Technologies for Manufacturing Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, E. M.; Eddleman, D. E.; Reynolds, D. C.; Hardin, N. A.

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  7. Manufacturing Technology Continuation Project--FY 92. Final Report.

    ERIC Educational Resources Information Center

    Chicago City Colleges, IL. Richard J. Daley Coll.

    A project to identify metalworking subsectors (multiple spindle screw machining and gears machining) for inclusion in the Manufacturing Technology Preparation Program is the subject of this report. The project accomplished the following: developed five courses in multiple spindle, secured large donations of equipment and tooling, established a…

  8. Just-in-time Design and Additive Manufacture of Patient-specific Medical Implants

    NASA Astrophysics Data System (ADS)

    Shidid, Darpan; Leary, Martin; Choong, Peter; Brandt, Milan

    Recent advances in medical imaging and manufacturing science have enabled the design and production of complex, patient-specific orthopaedic implants. Additive Manufacture (AM) generates three-dimensional structures layer by layer, and is not subject to the constraints associated with traditional manufacturing methods. AM provides significant opportunities for the design of novel geometries and complex lattice structures with enhanced functional performance. However, the design and manufacture of patient-specific AM implant structures requires unique expertise in handling various optimization platforms. Furthermore, the design process for complex structures is computationally intensive. The primary aim of this research is to enable the just-in-time customisation of AM prosthesis; whereby AM implant design and manufacture be completed within the time constraints of a single surgical procedure, while minimising prosthesis mass and optimising the lattice structure to match the stiffness of the surrounding bone tissue. In this research, a design approach using raw CT scan data is applied to the AM manufacture of femoral prosthesis. Using the proposed just-in-time concept, the mass of the prosthesis was rapidly designed and manufactured while satisfying the associated structural requirements. Compressive testing of lattice structures manufactured using proposed method shows that the load carrying capacity of the resected composite bone can be recovered by up to 85% and the compressive stiffness of the AM prosthesis is statistically indistinguishable from the stiffness of the initial bone.

  9. Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Jägle, Eric A.; Sheng, Zhendong; Wu, Liang; Lu, Lin; Risse, Jeroen; Weisheit, Andreas; Raabe, Dierk

    2016-03-01

    We describe and study the thermal profiles experienced by various age-hardenable alloys during laser additive manufacturing (LAM), employing two different manufacturing techniques: selective laser melting and laser metal deposition. Using scanning electron microscopy and atom probe tomography, we reveal at which stages during the manufacturing process desired and undesired precipitation reactions can occur in age-hardenable alloys. Using examples from a maraging steel, a nickel-base superalloy and a scandium-containing aluminium alloy, we demonstrate that precipitation can already occur during the production of the powders used as starting material, during the deposition of material (i.e. during solidification and subsequent cooling), during the intrinsic heat treatment effected by LAM (i.e. in the heat affected zones) and, naturally, during an ageing post-heat treatment. These examples demonstrate the importance of understanding and controlling the thermal profile during the entire additive manufacturing cycle of age-hardenable materials including powder synthesis.

  10. A feasibility study for a manufacturing technology deployment center

    SciTech Connect

    Not Available

    1994-10-31

    The Automation & Robotics Research Institute (ARRI) and the Texas Engineering Extension Service (TEEX) were funded by the U.S. Department of Energy to determine the feasibility of a regional industrial technology institute to be located at the Superconducting Super Collider (SSC) Central Facility in Waxahachie, Texas. In response to this opportunity, ARRI and TEEX teamed with the DOE Kansas City Plant (managed by Allied Signal, Inc.), Los Alamos National Laboratory (managed by the University of California), Vought Aircraft Company, National Center for Manufacturing Sciences (NCMS), SSC Laboratory, KPMG Peat Marwick, Dallas County Community College, Navarro Community College, Texas Department of Commerce (TDOC), Texas Manufacturing Assistance Center (TMAC), Oklahoma Center for the Advancement of Science and Technology, Arkansas Science and Technology Authority, Louisiana Productivity Center, and the NASA Mid-Continent Technology Transfer Center (MCTTC) to develop a series of options, perform the feasibility analysis and secure industrial reviews of the selected concepts. The final report for this study is presented in three sections: Executive Summary, Business Plan, and Technical Plan. The results from the analysis of the proposed concept support the recommendation of creating a regional technology alliance formed by the states of Texas, New Mexico, Oklahoma, Arkansas and Louisiana through the conversion of the SSC Central facility into a Manufacturing Technology Deployment Center (MTDC).

  11. Ultrasonic online monitoring of additive manufacturing processes based on selective laser melting

    NASA Astrophysics Data System (ADS)

    Rieder, Hans; Dillhöfer, Alexander; Spies, Martin; Bamberg, Joachim; Hess, Thomas

    2015-03-01

    Additive manufacturing processes have become commercially available and are particularly interesting for the production of free-formed parts. Selective laser melting allows to manufacture components by localized melting of successive layers of metal powder. In order to be able to describe and to understand the complex dynamics of selective laser melting processes more accurately, online measurements using ultrasound have been performed for the first time. In this contribution, we report on the integration of the measurement technique into the manufacturing facility and on a variety of promising monitoring results.

  12. On- and offline ultrasonic characterization of components built by SLM additive manufacturing

    NASA Astrophysics Data System (ADS)

    Rieder, Hans; Spies, Martin; Bamberg, Joachim; Henkel, Benjamin

    2016-02-01

    Additive manufacturing processes have become commercially available and are particularly interesting for the production of free-formed parts. Selective laser melting allows for manufacturing components by localized melting of successive layers of metal powder. In this contribution, we report on investigations in view of the influence of the process parameter `laser power' on the microstructure of the manufactured component. It turned out that the online recorded A-scans allow inferring conclusions about the quality of the SLM process. We also report on offline measurements which have been performed to support the online results.

  13. Photovoltaic Manufacturing Technology (PVMaT) improvements for ENTECH's concentrator module

    SciTech Connect

    O'Neill, M.J.; McDanal, A.J.; Perry, J.L.; Jackson, M.C.; Walters, R.R. )

    1991-11-01

    This final technical report documents ENTECH's Phase 1 contract with Photovoltaic Manufacturing Technology (PVMaT) project. Under this project we prepared a detailed description of our current manufacturing process for making our unique linear Fresnel lens photovoltaic concentrator modules. In addition, we prepared a detailed description of an improved manufacturing process, which will simultaneously increase module production rates, enhance module quality, and substantially reduce module costs. We also identified potential problems in implementing the new manufacturing process, and we proposed solutions to these anticipated problems. Before discussing the key results of our program, however, we present a brief description of our unique photovoltaic technology. The key conclusion of our PVMAT Phase 1 study is that our module technology, without further breakthroughs, can realistically meet the near-term DOE goal of 12 cents/kWh levelized electricity cost, provided that we successfully implement the new manufacturing process at a production volume of at least 10 megawatts per year. The key recommendation from our Phase 1 study is to continue our PVMaT project into Phase 2A, which is directed toward the actual manufacturing technology development required for our new module production process. 15 refs.

  14. Ramp Technology and Intelligent Processing in Small Manufacturing

    NASA Technical Reports Server (NTRS)

    Rentz, Richard E.

    1992-01-01

    To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.

  15. Benefits from the U.S. photovoltaic manufacturing technology project

    SciTech Connect

    Mitchell, R.L.; Witt, C.E.; Thomas, H.P.

    1996-05-01

    This paper examines the goals of the Photovoltaic Manufacturing Technology (PVMaT) project and its achievements in recapturing the investment by the photovoltaic (PV) industry and the public in this research. The PVMaT project was initiated in 1990 with the goal of enhancing the world-wide competitiveness of the U.S. PV industry. Based on the authors analysis, PVMaT has contributed to PV module manufacturing process improvements, increased product value, and reductions in the price of today`s PV products. An evaluation of success in this project was conducted using data collected from 10 of the PVMaT industrial participants in late fiscal year (FY) 1995. These data indicate a reduction of 56% in the weighted average module manufacturing costs from 1992 to 1996. During this same period, U.S. module manufacturing capacity has increased by more than a factor of 6. Finally, the analysis indicates that both the public and the manufacturers will recapture the funds expended in R&D manufacturing improvements well before the year 2000.

  16. Manipulation and Characterization of a Novel Titanium Powder Precursor for Additive Manufacturing Applications

    NASA Astrophysics Data System (ADS)

    Sun, Y. Y.; Gulizia, S.; Oh, C. H.; Doblin, C.; Yang, Y. F.; Qian, M.

    2015-03-01

    Lowering the cost of feedstock powder has been a major issue for wider applications of additive manufacturing (AM) of titanium (Ti) and its alloys. A novel and inexpensive Ti sponge material was selected as a precursor and processed using a CSIRO proprietary powder manipulation technology (PMT). The manipulated powder was characterized in terms of the particle size distribution (PSD), roundness, flowability in the Hall Funnel flowmeter, static angle of repose (AOR), apparent density and tap density. In addition, a universal powder bed (UPB) system was used to characterize the manipulated powder behavior after raking. Two benchmark powders, virgin Arcam Ti-6Al-4V powder and used Arcam Ti-6Al-4V powder, were assessed for a comparison. PMT processing of the Ti powder precursor produced near spherically shaped Ti powder in the size range of 75-106 µm, which performed very similarly to the used Arcam powder in the UPB system. The CSIRO PMT offers a cost-effective manipulation process to produce Ti powder promising for AM applications, while the UPB system allows a quick assessment of the powder spreading behavior in AM processes.

  17. Additive Manufacturing Enabled Ubiquitous Sensing in Aerospace and Integrated Building Systems

    NASA Astrophysics Data System (ADS)

    Mantese, Joseph

    2015-03-01

    Ubiquitous sensing is rapidly emerging as a means for globally optimizing systems of systems by providing both real time PHM (prognostics, diagnostics, and health monitoring), as well as expanded in-the-loop control. In closed or proprietary systems, such as in aerospace vehicles and life safety or security building systems; wireless signals and power must be supplied to a sensor network via single or multiple data concentrators in an architecture that ensures reliable/secure interconnectivity. In addition, such networks must be robust to environmental factors, including: corrosion, EMI/RFI, and thermal/mechanical variations. In this talk, we describe the use of additive manufacturing processes guided by physics based models for seamlessly embedding a sensor suite into aerospace and building system components; while maintaining their structural integrity and providing wireless power, sensor interrogation, and real-time diagnostics. We detail this approach as it specifically applies to industrial gas turbines for stationary land power. This work is supported through a grant from the National Energy Technology Laboratory (NETL), a division of the Department of Energy.

  18. Further Structural Intelligence for Sensors Cluster Technology in Manufacturing

    PubMed Central

    Mekid, Samir

    2006-01-01

    With the ever increasing complex sensing and actuating tasks in manufacturing plants, intelligent sensors cluster in hybrid networks becomes a rapidly expanding area. They play a dominant role in many fields from macro and micro scale. Global object control and the ability to self organize into fault-tolerant and scalable systems are expected for high level applications. In this paper, new structural concepts of intelligent sensors and networks with new intelligent agents are presented. Embedding new functionalities to dynamically manage cooperative agents for autonomous machines are interesting key enabling technologies most required in manufacturing for zero defects production.

  19. Short fiber-reinforced cementitious composites manufactured by extrusion technology

    NASA Astrophysics Data System (ADS)

    Mu, Bin

    The use of short fibers in the cement-based composites is more preferable due to the simplicity and economic nature in fabrication. The short fiber-reinforced cementitious composite (SFRCC) manufactured by the extrusion method show a great improvement in both strength and toughness as compared to the fiber-reinforced composites made by traditional casting methods. This improvement can be attributed to the achievement of low porosity and good interfacial bond in SFRCC under high shear and compressive stress during the extrusion process. In the present study, products of cylinders, sheets, pipes and honeycomb panels incorporating various mineral admixtures such as slag, silica fume, and metakaolin have been manufactured by the extrusion technology. Two kinds of short fibers, ductile polyvinyl alcohol (PVA) fibers and stronger but less ductile glass fibers, were used as the reinforcement in the products. After the specimens were extruded, tension, bending and impact tests were performed to study the mechanical properties of these products. The rheology test was performed for each mix to determine its viscoelastic properties. In addition, X-ray diffraction (XRD) and scanning electronic microscopy (SEM) technology were employed to get an insight view of the mechanism. A freezing and thawing experiment (ASTM C666) was also carried to investigate the durability of the specimens. Based on these experimental results, the reinforcing behaviors of these two short fibers were investigated. The enhancing effects of silica fume and metakaolin on the extrudates were compared and discussed. Finally, the optimum amount of silica fume and slag was proposed. Since the key point for a successful extrusion is the properly designed rheology which controls both internal and external flow properties of extrudate, a nonlinear viscoelastic model was applied to investigate the rheological behavior of a movable fresh cementitious composite in an extruder channel. The velocity profile of the

  20. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    DOE PAGES

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-07-08

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain,more » texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. Additionally, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.« less

  1. Intelligent decision support technologies for design and manufacturing

    SciTech Connect

    Zacharia, T.; Allen, J.D.; Ivezic, N.; Ludtka, G.M.

    1997-06-01

    For many of today`s complex manufacturing processes, there exists a solid body of knowledge that enables direct simulations of such processes yielding predictions about the final product and process characteristics using finite element or finite difference methods. However, the computational complexities of these simulations are such that they do not lend themselves easily to routine and timely use in optimization and control of manufacturing processes. More recently, neural network-based decision support technologies have been developed which hold the promise of bringing the body of analytical and simulation knowledge closer to the design and optimization processes in manufacturing industries. The paper discusses the application of a holistic approach wherein existing finite element, neural-network, and optical metrology methods are combined to develop a real time tool for optimization and control of the sheet metal stamping process. Significant issues in the development of such a tool and results from its application to a deformation process are discussed.

  2. The application of additive technologies in creation a medical simulator-trainer of the human head operating field

    NASA Astrophysics Data System (ADS)

    Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.; Pashaev, B. Y.

    2016-06-01

    The aim of the work was to determine the possible application of additive manufacturing technology during the manufacturing process as close as possible to reality of medical simulator-trainers. In work were used some additive manufacturing technologies: selective laser sintering (SLS), fused deposition modeling (FDM), binder Jetting. As a result, a prototype of simulator-trainer of the human head operating field, which based on the CT real patient, was manufactured and conducted its tests. It was found that structure, which is obtained with the use of 3D-printers ProJet 160, most appropriate and closest to the real properties of the bone.

  3. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.

    PubMed

    Sing, Swee Leong; An, Jia; Yeong, Wai Yee; Wiria, Florencia Edith

    2016-03-01

    Additive manufacturing (AM), also commonly known as 3D printing, allows the direct fabrication of functional parts with complex shapes from digital models. In this review, the current progress of two AM processes suitable for metallic orthopaedic implant applications, namely selective laser melting (SLM) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design for reduction of stress-shielding in implants are discussed. Additive manufactured biomaterials such as 316L stainless steel, titanium-6aluminium-4vanadium (Ti6Al4V) and cobalt-chromium (CoCr) are highlighted. Limitations and future potential of such technologies are also explored.

  4. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.

    PubMed

    Sing, Swee Leong; An, Jia; Yeong, Wai Yee; Wiria, Florencia Edith

    2016-03-01

    Additive manufacturing (AM), also commonly known as 3D printing, allows the direct fabrication of functional parts with complex shapes from digital models. In this review, the current progress of two AM processes suitable for metallic orthopaedic implant applications, namely selective laser melting (SLM) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design for reduction of stress-shielding in implants are discussed. Additive manufactured biomaterials such as 316L stainless steel, titanium-6aluminium-4vanadium (Ti6Al4V) and cobalt-chromium (CoCr) are highlighted. Limitations and future potential of such technologies are also explored. PMID:26488900

  5. An additive manufacturing acrylic for use in the 32 Tesla all superconducting magnet

    NASA Astrophysics Data System (ADS)

    Johnson, Zachary

    The National High Magnetic Field Laboratory is building a world record all superconducting magnet known as the "32T". It requires many thousands of parts, but in particular one kind is unusually expensive to manufacture, called "heater lead covers". These parts are traditionally made out of a glass filled epoxy known as G-10, and conventionally machined. The machining is the expensive portion, as there are many tight tolerance details. The proposal in this paper is to change the material and manufacturing method to additive manufacturing with the material called "RGD 430". The cost per part with traditional machining is approximately 1,500 each. The cost per part with additive manufacturing of RGD 430 is approximately 32.5 each. There will be at least 14 of this style of part on the completed 32T project. Thus the total cost for the project will be reduced from 21,000 to 455, a 98% cost savings. The additive manufacturing also allows the machine designers to expand the dimensions of the part to any shape possible. Through testing of the material it was found to follow the common polymer characteristics. Its linear elastic modulus at cryogenic temperatures approached 10 GPa. The yield strength was always over 100 MPa, when not damaged. The fracture mechanism was repeatable, and brittle in cryogenic environments. The geometric tolerancing of the additive manufacturing process are, as expected extremely precise. The final tolerances for dimensions in the profile of the printer are more precise than +/- 0.10mm. The final tolerances for dimensions in the thickness of the printer are more precise than +/-0.25mm. Before utilizing the material, there should be a few additional tests run on it to ensure it will work in-situ. Those tests are outside the scope of this thesis.

  6. Development of flexible, free-standing, thin films for additive manufacturing and localized energy generation

    NASA Astrophysics Data System (ADS)

    Clark, Billy; McCollum, Jena; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Film energetics are becoming increasingly popular because a variety of technologies are driving a need for localized energy generation in a stable, safe and flexible form. Aluminum (Al) and molybdenum trioxide (MoO3) composites were mixed into a silicon binder and extruded using a blade casting technique to form flexible free-standing films ideal for localized energy generation. Since this material can be extruded onto a surface it is well suited to additive manufacturing applications. This study examines the influence of 0-35% by mass potassium perchlorate (KClO4) additive on the combustion behavior of these energetic films. Without KClO4 the film exhibits thermal instabilities that produce unsteady energy propagation upon reaction. All films were cast at a thickness of 1 mm with constant volume percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was measured. The results show that as the mass percent KClO4 increased, the flame speed increased and peaked at 0.43 cm/s and 30 wt% KClO4. Thermochemical equilibrium simulations show that the heat of combustion increases with increasing KClO4 concentration up to a maximum at 20 wt% when the heat of combustion plateaus, indicating that the increased chemical energy liberated by the additional KClO4 promotes stable energy propagation. Differential scanning calorimeter and thermogravimetric analysis show that the silicone binder participates as a fuel and reacts with KClO4 adding energy to the reaction and promoting propagation.

  7. Development of flexible, free-standing, thin films for additive manufacturing and localized energy generation

    DOE PAGES

    Clark, Billy; McCollum, Jena; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Film energetics are becoming increasingly popular because a variety of technologies are driving a need for localized energy generation in a stable, safe and flexible form. Aluminum (Al) and molybdenum trioxide (MoO₃) composites were mixed into a silicon binder and extruded using a blade casting technique to form flexible free-standing films ideal for localized energy generation. Since this material can be extruded onto a surface it is well suited to additive manufacturing applications. This study examines the influence of 0-35% by mass potassium perchlorate (KClO₄) additive on the combustion behavior of these energetic films. Without KClO₄ the film exhibits thermalmore » instabilities that produce unsteady energy propagation upon reaction. All films were cast at a thickness of 1 mm with constant volume percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was measured. The results show that as the mass percent KClO₄ increased, the flame speed increased and peaked at 0.43 cm/s and 30 wt% KClO₄. Thermochemical equilibrium simulations show that the heat of combustion increases with increasing KClO₄ concentration up to a maximum at 20 wt% when the heat of combustion plateaus, indicating that the increased chemical energy liberated by the additional KClO₄ promotes stable energy propagation. Differential scanning calorimeter and thermogravimetric analysis show that the silicone binder participates as a fuel and reacts with KClO₄ adding energy to the reaction and promoting propagation.« less

  8. Development of flexible, free-standing, thin films for additive manufacturing and localized energy generation

    SciTech Connect

    Clark, Billy; McCollum, Jena; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-15

    Film energetics are becoming increasingly popular because a variety of technologies are driving a need for localized energy generation in a stable, safe and flexible form. Aluminum (Al) and molybdenum trioxide (MoO{sub 3}) composites were mixed into a silicon binder and extruded using a blade casting technique to form flexible free-standing films ideal for localized energy generation. Since this material can be extruded onto a surface it is well suited to additive manufacturing applications. This study examines the influence of 0-35% by mass potassium perchlorate (KClO{sub 4}) additive on the combustion behavior of these energetic films. Without KClO{sub 4} the film exhibits thermal instabilities that produce unsteady energy propagation upon reaction. All films were cast at a thickness of 1 mm with constant volume percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was measured. The results show that as the mass percent KClO{sub 4} increased, the flame speed increased and peaked at 0.43 cm/s and 30 wt% KClO{sub 4}. Thermochemical equilibrium simulations show that the heat of combustion increases with increasing KClO{sub 4} concentration up to a maximum at 20 wt% when the heat of combustion plateaus, indicating that the increased chemical energy liberated by the additional KClO{sub 4} promotes stable energy propagation. Differential scanning calorimeter and thermogravimetric analysis show that the silicone binder participates as a fuel and reacts with KClO{sub 4} adding energy to the reaction and promoting propagation.

  9. Composites Materials and Manufacturing Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  10. Small Scale Turbopump Manufacturing Technology and Material Processes

    NASA Technical Reports Server (NTRS)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  11. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.

    PubMed

    Kundu, Joydip; Shim, Jin-Hyung; Jang, Jinah; Kim, Sung-Won; Cho, Dong-Woo

    2015-11-01

    Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self-assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three-dimensional (3D) cell-printed scaffolds using layer-by-layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell-encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell-based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL-alginate gel constructs. PCL-alginate gels containing transforming growth factor-β (TGFβ) showed higher ECM formation. The 3D cell-printed scaffolds of PCL-alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL-alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell-printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology.

  12. Using additive manufacturing in accuracy evaluation of reconstructions from computed tomography.

    PubMed

    Smith, Erin J; Anstey, Joseph A; Venne, Gabriel; Ellis, Randy E

    2013-05-01

    Bone models derived from patient imaging and fabricated using additive manufacturing technology have many potential uses including surgical planning, training, and research. This study evaluated the accuracy of bone surface reconstruction of two diarthrodial joints, the hip and shoulder, from computed tomography. Image segmentation of the tomographic series was used to develop a three-dimensional virtual model, which was fabricated using fused deposition modelling. Laser scanning was used to compare cadaver bones, printed models, and intermediate segmentations. The overall bone reconstruction process had a reproducibility of 0.3 ± 0.4 mm. Production of the model had an accuracy of 0.1 ± 0.1 mm, while the segmentation had an accuracy of 0.3 ± 0.4 mm, indicating that segmentation accuracy was the key factor in reconstruction. Generally, the shape of the articular surfaces was reproduced accurately, with poorer accuracy near the periphery of the articular surfaces, particularly in regions with periosteum covering and where osteophytes were apparent.

  13. Additive manufacturing of collagen scaffolds by three-dimensional plotting of highly viscous dispersions.

    PubMed

    Lode, Anja; Meyer, Michael; Brüggemeier, Sophie; Paul, Birgit; Baltzer, Hagen; Schröpfer, Michaela; Winkelmann, Claudia; Sonntag, Frank; Gelinsky, Michael

    2016-03-01

    Additive manufacturing (AM) allows the free form fabrication of three-dimensional (3D) structures with distinct external geometry, fitting into a patient-specific defect, and defined internal pore architecture. However, fabrication of predesigned collagen scaffolds using AM-based technologies is challenging due to the low viscosity of collagen solutions, gels or dispersions commonly used for scaffold preparation. In the present study, we have developed a straightforward method which is based on 3D plotting of a highly viscous, high density collagen dispersion. The swollen state of the collagen fibrils at pH 4 enabled the homogenous extrusion of the material, the deposition of uniform strands and finally the construction of 3D scaffolds. Stabilization of the plotted structures was achieved by freeze-drying and chemical crosslinking with the carbodiimide EDC. The scaffolds exhibited high shape and dimensional fidelity and a hierarchical porosity consisting of macropores generated by strand deposition as well as an interconnected microporosity within the strands as result of the freeze-drying process. Cultivation of human mesenchymal stromal cells on the scaffolds, with and without adipogenic or osteogenic stimulation, revealed their cytocompatibility and potential applicability for adipose and bone tissue engineering.

  14. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    DOE PAGES

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; et al

    2016-01-27

    In research and industrial environments, additive manufacturing (AM) of metals and alloys is becoming a pervasive technology, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. We observed microstructure evolution, solidification product, andmore » presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.« less

  15. Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing.

    PubMed

    Tesavibul, Passakorn; Chantaweroad, Surapol; Laohaprapanon, Apinya; Channasanon, Somruethai; Uppanan, Paweena; Tanodekaew, Siriporn; Chalermkarnnon, Prasert; Sitthiseripratip, Kriskrai

    2015-01-01

    The fabrication of hydroxyapatite scaffolds for bone tissue engineering applications by using lithography-based additive manufacturing techniques has been introduced due to the abilities to control porous structures with suitable resolutions. In this research, the use of hydroxyapatite cellular structures, which are processed by lithography-based additive manufacturing machine, as a bone tissue engineering scaffold was investigated. The utilization of digital light processing system for additive manufacturing machine in laboratory scale was performed in order to fabricate the hydroxyapatite scaffold, of which biocompatibilities were eventually evaluated by direct contact and cell-culturing tests. In addition, the density and compressive strength of the scaffolds were also characterized. The results show that the hydroxyapatite scaffold at 77% of porosity with 91% of theoretical density and 0.36 MPa of the compressive strength are able to be processed. In comparison with a conventionally sintered hydroxyapatite, the scaffold did not present any cytotoxic signs while the viability of cells at 95.1% was reported. After 14 days of cell-culturing tests, the scaffold was able to be attached by pre-osteoblasts (MC3T3-E1) leading to cell proliferation and differentiation. The hydroxyapatite scaffold for bone tissue engineering was able to be processed by the lithography-based additive manufacturing machine while the biocompatibilities were also confirmed. PMID:26484553

  16. Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing.

    PubMed

    Tesavibul, Passakorn; Chantaweroad, Surapol; Laohaprapanon, Apinya; Channasanon, Somruethai; Uppanan, Paweena; Tanodekaew, Siriporn; Chalermkarnnon, Prasert; Sitthiseripratip, Kriskrai

    2015-01-01

    The fabrication of hydroxyapatite scaffolds for bone tissue engineering applications by using lithography-based additive manufacturing techniques has been introduced due to the abilities to control porous structures with suitable resolutions. In this research, the use of hydroxyapatite cellular structures, which are processed by lithography-based additive manufacturing machine, as a bone tissue engineering scaffold was investigated. The utilization of digital light processing system for additive manufacturing machine in laboratory scale was performed in order to fabricate the hydroxyapatite scaffold, of which biocompatibilities were eventually evaluated by direct contact and cell-culturing tests. In addition, the density and compressive strength of the scaffolds were also characterized. The results show that the hydroxyapatite scaffold at 77% of porosity with 91% of theoretical density and 0.36 MPa of the compressive strength are able to be processed. In comparison with a conventionally sintered hydroxyapatite, the scaffold did not present any cytotoxic signs while the viability of cells at 95.1% was reported. After 14 days of cell-culturing tests, the scaffold was able to be attached by pre-osteoblasts (MC3T3-E1) leading to cell proliferation and differentiation. The hydroxyapatite scaffold for bone tissue engineering was able to be processed by the lithography-based additive manufacturing machine while the biocompatibilities were also confirmed.

  17. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing of Ceramic Composites. Part III; Additive Manufacturing and Characterization of Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Grady, Joseph E.; Singh, Mrityunjay; Ramsey, Jack; Patterson, Clark; Santelle, Tom

    2015-01-01

    This publication is the third part of a three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce ceramic matrix composite materials and aircraft engine components by the binder jet process. Different SiC powders with median sizes ranging from 9.3 to 53.0 microns were investigated solely and in powder blends in order to maximize powder packing. Various infiltration approaches were investigated to include polycarbosilane (SMP-10), phenolic, and liquid silicon. Single infiltrations of SMP-10 and phenolic only slightly filled in the interior. When the SMP-10 was loaded with sub-micron sized SiC powders, the infiltrant gave a much better result of filling in the interior. Silicon carbide fibers were added to the powder bed to make ceramic matrix composite materials. Microscopy showed that the fibers were well distributed with no preferred orientation on the horizontal plane and fibers in the vertical plane were at angles as much as 45deg. Secondary infiltration steps were necessary to further densify the material. Two to three extra infiltration steps of SMP-10 increased the density by 0.20 to 0.55 g/cc. However, the highest densities achieved were 2.10 to 2.15 g/cc. Mechanical tests consisting of 4 point bend tests were conducted. Samples from the two CMC panels had higher strengths and strains to failure than the samples from the two nonfiber reinforced panels. The highest strengths were from Set N with 65 vol% fiber loading which had an average strength of 66 MPa. Analysis of the fracture surfaces did not reveal pullout of the reinforcing fibers. Blunt fiber failure suggested that there was not composite behavior. The binder jet additive manufacturing method was used to also demonstrate the fabrication of turbine engine vane components of two different designs and sizes. The

  18. A Novel Processing Approach for Additive Manufacturing of Commercial Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Roberts, Christopher E.; Bourell, David; Watt, Trevor; Cohen, Julien

    Aluminum 6061 is of great commercial interest due to its ubiquitous use in manufacturing, advantageous mechanical properties, and its successful certification in aerospace applications. However, as an off-eutectic with accompanying large freezing range, attempts to process the material by additive manufacturing have resulted in part cracking and diminished mechanical properties. A unique approach using mixed powders is presented to process this historically difficult-to-process material. Expansion of this combined-powder approach to other materials systems not typically compatible with additive manufacturing is possible. Dense parts without solidification cracking have been produced by the SLM process, as verified using SEM and EDS. An overview of this approach is presented along with test results using an Al-Si mixture.

  19. Pyramidal Fin Arrays Performance Using Streamwise Anisotropic Materials by Cold Spray Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2016-01-01

    This work evaluates the thermal and hydrodynamic performance of pyramidal fin arrays produced using cold spray as an additive manufacturing process. Near-net-shaped pyramidal fin arrays of pure aluminum, pure nickel, and stainless steel 304 were manufactured. Fin array characterization such as fin porosity level and surface roughness evaluation was performed. The thermal conductivities of the three different coating materials were measured by laser flash analysis. The results obtained show a lower thermal efficiency for stainless steel 304, whereas the performances of the aluminum and nickel fin arrays are similar. This result is explained by looking closely at the fin and substrate roughness induced by the cold gas dynamic additive manufacturing process. The multi-material fin array sample has a better thermal efficiency than stainless steel 304. The work demonstrates the potential of the process to produce streamwise anisotropic fin arrays as well as the benefits of such arrays.

  20. Evaluation of Additively Manufactured Metals for Use in Oxygen Systems Project

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan; Cooper, Ken; Peralta, Stephen; Wilcutt, Terrence; Hughitt, Brian; Generazio, Edward

    2016-01-01

    Space Launch System, Commercial Resupply, and Commercial Crew programs have published intent to use additively manufactured (AM) components in propulsion systems and are likely to include various life support systems in the future. Parts produced by these types of additive manufacturing techniques have not been fully evaluated for use in oxygen systems and the inherent risks have not been fully identified. Some areas of primary concern in the SLS process with respect to oxygen compatibility may be the porosity of the printed parts, fundamental differences in microstructure of an AM part as compared to traditional materials, or increased risk of shed metal particulate into an oxygen system. If an ignition were to occur the printed material could be more flammable than components manufactured from a traditional billet of raw material and/or present a significant hazards if not identified and rigorously studied in advance of implementation into an oxygen system.

  1. Innovative Technologies to Manufacture Hybrid Metal Foam/Composite Components

    SciTech Connect

    Carrino, L.; Durante, M.; Franchitti, S.; Sorrentino, L.; Tersigni, L.

    2011-01-17

    The aim of this paper is to verify the technological feasibility to realize hybrid metal-foam/composite component and the mechanical performances of the final structure. The hybrid component is composed by a cylindrical core in aluminum foam, the most used between those commercially available, and an outer layer in epoxy/S2-glass, manufactured by filament winding technology.A set of experimental tests have been carried out, to the aim to estimate the improvement of the hybrid component characteristics, compared to the sum of the single components (metal foam cylinder and epoxy/S2-glass tube).

  2. Advanced manufacturing technologies for the BeCOAT telescope

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael N.; Rajic, Slobodan; Seals, Roland D.

    1994-02-01

    The beryllium cryogenic off-axis telescope (BeCOAT) uses a two-mirror, non re-imaging, off- axis, Ritchey Chretian design with all-beryllium optics, structures and baffles. The purpose of this telescope is the system level demonstration of advanced manufacturing technologies for optics, optical benches, and baffle assemblies. The key issues that are addressed are single point diamond turning of beryllium optics, survivable fastening techniques, minimum beryllium utilization, and technologies leading to self-aligning, all-beryllium optical systems.

  3. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  4. Development of High Temperature Capacitor Technology and Manufacturing Capability

    SciTech Connect

    None, None

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: - Deeper oil exploration in higher temperature and pressure environments - Enabling power electronic and control equipment to operate in higher temperature environments - Enabling reduced cooling requirements of electronics - Increasing reliability and life of capacitors operating below rated temperature - Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: - FPE Film is difficult to handle and wind, resulting in poor yields - Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) - Encapsulation technologies must be improved to enable higher perature operation - Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  5. Manufacturing technology in the Danish pig slaughter industry.

    PubMed

    Hinrichsen, Lars

    2010-02-01

    The Danish pig meat industry is very export oriented. Ninety per cent of the production of the big cooperative slaughterhouses is exported to more than 100 countries all over the world. This poses a requirement for the industry to be globally competitive in the sense of quality, product safety and--of course--price. A big challenge for the industry is therefore to maintain sufficient low unit costs in spite of the high factor costs of Denmark. In particular the high labour costs must be accompanied by correspondingly high labour productivity. And, it should be emphasized, this high labour productivity must be achieved without compromising the concern for good working conditions of the employees in the manufacturing. Technology is one of the means to achieve this combination of good working conditions and high labour productivity. One of the most important benefits from automation is the improved working environment. Pig slaughtering, cutting and boning is traditionally very labour intensive and requires hard and repetitive work. For many people a job in a slaughterhouse is therefore not their first choice. This situation can be changed by automation, which will not only reduce arduous and repetitive work but in addition will introduce more motivating jobs in terms of planning, supervision and control of the new technology. Automation will also improve the hygiene and thereby the food safety. This applies in particular to the clean slaughter line where cross contamination between carcasses is reduced because of less manual handling and because the tools in the machines can be sterilised more effectively between each carcass. Automated processes are more accurate and repeatable than manual work. For some processes, in particular in cutting and boning, this will enhance the product yield. New technology can also improve the animal welfare. The group-stunning system and mechanised lairage systems are examples of that. Improved animal welfare has an ethical value in

  6. Manufacturing technology in the Danish pig slaughter industry.

    PubMed

    Hinrichsen, Lars

    2010-02-01

    The Danish pig meat industry is very export oriented. Ninety per cent of the production of the big cooperative slaughterhouses is exported to more than 100 countries all over the world. This poses a requirement for the industry to be globally competitive in the sense of quality, product safety and--of course--price. A big challenge for the industry is therefore to maintain sufficient low unit costs in spite of the high factor costs of Denmark. In particular the high labour costs must be accompanied by correspondingly high labour productivity. And, it should be emphasized, this high labour productivity must be achieved without compromising the concern for good working conditions of the employees in the manufacturing. Technology is one of the means to achieve this combination of good working conditions and high labour productivity. One of the most important benefits from automation is the improved working environment. Pig slaughtering, cutting and boning is traditionally very labour intensive and requires hard and repetitive work. For many people a job in a slaughterhouse is therefore not their first choice. This situation can be changed by automation, which will not only reduce arduous and repetitive work but in addition will introduce more motivating jobs in terms of planning, supervision and control of the new technology. Automation will also improve the hygiene and thereby the food safety. This applies in particular to the clean slaughter line where cross contamination between carcasses is reduced because of less manual handling and because the tools in the machines can be sterilised more effectively between each carcass. Automated processes are more accurate and repeatable than manual work. For some processes, in particular in cutting and boning, this will enhance the product yield. New technology can also improve the animal welfare. The group-stunning system and mechanised lairage systems are examples of that. Improved animal welfare has an ethical value in

  7. Comparison of prosthetic models produced by traditional and additive manufacturing methods

    PubMed Central

    Park, Jin-Young; Kim, Hae-Young; Kim, Ji-Hwan; Kim, Jae-Hong

    2015-01-01

    PURPOSE The purpose of this study was to verify the clinical-feasibility of additive manufacturing by comparing the accuracy of four different manufacturing methods for metal coping: the conventional lost wax technique (CLWT); subtractive methods with wax blank milling (WBM); and two additive methods, multi jet modeling (MJM), and micro-stereolithography (Micro-SLA). MATERIALS AND METHODS Thirty study models were created using an acrylic model with the maxillary upper right canine, first premolar, and first molar teeth. Based on the scan files from a non-contact blue light scanner (Identica; Medit Co. Ltd., Seoul, Korea), thirty cores were produced using the WBM, MJM, and Micro-SLA methods, respectively, and another thirty frameworks were produced using the CLWT method. To measure the marginal and internal gap, the silicone replica method was adopted, and the silicone images obtained were evaluated using a digital microscope (KH-7700; Hirox, Tokyo, Japan) at 140X magnification. Analyses were performed using two-way analysis of variance (ANOVA) and Tukey post hoc test (α=.05). RESULTS The mean marginal gaps and internal gaps showed significant differences according to tooth type (P<.001 and P<.001, respectively) and manufacturing method (P<.037 and P<.001, respectively). Micro-SLA did not show any significant difference from CLWT regarding mean marginal gap compared to the WBM and MJM methods. CONCLUSION The mean values of gaps resulting from the four different manufacturing methods were within a clinically allowable range, and, thus, the clinical use of additive manufacturing methods is acceptable as an alternative to the traditional lost wax-technique and subtractive manufacturing. PMID:26330976

  8. Logic For Qualification And Industrialisation Of Additive Layer Manufacturing Parts For Spatial Application

    NASA Astrophysics Data System (ADS)

    Brindeau, Aymeric; Lopes, Jean-Louis; Brivot, Frederic; Bourneaud, Florent; Desagulier, Christian

    2012-07-01

    ASTRIUM Space Transportation has been manufacturing composite equipments for satellite for 25 years. For this business, the development of Additive Layer Manufacturing (ALM) processes has been identified as a real opportunity to improve design and performances. For satellite equipments, ASTRIUM ST has chosen to investigate in the Electron Beam Melting process (patented EBM® process from Arcam AB company) for the manufacturing of Titanium parts, in collaboration with MECACHROME who has developed strong skills in this ALM process. This first development step has been achieved by introducing a titanium part realised by EBM on an equipment of Atlantic Bird 7 satellite launched in September 2011. The new step consists in the formal industrialisation of the EBM process for the procurement of titanium parts for satellite equipments. The present paper describes the logic retained for this industrialisation. It includes the technical requirements but also the verifications and inspections which have to be performed to guarantee that technical requirements are met.

  9. Development of manufacturing technologies for hard optical ceramic materials

    NASA Astrophysics Data System (ADS)

    Fess, Edward; DeFisher, Scott; Cahill, Mike; Wolfs, Frank

    2014-05-01

    Hard ceramic optical materials such as sapphire, ALON, Spinel, or PCA can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Premature tool wear or tool loading during the grinding process is a common result of these tough mechanical properties. Another challenge is the requirement to create geometries that conform to the platforms they reside in, but still achieve optical window tolerances for wavefront. These shapes can be complex and require new technologies to control sub aperture finishing techniques in a deterministic fashion. In this paper we will present three technologies developed at OptiPro Systems to address the challenges associated with these materials and complex geometries. The technologies presented will show how Ultrasonic grinding can reduce grinding load by up to 50%, UltraForm Finishing (UFF) and UltraSmooth Finishing (USF) technologies can accurately figure and finish these shapes, and how all of them can be controlled deterministically, with utilizing metrology feedback, by a new Computer Aided Manufacturing (CAM) software package developed by OptiPro called ProSurf.

  10. Additive manufacturing capabilities applied to inertial confinement confusion at Los Alamos National Laboratory

    DOE PAGES

    Cardenas, Tana; Schmidt, Derek William; Peterson, Dominic S.

    2016-06-30

    We describe the use at Los Alamos National Laboratory of additive manufacturing (AM) for a variety of jigs and coating, assembly, and radiography fixtures. Additive manufacturing has also been used to produce shipping containers of complex design that would be too costly to have fabricated using traditional techniques. The current goal for AM use in target fabrication is to increase target accuracy and rigidity. This has been realized by implementing AM into target stalk fabrication, allowing increased complexity to address target strength and the addition of features for alignment at facilities. As a result, we will describe the fabrication ofmore » these components and our plans to utilize AM in the future.« less

  11. Analysis of Glass-Filled Nylon in Laser Powder Bed Fusion Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Slotwinski, John; LaBarre, Erin; Forrest, Ryan; Crane, Emily

    2016-03-01

    At the Johns Hopkins University Applied Physics Laboratory (APL), glass bead-filled polyamide (a.k.a. nylon) (GFN) is being used frequently for functional parts and systems, built using a laser-based powder bed fusion (PBF) additive manufacturing (AM) system. Since these parts have performance requirements, it is important to understand the mechanical properties of the additively-made GFN as a function of build orientation and build parameters. In addition, the performance of the AM system used to manufacture these parts must be evaluated in order to understand its capabilities, especially in order to determine the dimensional precision and repeatability of features built with this system. This paper summarizes recent APL efforts to characterize the GFN powder, the mechanical properties of parts made with GFN, and the performance of the laser PBF machine while running GFN using an AM test artifact.

  12. The Role of Laser Additive Manufacturing Methods of Metals in Repair, Refurbishment and Remanufacturing - Enabling Circular Economy

    NASA Astrophysics Data System (ADS)

    Leino, Maija; Pekkarinen, Joonas; Soukka, Risto

    Circular economy is an economy model where products, components, and materials are aimed to be kept at their highest utility and value at all times. Repair, refurbishment and remanufacturing processes are procedures aiming at returning the value of the product during its life cycle. Additive manufacturing (AM) is expected to be an enabling technology in circular economy based business models. One of AM process that enables repair, refurbishment and remanufacturing is Directed Energy Deposition. Respectively Powder Bed Fusion enables manufacturing of replacement components on demand. The aim of this study is to identify the current research findings and state of art of utilizing AM in repair, refurbishment and remanufacturing processes of metallic products. The focus is in identifying possibilities of AM in promotion of circular economy and expected environmental benefits based on the found literature. Results of the study indicate significant potential in utilizing AM in repair, refurbishment and remanufacturing activities.

  13. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    SciTech Connect

    Roy Scandrol

    2003-04-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  14. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    SciTech Connect

    Roy Scandrol

    2003-10-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  15. Cloud-Based Automated Design and Additive Manufacturing: A Usage Data-Enabled Paradigm Shift.

    PubMed

    Lehmhus, Dirk; Wuest, Thorsten; Wellsandt, Stefan; Bosse, Stefan; Kaihara, Toshiya; Thoben, Klaus-Dieter; Busse, Matthias

    2015-12-19

    Integration of sensors into various kinds of products and machines provides access to in-depth usage information as basis for product optimization. Presently, this large potential for more user-friendly and efficient products is not being realized because (a) sensor integration and thus usage information is not available on a large scale and (b) product optimization requires considerable efforts in terms of manpower and adaptation of production equipment. However, with the advent of cloud-based services and highly flexible additive manufacturing techniques, these obstacles are currently crumbling away at rapid pace. The present study explores the state of the art in gathering and evaluating product usage and life cycle data, additive manufacturing and sensor integration, automated design and cloud-based services in manufacturing. By joining and extrapolating development trends in these areas, it delimits the foundations of a manufacturing concept that will allow continuous and economically viable product optimization on a general, user group or individual user level. This projection is checked against three different application scenarios, each of which stresses different aspects of the underlying holistic concept. The following discussion identifies critical issues and research needs by adopting the relevant stakeholder perspectives.

  16. Cloud-Based Automated Design and Additive Manufacturing: A Usage Data-Enabled Paradigm Shift

    PubMed Central

    Lehmhus, Dirk; Wuest, Thorsten; Wellsandt, Stefan; Bosse, Stefan; Kaihara, Toshiya; Thoben, Klaus-Dieter; Busse, Matthias

    2015-01-01

    Integration of sensors into various kinds of products and machines provides access to in-depth usage information as basis for product optimization. Presently, this large potential for more user-friendly and efficient products is not being realized because (a) sensor integration and thus usage information is not available on a large scale and (b) product optimization requires considerable efforts in terms of manpower and adaptation of production equipment. However, with the advent of cloud-based services and highly flexible additive manufacturing techniques, these obstacles are currently crumbling away at rapid pace. The present study explores the state of the art in gathering and evaluating product usage and life cycle data, additive manufacturing and sensor integration, automated design and cloud-based services in manufacturing. By joining and extrapolating development trends in these areas, it delimits the foundations of a manufacturing concept that will allow continuous and economically viable product optimization on a general, user group or individual user level. This projection is checked against three different application scenarios, each of which stresses different aspects of the underlying holistic concept. The following discussion identifies critical issues and research needs by adopting the relevant stakeholder perspectives. PMID:26703606

  17. Additive manufacture (3d printing) of plasma diagnostic components and assemblies for fusion experiments

    NASA Astrophysics Data System (ADS)

    Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander

    2015-11-01

    Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.

  18. Cloud-Based Automated Design and Additive Manufacturing: A Usage Data-Enabled Paradigm Shift.

    PubMed

    Lehmhus, Dirk; Wuest, Thorsten; Wellsandt, Stefan; Bosse, Stefan; Kaihara, Toshiya; Thoben, Klaus-Dieter; Busse, Matthias

    2015-01-01

    Integration of sensors into various kinds of products and machines provides access to in-depth usage information as basis for product optimization. Presently, this large potential for more user-friendly and efficient products is not being realized because (a) sensor integration and thus usage information is not available on a large scale and (b) product optimization requires considerable efforts in terms of manpower and adaptation of production equipment. However, with the advent of cloud-based services and highly flexible additive manufacturing techniques, these obstacles are currently crumbling away at rapid pace. The present study explores the state of the art in gathering and evaluating product usage and life cycle data, additive manufacturing and sensor integration, automated design and cloud-based services in manufacturing. By joining and extrapolating development trends in these areas, it delimits the foundations of a manufacturing concept that will allow continuous and economically viable product optimization on a general, user group or individual user level. This projection is checked against three different application scenarios, each of which stresses different aspects of the underlying holistic concept. The following discussion identifies critical issues and research needs by adopting the relevant stakeholder perspectives. PMID:26703606

  19. Fatigue performance of laser additive manufactured Ti-6Al-4V in very high cycle fatigue (VHCF) regime up to 109 cycles

    NASA Astrophysics Data System (ADS)

    Wycisk, Eric; Siddique, Shafaqat; Herzog, Dirk; Walther, Frank; Emmelmann, Claus

    2015-12-01

    Additive manufacturing technologies are in the process of establishing themselves as an alternative production technology to conventional manufacturing such as casting or milling. Especially laser additive manufacturing (LAM) enables the production of metallic parts with mechanical properties comparable to conventionally manufactured components. Due to the high geometrical freedom in LAM the technology enables the production of ultra-light weight designs and therefore gains increasing importance in aircraft and space industry. The high quality standards of these industries demand predictability of material properties for static and dynamic load cases. However, fatigue properties especially in the very high cycle fatigue regime until 109 cycles have not been sufficiently determined yet. Therefore this paper presents an analysis of fatigue properties of laser additive manufactured Ti-6Al-4V under cyclic tension-tension until 107 cycles and tension-compression load until 109 cycles. For the analysis of laser additive manufactured titanium alloy Ti-6Al-4V Woehler fatigue tests under tension-tension and tension-compression were carried out in the high cycle and very high cycle fatigue regime. Specimens in stress-relieved as well as hot-isostatic-pressed conditions were analyzed regarding crack initiation site, mean stress sensitivity and overall fatigue performance. The determined fatigue properties show values in the range of conventionally manufactured Ti-6Al-4V with particularly good performance for hot-isostatic-pressed additive-manufactured material. For all conditions the results show no conventional fatigue limit but a constant increase in fatigue life with decreasing loads. No effects of test frequency on life span could be determined. However, independently of testing principle, a shift of crack initiation from surface to internal initiation could be observed with increasing cycles to failure.

  20. Perfusion electrodeposition of calcium phosphate on additive manufactured titanium scaffolds for bone engineering.

    PubMed

    Chai, Yoke Chin; Truscello, Silvia; Bael, Simon Van; Luyten, Frank P; Vleugels, Jozef; Schrooten, Jan

    2011-05-01

    A perfusion electrodeposition (P-ELD) system was reported to functionalize additive manufactured Ti6Al4V scaffolds with a calcium phosphate (CaP) coating in a controlled and reproducible manner. The effects and interactions of four main process parameters - current density (I), deposition time (t), flow rate (f) and process temperature (T) - on the properties of the CaP coating were investigated. The results showed a direct relation between the parameters and the deposited CaP mass, with a significant effect for t (P=0.001) and t-f interaction (P=0.019). Computational fluid dynamic analysis showed a relatively low electrolyte velocity within the struts and a high velocity in the open areas within the P-ELD chamber, which were not influenced by a change in f. This is beneficial for promoting a controlled CaP deposition and hydrogen gas removal. Optimization studies showed that a minimum t of 6 h was needed to obtain complete coating of the scaffold regardless of I, and the thickness was increased by increasing I and t. Energy-dispersive X-ray and X-ray diffraction analysis confirmed the deposition of highly crystalline synthetic carbonated hydroxyapatite under all conditions (Ca/P ratio=1.41). High cell viability and cell-material interactions were demonstrated by in vitro culture of human periosteum derived cells on coated scaffolds. This study showed that P-ELD provides a technological tool to functionalize complex scaffold structures with a biocompatible CaP layer that has controlled and reproducible physicochemical properties suitable for bone engineering.

  1. Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) Technology Transfer Model Report.

    ERIC Educational Resources Information Center

    Sandia National Labs., Albuquerque, NM.

    The Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) is a cooperative effort among education and research institutions in New Mexico to analyze problems in transferring environmental technologies from Department of Energy laboratories to small and medium enterprises (SME's). The goal of the ECMT3I is to…

  2. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    SciTech Connect

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.; Richardson, W.C.

    2004-02-04

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  3. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Husser, D. L.; Mohr, T. C.; Richardson, W. C.

    2004-02-01

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  4. Additive Manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry

    NASA Astrophysics Data System (ADS)

    Gebhardt, Andreas; Schmidt, Frank-Michael; Hötter, Jan-Steffen; Sokalla, Wolfgang; Sokalla, Patrick

    Additive Manufacturing of metal parts by Selective Laser Melting has become a powerful tool for the direct manufacturing of complex parts mainly for the aerospace and medical industry. With the introduction of its desktop machine, Realizer targeted the dental market. The contribution describes the special features of the machine, discusses details of the process and shows manufacturing results focused on metal dental devices.

  5. Effective Mechanical Properties of Lattice Material Fabricated by Material Extrusion Additive Manufacturing

    SciTech Connect

    Park, Sang-In; Choi, Seung-kyum; Rosen, David W; Duty, Chad E

    2014-01-01

    In this paper, a two-step homogenization method is proposed and implemented for evaluating effective mechanical properties of lattice structured material fabricated by the material extrusion additive manufacturing process. In order to consider the characteristics of the additive manufacturing process in estimation procedures, the levels of scale for homogenization are divided into three stages the levels of layer deposition, structural element, and lattice structure. The method consists of two transformations among stages. In the first step, the transformation between layer deposition and structural element levels is proposed to find the geometrical and material effective properties of structural elements in the lattice structure. In the second step, the method to estimate effective mechanical properties of lattice material is presented, which uses a unit cell and is based on the discretized homogenization method for periodic structure. The method is implemented for cubic lattice structure and compared to experimental results for validation purposes.

  6. Next Generation Orthopaedic Implants by Additive Manufacturing Using Electron Beam Melting

    PubMed Central

    Murr, Lawrence E.; Gaytan, Sara M.; Martinez, Edwin; Medina, Frank; Wicker, Ryan B.

    2012-01-01

    This paper presents some examples of knee and hip implant components containing porous structures and fabricated in monolithic forms utilizing electron beam melting (EBM). In addition, utilizing stiffness or relative stiffness versus relative density design plots for open-cellular structures (mesh and foam components) of Ti-6Al-4V and Co-29Cr-6Mo alloy fabricated by EBM, it is demonstrated that stiffness-compatible implants can be fabricated for optimal stress shielding for bone regimes as well as bone cell ingrowth. Implications for the fabrication of patient-specific, monolithic, multifunctional orthopaedic implants using EBM are described along with microstructures and mechanical properties characteristic of both Ti-6Al-4V and Co-29Cr-6Mo alloy prototypes, including both solid and open-cellular prototypes manufactured by additive manufacturing (AM) using EBM. PMID:22956957

  7. Enhancing Surface Finish of Additively Manufactured Titanium and Cobalt Chrome Elements Using Laser Based Finishing

    NASA Astrophysics Data System (ADS)

    Gora, Wojciech S.; Tian, Yingtao; Cabo, Aldara Pan; Ardron, Marcus; Maier, Robert R. J.; Prangnell, Philip; Weston, Nicholas J.; Hand, Duncan P.

    Additive manufacturing (AM) offers the possibility of creating a complex free form object as a single element, which is not possible using traditional mechanical machining. Unfortunately the typically rough surface finish of additively manufactured parts is unsuitable for many applications. As a result AM parts must be post-processed; typically mechanically machined and/or and polished using either chemical or mechanical techniques (both of which have their limitations). Laser based polishing is based on remelting of a very thin surface layer and it offers potential as a highly repeatable, higher speed process capable of selective area polishing, and without any waste problems (no abrasives or liquids). In this paper an in-depth investigation of CW laser polishing of titanium and cobalt chrome AM elements is presented. The impact of different scanning strategies, laser parameters and initial surface condition on the achieved surface finish is evaluated.

  8. Rationalization of Microstructure Heterogeneity in INCONEL 718 Builds Made by the Direct Laser Additive Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; McAllister, Donald; Colijn, Hendrik; Mills, Michael; Farson, Dave; Nordin, Mark; Babu, Sudarsanam

    2014-09-01

    Simulative builds, typical of the tip-repair procedure, with matching compositions were deposited on an INCONEL 718 substrate using the laser additive manufacturing process. In the as-processed condition, these builds exhibit spatial heterogeneity in microstructure. Electron backscattering diffraction analyses showed highly misoriented grains in the top region of the builds compared to those of the lower region. Hardness maps indicated a 30 pct hardness increase in build regions close to the substrate over those of the top regions. Detailed multiscale characterizations, through scanning electron microscopy, electron backscattered diffraction imaging, high-resolution transmission electron microscopy, and ChemiSTEM, also showed microstructure heterogeneities within the builds in different length scales including interdendritic and interprecipitate regions. These multiscale heterogeneities were correlated to primary solidification, remelting, and solid-state precipitation kinetics of γ″ induced by solute segregation, as well as multiple heating and cooling cycles induced by the laser additive manufacturing process.

  9. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants.

    PubMed

    Zhang, Z; Jones, D; Yue, S; Lee, P D; Jones, J R; Sutcliffe, C J; Jones, E

    2013-10-01

    Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). PMID:23910314

  10. Affordable Manufacturing Technologies Being Developed for Actively Cooled Ceramic Components

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1999-01-01

    Efforts to improve the performance of modern gas turbine engines have imposed increasing service temperature demands on structural materials. Through active cooling, the useful temperature range of nickel-base superalloys in current gas turbine engines has been extended, but the margin for further improvement appears modest. Because of their low density, high-temperature strength, and high thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, high processing costs have proven to be a major obstacle to their widespread application. Advanced rapid prototyping technology, which is developing rapidly, offers the possibility of an affordable manufacturing approach.

  11. A Study of Aluminum Combustion in Solids, Powders, Foams, Additively-Manufactured Lattices, and Composites

    NASA Astrophysics Data System (ADS)

    Black, James; Trammell, Norman; Batteh, Jad; Curran, Nicholas; Rogers, John; Littrell, Donald

    2015-06-01

    This study examines the fireball characteristics, blast parameters, and combustion efficiency of explosively-shocked aluminum-based materials. The materials included structural and non-structural aluminum forms - such as solid cylinders, foams, additively-manufactured lattices, and powders - and some polytetrafluoroethylene-aluminum (PTFE-Al) composites. The materials were explosively dispersed in a small blast chamber, and the blast properties and products were measured with pressure transducers, thermocouples, slow and fast ultraviolet/visible spectrometers, and high-speed video.

  12. Material Development for Tooling Applications Using Big Area Additive Manufacturing (BAAM)

    SciTech Connect

    Duty, Chad E.; Drye, Tom; Franc, Alan

    2015-03-01

    Techmer Engineered Solutions (TES) is working with Oak Ridge National Laboratory (ORNL) to develop materials and evaluate their use for ORNL s recently developed Big Area Additive Manufacturing (BAAM) system for tooling applications. The first phase of the project established the performance of some commercially available polymer compositions deposited with the BAAM system. Carbon fiber reinforced ABS demonstrated a tensile strength of nearly 10 ksi, which is sufficient for a number of low temperature tooling applications.

  13. Cranioplasty prosthesis manufacturing based on reverse engineering technology

    PubMed Central

    Chrzan, Robert; Urbanik, Andrzej; Karbowski, Krzysztof; Moskała, Marek; Polak, Jarosław; Pyrich, Marek

    2012-01-01

    Summary Background Most patients with large focal skull bone loss after craniectomy are referred for cranioplasty. Reverse engineering is a technology which creates a computer-aided design (CAD) model of a real structure. Rapid prototyping is a technology which produces physical objects from virtual CAD models. The aim of this study was to assess the clinical usefulness of these technologies in cranioplasty prosthesis manufacturing. Material/Methods CT was performed on 19 patients with focal skull bone loss after craniectomy, using a dedicated protocol. A material model of skull deficit was produced using computer numerical control (CNC) milling, and individually pre-operatively adjusted polypropylene-polyester prosthesis was prepared. In a control group of 20 patients a prosthesis was manually adjusted to each patient by a neurosurgeon during surgery, without using CT-based reverse engineering/rapid prototyping. In each case, the prosthesis was implanted into the patient. The mean operating times in both groups were compared. Results In the group of patients with reverse engineering/rapid prototyping-based cranioplasty, the mean operating time was shorter (120.3 min) compared to that in the control group (136.5 min). The neurosurgeons found the new technology particularly useful in more complicated bone deficits with different curvatures in various planes. Conclusions Reverse engineering and rapid prototyping may reduce the time needed for cranioplasty neurosurgery and improve the prosthesis fitting. Such technologies may utilize data obtained by commonly used spiral CT scanners. The manufacturing of individually adjusted prostheses should be commonly used in patients planned for cranioplasty with synthetic material. PMID:22207125

  14. Additively Manufactured Device for Dynamic Culture of Large Arrays of 3D Tissue Engineered Constructs.

    PubMed

    Costa, Pedro F; Hutmacher, Dietmar W; Theodoropoulos, Christina; Gomes, Manuela E; Reis, Rui L; Vaquette, Cédryck

    2015-04-22

    The ability to test large arrays of cell and biomaterial combinations in 3D environments is still rather limited in the context of tissue engineering and regenerative medicine. This limitation can be generally addressed by employing highly automated and reproducible methodologies. This study reports on the development of a highly versatile and upscalable method based on additive manufacturing for the fabrication of arrays of scaffolds, which are enclosed into individualized perfusion chambers. Devices containing eight scaffolds and their corresponding bioreactor chambers are simultaneously fabricated utilizing a dual extrusion additive manufacturing system. To demonstrate the versatility of the concept, the scaffolds, while enclosed into the device, are subsequently surface-coated with a biomimetic calcium phosphate layer by perfusion with simulated body fluid solution. 96 scaffolds are simultaneously seeded and cultured with human osteoblasts under highly controlled bidirectional perfusion dynamic conditions over 4 weeks. Both coated and noncoated resulting scaffolds show homogeneous cell distribution and high cell viability throughout the 4 weeks culture period and CaP-coated scaffolds result in a significantly increased cell number. The methodology developed in this work exemplifies the applicability of additive manufacturing as a tool for further automation of studies in the field of tissue engineering and regenerative medicine.

  15. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets

    PubMed Central

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans

    2016-01-01

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials. PMID:27796339

  16. Biomimetic calcium phosphate coating of additively manufactured porous CoCr implants

    NASA Astrophysics Data System (ADS)

    Lindahl, Carl; Xia, Wei; Engqvist, Håkan; Snis, Anders; Lausmaa, Jukka; Palmquist, Anders

    2015-10-01

    The aim of this work was to study the feasibility to use a biomimetic method to prepare biomimetic hydroxyapatite (HA) coatings on CoCr substrates with short soaking times and to characterize the properties of such coatings. A second objective was to investigate if the coatings could be applied to porous CoCr implants manufactured by electron beam melting (EBM). The coating was prepared by immersing the pretreated CoCr substrates and EBM implants into the phosphate-buffered solution with Ca2+ in sealed plastic bottles, kept at 60 °C for 3 days. The formed coating was partially crystalline, slightly calcium deficient and composed of plate-like crystallites forming roundish flowers in the size range of 300-500 nm. Cross-section imaging showed a thickness of 300-500 nm. In addition, dissolution tests in Tris-HCl up to 28 days showed that a substantial amount of the coating had dissolved, however, undergoing only minor morphological changes. A uniform coating was formed within the porous network of the additive manufactured implants having similar thickness and morphology as for the flat samples. In conclusion, the present coating procedure allows coatings to be formed on CoCr and could be used for complex shaped, porous implants made by additive manufacturing.

  17. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.

    PubMed

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants.

  18. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.

    PubMed

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. PMID:26046272

  19. Foreword: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control

    DOE PAGES

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; Hamilton, Reginald F.; Mishra, Rajiv; Sears, James

    2015-06-26

    Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less

  20. Foreword: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control

    SciTech Connect

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; Hamilton, Reginald F.; Mishra, Rajiv; Sears, James

    2015-06-26

    Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. This symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.

  1. Cement manufacture and the environment - Part I: Chemistry and technology

    USGS Publications Warehouse

    Van Oss, H. G.; Padovani, A.C.

    2002-01-01

    Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials perton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which calcination of limestone and the combustion of fuels each contribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion article (part II), some of the environmental challenges and opportunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.

  2. Crossword Puzzle Makes It Fun: Introduce Green Manufacturing in Wood Technology Courses

    ERIC Educational Resources Information Center

    Iley, John L.; Hague, Doug

    2012-01-01

    Sustainable, or "green," manufacturing and its practices are becoming more and more a part of today's industry, including wood product manufacturing. This article provides introductory information on green manufacturing in wood technology and a crossword puzzle based on green manufacturing terms. The authors use the puzzle at the college level to…

  3. Microstructural Development and Technical Challenges in Laser Additive Manufacturing: Case Study with a 316L Industrial Part

    NASA Astrophysics Data System (ADS)

    Marya, Manuel; Singh, Virendra; Marya, Surendar; Hascoet, Jean Yves

    2015-08-01

    Additive manufacturing (AM) brings disruptive changes to the ways parts, and products are designed, fabricated, tested, qualified, inspected, marketed, and sold. These changes introduce novel technical challenges and concerns arising from the maturity and diversity of today's AM processes, feedstock materials, and process parameter interactions. AM bears a resemblance with laser and electron beam welding in the so-called conduction mode, which involves a multitude of dynamic physical events between the projected feedstock and a moving heat source that eventually influence AM part properties. For this paper, an air vent was selected for its thin-walled, hollow, and variable cross section, and limited size. The studied air vents, randomly selected from a qualification batch, were fabricated out of 316L stainless steel using a 4 kW fiber laser powder-fed AM system, referred to as construction laser additive direct (CLAD). These were systematically characterized by microhardness indentation, visual examination, optical and scanning electron microscopy, and electron-back-scattering diffraction in order to determine AM part suitability for service and also broadly discuss metallurgical phenomena. The paper then briefly expands the discussion to include additional engineering alloys and further analyze relationships between AM process parameters and AM part properties, consistently utilizing past experience with the same powder-fed CLAD 3D printer, the well-established science and technology of welding and joining, and recent publications on additive manufacturing.

  4. Integration of magnetorheological finishing (MRF) technology for ultraprecision optical manufacturing

    NASA Astrophysics Data System (ADS)

    Pun, Ashley M. H.; Chan, Norman S. W.; Louie, Derek C. H.; Li, Li-Man

    2003-05-01

    Magneto-rheological-finishing (MRF) technology is capable of substantially improving the surface figure of spherical lens to about 1/20 wavelength. Nonetheless, since MRF technology is an ultra-fine polishing process, in which only less than a few microns of material will be removed per cycle, time for making an aspheric surface from a best-fit sphere can be very significant. The situation can be worse if the surface profile is considerably deviated from its best-fit spherical surface. This is not desirable for actual production, and thus a manufacturing cell is proposed to enhance the efficiency of the high precision lens manufacturing process. On the other hand, MRF was suggested to be an alternative for lapping of surface of ceramic lens mould insert. Rather than using the abrasive particles in typical lapping process, the magnetized slurry in MRF is moved past the rotating surface of mould insert locally under the computer-control process so as to achieve the desired surface form accuracy.

  5. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review.

    PubMed

    Wang, Xiaojian; Xu, Shanqing; Zhou, Shiwei; Xu, Wei; Leary, Martin; Choong, Peter; Qian, M; Brandt, Milan; Xie, Yi Min

    2016-03-01

    One of the critical issues in orthopaedic regenerative medicine is the design of bone scaffolds and implants that replicate the biomechanical properties of the host bones. Porous metals have found themselves to be suitable candidates for repairing or replacing the damaged bones since their stiffness and porosity can be adjusted on demands. Another advantage of porous metals lies in their open space for the in-growth of bone tissue, hence accelerating the osseointegration process. The fabrication of porous metals has been extensively explored over decades, however only limited controls over the internal architecture can be achieved by the conventional processes. Recent advances in additive manufacturing have provided unprecedented opportunities for producing complex structures to meet the increasing demands for implants with customized mechanical performance. At the same time, topology optimization techniques have been developed to enable the internal architecture of porous metals to be designed to achieve specified mechanical properties at will. Thus implants designed via the topology optimization approach and produced by additive manufacturing are of great interest. This paper reviews the state-of-the-art of topological design and manufacturing processes of various types of porous metals, in particular for titanium alloys, biodegradable metals and shape memory alloys. This review also identifies the limitations of current techniques and addresses the directions for future investigations. PMID:26773669

  6. Lightweight custom composite prosthetic components using an additive manufacturing-based molding technique.

    PubMed

    Leddy, Michael T; Belter, Joseph T; Gemmell, Kevin D; Dollar, Aaron M

    2015-01-01

    Additive manufacturing techniques are becoming more prominent and cost-effective as 3D printing becomes higher quality and more inexpensive. The idea of 3D printed prosthetics components promises affordable, customizable devices, but these systems currently have major shortcomings in durability and function. In this paper, we propose a fabrication method for custom composite prostheses utilizing additive manufacturing, allowing for customizability, as well the durability of professional prosthetics. The manufacturing process is completed using 3D printed molds in a multi-stage molding system, which creates a custom finger or palm with a lightweight epoxy foam core, a durable composite outer shell, and soft urethane gripping surfaces. The composite material was compared to 3D printed and aluminum materials using a three-point bending test to compare stiffness, as well as gravimetric measurements to compare weight. The composite finger demonstrates the largest stiffness with the lowest weight compared to other tested fingers, as well as having customizability and lower cost, proving to potentially be a substantial benefit to the development of upper-limb prostheses. PMID:26737367

  7. Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2016-03-01

    Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal-ceramic composites with compositional and functional gradation.

  8. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review.

    PubMed

    Wang, Xiaojian; Xu, Shanqing; Zhou, Shiwei; Xu, Wei; Leary, Martin; Choong, Peter; Qian, M; Brandt, Milan; Xie, Yi Min

    2016-03-01

    One of the critical issues in orthopaedic regenerative medicine is the design of bone scaffolds and implants that replicate the biomechanical properties of the host bones. Porous metals have found themselves to be suitable candidates for repairing or replacing the damaged bones since their stiffness and porosity can be adjusted on demands. Another advantage of porous metals lies in their open space for the in-growth of bone tissue, hence accelerating the osseointegration process. The fabrication of porous metals has been extensively explored over decades, however only limited controls over the internal architecture can be achieved by the conventional processes. Recent advances in additive manufacturing have provided unprecedented opportunities for producing complex structures to meet the increasing demands for implants with customized mechanical performance. At the same time, topology optimization techniques have been developed to enable the internal architecture of porous metals to be designed to achieve specified mechanical properties at will. Thus implants designed via the topology optimization approach and produced by additive manufacturing are of great interest. This paper reviews the state-of-the-art of topological design and manufacturing processes of various types of porous metals, in particular for titanium alloys, biodegradable metals and shape memory alloys. This review also identifies the limitations of current techniques and addresses the directions for future investigations.

  9. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    SciTech Connect

    Shulman, Holly; Ross, Nicole

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, green handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.

  10. Lightweight custom composite prosthetic components using an additive manufacturing-based molding technique.

    PubMed

    Leddy, Michael T; Belter, Joseph T; Gemmell, Kevin D; Dollar, Aaron M

    2015-01-01

    Additive manufacturing techniques are becoming more prominent and cost-effective as 3D printing becomes higher quality and more inexpensive. The idea of 3D printed prosthetics components promises affordable, customizable devices, but these systems currently have major shortcomings in durability and function. In this paper, we propose a fabrication method for custom composite prostheses utilizing additive manufacturing, allowing for customizability, as well the durability of professional prosthetics. The manufacturing process is completed using 3D printed molds in a multi-stage molding system, which creates a custom finger or palm with a lightweight epoxy foam core, a durable composite outer shell, and soft urethane gripping surfaces. The composite material was compared to 3D printed and aluminum materials using a three-point bending test to compare stiffness, as well as gravimetric measurements to compare weight. The composite finger demonstrates the largest stiffness with the lowest weight compared to other tested fingers, as well as having customizability and lower cost, proving to potentially be a substantial benefit to the development of upper-limb prostheses.

  11. Additive Manufacturing, Design, Testing, and Fabrication: A Full Engineering Experience at JSC

    NASA Technical Reports Server (NTRS)

    Zusack, Steven

    2016-01-01

    I worked on several projects this term. While most projects involved additive manufacturing, I was also involved with two design projects, two testing projects, and a fabrication project. The primary mentor for these was Richard Hagen. Secondary mentors were Hai Nguyen, Khadijah Shariff, and fabrication training from James Brown. Overall, my experience at JSC has been successful and what I have learned will continue to help me in my engineering education and profession long after I leave. My 3D printing projects ranged from less than a 1 cubic centimeter to about 1 cubic foot and involved several printers using different printing technologies. It was exciting to become familiar with printing technologies such as industrial grade FDM (Fused Deposition Modeling), the relatively new SLA (Stereolithography), and PolyJet. My primary duty with the FDM printers was to model parts that came in from various sources to print effectively and efficiently. Using methods my mentor taught me and the Stratasys Insight software, I was able to minimize imperfections, hasten build time, improve strength for specific forces (tensile, shear, etc...), and reduce likelihood of a print-failure. Also using FDM, I learned how to repair a part after it was printed. This is done by using a special kind of glue that chemically melts the two faces of plastic parts together to form a fused interface. My first goal with SLA technology was to bring the printer back to operational readiness. In becoming familiar with the Pegasus SLA printer, I researched the leveling, laser settings, and different vats to hold liquid material. With this research, I was successfully able to bring the Pegasus back online and have successfully printed multiple sample parts as well as functional parts. My experience with PolyJet technology has been focused on an understanding of the abilities/limits, costs, and the maintenance for daily use. Still upcoming will be experience with using a composite printer that uses FDM

  12. Photovoltaic Czochralski silicon manufacturing technology improvements. Annual subcontract report, 1 April 1993--31 March 1994

    SciTech Connect

    Jester, T.

    1995-03-01

    This report describes work performed under a 3-year, 3-phase, cost-share contract to demonstrate significant cost reductions and improvements in manufacturing technology. The objective of the program is to reduce costs in photovoltaic manufacturing by approximately 10% per year. The work was focused in three main areas: (1) silicon crystal growth and thin wafer technology; (2) silicon cell processing; and (3) silicon module fabrication and environmental, safety, and health issues. During this reporting period, several significant improvements were achieved. The crystal growing operation improved significantly with an increase in growth capacity due to larger crucibles, higher polysilicon packing density, and high pull speeds. Wafer processing with wire saws progressed rapidly, and the operation is completely converted to wire saw wafer processing. The wire saws yield almost 50% more wafers per inch in production, thus improving manufacturing volume by 50% without any additional expense in crystal growth. Cell processing improvements focused on better understanding the contact paste and firing processes. Module designs for lower material and labor costs began with the focus on a new junction box, larger modules with larger cells, and a less costly framing technique. In addition, chlorofluorocarbon (CFC) usage was completely eliminated in the Siemens manufacturing facility during this period, resulting in significant reductions in the cost of caustic waste treatment.

  13. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  14. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  15. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  16. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  17. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  18. Characterization of Effect of Support Structures in Laser Additive Manufacturing of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Järvinen, Jukka-Pekka; Matilainen, Ville; Li, Xiaoyun; Piili, Heidi; Salminen, Antti; Mäkelä, Ismo; Nyrhilä, Olli

    Laser additive manufacturing (LAM) of stainless steel is a layer wisetechnology for fabricating 3D parts from metal powder via selectively melting powder with laser beam. Support structures play a significant role in LAM process as they help to remove heat away from the process and on the other hand hold the work piece in its place. A successful design of support structures can help to achievea building process fast and inexpensive with high quality. Aimof this study was to characterize the usability of two types of support structures: web and tube supports. Purpose of this studywas also to analyze how suitable they are in two industrial application cases: case for dental application and case for jewelry application. It was concluded that the removability of web supports was much better than tube supports. It was noticed that support structures are an important part of LAM process and they strongly affect the manufacturability and the end quality of the part.

  19. Processing of New Materials by Additive Manufacturing: Iron-Based Alloys Containing Silver for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Hoyer, Peter; Schwarze, Dieter; Schaper, Mirko; Grothe, Richard; Wiesener, Markus; Grundmeier, Guido; Maier, Hans Jürgen

    2015-07-01

    In the biomedical sector, production of bioresorbable implants remains challenging due to improper dissolution rates or deficient strength of many candidate alloys. Promising materials for overcoming the prevalent drawbacks are iron-based alloys containing silver. However, due to immiscibility of iron and silver these alloys cannot be manufactured based on conventional processing routes. In this study, iron-manganese-silver alloys were for the first time synthesized by means of additive manufacturing. Based on combined mechanical, microscopic, and electrochemical studies, it is shown that silver particles well distributed in the matrix can be obtained, leading to cathodic sites in the composite material. Eventually, this results in an increased dissolution rate of the alloy. Stress-strain curves showed that the incorporation of silver barely affects the mechanical properties.

  20. Value Addition in Information Technology and Literacy: An Empirical Investigation

    ERIC Educational Resources Information Center

    Sanghera, Kamaljeet K.

    2009-01-01

    The purpose of the research is to analyze the value addition in students' information communication and technology (ICT) literacy level and confidence in using technology after completing a general education information technology course at a four-year university. An online survey was created to examine students' perceptions. The findings revealed…

  1. A digital process for additive manufacturing of occlusal splints: a clinical pilot study

    PubMed Central

    Salmi, Mika; Paloheimo, Kaija-Stiina; Tuomi, Jukka; Ingman, Tuula; Mäkitie, Antti

    2013-01-01

    The aim of this study was to develop and evaluate a digital process for manufacturing of occlusal splints. An alginate impression was taken from the upper and lower jaws of a patient with temporomandibular disorder owing to cross bite and wear of the teeth, and then digitized using a table laser scanner. The scanned model was repaired using the 3Data Expert software, and a splint was designed with the Viscam RP software. A splint was manufactured from a biocompatible liquid photopolymer by stereolithography. The system employed in the process was SLA 350. The splint was worn nightly for six months. The patient adapted to the splint well and found it comfortable to use. The splint relieved tension in the patient's bite muscles. No sign of tooth wear or significant splint wear was detected after six months of testing. Modern digital technology enables us to manufacture clinically functional occlusal splints, which might reduce costs, dental technician working time and chair-side time. Maximum-dimensional errors of approximately 1 mm were found at thin walls and sharp corners of the splint when compared with the digital model. PMID:23614943

  2. Intelligent processing equipment developments within the Navy's Manufacturing Technology Centers of Excellence

    NASA Astrophysics Data System (ADS)

    Nanzetta, Philip

    1992-04-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  3. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    NASA Technical Reports Server (NTRS)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  4. Solving the Big Data (BD) Problem in Advanced Manufacturing (Subcategory for work done at Georgia Tech. Study Process and Design Factors for Additive Manufacturing Improvement)

    SciTech Connect

    Clark, Brett W.; Diaz, Kimberly A.; Ochiobi, Chinaza Darlene; Paynabar, Kamran

    2015-09-01

    3D printing originally known as additive manufacturing is a process of making 3 dimensional solid objects from a CAD file. This ground breaking technology is widely used for industrial and biomedical purposes such as building objects, tools, body parts and cosmetics. An important benefit of 3D printing is the cost reduction and manufacturing flexibility; complex parts are built at the fraction of the price. However, layer by layer printing of complex shapes adds error due to the surface roughness. Any such error results in poor quality products with inaccurate dimensions. The main purpose of this research is to measure the amount of printing errors for parts with different geometric shapes and to analyze them for finding optimal printing settings to minimize the error. We use a Design of Experiments framework, and focus on studying parts with cone and ellipsoid shapes. We found that the orientation and the shape of geometric shapes have significant effect on the printing error. From our analysis, we also determined the optimal orientation that gives the least printing error.

  5. Experience Scaling Up Manufacturing of Emerging Photovoltaic Technologies

    SciTech Connect

    Braun, G. W.; Skinner, D. E.

    2007-01-01

    This report examines two important generic photovoltaic technologies at particularly revealing stages of development, i.e., the stages between R&D and stable commercial production and profitable sales. Based on two historical cases, it attempts to shed light on the difference between: (1) costs and schedules validated by actual manufacturing and market experience, and (2) estimated costs and schedules that rely on technology forecasts and engineering estimates. The amorphous Silicon case also identifies some of the costs that are incurred in meeting specific market requirements, while the Cadmium Telluride case identifies many of the operational challenges involved in transferring R&D results to production. The transition between R&D and commercial success takes a great deal of time and money for emerging energy conversion technologies in general. The experience reported here can be instructive to those managing comparable efforts, and to their investors. It can also be instructive to R&D managers responsible for positioning such new technologies for commercial success.

  6. Adv. Simulation for Additive Manufacturing: 11/2014 Wkshp. Report for U.S. DOE/EERE/AMO

    SciTech Connect

    Turner, John A.; Babu, Sudarsanam Suresh; Blue, Craig A.

    2015-07-01

    The overarching question for the workshop was as following: How do we best utilize advanced modeling and high-performance computing (HPC) to address key challenges and opportunities in order to realize the full potential of additive manufacturing; and what are the key challenges of additive manufacturing to which modeling and simulation can contribute solutions, and what will it take to meet these challenges?

  7. Additive Manufacturing/Diagnostics via the High Frequency Induction Heating of Metal Powders: The Determination of the Power Transfer Factor for Fine Metallic Spheres

    SciTech Connect

    Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George; Holcomb, Matthew

    2015-03-11

    Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulation improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.

  8. Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties.

    PubMed

    Dimas, Leon S; Buehler, Markus J

    2014-07-01

    Flaws, imperfections and cracks are ubiquitous in material systems and are commonly the catalysts of catastrophic material failure. As stresses and strains tend to concentrate around cracks and imperfections, structures tend to fail far before large regions of material have ever been subjected to significant loading. Therefore, a major challenge in material design is to engineer systems that perform on par with pristine structures despite the presence of imperfections. In this work we integrate knowledge of biological systems with computational modeling and state of the art additive manufacturing to synthesize advanced composites with tunable fracture mechanical properties. Supported by extensive mesoscale computer simulations, we demonstrate the design and manufacturing of composites that exhibit deformation mechanisms characteristic of pristine systems, featuring flaw-tolerant properties. We analyze the results by directly comparing strain fields for the synthesized composites, obtained through digital image correlation (DIC), and the computationally tested composites. Moreover, we plot Ashby diagrams for the range of simulated and experimental composites. Our findings show good agreement between simulation and experiment, confirming that the proposed mechanisms have a significant potential for vastly improving the fracture response of composite materials. We elucidate the role of stiffness ratio variations of composite constituents as an important feature in determining the composite properties. Moreover, our work validates the predictive ability of our models, presenting them as useful tools for guiding further material design. This work enables the tailored design and manufacturing of composites assembled from inferior building blocks, that obtain optimal combinations of stiffness and toughness. PMID:24700202

  9. Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties.

    PubMed

    Dimas, Leon S; Buehler, Markus J

    2014-07-01

    Flaws, imperfections and cracks are ubiquitous in material systems and are commonly the catalysts of catastrophic material failure. As stresses and strains tend to concentrate around cracks and imperfections, structures tend to fail far before large regions of material have ever been subjected to significant loading. Therefore, a major challenge in material design is to engineer systems that perform on par with pristine structures despite the presence of imperfections. In this work we integrate knowledge of biological systems with computational modeling and state of the art additive manufacturing to synthesize advanced composites with tunable fracture mechanical properties. Supported by extensive mesoscale computer simulations, we demonstrate the design and manufacturing of composites that exhibit deformation mechanisms characteristic of pristine systems, featuring flaw-tolerant properties. We analyze the results by directly comparing strain fields for the synthesized composites, obtained through digital image correlation (DIC), and the computationally tested composites. Moreover, we plot Ashby diagrams for the range of simulated and experimental composites. Our findings show good agreement between simulation and experiment, confirming that the proposed mechanisms have a significant potential for vastly improving the fracture response of composite materials. We elucidate the role of stiffness ratio variations of composite constituents as an important feature in determining the composite properties. Moreover, our work validates the predictive ability of our models, presenting them as useful tools for guiding further material design. This work enables the tailored design and manufacturing of composites assembled from inferior building blocks, that obtain optimal combinations of stiffness and toughness.

  10. Dispersion of Heat Flux Sensors Manufactured in Silicon Technology

    PubMed Central

    Ziouche, Katir; Lejeune, Pascale; Bougrioua, Zahia; Leclercq, Didier

    2016-01-01

    In this paper, we focus on the dispersion performances related to the manufacturing process of heat flux sensors realized in CMOS (Complementary metal oxide semi-conductor) compatible 3-in technology. In particular, we have studied the performance dispersion of our sensors and linked these to the physical characteristics of dispersion of the materials used. This information is mandatory to ensure low-cost manufacturing and especially to reduce production rejects during the fabrication process. The results obtained show that the measured sensitivity of the sensors is in the range 3.15 to 6.56 μV/(W/m2), associated with measured resistances ranging from 485 to 675 kΩ. The dispersions correspond to a Gaussian-type distribution with more than 90% determined around average sensitivity Se¯ = 4.5 µV/(W/m2) and electrical resistance R¯ = 573.5 kΩ within the interval between the average and, more or less, twice the relative standard deviation. PMID:27294929

  11. Dispersion of Heat Flux Sensors Manufactured in Silicon Technology.

    PubMed

    Ziouche, Katir; Lejeune, Pascale; Bougrioua, Zahia; Leclercq, Didier

    2016-01-01

    In this paper, we focus on the dispersion performances related to the manufacturing process of heat flux sensors realized in CMOS (Complementary metal oxide semi-conductor) compatible 3-in technology. In particular, we have studied the performance dispersion of our sensors and linked these to the physical characteristics of dispersion of the materials used. This information is mandatory to ensure low-cost manufacturing and especially to reduce production rejects during the fabrication process. The results obtained show that the measured sensitivity of the sensors is in the range 3.15 to 6.56 μV/(W/m²), associated with measured resistances ranging from 485 to 675 kΩ. The dispersions correspond to a Gaussian-type distribution with more than 90% determined around average sensitivity S e ¯ = 4.5 µV/(W/m²) and electrical resistance R ¯ = 573.5 kΩ within the interval between the average and, more or less, twice the relative standard deviation. PMID:27294929

  12. Influence of Alumina Addition to Aluminum Fins for Compact Heat Exchangers Produced by Cold Spray Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Farjam, Aslan; Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2015-10-01

    In this work, aluminum and aluminum-alumina powder mixtures were used to produce pyramidal fin arrays on aluminum substrates using cold spray as an additive manufacturing process. Using aluminum-alumina mixtures instead of pure aluminum powder could be seen as a cost-effective measure, preventing nozzle clogging or the need to use expensive polymer nozzles that wear out rapidly during cold spray. The fin geometries that were produced were observed using a 3D digital microscope to determine the flow passages width and fins' geometric details. Heat transfer and pressure drop tests were carried out using different ranges of appropriate Reynolds numbers for the sought commercial application to compare each fin array and determine the effect of alumina content. It was found that the presence of alumina reduces the fins' performance when compared to pure aluminum fins but that they were still outperforming traditional fins. Numerical simulations were performed to model the fin arrays and were used to predict the pressure loss in the fin array and compare these results with experimental values. The numerical model opens up new avenues in predicting different applicable operating conditions and other possible fin shapes using the same fin composition, instead of performing costly and time-consuming experiments.

  13. Load bearing and stiffness tailored NiTi implants produced by additive manufacturing: a simulation study

    NASA Astrophysics Data System (ADS)

    Rahmanian, Rasool; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael; Elahinia, Mohammad

    2014-03-01

    Common metals for stable long-term implants (e.g. stainless steel, Titanium and Titanium alloys) are much stiffer than spongy cancellous and even stiffer than cortical bone. When bone and implant are loaded this stiffness mismatch results in stress shielding and as a consequence, degradation of surrounding bony structure can lead to disassociation of the implant. Due to its lower stiffness and high reversible deformability, which is associated with the superelastic behavior, NiTi is an attractive biomaterial for load bearing implants. However, the stiffness of austenitic Nitinol is closer to that of bone but still too high. Additive manufacturing provides, in addition to the fabrication of patient specific implants, the ability to solve the stiffness mismatch by adding engineered porosity to the implant. This in turn allows for the design of different stiffness profiles in one implant tailored to the physiological load conditions. This work covers a fundamental approach to bring this vision to reality. At first modeling of the mechanical behavior of different scaffold designs are presented as a proof of concept of stiffness tailoring. Based on these results different Nitinol scaffolds can be produced by additive manufacturing.

  14. Application of laser ultrasonic non-destructive evaluation technique to additive manufacturing

    NASA Astrophysics Data System (ADS)

    Manzo, Anthony J.; Kenderian, Shant; Helvajian, Henry

    2016-04-01

    The change in properties of a propagating ultrasonic wave has been a mainstay characterization tool of the nondestructive evaluation (NDE) industry for identifying subsurface defects (e.g. damage). A variant of this concept could be applicable to 3D additive manufacturing where the existence of defects (e.g. pores) within a sub-layer could mark a product as non-qualifying. We have been exploring the utility of pulsed laser ultrasonic excitation coupled with CW laser heterodyne detection as an all optical scheme for characterizing sub surface layer properties. The all-optical approach permits a straight forward integration into a laser additive processing tool. To test the concept, we have developed an experimental system that generates pulsed ultrasonic waves (the probe) with high bandwidth (<<10MHz) and a surface displacement sensor that can capture the ultrasonic "return" signal with bandwidth close to 300 MHz. The use of high frequencies enables the detection of smaller defect sites. The technique is time resolved with the sensor and probe as point (>>30-200 microns) beams. Current tests include characterizing properties of spot weld joints between two thin stainless steel plates. The long term objective is to transition the technique into a laser additive manufacturing tool.

  15. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.

  16. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece. PMID:27359150

  17. Novel concepts and technologies for manufacturing optical microdevices

    NASA Astrophysics Data System (ADS)

    Ehrfeld, Wolfgang; Bauer, Hans-Dieter; Drews, Dietrich; Lacher, Manfred

    1998-08-01

    The development and fabrication of micro-optical devices are of increasing importance in the field of data- and telecommunication networks capable of transmitting multimedia signals with high bit rates. Miniature optical sensors such as spectrometers and interferometers are another example for rapidly growing markets with a wide range of applications in biotechnology, chemistry, pharmacy, environmental technology, and automation, to namely only the most obvious. Various technologies are used for the development and fabrication of such devices. However, the success of the resulting product heavily depends on its price. Therefore, the techniques for the manufacture of micro-optical devices are at least as important as the product itself. In this presentation fabrication concepts and technologies will be discussed. By fabrication we naturally mean more than the production of a master that allows mass-production of the product. Among the criteria are also the pros and cons of the material to be used, automated assembly aspects, the compatibility with existing components or systems etc.

  18. Engineering and manufacturing of pharmaceutical co-crystals: a review of solvent-free manufacturing technologies.

    PubMed

    Ross, S A; Lamprou, D A; Douroumis, D

    2016-07-01

    Design and synthesis of pharmaceutical cocrystals have received great interest in recent years. Cocrystallization of drug substances offers a tremendous opportunity for the development of new drug products with superior physical and pharmacological properties such as solubility, stability, hydroscopicity, dissolution rates and bioavailability. It is now possible to engineer and develop cocrystals via 'green chemistry' and environmentally friendly approaches such as solid-state synthesis in the absence of organic solvents. In addition, significant efforts have been directed towards computational screening, cocrystal manufacturing in a continuous manner and real-time monitoring for quality purposes by using various analytical tools. Pharmaceutical cocrystals are not fully exploited yet and there is a lot of ground to cover before they can be successfully utilized as medical products. PMID:27302311

  19. Wafer-level manufacturing technology of glass microlenses

    NASA Astrophysics Data System (ADS)

    Gossner, U.; Hoeftmann, T.; Wieland, R.; Hansch, W.

    2014-08-01

    In high-tech products, there is an increasing demand to integrate glass lenses into complex micro systems. Especially in the lighting industry LEDs and laser diodes used for automotive applications require encapsulated micro lenses. To enable low-cost production, manufacturing of micro lenses on wafer level base using a replication technology is a key technology. This requires accurate forming of thousands of lenses with a diameter of 1-2 mm on a 200 mm wafer compliant with mass production. The article will discuss the technical aspects of a lens manufacturing replication process and the challenges, which need to be solved: choice of an appropriate master for replication, thermally robust interlayer coating, choice of replica glass, bonding and separation procedure. A promising approach for the master substrate material is based on a lens structured high-quality glass wafer with high melting point covered by a coating layer of amorphous silicon or germanium. This layer serves as an interlayer for the glass bonding process. Low pressure chemical vapor deposition and plasma enhanced chemical vapor deposition processes allow a deposition of layer coatings with different hydrogen and doping content influencing their chemical and physical behavior. A time reduced molding process using a float glass enables the formation of high quality lenses while preserving the recyclability of the mother substrate. The challenge is the separation of the replica from the master mold. An overview of chemical methods based on optimized etching of coating layer through small channels will be given and the impact of glass etching on surface roughness is discussed.

  20. A 1 + 1 (+ 2) High-Technology Partnership in Manufacturing Engineering Technology. Texas Educational Articulation Model for Manufacturing Engineering Technology (TEAM-M).

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Sweetwater.

    A project was conducted in Texas to establish a statewide articulated network of manufacturing engineering technology education at the community college and technical college level and to articulate that network upward with the appropriate four-year bachelor's degree programs in the state. The participants included 4 Texas State Technical College…

  1. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell.

    PubMed

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Anaraki, A P; Ahmadi, S M; Zadpoor, A A; Schmauder, S

    2015-10-01

    Since the advent of additive manufacturing techniques, regular porous biomaterials have emerged as promising candidates for tissue engineering scaffolds owing to their controllable pore architecture and feasibility in producing scaffolds from a variety of biomaterials. The architecture of scaffolds could be designed to achieve similar mechanical properties as in the host bone tissue, thereby avoiding issues such as stress shielding in bone replacement procedure. In this paper, the deformation and failure mechanisms of porous titanium (Ti6Al4V) biomaterials manufactured by selective laser melting from two different types of repeating unit cells, namely cubic and diamond lattice structures, with four different porosities are studied. The mechanical behavior of the above-mentioned porous biomaterials was studied using finite element models. The computational results were compared with the experimental findings from a previous study of ours. The Johnson-Cook plasticity and damage model was implemented in the finite element models to simulate the failure of the additively manufactured scaffolds under compression. The computationally predicted stress-strain curves were compared with the experimental ones. The computational models incorporating the Johnson-Cook damage model could predict the plateau stress and maximum stress at the first peak with less than 18% error. Moreover, the computationally predicted deformation modes were in good agreement with the results of scaling law analysis. A layer-by-layer failure mechanism was found for the stretch-dominated structures, i.e. structures made from the cubic unit cell, while the failure of the bending-dominated structures, i.e. structures made from the diamond unit cells, was accompanied by the shearing bands of 45°.

  2. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell.

    PubMed

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Anaraki, A P; Ahmadi, S M; Zadpoor, A A; Schmauder, S

    2015-10-01

    Since the advent of additive manufacturing techniques, regular porous biomaterials have emerged as promising candidates for tissue engineering scaffolds owing to their controllable pore architecture and feasibility in producing scaffolds from a variety of biomaterials. The architecture of scaffolds could be designed to achieve similar mechanical properties as in the host bone tissue, thereby avoiding issues such as stress shielding in bone replacement procedure. In this paper, the deformation and failure mechanisms of porous titanium (Ti6Al4V) biomaterials manufactured by selective laser melting from two different types of repeating unit cells, namely cubic and diamond lattice structures, with four different porosities are studied. The mechanical behavior of the above-mentioned porous biomaterials was studied using finite element models. The computational results were compared with the experimental findings from a previous study of ours. The Johnson-Cook plasticity and damage model was implemented in the finite element models to simulate the failure of the additively manufactured scaffolds under compression. The computationally predicted stress-strain curves were compared with the experimental ones. The computational models incorporating the Johnson-Cook damage model could predict the plateau stress and maximum stress at the first peak with less than 18% error. Moreover, the computationally predicted deformation modes were in good agreement with the results of scaling law analysis. A layer-by-layer failure mechanism was found for the stretch-dominated structures, i.e. structures made from the cubic unit cell, while the failure of the bending-dominated structures, i.e. structures made from the diamond unit cells, was accompanied by the shearing bands of 45°. PMID:26143351

  3. Modeling, Simulation, Additive Manufacturing, and Experimental Evaluation of Solid and Porous NiTi

    NASA Astrophysics Data System (ADS)

    Taheri Andani, Mohsen

    In recent years, shape memory alloys (SMAs) have entered a wide range of engineering applications in fields such as aerospace and medical applications. Nickel-titanium (NiTi) is the most commonly used SMAs due to its excellent functional characteristics (shape memory effect and superelasticity behavior). These properties are based on a solid-solid phase transformation between martensite and austenite. Beside these two characteristics, low stiffness, biocompatibility and corrosion properties of NiTi make it an attractive candidate for biomedical applications (e.g., bone plates, bone screws, and vascular stents). It is well know that manufacturing and processing of NiTi is very challenging. The functional properties of NiTi are significantly affected by the impurity level and due to the high titanium content, NiTi are highly reactive. Therefore, high temperature processed parts through methods such as melting and casting which result in increased impurity levels have inadequate structural and functional properties. Furthermore, high ductility and elasticity of NiTi, adhesion, work hardening and spring back effects make machining quite challenging. These unfavorable effects for machining cause significant tool wear along with decreasing the quality of work piece. Recently, additive manufacturing (AM) has gained significant attention for manufacturing NiTi. Since AM can create a part directly from CAD data, it is predicted that AM can overcome most of the manufacturing difficulties. This technique provides the possibility of fabricating highly complex parts, which cannot be processed by any other methods. Curved holes, designed porosity, and lattice like structures are some examples of mentioned complex parts. This work investigates manufacturing superelastic NiTi by selective laser melting (SLM) technique (using PXM by Phenix/3D Systems). An extended experimental study is conducted on the effect of subsequent heat treatments with different aging conditions on phase

  4. "Keep a low profile": pesticide residue, additives, and freon use in Australian tobacco manufacturing

    PubMed Central

    Chapman, S

    2003-01-01

    Objectives: To review the Australian tobacco industry's knowledge of pesticide residue on Australian tobacco and its policies and practices on resisting calls by tobacco control advocates that consumers should be informed about pesticide residue as well as additives. Methods: Review of previously internal industry documents relevant to pesticides and additives in Australian tobacco located from the Master Settlement Agreement websites. Results: Between 1972 and 1994 Philip Morris Australia was aware that its leaf samples were often contaminated with pesticide residue, sometimes including organochlorine levels described by PM's European laboratories as being "extremely high". Consumers were not advised of the contamination nor products withdrawn. From 1981, the industry also resisted calls to declare fully the extent of use and long term safety data on all additives used in their products. They developed standard public responses that were evasive and misleading and, in 2000, implemented voluntary additive disclosure which allowed the companies to continue to avoid disclosure of any ingredient they deemed to be a trade secret. There was extensive use of ozone depleting freon in Australian tobacco manufacturing. Again, the industry kept this information away from consumers. Conclusions: Australian smokers are unable to make informed decisions about smoking because pesticide and additive disclosure remains voluntary. The Australian government should regulate tobacco to require full disclosure including information on the likely health consequences of inhaling pesticide and additive pyrolysis products. PMID:14645948

  5. Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process

    NASA Astrophysics Data System (ADS)

    Book, Todd A.; Sangid, Michael D.

    2016-07-01

    Although additive manufacturing offers numerous performance advantages for different applications, it is not being used for critical applications due to uncertainties in structural integrity as a result of innate process variability and defects. To minimize uncertainty, the current approach relies on the concurrent utilization of process monitoring, post-processing, and non-destructive inspection in addition to an extensive material qualification process. This paper examines an alternative approach by evaluating the application of select surface process techniques, to include sliding severe plastic deformation (SPD) and fine particle shot peening, on direct metal laser sintering-produced AlSi10Mg materials. Each surface processing technique is compared to baseline as-built and post-processed samples as a proof of concept for surface enhancement. Initial results pairing sliding SPD with the manufacture's recommended thermal stress relief cycle demonstrated uniform recrystallization of the microstructure, resulting in a more homogeneous distribution of strain among the microstructure than as-built or post-processed conditions. This result demonstrates the potential for the in situ application of various surface processing techniques during the layerwise direct metal laser sintering build process.

  6. Compliance and control characteristics of an additive manufactured-flexure stage

    NASA Astrophysics Data System (ADS)

    Lee, ChaBum; Tarbutton, Joshua A.

    2015-04-01

    This paper presents a compliance and positioning control characteristics of additive manufactured-nanopositioning system consisted of the flexure mechanism and voice coil motor (VCM). The double compound notch type flexure stage was designed to utilize the elastic deformation of two symmetrical four-bar mechanisms to provide a millimeter-level working range. Additive manufacturing (AM) process, stereolithography, was used to fabricate the flexure stage. The AM stage was inspected by using 3D X-ray computerized tomography scanner: air-voids and shape irregularity. The compliance, open-loop resonance peak, and damping ratio of the AM stage were measured 0.317 mm/N, 80 Hz, and 0.19, respectively. The AM stage was proportional-integral-derivative positioning feedback-controlled and the capacitive type sensor was used to measure the displacement. As a result, the AM flexure mechanism was successfully 25 nm positioning controlled within 500 μm range. The resonance peak was found approximately at 280 Hz in closed-loop. This research showed that the AM flexure mechanism and the VCM can provide millimeter range with high precision and can be a good alternative to an expensive metal-based flexure mechanism and piezoelectric transducer.

  7. Compliance and control characteristics of an additive manufactured-flexure stage

    SciTech Connect

    Lee, ChaBum; Tarbutton, Joshua A.

    2015-04-15

    This paper presents a compliance and positioning control characteristics of additive manufactured-nanopositioning system consisted of the flexure mechanism and voice coil motor (VCM). The double compound notch type flexure stage was designed to utilize the elastic deformation of two symmetrical four-bar mechanisms to provide a millimeter-level working range. Additive manufacturing (AM) process, stereolithography, was used to fabricate the flexure stage. The AM stage was inspected by using 3D X-ray computerized tomography scanner: air-voids and shape irregularity. The compliance, open-loop resonance peak, and damping ratio of the AM stage were measured 0.317 mm/N, 80 Hz, and 0.19, respectively. The AM stage was proportional-integral-derivative positioning feedback-controlled and the capacitive type sensor was used to measure the displacement. As a result, the AM flexure mechanism was successfully 25 nm positioning controlled within 500 μm range. The resonance peak was found approximately at 280 Hz in closed-loop. This research showed that the AM flexure mechanism and the VCM can provide millimeter range with high precision and can be a good alternative to an expensive metal-based flexure mechanism and piezoelectric transducer.

  8. Metrology test object for dimensional verification in additive manufacturing of metals for biomedical applications.

    PubMed

    Teeter, Matthew G; Kopacz, Alexander J; Nikolov, Hristo N; Holdsworth, David W

    2015-01-01

    Additive manufacturing continues to increase in popularity and is being used in applications such as biomaterial ingrowth that requires sub-millimeter dimensional accuracy. The purpose of this study was to design a metrology test object for determining the capabilities of additive manufacturing systems to produce common objects, with a focus on those relevant to medical applications. The test object was designed with a variety of features of varying dimensions, including holes, cylinders, rectangles, gaps, and lattices. The object was built using selective laser melting, and the produced dimensions were compared to the target dimensions. Location of the test objects on the build plate did not affect dimensions. Features with dimensions less than 0.300 mm did not build or were overbuilt to a minimum of 0.300 mm. The mean difference between target and measured dimensions was less than 0.100 mm in all cases. The test object is applicable to multiple systems and materials, tests the effect of location on the build, uses a minimum of material, and can be measured with a variety of efficient metrology tools (including measuring microscopes and micro-CT). Investigators can use this test object to determine the limits of systems and adjust build parameters to achieve maximum accuracy.

  9. The impact of layer thickness on the performance of additively manufactured lapping tools

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2015-10-01

    Lower cost additive manufacturing (AM) machines which have emerged in recent years are capable of producing tools, jigs, and fixtures that are useful in optical fabrication. In particular, AM tooling has been shown to be useful in lapping glass workpieces. Various AM machines are distinguished by the processes, materials, build times, and build resolution they provide. This research investigates the impact of varied build resolution (specifically layer resolution) on the lapping performance of tools built using the stereolithographic assembly (SLA) process in 50 μm and 100 μm layer thicknesses with a methacrylate photopolymer resin on a high resolution desktop printer. As with previous work, the lapping tools were shown to remove workpiece material during the lapping process, but the tools themselves also experienced significant wear on the order of 2-3 times the mass loss of the glass workpieces. The tool wear rates for the 100 μm and 50 μm layer tools were comparable, but the 50 μm layer tool was 74% more effective at removing material from the glass workpiece, which is attributed to some abrasive particles being trapped in the coarser surface of the 100 um layer tooling and not being available to interact with the glass workpiece. Considering the tool wear, these additively manufactured tools are most appropriate for prototype tooling where the low cost (<$45) and quick turnaround make them attractive when compared to a machined tool.

  10. Metrology test object for dimensional verification in additive manufacturing of metals for biomedical applications.

    PubMed

    Teeter, Matthew G; Kopacz, Alexander J; Nikolov, Hristo N; Holdsworth, David W

    2015-01-01

    Additive manufacturing continues to increase in popularity and is being used in applications such as biomaterial ingrowth that requires sub-millimeter dimensional accuracy. The purpose of this study was to design a metrology test object for determining the capabilities of additive manufacturing systems to produce common objects, with a focus on those relevant to medical applications. The test object was designed with a variety of features of varying dimensions, including holes, cylinders, rectangles, gaps, and lattices. The object was built using selective laser melting, and the produced dimensions were compared to the target dimensions. Location of the test objects on the build plate did not affect dimensions. Features with dimensions less than 0.300 mm did not build or were overbuilt to a minimum of 0.300 mm. The mean difference between target and measured dimensions was less than 0.100 mm in all cases. The test object is applicable to multiple systems and materials, tests the effect of location on the build, uses a minimum of material, and can be measured with a variety of efficient metrology tools (including measuring microscopes and micro-CT). Investigators can use this test object to determine the limits of systems and adjust build parameters to achieve maximum accuracy. PMID:25542613

  11. Using Additive Manufacturing to Print a CubeSat Propulsion System

    NASA Technical Reports Server (NTRS)

    Marshall, William M.

    2015-01-01

    CubeSats are increasingly being utilized for missions traditionally ascribed to larger satellites CubeSat unit (1U) defined as 10 cm x 10 cm x 11 cm. Have been built up to 6U sizes. CubeSats are typically built up from commercially available off-the-shelf components, but have limited capabilities. By using additive manufacturing, mission specific capabilities (such as propulsion), can be built into a system. This effort is part of STMD Small Satellite program Printing the Complete CubeSat. Interest in propulsion concepts for CubeSats is rapidly gaining interest-Numerous concepts exist for CubeSat scale propulsion concepts. The focus of this effort is how to incorporate into structure using additive manufacturing. End-use of propulsion system dictates which type of system to develop-Pulse-mode RCS would require different system than a delta-V orbital maneuvering system. Team chose an RCS system based on available propulsion systems and feasibility of printing using a materials extrusion process. Initially investigated a cold-gas propulsion system for RCS applications-Materials extrusion process did not permit adequate sealing of part to make this a functional approach.

  12. Compliance and control characteristics of an additive manufactured-flexure stage.

    PubMed

    Lee, ChaBum; Tarbutton, Joshua A

    2015-04-01

    This paper presents a compliance and positioning control characteristics of additive manufactured-nanopositioning system consisted of the flexure mechanism and voice coil motor (VCM). The double compound notch type flexure stage was designed to utilize the elastic deformation of two symmetrical four-bar mechanisms to provide a millimeter-level working range. Additive manufacturing (AM) process, stereolithography, was used to fabricate the flexure stage. The AM stage was inspected by using 3D X-ray computerized tomography scanner: air-voids and shape irregularity. The compliance, open-loop resonance peak, and damping ratio of the AM stage were measured 0.317 mm/N, 80 Hz, and 0.19, respectively. The AM stage was proportional-integral-derivative positioning feedback-controlled and the capacitive type sensor was used to measure the displacement. As a result, the AM flexure mechanism was successfully 25 nm positioning controlled within 500 μm range. The resonance peak was found approximately at 280 Hz in closed-loop. This research showed that the AM flexure mechanism and the VCM can provide millimeter range with high precision and can be a good alternative to an expensive metal-based flexure mechanism and piezoelectric transducer. PMID:25933897

  13. Technology Reinvestment Project Manufacturing Education and Training. Volume 1

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Bond, Arthur J.

    1997-01-01

    The manufacturing education program is a joint program between the University of Alabama in Huntsville's (UAH) College of Engineering and Alabama A&M University's (AAMLJ) School of Engineering and Technology. The objective of the program is to provide more hands-on experiences to undergraduate engineering and engineering technology students. The scope of work consisted of. Year 1, Task 1: Review courses at Alabama Industrial Development Training (AIDT); Task 2: Review courses at UAH and AAMU; Task 3: Develop new lab manuals; Task 4: Field test manuals; Task 5: Prepare annual report. Year 2, Task 1: Incorporate feedback into lab manuals; Task 2 : Introduce lab manuals into classes; Task 3: Field test manuals; Task 4: Prepare annual report. Year 3, Task 1: Incorporate feedback into lab manuals; Task 2: Introduce lab manuals into remaining classes; Task 3: Conduct evaluation with assistance of industry; Task 4: Prepare final report. This report only summarizes the activities of the University of Alabama in Huntsville. The activities of Alabama A&M University are contained in a separate report.

  14. Impacts of advanced manufacturing technology on parametric estimating

    NASA Astrophysics Data System (ADS)

    Hough, Paul G.

    1989-12-01

    The introduction of advanced manufacturing technology in the aerospace industry poses serious challenges for government cost analysts. Traditionally, the analysts have relied on parametric estimating techniques for both planning and budgeting. Despite its problems, this approach has proven to be a remarkably useful and robust tool for estimating new weapon system costs. However, rapid improvements in both product and process technology could exacerbate current difficulties, and diminish the utility of the parametric approach. This paper reviews some weakness associated with parametrics, then proceeds to examine how specific aspects of the factory of the future may further impact parametric estimating, and suggests avenues of research for their resolution. This paper is an extended version of Cost Estimating for the Factory of the Future. Parametric estimating is a method by which aggregated costs are derived as a function of high-level product characteristics or parameters. The resulting equations are known as cost estimating relationships (CERs). Such equations are particularly useful when detailed technical specifications are not available.

  15. Rare resource supply crisis and solution technology for semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Hu, Sophia; Yoo, Youngsun; Takahisa, Kenji; Enami, Tatsuo

    2016-03-01

    There are growing concerns over future environmental impact and earth resource shortage throughout the world and in many industries. Our semiconductor industry is not excluded. "Green" has become an important topic as production volume become larger and more powerful. Especially, the rare gases are widely used in semiconductor manufacturing because of its inertness and extreme chemical stability. One major component of an Excimer laser system is Neon. It is used as a buffer gas for Argon (Ar) and Krypton (Kr) gases used in deep ultraviolet (DUV) lithography laser systems. Since Neon gas accounting for more than 96% of the laser gas mixture, a fairly large amount of neon gas is consumed to run these DUV lasers. However, due to country's instability both in politics and economics in Ukraine, the main producer of neon gas today, supply reduction has become an issue and is causing increasing concern. This concern is not only based on price increases, but has escalated to the point of supply shortages in 2015. This poses a critical situation for the semiconductor industry, which represents the leading consumer of neon gas in the world. Helium is another noble gas used for Excimer laser operation. It is used as a purge gas for optical component modules to prevent from being damaged by active gases and impurities. Helium has been used in various industries, including for medical equipment, linear motor cars, and semiconductors, and is indispensable for modern life. But consumption of helium in manufacturing has been increased dramatically, and its unstable supply and price rise has been a serious issue today. In this article, recent global supply issue of rare resources, especially Neon gas and Helium gas, and its solution technology to support semiconductor industry will be discussed.

  16. Technology Innovation and Future Research Needs in Net Shape Manufacturing

    SciTech Connect

    Yang, Dong-Yol

    2005-08-05

    The rapid change in customer needs and industrial environment has demanded innovations in the manufacturing sector. Metal forming industries have been confronted with new challenges of innovations in products, processes, machines, materials and production systems. From the viewpoints of competitiveness of products, new paradigms are required for innovation in manufacturing, especially in net shape manufacturing. Product innovations are increasingly put under emphasis beyond manufacturing innovations based on the holistic concurrent engineering approach. The presentation covers not only the innovation methodologies, but also the innovation directions in net shape manufacturing.

  17. Biomechanical investigation into the structural design of porous additive manufactured cages using numerical and experimental approaches.

    PubMed

    Tsai, Pei-I; Hsu, Ching-Chi; Chen, San-Yuan; Wu, Tsung-Han; Huang, Chih-Chieh

    2016-09-01

    Traditional solid cages have been widely used in posterior lumbar interbody fusion (PLIF) surgery. However, solid cages significantly affect the loading mechanism of the human spine due to their extremely high structural stiffness. Previous studies proposed and investigated porous additive manufactured (AM) cages; however, their biomechanical performances were analyzed using oversimplified bone-implant numerical models. Thus, the aim of this study was to investigate the outer shape and inner porous structure of the AM cages. The outer shape of the AM cages was discovered using a simulation-based genetic algorithm; their inner porous structure was subsequently analyzed parametrically using T10-S1 multilevel spine models. Finally, six types of the AM cages, which were manufactured using selective laser melting, were tested to validate the numerical outcomes. The subsidence resistance of the optimum design was superior to the conventional cage designs. A porous AM cage with a pillar diameter of 0.4mm, a pillar angle of 40°, and a porosity of between 69% and 80% revealed better biomechanical performances. Both the numerical and experimental outcomes can help surgeons to understand the biomechanics of PLIF surgery combined with the use of AM cages. PMID:27392226

  18. Microstructural Characterization of Bonding Interfaces in Aluminum 3003 Blocks Fabricated by Ultrasonic Additive Manufacturing

    SciTech Connect

    Schick, D. E.; Babu, Sudarsanam Suresh; Lippold, John C; Hahnlen, R.M.; Dapino, M.J.; Dehoff, Ryan R; Collins, P.

    2010-01-01

    Ultrasonic additive manufacturing (UAM) is a process by which hybrid and near-netshaped products can be manufactured from thin metallic tapes. One of the main concerns of UAM is the development of anisotropic mechanical properties. In this work, the microstructures in the bond regions are characterized with optical and electron microscopy. Recrystallization and grain growth across the interface are proposed as a mechanism for the bond formation. The presence of voids or unbonded areas, which reduce the load-bearing cross section and create a stress intensity factor, is attributed to the transfer of the sonotrode texture to the new foil layer. This results in large peaks and valleys that are not filled in during processing. Tensile testing revealed the weld interface strength was 15% of the bulk foil. Shear tests of the weld interfaces showed almost 50% of the bulk shear strength of the material. Finally, optical microscopy of the fracture surfaces from the tensile tests revealed 34% of the interface area was unbonded.

  19. George E. Pake Prize: A Few Challenges in the Evolution of Semiconductor Device/Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Doering, Robert

    In the early 1980s, the semiconductor industry faced the related challenges of ``scaling through the one-micron barrier'' and converting single-level-metal NMOS integrated circuits to multi-level-metal CMOS. Multiple advances in lithography technology and device materials/process integration led the way toward the deep-sub-micron transistors and interconnects that characterize today's electronic chips. In the 1990s, CMOS scaling advanced at an accelerated pace enabled by rapid advances in many aspects of optical lithography. However, the industry also needed to continue the progress in manufacturing on ever-larger silicon wafers to maintain economy-of-scale trends. Simultaneously, the increasing complexity and absolute-precision requirements of manufacturing compounded the necessity for new processes, tools, and control methodologies. This talk presents a personal perspective on some of the approaches that addressed the aforementioned challenges. In particular, early work on integrating silicides, lightly-doped-drain FETs, shallow recessed isolation, and double-level metal will be discussed. In addition, some pioneering efforts in deep-UV lithography and single-wafer processing will be covered. The latter will be mainly based on results from the MMST Program - a 100 M +, 5-year R&D effort, funded by DARPA, the U.S. Air Force, and Texas Instruments, that developed a wide range of new technologies for advanced semiconductor manufacturing. The major highlight of the program was the demonstration of sub-3-day cycle time for manufacturing 350-nm CMOS integrated circuits in 1993. This was principally enabled by the development of: (1) 100% single-wafer processing, including rapid-thermal processing (RTP), and (2) computer-integrated-manufacturing (CIM), including real-time, in-situ process control.

  20. Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery?

    PubMed

    Gibbs, David M R; Vaezi, Mohammad; Yang, Shoufeng; Oreffo, Richard O C

    2014-01-01

    Additive manufacturing (AM) is a broad term encompassing 3D printing and several other varieties of material processing, which involve computer-directed layer-by-layer synthesis of materials. As the popularity of AM increases, so to do expectations of the medical therapies this process may offer. Clinical requirements and limitations of current treatment strategies in bone grafting, spinal arthrodesis, osteochondral injury and treatment of periprosthetic joint infection are discussed. The various approaches to AM are described, and the current state of clinical translation of AM across these orthopedic clinical scenarios is assessed. Finally, we attempt to distinguish between what AM may offer orthopedic surgery from the hype of what has been promised by AM.