Science.gov

Sample records for additive methyl tert-butyl

  1. Methyl tert-butyl ether (MTBE)

    Integrated Risk Information System (IRIS)

    Methyl tert - butyl ether ( MTBE ) ; CASRN 1634 - 04 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  2. Methyl tert-butyl ether and tert-butyl alcohol degradation by Fusarium solani.

    PubMed

    Magaña-Reyes, Miguel; Morales, Marcia; Revah, Sergio

    2005-11-01

    Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The maximum degradation rate of MTBE was 16 mg protein h and 46 mg/g protein h for TBA. The culture transformed 77% of the total carbon to 14CO2. The estimated yield for MTBE was 0.18 g dry wt/g MTBE.

  3. Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten C.; Schirmer, Mario; Weiß, Holger; Haderlein, Stefan B.

    2004-06-01

    The fate of fuel oxygenates such as methyl tert-butyl ether (MTBE) in the subsurface is governed by their degradability under various redox conditions. The key intermediate in degradation of MTBE and ethyl tert-butyl ether (ETBE) is tert-butyl alcohol (TBA) which was often found as accumulating intermediate or dead-end product in lab studies using microcosms or isolated cell suspensions. This review discusses in detail the thermodynamics of the degradation processes utilizing various terminal electron acceptors, and the aerobic degradation pathways of MTBE and TBA. It summarizes the present knowledge on MTBE and TBA degradation gained from either microcosm or pure culture studies and emphasizes the potential of compound-specific isotope analysis (CSIA) for identification and quantification of degradation processes of slowly biodegradable pollutants such as MTBE and TBA. Microcosm studies demonstrated that MTBE and TBA may be biodegradable under oxic and nearly all anoxic conditions, although results of various studies are often contradictory, which suggests that site-specific conditions are important parameters. So far, TBA degradation has not been shown under methanogenic conditions and it is currently widely accepted that TBA is a recalcitrant dead-end product of MTBE under these conditions. Reliable in situ degradation rates for MTBE and TBA under various geochemical conditions are not yet available. Furthermore, degradation pathways under anoxic conditions have not yet been elucidated. All pure cultures capable of MTBE or TBA degradation isolated so far use oxygen as terminal electron acceptor. In general, compared with hydrocarbons present in gasoline, fuel oxygenates biodegrade much slower, if at all. The presence of MTBE and related compounds in groundwater therefore frequently limits the use of in situ biodegradation as remediation option at gasoline-contaminated sites. Though degradation of MTBE and TBA in field studies has been reported under oxic

  4. ATTENUATION OF METHYL TERT-BUTYL ETHER IN WATER USING SUNLIGHT AND A PHOTOCATALYST

    EPA Science Inventory

    The use of methyl tert-butyl ether (MTBE) as a gasoline additive has resulted in increasing pollution of ground water. Most of the conventional treatment technologies are inefficient or costly when the initial concentration of MTBE is low (<200 ug/L). In order to find an eco-frie...

  5. Hydrolysis of tert-butyl formate: Kinetics, products, and implications for the environmental impact of methyl tert-butyl ether

    USGS Publications Warehouse

    Church, Clinton D.; Pankow, James F.; Tratnyek, Paul G.

    1999-01-01

    Asessing the environmental fate of methyl tert-butyl ether (MTBE) has become a subject of renewed interest because of the large quantities of this compound that are being used as an oxygenated additive in gasoline. Various studies on the fate of MTBE have shown that it can be degraded to tert-butyl formate (TBF), particularly in the atmosphere. Although it is generally recognized that TBF is subject to hydrolysis, the kinetics and products of this reaction under environmentally relevant conditions have not been described previously. In this study, we determined the kinetics of TBF hydrolysis as a function of pH and temperature. Over the pH range of 5 to 7, the neutral hydrolysis pathway predominates, with kN = (1.0 ± 0.2) × 10−6/s. Outside this range, strong pH effects were observed because of acidic and basic hydrolyses, from which we determined that kA = (2.7 ± 0.5) × 10−3/(M·s) and kB = 1.7 ± 0.3/(M·s). Buffered and unbuffered systems gave the same hydrolysis rates for a given pH, indicating that buffer catalysis was not significant under the conditions tested. The activation energies corresponding to kN, kA, and kBwere determined to be 78 ± 5, 59 ± 4, and 88 ±11 kJ/mol, respectively. In all experiments, tert-butyl alcohol was found at concentrations corresponding to stoichiometric formation from TBF. Based on our kinetics data, the expected half-life for hydrolysis of TBF at pH = 2 and 4°C (as per some standard preservation protocols for water sampling) is 6 h. At neutral pH and 22°C, the estimated half-life is 5 d, and at pH = 11 and 22°C, the value is only 8 min.

  6. Simultaneous determination of methyl tert-butyl ether, its degradation products and other gasoline additives in soil samples by closed-system purge-and-trap gas chromatography-mass spectrometry.

    PubMed

    Rosell, Mònica; Lacorte, Sílvia; Barceló, Damià

    2006-11-03

    A new protocol for the simultaneous determination of methyl tert-butyl ether (MTBE); its main degradation products: tert-butyl alcohol (TBA) and tert-butyl formate (TBF); other gasoline additives, oxygenate dialkyl ethers: ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME) and diisopropyl ether (DIPE); aromatics: benzene, toluene, ethylbenzene and xylenes (BTEX) and other compounds causing odour events such as dicyclopentadiene (DCPD) and trichloroethylene (TCE) in soils has been developed. On the basis of US Environmental Protection Agency (EPA) method 5035A, a fully automated closed-system purge-and-trap coupled to gas chromatography/mass spectrometry (P&T-GC/MS) was optimised and permitted to detect microg/kg concentrations in solid matrices avoiding losses of volatile compounds during operation processes. Parameters optimised were the sampling procedure, sample preservation and storage, purging temperature, matrix effects and quantification mode. Using 5 g of sample, detection limits were between 0.02 and 1.63 microg/kg and acceptable method precision and accuracy was obtained provided quantification was performed using adequate internal standards. Soil samples should be analysed as soon as possible after collection, stored under -15 degrees C for not longer than 7 days if degradation products have to be analysed. The non-preservative alternative (empty vial) provided good recoveries of the most analytes when freezing the samples up to 7 day holding time, however, if biologically active soil are analysed the preservation with trisodium phosphate dodecahydrate (Na(3)PO(4).12H(2)O or TSP) is strongly recommended more than sodium bisulphate (NaHSO(4)). The method was finally applied to provide threshold and background levels of several gasoline additives in a point source and in sites not influenced by gasoline spills. The proposed method provides the directions for the future application on real samples in current monitoring programs at gasoline

  7. Favoured conformations of methyl isopropyl, ethyl isopropyl, methyl tert-butyl, and ethyl tert-butyl 2-(triphenylphosphoranylidene)malonate.

    PubMed

    Castañeda, Fernando; Silva, Paul; Bunton, Clifford A; Garland, María Teresa; Baggio, Ricardo

    2008-07-01

    The conformations of organic compounds determined in the solid state are important because they can be compared with those in solution and/or from theoretical calculations. In this work, the crystal and molecular structures of four closely related diesters, namely methyl isopropyl 2-(triphenylphosphoranylidene)malonate, C(25)H(25)O(4)P, ethyl isopropyl 2-(triphenylphosphoranylidene)malonate, C(26)H(27)O(4)P, methyl tert-butyl 2-(triphenylphosphoranylidene)malonate, C(26)H(27)O(4)P, and ethyl tert-butyl 2-(triphenylphosphoranylidene)malonate, C(27)H(29)O(4)P, have been analysed as a preliminary step for such comparative studies. As a result of extensive electronic delocalization, as well as intra- and intermolecular interactions, a remarkably similar pattern of preferred conformations in the crystal structures results, viz. a syn-anti conformation of the acyl groups with respect to the P atom, with the bulkier alkoxy groups oriented towards the P atom. The crystal structures are controlled by nonconventional hydrogen-bonding and intramolecular interactions between cationoid P and acyl and alkoxy O atoms in syn positions.

  8. WATER QUALITY AT FIVE MARINAS IN LAKE TEXOMA AS RELATED TO METHYL TERT-BUTYL ETHER (MTBE)

    EPA Science Inventory

    Occurrence of methyl tert-butyl ether (MTBE) in five marinas was monitored between June 1999 and November 2000 in Lake Texoma located on the border of Oklahoma and Texas. MTBE is a commonly used gasoline additive and a suspected carcinogen. Lake water was collected at locations i...

  9. N-methyl-(R)-3-(tert-butyl)-sulfinyl-1,4-dihydropyridine: a novel NADH model compound.

    PubMed

    Xie, Kun; Liu, You-Cheng; Cui, Yi; Wang, Jian-Ge; Fu, Yao; Mak, Thomas C W

    2007-03-12

    We have synthesized a novel chiral NADH model compound, N-methyl-(R)-3-(tert-butyl)-sulphinyl-1,4-dihydropyridine with high enantioselectivity and used it in the reduction of methyl benzoylformate, producing (S)-methyl mandelate in 95% ee. The absolute structure of its precursor, 3-(tert-butyl)sulfinyl pyridine, was determined by X-ray analysis.

  10. The Knock-Limited Performance of Fuel Blends Containing Spiropentane, Methylenecyclobutane, Di-Tert-Butyl Ether, Methyl Tert-Butyl Ether, and Triptane

    NASA Technical Reports Server (NTRS)

    Meyer, Carl L.

    1946-01-01

    Tests show that at inlet-air temperatures of 250 deg F and 100 deg F the knock-limited performance of the base fuel of blends, leaded with 4 ml TEL per gallon and containing 20 percent spiropentane, was reduced at fuel/air ratios below 0.085. The 20 percent methylenecyclobutane reduced the knock-limited power of the base fuel at fuel/air ratios below 0.112. Di-tert-butyl ether, methyl-tert-butyl ether, and triptane increased the knock-limited power of the base fuel at all fuel/air ratios and at both temperatures.

  11. Biodegradation of Methyl tert-Butyl Ether by Co-Metabolism with a Pseudomonas sp. Strain

    PubMed Central

    Li, Shanshan; Wang, Shan; Yan, Wei

    2016-01-01

    Co-metabolic bioremediation is supposed to be an impressive and promising approach in the elimination technology of methyl tert-butyl ether (MTBE), which was found to be a common pollutant worldwide in the ground or underground water in recent years. In this paper, bacterial strain DZ13 (which can co-metabolically degrade MTBE) was isolated and named as Pseudomonas sp. DZ13 based on the result of 16S rRNA gene sequencing analysis. Strain DZ13 could grow on n-alkanes (C5-C8), accompanied with the co-metabolic degradation of MTBE. Diverse n-alkanes with different carbon number showed a significant influence on the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA). When Pseudomonas sp. DZ13 co-metabolically degraded MTBE with n-pentane as the growth substrate, a higher MTBE-degrading rate (Vmax = 38.1 nmol/min/mgprotein, Ks = 6.8 mmol/L) and lower TBA-accumulation was observed. In the continuous degradation experiment, the removal efficiency of MTBE by Pseudomonas sp. Strain DZ13 did not show an obvious decrease after five times of continuous addition. PMID:27608032

  12. Method for determination of methyl tert-butyl ether and its degradation products in water

    USGS Publications Warehouse

    Church, C.D.; Isabelle, L.M.; Pankow, J.F.; Rose, D.L.; Tratnyek, P.G.

    1997-01-01

    An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method

  13. BIODEGRADATION OF METHYL TERT-BUTYL ETHER AND BTEX AT VARYING HYDRAULIC RETENTION TIMES

    EPA Science Inventory

    The feasibility of biologically degrading methyl tert-butyl ether (MTBE) contaminated groundwater is dependent on the ability to degrade MTBE and its byproducts in the presence of other gasoline contaminants. This study investigates a mixed culture degrading both MTBE and benzene...

  14. INFLUENCE OF METHYL TERT-BUTYL ETHER (MTBE) ON LAKE WATER ALGAE

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) has been used as an octane booster in gasoline in the United States since the 1970s. MTBE use increased greatly in the 1990s with the implementation of the Clean Air Act Amendments of 1990. The MTBE enhanced a more complete combustion of fuel hydroc...

  15. STRUCTURES AND BINDING ENERGIES OF METHYL TERT-BUTYL ETHER-WATER COMPLEXES

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is a well-known environmental contaminant owing to its high solubility in water. Since the early 1990s, MTBE has been added to gasoline to improve air quality in some metropolitan areas of the United States. Improved air quality was, however, achiev...

  16. TREATMENT OF METHYL TERT-BUTYL ETHER CONTAMINATED WATER USING PHOTOCATALYSIS

    EPA Science Inventory

    The feasibility of photo-oxidation treatment of methyl tert-butyl ether (MTBE) in water was investigated in three ways, 1) using a slurry falling film photo-reactor, 2) a batch solar reactor system, and 3) a combination of air-stripping and gas phase photooxidation system. MTBE-c...

  17. PHOTOCATALYTIC OXIDATION OF METHYL-TERT-BUTYL ETHER FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    The photo-oxidation of methyl tert-butyl ether (MTBE) in water was investigated to determine the feasibility of using photocatalysis for the treatment of MTBE-contaminated drinking water. The feasibility assessment was conducted using slurries of titanium dioxide in both a photo-...

  18. Degradation of methyl tert-butyl ether (MTBE) in water by glow discharge plasma.

    PubMed

    Tong, Shaoping; Ni, Yanyan; Shen, Chensi; Wen, Yuezhong; Jiang, Xuanzhen

    2011-01-01

    This study evaluated the ability of the glow discharge plasma (GDP) technique to degrade methyl tert-butyl ether (MTBE) in an aqueous solution. The results showed that a large amount of hydrogen peroxide and highly active *OH free radicals were produced during the treatment. Various experimental parameters including discharge current, initial MTBE concentration and initial pH played significant roles on MTBE degradation. In addition, Fe2+ had a catalytic effect on the degradation of MTBE, which is potentially attributable to the reaction between Fe3+ and the hydrated electron. It was also confirmed that GDP was comparable to electrocatalytic oxidation and high-density plasma and more efficient than photocatalytic degradation techniques. These results suggest that GDP may become a competitive MTBE wastewater treatment technology.

  19. Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria.

    PubMed

    Steffan, R J; McClay, K; Vainberg, S; Condee, C W; Zhang, D

    1997-11-01

    Several propane-oxidizing bacteria were tested for their ability to degrade gasoline oxygenates, including methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). Both a laboratory strain and natural isolates were able to degrade each compound after growth on propane. When propane-grown strain ENV425 was incubated with 20 mg of uniformly labeled [14C]MTBE per liter, the strain converted > 60% of the added MTBE to 14CO2 in < 30 h. The initial oxidation of MTBE and ETBE resulted in the production of nearly stoichiometric amounts of tert-butyl alcohol (TBA), while the initial oxidation of TAME resulted in the production of tert-amyl alcohol. The methoxy methyl group of MTBE was oxidized to formaldehyde and ultimately to CO2. TBA was further oxidized to 2-methyl-2-hydroxy-1-propanol and then 2-hydroxy isobutyric acid; however, neither of these degradation products was an effective growth substrate for the propane oxidizers. Analysis of cell extracts of ENV425 and experiments with enzyme inhibitors implicated a soluble P-450 enzyme in the oxidation of both MTBE and TBA. MTBE was oxidized to TBA by camphor-grown Pseudomonas putida CAM, which produces the well-characterized P-450cam, but not by Rhodococcus rhodochrous 116, which produces two P-450 enzymes. Rates of MTBE degradation by propane-oxidizing strains ranged from 3.9 to 9.2 nmol/min/mg of cell protein at 28 degrees C, whereas TBA was oxidized at a rate of only 1.8 to 2.4 nmol/min/mg of cell protein at the same temperature.

  20. Effect of short-term exposure to methyl-tert-butyl ether and tert-butyl alcohol on the hatch rate and development of the African catfish, Clarias gariepinus.

    PubMed

    Moreels, David; Lodewijks, Pieter; Zegers, Hans; Rurangwa, Eugène; Vromant, Nico; Bastiaens, Leen; Diels, Ludo; Springael, Dirk; Merckx, Roel; Ollevier, Frans

    2006-02-01

    Methyl tert-butyl ether (MTBE), a synthetic chemical used as a fuel additive, has been detected more frequently in the environment than previously. In this study, we examine the effects of MTBE (up to 100 mg/L) and its primary metabolite tertbutyl alcohol (TBA) (up to 1,400 mg/L) on the hatch rate and larval development of the African catfish Clarias gariepinus. Exposure to higher MTBE concentrations resulted in deformed eyes, mouthparts, and spinal cord and in increased larval mortality. Methyl tert-butyl ether exposure had no significant impact on egg viability, whereas TBA induced a decline of hatch rate. The MTBE can be regarded as a pollutant with toxicological effects on catfish larvae at concentrations above 50 mg/L. Although such concentrations greatly surpass present-day concentrations found in surface water (0.088 mg/L), concentrations up to 200 mg/L have been detected in groundwater.

  1. Distribution of methyl tert-butyl ether (MTBE) and selected water-quality constituents in the surficial aquifer at the Dover National Test Site, Dover Air Force Base, Delaware, 2001

    USGS Publications Warehouse

    Stewart, Marie; Guertal, William R.; Barbaro, Jeffrey R.; McHale, Timothy J.

    2004-01-01

    A joint study by the Dover National Test Site, Dover Air Force Base, Delaware, and the U.S. Geological Survey was conducted from June 27 through July 18, 2001, to determine the spatial distribution of the gasoline oxygenate additive methyl tert-butyl ether and selected water-quality constituents in the surficial aquifer underlying the Dover National Test Site. This report provides a summary assessment of the distribution of methyl tert-butyl ether and a preliminary screening of selected constituents that may affect natural attenuation and remediation demonstrations at the Dover National Test Site. The information gathered during this study is designed to assist potential remedial investigators who are considering conducting a methyl tert-butyl ether remedial demonstration at the test site. In addition, the study supported a planned enhanced bioremediation demonstration and assisted the Dover National Test Site in identifying possible locations for future methyl tert-butyl ether remediation demonstrations. A direct-push drill rig was used to collect a total of 147 ground-water samples (115 VOC samples and 32 quality-assurance samples) at varying depths. Volatile organic compounds were above the method reporting limits in 59 of the 115 ground-water samples. The concentrations ranged from below detection limits to maximum values of 12.4 micrograms per liter of cis-1,2-dichloro-ethene, 1.14 micrograms per liter of trichloro-ethene, 2.65 micrograms per liter of tetrachloro-ethene, 1,070 micrograms per liter of methyl tert-butyl ether, 4.36 micrograms per liter of benzene, and 1.8 micrograms per liter of toluene. Vinyl chloride, ethylbenzene, p,m-xylene, and o-xylene were not detected in any of the samples collected during this investigation. Methyl tert-butyl ether was detected in 47 of the 115 ground-water samples. The highest concentrations of methyl tert-butyl ether were detected in the surficial aquifer from ?4.6 to 6.4 feet mean sea level; however, methyl tert-butyl

  2. Selection and identification of bacterial strains with methyl-tert-butyl ether, ethyl-tert-butyl ether, and tert-amyl methyl ether degrading capacities.

    PubMed

    Purswani, Jessica; Pozo, Clementina; Rodríguez-Díaz, Marina; González-López, Jesús

    2008-11-01

    Nine bacterial strains isolated from two hydrocarbon-contaminated soils were selected because of their capacity for growth in culture media amended with 200 mg/L of one of the following gasoline oxygenates: Methyl-tert-butyl ether (MTBE), ethyl-tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). These strains were identified by amplification of their 16S rRNA gene, using fDl and rD1 primers, and were tested for their capacity to grow and biotransform these oxygenates in both mineral and cometabolic media. The isolates were classified as Bacillus simplex, Bacillus drentensis, Arthrobacter sp., Acinetobacter calcoaceticus, Acinetobacter sp., Gordonia amicalis (two strains), Nocardioides sp., and Rhodococcus ruber. Arthrobacter sp. (strain MG) and A. calcoaceticus (strain M10) consumed 100 (cometabolic medium) and 82 mg/L (mineral medium) of oxygenate TAME in 21 d, respectively, under aerobic conditions. Rhodococcus ruber (strain E10) was observed to use MTBE and ETBE as the sole carbon and energy source, whereas G. amicalis (strain T3) used TAME as the sole carbon and energy source for growth. All the bacterial strains transformed oxygenates better in the presence of an alternative carbon source (ethanol) with the exception of A. calcoaceticus (strain M10). The capacity of the selected strains to remove MTBE, ETBE, and TAME looks promising for application in bioremediation technologies.

  3. Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): A modeling study.

    PubMed

    Ma, Jie; Xiong, Desen; Li, Haiyan; Ding, Yi; Xia, Xiangcheng; Yang, Yongqi

    2017-06-15

    Vapor intrusion of synthetic fuel additives represents a critical yet still neglected problem at sites contaminated by petroleum fuel releases. This study used an advanced numerical model to investigate the vapor intrusion potential of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), and ethyl tert-butyl ether (ETBE). Simulated indoor air concentration of these compounds can exceed USEPA indoor air screening level for MTBE (110μg/m(3)). Our results also reveal that MTBE has much higher chance to cause vapor intrusion problems than TAME and ETBE. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the vertical screening criteria for petroleum hydrocarbons may not provide sufficient protectiveness for fuel additives, and ether oxygenates in particular. In addition to adverse impacts on human health, ether oxygenate vapor intrusion may also cause aesthetic problems (i.e., odour and flavour). Overall, this study points out that ether oxygenates can cause vapor intrusion problems. We recommend that USEPA consider including the field measurement data of synthetic fuel additives in the existing PVI database and possibly revising the PVI Guidance as necessary.

  4. Environmental behavior and fate of methyl tert-butyl ether (MTBE)

    USGS Publications Warehouse

    Squillace, Paul J.; Pankow, James F.; Korte, Nic E.; Zogorski, John S.

    1996-01-01

    When gasoline that has been oxygenated with methyl tert-butyl ether (MTBE) comes in contact with water, large amounts of MTBE can dissolve; at 25 degrees Celsius the water solubility of MTBE is about 5,000 milligrams per liter for a gasoline that is 10 percent MTBE by weight. In contrast, for a nonoxygenated gasoline, the total hydrocarbon solubility in water is typically about 120 milligrams per liter. MTBE sorbs only weakly to soil and aquifer materials; therefore, sorption will not significantly retard MTBE's transport by ground water. In addition, MTBE generally resists degradation in ground water. The half-life of MTBE in the atmosphere can be as short as 3 days in a regional airshed. MTBE in the air tends to partition into atmospheric water, including precipitation. However, washout of gas-phase MTBE by precipitation would not, by itself, greatly alter the gas-phase concentration of the compound in the air. The partitioning of MTBE to precipitation is nevertheless strong enough to allow for up to 3 micrograms per liter or more inputs of MTBE to surface and ground water.

  5. Determination of low level methyl tert-butyl ether, ethyl tert-butyl ether and methyl tert-amyl ether in human urine by HS-SPME gas chromatography/mass spectrometry.

    PubMed

    Scibetta, Licia; Campo, Laura; Mercadante, Rosa; Foà, Vito; Fustinoni, Silvia

    2007-01-02

    Methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME) are oxygenated compounds added to gasoline to enhance octane rating and to improve combustion. They may be found as pollutants of living and working environments. In this work a robotized method for the quantification of low level MTBE, ETBE and TAME in human urine was developed and validated. The analytes were sampled in the headspace of urine by SPME in the presence of MTBE-d12 as internal standard. Different fibers were compared for their linearity and extraction efficiency: carboxen/polydimethylsiloxane, polydimethylsiloxane/divinylbenzene, and polydimethylsiloxane. The first, although highly efficient, was discarded due to deviation of linearity for competitive displacement, and the polydimethylsiloxane/divinylbenzene fiber was chosen instead. The analysis was performed by GC/MS operating in the electron impact mode. The method is very specific, with range of linearity 30-4600 ng L(-1), within- and between-run precision, as coefficient of variation, <22 and <16%, accuracy within 20% the theoretical level, and limit of detection of 6 ng L(-1) for all the analytes. The influence of the matrix on the quantification of these ethers was evaluated analysing the specimens of seven traffic policemen exposed to autovehicular emissions: using the calibration curve and the method of standard additions comparable levels of MTBE (68-528 ng L(-1)), ETBE (<6 ng L(-1)), and TAME (<6 ng L(-1)) were obtained.

  6. Single-walled carbon nanotubes as an effective adsorbent in solid-phase microextraction of low level methyl tert-butyl ether, ethyl tert-butyl ether and methyl tert-amyl ether from human urine.

    PubMed

    Rastkari, Noushin; Ahmadkhaniha, Reza; Yunesian, Masud

    2009-05-15

    Carbon nanotubes (CNTs) are a kind of new carbon-based nano-materials which have drawn great attention in many application fields. The potential single-walled carbon nanotubes (SWCNTs) as solid-phase microextraction (SPME) adsorbents for the preconcentration of environmental pollutants have been investigated in recent years. The goal of this work was to investigate the feasibility of SWCNTs used as adsorbents for solid-phase microextraction of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME) in human urine. SWCNTs were attached onto a stainless steel wire through organic binder. Potential factors affecting the extraction efficiency were optimized, including extraction time, extraction temperature, desorption time, desorption temperature, and salinity. The developed method showed good performance according to the ICH performance criteria for bioanalytical methods. The calibration curves of the ethers were linear (r(2)>or=0.992) in the range from 10 to 5000 ng L(-1). The limits of detection at a signal-to-noise (S/N) ratio of 3 were 10 ng L(-1) for all the analytes. In addition, compared with the commercial carboxen/polydimethylsiloxane (CAR/PDMS) fiber, the SWCNT fiber showed better thermal stability (over 350 degrees C) and longer life span (over 150 times). The developed method was applied successfully to determine trace level of the ethers in urine of 10 healthy male volunteers.

  7. Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water.

    PubMed

    Levchuk, Irina; Bhatnagar, Amit; Sillanpää, Mika

    2014-04-01

    Wide use of methyl tert-butyl ether (MTBE) as fuel oxygenates leads to worldwide environment contamination with this compound basically due to fuel leaks from storage or pipelines. Presence of MTBE in drinking water is of high environmental and social concern. Existing methods for MTBE removal from water have a number of limitations which can be possibly overcome in the future with use of emerging technologies. This work aims to provide an updated overview of recent developments in technologies for MTBE removal from water.

  8. Measurement of methyl-tert-butyl-ether (MTBE) in raw drinking water

    SciTech Connect

    Davisson, M L; Koester, C J; Moran, J E

    1999-10-14

    In order to assess the pathways for human exposure to methyl-tert-butyl-ether (MTBE) and to understand the extent of MTBE contamination in watersheds, a purge and trap gas chromatographic mass spectrometric method to measure part-per-trillion (ppt) concentrations of MTBE in environmental waters was developed. A variety of California's raw drinking waters were analyzed. No detectable MTBE was found in deep groundwater (>1000 feet). However shallow groundwater ({approx}250 feet) contained MTBE concentrations of non-detect to 1300 ppt. MTBE concentrations measured in rivers and lakes ranged from non-detect to 3500 ppt. East (San Francisco) Bay area rain water contained approximately 80 ppt MTBE.

  9. Methyl tert-butyl ether biodegradation by indigenous aquifer microorganisms under natural and artificial oxic conditions

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Herlong, H.H.; Bradley, P.M.

    2001-01-01

    Microbial communities indigenous to a shallow groundwater system near Beaufort, SC, degraded milligram per liter concentrations of methyl tert-butyl ether (MTBE) under natural and artificial oxic conditions. Significant MTBE biodegradation was observed where anoxic, MTBE-contaminated groundwater discharged to a concrete-lined ditch. In the anoxic groundwater adjacent to the ditch, concentrations of MTBE were > 1 mg/L. Where groundwater discharge occurs, dissolved oxygen (DO) concentrations beneath the ditch exceeded 1.0 mg/L to a depth of 1.5 m, and MTBE concentrations decreased to <1 ??g/L prior to discharge. MTBE mass flux calculations indicate that 96% of MTBE mass loss occurs in the relatively small oxic zone prior to discharge. Samples of a natural microbial biofilm present in the oxic zone beneath the ditch completely degraded [U-14C]MTBE to [14C]CO2 in laboratory liquid culture studies, with no accumulation of intermediate compounds. Upgradient of the ditch in the anoxic, MTBE and BTEX-contaminated aquifer, addition of a soluble oxygen release compound resulted in oxic conditions and rapid MTBE biodegradation by indigenous microorganisms. In an observation well located closest to the oxygen addition area, DO concentrations increased from 0.4 to 12 mg/L in <60 days and MTBE concentrations decreased from 20 to 3 mg/L. In the same time period at a downgradient observation well, DO increased from <0.2 to 2 mg/L and MTBE concentrations decreased from 30 to <5 mg/L. These results indicate that microorganisms indigenous to the groundwater system at this site can degrade milligram per liter concentrations of MTBE under natural and artificial oxic conditions.

  10. Enhanced cometabolic degradation of methyl tert-butyl ether by a Pseudomonas sp. strain grown on n-pentane

    NASA Astrophysics Data System (ADS)

    Li, S. S.; Wang, S.; Yan, W.

    2016-08-01

    When methyl tert-butyl ether (MTBE) is added as oxygenates it increases the octane number and decreases the release of nitric oxide from the incomplete combustion of reformulated gasoline. The extensive use of MTBE allowed it to be detectable as a pollutant in both ground-level and underground water worldwide. The present study focuses on the isolation and characterization of MTB-degrading microorganisms by cometabolism based on the results of growth on different carbon sources. It also focuses on the kinetic analysis and the continuous degradation of MTBE. A bacterial strain WL1 that can grow on both n-alkanes (C5-C8) and aromatics was isolated and named Pseudomonas sp. WL1 according to the 16S rDNA sequencing analysis. Strain WL1 could cometabolically degrade MTBE in the presence of n-alkanes with a desirable degradation rate. Diverse n-alkanes with different lengths of carbon chains showed significant influence on the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA). When strain WL1 cometabolically degraded MTBE in the presence of n-pentane, higher MTBE-degrading rate and lower TBA-accumulation were observed (Vmax = 38.1 nmol/min/mgprotei, Ks = 6.8 mmol/L). In the continuous degrading experiment, the removal efficiency of MTBE by Pseudomonas sp. WL1 did not show any obvious decrease after five subsequent additions.

  11. Methyl tert butyl ether targets developing vasculature in zebrafish (Danio rerio) embryos

    PubMed Central

    Bonventre, Josephine A.; White, Lori A.; Cooper, Keith R.

    2015-01-01

    Disruption of vascular endothelial growth factor (VEGF) signaling during early development results in abnormal angiogenesis and increased vascular lesions. Embryonic exposure to 0.625 to 10 mM methyl tert butyl ether (MTBE), a highly water soluble gasoline additive, resulted in a dose dependent increase in pooled blood in the common cardinal vein (CCV), cranial hemorrhages and abnormal intersegmental vessels (ISVs). The EC50s for the lesions ranked in terms of likelihood to occur with MTBE exposure were: pooled blood in the CCV, 3.2 mM [95 % CI: 2.2 – 4.7] > cranial hemorrhage, 11 mM [5.9 – 20.5] > abnormal ISV, 14.5 mM [6.5 – 32.4]. Organ systems other than the vascular system appear to develop normally, which suggests MTBE toxicity targets developing blood vessels. Equal molar concentrations (0.625 to 10 mM) of the primary metabolites, tertiary butyl alcohol (TBA) and formaldehyde, did not result in vascular lesions, which suggested that the parent compound is responsible for the toxicity. Stage specific exposures were carried out to determine the developmental period most sensitive to MTBE vascular disruption. Embryos treated until 6-somites or treated after Prim-5 stages did not exhibit a significant increase in lesions, while embryos treated between 6-somites and Prim-5 had a significant increase in vascular lesions (p ≤ 0.05). During the critical window for MTBE-induced vascular toxicity, expression of vegfa, vegfc, and flk1/kdr were significantly decreased 50, 70 and 40%, respectively. This is the first study to characterize disruption in vascular development following embryonic exposure to MTBE. The unique specificity of MTBE to disrupt angiogenesis may be mediated by the down regulation of critical genes in the VEGF pathway. PMID:21684239

  12. The mechanism of catalytic methylation of 2-phenylpyridine using di-tert-butyl peroxide.

    PubMed

    Sharma, Akhilesh K; Roy, Dipankar; Sunoj, Raghavan B

    2014-07-14

    The mechanism of palladium chloride-catalyzed direct methylation of arenes with peroxides is elucidated by using the energetics computed at the M06 density functional theory. The introduction of a methyl group by tert-butyl peroxides at the ortho-position of a prototypical 2-phenyl pyridine, a commonly used substrate in directed C-H functionalization reactions, is examined in detail by identifying the key intermediates and transition states involved in the reaction sequence. Different possibilities that differ in terms of the site of catalyst coordination with the substrate and the ensuing mechanism are presented. The important mechanistic events involved are (a) an oxidative or a homolytic cleavage of the peroxide O-O bond, (b) C-H bond activation, (c) C-C bond activation, and (d) reductive elimination involving methyl transfer to the aromatic ring. We have examined both radical and non-radical pathways. In the non-radical pathway, the lowest energy pathway involves C-H bond activation prior to the coordination of the peroxide to palladium, which is subsequently followed by the O-O bond cleavage of the peroxide and the C-C bond activation. Reductive elimination in the resulting intermediate leads to the vital C-C bond formation between methyl and aryl carbon atoms. In the non-radical pathway, the C-C bond activation is higher in energy and has been identified as the rate-limiting step of this reaction. In the radical pathway, however, the activation barrier for the C-C bond cleavage is lower than for the peroxide O-O bond cleavage. A combination of a radical pathway up to the formation of a palladium methyl intermediate and a subsequent non-radical pathway has been identified as the most favored pathway for the title reaction. The predicted mechanism is in good agreement with the experimental observations on PdCl2 catalyzed methylation of 2-phenyl pyridine using tert-butyl peroxide.

  13. CO-OCCURRENCE OF METHYL- TERT-BUTYL ETHER (MTBE) AND BTEX COMPOUNDS AT MARINAS IN A LARGE RESEVOIR

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is released into the environment as one of some gasoline components, not as a pure compound. BTEX compounds (benzene, tolune, ethylbenzene, and xylenes) are major volatile constituents found in gasoline and are water soluble and mobile. This study...

  14. DERMAL EXPOSURE TO METHYL TERT-BUTYL ETHER (MTBE) AND DIBROMOCHLOROMETHANE (DBCM) WHILE BATHING WITH CONTAMINATED WATER

    EPA Science Inventory

    The oxygenate methyl tert-butyl ether (MTBE) has been added to gasoline to help meet national ambient air quality standards in those parts of the U.S. that are non-compliant for carbon monoxide. Although MTBE has provided important health benefits in terms of reduced hazardous a...

  15. INTERACTION OF METHYL-TERT BUTYL ETHER AND WATER STRESS ON SEED GERMINATION AND SEEDLING GROWTH IN SOIL MICROCOSMS

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is a widespread contaminant in surface and ground water in the United States. Frequently irrigation is used to water fields to germinate planted seeds and sustain plant growth. A likely possibility exists that water used may have some MTBE. Our s...

  16. EVALUATION OF METHYL TERT-BUTYL ETHER (MTBE) AS AN INTERFERENCE ON COMMERCIAL BREATH-ALCOHOL ANALYZERS

    EPA Science Inventory

    Anecdotal reports suggest that high environmental or occupational exposures to the fuel oxygenate methyl tert-butyl ether (MTBE) may result in breath concentrations that are sufficiently elevated to cause a false positive on commercial breath-alcohol analyzers. We evaluated th...

  17. Microbial degradation and fate in the environment of methyl tert-butyl ether and related fuel oxygenates.

    PubMed

    Fayolle, F; Vandecasteele, J P; Monot, F

    2001-08-01

    Oxygenates, mainly methyl tert-butyl ether (MTBE), are commonly added to gasoline to enhance octane index and improve combustion efficiency. Other oxygenates used as gasoline additives are ethers such as ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), and alcohols such as tert-butyl alcohol (TBA). As a result of its wide use, MTBE has been detected, mainly in the USA, in groundwater and surface waters, and is a cause of concern because of its possible health effects and other undesirable consequences. MTBE is a water-soluble and mobile compound that generates long pollution plumes in aquifers impacted by gasoline releases from leaking tanks. Field observations concur in estimating that, because of recalcitrance to biodegradation, natural attenuation is slow (half-life of at least 2 years). However, quite significant advances have been made in recent years concerning the microbiology of the degradation of MTBE and other oxygenated gasoline additives. The recalcitrance of these compounds results from the presence in their structure of an ether bond and of a tertiary carbon structure. For the most part, only aerobic microbial degradation systems have been reported so far. Consortia capable of mineralizing MTBE have been selected. Multiple instances of the cometabolism of MTBE with pure strains or with microflorae, growing on n-alkanes, isoalkanes, cyclohexane or ethers (diethyl ether, ETBE), have been described. MTBE was converted into TBA in all cases and was sometimes further degraded, but it was not used as a carbon source by the pure strains. However, mineralization of MTBE and TBA by several pure bacterial strains using these compounds as sole carbon and energy source has recently been reported. The pathways of metabolism of MTBE involve the initial attack by a monooxygenase. In several cases, the enzyme was characterized as a cytochrome P-450. After oxygenation, the release of a C -unit as formaldehyde or formate leads to the production of TBA

  18. U.S. Geological Survey laboratory method for methyl tert-Butyl ether and other fuel oxygenates

    USGS Publications Warehouse

    Raese, Jon W.; Rose, Donna L.; Sandstrom, Mark W.

    1995-01-01

    Methyl tert-butyl ether (MTBE) was found in shallow ground-water samples in a study of 8 urban and 20 agricultural areas throughout the United States in 1993 and 1994 (Squillace and others, 1995, p. 1). The compound is added to gasoline either seasonally or year round in many parts of the United States to increase the octane level and to reduce carbon monoxide and ozone levels in the air. The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL), near Denver, uses state-of-the-art technology to analyze samples for MTBE as part of the USGS water-quality studies. In addition, the NWQL offers custom analyses to determine two other fuel oxygenates--ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME). The NWQL was not able to obtain a reference standard for tert-amyl ethyl ether (TAEE), another possible fuel oxygenate (Shelley and Fouhy, 1994, p. 63). The shallow ground-water samples were collected as part of the USGS National Water-Quality Assessment Program. These samples were collected from 211 urban wells or springs and 562 agricultural wells sampled by the USGS in 1993 and 1994. The wells were keyed to specific land-use areas to assess the effects of different uses on ground-water quality (Squillace and others, 1995, p. 2). Ground-water samples were preserved on site to pH less than or equal to 2 with a solution of 1:1 hydrochloric acid. All samples were analyzed at the NWQL within 2 weeks after collection. The purpose of this fact sheet is to explain briefly the analytical method implemented by the USGS for determining MTBE and other fuel oxygenates. The scope is necessarily limited to an overview of the analytical method (instrumentation, sample preparation, calibration and quantitation, identification, and preservation of samples) and method performance (reagent blanks, accuracy, and precision).

  19. Gene mdpC plays a regulatory role in the methyl-tert-butyl ether degradation pathway of Methylibium petroleiphilum strain PM1

    PubMed Central

    Joshi, Geetika; Schmidt, Radomir; Scow, Kate M.; Denison, Michael S.; Hristova, Krassimira R.

    2015-01-01

    Among the few bacteria known to utilize methyl tert-butyl ether (MTBE) as a sole carbon source, Methylibium petroleiphilum PM1 is a well-characterized organism with a sequenced genome; however, knowledge of the genetic regulation of its MTBE degradation pathway is limited. We investigated the role of a putative transcriptional activator gene, mdpC, in the induction of MTBE-degradation genes mdpA (encoding MTBE monooxygenase) and mdpJ (encoding tert-butyl alcohol hydroxylase) of strain PM1 in a gene-knockout mutant mdpC−. We also utilized quantitative reverse transcriptase PCR assays targeting genes mdpA, mdpJ and mdpC to determine the effects of the mutation on transcription of these genes. Our results indicate that gene mdpC is involved in the induction of both mdpA and mdpJ in response to MTBE and tert-butyl alcohol (TBA) exposure in PM1. An additional independent mechanism may be involved in the induction of mdpJ in the presence of TBA. PMID:25724531

  20. Effect of methyl tert-butyl ether in standard tests for mutagenicity and environmental toxicity.

    PubMed

    Vosahlikova, Miluse; Cajthaml, Tomas; Demnerova, Katerina; Pazlarova, Jarmila

    2006-12-01

    Methyl tert-butyl ether (MTBE) is a synthetic compound that is used as a technological solution to problems created by air pollution from vehicle emissions. An important source of MTBE in the environment is leakage from underground storage tanks at gasoline stations or accidents during gasoline transport. The aim of this study was to evaluate the risk of MTBE leakage for the environment using the Microtox (Vibrio fischeri) toxicity test, Lactuca sativa seed germination test, and Ames bacterial mutagenicity test with Salmonella typhimurium his(-) strains TA98, TA100, YG1041, and YG1042, using both standard plate and preincubation protocols. The result of Microtox expressed as EC(50) was 33 mg (MTBE)/L. The effect of all tested MTBE concentration (0.05, 0.50, and 1.00% v/v) on Lactuca sativa roots elongation was negative and proved its toxicity. The highest tested concentration of MTBE that could be tested in Ames test was 3 mg (MTBE)/plate, because of cytotoxicity. No mutagenic response was observed at this or lower concentrations in any of the four strains used.

  1. Kinetics of the oxidation of methyl tert-butyl ether (MTBE) by potassium permanganate.

    PubMed

    Damm, Jochen H; Hardacre, Christopher; Kalin, Robert M; Walsh, Kayleen P

    2002-08-01

    The occurrence of the fuel oxygenate methyl tert-butyl ether (MTBE) in the environment has received considerable scientific attention. The pollutant is frequently found in the groundwater due to leaking of underground storage tanks or pipelines. Concentrations of more than several mg/L MTBE were detected in groundwater at several places in the US and Germany in the last few years. In situ chemical oxidation is a promising treatment method for MTBE-contaminated plumes. This research investigated the reaction kinetics for the oxidation of MTBE by permanganate. Batch tests demonstrated that the oxidation of MTBE by permanganate is second order overall and first order individually with respect to permanganate and MTBE. The second-order rate constant was 1.426 x 10(-6) L/mg/h. The influence of pH on the reaction rate was demonstrated to have no significant effect. However, the rate of MTBE oxidation by potassium permanganate is 2-3 orders of magnitude lower than of other advanced oxidation processes. The slower rates of MTBE oxidation by permanganate limit the applicability of this process for rapid MTBE cleanup strategies. However, permanganate oxidation of MTBE has potential for passive oxidation risk management strategies.

  2. Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012.

    PubMed

    François, Alan; Mathis, Hugues; Godefroy, Davy; Piveteau, Pascal; Fayolle, Françoise; Monot, Frédéric

    2002-06-01

    A strain that efficiently degraded methyl tert-butyl ether (MTBE) was obtained by initial selection on the recalcitrant compound tert-butyl alcohol (TBA). This strain, a gram-positive methylotrophic bacterium identified as Mycobacterium austroafricanum IFP 2012, was also able to degrade tert-amyl methyl ether and tert-amyl alcohol. Ethyl tert-butyl ether was weakly degraded. tert-Butyl formate and 2-hydroxy isobutyrate (HIBA), two intermediates in the MTBE catabolism pathway, were detected during growth on MTBE. A positive effect of Co2+ during growth of M. austroafricanum IFP 2012 on HIBA was demonstrated. The specific rate of MTBE degradation was 0.6 mmol/h/g (dry weight) of cells, and the biomass yield on MTBE was 0.44 g (dry weight) per g of MTBE. MTBE, TBA, and HIBA degradation activities were induced by MTBE and TBA, and TBA was a good inducer. Involvement of at least one monooxygenase during degradation of MTBE and TBA was shown by (i) the requirement for oxygen, (ii) the production of propylene epoxide from propylene by MTBE- or TBA- grown cells, and (iii) the inhibition of MTBE or TBA degradation and of propylene epoxide production by acetylene. No cytochrome P-450 was detected in MTBE- or TBA-grown cells. Similar protein profiles were obtained after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of crude extracts from MTBE- and TBA-grown cells. Among the polypeptides induced by these substrates, two polypeptides (66 and 27 kDa) exhibited strong similarities with known oxidoreductases.

  3. Impact of activation methods on persulfate oxidation of methyl tert-butyl ether.

    PubMed

    Deng, Dayi; Peng, Libin; Guan, Mengyun; Kang, Yuan

    2014-01-15

    To provide guidance on the selection of proper persulfate processes for the remediation of MTBE contaminated groundwater, MTBE aqueous solutions were treated with three common field persulfate processes including heat activated persulfate, Fe(III)-EDTA activated persulfate and alkaline persulfate, respectively. The results were compared with MTBE oxidation by Fenton's reagent and persulfate alone at 25°C. The impact of the activating conditions on the fate of MTBE and its daughter products was investigated. Heat activation at 40°C offered the most rapid removal of MTBE and its daughter products, while Fe(III)-EDTA activation showed higher efficiency of MTBE removal but low removal efficiency of its daughter products. On the other hand, alkaline persulfate showed slower kinetics for the removal of MTBE and less accumulation of the daughter products. Furthermore, tert-butyl alcohol and acetone were observed as the main purgeable daughter products along with a small amount of tert-butyl formate in persulfate oxidation of MTBE, while tert-butyl formate, tert-butyl alcohol and acetone were the main products in Fenton oxidation. Mechanistic analysis suggests that degradation of MTBE by persulfate most likely happens via non-oxygen demand pathways, different from the dominant oxygen demand degradation pathways observed in Fenton oxidation.

  4. Exposure to methyl tert-butyl ether and benzene among service station attendants and operators.

    PubMed

    Hartle, R

    1993-12-01

    Concerns for atmospheric pollution from auto exhaust have led to the blending of "oxygenates" with motor fuels. The most common oxygenate, methyl tert-butyl ether (MTBE) is currently required within several metropolitan areas (Denver and Phoenix) in the range of 12% of the motor fuel. Amendments to the Clean Air Act may expand this requirement to as many as 44 other areas of the United States in the near future. In consideration of the magnitude of potential uncontrolled exposures from its extensive use and a related concern involving the potential influence of MTBE blending on exposures to other constituents of gasoline (particularly benzene), an evaluation of exposures among service station attendants and operators was undertaken at the request, and in cooperation with, the American Petroleum Institute during the latter part of 1990. For application of the survey results to a broad audience, three categories or types of service stations were identified with regard to MTBE use and exposure potential: a) service stations that do not use MTBE or use it only as an octane enhancer, b) service stations with seasonal requirements to use 12-15% MTBE (the Denver, Colorado, and Phoenix, Arizona, metropolitan areas), and c) service stations equipped with stage II (active) vapor recovery systems (several coastal areas, most notably Southern California). At the two sampled service stations that use only minimal amounts of MTBE (less than 1%), only 1 of 32 personal breathing zone (PBZ) samples from attendants was above the analytical limit of detection, reported at 0.16 ppm. The geometric mean concentration of benzene among this same population (n = 32) was 0.04 ppm.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Urinary methyl tert-butyl ether and benzene as biomarkers of exposure to urban traffic.

    PubMed

    Campo, Laura; Cattaneo, Andrea; Consonni, Dario; Scibetta, Licia; Costamagna, Paolo; Cavallo, Domenico M; Bertazzi, Pier Alberto; Fustinoni, Silvia

    2011-02-01

    Methyl tert-butyl ether (MTBE) and benzene are added to gasoline to improve the combustion process and are found in the urban environment as a consequence of vehicular traffic. Herein we evaluate urinary MTBE (MTBE-U) and benzene (BEN-U) as biomarkers of exposure to urban traffic. Milan urban policemen (130 total) were investigated in May, July, October, and December for a total of 171 work shifts. Personal exposure to airborne benzene and carbon monoxide (CO), and atmospheric data, were measured during the work shift, while personal characteristics were collected by a questionnaire. A time/activity diary was completed by each subject during the work shift. Spot urine samples were obtained for the determination of MTBE-U and BEN-U. Median personal exposure to CO and airborne benzene were 3.3 mg/m(3) and 9.6 μg/m(3), respectively; median urinary levels in end-of-shift (ES) samples were 147 ng/L (MTBE-U) and 207 ng/L (BEN-U). The time spent on traffic duty at crossing was about 40% of work time. Multiple linear regression models, taking into account within-subject correlations, were applied to investigate the role of urban pollution, atmospheric conditions, job variables and personal characteristics on the level of biomarkers. MTBE-U was influenced by the month of sampling and positively correlated to the time spent in traffic guarding, CO exposure and atmospheric pressure, while negatively correlated to wind speed (R(2) for total model 0.63, P<0.001). BEN-U was influenced by the month and smoking habit, and positively correlated to urinary creatinine; moreover, an interaction between CO and smoking was found (R(2)=0.62, P<0.001). These results suggest that MTBE-U is a reliable marker for assessing urban traffic exposure, while BEN-U is determined mainly by personal characteristics.

  6. Biodegradation of methyl tert-butyl ether by cold-adapted mixed and pure bacterial cultures.

    PubMed

    Zaitsev, G M; Uotila, J S; Häggblom, M M

    2007-04-01

    An aerobic mixed bacterial culture (CL-EMC-1) capable of utilizing methyl tert-butyl ether (MTBE) as the sole source of carbon and energy with a growth temperature range of 3 to 30 degrees C and optimum of 18 to 22 degrees C was enriched from activated sludge. Transient accumulation of tert-butanol (TBA) occurred during utilization of MTBE at temperatures from 3 degrees C to 14 degrees C, but TBA did not accumulate above 18 degrees C. The culture utilized MTBE at a concentration of up to 1.5 g l(-1) and TBA of up to 7 g l(-1). The culture grew on MTBE at a pH range of 5 to 9, with an optimum pH of 6.5 to 7.1. The specific growth rate of the CL-EMC-1 culture on 0.1 g l(-1) of MTBE at 22 degrees C and pH 7.1 was 0.012 h(-1), and the growth yield was 0.64 g (dry weight) g(-1). A new MTBE-utilizing bacterium, Variovorax paradoxus strain CL-8, isolated from the mixed culture utilized MTBE, TBA, 2-hydroxy isobutyrate, lactate, methacrylate, and acetate as sole sources of carbon and energy but not 2-propanol, acetone, methanol, formaldehyde, or formate. Two other isolates, Hyphomicrobium facilis strain CL-2 and Methylobacterium extorquens strain CL-4, isolated from the mixed culture were able to grow on C(1) compounds. The combined consortium could thus utilize all of the carbon of MTBE.

  7. Iodinated contrast medium as an aid to gallstone dissolution with methyl tert-butyl ether: in vitro study.

    PubMed

    Zhou, J; Lee, S H; Rawat, B; Fache, J S; Maciejewska, U; Burhenne, H J

    1990-05-01

    Methyl tert-butyl ether (MTBE) floats on bile, whereas gallstones sink. Therefore, stones and MTBE are separated by a layer of bile. This study investigates the effect of contrast medium on flotation of gallstones in bile and its role in stone and fragment dissolution with MTBE. Fresh human gallstones, both calcified and noncalcified, from different patients were tested in vitro for flotation in bile, with and without addition of contrast medium. All gallstones or fragments sank in bile before the introduction of contrast medium. Noncalcified stones floated when the contrast medium-bile volume ratio was 1:6 or more, while double this amount of contrast medium was required to float calcified stones. Fragments did dissolve somewhat in MTBE in the presence of bile alone, but when contrast medium was added, almost complete dissolution occurred. This is thought to be due to increased contact between the fragments and MTBE, both floating on the contrast medium-bile mixture. Contrast material may be a useful adjuvant in gallstone dissolution therapy with MTBE in vivo.

  8. Methyl tert-butyl ether (MTBE) in public and private wells in New Hampshire: occurrence, factors, and possible implications.

    PubMed

    Ayotte, Joseph D; Argue, Denise M; McGarry, Frederick J; Degnan, James R; Hayes, Laura; Flanagan, Sarah M; Helsel, Dennis R

    2008-02-01

    Methyl tert-butyl ether (MTBE) concentrations > or = 0.2 /microg/L were found in samples of untreated water in 18% of public-supply wells (n = 284) and 9.1% of private domestic wells (n = 264) sampled in 2005 and 2006 in New Hampshire. In counties that used reformulated gasoline (RFG), MTBE occurred at or above 0.2 microg/L in 30% of public- and 17% of private-supply wells. Additionally, 52% of public-supply wells collocated with fuel storage and 71% of mobile home park wells had MTBE. MTBE occurrence in public-supply wells was predicted by factors such as proximity to sources of fuel, land use, and population density, as well as low pH and distance from mapped lineaments. RFG use, land-use variables, and pH were important predictors of private-well MTBE occurrence. Variables representing sources of MTBE, such as the distance to known fuel sources, were not significant predictors of MTBE occurrence in private-supply wells. It is hypothesized that private wells may become contaminated from the collective effects of sources in high population areas and from undocumented incidental releases from onsite or proximal gasoline use. From 2003 to 2005, MTBE occurrence decreased in 63 public-supply wells and increased in 60 private-supply wells, but neither trend was statistically significant.

  9. Anaerobic Methyl tert-Butyl Ether-Degrading Microorganisms Identified in Wastewater Treatment Plant Samples by Stable Isotope Probing

    PubMed Central

    Sun, Weimin; Sun, Xiaoxu

    2012-01-01

    Anaerobic methyl tert-butyl ether (MTBE) degradation potential was investigated in samples from a range of sources. From these 22 experimental variations, only one source (from wastewater treatment plant samples) exhibited MTBE degradation. These microcosms were methanogenic and were subjected to DNA-based stable isotope probing (SIP) targeted to both bacteria and archaea to identify the putative MTBE degraders. For this purpose, DNA was extracted at two time points, subjected to ultracentrifugation, fractioning, and terminal restriction fragment length polymorphism (TRFLP). In addition, bacterial and archaeal 16S rRNA gene clone libraries were constructed. The SIP experiments indicated bacteria in the phyla Firmicutes (family Ruminococcaceae) and Alphaproteobacteria (genus Sphingopyxis) were the dominant MTBE degraders. Previous studies have suggested a role for Firmicutes in anaerobic MTBE degradation; however, the putative MTBE-degrading microorganism in the current study is a novel MTBE-degrading phylotype within this phylum. Two archaeal phylotypes (genera Methanosarcina and Methanocorpusculum) were also enriched in the heavy fractions, and these organisms may be responsible for minor amounts of MTBE degradation or for the uptake of metabolites released from the primary MTBE degraders. Currently, limited information exists on the microorganisms able to degrade MTBE under anaerobic conditions. This work represents the first application of DNA-based SIP to identify anaerobic MTBE-degrading microorganisms in laboratory microcosms and therefore provides a valuable set of data to definitively link identity with anaerobic MTBE degradation. PMID:22327600

  10. Methyl tert-butyl ether (MTBE) in public and private wells in New Hampshire: Occurrence, factors, and possible implications

    USGS Publications Warehouse

    Ayotte, J.D.; Argue, D.M.; McGarry, F.J.; Degnan, J.R.; Hayes, L.; Flanagan, S.M.; Helsel, D.R.

    2008-01-01

    Methyl tert-butyl ether (MTBE) concentrations ???0.2 ??g/L were found in samples of untreated water in 18% of public-supply wells (n = 284) and 9.1% of private domestic wells (n = 264) sampled in 2005 and 2006 in New Hampshire. In counties that used reformulated gasoline (RFG), MTBE occurred at or above 0.2 ??g/L in 30% of public- and 17% of private-supply wells. Additionally, 52% of public-supply wells collocated with fuel storage and 71% of mobile home park wells had MTBE. MTBE occurrence in public-supply wells was predicted by factors such as proximity to sources of fuel, land use, and population density, as well as low pH and distance from mapped lineaments. RFG use, land-use variables, and pH were important predictors of private-well MTBE occurrence. Variables representing sources of MTBE, such as the distance to known fuel sources, were not significant predictors of MTBE occurrence in private-supply wells. It is hypothesized that private wells may become contaminated from the collective effects of sources in high population areas and from undocumented incidental releases from onsite or proximal gasoline use. From 2003 to 2005, MTBE occurrence decreased in 63 public-supply wells and increased in 60 private-supply wells, but neither trend was statistically significant. ?? 2008 American Chemical Society.

  11. Methyl tert-butyl ether biodegradation by microbial consortia obtained from soil samples of gasoline-polluted sites in Mexico.

    PubMed

    Morales, Marcia; Velázquez, Elia; Jan, Janet; Revah, Sergio; González, Uriel; Razo-Flores, Elías

    2004-02-01

    Microbial consortia obtained from soil samples of gasoline-polluted sites were individually enriched with pentane, hexane, isooctane and toluene. Cometabolism with methyl tert-butyl ether, (MTBE), gave maximum degradation rates of 49, 12, 32 and 0 mg g(-1)protein h(-1), respectively. MTBE was fully degraded even when pentane was completely depleted with a cometabolic coefficient of 1 mgMTBE mg(-1)pentane. The analysis of 16S rDNA from isolated microorganisms in the pentane-adapted consortia showed that microorganisms could be assigned to Pseudomonas. This is the first work reporting the cometabolic mineralization of MTBE by consortium of this genus.

  12. Metabolism of Diethyl Ether and Cometabolism of Methyl tert-Butyl Ether by a Filamentous Fungus, a Graphium sp

    PubMed Central

    Hardison, L. K.; Curry, S. S.; Ciuffetti, L. M.; Hyman, M. R.

    1997-01-01

    In this study, evidence for two novel metabolic processes catalyzed by a filamentous fungus, Graphium sp. strain ATCC 58400, is presented. First, our results indicate that this Graphium sp. can utilize the widely used solvent diethyl ether (DEE) as the sole source of carbon and energy for growth. The kinetics of biomass accumulation and DEE consumption closely followed each other, and the molar growth yield on DEE was indistinguishable from that with n-butane. n-Butane-grown mycelia also immediately oxidized DEE without the extracellular accumulation of organic oxidation products. This suggests a common pathway for the oxidation of both compounds. Acetylene, ethylene, and other unsaturated gaseous hydrocarbons completely inhibited the growth of this Graphium sp. on DEE and DEE oxidation by n-butane-grown mycelia. Second, our results indicate that gaseous n-alkane-grown Graphium mycelia can cometabolically degrade the gasoline oxygenate methyl tert-butyl ether (MTBE). The degradation of MTBE was also completely inhibited by acetylene, ethylene, and other unsaturated hydrocarbons and was strongly influenced by n-butane. Two products of MTBE degradation, tert-butyl formate (TBF) and tert-butyl alcohol (TBA), were detected. The kinetics of product formation suggest that TBF production temporally precedes TBA accumulation and that TBF is hydrolyzed both biotically and abiotically to yield TBA. Extracellular accumulation of TBA accounted for only a maximum of 25% of the total MTBE consumed. Our results suggest that both DEE oxidation and MTBE oxidation are initiated by cytochrome P-450-catalyzed reactions which lead to scission of the ether bonds in these compounds. Our findings also suggest a potential role for gaseous n-alkane-oxidizing fungi in the remediation of MTBE contamination. PMID:16535667

  13. Laboratory Method for Analysis of Small Concentrations of Methyl tert-Butyl Ether and Other Ether Gasoline Oxygenates in Water

    USGS Publications Warehouse

    Rose, Donna L.; Connor, Brooke F.; Abney, Sonja R.; Raese, Jon W.

    1998-01-01

    This Fact Sheet presents data for analysis of nanogram-per-liter concentrations of methyl tert-butyl ether (MTBE) and three other ether gasoline oxygenates, including methyl tert-pentyl ether (TAME), diisopropyl ether (DIPE), and ethyl tert-butyl ether (ETBE), by purge- and-trap capillary-column gas chromatography. Long-term method detection levels (LT-MDLs) for MTBE, TAME, DIPE, and ETBE ranged from 15 to 83 nanograms per liter (0.015 to 0.083 microgram per liter). Nanogram-per-liter-concentration detections are reported if all of the identification criteria are met, whereas previous methods censored detections at a pre-determined method reporting level. The reporting level for this method is defined as two times the LT-MDL, does not censor detections at less than this concentration, and is referred to as the nondetection value (NDV). Bias and variability data from multiple analyses, analysts, and instruments over a 60-day period show the oxygenate recoveries ranging from 100 to 109 percent, with 6 to 8 percent relative standard deviation. MTBE, TAME, DIPE, and ETBE were not detected in the analysis of 225 laboratory reagent blanks from January to December 1997. A preservation study in ground water and surface water indicates that all the oxygenates are stable at pH 2 for up to 216 days, with recoveries ranging from 94 to 115 percent on day 216, and relative standard deviations ranging from 5 to 9 percent for the duration of the study.

  14. Carbon Conversion Efficiency and Limits of Productive Bacterial Degradation of Methyl tert-Butyl Ether and Related Compounds▿

    PubMed Central

    Müller, Roland H.; Rohwerder, Thore; Harms, Hauke

    2007-01-01

    The utilization of the fuel oxygenate methyl tert-butyl ether (MTBE) and related compounds by microorganisms was investigated in a mainly theoretical study based on the YATP concept. Experiments were conducted to derive realistic maintenance coefficients and Ks values needed to calculate substrate fluxes available for biomass production. Aerobic substrate conversion and biomass synthesis were calculated for different putative pathways. The results suggest that MTBE is an effective heterotrophic substrate that can sustain growth yields of up to 0.87 g g−1, which contradicts previous calculation results (N. Fortin et al., Environ. Microbiol. 3:407-416, 2001). Sufficient energy equivalents were generated in several of the potential assimilatory routes to incorporate carbon into biomass without the necessity to dissimilate additional substrate, efficient energy transduction provided. However, when a growth-related kinetic model was included, the limits of productive degradation became obvious. Depending on the maintenance coefficient ms and its associated biomass decay term b, growth-associated carbon conversion became strongly dependent on substrate fluxes. Due to slow degradation kinetics, the calculations predicted relatively high threshold concentrations, Smin, below which growth would not further be supported. Smin strongly depended on the maximum growth rate μmax, and b and was directly correlated with the half maximum rate-associated substrate concentration Ks, meaning that any effect impacting this parameter would also change Smin. The primary metabolic step, catalyzing the cleavage of the ether bond in MTBE, is likely to control the substrate flux in various strains. In addition, deficits in oxygen as an external factor and in reduction equivalents as a cellular variable in this reaction should further increase Ks and Smin for MTBE. PMID:17220260

  15. Biodegradation of methyl tert-butyl ether by cometabolism with hexane in biofilters inoculated with Pseudomonas aeruginosa.

    PubMed

    Salazar, Margarita; Morales, Marcia; Revah, Sergio

    2012-01-01

    Biodegradation of methyl tert-butyl ether (MTBE) vapors by cometabolism with gaseous hexane (n-hexane > 95%) was investigated using Pseudomonas aeruginosa utilizing short chain aliphatic hydrocarbon (C(5)-C(8)). Kinetic batch experiments showed that MTBE was degraded even when hexane was completely exhausted with a cometabolic coefficient of 1.06 ± 0.16 mg MTBE mg hexane(-1). Intermediate tert-butyl alcohol (TBA) accumulation was observed followed by its gradual consumption. A maximum MTBE elimination capacity (EC(MAX)) of 35 g m(-3) h(-1) and removal efficiency (RE) of 70% were attained in mineral medium amended biofilters having an empty bed residence time (EBRT) of 1 min. For these experimental conditions, a maximum hexane EC of approximately 60 g m(-3) h(-1) was obtained at a load of 75 g m(-3) h(-1). Experiments under transient conditions revealed a competitive substrate interaction between MTBE and hexane. Biomass densities between 5.8 and 12.6 g L(biofilter) (-1) were obtained. Nevertheless, production of biopolymers caused non-uniform distribution flow rates that reduced the performance. Residence time distribution profiles showed an intermediate dispersion flow rate with a dispersion coefficient of 0.8 cm(2) s(-1).

  16. Alterations in endocrine responses in male Sprague-Dawley rats following oral administration of methyl tert-butyl ether.

    PubMed

    Williams, T M; Cattley, R C; Borghoff, S J

    2000-03-01

    Methyl tert-butyl ether (MTBE) is an oxygenated fuel additive used to decrease carbon monoxide emissions during combustion. MTBE is a nongenotoxic chemical that induces Leydig cell tumors (LCT) in male rats. The mechanism of MTBE-induced LCT is not known; however, LCT induced by other nongenotoxic chemicals have been associated with the disruption of the hypothalamus-pituitary-testicular (HPT) axis. The objective of this study was to determine whether MTBE functions as an endocrine-active compound by affecting levels of specific hormones involved in the maintenance of the HPT axis. Nine-week-old male Sprague-Dawley rats were administered MTBE by gavage at 0, 250, 500, 1000, or 1500 mg MTBE/kg/day for 15 or 28 consecutive days and sacrificed 1 h following the last dose. Relative testis weights were increased only in high-dose animals treated for 28 days, and no testicular lesions were observed at any dose level. Adrenal gland, liver, and kidney weights were also increased. Histologic changes included protein droplet nephropathy of the kidney and centrilobular hypertrophy of the liver. Interstitial fluid and serum testosterone levels as well as serum prolactin levels were decreased only in animals treated with 1500 mg MTBE/kg/day for 15 days. At 28 days, serum triiodothyronine (T3) was significantly decreased at 1000 and 1500 mg MTBE/kg/day compared to control animals, and a decrease in serum luteinizing hormone and dihydrotestosterone was observed at 1500 mg MTBE/kg/day. These results indicate that MTBE causes mild perturbations in T3 and prolactin; however, the changes in testosterone and LH levels did not fit the pattern caused by known Leydig cell tumorigens.

  17. Trends in Methyl tert-Butyl Ether Concentrations in Private Wells in Southeast New Hampshire: 2005 to 2015.

    PubMed

    Flanagan, Sarah M; Levitt, Joseph P; Ayotte, Joseph D

    2017-02-07

    In southeast New Hampshire, where reformulated gasoline was used from the 1990s to 2007, methyl tert-butyl ether (MtBE) concentrations ≥0.2 μg/L were found in water from 26.7% of 195 domestic wells sampled in 2005. Ten years later in 2015, and eight years after MtBE was banned, 10.3% continue to have MtBE. Most wells (140 of 195) had no MtBE detections (concentrations <0.2 μg/L) in 2005 and 2015. Of the remaining wells, MtBE concentrations increased in 4 wells, decreased in 47 wells, and did not change in 4 wells. On average, MtBE concentrations decreased 65% among 47 wells whereas MtBE concentrations increased 17% among 4 wells between 2005 and 2015. The percent change in detection frequency from 2005 to 2015 (the decontamination rate) was lowest (45.5%) in high-population-density areas and in wells completed in the Berwick Formation geologic units. The decontamination rate was the highest (78.6%) where population densities were low and wells were completed in bedrock composed of granite, metamorphic, and mafic rocks. Wells in the Berwick Formation are characteristically deeper and have lower yields than wells in other rock types and have shallower overburden cover, which may allow for more rapid transport of MtBE from land-surface releases. Low-yielding, deep bedrock wells may require large contributing areas to achieve adequate well yield, and thus have a greater chance of intercepting MtBE, in addition to diluting contaminants at a slower rate and thus requiring more time to decontaminate.

  18. Synthesis of enantioenriched azo compounds: organocatalytic Michael addition of formaldehyde N-tert-butyl hydrazone to nitroalkenes.

    PubMed

    Monge, David; Daza, Silvia; Bernal, Pablo; Fernández, Rosario; Lassaletta, José M

    2013-01-14

    The unprecedented diaza-ene reaction of formaldehyde N-tert-butyl hydrazone with nitroalkenes can be efficiently catalyzed by an axially chiral bis-thiourea to afford the corresponding diazenes in good to excellent yields (60-96%) and moderate enantioselectivities, up to 84 : 16 er; additional transformation of diazenes into their tautomeric hydrazones proved to be operationally simple and high-yielding, affording bifunctional compounds which represent useful intermediates for the synthesis of enantioenriched β-nitro-nitriles and derivatives thereof.

  19. Energy analysis for the production of biodiesel in a spiral reactor using supercritical tert-butyl methyl ether (MTBE).

    PubMed

    Farobie, Obie; Matsumura, Yukihiko

    2015-11-01

    In this study, energy analysis was conducted for the production of biodiesel in a spiral reactor using supercritical tert-butyl methyl ether (MTBE). This study aims to determine the net energy ratio (NER) and energy efficiency for the production of biodiesel using supercritical MTBE and to verify the effectiveness of the spiral reactor in terms of heat recovery efficiency. The analysis results revealed that the NER for this process was 0.92. Meanwhile, the energy efficiency was 0.98, indicating that the production of biodiesel in a spiral reactor using supercritical MTBE is an energy-efficient process. By comparing the energy supply required for biodiesel production between spiral and conventional reactors, the spiral reactor was more efficient than the conventional reactor.

  20. A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions.

    PubMed

    Farobie, Obie; Matsumura, Yukihiko

    2015-09-01

    In this study, biodiesel production under supercritical conditions among methanol, ethanol, and tert-butyl methyl ether (MTBE) was compared in order to elucidate the differences in their reaction behavior. A continuous reactor was employed, and experiments were conducted at various reaction temperatures (270-400 °C) and reaction times (3-30 min) and at a fixed pressure of 20 MPa and an oil-to-reactant molar ratio of 1:40. The results showed that under the same reaction conditions, the supercritical methanol method provided the highest yield of biodiesel. At 350 °C and 20 MPa, canola oil was completely converted to biodiesel after 10, 30, and 30 min in the case of - supercritical methanol, ethanol, and MTBE, respectively. The reaction kinetics of biodiesel production was also compared for supercritical methanol, ethanol, and MTBE.

  1. ETBE (ethyl tert butyl ether) and TAME (tert amyl methyl ether) affect microbial community structure and function in soils.

    PubMed

    Bartling, Johanna; Esperschütz, Jürgen; Wilke, Berndt-Michael; Schloter, Michael

    2011-03-15

    Ethyl tert butyl ether (ETBE) and tert amyl methyl ether (TAME) are oxygenates used in gasoline in order to reduce emissions from vehicles. The present study investigated their impact on a soil microflora that never was exposed to any contamination before. Therefore, soil was artificially contaminated and incubated over 6 weeks. Substrate induced respiration (SIR) measurements and phospholipid fatty acid (PLFA) analysis indicated shifts in both, microbial function and structure during incubation. The results showed an activation of microbial respiration in the presence of ETBE and TAME, suggesting biodegradation by the microflora. Furthermore, PLFA concentrations decreased in the presence of ETBE and TAME and Gram-positive bacteria became more dominant in the microbial community.

  2. Manipulation of the HIF–Vegf pathway rescues methyl tert-butyl ether (MTBE)-induced vascular lesions

    SciTech Connect

    Bonventre, Josephine A.; Kung, Tiffany S.; White, Lori A.; Cooper, Keith R.

    2013-12-15

    Methyl tert-butyl ether (MTBE) has been shown to be specifically anti-angiogenic in piscine and mammalian model systems at concentrations that appear non-toxic in other organ systems. The mechanism by which MTBE targets developing vascular structures is unknown. A global transcriptome analysis of zebrafish embryos developmentally exposed to 0.00625–5 mM MTBE suggested that hypoxia inducible factor (HIF)-regulated pathways were affected. HIF-driven angiogenesis via vascular endothelial growth factor (vegf) is essential to the developing vasculature of an embryo. Three rescue studies were designed to rescue MTBE-induced vascular lesions: pooled blood in the common cardinal vein (CCV), cranial hemorrhages (CH), and abnormal intersegmental vessels (ISV), and test the hypothesis that MTBE toxicity was HIF–Vegf dependent. First, zebrafish vegf-a over-expression via plasmid injection, resulted in significantly fewer CH and ISV lesions, 46 and 35% respectively, in embryos exposed to 10 mM MTBE. Then HIF degradation was inhibited in two ways. Chemical rescue by N-oxaloylglycine significantly reduced CCV and CH lesions by 30 and 32% in 10 mM exposed embryos, and ISV lesions were reduced 24% in 5 mM exposed zebrafish. Finally, a morpholino designed to knock-down ubiquitin associated von Hippel–Lindau protein, significantly reduced CCV lesions by 35% in 10 mM exposed embryos. In addition, expression of some angiogenesis related genes altered by MTBE exposure were rescued. These studies demonstrated that MTBE vascular toxicity is mediated by a down regulation of HIF–Vegf driven angiogenesis. The selective toxicity of MTBE toward developing vasculature makes it a potentially useful chemical in the designing of new drugs or in elucidating roles for specific angiogenic proteins in future studies of vascular development. - Highlights: • Global gene expression of MTBE exposed zebrafish suggested altered HIF1 signaling. • Over expression of zebrafish vegf-a rescues MTBE

  3. Simultaneous determination of methyl tert.-butyl ether and its degradation products, other gasoline oxygenates and benzene, toluene, ethylbenzene and xylenes in Catalonian groundwater by purge-and-trap-gas chromatography-mass spectrometry.

    PubMed

    Rosell, Mònica; Lacorte, Sílvia; Ginebreda, Antoni; Barceló, Damià

    2003-05-02

    In Catalonia (northeast Spain), a monitoring program was carried out to determine methyl tert.-butyl ether (MTBE), its main degradation products, tert.-butyl alcohol (TBA), tert.-butyl formate (TBF), and other gasoline additives, the oxygenate dialkyl ethers ethyl tert.-butyl ether, tert.-amyl methyl ether and diisopropyl ether and the aromatic compounds benzene, toluene, ethylbenzene and xylene (BTEX) in 21 groundwater wells that were located near different gasoline point sources (a gasoline spill and underground storage tank leakage). Purge-and-trap coupled to gas chromatography-mass spectrometry was optimised for the simultaneous determination of the above mentioned compounds and enabled to detect concentrations at ng/l or sub-microg/l concentrations. Special attention was given to the determination of polar MTBE degradation products, TBA and TBF, since not much data on method performance and environmental levels are given on these compounds in groundwater. All samples analysed contained MTBE at levels between 0.3 and 70 microg/l. Seven contaminated hot spots were identified with levels up to US Environmental Protection Agency drinking water advisory (20-40 microg/l) and a maximum concentration of 670 microg/l (doubling the Danish suggested toxicity level of 350 microg/l). Samples with high levels of MTBE contained 0.1-60 microg/l of TBA, indicating (but not proving) in situ degradation of parent compound. In all cases, BTEX was at low concentrations or not detected showing less solubility and persistence than MTBE. This fact confirms the suitability of MTBE as a tracer or indicator of long-term gasoline contamination than the historically used BTEX.

  4. Groundwater remediation by an in situ biobarrier: a bench scale feasibility test for methyl tert-butyl ether and other gasoline compounds.

    PubMed

    Saponaro, Sabrina; Negri, Marco; Sezenna, Elena; Bonomo, Luca; Sorlini, Claudia

    2009-08-15

    Most gasoline contains high percentages of methyl tert-butyl ether (MTBE) as an additive. The physico-chemical properties of this substance (high water solubility, low sorption in soil) result in high mobility and dissolved concentrations in soil. In situ permeable biological barriers (biobarriers, BBs) can remediate MTBE polluted groundwater by allowing pure cultures or microbial consortia to degrade MTBE when aerobic conditions are present, either by direct metabolism or cometabolism. Lab-scale batch and column tests were carried out to assess a selected microbial consortium in biodegrading MTBE and other gasoline compounds (benzene B, toluene T, ethylbenzene E, xylenes X) and to measure the parameters affecting the efficacy of a BB treatment of polluted groundwater. During the aerobic phase of the batch tests, the simultaneous biodegradation of MTBE, tert-butyl alcohol (TBA), B, T, E and o-X was observed. The rapid biodegradation of BTEXs resulted in decreased oxygen availability, but MTBE degradation was nevertheless measured in the presence of BTEXs. Stationary concentrations of MTBE and TBA were measured when anoxic conditions occurred in the systems. Values for a first order kinetic removal process were obtained for MTBE (0.031+/-0.001 d(-1)), B (0.045+/-0.002 d(-1)) and T (0.080+/-0.004 d(-1)) in the inoculated column tests. The estimate of the BB design parameters suggested that inoculation could significantly modify (double) the longitudinal dispersivity value of the biomass support medium. No effect was observed in the retardation factors for MTBE, B and T.

  5. A rapid and sensitive method for methyl tert-butyl ether analysis in water samples by use of solid phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Piazza, F; Barbieri, A; Violante, F S; Roda, A

    2001-08-01

    This work describes a rapid and sensitive solid-phase microextraction (SPME) method for the isolation and analysis of methyl tert-butyl ether in water samples. Methyl tert-butyl ether was extracted from aqueous solutions using SPME fibre coated with Divinylbenzene/Carboxen/polydimethylsiloxane (30 microm film thickness) and analysed by GC-MS with a Hewlett Packard 6890/5973 system equipped with a capillary column coated with Vocol (30 m x 0.25 mm, 1.5 microm film thickness). Extraction parameters and chromatographic separation conditions were optimised. The developed method showed good analytical performance in terms of precision (RSD between 2% and 8%) and accuracy (mean recovery from 96% to 104%) with a detection limit of 14 ppt. Finally the method was applied to surface, tap and commercial mineral water samples, as well as snow samples collected along a busy road of Bologna town area. The median concentration of methyl tert-butyl ether in all these samples (0.05-0.4 ppb) was well below the maximum aqueous contamination levels in water adopted in the United States (13 ppb).

  6. Continuous on-line determination of methyl tert-butyl ether in water samples using ion mobility spectrometry.

    PubMed

    Borsdorf, H; Rämmler, A

    2005-04-22

    A rapid analytical procedure for the on-line determination of methyl tert-butyl ether (MTBE) in water samples was developed. A new membrane extraction unit was used to extract the MTBE from water samples. The concentration of MTBE was determined using ion mobility spectrometry with 63Ni ionization and corona discharge ionization without chromatographic separation. Both ionization methods permit the sensitive determination of MTBE. A detection limit of 100 microg/L was established for the on-line procedure. Neither the inorganic compounds, humic substances nor gasoline were found to exert a significant influence on the peak intensity of the MTBE. The screening procedure can be used for concentrations of monoaromatic compounds (benzene, toluene, xylene) up to 600 microg/L. No sample preparation is required and the analysis results are available within 5 min. In order to determine concentrations between 10 microg/L and 100 microg/L, a discontinuous procedure was developed on the basis of the same experimental set-up.

  7. Cometabolic biodegradation of methyl tert-butyl ether by a soil consortium: Effect of components present in gasoline.

    PubMed

    Garnier, Patrice M.; Auria, Richard

    2000-04-01

    A soil consortium was tested for its ability to degrade reformulated gasoline, containing methyl tert-butyl ether (MTBE). Reformulated gasoline was rapidly degraded to completion. However, MTBE tested alone was not degraded. A screening was carried out to identify compounds in gasoline that participate in cometabolism with MTBE. Aromatic compounds (benzene, toluene, xylenes) and compounds structurally similar to MTBE (tert-butanol, 2,2-dimethylbutane, 2,2,4-trimethylpentane) were unable to cometabolize MTBE. Cyclohexane was resistant to degradation. However, all n-alkanes tested for cometabolic activity (pentane, hexane, heptane) did enable the biodegradation of MTBE. Among the alkanes tested, pentane was the most efficient (200 &mgr;g/day). Upon the depletion of pentane, the consortium stopped degrading MTBE. When the consortium was spiked with pentane, MTBE degradation continued. When the ratio of MTBE to pentane was increased, the amount of MTBE degraded by the consortium was higher. Finally, diethylether was tested for cometabolic degradation with MTBE. Both compounds were degraded, but the process differed from that observed with pentane.

  8. Methyl tert-butyl ether occurrence and related factors in public and private wells in Southeast New Hampshire

    USGS Publications Warehouse

    Ayotte, J.D.; Argue, D.M.; McGarry, F.J.

    2005-01-01

    The occurrence of methyl tert-butyl ether (MTBE) in water from public wells in New Hampshire has increased steadily over the past several years. Using a laboratory reporting level of 0.2 ??g/L, 40% of samples from public wells and 21% from private wells in southeast New Hampshire have measurable concentrations of MTBE. The rate of occurrence of MTBE varied significantly for public wells by establishment type; for example, 63% of public wells serving residential properties have MTBE concentrations above 0.2 ??g/L, whereas lower rates were found for schools (21%). MTBE concentrations correlate strongly with urban factors, such as population density. Surprisingly, MTBE was correlated positively with well depth for public supply wells. Well depth is inversely related to yield in New Hampshire bedrock wells, which may mean that there is less opportunity for dilution of MTBE captured by deep wells. Another possibility is that the source(s) of water to low-yield wells may be dominated by leakage from potentially contaminated shallow groundwater through near-surface fractures or along the well casing. These wells may also have relatively large contributing areas (due to low recharge at the bedrock surface) and therefore have a greater chance of intersecting MTBE sources. This finding is significant because deep bedrock wells are often considered to be less vulnerable to contamination than shallow wells, and in southeast New Hampshire, wells are being drilled deeper in search of increased supply.

  9. Crystal structure of 7,15-bis­(4-tert-butyl­phen­yl)-1,9-di­methyl­hepta­zethrene

    PubMed Central

    Kamata, Sho; Sato, Sota; Wu, Jishan

    2017-01-01

    The title compound, C50H44, 1, was synthesized as a derivative of hepta­zethrene bearing two methyl and two tert-butyl­phenyl substituents, respectively, at the 1,9- and 7,15-positions. The asymmetric unit consists of one half of the mol­ecule, which lies about an inversion centre. Albeit remotely located, the substituents contort the hepta­zethrene plane. The tert-butyl­phenyl substituents stand approximately perpendicular to the core plane, with a dihedral angle of 79.09 (5)° between the phenalene ring system and the substituted benzene ring, and prevent direct inter­molecular contacts of the hepta­zethrene cores. PMID:28217319

  10. Mineralization of methyl tert-butyl ether and other gasoline oxygenates by Pseudomonads using short n-alkanes as growth source.

    PubMed

    Morales, Marcia; Nava, Verónica; Velásquez, Elia; Razo-Flores, Elías; Revah, Sergio

    2009-04-01

    Biodegradation of methyl tert-butyl ether (MTBE) by cometabolism has shown to produce recalcitrant metabolic intermediates that often accumulate. In this work, a consortium containing Pseudomonads was studied for its ability to fully degrade oxygenates by cometabolism. This consortium mineralized MTBE and TBA with C3-C7 n-alkanes. The highest degradation rates for MTBE (75 +/- 5 mg g(protein) (-1) h(-1)) and TBA (86.9 +/- 7.3 mg g(protein) (-1) h(-1)) were obtained with n-pentane and n-propane, respectively. When incubated with radiolabeled MTBE and n-pentane, it converted more than 96% of the added MTBE to (14)C-CO(2). Furthermore, the consortium degraded tert-amyl methyl ether, tert-butyl alcohol (TBA), tert-amyl alcohol, ethyl tert-butyl ether (ETBE) when n-pentane was used as growth source. Three Pseudomonads were isolated but only two showed independent MTBE degradation activity. The maximum degradation rates were 101 and 182 mg g(protein) (-1) h(-1) for Pseudomonas aeruginosa and Pseudomonas citronellolis, respectively. The highest specific affinity (a degrees (MTBE)) value of 4.39 l g(protein) (-1) h(-1) was obtained for Pseudomonas aeruginosa and complete mineralization was attained with a MTBE: n-pentane ratio (w/w) of 0.7. This is the first time that Pseudomonads have been reported to fully mineralize MTBE by cometabolic degradation.

  11. Characterization of the Initial Reactions during the Cometabolic Oxidation of Methyl tert-Butyl Ether by Propane-Grown Mycobacterium vaccae JOB5

    PubMed Central

    Smith, Christy A.; O'Reilly, Kirk T.; Hyman, Michael R.

    2003-01-01

    The initial reactions in the cometabolic oxidation of the gasoline oxygenate, methyl tert-butyl ether (MTBE), by Mycobacterium vaccae JOB5 have been characterized. Two products, tert-butyl formate (TBF) and tert-butyl alcohol (TBA), rapidly accumulated extracellularly when propane-grown cells were incubated with MTBE. Lower rates of TBF and TBA production from MTBE were also observed with cells grown on 1- or 2-propanol, while neither product was generated from MTBE by cells grown on casein-yeast extract-dextrose broth. Kinetic studies with propane-grown cells demonstrated that TBF is the dominant (≥80%) initial product of MTBE oxidation and that TBA accumulates from further biotic and abiotic hydrolysis of TBF. Our results suggest that the biotic hydrolysis of TBF is catalyzed by a heat-stable esterase with activity toward several other tert-butyl esters. Propane-grown cells also oxidized TBA, but no further oxidation products were detected. Like the oxidation of MTBE, TBA oxidation was fully inhibited by acetylene, an inactivator of short-chain alkane monooxygenase in M. vaccae JOB5. Oxidation of both MTBE and TBA was also inhibited by propane (Ki = 3.3 to 4.4 μM). Values for Ks of 1.36 and 1.18 mM and for Vmax of 24.4 and 10.4 nmol min−1 mg of protein−1 were derived for MTBE and TBA, respectively. We conclude that the initial steps in the pathway of MTBE oxidation by M. vaccae JOB5 involve two reactions catalyzed by the same monooxygenase (MTBE and TBA oxidation) that are temporally separated by an esterase-catalyzed hydrolysis of TBF to TBA. These results that suggest the initial reactions in MTBE oxidation by M. vaccae JOB5 are the same as those that we have previously characterized in gaseous alkane-utilizing fungi. PMID:12570997

  12. Determination of Methyl tert-Butyl Ether and tert-Butyl Alcohol in Water by Solid-Phase Microextraction/Head Space Analysis in Comparison to EPA Method 5030/8260B

    SciTech Connect

    Oh, Keun-Chan; Stringfellow, William T.

    2003-10-02

    Methyl tert-butyl ether (MTBE) is now one of the most common groundwater contaminants in the United States. Groundwater contaminated with MTBE is also likely to be contaminated with tert-butyl alcohol (TBA), because TBA is a component of commercial grade MTBE, TBA can also be used as a fuel oxygenate, and TBA is a biodegradation product of MTBE. In California, MTBE is subject to reporting at concentrations greater than 3 {micro}g/L. TBA is classified as a ''contaminant of current interest'' and has a drinking water action level of 12 {micro}g/L. In this paper, we describe the development and optimization of a simple, automated solid phase microextraction (SPME) method for the analysis of MTBE and TBA in water and demonstrate the applicability of this method for monitoring MTBE and TBA contamination in groundwater, drinking water, and surface water. In this method, the headspace (HS) of a water sample is extracted with a carboxen/polydimethylsiloxane SPME fiber, the MTBE and TBA are desorbed into a gas chromatograph (GC), and detected using mass spectrometry (MS). The method is optimized for the routine analysis of MTBE and TBA with a level of quantitation of 0.3 {micro}g/L and 4 {micro}g/L, respectively, in water. MTBE quantitation was linear for over two orders of concentration (0.3 {micro}g/L -80 {micro}g/L). TBA was found to be linear within the range of 4 {micro}g/L-7,900 {micro}g/L. The lower level of detection for MTBE is 0.03 {micro}g/L using this method. This SPME method using headspace extraction was found to be advantageous over SPME methods requiring immersion of the fiber into the water samples, because it prolonged the life of the fiber by up to 400 sample analyses. This is the first time headspace extraction SPME has been shown to be applicable to the measurement of both MTBE and TBA at concentrations below regulatory action levels. This method was compared with the certified EPA Method 5030/8260B (purge-and-trap/GC/MS) using split samples from

  13. The study of binding of methyl tert-butyl ether to human telomeric G-quadruplex and calf thymus DNA by gas chromatography, a thermodynamic discussion.

    PubMed

    Ghasemi, Sahar; Ahmadi, Farhad

    2014-11-15

    Methyl-tert-butyl ether (MTBE) is widely used as an antiknock additive for increasing octane number of gasoline. Recently, the in vivo studies demonstrated that MTBE has genotoxic potential and able to form adducts with DNA. In the work, the interactions of MTBE with calf thymus DNA (ct-DNA) and the Na(+) form of G-quadruplex DNA (wtTel22) were studied by using of head space-solid phase microextraction technique coupled to gas chromatography. The binding equilibrium constants were measured through the equilibriums of a four phase system. In addition, the MTBE Henry's law constants for two different buffers in the temperature range of 283-303K were measured. Thermodynamic studies revealed that the complexation of MTBE to both DNAs is enthalpy favored and entropy disfavored. The thermodynamic results revealed that MTBE may have interaction with ct-DNA via the minor groove of DNA. Also, MTBE may be complexed into the basket of G-quadruplex structure. In addition, the low difference in the binding constants of MTBE for both different DNA targets may confirm that MTBE is poorly selective for different conformations of DNA.

  14. The interactions of methyl tert-butyl ether on high silica zeolites: a combined experimental and computational study.

    PubMed

    Sacchetto, V; Gatti, G; Paul, G; Braschi, I; Berlier, G; Cossi, M; Marchese, L; Bagatin, R; Bisio, C

    2013-08-28

    In this work, the interactions of methyl tert-butyl ether (MTBE) on different dealuminated high silica zeolites were studied by means of both experimental and computational approaches. Zeolites with different textural and surface features were selected as adsorbents and the effect of their physico-chemical properties (i.e. pore size architecture and type and amount of surface OH sites) on sorption capacity were studied. High silica mordenite (MOR) and Y zeolites (both with a SiO2/Al2O3 ratio of 200) and ZSM-5 solid (SiO2/Al2O3 ratio of 500) were selected as model sorbents. By combining FTIR and SS-NMR (both (1)H and (13)C CPMAS NMR) spectroscopy it was possible to follow accurately the MTBE adsorption process on highly defective MOR characterized by a high concentration of surface SiOH groups. The adsorption process is found to occur in different steps and to involve isolated silanol sites, weakly interacting silanols, and the siloxane network of the zeolite, respectively. H-bonding and van der Waals interactions occurring between the mordenite surface and MTBE molecules were modeled by DFT calculations using a large cluster of the MOR structure where two adjacent side-pockets were fused in a large micropore to simulate a dealumination process leading to silanol groups. This is the locus where MTBE molecules are more strongly bound and stabilized. FTIR spectroscopy and gravimetric measurements allowed determination of the interaction strength and sorption capacities of all three zeolites. In the case of both Y and MOR zeolites, medium-weak H-bonding with isolated silanols (both on internal and external zeolite surfaces) and van der Waals interactions are responsible for MTBE adsorption, whereas ZSM-5, in which a negligible amount of surface silanol species is present, displays a much lower amount of adsorbed MTBE retained mainly through van der Waals interactions with zeolite siloxane network.

  15. Enhancing Transport of Hydrogenophaga flava ENV735 for Bioaugmentation of Aquifers Contaminated with Methyl tert-Butyl Ether

    PubMed Central

    Streger, Sheryl H.; Vainberg, Simon; Dong, Hailiang; Hatzinger, Paul B.

    2002-01-01

    The gasoline oxygenate methyl tert-butyl ether (MTBE) has become a widespread contaminant in groundwater throughout the United States. Bioaugmentation of aquifers with MTBE-degrading cultures may be necessary to enhance degradation of the oxygenate in some locations. However, poor cell transport has sometimes limited bioaugmentation efforts in the past. The objective of this study was to evaluate the transport characteristics of Hydrogenophaga flava ENV735, a pure culture capable of growth on MTBE, and to improve movement of the strain through aquifer solids. The wild-type culture moved only a few centimeters in columns of aquifer sediment. An adhesion-deficient variant (H. flava ENV735:24) of the wild-type strain that moved more readily through sediments was obtained by sequential passage of cells through columns of sterile sediment. Hydrophobic and electrostatic interaction chromatography revealed that the wild-type strain is much more hydrophobic than the adhesion-deficient variant. Electrophoretic mobility assays and transmission electron microscopy showed that the wild-type bacterium contains two distinct subpopulations, whereas the adhesion-deficient strain has only a single, homogeneous population. Both the wild-type strain and adhesion-deficient variant degraded MTBE, and both were identified by 16S rRNA analysis as pure cultures of H. flava. The effectiveness of surfactants for enhancing transport of the wild-type strain was also evaluated. Many of the surfactants tested were toxic to ENV735; however, one nonionic surfactant, Tween 20, enhanced cell transport in sand columns. Improving microbial transport may lead to a more effective bioaugmentation strategy for MTBE-contaminated sites where indigenous oxygenate degraders are absent. PMID:12406751

  16. Exposure to methyl tert-butyl ether, benzene, and total hydrocarbons at the Singapore-Malaysia causeway immigration checkpoint

    SciTech Connect

    Tan, C.; Ong, H.Y.; Kok, P.W.

    1996-12-31

    The primary aim of this study was to determine the extent and levels of exposure to volatile organic compounds (VOCs) from automobile emissions in a group of immigration officers at a busy cross-border checkpoint. A majority (80%) of the workers monitored were exposed to benzene at levels between 0.01 and 0.5 ppm, with only 1.2% exceeding the current Occupational Safety and Health Administration occupational exposure limit of 1 ppm. The geometric mean (GM) concentrations of 8-hr time-weighted average exposure were 0.03 ppm, 0.9 ppm, and 2.46 ppm for methyl-tert-butyl ether (MTBE), benzene, and total hydrocarbons (THC), respectively. The highest time-weighted average concentrations measured were 1.05 ppm for MTBE, 2.01 ppm for benzene, and 34 ppm for THC. It was found that motorbikes emitted a more significant amount of pollutants compared with motor cars. On average, officers at the motorcycle booths were exposed to four to five times higher levels of VOCs (GMs of 0.07 ppm, 0.23 ppm, and 4.7 ppm for MTBE, benzene, and THC) than their counterparts at the motor car booths (GMs of 0.01 ppm, 0.05 ppm, and 1.5 ppm). The airborne concentrations of all three pollutants correlated with the flow of vehicle traffic. Close correlations were also noted for the concentrations in ambient air for the three pollutants measured. Benzene and MTBE had a correlation coefficient of 0.97. The overall findings showed that the concentrations of various VOCs were closely related to the traffic density, suggesting that they were from a common source, such as exhaust emissions from the vehicles. The results also indicated that although benzene, MTBE, and THC are known to be volatile, a significant amount could still be detected in the ambient environment, thus contributing to our exposure to these compounds. 4 refs., 6 figs.

  17. INHALATION EXPOSURE TO METHYL TERT-BUTYL ETHER (MTBE) AND DIBROMOCHLOROMETHANE (DBCM) USING CONTINUOUS BREATH ANALYSIS

    EPA Science Inventory

    The oxygenate methyl tert-butyl ether (MTBE) has been added to gasoline to help meet national ambient air quality standards in those parts of the U.S. that are non-compliant for carbon monoxide. Although MTBE has provided important health benefits in terms of reduced haza...

  18. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability.

    PubMed

    Li, Shanshan; Qian, Keke; Wang, Shan; Liang, Kaiqiang; Yan, Wei

    2017-01-24

    Methyl tert-butyl ether (MTBE) has been used as a common gasoline additive worldwide since the late twentieth century, and it has become the most frequently detected groundwater pollutant in many countries. This study aimed to synthesize a novel microbial carrier to improve its adsorptive capacity for MTBE and biofilm formation, compared to the traditional granular activated carbon (GAC). A polypyrrole (PPy)-modified GAC composite (PPy/GAC) was synthesized, and characterized by Fourier transform infrared spectroscopy (FT-IR) and Brunauer-Emmett-Teller (BET) surface area analysis. The adsorption behaviors of MTBE were well described by the pseudo-second-order and Langmuir isotherm models. Furthermore, three biofilm reactors were established with PPy/GAC, PPy, and GAC as the carriers, respectively, and the degradation of MTBE under continuous flow was investigated. Compared to the biofilm reactors with PPy or GAC (which both broke after a period of operation), the PPy/GAC biofilm column produced stable effluents under variable treatment conditions with a long-term effluent MTBE concentration <20 μg/L. Pseudomonas aeruginosa and Acinetobacter pittii may be the predominant bacteria responsible for MTBE degradation in these biofilm reactors.

  19. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability

    PubMed Central

    Li, Shanshan; Qian, Keke; Wang, Shan; Liang, Kaiqiang; Yan, Wei

    2017-01-01

    Methyl tert-butyl ether (MTBE) has been used as a common gasoline additive worldwide since the late twentieth century, and it has become the most frequently detected groundwater pollutant in many countries. This study aimed to synthesize a novel microbial carrier to improve its adsorptive capacity for MTBE and biofilm formation, compared to the traditional granular activated carbon (GAC). A polypyrrole (PPy)-modified GAC composite (PPy/GAC) was synthesized, and characterized by Fourier transform infrared spectroscopy (FT-IR) and Brunauer-Emmett-Teller (BET) surface area analysis. The adsorption behaviors of MTBE were well described by the pseudo-second-order and Langmuir isotherm models. Furthermore, three biofilm reactors were established with PPy/GAC, PPy, and GAC as the carriers, respectively, and the degradation of MTBE under continuous flow was investigated. Compared to the biofilm reactors with PPy or GAC (which both broke after a period of operation), the PPy/GAC biofilm column produced stable effluents under variable treatment conditions with a long-term effluent MTBE concentration <20 μg/L. Pseudomonas aeruginosa and Acinetobacter pittii may be the predominant bacteria responsible for MTBE degradation in these biofilm reactors. PMID:28125030

  20. Reutilization of waste scrap tyre as the immobilization matrix for the enhanced bioremoval of a monoaromatic hydrocarbons, methyl tert-butyl ether, and chlorinated ethenes mixture from water.

    PubMed

    Lu, Qihong; de Toledo, Renata Alves; Xie, Fei; Li, Junhui; Shim, Hojae

    2017-04-01

    BTEX (benzene, toluene, ethylbenzene, ortho-, meta-, and para-xylenes), methyl tert-butyl ether (MTBE), cis-1,2-dichloroethylene (cis-DCE), and trichloroethylene (TCE) are among the major soil and groundwater contaminants frequently co-existing, as a result of their widespread uses. Pseudomonas plecoglossicida was immobilized on waste scrap tyre to remove these contaminants mixture from synthetic contaminated water. The microbial activity was enhanced in the immobilized system, shown by the higher colony forming units (CFUs) (40%), while BTEX were used as growth substrates. The adsorption capacity of tyres toward contaminants reached a maximum within one day, with BTEX (76.3%) and TCE (64.3%) showing the highest sorption removal capacities, followed by cis-DCE (30.0%) and MTBE (11.0%). The adsorption data fitted the Freundlich isotherm with a good linear correlation (0.989-0.999) for the initial contaminants concentration range applied (25-125mg/L). The monoaromatic hydrocarbons were almost completely removed in the immobilized system and the favourable removal efficiencies of 78% and 90% were obtained for cis-DCE and TCE, respectively. The hybrid (biological, immobilization/physical, sorption) system was further evaluated with the contaminants spiked intermittently for the stable performance. The addition of mineral salt medium further enhanced the bioremoval of contaminants by stimulating the microbial growth to some extent.

  1. Volumetric Properties of the Mixture tert-Butyl methyl ether C5H12O + C8H18 Octane (VMSD1511, LB4784_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture tert-Butyl methyl ether C5H12O + C8H18 Octane (VMSD1511, LB4784_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  2. Volumetric Properties of the Mixture tert-Butyl methyl ether C5H12O + C8H18 Octane (VMSD1412, LB4788_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture tert-Butyl methyl ether C5H12O + C8H18 Octane (VMSD1412, LB4788_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  3. Volumetric Properties of the Mixture tert-Butyl methyl ether C5H12O + C9H20 Nonane (VMSD1511, LB4782_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture tert-Butyl methyl ether C5H12O + C9H20 Nonane (VMSD1511, LB4782_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  4. Volumetric Properties of the Mixture tert-Butyl methyl ether C5H12O + C9H20 Nonane (VMSD1412, LB4786_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture tert-Butyl methyl ether C5H12O + C9H20 Nonane (VMSD1412, LB4786_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  5. (2-tert-Butyl-5-hy­droxy­methyl-1,3-dioxan-5-yl)methanol

    PubMed Central

    Vargas, Berenice; Olivas, Amelia; Aguirre, Gerardo; Madrigal, Domingo

    2012-01-01

    In the title compound, C10H20O4, the dioxane ring adopts a chair conformation. The tert-butyl group occupies an equatorial position, and is staggered with respect to the O atoms of the dioxane ring. In the crystal, mol­ecules are connected by O—H⋯O hydrogen-bonds into zigzag chains of R 4 4(8) and R 2 2(12) ring motifs that run parallel to the a axis. PMID:22807874

  6. Oxidation of Methyl tert-Butyl Ether by Alkane Hydroxylase in Dicyclopropylketone-Induced and n-Octane-Grown Pseudomonas putida GPo1

    PubMed Central

    Smith, Christy A.; Hyman, Michael R.

    2004-01-01

    The alkane hydroxylase enzyme system in Pseudomonas putida GPo1 has previously been reported to be unreactive toward the gasoline oxygenate methyl tert-butyl ether (MTBE). We have reexamined this finding by using cells of strain GPo1 grown in rich medium containing dicyclopropylketone (DCPK), a potent gratuitous inducer of alkane hydroxylase activity. Cells grown with DCPK oxidized MTBE and generated stoichiometric quantities of tert-butyl alcohol (TBA). Cells grown in the presence of DCPK also oxidized tert-amyl methyl ether but did not appear to oxidize either TBA, ethyl tert-butyl ether, or tert-amyl alcohol. Evidence linking MTBE oxidation to alkane hydroxylase activity was obtained through several approaches. First, no TBA production from MTBE was observed with cells of strain GPo1 grown on rich medium without DCPK. Second, no TBA production from MTBE was observed in DCPK-treated cells of P. putida GPo12, a strain that lacks the alkane-hydroxylase-encoding OCT plasmid. Third, all n-alkanes that support the growth of strain GPo1 inhibited MTBE oxidation by DCPK-treated cells. Fourth, two non-growth-supporting n-alkanes (propane and n-butane) inhibited MTBE oxidation in a saturable, concentration-dependent process. Fifth, 1,7-octadiyne, a putative mechanism-based inactivator of alkane hydroxylase, fully inhibited TBA production from MTBE. Sixth, MTBE-oxidizing activity was also observed in n-octane-grown cells. Kinetic studies with strain GPo1 grown on n-octane or rich medium with DCPK suggest that MTBE-oxidizing activity may have previously gone undetected in n-octane-grown cells because of the unusually high Ks value (20 to 40 mM) for MTBE. PMID:15294784

  7. Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1.

    PubMed

    Smith, Christy A; Hyman, Michael R

    2004-08-01

    The alkane hydroxylase enzyme system in Pseudomonas putida GPo1 has previously been reported to be unreactive toward the gasoline oxygenate methyl tert-butyl ether (MTBE). We have reexamined this finding by using cells of strain GPo1 grown in rich medium containing dicyclopropylketone (DCPK), a potent gratuitous inducer of alkane hydroxylase activity. Cells grown with DCPK oxidized MTBE and generated stoichiometric quantities of tert-butyl alcohol (TBA). Cells grown in the presence of DCPK also oxidized tert-amyl methyl ether but did not appear to oxidize either TBA, ethyl tert-butyl ether, or tert-amyl alcohol. Evidence linking MTBE oxidation to alkane hydroxylase activity was obtained through several approaches. First, no TBA production from MTBE was observed with cells of strain GPo1 grown on rich medium without DCPK. Second, no TBA production from MTBE was observed in DCPK-treated cells of P. putida GPo12, a strain that lacks the alkane-hydroxylase-encoding OCT plasmid. Third, all n-alkanes that support the growth of strain GPo1 inhibited MTBE oxidation by DCPK-treated cells. Fourth, two non-growth-supporting n-alkanes (propane and n-butane) inhibited MTBE oxidation in a saturable, concentration-dependent process. Fifth, 1,7-octadiyne, a putative mechanism-based inactivator of alkane hydroxylase, fully inhibited TBA production from MTBE. Sixth, MTBE-oxidizing activity was also observed in n-octane-grown cells. Kinetic studies with strain GPo1 grown on n-octane or rich medium with DCPK suggest that MTBE-oxidizing activity may have previously gone undetected in n-octane-grown cells because of the unusually high K(s) value (20 to 40 mM) for MTBE.

  8. Comparative Transcriptome Analysis of Methylibium petroleiphilum PM1 Exposed to the Fuel Oxygenates Methyl tert-Butyl Ether and Ethanol▿ †

    PubMed Central

    Hristova, Krassimira R.; Schmidt, Radomir; Chakicherla, Anu Y.; Legler, Tina C.; Wu, Janice; Chain, Patrick S.; Scow, Kate M.; Kane, Staci R.

    2007-01-01

    High-density whole-genome cDNA microarrays were used to investigate substrate-dependent gene expression of Methylibium petroleiphilum PM1, one of the best-characterized aerobic methyl tert-butyl ether (MTBE)-degrading bacteria. Differential gene expression profiling was conducted with PM1 grown on MTBE and ethanol as sole carbon sources. Based on microarray high scores and protein similarity analysis, an MTBE regulon located on the megaplasmid was identified for further investigation. Putative functions for enzymes encoded in this regulon are described with relevance to the predicted MTBE degradation pathway. A new unique dioxygenase enzyme system that carries out the hydroxylation of tert-butyl alcohol to 2-methyl-2-hydroxy-1-propanol in M. petroleiphilum PM1 was discovered. Hypotheses regarding the acquisition and evolution of MTBE genes as well as the involvement of IS elements in these complex processes were formulated. The pathways for toluene, phenol, and alkane oxidation via toluene monooxygenase, phenol hydroxylase, and propane monooxygenase, respectively, were upregulated in MTBE-grown cells compared to ethanol-grown cells. Four out of nine putative cyclohexanone monooxygenases were also upregulated in MTBE-grown cells. The expression data allowed prediction of several hitherto-unknown enzymes of the upper MTBE degradation pathway in M. petroleiphilum PM1 and aided our understanding of the regulation of metabolic processes that may occur in response to pollutant mixtures and perturbations in the environment. PMID:17890343

  9. Occurrence and temporal variability of methyl tert-butyl ether (MTBE) and other volatile organic compounds in select sources of drinking water : results of the focused survey

    USGS Publications Warehouse

    Delzer, Gregory C.; Ivahnenko, Tamara

    2003-01-01

    The large-scale use of the gasoline oxygenate methyl tert-butyl ether (MTBE), and its high solubility, low soil adsorption, and low biodegradability, has resulted in its detection in ground water and surface water in many places throughout the United States. Studies by numerous researchers, as well as many State and local environmental agencies, have discovered high levels of MTBE in soils and ground water at leaking underground gasoline-storage-tank sites and frequent occurrence of low to intermediate levels of MTBE in reservoirs used for both public water supply and recreational boating.In response to these findings, the American Water Works Association Research Foundation sponsored an investigation of MTBE and other volatile organic compounds (VOCs) in the Nation?s sources of drinking water. The goal of the investigation was to provide additional information on the frequency of occurrence, concentration, and temporal variability of MTBE and other VOCs in source water used by community water systems (CWSs). The investigation was completed in two stages: (1) reviews of available literature and (2) the collection of new data. Two surveys were associated with the collection of new data. The first, termed the Random Survey, employed a statistically stratified design for sampling source water from 954 randomly selected CWSs. The second, which is the focus of this report, is termed the Focused Survey, which included samples collected from 134 CWS source waters, including ground water, reservoirs, lakes, rivers, and streams, that were suspected or known to contain MTBE. The general intent of the Focused Survey was to compare results with the Random Survey and provide an improved understanding of the occurrence, concentration, temporal variability, and anthropogenic factors associated with frequently detected VOCs. Each sample collected was analyzed for 66 VOCs, including MTBE and three other ether gasoline oxygenates (hereafter termed gasoline oxygenates). As part of

  10. The absolute configuration of (2S,4S)- and (2R,4R)-2-tert-butyl-4-methyl-3-(4-tolylsulfonyl)-1,3-oxazolidine-4-carbaldehyde.

    PubMed

    Flock, Susanne; Bruhn, Clemens; Fink, Heinrich; Frauenrath, Herbert

    2006-02-01

    The title enantiomorphic compounds, C16H23NO4S, have been obtained in an enantiomerically pure form by crystallization from a diastereomeric mixture either of (2S,4S)- and (2R,4S)- or of (2R,4R)- and (2S,4R)-2-tert-butyl-4-methyl-3-(4-tolylsulfonyl)-1,3-oxazolidine-4-carbaldehyde. These mixtures were prepared by an aziridination rearrangement process starting with (S)- or (R)-2-tert-butyl-5-methyl-4H-1,3-dioxine. The crystal structures indicate an envelope conformation of the oxazolidine moiety for both compounds.

  11. Methyl tert-butyl ether degradation in the unsaturated zone and the relation between MTBE in the atmosphere and shallow groundwater

    USGS Publications Warehouse

    Baehr, A.L.; Charles, E.G.; Baker, R.J.

    2001-01-01

    Atmospheric methyl tert-butyl ether (MTBE) concentrations in southern New Jersey generally exceeded concentrations in samples taken from the unsaturated zone. A simple unsaturated zone transport model indicates that MTBE degradation can explain the attenuation with half-lives from a few months to a couple of years. Tert-butyl alcohol (TBA), a possible degradation product of MTBE, was detected in unsaturated-zone samples at concentrations exceeding atmospheric levels at some sites, suggesting the possible conversion of MTBE to TBA. At sites where MTBE was detected in shallow groundwater, the concentration was typically higher than the overlying unsaturated-zone concentration. This observation is consistent with outgassing from the aquifer and combined with the unsaturated-zone attenuation suggests some of the MTBE detections in shallow groundwater are nonatmospheric in origin, coming from leaking tanks, road runoff, or other sources. The identification of sources of MTBE in groundwater and attenuation mechanisms through the hydrologic cycle is critical in developing an understanding of the long-term effect of MTBE releases.

  12. Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis.

    PubMed

    Bravo, Ana Luisa; Sigala, Juan Carlos; Le Borgne, Sylvie; Morales, Marcia

    2015-04-01

    Pseudomonas citronellolis UAM-Ps1 co-metabolically transforms methyl tert-butyl ether (MTBE) to tert-butyl alcohol with n-pentane (2.6 mM), n-octane (1.5 mM) or dicyclopropylketone (DCPK) (4.4 mM), a gratuitous inducer of alkane hydroxylase (AlkB) activity. The reverse transcription quantitative real-time PCR was used to quantify the alkane monooxygenase (alkB) gene expression. The alkB gene was expressed in the presence of n-alkanes and DCPK and MTBE oxidation occurred only in cultures when alkB was transcribed. A correlation between the number of alkB transcripts and MTBE consumption was found (ΜΤΒΕ consumption in μmol = 1.44e(-13) x DNA copies, R(2) = 0.99) when MTBE (0.84 mM) was added. Furthermore, alkB was cloned and expressed into Escherichia coli and the recombinant AlkB had a molecular weight of 42 kDa. This is the first report where the expression of alkB is related to the co-metabolic oxidation of MTBE.

  13. OCCURRENCE OF METYL TERT-BUTYL ETHER (MTBE) AT FIVE MARINAS IN LAKE TEXOMA

    EPA Science Inventory



    Occurrence of methyl tert-butyl ether (MTBE) in five marinas was monitored between June 1999 and November 2000 in Lake Texoma located on the border of Oklahoma and Texas. MTBE is a commonly used gasoline additive and a suspected carcinogen. Lake water was collected at loc...

  14. The application of silicalite-1/fly ash cenosphere (S/FAC) zeolite composite for the adsorption of methyl tert-butyl ether (MTBE).

    PubMed

    Lu, Jia; Xu, Fang; Wang, Deju; Huang, Jue; Cai, Weimin

    2009-06-15

    Silicalite-1/fly ash cenosphere (S/FAC) zeolite composite has been applied for batch adsorption of methyl tert-butyl ether (MTBE) from water systems. Here the key experimental conditions, including the ratio of initial MTBE concentration to the amount weight of S/FAC, adsorption time and temperature, have been discussed in detail. The results show that approximately 93-95% MTBE could be adsorbed with initial concentration of MTBE solution 1000 microg l(-1). The column flow-through experiments also prove the high capacity of S/FAC composite for MTBE removal. The distinct advantages of S/FAC zeolite composite as adsorbent lie in (1) enhanced adsorption rate and capacity based on hierarchical micro and meso/macroporosity of S/FAC; (2) more easily operation and recycling process by assembly of nano-sized silicalite-1 zeolite on FAC support.

  15. Methyl tert-butyl ether (MTBE) detected in abnormally high concentrations in postmortem blood and urine from two persons found dead inside a car containing a gasoline spill.

    PubMed

    Karinen, Ritva; Vindenes, Vigdis; Morild, Inge; Johnsen, Lene; Le Nygaard, Ilah; Christophersen, Asbjørg S

    2013-09-01

    Two deep frozen persons, a female and a male, were found dead in a car. There had been an explosive fire inside the car which had extinguished itself. On the floor inside the car were large pools of liquid which smelled of gasoline. The autopsy findings and routine toxicological analyses could not explain the cause of death. Carboxyhemoglobin levels in the blood samples were <10%. Analysis with a headspace gas chromatography revealed methyl tert-butyl ether (MTBE) concentrations of 185 mg/L (female victim) and 115 mg/L (male victim) in peripheral blood. The urine MTBE concentrations were 150 mg/L and 256 mg/L, respectively. MTBE is a synthetic chemical which is added to gasoline as a fuel oxygenate. Gasoline poisoning is likely to be the cause of the death in these two cases, and MTBE can be a suitable marker of gasoline exposure, when other volatile components have vaporized.

  16. Crystal structure of (1,3-di-tert-butyl-η5-cyclo­penta­dien­yl)tri­methyl­hafnium(IV)

    PubMed Central

    Pérez-Redondo, Adrián; Varela-Izquierdo, Víctor; Yélamos, Carlos

    2015-01-01

    The mol­ecule of the title organometallic hafnium(IV) com­pound, [Hf(CH3)3(C13H21)] or [HfMe3(η5-C5H3-1,3-tBu2)], adopts the classical three-legged piano-stool geometry for mono­cyclo­penta­dienylhafnium(IV) derivatives with the three methyl groups bonded to the Hf(IV) atom at the legs. The C atoms of the two tert-butyl group bonded to the cyclo­penta­dienyl (Cp) ring are 0.132 (5) and 0.154 (6) Å above the Cp least-squares plane. There are no significant inter­molecular inter­actions present between the mol­ecules in the crystal structure. PMID:25995884

  17. Metabolism of methyl tert-butyl ether and other gasoline ethers in mouse liver microsomes lacking cytochrome P450 2E1.

    PubMed

    Hong, J Y; Wang, Y Y; Bondoc, F Y; Yang, C S; Gonzalez, F J; Pan, Z; Cokonis, C D; Hu, W Y; Bao, Z

    1999-03-08

    To reduce the production of pollutants in motor vehicle exhaust, methyl tert-butyl ether (MTBE) and other ethers such as ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME) are added to gasoline as oxygenates for more complete combustion. Metabolism of these gasoline ethers is catalyzed by cytochrome P450 (P450) enzymes. P450 2E1, which metabolizes diethyl ether, was suggested to be an enzyme involved. The present study used 2E1 knock-out mice (2E1-/-) to assess the contribution of 2E1 to the metabolism of MTBE, ETBE and TAME. Liver microsomes prepared from the 2E1 knock-out mice lacked 2E1 activity (assayed as N-nitrosodimethylamine demethylation), but were still active in metabolizing all three gasoline ethers. The levels of ether-metabolizing activity (nmol/min per mg) in the liver microsomes from 7 week old female 2E1 knock-out mice were 0.54+/-0.17 for MTBE, 0.51+/-0.24 for ETBE and 1.14+/-0.25 for TAME at a 1 mM substrate concentration. These activity levels were not significantly different from those of the sex- and age-matched C57BL/6N and 129/Sv mice, which are the parental lineage strains of the 2E1 knock-out mice and are both 2E1+/+. Our results clearly demonstrate that 2E1 plays a negligible role in the metabolism of MTBE, ETBE and TAME in mouse livers.

  18. Synthesis and structure of the mercury chloride complex of 2,2′-(2-bromo-5-tert-butyl-1,3-phenyl­ene)bis­(1-methyl-1H-benzimidazole)

    PubMed Central

    Rani, Varsha; Singh, Harkesh B.

    2017-01-01

    In the title mercury complex, catena-poly[[di­chlorido­mercury(II)]-μ-2,2′-(2-bromo-5-tert-butyl-1,3-phenyl­ene)bis­(1-methyl-1H-benzimidazole)-κ2 N 3:N 3′], [HgCl2(C26H25BrN4)]n, the HgII atom is coordinated by two Cl atoms and by two N atoms from two 2,2′-(2-bromo-5-tert-butyl-1,3-phenyl­ene)bis­(1-methyl-1H-benzimidazole) ligands. The metal cation adopts a distorted tetrahedral coordination geometry with with bond angles around mercury of 100.59 (15)° [N—Hg—N] and 126.35 (7)° [Cl—Hg—Cl]. This arrangement gives rise to a zigzag helical 1-D polymer propagating along the b-axis direction. PMID:28316804

  19. Response surface analysis of photocatalytic degradation of methyl tert-butyl ether by core/shell Fe3O4/ZnO nanoparticles

    PubMed Central

    2014-01-01

    The degradation of methyl tert-butyl ether (MTBE) was investigated in the aqueous solution of coated ZnO onto magnetite nanoparticale based on an advanced photocatalytic oxidation process. The photocatalysts were synthesized by coating of ZnO onto magnetite using precipitation method. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibration sample magnetometer (VSM). Besides, specific surface area was also determined by BET method. The four effective factors including pH of the reaction mixture, Fe3O4/ZnO magnetic nanoparticles concentration, initial MTBE concentration and molar ratio of [H2O2]/ [MTBE] were optimized using response surface modeling (RSM). Using the four-factor-three-level Box–Behnken design, 29 runs were designed considering the effective ranges of the influential factors. The optimized values for the operational parameters under the respective constraints were obtained at PH of 7.2, Fe3O4/ZnO concentration of 1.78 g/L, initial MTBE concentration of 89.14 mg/L and [H2O2]/ [MTBE] molar ratio of 2.33. Moreover, kinetics of MTBE degradation was determined under optimum condition. The study about core/shell magnetic nanoparticles (MNPs) recycling were also carried out and after about four times, the percentage of the photocatalytic degradation was about 70%. PMID:24393372

  20. Detection and Quantification of Methyl tert-Butyl Ether-Degrading Strain PM1 by Real-Time TaqMan PCR

    PubMed Central

    Hristova, Krassimira R.; Lutenegger, Christian M.; Scow, Kate M.

    2001-01-01

    The fuel oxygenate methyl tert-butyl ether (MTBE), a widely distributed groundwater contaminant, shows potential for treatment by in situ bioremediation. The bacterial strain PM1 rapidly mineralizes and grows on MTBE in laboratory cultures and can degrade the contaminant when inoculated into groundwater or soil microcosms. We applied the TaqMan quantitative PCR method to detect and quantify strain PM1 in laboratory and field samples. Specific primers and probes were designed for the 16S ribosomal DNA region, and specificity of the primers was confirmed with DNA from 15 related bacterial strains. A linear relationship was measured between the threshold fluorescence (CT) value and the quantity of PM1 DNA or PM1 cell density. The detection limit for PM1 TaqMan assay was 2 PM1 cells/ml in pure culture or 180 PM1 cells/ml in a mixture of PM1 with Escherichia coli cells. We could measure PM1 densities in solution culture, groundwater, and sediment samples spiked with PM1 as well as in groundwater collected from an MTBE bioaugmentation field study. In a microcosm biodegradation study, increases in the population density of PM1 corresponded to the rate of removal of MTBE. PMID:11679339

  1. Cytotoxic and DNA-damaging effects of methyl tert-butyl ether and its metabolites on HL-60 cells in vitro

    SciTech Connect

    Tang, G.H.; Shen, Y.; Shen, H.M.

    1996-12-31

    Methyl tert-butyl ether (MTBE) is a widely used oxygenate in unleaded gasoline; however, few studies have been conducted on the toxicity of this compound. This study evaluates the cytotoxic and DNA-damaging effects of MTBE and its metabolites in a human haemopoietic cell line, HL-60. The metabolites of MTBE studied include tertiary butyl alcohol (TBA), {alpha}-hydroxyisobutyric acid (HIBA), and formaldehyde. Comet assay is used to assess DNA damage, and the cytotoxicity is investigated by lactate dehydrogenease (LDH) release. The results show no significant cytotoxic effects of MTBE, TBA, and HIBA over a concentration ranging from 1 to 30 mM. Formaldehyde, in contrast, causes a substantial LDH release at a concentration of 5 {mu}M. Hydrogen peroxide, a known oxidative agent, at concentrations ranging from 10 to 100 {mu}M, produces a significant dose-related increase in DNA damage, whereas a much higher concentration of MTBE (1 to 30 mM) is required to produce a similar observation. The genotoxic effects of TBA and HIBA appear to be identical to that of MTBE. Conversely, DNA damage is observed for formaldehyde at a relatively low concentration range (5 to 100 {mu}M). These findings suggest that MTBE and its metabolites, except formaldehyde, have relatively low cytotoxic and genotoxic effects. 16 refs., 4 figs.

  2. Interaction of insulin with methyl tert-butyl ether promotes molten globule-like state and production of reactive oxygen species.

    PubMed

    Valipour, Masoumeh; Maghami, Parvaneh; Habibi-Rezaei, Mehran; Sadeghpour, Mostafa; Khademian, Mohamad Ali; Mosavi, Khadijeh; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2015-09-01

    Interaction of methyl tert-butyl ether (MTBE) with proteins is a new look at its potential adverse biological effects. When MTBE is released to the environment it enters the blood stream through inhalation, and could affect the properties of various proteins. Here we investigated the interaction of MTBE with insulin and its effect on insulin structural changes. Our results showed that insulin formed a molten globule (MG)-like structure in the presence of 8 μM MTBE under physiological pH. The insulin structural changes were studied using spectroscopy methods, viscosity calculation, dynamic light scattering and differential scanning calorimetry. To delineate the mechanisms involved in MTBE-protein interactions, the formation of reactive oxygen specious (ROS) and formation of protein aggregates were measured. The chemiluminscence experiments revealed an increase in ROS production in the presence of MTBE especially in the MG-like state. These results were further confirmed by the aggregation tests, which indicated more aggregation of insulin at 40 μM MTBE compared with 8 μM. Thus, the formation of initial aggregates and exposure of the hydrophobic patches upon formation of the MG-like state in the presence of MTBE drives protein oxidation and ROS generation.

  3. Generation of free radicals from organic hydroperoxide tumor promoters in isolated mouse keratinocytes. Formation of alkyl and alkoxyl radicals from tert-butyl hydroperoxide and cumene hydroperoxide.

    PubMed

    Taffe, B G; Takahashi, N; Kensler, T W; Mason, R P

    1987-09-05

    The organic hydroperoxides tert-butyl hydroperoxide and cumene hydroperoxide are tumor promoters in the skin of SENCAR mice, and this activity is presumed to be mediated through the activation of the hydroperoxides to free radical species. In this study we have assessed the generation of free radicals from organic hydroperoxides in the target cell (the murine basal keratinocyte) using electron spin resonance. Incubation of primary isolates of keratinocytes from SENCAR mice in the presence of spin traps (5,5-dimethyl-1-pyrroline N-oxide or 2-methyl-2-nitrosopropane) and either tert-butyl hydroperoxide or cumene hydroperoxide resulted in the generation and detection of radical adducts of these spin traps. tert-Butyl alkoxyl and alkyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were detected shortly after addition of tert-butyl hydroperoxide, whereas only alkyl radical adducts were observed with cumene hydroperoxide. Spin trapping of the alkyl radicals with 2-methyl-2-nitrosopropane led to the identification of methyl and ethyl radical adducts following both tert-butyl hydroperoxide and cumene hydroperoxide exposures. Prior heating of the cells to 100 degrees C for 30 min prevented radical formation. The radical generating capacity of subcellular fractions of these epidermal cells was examined using 5,5-dimethyl-1-pyrroline N-oxide and cumene hydroperoxide, and this activity was confined to the 105,000 X g supernatant fraction.

  4. Using groundwater age distributions to understand changes in methyl tert-butyl ether (MtBE) concentrations in ambient groundwater, northeastern United States

    USGS Publications Warehouse

    Lindsey, Bruce; Ayotte, Joseph; Jurgens, Bryant; DeSimone, Leslie

    2017-01-01

    Temporal changes in methyl tert-butyl ether (MtBE) concentrations in groundwater were evaluated in the northeastern United States, an area of the nation with widespread low-level detections of MtBE based on a national survey of wells selected to represent ambient conditions. MtBE use in the U.S. peaked in 1999 and was largely discontinued by 2007. Six well networks, each representing specific areas and well types (monitoring or supply wells), were each sampled at 10 year intervals between 1996 and 2012. Concentrations were decreasing or unchanged in most wells as of 2012, with the exception of a small number of wells where concentrations continue to increase. Statistically significant increasing concentrations were found in one network sampled for the second time shortly after the peak of MtBE use, and decreasing concentrations were found in two networks sampled for the second time about 10 years after the peak of MtBE use. Simulated concentrations from convolutions of estimates for concentrations of MtBE in recharge water with age distributions from environmental tracer data correctly predicted the direction of MtBE concentration changes in about 65 percent of individual wells. The best matches between simulated and observed concentrations were found when simulating recharge concentrations that followed the pattern of national MtBE use. Some observations were matched better when recharge was modeled as a plume moving past the well from a spill at one point in time. Modeling and sample results showed that wells with young median ages and narrow age distributions responded more quickly to changes in the contaminant source than wells with older median ages and broad age distributions. Well depth and aquifer type affect these responses. Regardless of the timing of decontamination, all of these aquifers show high susceptibility for contamination by a highly soluble, persistent constituent.

  5. Effect of Ethanol and Methyl-tert-Butyl Ether on Monoaromatic Hydrocarbon Biodegradation: Response Variability for Different Aquifer Materials Under Various Electron-Accepting Conditions

    SciTech Connect

    Ruiz-Aguilar, G L; Fernandez-Sanchez, J M; Kane, S R; Kim, D; Alvarez, P J

    2003-10-06

    Aquifer microcosms were used to determine how ethanol and methyl-tert-butyl ether (MtBE) affect monoaromatic hydrocarbon degradation under different electron-accepting conditions commonly found in contaminated sites experiencing natural attenuation. Response variability was investigated by using aquifer material from four sites with different exposure history. The lag phase prior to BTEX (benzene, toluene, ethylbenzene, and xylenes) and ethanol degradation was typically shorter in microcosms with previously contaminated aquifer material, although previous exposure did not always result in high degradation activity. Toluene was degraded in all aquifer materials and generally under a broader range of electron-accepting conditions compared to benzene, which was degraded only under aerobic conditions. MtBE was not degraded within 100 days under any condition, and it did not affect BTEX or ethanol degradation patterns. Ethanol was often degraded before BTEX compounds, and had a variable effect on BTEX degradation as a function of electron-accepting conditions and aquifer material source. An occasional enhancement of toluene degradation by ethanol occurred in denitrifying microcosms with unlimited nitrate; this may be attributable to the fortuitous growth of toluene-degrading bacteria during ethanol degradation. Nevertheless, experiments with flow-through aquifer columns showed that this beneficial effect could be eclipsed by an ethanol-driven depletion of electron acceptors, which significantly inhibited BTEX degradation and is probably the most important mechanism by which ethanol could hinder BTEX natural attenuation. A decrease in natural attenuation could increase the likelihood that BTEX compounds reach a receptor as well as the potential duration of exposure.

  6. Evaluating UV/H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal: effect of pretreatment options and light sources.

    PubMed

    Li, Ke; Hokanson, David R; Crittenden, John C; Trussell, Rhodes R; Minakata, Daisuke

    2008-12-01

    In this paper, we evaluate the efficiency of UV/H2O2 process to remove methyl tert-butyl ether (MtBE) and tertiary butyl alcohol (tBA) from a drinking water source. Kinetic models were used to evaluate the removal efficiency of the UV/H2O2 technologies with different pretreatment options and light sources. Two commercial UV light sources, i.e. low pressure, high intensity lamps and medium pressure, high intensity lamps, were evaluated. The following pretreatment alternatives were evaluated: (1) ion exchange softening with seawater regeneration (NaIX); (2) Pellet Softening; (3) weak acid ion exchange (WAIX); and (4) high pH lime softening followed by reverse osmosis (RO). The presence or absence of a dealkalization step prior to the UV/H2O2 Advanced Oxidation Process (AOP) was also evaluated for each pretreatment possibility. Pretreatment has a significant impact on the performance of UV/H2O2 process. The NaIX with dealkalization was shown to be the most cost effective. The electrical energy per order (EEO) values for MtBE and tBA using low pressure high output UV lamps (LPUV) and 10mg/LH2O2 are 0.77 and 3.0 kWh/kgal-order, or 0.20 and 0.79 kWh/m3-order, respectively. For medium pressure UV high output lamps (MPUV), EEO values for MtBE and tBA are 4.6 and 15 kWh/kgal-order, or 1.2 and 4.0 kWh/m3-order, for the same H2O2 dosage.

  7. Toxicity of methyl tert butyl ether to soil invertebrates (springtails: Folsomia candida, Proisotoma minuta, and Onychiurus folsomi) and lettuce (Lactuca sativa).

    PubMed

    Dodd, Matthew; Addison, Janet A

    2010-02-01

    Experiments were conducted to assess the toxicity of methyl tert butyl ether (MTBE) to three species of Collembola (Proisotoma minuta, Folsomia candida, and Onychiurus folsomi) and lettuce (Lactuca sativa L.) using an artificial Organization for Economic Cooperation and Development (OECD) soil and field-collected sandy loam and silt loam soil samples. Soil invertebrate tests were carried out in airtight vials to prevent volatilization of MTBE out of the test units and to allow for direct head-space sampling and gas chromatography-mass spectrometry (GC-MS) analysis for residual MTBE. The use of the airtight vial protocol proved to be very successful, in that the measured MTBE concentrations at the beginning of the experiments were within 95% of nominal concentrations. The test methods used in this study could be used to test the toxicity of other volatile organic compounds to Collembola. The soil invertebrates tested had inhibitory concentration (ICx) and lethal concentration (LCx) values that ranged from 242 to 844 mg MTBE/kg dry soil. When the three test species of Collembola were tested under identical conditions in the artificial OECD soil, O. folsomi was the most sensitive collembolan, with a median inhibitory concentration (IC50; reproduction) of 296 mg MTBE/kg dry soil. The most sensitive endpoint for lettuce was an IC50 for root length of 81 mg MTBE/kg dry soil after 5 d of germination in OECD soil. Data on the loss of MTBE from the three test soils over time indicated that MTBE was retained in the silt loam soil longer than in either the sandy loam or the artificial OECD soil.

  8. Anaerobic Biodegradation Of Methyl tert-Butyl Ether Under Iron-Reducing Conditions In Batch And Continuous-Flow Cultures

    EPA Science Inventory

    The feasibility of biodegradation of the fuel oxygenate methyl tert-butyl ether (MTBE) under iron-reducing conditions was explored in batch and continuous-flow systems. A porous pot completely-mixed reactor was seeded with diverse cultures and operated under iron-reducing...

  9. Ionic-liquid-mediated poly(dimethylsiloxane)- grafted carbon nanotube fiber prepared by the sol-gel technique for the head space solid-phase microextraction of methyl tert-butyl ether using GC.

    PubMed

    Vatani, Hossein; Yazdi, Ali Sarafraz

    2014-01-01

    A headspace solid-phase microextraction method was developed for the preconcentration and extraction of methyl tert-butyl ether. An ionic-liquid-mediated multiwalled carbon nanotube-poly(dimethylsiloxane) hybrid coating, which was prepared by covalent functionalization of multiwalled carbon nanotubes with hydroxyl-terminated poly(dimethylsiloxane) using the sol-gel technique, was used as solid-phase microextraction adsorbent. This innovative fiber exhibited a highly porous surface structure, high thermal stability (at least 320°C) and long lifespan (over 210 uses). Potential factors affecting the extraction efficiency were optimized. Under the optimum conditions, the method LOD (S/N = 3) was 0.007 ng/mL and the LOQ (S/N = 10) was 0.03 ng/mL. The calibration curve was linear in the range of 0.03-200 ng/mL. The RSDs for one fiber (repeatability, n = 5) at three different concentrations (0.05, 1, and 150 ng/mL) were 5.1, 4.2, and 4.6% and for the fibers obtained from different batches (reproducibility, n = 3) were 6.5, 5.9, and 6.3%, respectively. The developed method was successfully applied to the determination of methyl tert-butyl ether in different real water samples on three consecutive days. The relative recoveries for the spiked samples with 0.05, 1, and 150 ng/mL were between 94-104%.

  10. Linking Low-Level Stable Isotope Fractionation to Expression of the Cytochrome P450 Monooxygenase-Encoding ethB Gene for Elucidation of Methyl tert-Butyl Ether Biodegradation in Aerated Treatment Pond Systems▿ †

    PubMed Central

    Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M.; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H.

    2011-01-01

    Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ɛC] of −0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ɛH]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ɛC of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ɛH of −5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem. PMID:21148686

  11. National survey of Methyl tert-Butyl Ether and other Volatile Organic Compounds in drinking-water sources: Results of the random source-water survey

    USGS Publications Warehouse

    Grady, Stephen J.

    2002-01-01

    Methyl tert-butyl ether (MTBE) was detected in source water used by 8.7 percent of randomly selected community water systems (CWSs) in the United States at concentrations that ranged from 0.2 to 20 micrograms per liter (?g/L). The Random Survey conducted by the U.S. Geological Survey, in cooperation with the Metropolitan Water District of Southern California and the Oregon Health & Science University, was designed to provide an assessment of the frequency of detection, concentration, and distribution of MTBE, three other ether gasoline oxygenates, and 62 other volatile organic compounds (VOCs) in ground- and surface-water sources used for drinking-water supplies. The Random Survey was the first of two components of a national assessment of the quality of source water supplying CWSs sponsored by the American Water Works Association Research Foundation. A total of 954 CWSs were selected for VOC sampling from the population of nearly 47,000 active, self-supplied CWSs in all 50 States, Native American Lands, and Puerto Rico based on a statistical design that stratified on CWS size (population served), type of source water (ground and surface water), and geographic distribution (State).At a reporting level of 0.2 ?g/L, VOCs were detected in 27 percent of source-water samples collected from May 3, 1999 through October 23, 2000. Chloroform (in 13 percent of samples) was the most frequently detected of 42 VOCs present in the source-water samples, followed by MTBE. VOC concentrations were generally less than 10 ?g/L?95 percent of the 530 detections?and 63 percent were less than 1.0 ?g/L. Concentrations of 1,1-dichloroethene, tetrachloroethene, trichloroethene, vinyl chloride, and total trihalomethanes (TTHMs), however, exceeded drinking-water regulations in eight samples.Detections of most VOCs were more frequent in surface-water sources than in ground-water sources, with gasoline compounds collectively and MTBE individually detected significantly more often in surface

  12. Metabolism of methyl tert-butyl ether and other gasoline ethers by human liver microsomes and heterologously expressed human cytochromes P450: identification of CYP2A6 as a major catalyst.

    PubMed

    Hong, J Y; Wang, Y Y; Bondoc, F Y; Lee, M; Yang, C S; Hu, W Y; Pan, J

    1999-10-01

    To reduce the production of carbon monoxide and other pollutants in motor vehicle exhaust, methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) are added to gasoline as oxygenates for more complete combustion. Previously, we demonstrated that human liver is active in metabolizing MTBE to tert-butyl alcohol (TBA) and that cytochrome P450 (CYP) enzymes play a critical role in the metabolism of MTBE. The present study demonstrates that human liver is also active in the oxidative metabolism of ETBE and TAME. A large interindividual variation in metabolizing these gasoline ethers was observed in 15 human liver microsomal samples. The microsomal activities in metabolizing MTBE, ETBE, and TAME were highly correlated among each other (r, 0.91-0. 96), suggesting that these ethers are metabolized by the same enzyme(s). Correlation analysis of the ether-metabolizing activities with individual CYP enzyme activities in the liver microsomes showed that the highest degree of correlation was with human CYP2A6 (r, 0. 90-0.95), which is constitutively expressed in human livers and known to be polymorphic. CYP2A6 displayed the highest turnover number in metabolizing gasoline ethers among a battery of human CYP enzymes expressed in human B-lymphoblastoid cells. Kinetic studies on MTBE metabolism with three human liver microsomes exhibited apparent Km values that ranged from 28 to 89 microM and the V(max) values from 215 to 783 pmol/min/mg, with similar catalytic efficiency values (7.7 to 8.8 microl/min/mg protein). Metabolism of MTBE, ETBE, and TAME by human liver microsomes was inhibited by coumarin, a known substrate of human CYP2A6, in a concentration-dependent manner. Monoclonal antibody against human CYP2A6 caused a significant inhibition (75% to 95%) of the metabolism of MTBE, ETBE, and TAME in human liver microsomes. Taken together, these results clearly indicate that in human liver, CYP2A6 is the major enzyme responsible for the

  13. Optimization of headspace solid-phase microextraction by means of an experimental design for the determination of methyl tert.-butyl ether in water by gas chromatography-flame ionization detection.

    PubMed

    Dron, Julien; Garcia, Rosa; Millán, Esmeralda

    2002-07-19

    A procedure for determination of methyl tert.-butyl ether (MTBE) in water by headspace solid-phase microextraction (HS-SPME) has been developed. The analysis was carried out by gas chromatography with flame ionization detection. The extraction procedure, using a 65-microm poly(dimethylsiloxane)-divinylbenzene SPME fiber, was optimized following experimental design. A fractional factorial design for screening and a central composite design for optimizing the significant variables were applied. Extraction temperature and sodium chloride concentration were significant variables, and 20 degrees C and 300 g/l were, respectively chosen for the best extraction response. With these conditions, an extraction time of 5 min was sufficient to extract MTBE. The calibration linear range for MTBE was 5-500 microg/l and the detection limit 0.45 microg/l. The relative standard deviation, for seven replicates of 250 microg/l MTBE in water, was 6.3%.

  14. Methyl tert-butyl ether in ground and surface water of the United States: National-scale relations between MTBE occurrence in surface and ground water and MTBE use in gasoline

    USGS Publications Warehouse

    Moran, M.J.; Clawges, R.M.; Zogorski, J.S.

    2002-01-01

    The detection frequency of methyl tert-butyl ether (MTBE) in ground and surface water of the United States is positively related to the content of MTBE in gasoline in various metropolitan areas of the U.S. The frequency of detection of MTBE is generally higher in areas that use larger amounts of MTBE in gasoline. Sampling of surface and ground water by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program between 1993 and 1998 revealed a frequent detection of low concentrations of MTBE. In this analysis, data from several national-scale gasoline surveys are examined and data from one survey that is most extensive in geographic and temporal coverage is used to relate the detection of MTBE in ground and surface water to the volumetric content of MTBE in gasoline.

  15. CONCENTRATIONS, SOURCES, AND FATE OF THE GASOLINE OXYGENATE METHYL TERT-BUTYL ETHER (MTBE) IN A MULTIPLE-USE LAKE. (R826282)

    EPA Science Inventory

    Discovery of the fuel additive methyl tert-butyl ether (MTBE) in
    drinking water supplies is of concern to public health officials, water
    suppliers, and the public. Despite recent policy decisions, few published
    studies exist on the concentrations, sources, a...

  16. Double- and triple-consecutive O-insertion into tert-butyl and triarylmethyl structures.

    PubMed

    Krasutsky, Pavel A; Kolomitsyn, Igor V; Krasutsky, Sergiy G; Kiprof, Paul

    2004-07-22

    [reaction: see text] The concecutive Criegee rearrangement reactions were studied for tert-butyl trifluoroacetate, triarylcarbinols, and benzophenone ketales with trifluoroperacetic acid (TFPAA) in trifluoroacetic acid (TFA). The formation of methyl acetate and methyl trifluoroacetate indicates that the consecutive double-O-insertion process has taken place for tert-butyl trifluoroacetate. The intermediate dimethoxymethylcarbonium ion was detected below 5 degrees C. A consecutive triple-O-insertion process has been observed for triarylmethanols and benzophenone ketals. A new high yield method of corresponding diaryl carbonates synthesis was developed.

  17. {gamma}-aminobutyric acid{sub A} (GABA{sub A}) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    SciTech Connect

    Zheng Gang; Zhang Wenbin; Zhang Yun; Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang; Li Jingxia; Huang Chuanshu; Luo Wenjing Chen Jingyuan

    2009-04-15

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA{sub A} receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA{sub A} receptor {alpha}1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA{sub A} receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  18. Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE) + Gasoline Additives

    NASA Astrophysics Data System (ADS)

    Gonzalez-Olmos, R.; Iglesias, M.; Goenaga, J. M.; Resa, J. M.

    2007-08-01

    The densities and sound speeds of binary mixtures of methyl tert-butyl ether (MTBE) + (benzene, toluene, ethylbenzene, isooctane, tert-butyl alcohol) have been measured at temperatures from 288.15 to 323.15 K and at atmospheric pressure over the complete concentration range. The experimental excess volumes and deviations of isentropic compressibility were calculated. The deviation of isentropic compressibility data have been analyzed in terms of different theoretical models; adequate agreement between the experimental and predicted values is obtained. The data from this study improve the data situation related to gasoline additives and help to understand the MTBE volumetric and acoustic behavior for various chemical systems.

  19. Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms

    USGS Publications Warehouse

    Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.

    1999-01-01

    Microorganisms indigenous to the stream-bed sediments at two gasoline- contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.

  20. Treatment Of Groundwater Contaminated With PAHs, Gasoline Hydrocarbons, And Methyl Tert-Butyl Ether In A Laboratory Biomass-Retaining Bioreactor

    EPA Science Inventory

    In this study, we investigated the treatability of co-mingled groundwater contaminated with polycyclic aromatic hydrocarbons (PAHs), gasoline hydrocarbons, and methyl tert-butyl ether (MtBE) using an ex-situ aerobic biotreatment system. The PAHs of interest were nap...

  1. Studies on the Conformational Landscape of Tert-Butyl Acetate Using Microwave Spectroscopy and Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Zhao, YueYue; Mouhib, Halima; Li, Guohua; Stahl, Wolfgang; Kleiner, Isabelle

    2014-06-01

    The tert-Butyl acetate molecule was studied using a combination of quantum chemical calculations and molecular beam Fourier transform microwave spectroscopy in the 9 to 14 GHz range. Due to its rather rigid frame, the molecule possesses only two different conformers: one of Cs and one of C1 symmetry. According to ab initio calculations, the Cs conformer is 46 kJ/mol lower in energy and is the one observed in the supersonic jet. We report on the structure and dynamics of the most abundant conformer of tert-butyl acetate, with accurate rotational and centrifugal distortion constants. Additionally, the barrier to internal rotation of the acetyl methyl group was determined. Splittings due to the internal rotation of the methyl group of up to 1.3 GHz were observed in the spectrum. Using the programs XIAM and BELGI-Cs, we determine the barrier height to be about 113 cm-1 and compare the molecular parameters obtained from these two codes. Additionally, the experimental rotational constants were used to validate numerous quantum chemical calculations. This study is part of a larger project which aims at determining the lowest energy conformers of organic esters and ketones which are of interest for flavor or perfume synthetic applications Project partly supported by the PHC PROCOPE 25059YB.

  2. Kinetic laws and mechanism of the initiation of the polymerization of methyl methacrylate in systems consisting of a chloride of a nontransition element of group III or IV and tert-butyl hydroperoxide

    SciTech Connect

    Aleksandrov, Yu.A.; Lelekov, V.E.; Makin, G.I.; Mazanova, L.M.; Semchikov, Yu.D.; Katkova, M.A.

    1988-02-10

    The compositions and yields of the products of the transformation of tert-butyl hydroperoxide under the influence of chlorides in ethyl acetate are shown and the differential kinetics of the decomposition of the hydroperoxide and the accumulation of its main transformation products are presented. The kinetic and activation parameters of the process of decomposition of tert-butyl hydroperoxide are shown. The initiation of the polymerization of methy methacrylate by the system MCl/sub n-t/-BuOOH went with the participation of the complex MCl/sub n-t/-BuOOH; the transformation of the complex in a medium of the monomer takes simultaneous heterolytic and free-radical course.

  3. Occurrence and distribution of methyl tert-butyl ether and other volatile organic compounds in drinking water in the Northeast and Mid-Atlantic regions of the United States, 1993-98

    USGS Publications Warehouse

    Grady, S.J.; Casey, G.D.

    2001-01-01

    Data on volatile organic compounds (VOCs) in drinking water supplied by 2,110 randomly selected community water systems (CWSs) in 12 Northeast and Mid-Atlantic States indicate 64 VOC analytes were detected at least once during 1993-98. Selection of the 2,110 CWSs inventoried for this study targeted 20 percent of the 10,479 active CWSs in the region and represented a random subset of the total distribution by State, source of water, and size of system. The data include 21,635 analyses of drinking water collected for compliance monitoring under the Safe Drinking Water Act; the data mostly represent finished drinking water collected at the pointof- entry to, or at more distal locations within, each CWS?s distribution system following any watertreatment processes. VOC detections were more common in drinking water supplied by large systems (serving more than 3,300 people) that tap surface-water sources or both surface- and groundwater sources than in small systems supplied exclusively by ground-water sources. Trihalomethane (THM) compounds, which are potentially formed during the process of disinfecting drinking water with chlorine, were detected in 45 percent of the randomly selected CWSs. Chloroform was the most frequently detected THM, reported in 39 percent of the CWSs. The gasoline additive methyl tert-butyl ether (MTBE) was the most frequently detected VOC in drinking water after the THMs. MTBE was detected in 8.9 percent of the 1,194 randomly selected CWSs that analyzed samples for MTBE at any reporting level, and it was detected in 7.8 percent of the 1,074 CWSs that provided MTBE data at the 1.0-?g/L (microgram per liter) reporting level. As with other VOCs reported in drinking water, most MTBE concentrations were less than 5.0 ?g/L, and less than 1 percent of CWSs reported MTBE concentrations at or above the 20.0-?g/L lower limit recommended by the U.S. Environmental Protection Agency?s Drinking-Water Advisory. The frequency of MTBE detections in drinking water

  4. Occurrence and implications of methyl tert-butyl ether and gasoline hydrocarbons in ground water and source water in the United States and in drinking water in 12 Northeast and Mid-Atlantic States, 1993-2002

    USGS Publications Warehouse

    Moran, Michael J.; Zogorski, John S.; Squillace, Paul J.

    2004-01-01

    The occurrence and implications of methyl tert-butyl ether (MTBE) and gasoline hydrocarbons were examined in three surveys of water quality conducted by the U.S. Geological Survey?one national-scale survey of ground water, one national-scale survey of source water from ground water, and one regional-scale survey of drinking water from ground water. The overall detection frequency of MTBE in all three surveys was similar to the detection frequencies of some other volatile organic compounds (VOCs) that have much longer production and use histories in the United States. The detection frequency of MTBE was higher in drinking water and lower in source water and ground water. However, when the data for ground water and source water were limited to the same geographic extent as drinking-water data, the detection frequencies of MTBE were comparable to the detection frequency of MTBE in drinking water. In all three surveys, the detection frequency of any gasoline hydrocarbon was less than the detection frequency of MTBE. No concentration of MTBE in source water exceeded the lower limit of U.S. Environmental Protection Agency's Drinking-Water Advisory of 20 ?g/L (micrograms per liter). One concentration of MTBE in ground water exceeded 20 ?g/L, and 0.9 percent of drinking-water samples exceeded 20 ?g/L. The overall detection frequency of MTBE relative to other widely used VOCs indicates that MTBE is an important concern with respect to ground-water management. The probability of detecting MTBE was strongly associated with population density, use of MTBE in gasoline, and recharge, and weakly associated with density of leaking underground storage tanks, soil permeability, and aquifer consolidation. Only concentrations of MTBE above 0.5 ?g/L were associated with dissolved oxygen. Ground water underlying areas with high population density, ground water underlying areas where MTBE is used as a gasoline oxygenate, and ground water underlying areas with high recharge has a greater

  5. trans-Chloridobis(4-methyl­pyridine-κN)(4,4′,4′′-tri-tert-butyl-2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)ruthenium(II) hexa­fluoridophosphate acetone monosolvate

    PubMed Central

    Redford, Christopher; Gimbert-Suriñach, Carolina; Bhadbhade, Mohan; Colbran, Stephen B.

    2012-01-01

    The title compound, [RuCl(C6H7N)2(C27H35N3)]PF6·C3H6O, was obtained unintentionally as the product of the reaction of 1,1′-methyl­enebis(4-methyl­pyridinium) hexa­fluoriso­phos­phate and RuCl3(tpy*) (tpy* is 4,4′,4′′-tri-tert-butyl-2,2′:6′,2′′-terpyridine) in the presence of triethyl­amine and LiCl. The mol­ecular structure of the complex displays an octa­hedral geometry around the RuII ion and the unit cell contains an acetone solvent mol­ecule and one orientationally disordered PF6 − anion (occupancy ratio 0.75:0.25) which is hydrogen bonded to two H atoms of the tpy* ligand of the nearest [RuCl(pic)2(tpy*)]+ cation (pic is 4-methyl­pyridine). One of the tert-butyl groups of the tpy* ligand is also disordered over two sets of sites in a 0.75:0.25 ratio. PMID:22412442

  6. Study of fuel oxygenates solubility in aqueous media as a function of temperature and tert-butyl alcohol concentration.

    PubMed

    Gonzalez-Olmos, R; Iglesias, M

    2008-05-01

    Methyl tert-butyl ether (MTBE) is the most widely used oxygenate in gasoline blending and has become one of the world's most widespread groundwater and surface water pollutants. Alternative oxygenates to MTBE, namely ethyl tert-butyl ether (ETBE), tert-amyl ether (TAME) and diisopropyl ether (DIPE) have been hardly studied yet. The solubility of these chemicals is a key thermodynamic information for the assessment of the fate and transport of these pollutants. This work reports experimental data of water solubility at the range from 278.15 to 313.15K and atmospheric pressure of ethers used in fuels (MTBE, ETBE, TAME and DIPE) due to the strong influence of temperature on its trend. From the experimental data, temperature dependent polynomials were fitted, thermodynamic parameters were calculated and theoretical models were used for prediction. Finally, the tert-butyl alcohol (TBA) influence in the solubility of MTBE and ETBE in aqueous media was studied.

  7. Bis(μ-2-tert-butyl­phenyl­imido-1:2κ2 N:N)chlorido-2κCl-(diethyl ether-1κO)(2η5-penta­methyl­cyclo­penta­dien­yl)lithiumtantalum(V)

    PubMed Central

    Cole, Jacqueline M.; Chan, Michael C. W.; Gibson, Vernon C.; Howard, Judith A. K.

    2011-01-01

    In the title compound, [LiTa(C10H15)(C10H13N)2Cl(C4H10O)], the TaV atom is coordinated by a η5-penta­methyl­cyclo­penta­dienyl (Cp*) ligand, a chloride ion and two N-bonded 2-tert-butyl­phenyl­imide dianions. With respect to the two N atoms, the chloride ion and the centroid of the Cp* ring, the tantalum coordination geometry is approximately tetra­hedral. The lithium cation is bonded to both the 2-tert-butyl­phenyl­imide dianions and also a diethyl ether mol­ecule, in an approximate trigonal planar arrangement. The Ta⋯Li separation is 2.681 (15) Å. In the crystal, a weak C—H⋯Cl inter­action links the mol­ecules. When compared to the 2,6-diisopropyl­phenyl­imide analogue (‘the Wigley derivative’) of the title compound, the two structures are conformationally matched with an overall r.m.s. difference of 0.461Å. PMID:21754594

  8. Synthesis and Characterization of a Gasoline Oxygenate, Ethyl tert-Butyl Ether

    NASA Astrophysics Data System (ADS)

    Donahue, Craig J.; D'Amico, Teresa; Exline, Jennifer A.

    2002-06-01

    A laboratory procedure involving the synthesis and characterization of ethyl tert-butyl ether (ETBE) is described. This experiment has been used in a general chemistry sequence that includes a section on organic chemistry, but is also well suited for an introductory organic chemistry laboratory course. ETBE is prepared by the acid-catalyzed reaction of tert-butyl alcohol with ethyl alcohol. The product is recovered as a low-boiling azeotrope and purified by liquid liquid extraction with water. By using gas chromatography and IR spectroscopy to examine both the crude and the purified products, students can see how much the purity of their sample improves. They can also appreciate the value of these methods (especially GC) as tools to establish purity. Student results are presented. The use of ETBE and its more prominent cousin methyl tert-butyl ether (MTBE) as gasoline oxygenates has become very controversial because they have polluted underground water supplies. This lab permits students to prepare a compound that has a real use and regularly makes headlines in the news. This lab experiment is part of an effort to develop a general chemistry sequence for engineering students using the theme of "Chemistry and the Automobile".

  9. Water Quality and Occurrence of Methyl Tert-Butyl Ether (MTBE) and Other Fuel-Related Compounds in Lakes and Ground Water at Lakeside Communities in Sussex and Morris Counties, New Jersey, 1998-1999

    USGS Publications Warehouse

    Baehr, Arthur L.; Reilly, Timothy J.

    2001-01-01

    Densely populated communities surround many of the larger lakes in northwestern New Jersey. These communities derive most of their water supply from wells. The lakes can be navigated by gasoline-powered watercraft, can be in various stages of eutrophication, may contain pathogens associated with bathing and waterfowl, and are periodically subjected to chemical applications to control aquatic plant growth. Another feature that contributes to water-quality concerns in lakeside communities is the widespread use of septic tanks. Concentrations of methyl tert-butyl ether (MTBE), a gasoline oxygenate, in samples from Cranberry Lake and Lake Lackawanna ranged from 20 to 30 ug/L (micrograms per liter) and 5 to 14 ug/L during the summers of 1998 and 1999, respectively. These levels were persistent throughout the depth of the lakes when mixing conditions were present. MTBE concentrations in samples from the top 20 feet of Lake Hopatcong during summer 1999 were about 10 ug/L and about 2 to 3 ug/L in samples below 20 feet. The source of the MTBE in the lakes was determined to be gasoline-powered watercraft. Other constituents of gasoline--tertiary amyl methyl ether (TAME) and benzene, toluene, ethylbenzene, and xylenes (BTEX)--were detected in the lakes but at much lower concentrations than MTBE. Ambient ground-water quality at Cranberry Lake and Lake Lackawanna appears to be affected by the use of gasoline-powered watercraft. MTBE was detected in water samples from 13 of the 14 wells sampled at Cranberry Lake in fall 1998 and summer 1999. The wells were selected to monitor ambient ground-water quality and had no history of contamination. In ground-water samples collected during fall 1998, MTBE concentrations ranged from 0.12 to 19.8 ug/L, and the median concentration was 0.43 ug/L. In samples from summer 1999, MTBE concentrations ranged from 0.14 to 13.2 ug/L, and the median concentration was 0.38 ug/L. MTBE was detected in samples from four of the five wells at Lake

  10. Antiinflammatory 2,6-di-tert-butyl-4-(2-arylethenyl)phenols.

    PubMed

    Lazer, E S; Wong, H C; Possanza, G J; Graham, A G; Farina, P R

    1989-01-01

    A series of 2,6-di-tert-butyl-4-(2-arylethenyl)phenols was prepared and examined for their ability to inhibit cyclooxygenase and 5-lipoxygenase in vitro and developing adjuvant arthritis in vivo in the rat. Structure-activity relationships are discussed. Among the best compounds is (E)-2,6-di-tert-butyl-4-[2-(3-pyridinyl)ethenyl]phenol (7d). It has an IC50 of 0.67 microM for cyclooxygenase and 2.7 microM for 5-lipoxygenase and an ED50 of 2.1 mg/kg in developing adjuvant arthritis. Additional in vivo data are reported for 7d.

  11. Tris(4-tert-butyl­phen­yl)phosphine oxide

    PubMed Central

    Hao, Yin-Ge; Yao, Jin-Cai; Li, Jun-Xian; He, Yu-Xin; Zhang, Yu-Qing

    2010-01-01

    In the title compound, C30H39OP, the P=O bond length is 1.4866 (12) Å and the P—C bond lengths range from 1.804 (2) to 1.808 (13) Å. The molecle is located on a crystallographic mirror plane. The methyl groups of one tert-butyl group are disordered over two sites in a 0.776 (4):0.224 (4) ratio. PMID:21580096

  12. Synchrotron Photoionization Investigation of the Oxidation of Ethyl tert-Butyl Ether.

    PubMed

    Winfough, Matthew; Yao, Rong; Ng, Martin; Catani, Katherine; Meloni, Giovanni

    2017-02-23

    The oxidation of ethyl tert-butyl ether (ETBE), a widely used fuel oxygenated additive, is investigated using Cl atoms as initiators in the presence of oxygen. The reaction is carried out at 293, 550, and 700 K. Reaction products are probed by a multiplexed chemical kinetics photoionization mass spectrometer coupled with the synchrotron radiation produced at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory. Products are identified on the basis of mass-to-charge ratio, ionization energies, and shape of photoionization spectra. Reaction pathways are proposed together with detected primary products.

  13. N-tert-Butyl-3-hydr­oxy-5-androstene-17-carboxamide monohydrate

    PubMed Central

    Li, Jiang-Sheng; Simpson, Jim; Li, Xiao-Jun; Li, Xun; Huang, Peng-Mian

    2009-01-01

    In the title compound, C24H39NO2·H2O, the A and C rings of the pregnolene derivative sterol adopt chair conformations, with the B ring in a flattened chair conformation and the five-membered ring in an envelope conformation twisted about the C/D ring junction. The N-tert-butyl­carboxamide substituent is equatorial. The 3β-hydr­oxy H atom and one H atom of the water mol­ecule are disordered over two positions with equal occupancies. In the crystal structure, O—H⋯O hydrogen bonds between the 3β-hydr­oxy groups of neighbouring mol­ecules form dimers in the bc plane and these dimers are stacked along the a axis by additional O—H⋯O hydrogen bonds involving the water mol­ecules. The steric effect of the bulky tert-butyl substituent in the carboxamide chain precludes hydrogen-bond formation by the N—H group. PMID:21582804

  14. Hydrogen atom reactivity toward aqueous tert-butyl alcohol.

    PubMed

    Lymar, Sergei V; Schwarz, Harold A

    2012-02-09

    Through a combination of pulse radiolysis, purification, and analysis techniques, the rate constant for the H + (CH(3))(3)COH → H(2) + (•)CH(2)C(CH(3))(2)OH reaction in aqueous solution is definitively determined to be (1.0 ± 0.15) × 10(5) M(-1) s(-1), which is about half of the tabulated number and 10 times lower than the more recently suggested revision. Our value fits on the Polanyi-type, rate-enthalpy linear correlation ln(k/n) = (0.80 ± 0.05)ΔH + (3.2 ± 0.8) that is found for the analogous reactions of other aqueous aliphatic alcohols with n equivalent abstractable H atoms. The existence of such a correlation and its large slope are interpreted as an indication of the mechanistic similarity of the H atom abstraction from α- and β-carbon atoms in alcohols occurring through the late, product-like transition state. tert-Butyl alcohol is commonly contaminated by much more reactive secondary and primary alcohols (2-propanol, 2-butanol, ethanol, and methanol), whose content can be sufficient for nearly quantitative scavenging of the H atoms, skewing the H atom reactivity pattern, and explaining the disparity of the literature data on the H + (CH(3))(3)COH rate constant. The ubiquitous use of tert-butyl alcohol in pulse radiolysis for investigating H atom reactivity and the results of this work suggest that many other previously reported rate constants for the H atom, particularly the smaller ones, may be in jeopardy.

  15. DECISION-MAKING, SCIENCE AND GASOLINE ADDITIVES

    EPA Science Inventory


    Methyl-tert butyl ether (MTBE) has been used as a gasoline additive to serve two major purposes. The first use was as an octane-enhancer to replace organic lead, beginning in 1979. The second use, which began about 1992, was as an oxygenated additive to meet requirements ...

  16. The Alkyl tert-Butyl Ether Intermediate 2-Hydroxyisobutyrate Is Degraded via a Novel Cobalamin-Dependent Mutase Pathway†

    PubMed Central

    Rohwerder, Thore; Breuer, Uta; Benndorf, Dirk; Lechner, Ute; Müller, Roland H.

    2006-01-01

    Fuel oxygenates such as methyl and ethyl tert-butyl ether (MTBE and ETBE, respectively) are degraded only by a limited number of bacterial strains. The aerobic pathway is generally thought to run via tert-butyl alcohol (TBA) and 2-hydroxyisobutyrate (2-HIBA), whereas further steps are unclear. We have now demonstrated for the newly isolated β-proteobacterial strains L108 and L10, as well as for the closely related strain CIP I-2052, that 2-HIBA was degraded by a cobalamin-dependent enzymatic step. In these strains, growth on substrates containing the tert-butyl moiety, such as MTBE, TBA, and 2-HIBA, was strictly dependent on cobalt, which could be replaced by cobalamin. Tandem mass spectrometry identified a 2-HIBA-induced protein with high similarity to a peptide whose gene sequence was found in the finished genome of the MTBE-degrading strain Methylibium petroleiphilum PM1. Alignment analysis identified it as the small subunit of isobutyryl-coenzyme A (CoA) mutase (ICM; EC 5.4.99.13), which is a cobalamin-containing carbon skeleton-rearranging enzyme, originally described only in Streptomyces spp. Sequencing of the genes of both ICM subunits from strain L108 revealed nearly 100% identity with the corresponding peptide sequences from M. petroleiphilum PM1, suggesting a horizontal gene transfer event to have occurred between these strains. Enzyme activity was demonstrated in crude extracts of induced cells of strains L108 and L10, transforming 2-HIBA into 3-hydroxybutyrate in the presence of CoA and ATP. The physiological and evolutionary aspects of this novel pathway involved in MTBE and ETBE metabolism are discussed. PMID:16751524

  17. Metabolism of 3-tert-butyl-4-hydroxyanisole to 3-tert-butyl-4,5-dihydroxyanisole by rat liver microsomes.

    PubMed

    Armstrong, K E; Wattenberg, L W

    1985-04-01

    3-tert-Butylhydroxyanisole (3-BHA) is an antioxidant which can have a modulating effect on chemical carcinogenesis. Information concerning the metabolism of 3-BHA is incomplete. In the present study, the metabolites formed by incubating 3-BHA with liver microsomes from rats given beta-naphthoflavone by p.o. intubation were studied. Three metabolites were identified, two major metabolites and a minor metabolite. One of the major metabolites was the catechol of 3-BHA, i.e., 3-tert-butyl-4,5-dihydroxyanisole, which has not previously been reported. A characteristic of this compound is its capacity to be oxidized readily. The second major metabolite was tert-butyl hydroquinone which has been reported previously to be a liver microsomal metabolite of 3-BHA. The third metabolite, which occurred in small quantities, was 2,2'-dihydroxy-3,3'-di-tert-butyl-5,5'-dimethoxydiphenyl. 2,2'-Dihydroxy-3,3'-di-tert-butyl-5,5'-dimethoxydiphenyl has been identified previously as a major metabolite of 3-BHA in the rat intestine. An understanding of the metabolism of 3-BHA may assist in elucidating the mechanism(s) of its biological effects.

  18. Pyrilocyanines. 24. Symmetrical tetra-tert-butyl substituted pyrilo-2-cyanines

    SciTech Connect

    Kurdyukov, V.V.; Ishchenko, A.A.; Kudinova, M.A.; Tolmachev, A.I.

    1987-12-01

    2,4-di-tert-butyl-6-methylpyrilium and -thiopyrilium salts were synthesized. From them were obtained symmetrical tetra-tert-butyl substituted ..cap alpha..-pyrilocarbo- and dicarbocyanines and their sulfur analogs. The ..cap alpha..-pyrilocyanines were converted to symmetrical ..cap alpha..-pyridocyanines. The effects of heteroresidue structure, length of polymethine chain, and solvent on the location and shape of the absorption bands of these dyes were studied. Their experimental spectral properties were compared with the results of quantum chemical calculations of average band location, second-power changes of bond order upon excitation, and theoretical electron donor capabilities.

  19. IRIS Toxicological Review of Tert-Butyl Alcohol (Tert-Butanol) ...

    EPA Pesticide Factsheets

    EPA is developing an Integrated Risk Information System (IRIS) assessment of tert-butyl Alcohol (tert-butanol) and has released the public comment draft assessment for public comment and external peer review. When final, the assessment will appear on the IRIS database. This draft report is being released for public viewing and comment prior to a public meeting, providing an opportunity for the IRIS Program to engage in early discussions with stakeholders and the public on data that may be used to identify adverse health effects and characterize exposure-response relationships. EPA welcomes all comments on the draft literature search, preliminary evidence tables, and preliminary exposure-response arrays, such as remarks on the following: • the clarity and transparency of the materials; • the approach for identifying pertinent studies; • the selection of studies for data extraction to preliminary evidence tables and exposure-response arrays; • any methodological considerations that could affect the interpretation of or confidence in study results; and • any additional studies published or nearing publication that may provide data for the evaluation of human health hazard or dose-response relationships.

  20. Absolute rate constants of alkoxyl radical reactions in aqueous solution. [Tert-butyl hydroperoxide

    SciTech Connect

    Erben-Russ, M.; Michel, C.; Bors, W.; Saran, M.

    1987-04-23

    The pulse radiolysis technique was used to generate the alkoxyl radical derived from tert-butyl hydroperoxide (/sup t/BuOOH) in aqueous solution. The reactions of this radical with 2,2'-azinobis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) and promethazine were monitored by kinetic spectroscopy. The unimolecular decay rate constant of the tert-butoxyl radical (/sup t/BuO) was determined to be 1.4 x 10/sup 6/ s/sup -1/. On the basis of this value, the rate constants for /sup t/BuO attack on quercetin, crocin, crocetin, ascorbate, isoascorbate, trolox c, glutathione, thymidine, adenosine, guanosine, and unsaturated fatty acids were determined. In addition, the reaction of /sup t/BuO with the polyunsaturated fatty acids (PUFA) was observed by directly monitoring the formation of the fatty acid pentadienyl radicals. Interestingly, the attack of /sup t/BuO on PUFA was found to be faster by about one order of magnitude as compared to the same reaction in a nonpolar solvent.

  1. Regioisomer-Free C 4h β-Tetrakis(tert-butyl)metallo-phthalocyanines: Regioselective Synthesis and Spectral Investigations.

    PubMed

    Iida, Norihito; Tanaka, Kenta; Tokunaga, Etsuko; Takahashi, Hiromi; Shibata, Norio

    2015-04-01

    Metal β-tetrakis(tert-butyl)phthalocyanines are the most commonly used phthalocyanines due to their high solubility, stability, and accessibility. They are commonly used as a mixture of four regioisomers, which arise due to the tert-butyl substituent on the β-position, and to the best of our knowledge, their regioselective synthesis has yet to be reported. Herein, the C 4h -selective synthesis of β-tetrakis(tert-butyl)metallophthalocyanines is disclosed. Using tetramerization of α-trialkylsilyl phthalonitriles with metal salts following acid-mediated desilylation, the desired metallophthalocyanines were obtained in good yields. Upon investigation of regioisomer-free zinc β-tetrakis(tert-butyl)phthalocyanine using spectroscopy, the C 4h single isomer described here was found to be distinct in the solid state to zinc β-tetrakis(tert-butyl)phthalocyanine obtained by a conventional method.

  2. tert-Butyl Sulfoxide as a Starting Point for the Synthesis of Sulfinyl Containing Compounds.

    PubMed

    Wei, Juhong; Sun, Zhihua

    2015-11-06

    Sulfoxides bearing a tert-butyl group can be activated using N-bromosuccinimide (NBS) under acidic conditions and then subsequently treated with a variety of nitrogen, carbon, or oxygen nucleophiles to afford a wide range of the corresponding sulfinic acid amides, new sulfoxides, and sulfinic acid esters.

  3. (3S*,4S*,E)-tert-Butyl 3,4-dibromo-5-oxo­cyclo­oct-1-ene­carboxyl­ate

    PubMed Central

    Blanco, Magda; Garrido, Narciso M.; Sanz, Francisca; Diez, David

    2012-01-01

    The title compound, C13H18Br2O3, was prepared by a bromination reaction of (1E,3Z)-methyl 5-oxocyclo­octa-1,3-diene­carboxyl­ate, which was obtained by an ep­oxy­dation reaction of tert-butyl cyclo­oct-1,3-diene­carboxyl­ate. The crystal structure confirms unequivocally the absolute configuration of both chiral centres to be S. In the crystal, C—H⋯O inter­actions link the mol­ecules into chains running along the c axis. PMID:22259514

  4. Isotetrandrine ameliorates tert-butyl hydroperoxide-induced oxidative stress through upregulation of heme oxygenase-1 expression

    PubMed Central

    Wang, Lidong; Ci, Xinxin; Lv, Hongming; Wang, Xiaosong

    2016-01-01

    1R, 1′S-isotetrandrine, a naturally occurring plant alkaloid found in Mahonia of Berberidaceae, possesses anti-inflammatory, antibacterial, and antiviral properties, but the antioxidative activity and mechanism action remain unclear. In this study, we demonstrated the antioxidative effect and mechanism of 1R, 1'S-isotetrandrine against tert-butyl hydroperoxide-induced oxidative damage in HepG2 cells. We found that 1R, 1′S-isotetrandrine suppressed cytotoxicity, reactive oxygen species generation, and glutathione depletion. Additionally, our study confirmed that 1R, 1′S-isotetrandrine significantly increased the antioxidant enzyme heme oxygenase-1 expression and nuclear translocation of factor-erythroid 2 p45-related factor 2 (Nrf2). Specifically, the nuclear translocation of Nrf2 induced by 1R, 1′S-isotetrandrine was associated with Nrf2 negative regulatory protein Keap1 inactivation and phosphorylation of both extracellular signal-regulated protein kinase and c-Jun NH2-terminal kinase. Preincubation with thiol-reducing agents reduced 1R, 1′S-isotetrandrine-induced heme oxygenase-1 expression, and treatment with either extracellular signal-regulated protein kinase or c-Jun NH2-terminal kinase inhibitors attenuated the levels of 1R, 1′S-isotetrandrine-induced Nrf2 activation and heme oxygenase-1 expression. Furthermore, the cytoprotective effect of 1R, 1′S-isotetrandrine was abolished by heme oxygenase-1, extracellular signal-regulated protein kinase, and c-Jun NH2-terminal kinase inhibitors. These results indicated that the 1R, 1′S-isotetrandrine ameliorated tert-butyl hydroperoxide-induced oxidative damage through upregulation of heme oxygenase-1 expression by the dissociation of Nrf2 from Nrf2-Keap1 complex via extracellular signal-regulated protein kinase and c-Jun NH2-terminal kinase activation and Keap1 inactivation. PMID:27190261

  5. Eight 7-benzyl-3-tert-butyl-1-phenyl­pyrazolo[3,4-d]oxazines, encompassing structures containing no inter­molecular hydrogen bonds, and hydrogen-bonded structures in one, two or three dimensions

    PubMed Central

    Castillo, Juan C.; Abonía, Rodrigo; Cobo, Justo; Glidewell, Christopher

    2009-01-01

    7-Benzyl-3-tert-butyl-1-phenyl-6,7-dihydro-1H,4H-pyrazolo[3,4-d][1,3]oxazine, C22H25N3O, (I), and 3-tert-butyl-7-(4-methyl­benz­yl)-1-phenyl-6,7-dihydro-1H,4H-pyrazolo[3,4-d][1,3]oxazine, C23H27N3O, (II), are isomorphous in the space group P21, and mol­ecules are linked into chains by C—H⋯O hydrogen bonds. In each of 3-tert-butyl-7-(4-methoxy­benz­yl)-1-phenyl-6,7-dihydro-1H,4H-pyrazolo[3,4-d][1,3]oxazine, C23H27N3O2, (III), which has cell dimensions rather similar to those of (I) and (II), also in P21, and 3-tert-butyl-1-phenyl-7-[4-(trifluoro­meth­yl)benz­yl]-6,7-dihydro-1H,4H-pyrazolo[3,4-d][1,3]oxazine, C23H24F3N3O, (IV), there are no direction-specific inter­actions between the mol­ecules. In 3-tert-butyl-7-(4-nitro­benz­yl)-1-phenyl-6,7-dihydro-1H,4H-pyrazolo[3,4-d][1,3]oxazine, C22H24N4O3, (V), a combination of C—H⋯O and C—H⋯N hydrogen bonds links the mol­ecules into complex sheets. There are no direction-specific inter­actions between the mol­ecules of 3-tert-butyl-7-(2,3-dimethoxy­benz­yl)-1-phenyl-6,7-dihydro-1H,4H-pyrazolo[3,4-d][1,3]oxazine, C24H29N3O3, (VI), but a three-dimensional framework is formed in 3-tert-butyl-7-(3,4-methyl­enedioxy­benz­yl)-1-phenyl-6,7-dihydro-1H,4H-pyrazolo[3,4-d][1,3]oxazine, C23H25N3O3, (VII), by a combination of C—H⋯O, C—H⋯N and C—H⋯π(arene) hydrogen bonds, while a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds links the mol­ecules of 3-tert-butyl-1-phenyl-7-(3,4,5-trimethoxy­benz­yl)-6,7-dihydro-1H,4H-pyrazolo[3,4-d][1,3]oxazine, C25H31N3O4, (VIII), into complex sheets. In each compound, the oxazine ring adopts a half-chair conformation, while the orientations of the pendent phenyl and tert-butyl substituents relative to the pyrazolo[3,4-d]oxazine unit are all very similar. PMID:19652329

  6. Syntheses, properties, and reactions of transition metal complexes of di(tert-butyl)amide and 2,2,6,6-tetramethylpiperidide

    NASA Astrophysics Data System (ADS)

    Davis, Luke M.

    Nitrides of the transition metals of groups 7-11 possess desirable properties, such as higher hardness and saturation magnetization than the corresponding metals. These nitrides have realized and potential applications in tool coatings and magnetic recording media. In order to develop new chemical vapor deposition (CVD) precursors for these late transition metal nitrides, we have explored the synthesis, characterization, and CVD of late transition metal complexes of the sterically demanding ligands di(tert-butyl)amide and 2,2,6,6-tetramethylpiperidide. Treatment of MnBr2(thf)2, FeBr2(dme), CoBr2(dme), and NiBr2(dme) with two equivalents of LiN(t-Bu)2 in pentane, followed by sublimation in static vacuum, affords the two-coordinate compounds M[N(t-Bu)2]2 (M = Mn, Fe, Co, Ni) previously reported by our group. Previous work established that the Mn and Fe compounds have linear N-M-N angles, whereas the Co and Ni compounds are bent. In addition, the Fe and Co compounds have large orbital contributions to their magnetic moments, whereas the Mn and Ni compounds do not. In order to understand these properties, the electronic structures of the M[N(t-Bu)2]2 compounds have been described using the Angular Overlap Model (AOM). Two conclusions help rationalize the previously observed molecular properties of these and other two-coordinate compounds: (1) The potential energy surfaces for two-coordinate compounds are nearly flat, varying only a few kcal/mol even with 30° changes in the N-M-N angle, and (2) the ground state configurations for two-coordinate d2 and d3 (and therefore also d7 and d8) compounds experience strong inter-electron repulsion and extensive state mixing. Low-temperature CVD from the reaction between these two-coordinate M[N(t-Bu)2]2 compounds and ammonia affords manganese, iron, cobalt, and nickel nitride thin films. Deposition rates as high as 18 nm/min are observed for cobalt nitride, and deposition temperatures as low as 25 °C are observed for iron

  7. Activating tert-butyl hydroperoxide by chelated vanadates for stereoselectively preparing sidechain-functionalized tetrahydrofurans.

    PubMed

    Dönges, Maike; Amberg, Matthias; Niebergall, Mark; Hartung, Jens

    2015-06-01

    tert-Butyl hydroperoxide (TBHP) stereoselectively oxidizes substituted 4-pentenols, when activated by (ethyl)[cis-(piperidine-2,6-diyl)dimethyl] vanadates. The reaction affords (tetrahydrofuran-2-yl)methanols in up to 89% yield, and in stereoselectivity ranging between moderate (cis:trans=32:68) to excellent (>99:1). Correlating structures of 4-pentenols, differing by substitution at tetragonal and trigonal stereocenters, to configuration of products obtained from oxidative cyclization provides a reaction model explaining the origin of stereoselectivity by (i) intramolecular oxygen atom transfer to (ii) a chair-like folded alkenol, being (iii) hydrogen-bonded to one of the two aminodiolate oxygens of the chelated vanadate, having (iv) substituents in the chair-like transition structure preferentially aligned equatorially. Substituents at trigonal stereocenters improve 2,5-cis- and 2,4-trans-selectivity for oxidative 4-pentenol cyclization in case of (Z)-configuration. An (E)-substituent does not alter selectivity exerted by a terminal (Z)-substituent of similar steric size. Larger (E)-groups increase the fraction of 2,5-trans-cyclized products. The reaction model additionally implements results from vanadium-51 NMR spectroscopy and density functional theory. According to theory, the (dialkoxy)(oxo)vanadium substituent exerts in the preferred end-on conformation almost no effect on structure and bonding of the peroxide group in tert-butylperoxy vanadates. Changing conformation to a higher in energy side-on arrangement puts the vanadate-bound tert-butylperoxy group into a position to serve in a concerted reaction as combined electron acceptor and oxygen atom donor.

  8. Ascorbate protects against tert-butyl hydroperoxide inhibition of erythrocyte membrane Ca2+ + Mg2(+)-ATPase.

    PubMed

    Moore, R B; Bamberg, A D; Wilson, L C; Jenkins, L D; Mankad, V N

    1990-05-01

    The incubation of erythrocyte suspensions or isolated membranes containing a residual amount of hemoglobin (0.04% of original cellular hemoglobin) with tert-butyl hydroperoxide (tBHP, 0.5 mM) caused significant inhibition of basal and calmodulin-stimulated Ca2+ + Mg2(+)-ATPase activities and the formation of thiobarbituric acid reactive products measured as malondialdehyde. In contrast, the treatment of white ghosts (membranes not containing hemoglobin) with tBHP (0.5 mM) did not lead to appreciable enzyme inhibition within the first 20 min and did not result in malondialdehyde (MDA) formation. However, the addition of either 10 microM hemin or 100 microM ferrous chloride + 1 mM ADP to white ghosts produced hydroperoxide effects similar to those in pink ghosts (membranes with 0.04% hemoglobin). The concentrations of hemin and ferrous chloride which caused half-maximal inhibition of Ca2+ + Mg2(+)-ATPase activity at 10 min were 0.5 and 30 microM, respectively. The effects of several antioxidants (mannitol, thiourea, hydroxyurea, butylated hydroxytoluene, and ascorbate) were investigated for their protective effects against oxidative changes resulting from tBHP treatment. Over a 30-min incubation period only ascorbate significantly reduced the enzyme inhibition, MDA formation, and protein polymerization. Thiourea and hydroxyurea decreased MDA formation and protein polymerization but failed to protect against the enzyme inhibition. Butylated hydroxytoluene was similar to thiourea and hydroxyurea but with better protection at 10 min. Mannitol, under these conditions, was an ineffective antioxidant for all parameters tested.

  9. Synthesis of sulfonic acid derivatives by oxidative deprotection of thiols using tert-butyl hypochlorite.

    PubMed

    Joyard, Yoann; Papamicaël, Cyril; Bohn, Pierre; Bischoff, Laurent

    2013-05-03

    Starting from alkyl halides or Michael acceptors, thioacetates were prepared in situ and further treated with t-BuOCl, affording the corresponding sulfonyl chlorides which were trapped with nucleophiles such as water, alcohol, or amines. The three steps can be achieved in a one-pot procedure. Oxidative deprotection also proved to be efficient with S-trityl and S-tert-butyl groups, making it a convenient route toward cysteic acid derivatives.

  10. Different mechanisms of formation of glutathione-protein mixed disulfides of diamide and tert-butyl hydroperoxide in rat blood.

    PubMed

    Di Simplicio, P; Lupis, E; Rossi, R

    1996-03-15

    The mechanisms of glutathione-protein mixed disulfide (GSSP) formation caused by diamide and tert-butyl hydroperoxide were studied in rat blood after in vitro treatment in the 0.3-4 mM dose range. tert-Butyl hydroperoxide formed GSSP, via GSSG, according to the reaction, GSSG + PSH --> GSSP + GSH, whereas diamide reacted first with protein SH groups, giving PS-diamide adducts and then, after reaction with GSH, GSSP. Moreover, after diamide treatment, GSSP patterns were characterized by a much slower or irreversible dose-related return to basal levels in comparison with those observed with tert-butyl hydroperoxide, always reversible. Experiments with purified hemoglobin revealed the existence of a large fraction of protein SH groups which formed GSSP and had a higher reactivity than GSH. Experiments on glucose consumption and role of various erythrocyte enzymes, carried out to explain the inertness of GSSP to reduction after treatment of blood with diamide, were substantially negative. Other tests carried out to confirm the efficiency of the enzymatic machinery of blood samples successively treated with diamide and tert-butyl hydroperoxide, indicated that GSSP performed by diamide was difficult to reduce, whereas those generated by tert-butyl hydroperoxide were reversible as normal. Our results suggest that a fraction of GSSP generated by diamide is different and less susceptible to reduction than that obtained with tert-butyl hydroperoxide.

  11. Synthesis, structural characterization, electronic spectroscopy, and microfluidic detection of Cu+2 and UO2+2 [di-tert-butyl-salphenazine] complexes†

    PubMed Central

    Maynard, B. A.; Brooks, J. C.; Hardy, E. E.; Easley, C. J.; Gorden, A. E. V.

    2015-01-01

    Metal templation by condensation of 2,3-diaminophenazine with 3,5-di-tert-butyl-2-hydroxybenzaldehyde around the metal centers [M = Cu(ii), and UO2(vi)] affords a new class of M[di-tert-butyl sal-phenazine] metal complexes. Reported here is the synthesis, single crystal X-ray structural characterization, electronic spectroscopy, and microfluidic detection of the formation of these M[di-tert-butyl sal-phenazine] complexes. PMID:25657039

  12. Allylic Oxidations Catalyzed by Dirhodium Caprolactamate via Aqueous tert-Butyl Hydroperoxide: The Role of the tert-Butylperoxy Radical

    PubMed Central

    McLaughlin, Emily C.; Choi, Hojae; Wang, Kan; Chiou, Grace; Doyle, Michael P.

    2009-01-01

    Dirhodium(II) caprolactamate exhibits optimal efficiency for the production of the tert-butylperoxy radical, which is a selective reagent for hydrogen atom abstraction. These oxidation reactions occur with aqueous tert-butyl hydroperoxide (TBHP) without rapid hydrolysis of the caprolactamate ligands on dirhodium. Allylic oxidations of enones yield the corresponding enedione in moderate to high yields, and applications include allylic oxidations of steroidal enones. Although methylene oxidation to a ketone is more effective, methyl oxidation to a carboxylic acid can also be achieved. The superior efficiency of dirhodium(II) caprolactamate as a catalyst for allylic oxidations by TBHP (mol % catalyst, % conversion) is described in comparative studies with other metal catalysts that are also reported to be effective for allylic oxidations. That different catalysts produce essentially the same mixture of products with the same relative yields suggests that the catalyst is not involved in product forming steps. Mechanistic implications arising from studies of allylic oxidation with enones provide new insights into factors that control product formation. A previously undisclosed disproportionation pathway, catalyzed by the tert-butoxy radical, of mixed peroxides for the formation of ketone products via allylic oxidation has been uncovered. PMID:19072696

  13. Molecular Dynamics of Tert-butyl Chloride Confined to CPG (7.4, 15.6 nm)

    NASA Astrophysics Data System (ADS)

    Szutkowska, L.; Peplińska, B.; Jurga, S.

    2006-08-01

    The paper complements our earlier NMR investigation of molecular dynamics of tert-butyl chloride restricted by geometries of the type MCM-41 and CPG by the new sizes of CPG and by differential scanning calorimetry method. We report proton and deuteron NMR lineshapes and the spin-lattice relaxation results of tert-butyl chloride in CPG of the 15.6 nm and 7.4 nm pore diameter in the temperature range 70 K ≤ T ≤ 292 K. The bulk-like component of the confined tert-butyl chloride, in temperatures corresponding to phase III, is interpreted as a composition of two dynamically different subphases. The parameters of motions of both subphases are derived. The tert-butyl group motion in both subphases is more restricted than in the bulk tert-butyl chloride, although the activation energies are lower. Differential scanning calorimetry was used to determine temperatures of the phase transitions (140 K ≤T ≤292 K). The results show that the depression of the phase transition temperature is pore size dependent and that the confinement has less influence on transition to the plastic phase than on the freezing and on the solid II - solid III transition.

  14. The chemical behavior of terminally tert-butylated polyolefins.

    PubMed

    Klein, Dagmar; Hopf, Henning; Jones, Peter G; Dix, Ina; Hänel, Ralf

    2015-01-01

    The chemical behavior of various oligoenes 2 has been studied. The catalytic hydrogenation of diene 3 yielded monoene 4. Triene 7 was hydrogenated to diene 8, monoene 9 and saturated hydrocarbon 10. Bromine addition to 3 and 7 yielded the dibromides 17 and 18, respectively, i.e., the oligoene system has been attacked at its terminal olefinic carbon atoms. Analogously, the higher vinylogs 19 and 20 yielded the 1,8- and 1,10-bromine adduts 23 and 24, respectively, when less than 1 equivalent of bromine was employed. Treatment of tetraene 19 with excess bromine provided tetrabromide 25. In epoxidation reactions, both with meta-chloroperbenzoic acid (MCPBA) and dimethyldioxirane (DMDO) two model oligoenes were studied: triene 7 and tetraene 19. Whereas 7 furnished the rearrangement product 31 with MCPBA, it yielded the symmetrical epoxide 32 with DMDO. Analogously, 19 was converted to mono-epoxide 33 with MCPBA and to 34 with DMDO. Diels-Alder addition of 7 with N-phenyltriazolinedione (PTAD) did not take place. Extension of the conjugated π-system to the next higher vinylog, 19, caused NPTD-addition to the symmetrical adduct 37 in good yield. Comparable results were observed on adding NPTD (equivalent amount) to pentaene 20 and hexaene 21. Using 36 in excess provided the 2:1-adduct 40 from 21 and led to a complex mixture of adducts from heptaene 22. With tetracyanoethylene (TCNE) as the dienophile, tetraolefin 19 yielded the symmetrical adduct 43, although the reaction temperature had to be increased. Pentaene 20 and hexaene 21 led to corresponding results, adducts 44 and 45 being produced in acceptable yields. With nonaene 42 and TCNE the 2:1-adduct 48 was generated according to its spectroscopic data. Exploratory photochemical studies were carried out with tetraene 19 as the model compound. On irradiation this reacted with oxygen to the stable endo-peroxide 52.

  15. The chemical behavior of terminally tert-butylated polyolefins

    PubMed Central

    Klein, Dagmar; Jones, Peter G; Dix, Ina; Hänel, Ralf

    2015-01-01

    Summary The chemical behavior of various oligoenes 2 has been studied. The catalytic hydrogenation of diene 3 yielded monoene 4. Triene 7 was hydrogenated to diene 8, monoene 9 and saturated hydrocarbon 10. Bromine addition to 3 and 7 yielded the dibromides 17 and 18, respectively, i.e., the oligoene system has been attacked at its terminal olefinic carbon atoms. Analogously, the higher vinylogs 19 and 20 yielded the 1,8- and 1,10-bromine adduts 23 and 24, respectively, when less than 1 equivalent of bromine was employed. Treatment of tetraene 19 with excess bromine provided tetrabromide 25. In epoxidation reactions, both with meta-chloroperbenzoic acid (MCPBA) and dimethyldioxirane (DMDO) two model oligoenes were studied: triene 7 and tetraene 19. Whereas 7 furnished the rearrangement product 31 with MCPBA, it yielded the symmetrical epoxide 32 with DMDO. Analogously, 19 was converted to mono-epoxide 33 with MCPBA and to 34 with DMDO. Diels–Alder addition of 7 with N-phenyltriazolinedione (PTAD) did not take place. Extension of the conjugated π-system to the next higher vinylog, 19, caused NPTD-addition to the symmetrical adduct 37 in good yield. Comparable results were observed on adding NPTD (equivalent amount) to pentaene 20 and hexaene 21. Using 36 in excess provided the 2:1-adduct 40 from 21 and led to a complex mixture of adducts from heptaene 22. With tetracyanoethylene (TCNE) as the dienophile, tetraolefin 19 yielded the symmetrical adduct 43, although the reaction temperature had to be increased. Pentaene 20 and hexaene 21 led to corresponding results, adducts 44 and 45 being produced in acceptable yields. With nonaene 42 and TCNE the 2:1-adduct 48 was generated according to its spectroscopic data. Exploratory photochemical studies were carried out with tetraene 19 as the model compound. On irradiation this reacted with oxygen to the stable endo-peroxide 52. PMID:26425183

  16. IRIS Toxicological Review of Tert-Butyl Alcohol (Tert-Butanol) ...

    EPA Pesticide Factsheets

    The IRIS Toxicological Review of tert-Butyl Alcohol (tert-Butanol) was released for external peer review in April 2017. EPA’s Science Advisory Board’s (SAB) Chemical Assessment Advisory Committee (CAAC) will conduct a peer review of the scientific basis supporting the tert-butanol assessment and release a final report of their review. Information regarding the peer review can be found on the SAB website. EPA is conducting an Integrated Risk Information System (IRIS) health assessment for tert-butanol. The outcome of this project is a Toxicological Review and IRIS Summary for tert-butanol that will be entered into the IRIS database.

  17. Enantioselective phase-transfer catalytic α-alkylation of 2-methylbenzyl tert-butyl malonates.

    PubMed

    Ha, Min Woo; Hong, Suckchang; Park, Cheonhyoung; Park, Yohan; Lee, Jihye; Kim, Mi-hyun; Lee, Jihoon; Park, Hyeung-geun

    2013-06-28

    A new asymmetric synthetic method to prepare α,α-dialkylmalonates for the construction of a quaternary carbon center via phase-transfer catalytic (PTC) alkylation has been developed. Enantioselective α-alkylation of 2-methylbenzyl tert-butyl α-methylmalonates under phase-transfer catalytic conditions in the presence of (S,S)-3,4,5-trifluorophenyl-NAS bromide () afforded the corresponding α,α-dialkylmalonates in high chemical (up to 99%) and optical yields (up to 91% ee), which were selectively hydrolyzed to malonic monoacids under alkali basic conditions for conversion to versatile chiral intermediates.

  18. Hydrogen oxidation catalysis by a nickel diphosphine complex with pendant tert-butyl amines

    SciTech Connect

    Yang, Jenny Y.; Chen, Shentan; Dougherty, William G.; Kassel, W. Scott; Bullock, R. Morris; DuBois, Daniel L.; Raugei, Simone; Rousseau, Roger; Dupuis, Michel; DuBois, M. Rakowski

    2010-01-01

    A bis-diphosphine nickel complex with tert-butyl functionalized pendant amines [Ni(PCy2Nt-Bu2)2]2+ has been synthesized. It is a highly active electrocatalyst for the oxidation of hydrogen in the presence of base. Finally, the turnover rate of 50 s-1 under 1.0 atm H2 at a potential of -0.77 V vs. the ferrocene couple is 5 times faster than the rate reported heretofore for any other synthetic molecular H2 oxidation catalyst.

  19. Hydrogen oxidation catalysis by a nickel diphosphine complex with pendant tert-butyl amines.

    PubMed

    Yang, Jenny Y; Chen, Shentan; Dougherty, William G; Kassel, W Scott; Bullock, R Morris; DuBois, Daniel L; Raugei, Simone; Rousseau, Roger; Dupuis, Michel; Rakowski DuBois, M

    2010-12-07

    A bis-diphosphine nickel complex with tert-butyl functionalized pendant amines [Ni(P(Cy)(2)N(t-Bu)(2))(2)](2+) has been synthesized. It is a highly active electrocatalyst for the oxidation of hydrogen in the presence of base. The turnover rate of 50 s(-1) under 1.0 atm H(2) at a potential of -0.77 V vs. the ferrocene couple is 5 times faster than the rate reported heretofore for any other synthetic molecular H(2) oxidation catalyst.

  20. Protective Effects of Rooibos (Aspalathus linearis) and/or Red Palm Oil (Elaeis guineensis) Supplementation on tert-Butyl Hydroperoxide-Induced Oxidative Hepatotoxicity in Wistar Rats.

    PubMed

    Ajuwon, Olawale R; Katengua-Thamahane, Emma; Van Rooyen, Jacques; Oguntibeju, Oluwafemi O; Marnewick, Jeanine L

    2013-01-01

    The possible protective effects of an aqueous rooibos extract (Aspalathus linearis), red palm oil (RPO) (Elaeis guineensis), or their combination on tert-butyl-hydroperoxide-(t-BHP-)induced oxidative hepatotoxicity in Wistar rats were investigated. tert-butyl hydroperoxide caused a significant (P < 0.05) elevation in conjugated dienes (CD) and malondialdehyde (MDA) levels, significantly (P < 0.05) decreased reduced glutathione (GSH) and GSH : GSSG ratio, and induced varying changes in activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase in the blood and liver. This apparent oxidative injury was associated with histopathological changes in liver architecture and elevated levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH). Supplementation with rooibos, RPO, or their combination significantly (P < 0.05) decreased CD and MDA levels in the liver and reduced serum level of ALT, AST, and LDH. Likewise, changes observed in the activities of antioxidant enzymes and impairment in redox status in the erythrocytes and liver were reversed. The observed protective effects when rooibos and RPO were supplemented concomitantly were neither additive nor synergistic. Our results suggested that rooibos and RPO, either supplemented alone or combined, are capable of alleviating t-BHP-induced oxidative hepatotoxicity, and the mechanism of this protection may involve inhibition of lipid peroxidation and modulation of antioxidants enzymes and glutathione status.

  1. Ethyl tert-butyl ether (ETBE)-degrading microbial communities in enrichments from polluted environments.

    PubMed

    Le Digabel, Yoann; Demanèche, Sandrine; Benoit, Yves; Fayolle-Guichard, Françoise; Vogel, Timothy M

    2014-08-30

    The ethyl tert-butyl ether (ETBE) degradation capacity and phylogenetic composition of five aerobic enrichment cultures with ETBE as the sole carbon and energy source were studied. In all cases, ETBE was entirely degraded to biomass and CO2. Clone libraries of the 16S rRNA gene were prepared from each enrichment. The analyses of the DNA sequences obtained showed different taxonomic compositions with a majority of Proteobacteria in three cases. The two other enrichments have different microbiota with an abundance of Acidobacteria in one case, whereas the microbiota in the second was more diverse (majority of Actinobacteria, Chlorobi and Gemmatimonadetes). Actinobacteria were detected in all five enrichments. Several bacterial strains were isolated from the enrichments and five were capable of degrading ETBE and/or tert-butyl alcohol (TBA), a degradation intermediate. The five included three Rhodococcus sp. (IFP 2040, IFP 2041, IFP 2043), one Betaproteobacteria (IFP 2047) belonging to the Rubrivivax/Leptothrix/Ideonella branch, and one Pseudonocardia sp. (IFP 2050). Quantification of these five strains and two other strains, Rhodococcus sp. IFP 2042 and Bradyrhizobium sp. IFP2049, which had been previously isolated from one of the enrichments was carried out on the different enrichments based on quantitative PCR with specific 16S rRNA gene primers and the results were consistent with the hypothesized role of Actinobacteria and Betaproteobacteria in the degradation of ETBE and the possible role of Bradyrhizobium strains in the degradation of TBA.

  2. Study of an aquifer contaminated by ethyl tert-butyl ether (ETBE): site characterization and on-site bioremediation.

    PubMed

    Fayolle-Guichard, Françoise; Durand, Jonathan; Cheucle, Mathilde; Rosell, Mònica; Michelland, Rory Julien; Tracol, Jean-Philippe; Le Roux, Françoise; Grundman, Geneviève; Atteia, Olivier; Richnow, Hans H; Dumestre, Alain; Benoit, Yves

    2012-01-30

    Ethyl tert-butyl ether (ETBE) was detected at high concentration (300mgL(-1)) in the groundwater below a gas-station. No significant carbon neither hydrogen isotopic fractionation of ETBE was detected along the plume. ETBE and BTEX biodegradation capacities of the indigenous microflora Pz1-ETBE and of a culture (MC-IFP) composed of Rhodococcus wratislaviensis IFP 2016, Rhodococcus aetherivorans IFP 2017 and Aquincola tertiaricarbonis IFP 2003 showed that ETBE and BTEX degradation rates were in the same range (ETBE: 0.91 and 0.83 mg L(-1)h(-1) and BTEX: 0.64 and 0.82 mg L(-1)h(-1), respectively) but tert-butanol (TBA) accumulated transiently at a high level using Pz1-ETBE (74 mg L(-1)). An on-site pilot plant (2m(3)) filled with polluted groundwater and inoculated by MC-IFP, successfully degraded four successive additions of ETBE and gasoline. However, an insignificant ETBE isotopic fractionation was also accompanying this decrease which suggested the involvement of low fractionating-strains using EthB enzymes, but required of additional proofs. The ethB gene encoding a cytochrome P450 involved in ETBE biodegradation (present in R. aetherivorans IFP 2017) was monitored by quantitative real-time polymerase chain reaction (q-PCR) on DNA extracted from water sampled in the pilot plant which yield up to 5×10(6) copies of ethB gene per L(-1).

  3. The Epoxidation of 2,5-Di-tert-butyl-1,4-benzoquinone: A Consecutive Reaction for the Physical Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Hairfield, E. M.; And Others

    1985-01-01

    Reports a consecutive first-order reaction for which the concentrations of reactant, intermediate, and products can be determined simulataneously. This reaction is the epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone (I) by alkaline hydroperoxidation using tert-butyl hydroperoxide and benzyltrimethylammonium hydroxide (Triton B) catalyst.…

  4. Synthesis and characterization of perfluoro-tert-butyl semifluorinated amphiphilic polymers and their potential application in hydrophobic drug delivery

    PubMed Central

    Decato, Sarah; Bemis, Troy; Madsen, Eric; Mecozzi, Sandro

    2014-01-01

    Semifluorinated polymer surfactants, composed of a monomethyl poly(ethylene glycol) (mPEG) hydrophilic head group and either 1, 2, or 3 perfluoro-tert-butyl (PFtB) groups as the fluorophilic tail, were synthesized, and their aqueous self-assemblies were investigated as a potential design for theranostic nanoparticles. Polymers with three PFtB groups (PFtBTRI) solely formed stable, spherical micelles, approximately 12 nm in size. These PFtBTRI surfactants demonstrate similar characteristics with those of polymers with linear perfluorocarbon tails, despite large differences in tail structure. For example, PFtB polymer solutions stably emulsified 20 v/v% sevoflurane with perfluorooctyl bromide (PFOB) as a stabilizer. However, these PFtB polymers have the additional potential to serve as F-MRI contrast agents. PFtBTRI micelles gave one narrow 19F-NMR signal in D2O, with T1 and T2 parameters of approximately 500 and 100 ms, respectively. 19F-MR images of PFtB polymer solutions at 1 mM gave intense signal at 4.7 T without sensitizers or selective excitation sequences. These preliminary data demonstrate the potential of PFtB polymers as a basic design, which can be further modified to serve as dual drug-delivery and imaging vehicles. PMID:25383100

  5. Effects of Epigallocatechin Gallate on Tert-Butyl Hydroperoxide-Induced Mitochondrial Dysfunction in Rat Liver Mitochondria and Hepatocytes

    PubMed Central

    Endlicher, Rene; Sobotka, Ondrej; Drahota, Zdenek

    2016-01-01

    Epigallocatechin gallate (EGCG) is a green tea antioxidant with adverse effects on rat liver mitochondria and hepatocytes at high doses. Here, we assessed whether low doses of EGCG would protect these systems from damage induced by tert-butyl hydroperoxide (tBHP). Rat liver mitochondria or permeabilized rat hepatocytes were pretreated with EGCG and then exposed to tBHP. Oxygen consumption, mitochondrial membrane potential (MMP), and mitochondrial retention capacity for calcium were measured. First, 50 μM EGCG or 0.25 mM tBHP alone increased State 4 Complex I-driven respiration, thus demonstrating uncoupling effects; tBHP also inhibited State 3 ADP-stimulated respiration. Then, the coexposure to 0.25 mM tBHP and 50 μM EGCG induced a trend of further decline in the respiratory control ratio beyond that observed upon tBHP exposure alone. EGCG had no effect on MMP and no effect, in concentrations up to 50 μM, on mitochondrial calcium retention capacity. tBHP led to a decline in both MMP and mitochondrial retention capacity for calcium; these effects were not changed by pretreatment with EGCG. In addition, EGCG dose-dependently enhanced hydrogen peroxide formation in a cell- and mitochondria-free medium. Conclusion. Moderate nontoxic doses of EGCG were not able to protect rat liver mitochondria and hepatocytes from tBHP-induced mitochondrial dysfunction. PMID:28074116

  6. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide

    SciTech Connect

    Alia, Mario . E-mail: luisgoya@if.csic.es

    2006-04-15

    Flavonols such as quercetin, have been reported to exhibit a wide range of biological activities related to their antioxidant capacity. The objective of the present study was to investigate the protective effect of quercetin on cell viability and redox status of cultured HepG2 cells submitted to oxidative stress induced by tert-butyl hydroperoxide. Concentrations of reduced glutathione and malondialdehyde, generation of reactive oxygen species and activity and gene expression of antioxidant enzymes were used as markers of cellular oxidative status. Pretreatment of HepG2 with 10 {mu}M quercetin completely prevented lactate dehydrogenase leakage from the cells. Pretreatment for 2 or 20 h with all doses of quercetin (0.1-10 {mu}M) prevented the decrease of reduced glutathione and the increase of malondialdehyde evoked by tert-butyl hydroperoxide in HepG2 cells. Reactive oxygen species generation induced by tert-butyl hydroperoxide was significantly reduced when cells were pretreated for 2 or 20 h with 10 {mu}M and for 20 h with 5 {mu}M quercetin. Finally, some of the quercetin treatments prevented the significant increase of glutathione peroxidase, superoxide dismutase, glutathione reductase and catalase activities induced by tert-butyl hydroperoxide. Gene expression of antioxidant enzymes was also affected by the treatment with the polyphenol. The results of the biomarkers analyzed clearly show that treatment of HepG2 cells in culture with the natural dietary antioxidant quercetin strongly protects the cells against an oxidative insult.

  7. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide.

    PubMed

    Alía, Mario; Ramos, Sonia; Mateos, Raquel; Granado-Serrano, Ana Belén; Bravo, Laura; Goya, Luis

    2006-04-15

    Flavonols such as quercetin, have been reported to exhibit a wide range of biological activities related to their antioxidant capacity. The objective of the present study was to investigate the protective effect of quercetin on cell viability and redox status of cultured HepG2 cells submitted to oxidative stress induced by tert-butyl hydroperoxide. Concentrations of reduced glutathione and malondialdehyde, generation of reactive oxygen species and activity and gene expression of antioxidant enzymes were used as markers of cellular oxidative status. Pretreatment of HepG2 with 10 microM quercetin completely prevented lactate dehydrogenase leakage from the cells. Pretreatment for 2 or 20 h with all doses of quercetin (0.1-10 microM) prevented the decrease of reduced glutathione and the increase of malondialdehyde evoked by tert-butyl hydroperoxide in HepG2 cells. Reactive oxygen species generation induced by tert-butyl hydroperoxide was significantly reduced when cells were pretreated for 2 or 20 h with 10 microM and for 20 h with 5 microM quercetin. Finally, some of the quercetin treatments prevented the significant increase of glutathione peroxidase, superoxide dismutase, glutathione reductase and catalase activities induced by tert-butyl hydroperoxide. Gene expression of antioxidant enzymes was also affected by the treatment with the polyphenol. The results of the biomarkers analyzed clearly show that treatment of HepG2 cells in culture with the natural dietary antioxidant quercetin strongly protects the cells against an oxidative insult.

  8. Design and Control of Glycerol-tert-Butyl Alcohol Etherification Process

    PubMed Central

    Vlad, Elena; Bozga, Grigore

    2012-01-01

    Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA) etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics. PMID:23365512

  9. Photoelectric conversion and electrochromic properties of lutetium tetrakis(tert-butyl)bisphthalocyaninate

    SciTech Connect

    Hu, Andrew Teh; Hu Tenyi; Liu Lungchang

    2003-12-10

    Both photoelectric and electrochromic effects on lutetium tetrakis(tert-butyl)bisphthalocyaninate (Lu(TBPc){sub 2}) have been carried out in this study. Lu(TBPc){sub 2} is known for its electrochromic performance, but its photoelectric effect has not mentioned in the literature. The electrochromic properties of Lu(TBPc){sub 2} have been measured by cyclic voltammetry (CV) and UV-Vis spectrometer at the same time. It takes less than 1.5 s for the color to change from red to green under 0.9 V. Its cycle life is at least over 500 times. Furthermore, we also investigate its photoelectric conversion properties. Its photoelectric cell exhibits a positive photo-electricity conversion effect with a short-circuit photocurrent (46.4 {mu}A/cm{sup 2}) under illumination of white light (1.201 mW/cm{sup 2})

  10. Design and control of glycerol-tert-butyl alcohol etherification process.

    PubMed

    Vlad, Elena; Bildea, Costin Sorin; Bozga, Grigore

    2012-01-01

    Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA) etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics.

  11. Modulatory effect of methanolic extract of Vernonia amygdalina (MEVA) on tert-butyl hydroperoxide-induced erythrocyte haemolysis.

    PubMed

    Adesanoye, Omolola A; Molehin, Olorunfemi R; Delima, Adetutu A; Adefegha, Adeniyi S; Farombi, Ebenezer O

    2013-10-01

    Reactive oxygen species (ROS) have been implicated in the aetiology of several pathological and degenerative diseases. The protective effect of natural products possessing antioxidant properties has played a crucial role in ameliorating these deleterious effects. This study investigated the chemoprotective properties of the methanolic extract of Vernonia amygdalina (MEVA) in an experimental model of tert-butyl hydroperoxide (t-BHP)-induced human erythrocyte lysis in vitro. Haemolysis was induced by incubating erythrocytes with t-BHP (2 and 3 mM) in vitro. Samples of erythrocyte suspensions were removed at different intervals over a 6-h period, and the degree of haemolysis was measured. The anti-haemolytic effect of MEVA at 25-150 µg ml(-1) concentrations on the samples were assessed and compared with Triton X-100. Administration of t-BHP at 2- and 3-mM concentrations significantly (p < 0.05) induced erythrocyte lysis by 37.5% and 31.4%, respectively. The addition of MEVA, however, reduced t-BHP-induced erythrocyte lysis significantly (p < 0.05) by 39.3%, 48.4%, 67.3% and 73.4% at 25, 50, 100 and 150 µg ml(-1) concentrations, respectively. MEVA likewise protected against t-BHP-induced lipid peroxidation significantly (p < 0.05) at 100 and 150 µg ml(-1) by the fourth hour and non-significantly (p > 0.05) at all concentrations by the sixth hour. The reduced glutathione level was, however, increased with the administration of t-BHP, while a delayed addition of MEVA had no protective effect on the t-BHP-induced cell lysis. These findings therefore suggest that MEVA may have protective antioxidant properties, making it suitable for incorporation into food and drug products.

  12. Solid phase microextraction procedure for the determination of alkylphenols in water by on-fiber derivatization with N-tert-butyl-dimethylsilyl-N-methyltrifluoroacetamide.

    PubMed

    Pan, Yi-Ping; Tsai, Shih-Wei

    2008-08-29

    The solid phase microextraction (SPME) technique with on-fiber derivatization was evaluated for the analysis of alkylphenols (APs), including 4-tert-octylphenol (4-t-OP), technical nonylphenol isomers (t-NPs) and 4-nonylphenol (4-NP), in water. The 85 microm polyacrylate (PA) fiber was used and a two-step sample preparation procedure was established. In the first step, water sample of 2 mL was placed in a 4 mL PTFE-capped glass vial. Headspace extraction of APs in water was then performed under 65 degrees C for 30 min with 800 rpm magnetic stirring and the addition of 5% of sodium chloride. In the second step, the SPME fiber was placed in another 4 mL vial, which contained 100 microL of N-tert-butyl-dimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) with 1% tert-butyl-dimethylchlorosilane (TBDMCS). Headspace extraction of MTBSTFA and on-fiber derivatization with APs were performed at 45 degrees C for 10 min. Gas chromatography/mass spectrometry (GC/MS) was used for the analysis of derivatives formed on-fiber. The adsorption-time profiles were also examined. The precision, accuracy and method detection limits (MDLs) for the analysis of all the APs were evaluated with spiked water samples, including detergent water, chlorinated tap water, and lake water. The relative standard deviations were all less than 10% and the accuracies were 100+/-15%. With 2 mL of water sample, MDLs were in the range of 1.58-3.85 ng L(-1). Compared with other techniques, the study described here provided a simple, fast and reliable method for the analysis of APs in water.

  13. Detection of alkylperoxo and ferryl, (Fe sup IV = O) sup 2+ , intermediates during the reaction of tert-butyl hydroperoxide with iron porphyrins in toluene solution

    SciTech Connect

    Arasasingham, R.D.; Cornman, C.R.; Balch, A.L. )

    1989-11-27

    PFe{sup II} and PFe{sup III}OH (P is a porphyrin dianion) catalyze the decomposition of tert-butyl hydroperoxide in toluene solution without appreciable attack on the porphyrin ligand. {sup 1}H NMR spectroscopic studies at low temperature ({minus}70{degree}C) give evidence for the formation of a high-spin, five-coordinate intermediate, PFe{sup III}OOC(CH{sub 3}){sub 3}. Organic products formed from this reaction are tert-butyl alcohol, di-tert-butyl peroxide, benzaldehyde, acetone, and benzyl-tert-butyl peroxide, which arise largely from a radical chain process initiated by the iron porphyrin but continuing without its intervention.

  14. Correlation of the rates of solvolysis of tert-butyl chlorothioformate and observations concerning the reaction mechanism

    PubMed Central

    Kyong, Jin Burm; Lee, Yelin; D’Souza, Malcolm John; Kevill, Dennis Neil; Kevill, Dennis Neil

    2012-01-01

    The “parent” tertiary alkyl chloroformate, tert-butyl chloroformate, is unstable, but the tert-butyl chlorothioformate (1) is of increased stability and a kinetic investigation of the solvolyses is presented. Analyses in terms of the simple and extended Grunwald-Winstein equations are carried out. The original one-term equation satisfactorily correlates the data with a sensitivity towards changes in solvent ionizing power of 0.73 ±0.03. When the two-term equation is applied, the sensitivity towards changes in solvent nucleophilicity of 0.13 ± 0.09 is associated with a high (0.17) probability that the term that it governs is not statistically significant. PMID:23538747

  15. A high performance membrane for sorption and pervaporation separation of ethyl tert-butyl ether and ethanol mixtures

    SciTech Connect

    Luo, G.S.; Niang, M.; Schaetzel, P.

    1999-02-01

    A new kind of membrane was prepared by blending 5 wt% poly(1-vinylpyrrolidone-co-acrylic acid) with cellulose acetate propionate for the separation of ethyl tert-butyl ether and ethanol mixtures. The membrane properties were evaluated by pervaporation and sorption of mixtures of ethyl tert-butyl ether/ethanol. The experimental results show that the selectivity and the fluxes of this membrane depend upon the feed composition and upon the temperature. The minimum values of ethanol concentration in the permeate and in the sorption solution were obtained in the vicinity of the azeotropic point. Compared with the pure CAP membrane, the new membrane shows high performance for the separation of ETBE and EtOH mixtures, especially under high temperature conditions.

  16. (2,2′-Bipyridine-κ2 N,N′)[2-tert-butyl­anilinato(2−)]dichloridooxido­molybdenum(VI) dichloro­methane hemisolvate

    PubMed Central

    Nielson, Alastair J.; Waters, Joyce M.

    2010-01-01

    The MoVI atom in the title structure, [Mo(C10H13N)Cl2O(C10H8N2)]·0.5CH2Cl2, has a distorted octa­hedral coord­ination sphere with cis-orientated oxide and imide ligands, trans-chloride ligands and the 2,2′-bipyridine (bipy) ligand N atoms lying trans to the oxide and imide ligands. An imide-ligand tert-butyl-methyl-group H atom makes a close approach with the oxide ligand (distance = 2.53 Å) and the imide-ligand N atom (distance = 2.41 Å). Another imide-ligand tert-butyl-methyl-group H atom makes a close approach to a chloride ligand (distance = 2.82 Å). One bipy-ligand α-H atom makes a close approach to the oxide ligand (distance = 2.4 Å) and the other α-H atom makes a close approach to the imide-ligand phenyl-ring ortho-H atom (distance = 2.52 Å). These close approaches suggest the presence of weak intra­molecular hydrogen bonds. The solvent molecule has been modelled under consideration of half-occupancy. PMID:21589323

  17. Features of the spectral dependences of transmittance of organic semiconductors based on tert-butyl substituted lutetium phthalocyanine molecules

    SciTech Connect

    Belogorokhov, I. A.; Tikhonov, E. V.; Dronov, M. A.; Belogorokhova, L. I.; Ryabchikov, Yu. V.; Tomilova, L. G.; Khokhlov, D. R.

    2011-11-15

    Vibronic properties of organic semiconductors based on tert-butyl substituted phthalocyanine lutetium diphthalocyanine molecules are studied by IR and Raman spectroscopy. It is shown that substitution of several carbon atoms in initial phthalocyanine (Pc) ligands with {sup 13}C isotope atoms causes a spectral shift in the main absorption lines attributed to benzene, isoindol, and peripheral C-H groups. A comparison of spectral characteristics showed that the shift can vary from 3 to 1 cm{sup -1}.

  18. (RSS)-[N-Hydroxyethyloxy]-hexafluoroVal-MeLeu-Ala tert-butyl ester.

    PubMed

    Eberle, Marcel K; Stoeckli-Evans, Helen; Keese, Reinhart

    2009-10-28

    THE TITLE COMPOUND [SYSTEMATIC NAME: (2S,5S,8R)-tert-butyl 8-(1,1,1,3,3,3-hexafluoropropan-2-yl)-12-hydroxy-5-isobutyl-2,6-dimethyl-4,7-dioxo-10-oxa-3,6,9-triazadodecanoate], C(21)H(36)F(6)N(3)O(6), is a tripeptide crystallizing in the chiral ortho-rhom-bic spacegroup P2(1)2(1)2(1). The absolute configuration (R) of the chiral center in the hexa-fluoro-valine unit is based on the known stereochemistry of MeLeu and Ala (SS). The N-hydroxy-ethyl-oxy substituent of hexa-fluoro-valine is positionally disordered [occupancy ratio 0.543 (9):0.457 (9)]. In the solid state structure there are N-H⋯F and N-H⋯O intra-molecular hydrogen bonds supporting the coiled structure of this tripeptide with the three hydro-phobic substituents on the outside.

  19. Phenyl 3,5-di-tert-butyl-2-hy­droxy­benzoate

    PubMed Central

    Carreño, Alexander; Preite, Marcelo; Manriquez, Juan Manuel; Vega, Andrés; Chavez, Ivonne

    2010-01-01

    The title mol­ecule, C21H26O3, has a six-membered planar carbon ring as the central core, substituted at position 1 with phen­oxy­carbonyl, at position 2 with hy­droxy and at positions 3 and 5 with tert-butyl groups. The structure shows two independent but very similar mol­ecules within the asymmetric unit. For both independent mol­ecules, the ester carboxyl­ate group is coplanar with the central core, as reflected by the small C—C—O—C torsion angles [179.95 (17) and 173.70 (17)°]. In contrast, the phenyl substituent is almost perpendicular to the carboxyl­ate –CO2 fragment, as reflected by C—O—C—C torsion angles, ranging from 74 to 80°. The coplanarity between the central aromatic ring and the ester carboxyl­ate –CO2– group allows the formation of an intra­molecular hydrogen bond, with O⋯O distances of 2.563 (2) and 2.604 (2) Å. PMID:21589569

  20. IRIS Toxicological Review of Tert-Butyl Alcohol (Tert-Butanol) ...

    EPA Pesticide Factsheets

    On April 29, 2016, the Toxicological Review of tert-Butyl Alcohol (tert-Butanol) (Public Comment Draft) was released for public comment. The draft Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and the Executive Office of the President during Step 3 (Interagency Science Consultation) before public release. As part of the IRIS process, all written interagency comments on IRIS assessments will be made publicly available. Accordingly, interagency comments with EPA's response and the interagency science consultation drafts of the IRIS Toxicological Review of tert-Butanol and charge to external peer reviewers are posted on this site. EPA is undertaking a new health assessment for t-butyl alcohol (tert-butanol) for the Integrated Risk Information System (IRIS). The outcome of this project will be a Toxicological Review and IRIS and IRIS Summary of TBA that will be entered on the IRIS database. IRIS is an EPA database containing Agency scientific positions on potential adverse human health effects that may result from chronic (or lifetime) exposure to chemicals in the environment. IRIS contains chemical-specific summaries of qualitative and quantitative health information to evaluate potential public health risks associated with environmental contaminants. The IRIS database is relied on for the development of risk assessments, site-specific environmental decisions, and rule making.

  1. Hydrophobic Hydration in Water-tert-Butyl Alcohol Solutions by Extended Depolarized Light Scattering.

    PubMed

    Comez, L; Paolantoni, M; Lupi, L; Sassi, P; Corezzi, S; Morresi, A; Fioretto, D

    2015-07-23

    Molecular dynamics and structural properties of water-tert-butyl alcohol (TBA) mixtures are studied as a function of concentration by extended depolarized light scattering (EDLS) experiments. The wide frequency range, going from fraction to several thousand GHz, explored by EDLS allows distinguishing TBA rotational dynamics from structural relaxation of water and intermolecular vibrational and librational modes of the solution. Contributions to the water relaxation originating from two distinct populations, i.e. hydration and bulk water, are clearly identified. The dynamic retardation factor of hydration water with respect to the bulk, ξ ≈ 4, almost concentration independent, is one of the smallest found by EDLS among a variety of systems of different nature and complexity. This result, together with the small number of water molecules perturbed by the presence of TBA, supports the idea that hydrophobic simple molecules are less effective than hydrophilic and more complex molecules in perturbing the H-bond network of liquid water. At increasing TBA concentrations the average number of perturbed water molecules shows a pronounced decrease and the characteristic frequency of librational motions reduces significantly, both of which are results consistent with the occurrence of self-aggregation of TBA molecules.

  2. Molecular structure and spectral investigations of 3,5-Di-tert-butyl-o-benzoquinone

    NASA Astrophysics Data System (ADS)

    Yilmaz, M.; Aydin, B.; Dogan, O.; Dereli, O.

    2017-01-01

    Conformational analysis of 3,5-Di-tert-butyl-o-benzoquinone molecule was performed and two stable conformers were determined by B3LYP/6-311++G(d,p). Using the most stable one, molecular structural parameters, vibrational frequencies were calculated by B3LYP/6-311++G(d,p), B3LYP/6-31G(d) and BLYP/6-31G(d,p) levels of theory. The FT-IR spectrum of the compound was recorded in the region 4000-550 cm-1. The Raman spectrum was also recorded in the region 3500-100 cm-1. Calculated results were compared with experimental counterparts. The best results were obtained from B3LYP/6-311++G(d,p) calculations. Experimental 13C and 1H NMR data of tittle compound were taken from literature and the calculated results compared with these data. Vibrational and NMR band assignments were performed. HOMO-LUMO energies, molecular electrostatic potentials and thermodynamic properties were also given for further investigations of our structure.

  3. Predicted and experimental crystal structures of ethyl-tert-butyl ether.

    PubMed

    Hammer, Sonja M; Alig, Edith; Fink, Lothar; Schmidt, Martin U

    2011-04-01

    Possible crystal structures of ethyl-tert-butyl ether (ETBE) were predicted by global lattice-energy minimizations using the force-field approach. 33 structures were found within an energy range of 2 kJmol(-1) above the global minimum. Low-temperature crystallization experiments were carried out at 80-160 K. The crystal structure was determined from X-ray powder data. ETBE crystallizes in C2/m, Z = 4, with molecules on mirror planes. The ETBE molecule adopts a trans conformation with a (CH(3))(3)C-O-C-C torsion angle of 180°. The experimental structure corresponds with high accuracy to the predicted structure with energy rank 2, which has an energy of 0.54 kJmol(-1) above the global minimum and is the most dense low-energy structure. In some crystallization experiments a second polymorph was observed, but the quality of the powder data did not allow the determination of the crystal structure. Possibilities and limitations are discussed for solving crystal structures from powder diffraction data by real-space methods and lattice-energy minimizations.

  4. Evaluation of hepatotoxicity and oxidative stress in rats treated with tert-butyl hydroperoxide.

    PubMed

    Oh, Jung Min; Jung, Young Suk; Jeon, Byung Suk; Yoon, Byung Il; Lee, Kye Sook; Kim, Bong Hee; Oh, Soo Jin; Kim, Sang Kyum

    2012-05-01

    Although tert-butyl hydroperoxide (t-BHP) is commonly used to induce oxidative stress, little is known about the time- or dose-dependence of its oxidative effects. In this study, we examined hepatotoxicity and oxidative stress in male rats at various times (0-24 h) after t-BHP (0, 0.2, 0.5, 1 or 3 mmol/kg, ip) treatment. Serum hepatotoxicity parameters were increased from 2 h following 1 mmol/kg t-BHP and reached their maximum values at 8 h. Plasma malondialdehyde levels were maximally elevated by 62% at 0.5 h and returned to control levels by 4 h. Hepatic glutathione levels were decreased between 0.5 and 2 h, and hepatic glutathione disulfide levels were increased at 2h. Interestingly, hepatic glutathione levels were increased at 24 h, which may be attributed to up-regulation of glutathione synthesis through induction of gamma-glutamylcysteine ligase expression. The elevation of hepatotoxic parameters and plasma MDA was observed from 0.5 to 1 mmol/kg t-BHP, respectively, in a dose-dependent manner. Considering that the maximal dose resulted in 20% lethality, 1 mmol/kg of t-BHP may be suitable for evaluating antioxidant activity of tested compounds. Our results provide essential information to characterize the t-BHP-induced oxidative stress and hepatotoxicity.

  5. Infrared vibrational spectra of tert-butyl halides in dehydrated sodium-X and low-aluminum hydrogen-Y faujasites; vibrational excitation exchange and other effects of guest-host interactions

    NASA Astrophysics Data System (ADS)

    Fox, Jack David

    Experimental, analytical and modeling techniques employed in this study elucidate interactions between adsorbate molecules and the interior surfaces of the porous faujasites (FAU). The vibrational spectroscopy of guest and host offers opportunities to locate the guest site in the host that can otherwise be approached only with low-temperature x-ray and neutron diffraction studies. Fourier transform infrared (FTIR) studies at 295 K of sodium X-type FAU (Na-X, Si/Al = 1.34, NaxSi(192-x)AlxO384) and low-aluminum acidic Y-type FAU (LAHY, Si/Al = 40, HxSi (192-x)AlxO384) supercage-included tert -butyl halides (CH3)3C-X (X = Cl, Br, I) are presented in comparison with the adsorbate molecular gas-phase and unloaded host solid-state spectra. For both FAU formula x = 1921+Si/Al . In the Na-X studies, four observations of tert-butyl halide (TBH) vibrational band changes (nu5, nu6, nu 7, and {nu3, nu16, nu17}, three of them concomitant with Na-X mode changes, together with computational modeling studies, point to a particular preferred siting of TBH at host hexagonal prisms (D6R). The siting involves simultaneous interactions of the host with methyl group axial protons and the halide atom. All three methyl group axial protons interact preferentially with a single D6R oxygen atom (type O1) via C-H···O bonding. The TBH halide atom interacts with a site III' Na cation. In addition, an exchange of quanta of vibrational excitation between TBH C-X stretching/CH 3 rocking skeletal mode nu5 and the Na-X Si-O-Si antisymmetric stretching band is observed. Analysis of the coalesced band is consistent with an interaction model involving one guest and one host mode. In the isostructural LAHY material, where cation-guest interactions are effectively absent, the weaker interactions of TBH with LAHY framework oxygen atoms are manifest in additional propensity toward the exchange of vibrational excitation quanta between both guest and host modes, and between two guest modes. In contrast to

  6. Structure of the mercury(II) mixed-halide (Br/Cl) complex of 2,2'-(5-tert-butyl-1,3-phenyl-ene)bis-(1-pentyl-1H-benzo[d]imidazole).

    PubMed

    Rani, Varsha; Singh, Harkesh B; Butcher, Ray J

    2017-03-01

    The mercury(II) complex of 2,2'-(5-tert-butyl-1,3-phenyl-ene)bis-(1-pentyl-1H-benz-imidazole), namely catena-poly[[dihalogenido-mercury(II)]-μ-2,2'-(5-tert-butyl-1,3-phenyl-ene)bis-(1-pentyl-1H-benzimidazole)-κ(2)N(3):N(3')], [HgBr1.52Cl0.48(C34H42N4)], 2, has a polymeric structure bridging via the N atoms from the benzimidazole moieties of the ligand. The compound crystallizes in the ortho-rhom-bic space group Pca21 and is a racemic twin [BASF = 0.402 (9)]. The geometry around the Hg(II) atom is distorted tetra-hedral, with the Hg(II) atom coordinated to two N atoms, one Br atom, and a fourth coordination site is occupied by a mixed halide (Br/Cl). For the two ligands in the asymmetric unit, there is disorder with one of the two tert-butyl groups and benzimidazole moieties showing twofold disorder, with occupancy factors of 0.57 (2):0.43 (2) for the tert-butyl group and 0.73 (3):0.27 (3) for the benzimidazole group. In addition, there is threefold disorder for two of the four n-pentyl groups, with occupancy factors of 0.669 (4):0.177 (4):0.154 (4) and 0.662 (4):0.224 (4):0.154 (4), respectively. The mol-ecules form a one-dimensional helical polymer propagating in the b-axis direction. The helices are held together by intra-strand C-H⋯Br and C-H⋯Cl inter-actions. Each strand is further linked by inter-strand C-H⋯Br and C-H⋯Cl inter-actions. In addition, there are weak C-H⋯N inter-strand inter-actions which further stabilize the structural arrangement.

  7. Structure of the mercury(II) mixed-halide (Br/Cl) complex of 2,2′-(5-tert-butyl-1,3-phenyl­ene)bis­(1-pentyl-1H-benzo[d]imidazole)

    PubMed Central

    Rani, Varsha; Singh, Harkesh B.

    2017-01-01

    The mercury(II) complex of 2,2′-(5-tert-butyl-1,3-phenyl­ene)bis­(1-pentyl-1H-benz­imidazole), namely catena-poly[[dihalogenido­mercury(II)]-μ-2,2′-(5-tert-butyl-1,3-phenyl­ene)bis­(1-pentyl-1H-benzimidazole)-κ2 N 3:N 3′], [HgBr1.52Cl0.48(C34H42N4)], 2, has a polymeric structure bridging via the N atoms from the benzimidazole moieties of the ligand. The compound crystallizes in the ortho­rhom­bic space group Pca21 and is a racemic twin [BASF = 0.402 (9)]. The geometry around the HgII atom is distorted tetra­hedral, with the HgII atom coordinated to two N atoms, one Br atom, and a fourth coordination site is occupied by a mixed halide (Br/Cl). For the two ligands in the asymmetric unit, there is disorder with one of the two tert-butyl groups and benzimidazole moieties showing twofold disorder, with occupancy factors of 0.57 (2):0.43 (2) for the tert-butyl group and 0.73 (3):0.27 (3) for the benzimidazole group. In addition, there is threefold disorder for two of the four n-pentyl groups, with occupancy factors of 0.669 (4):0.177 (4):0.154 (4) and 0.662 (4):0.224 (4):0.154 (4), respectively. The mol­ecules form a one-dimensional helical polymer propagating in the b-axis direction. The helices are held together by intra-strand C—H⋯Br and C—H⋯Cl inter­actions. Each strand is further linked by inter-strand C—H⋯Br and C—H⋯Cl inter­actions. In addition, there are weak C—H⋯N inter-strand inter­actions which further stabilize the structural arrangement. PMID:28316824

  8. Apoptotic death in erythrocytes of lamprey Lampetra fluviatilis induced by ionomycin and tert-butyl hydroperoxide.

    PubMed

    Agalakova, Natalia I; Ivanova, Tatiana I; Gusev, Gennadii P; Nazarenkova, Anna V; Sufiyeva, Dina A

    2017-04-01

    The work examined the effects of Ca(2+) overload and oxidative damage on erythrocytes of river lamprey Lampetra fluvialtilis. The cells were incubated for 3h with 0.1-5μM Ca(2+) ionophore ionomycin in combination with 2.5mM Ca(2+) and 10-100μM pro-oxidant agent tert-butyl hydroperoxide (tBHP). The sensitivity of lamprey RBCs to studied compounds was evaluated by the kinetics of their death. Both toxicants induced dose- and time dependent phosphatidylserine (PS) externalization (annexin V-FITC labeling) and loss of membrane integrity (propidium iodide uptake). Highest doses of ionomycin (1-2μM) increased the number of PS-exposed erythrocytes to 7-9% within 3h, while 100μM tBHP produced up to 50% of annexin V-FITC-positive cells. Caspase inhibitor Boc-D-FMK (50μM), calpain inhibitor PD150606 (10μM) and broad protease inhibitor leupeptin (200μM) did not prevent ionomycin-induced PS externalization, whereas tBHP-triggered apoptosis was blunted by Boc-D-FMK. tBHP-dependent death of lamprey erythrocytes was accompanied by the decrease in relative cell size, loss of cell viability, activation of caspases 9 and 3/7, and loss of mitochondrial membrane potential, but all these processes were partially attenuated by Boc-D-FMK. None of examined death-associated events were observed in ionomycin-treated erythrocytes except activation of caspase-9. Incubation with ionomycin did not alter intracellular K(+) and Na(+) content, while exposure to tBHP resulted in 80% loss of K(+) and 2.8-fold accumulation of Na(+). Thus, lamprey erythrocytes appear to be more susceptible to oxidative damage. Ca(2+) overload does not activate the cytosolic death pathways in these cells.

  9. tert-Butyl hydroperoxide oxygenation of organic sulfides catalyzed by diruthenium(II,III) tetracarboxylates.

    PubMed

    Villalobos, Leslie; Barker Paredes, Julia E; Cao, Zhi; Ren, Tong

    2013-11-04

    Diruthenium(II,III) carboxylates Ru2(esp)2Cl (1a), [Ru2(esp)2(H2O)2]BF4 (1b), and Ru2(OAc)4Cl (2) efficiently catalyze the oxygenation of organic sulfides. As noted in a previous work, 1a is active in oxygenation of organic sulfides with tert-butyl hydroperoxide (TBHP) in CH3CN. Reported herein in detail is the oxygenation activity of 1a, 1b, and 2, with the latter being highly selective in oxo-transfer to organic sulfides using TBHP under ambient conditions. Solvent-free oxidation reactions were achieved through dissolving 1a or 1b directly into the substrate with 2 equiv of TBHP, yielding TOF up to 2056 h(-1) with 1b. Also examined are the rate dependence on both catalyst and oxidant concentration for reactions with catalysts 1a and 2. Ru2(OAc)4Cl may be kinetically saturated with TBHP; however, Ru2(esp)2Cl does not display saturation kinetics. By use of a series of para-substituted thioanisoles, linear free-energy relationships were established for both 1a and 2, where the reactivity constants (ρ) are negative and that of 1a is about half that of 2. Given these reactivity data, two plausible reaction pathways were suggested. Density functional theory (DFT) calculation for the model compound Ru2(OAc)4Cl·TBHP, with TBHP on the open axial site, revealed elongation of the O-O bond of TBHP upon coordination.

  10. Crystal structure of trans-N,N′-bis­(3,5-di-tert-butyl-2-hy­droxy­phen­yl)oxamide methanol monosolvate

    PubMed Central

    Velázquez-Carmona, Miguel-Ángel; Bernès, Sylvain; Ríos-Merino, Francisco Javier; Reyes Ortega, Yasmi

    2016-01-01

    The here crystallized oxamide was previously characterized as an unsolvated species [Jímenez-Pérez et al. (2000 ▸). J. Organomet. Chem. 614–615, 283–293], and is now reported with methanol as a solvent of crystallization, C30H44N2O4·CH3OH, in a different space group. The introduction of the solvent influences neither the mol­ecular symmetry of the oxamide, which remains centrosymmetric, nor the mol­ecular conformation. However, the unsolvated mol­ecule crystallized as an ordered system, while many parts of the solvated crystal are disordered. The hy­droxy group in the oxamide is disordered over two chemically equivalent positions, with occupancies 0.696 (4):0.304 (4); one tert-butyl group is disordered by rotation about the C—C bond, and was modelled with three sites for each methyl group, each one with occupancy 1/3. Finally, the methanol solvent, which lies on a twofold axis, is disordered by symmetry. The disorder affecting hy­droxy groups and the solvent of crystallization allows the formation of numerous supra­molecular motifs using four hydrogen bonds, with N—H and O—H groups as donors and the oxamide and methanol mol­ecule as acceptors. PMID:27555931

  11. IRIS Toxicological Review and Summary Documents for Methyl Tert-Butyl Ether (MTBE)

    EPA Science Inventory

    MTBE is a volatile organic chemical used to oxygenate gasoline. Oxygenated gasoline improves the exhaust emissions from gasoline engines. Since 1992 it has been used to comply with the Federal Reformulated Gasoline (begun in 1995) and Wintertime Oxygenated Fuel (begun in 1992) p...

  12. TRANSPORT OF METHYL TERT-BUTYL ETHER THROUGH ALFALFA PLANTS. (R825549C062)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Diode laser probes of tert-butyl radical reaction kinetics: Reaction of C(CH sub 3 ) sub 3 with HBr, DBr, and HI

    SciTech Connect

    Richards, P.D.; Ryther, R.J.; Weitz, E. )

    1990-05-03

    The rate constants for reaction of tert-butyl radical with HBr, DBr, and HI have been measured by use of a tunable infrared diode laser probe. The measured rate constants at room temperature are 1.0 {times} 10{sup {minus}11}, 8 {times} 10{sup {minus}12}, and 2.5 {times} 10{sup {minus}11} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}, respectively. The reaction with HI exhibits a negative activation energy of 1.5 kcal mol{sup {minus}1}. The reaction rates of HBr and DBr with tert-butyl radical at elevated temperatures are also slower than the corresponding rates at room temperature. The rate constant for reaction of tert-butyl radicals with HBr is in excellent agreement with the faster of the two conflicting previously reported measurements for the tert-butyl-HBr system. From this study the heat of formation of the tert-butyl radical has been calculated to be 11.5 {plus minus} 0.8 kcal mol{sup {minus}1}.

  14. Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2).

    PubMed

    Alía, Mario; Ramos, Sonia; Mateos, Raquel; Bravo, Laura; Goya, Luis

    2005-01-01

    The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2.

  15. Extraction-spectrophotometric determination of boron with 4,6-Di-tert-butyl-3-methoxycatechol and ethyl violet.

    PubMed

    Oshima, M; Shibata, K; Gyouten, T; Motomizu, S; Tôei, K

    1988-05-01

    4,6-Di-tert-butyl-3-methoxycatechol (DBMC) has been developed as a new reagent for boron, the complex anion formed being extracted as an ion-associate with Ethyl Violet into toluene, and the absorbance measured at 610 nm. The calibration graph is linear up to 0.43 mug of boron, the molar absorptivity is 1.02 x 10(5) 1.mole(-1).cm(-1) and the relative standard deviation 1.2%. The method has been applied to the determination of boron in sea-water and river water with satisfactory results.

  16. Ion kinetic energy distributions and cross sections for the electron impact ionization of ethyl tert-butyl ether

    NASA Astrophysics Data System (ADS)

    Di Palma, T. M.; Apicella, B.; Armenante, M.; Velotta, R.; Wang, X.; Spinelli, N.

    2005-11-01

    The kinetic energy distributions and the cross sections of the ions produced in the electron impact of ethyl tert-butyl ether (ETBE) have been studied by time of flight (TOF) mass spectrometry. The kinetic energy distributions have been deduced from the TOF peak shape analysis and a Montecarlo simulation method of the ion trajectories has been used to evaluate the collection efficiency of the spectrometer as a function of the ion initial kinetic energy. The measured ion yields have been corrected for the collection efficiency and the partial and total ionization cross sections of ETBE determined in the range 20-150 eV.

  17. Electrochemical nucleophilic synthesis of di-tert-butyl-(4-[18F]fluoro-1,2-phenylene)-dicarbonate.

    PubMed

    He, Qinggang; Wang, Ying; Alfeazi, Ines; Sadeghi, Saman

    2014-09-01

    An electrochemical method with the ability to conduct (18)F-fluorination of aromatic molecules through direct nucleophilic fluorination of cationic intermediates is presented in this paper. The reaction was performed on a remote-controlled automatic platform. Nucleophilic electrochemical fluorination of tert-butyloxycarbonyl (Boc) protected catechol, an intermediate model molecule for the positron emission tomography (PET) probe (3,4-dihydroxy-6-[(18)F]fluoro-L-phenylalanine), was performed. Fluorination was achieved under potentiostatic anodic oxidation in acetonitrile containing Et3N·3HF and other supporting electrolytes. Radiofluorination efficiency was influenced by a number of variables, including the concentration of the precursor, concentration of Et3N·3HF, type of supporting electrolyte, temperature and time, as well as applied potentials. Radio-fluorination efficiency of 10.4±0.6% (n=4) and specific activity of up to 43GBq/mmol was obtained after 1h electrolysis of 0.1M of 4-tert-butyl-diboc-catechol in the acetonitrile solution of Et3N·3HF (0.033M) and NBu4PF6 (0.05M). Density functional theory (DFT) was employed to explain the tert-butyl functional group facilitation of electrochemical oxidation and subsequent fluorination.

  18. Sensitivity of photoelectron diffraction to conformational changes of adsorbed molecules: Tetra-tert-butyl-azobenzene/Au(111)

    PubMed Central

    Schuler, A.; Greif, M.; Seitsonen, A. P.; Mette, G.; Castiglioni, L.; Osterwalder, J.; Hengsberger, M.

    2017-01-01

    Electron diffraction is a standard tool to investigate the atomic structure of surfaces, interfaces, and adsorbate systems. In particular, photoelectron diffraction is a promising candidate for real-time studies of structural dynamics combining the ultimate time resolution of optical pulses and the high scattering cross-sections for electrons. In view of future time-resolved experiments from molecular layers, we studied the sensitivity of photoelectron diffraction to conformational changes of only a small fraction of molecules in a monolayer adsorbed on a metallic substrate. 3,3′,5,5′-tetra-tert-butyl-azobenzene served as test case. This molecule can be switched between two isomers, trans and cis, by absorption of ultraviolet light. X-ray photoelectron diffraction patterns were recorded from tetra-tert-butyl-azobenzene/Au(111) in thermal equilibrium at room temperature and compared to patterns taken in the photostationary state obtained by exposing the surface to radiation from a high-intensity helium discharge lamp. Difference patterns were simulated by means of multiple-scattering calculations, which allowed us to determine the fraction of molecules that underwent isomerization. PMID:28217715

  19. Sensitivity of photoelectron diffraction to conformational changes of adsorbed molecules: Tetra-tert-butyl-azobenzene/Au(111).

    PubMed

    Schuler, A; Greif, M; Seitsonen, A P; Mette, G; Castiglioni, L; Osterwalder, J; Hengsberger, M

    2017-01-01

    Electron diffraction is a standard tool to investigate the atomic structure of surfaces, interfaces, and adsorbate systems. In particular, photoelectron diffraction is a promising candidate for real-time studies of structural dynamics combining the ultimate time resolution of optical pulses and the high scattering cross-sections for electrons. In view of future time-resolved experiments from molecular layers, we studied the sensitivity of photoelectron diffraction to conformational changes of only a small fraction of molecules in a monolayer adsorbed on a metallic substrate. 3,3',5,5'-tetra-tert-butyl-azobenzene served as test case. This molecule can be switched between two isomers, trans and cis, by absorption of ultraviolet light. X-ray photoelectron diffraction patterns were recorded from tetra-tert-butyl-azobenzene/Au(111) in thermal equilibrium at room temperature and compared to patterns taken in the photostationary state obtained by exposing the surface to radiation from a high-intensity helium discharge lamp. Difference patterns were simulated by means of multiple-scattering calculations, which allowed us to determine the fraction of molecules that underwent isomerization.

  20. Development of cellulose acetate propionate membrane for separation of ethanol and ethyl tert-butyl ether mixtures

    SciTech Connect

    Luo, G.S.; Niang, M.; Schaetzel, P.

    1997-04-01

    For pervaporation separation of ethanol and ethyl tert-butyl ether mixtures, a cellulose acetate propionate membrane was chosen as the experimental membrane because of its high selectivity and good mass fluxes. The properties of the membranes were evaluated by the pervaporation separation of mixtures of ethyl tert-butyl ether/ethanol and the sorption experiments. The experimental results showed that the selectivity and the permeates depend on the ethanol concentration in the feed and the experimental temperature. With increases of the ethanol weight fraction in the feed and the temperature, the total and partial mass fluxes increased. With respect to the temperature, ethanol mass flux obeys the Arrhenius equation. The selectivity of this membrane decreases as the temperature and the ethanol concentration in the feed increase. This membrane shows special characteristics at the azeotropic composition. In the vicinity of the azeotropic point, minimum values of ethanol concentration in the permeate and in sorption solution are obtained. The swelling ratios increase when temperature and the ethanol concentration in the feed are increasing. The ethanol concentration in the sorption solution is also influenced by the temperature and the mixture`s composition. When the temperature increases, the sorption selectivity of the membrane decreases.

  1. Vibrational frequency analysis, FT-IR, DFT and M06-2X studies on tert-Butyl N-(thiophen-2yl)carbamate

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Singer, L. M.; Findlater, M.; Doğan, Hatice; Çırak, Ç.

    2014-07-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted.

  2. FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular conformational analysis of 2,5-di-tert-butyl-hydroquinone

    NASA Astrophysics Data System (ADS)

    Subramanian, N.; Sundaraganesan, N.; Dereli, Ö.; Türkkan, E.

    2011-12-01

    The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm -1 and 50-3500 cm -1, respectively. In addition, the IR spectra in CCl 4 at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.

  3. Vibrational frequency analysis, FT-IR, DFT and M06-2X studies on tert-Butyl N-(thiophen-2yl)carbamate.

    PubMed

    Sert, Yusuf; Singer, L M; Findlater, M; Doğan, Hatice; Çırak, Ç

    2014-07-15

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm(-1)) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted.

  4. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2017-03-01

    Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al2O3 supported copper and gold nanoparticles. Li2O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of catalyst and oxidant amounts was investigated, with the apparent rate constant, kapp being proportional to the amount of nano catalyst and oxygen present in the system.

  5. Ferulate protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in tert-butyl hydroperoxide-induced Caco-2 cells.

    PubMed

    Kim, Hyun Jung; Lee, Eun Kyeong; Park, Min Hi; Ha, Young Mi; Jung, Kyung Jin; Kim, Min-Sun; Kim, Mi Kyung; Yu, Byung Pal; Chung, Hae Young

    2013-03-01

    Epithelial barrier function is determined by both transcellular and paracellular permeability, the latter of which is mainly influenced by tight junctions (TJs) and apoptotic leaks within the epithelium. We investigated the protective effects of ferulate on epithelial barrier integrity by examining permeability, TJ protein expression, and apoptosis in Caco-2 cells treated with tert-butyl hydroperoxide (t-BHP), a strong reactive species inducer. Caco-2 cells pretreated with ferulate (5 or 15 μM) were exposed to t-BHP (100 μM), and ferulate suppressed the t-BHP-mediated increases in reactive species and epithelial permeability in Caco-2 cells. Moreover, ferulate inhibited epithelial cell leakage induced by t-BHP, which was accompanied by decreased expression of the TJ proteins zonula occludens-1 and occludin. In addition, pretreatment with ferulate markedly protected cells against t-BHP-induced apoptosis, as evidenced by decreased nuclear condensation, cytochrome c release, and caspase-3 cleavage and an increased Bax/Bcl-2 ratio. These results suggest that ferulate protects the epithelial barrier of Caco-2 cells against oxidative stress, which results in increased epithelial permeability, decreased TJ protein expression, and increased apoptosis. The most significant finding of our study is the demonstration of protective, ferulate-mediated antioxidant effects on barrier integrity, with a particular focus on intracellular molecular mechanisms.

  6. Bromine catalyzed conversion of S-tert-butyl groups into versatile and, for self-assembly processes accessible, acetyl-protected thiols.

    PubMed

    Blaszczyk, Alfred; Elbing, Mark; Mayor, Marcel

    2004-10-07

    The facile and efficient conversion of a tert-butyl protecting group to an acetyl protecting group for thiols by catalytic amounts of bromine in acetyl chloride and the presence of acetic acid has been developed. The fairly mild reaction conditions are of particular interest for new protecting group strategies for sulfur functionalised target structures.

  7. Gold-catalyzed formal [4π+2π]-cycloadditions of tert-butyl propiolates with aldehydes and ketones to form 4H-1,3-dioxine derivatives.

    PubMed

    Karad, Somnath Narayan; Chung, Wei-Kang; Liu, Rai-Shung

    2015-08-21

    Gold-catalyzed formal hetero-[4π+2π] cycloadditions of tert-butyl propiolates with carbonyl compounds proceeded efficiently to yield 4H-1,3-dioxine derivatives over a wide scope of substrates. With acetone as a promoter, gold-catalyzed cycloadditions of these propiolate derivatives with enol ethers led to the formation of atypical [4+2]-cycloadducts with skeletal rearrangement.

  8. Palladium-catalyzed cross-coupling between vinyl halides and tert-butyl carbazate: first general synthesis of the unusual N-Boc-N-alkenylhydrazines.

    PubMed

    Barluenga, José; Moriel, Patricia; Aznar, Fernando; Valdés, Carlos

    2007-01-18

    N-Boc-N-alkenylhydrazines, an almost unknown type of compounds, have been prepared with high to moderate yields via palladium-catalyzed cross-coupling between alkenyl halides and tert-butyl carbazate. The present methodology represents the first general way to access this highly functionalized and unusual type of hydrazines. [reaction: see text].

  9. Thymol from Thymus quinquecostatus Celak. protects against tert-butyl hydroperoxide-induced oxidative stress in Chang cells.

    PubMed

    Kim, Yon-Suk; Hwang, Jin-Woo; Kang, Seo-Hee; Kim, Ee-Hwa; Jeon, You-Jin; Jeong, Jae-Hyun; Kim, Hye-Ran; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2014-01-01

    The present work describes the protective effects of thymol isolated from Thymus quinquecostatus Celak. against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage through various experiments with Chang liver cells. Thymol significantly protected hepatocytes against t-BHP-induced cell cytotoxicity as demonstrated by increased viability. Furthermore, observation of Hoechst staining, annexin V/PI staining, and expression of Bcl-2 and Bax indicated that thymol inhibited t-BHP-induced Chang cell damage. Further, thymol inhibited the loss of mitochondrial membrane potential in t-BHP-treated Chang cells and prevented oxidative stress-triggered reactive oxygen species (ROS) and lipid peroxidation (malondialdehyde, MDA). Thymol restored the antioxidant capability of hepatocytes including glutathione (GSH) levels which were reduced by t-BHP. These results indicated that thymol prevents oxidative stress-induced damage to liver cells through suppression of ROS and MDA levels and increase of GSH level.

  10. Cytotoxicity of dihydroartemisinin toward Molt-4 cells attenuated by N-tert-butyl-alpha-phenylnitrone and deferoxamine.

    PubMed

    Chan, Ho Wing; Singh, Narendra P; Lai, Henry C

    2013-10-01

    Derivatives of artemisinin, a compound extracted from the wormwood Artemisia annua L, have potent anticancer properties. The anticancer mechanisms of artemisinin derivatives have not been fully-elucidated. We hypothesize that the cytotoxicity of these compounds is due to the free radicals formed by interaction of their endoperoxide moiety with intracellular iron in cancer cells. The effects of N-tert-butyl-alpha-phenylnitrone (PBN), a spin-trap free radical scavenger, and deferoxamine (DX), an iron chelating agent, on the in vitro cytotoxicity of dihyroartemisinin (DHA) toward Molt-4 human T-lymphoblastoid leukemia cells were investigated in the present study. Dihydroartemisinin effectively killed Molt-4 cells in vitro. Its cytotoxicity was significantly attenuated by PBN and DX. Based on the data of our present and previous studies, we conclude that one anticancer mechanism of dihydroartemisinin is the formation of toxic-free radicals via an iron-mediated process.

  11. Tetra-kis(μ-4-tert-butyl-benzoato)-κO:O,O';κO,O':O';κO:O'-bis-[aqua-bis-(4-tert-butyl-benzoato-κO,O')(4-tert-butyl-benzoic acid-κO)praseodymium(III)].

    PubMed

    Dai, Jun; Pan, Rong-Kun; Yang, Juan

    2011-08-01

    The reaction of praseodymium nitrate and 4-tert-butyl-benzoic acid (tBBAH) in aqueous solution yielded the dinuclear title complex, [Pr(2)(C(11)H(13)O(2))(6)(C(11)H(14)O(2))(2)(H(2)O)(2)], which has non-crystallographic C(i) symmetry. The two Pr(III) ions are linked by two bridging and two bridging-chelating tBBA ligands, with a Pr⋯Pr separation of 4.0817 (9) Å. Each Pr(III) ion is nine-coordinated by one chelating tBBA ion, one monodentate tBBAH ligand and one water mol-ecule in a distorted tricapped trigonal-prismatic environment. The complex mol-ecules are linked into infinite chains along the c axis by inter-molecular O-H⋯O hydrogen bonds.

  12. Dynamics of Back Electron Transfer in Dye-Sensitized Solar Cells Featuring 4-tert-Butyl-Pyridine and Atomic-Layer-Deposited Alumina as Surface Modifiers.

    PubMed

    Katz, Michael J; Vermeer, Michael J DeVries; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T

    2015-06-18

    A series of dye-sensitized solar cells (DSCs) was constructed with TiO2 nanoparticles and N719 dye. The standard I3(-)/I(-) redox shuttle and the Co(1,10-phenanthroline)3(3+/2+) shuttle were employed. DSCs were modified with atomic-layered-deposited (ALD) coatings of Al2O3 and/or with the surface-adsorbing additive 4-tert-butyl-pyridine. Current-voltage data were collected to ascertain the influence of each modification upon the back electron transfer (ET) dynamics of the DSCs. The primary effect of the additives alone or in tandem is to increase the open-circuit voltage. A second is to alter the short-circuit current density, JSC. With dependence on the specifics of the system examined, any of a myriad of dynamics-related effects were observed to come into play, in both favorable (efficiency boosting) and unfavorable (efficiency damaging) ways. These effects include modulation of (a) charge-injection yields, (b) rates of interception of injected electrons by redox shuttles, and (c) rates of recombination of injected electrons with holes on surface-bound dyes. In turn, these influence charge-collection lengths, charge-collection yields, and onset potentials for undesired dark current. The microscopic origins of the effects appear to be related mainly to changes in driving force and/or electronic coupling for underlying component redox reactions. Perhaps surprisingly, only a minor role for modifier-induced shifts in conduction-band-edge energy was found. The combination of DSC-efficiency-relevant effects engendered by the modifiers was found to vary substantially as a function of the chemical identity of the redox shuttle employed. While types of modifiers are effective, a challenge going forward will be to construct systems in ways in which the benefits of organic and inorganic modifiers can be exploited in fully additive, or even synergistic, fashion.

  13. Daphnetin-mediated Nrf2 antioxidant signaling pathways ameliorate tert-butyl hydroperoxide (t-BHP)-induced mitochondrial dysfunction and cell death.

    PubMed

    Lv, Hongming; Liu, Qinmei; Zhou, Junfeng; Tan, Guangyun; Deng, Xuming; Ci, Xinxin

    2017-05-01

    Daphnetin (Daph), a natural coumarin derivative isolated from plants of the Genus Daphne, possesses abundant biological activities, such as anti-inflammatory, antioxidant and anticancer properties. In the present study, we focused on investigating the protective effect of Daph against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage, mitochondrial dysfunction and the involvement of underlying molecular mechanisms. Our findings indicated that Daph effectively inhibited t-BHP-stimulated cytotoxicity, cell apoptosis, and mitochondrial dysfunction, which are associated with suppressed reactive oxygen species (ROS) generation, decreased malondialdehyde (MDA) formation, increased superoxide dismutase (SOD) levels and glutathione (GSH)/GSSG (oxidized GSH) ratio. Further investigation indicated that Daph significantly suppressed cytochrome c release and NLRP3 inflammasome activation and modulated apoptosis-related protein Bcl-2, Bax, and caspase-3 expression. Moreover, Daph dramatically induced the expression of the glutamate-cysteine ligase modifier (GCLM) subunit and the glutamate-cysteine ligase catalytic (GCLC) subunit, heme oxygenase-1 (HO-1), and NAD (P) H: quinone oxidoreductase (NQO1), which is largely dependent on upregulating the nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation, reducing the Keap1 protein expression, and strengthening the antioxidant response element (ARE) promoter activity. Additionally, Daph remarkably activated a c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) phosphorylation, but ERK and JNK inhibitor pretreatment exhibited an evident decrease of the level of Daph-enhanced Nrf2 nuclear translocation. Furthermore, Daph exposure suppressed t-BHP-induced cytotoxicity and ROS overproduction, which are mostly blocked in Nrf2 knockout RAW 264.7 cells and peritoneal macrophages. Accordingly, Daph exhibited protective roles against t-BHP-triggered oxidative damage and mitochondrial

  14. Computer experiments on aqueous solutions. VI. Potential energy function for tert-butyl alcohol dimer and molecular dynamics calculation of 3 mol % aqueous solution of tert-butyl alcohol

    NASA Astrophysics Data System (ADS)

    Tanaka, Hideki; Nakanishi, Koichiro; Touhara, Hidekazu

    1984-11-01

    Molecular dynamics (MD) calculation has been carried out for a dilute aqueous solution of tert-butyl alcohol (TBA) at 298.15 K and with experimental density value by the use of constant temperature technique developed previously. The total number of molecule is 216, seven of which are TBA. The mole fraction of TBA is thus 0.032. For water-water and TBA-water interactions, the MCY (Matsuoka-Clementi-Yoshimine) potential and previously reported potential determined by MO calculation are used. A new potential for TBA-TBA is determined by ab initio LCAO SCF calculations for more than 500 different configurations with an STO-3G basis set and subsequent multiparameter fitting of the MO data to a 12-6-3-1 type potential energy function. The MD calculation is extended up to 84 000 time steps (26 ps) and final 60 000 time steps are used to calculate both static and dynamic properties of the system. Both hydrophobic hydration and interaction due to TBA molecules are proved to be stronger than those of methanol studied previously. Structural promotion of water is clearly observed in radial distribution functions and trajectories of each molecule. The configuration and trajectory of all the molecules in solution indicate clearly the association of TBA molecules. It is also found from pair interaction distribution functions that no hydrogen bonding interaction occurs between two TBA molecules. The self-diffusion coefficient of water in the solution is appreciably smaller than that in pure water.

  15. The influence of the nature of an electron donor solvent on the solvation state of tert-butyl-substituted dibenzenediisoindol macroring according to the NMR data

    NASA Astrophysics Data System (ADS)

    Aleksandriiskii, V. V.; Islyaikin, M. K.; Burmistrov, V. A.

    2007-11-01

    The influence of the nature of electron donors on the conformational and solvation state of a symmetrical tert-butyl-substituted macroheterocyclic compound was studied in binary mixtures containing electron donor solvating solvents and tetrachloromethane by 1H NMR spectroscopy and semiempirical quantum-chemical methods. The structure of H-complexes was determined. The macroring was found to selectively bind electron donors containing carbonyl and thiocarbonyl groups.

  16. Reaction of 1H-1-oxo-2,4,6,8-tetrakis(tert-butyl)phenoxazine with certain group II-IV metals

    SciTech Connect

    Karsanov, I.V.; Ivakhnenko, E.P.; Khandkarova, V.S.; Rubezhov, A.Z.; Okhlobystin, O.Yu.; Minkin, V.I.; Prokof'ev, A.I.; Kabachnik, M.I.

    1987-07-10

    It has already been shown that 2-amino-4,6-di(tert-butyl)phenol reacts with 3,5-di(tert-butyl)-o-benzoquinone to form 1H-1-oxo-2,4,6,8-tetrakis(tert-butyl)phenoxazine (I), which is readily reduced by alkali metals to the corresponding semiquinone anion-radical (II), and further to the diamagnetic dianion (IIA). They made use of this ability of (I) to undergo reduction to prepare anion-radical salts with different group II-IV metals in the form of their amalgams. In the EPR spectrum of the anion-radical complex (III) formed in the reduction of (I) by a thallium amalgam, the HFI constants of the unpaired electron with magnetic nuclei of the organic ligand are close to those of the K-salt (II), and a substantial HFI is observed with the /sup 203,205/Tl nuclei. This unequivocally proves that the complex has a semiquinone structure, since an HFI on the /sup 203,205/Tl nuclei of such an order of magnitude is characteristic of o-benzoquinone salts with a thallium cation.

  17. Structural, energetic, and UV-Vis spectral analysis of UVA filter 4-tert-butyl-4'-methoxydibenzoylmethane.

    PubMed

    Pinto da Silva, Luís; Ferreira, Paulo J O; Duarte, Darío J R; Miranda, Margarida S; Esteves da Silva, Joaquim C G

    2014-02-27

    The growing awareness of the harmful effects of ultraviolet (UV) solar radiation has increased the production and consumption of sunscreen products, which contain organic and inorganic molecules named UV filters that absorb, reflect, or scatter UV radiation, thus minimizing negative human health effects. 4-tert-Butyl-4'-methoxydibenzoylmethane (BMDBM) is one of the few organic UVA filters and the most commonly used. BMDBM exists in sunscreens in the enol form which absorbs strongly in the UVA range. However, under sunlight irradiation tautomerization occurs to the keto form, resulting in the loss of UV protection. In this study we have performed quantum chemical calculations to study the excited-state molecular structure and excitation spectra of the enol and keto tautomers of BMDBM. This knowledge is of the utmost importance as the starting point for studies aiming at the understanding of its activity when applied on human skin and also its fate once released into the aquatic environment. The efficiency of excitation transitions was rationalized based on the concept of molecular orbital superposition. The loss of UV protection was attributed to the enol → keto phototautomerism and subsequent photodegradation. Although this process is not energetically favorable in the singlet bright state, photodegradation is possible because of intersystem crossing to the first two triplet states.

  18. Molecular dynamics and partitioning of di-tert-butyl nitroxide in stratum corneum membranes: effect of terpenes.

    PubMed

    Camargos, Heverton Silva; Silva, Adolfo Henrique Moraes; Anjos, Jorge Luiz Vieira; Alonso, Antonio

    2010-05-01

    In this work, we have used electron paramagnetic resonance (EPR) spectroscopy of the small spin label di-tert-butyl nitroxide (DTBN), which partitions the aqueous and hydrocarbon phases, to study the interaction of the terpenes alpha-terpineol, 1,8-cineole, L(-)-carvone and (+)-limonene with the uppermost skin layer, the stratum corneum, and the membrane models of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The EPR spectra indicated that the terpenes increase both the partition coefficient and the rotational correlation time of the spin labels in the stratum corneum membranes, whereas similar effects were observed in the DMPC and DPPC bilayers only at temperatures below the liquid-crystalline phase. The EPR parameter associated to probe polarity inside the membranes showed thermotropically induced changes, suggesting relocations of spin probe, which were dependent on the membrane phases. While the DMPC and DPPC bilayers showed abrupt changes in the partitioning and rotational correlation time parameters in the phase transitions, the SC membranes were characterized by slight changes in the total range of measured temperatures, presenting the greatest changes or membranes reorganizations in the temperature range of approximately 50 to approximately 74 degrees C. The results suggest that terpenes act as spacers, weakening the hydrogen-bonded network at the polar interface and thus fluidizing the stratum corneum lipids.

  19. Corilagin prevents tert-butyl hydroperoxide-induced oxidative stress injury in cultured N9 murine microglia cells.

    PubMed

    Chen, Yiyan; Chen, Chonghong

    2011-08-01

    Oxidative stress plays an important role in neurodegenerative diseases. Reactive oxygen species (ROS)-mediated stress in microglia in vivo could result in cellular injuries and preferentially induces neuronal injury. Corilagin, a novel member of the phenolic tannin family, has been shown to possess antioxidant properties. In this study, we investigated the effects of corilagin on tert-butyl hydroperoxide (TBHP)-induced injury in cultured N9 murine microglial cells and the underlying mechanisms by a methyltetrazolium assay and oxidative damage assay. We found that exposure of N9 cells to TBHP induced cytotoxicity as demonstrated by cell shrinkage, loss of cell viability, increased lactate dehydrogenase (LDH) leakage, and increased intracellular levels of ROS. By contrast, TBHP reduced both superoxide dismutase activity and total cell anti-oxidation capacity, but glutathione was not reduced. Moreover, TBHP treatment was associated with the loss of mitochondrial membrane potential, and it induced cell apoptosis through the mitochondrial-mediated pathway involving the down-regulation of Bcl-2 expression and up-regulation of the Bax/Bcl-2 ratio. Interestingly, pre-treatment with corilagin reversed these reactions. These data collectively indicated that corilagin could attenuate TBHP-induced oxidative stress injury in microglial cells, and its protective effects may be ascribed to its antioxidant and antiapoptotic properties. Our findings suggest that corilagin should be a potential candidate for the treatment of oxidative stress-induced neurodegenerative diseases.

  20. Selenium methylselenocysteine protects human hepatoma HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

    PubMed

    Cuello, Susana; Ramos, Sonia; Mateos, Raquel; Martín, M Angeles; Madrid, Yolanda; Cámara, Carmen; Bravo, Laura; Goya, Luis

    2007-12-01

    Selenium methylselenocysteine (Se-MeSeCys) is a common selenocompound in the diet with a tested chemopreventive effect. This study investigated the potential protective effect of Se-MeSeCys against a chemical oxidative stress induced by tert-butyl hydroperoxide (t-BOOH) on human hepatoma HepG2 cells. Speciation of selenium derivatives by liquid chromatography-inductively coupled plasma mass spectrometry depicts Se-MeSeCys as the only selenocompound in the cell culture. Cell viability (lactate dehydrogenase) and markers of oxidative status--concentration of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS) and activity of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR)--were evaluated. Pretreatment of cells with Se-MeSeCys for 20 h completely prevented the enhanced cell damage, MDA concentration and GR and GPx activity and the decreased GSH induced by t-BOOH but did not prevent increased ROS generation. The results show that treatment of HepG2 cells with concentrations of Se-MeSeCys in the nanomolar to micromolar range confers a significant protection against an oxidative insult.

  1. Activation mechanisms of endothelial NF-kappaB, IKK, and MAP kinase by tert-butyl hydroperoxide.

    PubMed

    Lee, Ji Young; Yu, Byung Pal; Chung, Hae Young

    2005-04-01

    Lipid peroxidation plays a major role in vascular dysfunction and age-related cardiovascular diseases. A major product of lipid peroxidation, tert-butyl hydroperoxide (t-BHP), has been reported to modulate vascular reactivity and cellular signaling. To better understand vascular abnormality, we set out to delineate the activation mechanism of nuclear factor kappa B (NF-kappaB) by t-BHP and the regulation of MAPK in endothelial cells. The results showed that t-BHP induces NF-kappaB activation by an inhibitor of kappaB (IkappaB) phosphorylation through IkappaB kinase (IKK) activation. Our data from this t-BHP study also showed increased p38 MAP kinase and ERK activity; however, interestingly, t-BHP showed no influence on JNK. Pretreatment with the p38 MAP kinase inhibitor, SB203580 and the ERK1/2 inhibitor, PD98059, prevented t-BHP-induced increases in p65 translocation, NF-kappaB luciferase activity, and phospho-IKKalpha/beta. Data suggested that t-BHP induces NF-kappaB activation through the IKK pathway, which involves p38 MAPK and ERK activation. This study illustrates a role of t-BHP in NF-kappaB activation and MAPK related-signaling pathways. The t-BHP-induced activation of NF-kappaB and MAPK could be a major player in vascular dysfunctions, as seen in oxidative stressed responses and the vascular inflammatory process.

  2. Excited state proton transfer in di-(2-hydroxy-3-formyl-5-tert butyl phenyl) methane and solvent effect.

    PubMed

    Mukhopadhyay, M; Banerjee, D; Mukherjee, S

    2006-05-15

    The proton transfer reaction and the spectroscopic properties of di-(2-hydroxy-3-formyl-5-tert butyl phenyl) methane (HFPM) have been examined in different nonpolar and polar solvents at room temperature and 77 K, by means of absorption, emission and time resolved fluorescence spectroscopy. In the ground state, the primary closed form has been identified in all the nonpolar and polar solvents and the anion is detected only in presence of base in some of the polar solvents. After photoexcitation, the excited state intramolecular proton transfer (ESIPT) is indicated by a large Stokes shifted emission (approximately 10,600 cm-1) in all the nonpolar and polar solvents used, except in water and ethylene glycol (EG). The ESIPT band is likely to be originated from the enol tautomer of the HFPM. Two types of anion and H-bonded complex have been detected in the excited state. In water and EG, only anion and H-bonded complex have been detected in the excited state. At 77 K, HFPM shows phosphorescence in pure ethanol, and in n-hexane in presence of triethylamine. It has been suggested that the appearance of phosphorescence is due to the rotation of the formyl group. The measured nonradiative decay rates have always been found to dominate in the decay processes of the excited state of HFPM. Some semiempirical calculations have been undertaken to rationalize the experimental findings.

  3. Hepatotoxic effects of tert-butyl hydroperoxide (t-BHP) and protection by antioxidants.

    PubMed

    Singh, Sangram; Mehrotra, Sudhir; Pandey, Rajeev; Sandhir, Rajat

    2005-08-01

    t-BHP induced oxidative stress and Ca2+ function impairment in fresh hepatocytes was studied in order to understand its role in cytotoxicity. Viability of hepatocytes by the release of lactate dehydrogenase and methyl thiazoletetrazolium reduction method alongwith malondialdehyde formation indicated oxidative stress in the hepatotoxic action of t-BHP.

  4. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    SciTech Connect

    Jiang, Tingshun Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-10-15

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH{sub 3}-TPD and N{sub 2} physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO{sub 4}{sup 2−}/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h{sup −1} and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO{sub 4}{sup 2−}/Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO{sub 4}{sup 2−}/Zr-MCM-48-25.

  5. Effect of thiol drugs on tert-butyl hydroperoxide induced luminol chemiluminescence in human erythrocytes, erythrocyte lysate, and erythrocyte membranes.

    PubMed

    Sajewicz, Waldemar

    2010-07-30

    The paper investigates the effect of thiol drugs (RSH) under oxidative stress condition using luminol-enhanced chemiluminescence technique. The examinations included N-acetylcysteine (NAC), N-acetylpenicillamine (NAP), penicillamine (PEN), mesna (MES), and tiopronin (TPR). The model systems contained isolated human erythrocytes (RBC), erythrocyte lysates (LYS) or erythrocyte membranes (MEM) exposed to tert-butyl hydroperoxide (t-BuOOH). Under the influence of RSH, a bimodal character of some experimental chemiluminescence curves was observed and the kinetic solution was considered as the sum of two logistic-exponential processes. These chemiluminescence changes probably reflected two connected processes--scavenging by RSH of the t-BuOOH-induced free radicals and simultaneous generation of thiol-derived secondary free radicals. Individual differences in thiols interaction showed a multivariate set of the kinetic curve descriptors. The Principal Component Analysis (PCA) well distinguished subsets of RSH influence in systems with RBC or LYS. Generally, the action of NAC was exclusively pro-oxidant in both systems, with RBC and LYS. The behaviour of MES or NAP in these systems was also pro-oxidant but many times less prominent than NAC. Under the influence of TPR a dramatic switch in the anti-oxidant effect was observed in system with RBC to very pro-oxidant effect in LYS. The influence of PEN was analogical to TPR but very weak. This experimental model together with kinetic solution of the unique bimodal chemiluminescence curves, and PCA, supply new insights to the dual (anti- and pro-oxidant) effects of thiol drugs under oxidative stress condition.

  6. N-tert-butyl-alpha-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia.

    PubMed Central

    Folbergrová, J; Zhao, Q; Katsura, K; Siesjö, B K

    1995-01-01

    Recent results have demonstrated that the spin trapping agent N-tert-butyl-alpha-phenylnitrone (PBN) reduces infarct size due to middle cerebral artery occlusion (MCAO), even when given after ischemia. The objective of the present study was to explore whether PBN influences recovery of energy metabolism. MCAO of 2-hr duration was induced in rats by an intraluminal filament technique. Brains were frozen in situ at the end of ischemia and after 1, 2, and 4 hr of recirculation. PBN was given 1 hr after recirculation. Neocortical focal and perifocal ("penumbra") areas were sampled for analyses of phosphocreatine (PCr), creatine, ATP, ADP, AMP, glycogen, glucose, and lactate. The penumbra showed a moderate-to-marked decrease and the focus showed a marked decrease in PCr and ATP concentrations, a decline in the sum of adenine nucleotides, near-depletion of glycogen, and an increase in lactate concentration after 2 hr of ischemia. Recirculation for 1 hr led to only a partial recovery of energy state, with little further improvement after 2 hr and signs of secondary deterioration after 4 hr, particularly in the focus. After 4 hr of recirculation, PBN-treated animals showed pronounced recovery of energy state, with ATP and lactate contents in both focus and penumbra approaching normal values. Although an effect of PBN on mitochondria cannot be excluded, the results suggest that PBN acts by preventing a gradual compromise of microcirculation. The results justify a reevaluation of current views on the pathophysiology of focal ischemic damage and suggest that a therapeutic window of many hours exists in stroke. PMID:7761448

  7. Liv.52 protects HepG2 cells from oxidative damage induced by tert-butyl hydroperoxide.

    PubMed

    Vidyashankar, S; K Mitra, S; Nandakumar, Krishna S

    2010-01-01

    Oxidative stress induced by toxicants is known to cause various complications in the liver. Herbal drug such as Liv.52 is found to have hepatoprotective effect. However, the biochemical mechanism involved in the Liv.52 mediated protection against toxicity is not well elucidated using suitable in vitro models. Hence, in the present study, the hepatoprotective effect of Liv.52 against oxidative damage induced by tert-butyl hydroperoxide (t-BHP) in HepG2 cells was evaluated in order to relate in vitro antioxidant activity with cytoprotective effects. Cytotoxicity was measured by MTT assay. Antioxidant effect of Liv.52 was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric-reducing antioxidant power (FRAP) assay, and lipid peroxidation and measurement of non-enzymic and antioxidant enzymes in HepG2 cells exposed to t-BHP over a period of 24 h. The results obtained indicate that t-BHP induced cell damage in HepG2 cells as shown by significant increase in lipid peroxidation as well as decreased levels of reduced glutathione (GSH). Liv.52 significantly decreased toxicity induced by t-BHP in HepG2 cells. Liv.52 was also significantly decreased lipid peroxidation and prevented GSH depletion in HepG2 cells induced by t-BHP. Therefore, Liv.52 appeared to be important for cell survival when exposed to t-BHP. The protective effect of Liv.52 against cell death evoked by t-BHP was probably achieved by preventing intracellular GSH depletion and lipid peroxidation. The results showed protective effect of Liv.52 against oxidative damage induced in HepG2 cells. Hence, taken together, these findings derived from the present study suggest the beneficial effect of Liv.52 in regulating oxidative stress induced in liver by toxicants.

  8. Crystal structure of a rare trigonal bipyramidal titanium(IV) coordination complex: tri­chlorido­(3,3′-di-tert-butyl-2′-hy­droxy-5,5′,6,6′-tetra­methyl-1,1′-biphenyl-2-olato-κO 2)(tetra­hydro­furan-κO)­titanium(IV)

    PubMed Central

    Kim, Yun Young; Tanski, Joseph M.

    2017-01-01

    The title compound, [Ti(C24H33O2)Cl3(C4H8O)], is a rare example of a trigonal–bipyramidal titanium coordination complex with three chloride and two oxygen donor ligands. The asymmetric unit contains two independent mol­ecules having essentially the same conformation. The mol­ecules feature the titanium(IV) metal cation complexed with three chloride ligands, a tetra­hydro­furan mol­ecule, and one oxygen atom from the resolved ligand precursor (R)-(+)-5,5′,6,6′-tetra­methyl-3,3′-di-t-butyl-1,1′-biphenyl-2,2′-diol, where the remaining phenolic hydrogen atom engages in inter­molecular O—H⋯Cl hydrogen bonding. In one mol­ecule, the THF ligand is disordered over two orientations with refined site occupancies of 0.50 (3). PMID:28083144

  9. Synergic effect of acetal-based resin by blending with poly[4-hydroxy styrene-co-tert-butyl acrylate-co-4-(3-cyano-1,5-di-tert-butyl carbonyl pentyl styrene)] (P(HS-TBA-CBPS)) on the profiles of 248 nm chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Jin; Chung, Yoon-Sik; Lee, Dong H.; Cho, Sook H.; Im, Kwang H.; Yim, Yun-Gill; Kim, Deog-Bae; Kim, Jae-Hyun

    2002-07-01

    We prepared ter-polymer of hydroxystyrene, tert-butyl acrylate and 4-(3-cyano-1,5-di-tert-butyl carbonyl pentyl styrene) (P(HS-TBA-CBPS)) and discussed a characteristic of prepared polymer. As TBA, newly introduced monomer increases, contrast of resist is improved. And the prepared polymer was blended with poly(4-hydroxystyrene-co-4-(1-ethylethoxystyrene)) (EE-PHS). The synergic effect on a resist performance in KrF lithography by the combination of high and low activation energy system was shown. A resist using blending polymer was shown a good performance on resolution and LER(Line Edge Roughness) than resist using polymer separately. Based on the results, it was found that high performance KrF resist could be obtained by optimization of polymer blending.

  10. Intramolecular interactions between chalcogen atoms: organoseleniums derived from 1-bromo-4-tert-butyl-2,6-di(formyl)benzene.

    PubMed

    Zade, Sanjio S; Panda, Snigdha; Singh, Harkesh B; Sunoj, Raghavan B; Butcher, Ray J

    2005-04-29

    [structure: see text] The synthesis and characterization of a series of low-valent organoselenium compounds derived from 1-bromo-4-tert-butyl-2,6-di(formyl)benzene (22) is described. The synthesis of diselenide 25 was achieved by the lithiation route whereas bis(4-tert-butyl-2,6-di(formyl)phenyl) diselenide (26) was synthesized by treating 22 with disodium diselenide. A series of monoselenides (27, 28, and 29) was obtained by facile nucleophilic substitution of bromine in 22, using the corresponding selenolates as nucleophiles. The halogenation reactions of bis(4-tert-butyl-2,6-di(formyl)phenyl) diselenide (26) did not afford the corresponding selenenyl halides but resulted in the isolation of an unexpected cyclic selenenate ester 34 as a product. The selenide 32 was synthesized by the treatment of dimethoxymethyl diselenide with trilithiated 2-bromo-5-tert-butyl-N,N'-di(phenyl)isophthalamide. The existence of potential Se...O intramolecular nonbonding interactions was examined by IR, (1)H, and (77)Se NMR spectroscopy, X-ray crystallography, and computational studies. The X-ray crystal structures of 26 and 27, having two ortho formyl groups, reveal the absence of any Se...O interactions. However, the Se...O interactions were observed in the selenenate ester 34 where one of the formyl groups has been utilized for the selenenate ring formation. The crystal structures of 26 and 27 exhibited intermolecular short-range C-H...Se interactions (hydrogen bonding). Although there are four heteroatoms in carbamoyl moieties ortho to selenium capable of forming a five-membered ring on intramolecular coordination, no such intramolecular Se...X (X = N, O) interaction was observed in the crystal structure of 32. The density functional theory calculations at the B3LYP/6-31G* level predicted that for all the diformyl systems (47a-c, 48a-c), the anti,anti conformer (when both formyl oxygen atoms point away from the selenium) is more stable. This preference was found to be reversed in

  11. tert-Butyl N-{4-[N-(4-hy­droxy­phen­yl)carbamo­yl]benz­yl}carbamate

    PubMed Central

    Yu, Hai-Yang; Fang, Xin; Huang, Ming-Dong; Wang, Jun-Dong

    2012-01-01

    In the title compound, C19H22N2O4, the dihedral angle between the aromatic rings is 67.33 (2)°. In the crystal, mol­ecules are linked through N—H⋯O and O—H⋯O hydrogen bonds, generating a two-dimensional network lying parallel to (100). As a result of the twist of the mol­ecular skeleton and the hindrance of the tert-butyl groups, no π–π inter­actions exist between the aromatic rings. PMID:23125790

  12. One Step Continuous Flow Synthesis of Highly Substituted Pyrrole-3-Carboxylic Acid Derivatives via in situ Hydrolysis of tert-Butyl Esters

    PubMed Central

    Herath, Ananda; Cosford, Nicholas D. P.

    2010-01-01

    The first one-step, continuous flow synthesis of pyrrole-3-carboxylic acids directly from tert-butyl acetoacetates, amines and 2-bromoketones is reported. The HBr generated as a by-product in the Hantzsch reaction was utilized in the flow method to saponify the t-butyl esters in situ to provide the corresponding acids in a single microreactor. The protocol was used in the multistep synthesis of pyrrole-3-carboxamides, including two CB1 inverse agonists, directly from commercially available starting materials in a single continuous process. PMID:20964284

  13. Multiple intramolecular hydrogen bonds in 2,4-di-tert-butyl-6-[N-(2,6-diisopropylphenyl)-P,P-diphenylphosphorimidoyl]phenol.

    PubMed

    Lee, Jong Dae; Suh, Il Hwan; Kang, Sang Ook

    2011-05-01

    The title compound, C(38)H(48)NOP, isolated from the reaction of (2-diphenylphosphanyl-4,6-di-tert-butyl)phenol with 2,6-diisopropylphenyl azide at 273 K, can act as an N,O-bidentate ligand. Crystal structure analysis shows a deviation from ideal tetrahedral symmetry around the P atom. The molecule exists as a monomer in the solid state, whose conformation is stabilized via multiple intramolecular hydrogen bonds. Geometric parameters from both experimental and theoretical calculations are compared.

  14. Bis({tris[2-(3,5-di-tert-butyl-2-oxido-benzylideneamino)ethyl]amine}cerium(III)) diethyl ether solvate.

    PubMed

    Dröse, Peter; Hrib, Cristian G; Edelmann, Frank T

    2010-10-13

    The title compound, 2[Ce(C(51)H(75)N(4)O(3))]·C(4)H(10)O, was obtained in high yield (92%) by reduction of (TRENDSAL)Ce(IV)Cl [TRENDSAL is N,N',N''-tris-(3,5-di-tert-butyl-salicyl-ide-natoamino)-triethyl-amine] with potassium in THF. The bulky tripodal TRENDSAL ligand effectively encapsulates the central Ce(III) cation with a Ce-N(imine) distance of 2.860 (2) Å and an average C-N(amine) distance of 2.619 Å within a distorted monocapped octahedral coordination.

  15. Toxicity of 2,6-Di-tert-butyl-4-Nitrophenol (DBNP).

    PubMed

    Alexander, W K; Briggs, G B; Still, K R; Jederberg, W W; MacMahon, K; Baker, W H; Mackerer, C

    2001-04-01

    U.S. Navy submarines reported a yellowing of metal surfaces on their internal surfaces. The yellowing was initially identified on the painted steel bulkheads but further examination indicated that it was not limited to steel surfaces and included bedding, thread tape, Formica, plastisol covered hand-wheels, and aluminum lockers. Crew members also reported to the medical department that their skin turned yellow when they came in contact with these contaminated surfaces and requested information on the effects of exposure. Studies conducted by General Dynamics' Electric Boat Division (EBD) determined that the agent was 2,6-Di-tertbutyl-4-Nitrophenol (DBNP). 2,6-Di-butylphenol (DBP) is an antioxidant additive used in lubricating oils and hydraulic fluids. In the enclosed atmosphere of a submarine, the oil mist could be spread throughout the boat by venting the lube oil to the atmosphere. Submarines use electrostatic precipitators (ESP) to clean the air of particulate materials. During passage through the ESP, oil mist containing DBP is nitrated to DBNP, which is then moved throughout the boat in the ventilation system. Analysis of the EBD data indicated 24-hour exposure concentrations to be in the range of <3.0 to 122 ppb in the laboratory and submarine settings. Submarine crews may be exposed to these concentrations for as many as 24 hours/ day for 90 days during underway periods. Toxicity studies regarding the oral and dermal uptake of DBNP were conducted. From the literature the lethal dose to 50 percent of the population (LD50) of DBNP (rat) was reported by Vesselinovitch et al. in 1961 to be 500 mg/kg. Our studies indicated that the LD50 is in the range of 80 mg/kg in the rat. Our work also includes dermal absorption studies, which indicated that DBNP is not well absorbed through intact skin. Within this study, no no-observable adverse effect level (NOAEL) or lowest observable adverse effect level (LOAEL) was identified. Calculation of a reference dose was

  16. Tert-butyl hydroperoxide (t-BHP) induced apoptosis and necroptosis in endothelial cells: Roles of NOX4 and mitochondrion.

    PubMed

    Zhao, Wenwen; Feng, Haitao; Sun, Wen; Liu, Kang; Lu, Jin-Jian; Chen, Xiuping

    2017-04-01

    Oxidative stress causes endothelial death while underlying mechanisms remain elusive. Herein, the pro-death effect of tert-butyl hydroperoxide (t-BHP) was investigated with low concentration (50μM) of t-BHP (t-BHPL) and high concentration (500μM) of t-BHP (t-BHPH). Both t-BHPL and t-BHPH induced endothelial cell death was determined. T-BHPL induced caspase-dependent apoptosis and reactive oxygen species (ROS) generation, which was inhibited by N-acetyl-L-cysteine (NAC). Furthermore, NADPH oxidase inhibitor diphenyleneiodonium (DPI), NOX4 siRNA, and NOX4 inhibitor GKT137831 reduced t-BHPL-induced ROS generation while mitochondrial respiratory chain inhibitors rotenone (Rot), 2-thenoyltrifluoroacetone (TTFA), and antimycin A (AA) failed to do so. NOX4 overexpression resulted in increased ROS generation and Akt expression but decreased sensitivity to t-BHPL. In contrast, T-BHPH induced LDH release, PI uptake, and cell translucent cytoplasm. RIP1 inhibitor necrostatin-1 (Nec-1), MLKL inhibitor necrosulfonamide (NSA) and silencing RIP1, RIP3, and MLKL inhibited t-BHPH-induced cell death while pan-caspase inhibitor Z-VAD-FMK showed no effect. T-BHPH-induced ROS production was inhibited by TTFA, AA and Rot while DPI showed no effect. T-BHPH induced RIP1/RIP3 interaction, which was decreased by Rot, TTFA, and AA. Silence RIP1 and RIP3 but not MLKL inhibited t-BHPH-induced mitochondrial membrane potential (MMP) decrease and ROS production. Moreover, P38MAPK inhibitor SB203580 reversed both t-BHPL and t-BHPH-induced cell death while inhibitors for ERKs and JNKs showed no obvious effect. These data suggested that t-BHP induced both apoptosis and necroptosis in endothelial cells which was mediated by ROS and p38MAPK. ROS derived from NADPH oxidase and mitochondria contributed to t-BHPL and t-BHPH-induced apoptosis and necroptosis, respectively.

  17. The effects of tert-butyl hydroperoxide on human erythrocyte membrane ion transport and the protective actions of antioxidants.

    PubMed

    Dwight, J F; Hendry, B M

    1996-05-30

    The oxidising actions of tert-butyl hydroperoxide (tBH) (0-3 mmol/l) on human erythrocyte membrane ion transport have been studied using measurements of 86Rb+ influx. Ouabain and bumetanide were used to distinguish Rb+ flux via the sodium pump (Na,K-ATPase), Na,K,2Cl cotransporter and through residual membrane permeability. The protective actions of antioxidants and related molecules (vitamin E, vitamin E acetate, Trolox, butylated hydroxytoluene (BHT) and dithioerythritol (DTE) were studied. The effects of tBH were concentration dependent and the mean residual (ouabain and bumetanide insensitive) Rb+ permeability was increased by a factor of 8.5 (S.E.M. 2.2, n = 15) by a 5-min exposure to 2 mmol/l tBH. This action was almost completely prevented by co-incubation with Trolox or BHT, and partially prevented by the presence of vitamin E or DTE. Incubation with 2 mmol/l tBH for 5 min increased intracellular Na+ by a factor of 1.8 (S.E.M. 0.1, n = 8) and reduced intracellular K+ by a factor of 0.93 (S.E.M. 0.03, n = 8). These effects were prevented by Trolox and partially prevented by vitamin E, whereas DTE and vitamin E acetate were ineffective. Incubation with 2 mmol/l tBH for 5 min reduced the mean apparent sodium pump Vmax by 43% (S.E.M. 4, n = 8). This effect was completely prevented by Trolox and partially prevented by vitamin E. Vitamin E acetate had no effect. The mean bumetanide-sensitive Rb+ influx via the Na,K,2Cl cotransporter was reduced by 30% (S.E.M. 8.7, n = 25) by a 5-min exposure to 2 mmol/l tBH. This action was variable and no significant actions of the antioxidants studied could be demonstrated. This study suggests that tBH-mediated oxidative damage occurs from a hydrophilic site and involves increased non-selective membrane cation permeability and inhibition of specific transport systems.

  18. METHYL TERT-BUTYLETHER-WATER INTERACTION

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is a well-known environmental contaminant owing to its high solubility in water. Since the early 1990s, MTBE has been added to gasoline to improve air quality in some metropolitan areas of the United States. Improved air quality was, however, achiev...

  19. Methyl tert-Butyl Ether (MTBE) - Its Movement and Fate in the Environment and Potential for Natural Attenuation

    DTIC Science & Technology

    1999-10-01

    groundwater remediation, geochemistry, contaminant destruction rates 16. SECURITY CLASSIFICATION OF: UNCLASSIFIED 17. LIMITATION OF ABSTRACT 18 ...733939/ 18 .doc TABLE OF CONTENTS Page ACRONYMS AND ABBREVIATIONS......................................................................... v SECTION 1...2-48 -ii- 022/733939/ 18 .doc TABLE OF CONTENTS (Continued) Page 2.7.5.4 UST Site, Sampson County, North Carolina........................ 2-42

  20. AN EXPERIMENTAL STUDY OF PHYTOREMEDIATION OF METHYL-TERT-BUTYL-ETHER (MTBE) IN GROUNDWATER. (R825549C062)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Crystal structure of 2,4-di-tert-butyl-6-(hy­droxy­methyl)­phenol

    PubMed Central

    Aranburu Leiva, Ane I.; Benjamin, Sophie L.; Langley, Stuart K.; Mewis, Ryan E.

    2016-01-01

    The title compound, C15H24O2, is an example of a phenol-based pendant-arm precursor. In the mol­ecule, the phenol hy­droxy group participates in an intra­molecular O—H⋯O hydrogen bond with the pendant alcohol group, forming an S(6) ring. This ring adopts a half-chair conformation. In the crystal, O—H⋯O hydrogen bonds connect mol­ecules related by the 31 screw axes, forming chains along the c axis. The C—C—O angles for the hy­droxy groups are different as a result of the type of hybridization for the C atoms that are involved in these angles. The C—C—O angle for the phenol hy­droxy group is 119.21 (13)°, while the angle within the pendant alcohol is 111.99 (13)°. The bond length involving the phenolic oxygen is 1.3820 (19) Å, which contrasts with that of the alcoholic oxygen which is 1.447 (2) Å. The former is conjugated with the aromatic ring and so leads to the observed shorter bond length. PMID:27840721

  2. EXPERIMENTAL MEASUREMENT OF THE RATE OF METHYL TERT-BUTYL ETHER HYDROLYSIS IN SUB- AND SUPERCRITICAL WATER. (R826738)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. Identifying the usage patterns of methyl tert-butyl ether (MTBE) and other oxygenates in gasoline using gasoline surveys

    USGS Publications Warehouse

    Moran, M.J.; Clawges, R.M.; Zogorski, J.S.

    2000-01-01

    Data on the volumes of oxygenates and other compounds in gasoline are available from several sources collectively referred as gasoline surveys. The gasoline surveys provide the most definitive knowledge of which oxygenate, if any, and what volumes of that oxygenate are being used in various areas of the country. This information is important in water-quality assessments for relating the detection of MTBE in water to patterns of usage of MTBE in gasoline. General information on three surveys that have been conducted by the National Institute for Petroleum and Energy Research, the Motor Vehicle Manufacturers Association, and the EPA was presented. The samples were tested for physical properties and constituents including octane number, specific gravity, and volumes of olefins, aromatics, benzene, alcohols, and various ether oxygenates. The data in each survey had its own utility based on the type of assessment that is undertaken. Quality Assessment (NAWQA) Program. Using NAWQA data, the percent occurrence of MTBE in ground water in metropolitan areas that use substantial amounts of MTBE (> 5% by vol) was ??? 21%, compared to ??? 2% in areas that do not use substantial amounts of MTBE (< 5% by vol). When several other factors are considered in a logistic regression model including MTBE usage in RFG or OXY gasoline areas (??? 3% by vol) as a factor, a 4-6 fold increase in the detection frequency of MTBE in ground water was found when compared to areas that do not use MTBE or use it only for octane enhancement (< 3% by vol).

  4. 5,11,17,23,29-Penta-tert-butyl-31,32,33,34,35-penta­propoxycalix[5]arene dichloro­methane hemisolvate

    PubMed Central

    Pojarová, Michaela; Dušek, Michal; Budka, Jan; Císařová, Ivana; Makrlík, Emanuel

    2011-01-01

    The title compound, tert-butyl­propoxycalix[5]arene, C70H100O5·0.5CH2Cl2, crystallizes as a solvate with two mol­ecules of calix[5]arene in 1,2-alternate conformations and one mol­ecule of dichloro­methane in the asymmetric unit. One tert-butyl group in one of the mol­ecules and two in the other are disordered over two positions with occupancy factors fixed at 0.5917:0.4083, 0.5901:0.4099 and 0.8535:0.1465, respectively, in the final refinement. The C atoms of a prop­oxy group in each of the mol­ecules are also disordered over two positions with occupancies of 0.7372:0.2628 and 0.5027:0.4973. The mol­ecules form intra­molecular hydrogen bonds between prop­oxy O atoms and an adjacent CH2 group in a neighbouring prop­oxy chain. In the crystal, inter­molecular C—H⋯O and C—H⋯Cl inter­actions occur involving the dichloro­methane mol­ecule. PMID:21522987

  5. Experimental and theoretical studies on new 7-(3,6-di-tert-butyl-9H-carbazol-9-yl)-10-alkyl-10H-phenothiazine-3-carbaldehydes

    NASA Astrophysics Data System (ADS)

    Stalindurai, Kesavan; Gokula Krishnan, Kannan; Nagarajan, Erumaipatty Rajagounder; Ramalingan, Chennan

    2017-02-01

    Synthesis of fused heterocyclic aldehydes with carbazole (CZ) structural motif linked at C-7 position on phenothiazines (PTZ), 7-(3,6-di-tert-butyl-9H-carbazol-9-yl)-10-butyl-10H-phenothiazine-3-carbaldehyde (1) and 7-(3,6-di-tert-butyl-9H-carbazol-9-yl)-10-hexyl-10H-phenothiazine-3-carbaldehyde (2) has been accomplished and are characterized through experimental and computational techniques. The optimized structure with their bonding aspects and vibrational frequencies of the same have been examined utilizing DFT-B3LYP technique with a basis set 6-311++G(d,p). In the optimized structures of 1 and 2, the bond lengths and bond angles are in accord with their corresponding reported analogous. The vibrational frequencies resulted from experimental as well as theoretical are in well accord with each other. Further, the results of polarizabilities, first order hyperpolarizabilities and dipole moment of 1 and 2 imply that these could be utilized for the preparation of NLO crystals which might generate second order harmonic waves.

  6. Simultaneous liquid-liquid extraction of dibenzyl disulfide, 2,6-di-tert-butyl-p-cresol, and 1,2,3-benzotriazole from power transformer oil prior to GC and HPLC determination.

    PubMed

    Jaber, Abdul Muttaleb Yousef; Mehanna, Nemr Ahmed; Abulkibash, Abdalla Mahmoud

    2012-03-01

    2,6-Di-tert-butyl-p-cresol (DBPC), dibenzyl disulfide (DBDS), and 1,2,3-benzotriazole (BTA) are additives that may be found concomitantly in the oil matrix of power transformer. DBPC and DBDS act as antioxidants while, BTA is a corrosion inhibitor that protects copper conductors inside the transformer unit from corrosion. A powerful analytical method is, therefore, required to determine these additives at trace levels in the transformer oil. This work describes a unique single liquid-liquid extraction pretreatment step prior to the determination of the components by gas chromatography (GC) and high-performance liquid chromatography (HPLC) techniques. The optimum volume ratio used in the pretreatment step was determined as 5:2:5 for mineral oil/n-hexane/acetonitrile, respectively. Relatively, the method is simple and quick with a minimal use of solvents. Analytical results indicate that the method is relatively sensitive, accurate, and precise for each of the three components in fresh and used mineral oil. The calibration curves for the three components demonstrate a significant increase in sensitivities. Detection limits found were, 100 mg L(-1) (0.01% w/v), 0.80 mg L(-1) , and 2.04 mg L(-1) for DBPC, DBDS, and BTA, respectively. The Student's t values determined at 95% confidence level indicate that there is no significant difference between the experimental means obtained by this method and the standard method for each component.

  7. Safety assessment for octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate (CAS Reg. No. 2082-79-3) from use in food contact applications.

    PubMed

    Neal-Kluever, April P; Bailey, Allan B; Hatwell, Karen R

    2015-12-01

    Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate (CAS Reg. No. 2082-79-3), currently marketed as Irganox 1076 (I-76), is a sterically hindered phenolic antioxidant used in a variety of organic substrates, including those used in the manufacture of food contact articles. In 2012, the US Food and Drug Administration (USFDA), Office of Food Additive Safety (OFAS), initiated a post-market re-evaluation of the food contact applications of I-76. This project aimed to ensure that current dietary exposures from the use of I-76 in food contact articles are accurately captured and the safety assessment considered all relevant and available toxicological information. To accomplish these aims, the USFDA reviewed the available toxicological studies and chemistry information on food contact applications of I-76. Based on this in-depth analysis, a NOAEL of 64 mg/kg-bw/d (female rats) from a chronic rat study and a cumulative estimated dietary intake (CEDI) of 4.5 mg/p/d, was used to calculate a margin of exposure (MOE) of ∼850. We concluded that the previous and current exposure levels provide an adequate margin of safety (MOS) and remain protective of human health for the regulated uses.

  8. Di­chlorido­(4,4′-di-tert-butyl-2,2′-bi­pyridine-κ2 N,N′)palladium(II) dimethyl sulfoxide monosolvate monohydrate

    PubMed Central

    Gutiérrez-Márquez, Ricardo A.; Crisóstomo-Lucas, Carmela; Reyes-Martínez, Reyna; Hernández-Ortega, Simón; Morales-Morales, David

    2014-01-01

    The title compound, [PdCl2(C18H24N2)]·(CH3)2SO·H2O, the PdII ion is in a distorted square-planar geometry. The Pd—N bond distances are 2.022 (2) and 2.027 (2) Å, the Pd—Cl bond distances are 2.2880 (7) and 2.2833 (7) Å, and the ligand bite angle is 80.07 (9)°. The dimethyl sulfoxide and water mol­ecules form linear chains along [100] by O—H⋯O and O—H⋯S hydrogen bonds, generating eight- and 12-membered rings. C—H⋯Cl inter­actions link the chains, forming a three-dimensional arrangement. In addition, the 4,4-di-tert-butyl-2,2′-bi­pyridine ligand exhibits π–π stacking inter­actions [centroid–centroid distances = 3.8741 (15) and 3.8353 (15) Å]. The DMSO solvent is disordered and was refined with an occupancy ratio of 0.866 (3):0.134 (3). PMID:24940194

  9. FT-IR and Raman vibrational analysis, B3LYP and M06-2X simulations of 4-bromomethyl-6-tert-butyl-2H-chromen-2-one

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Puttaraju, K. B.; Keskinoğlu, Sema; Shivashankar, K.; Ucun, Fatih

    2015-01-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized bacteriostatic and anti-tumor molecule namely, 4-bromomethyl-6-tert-butyl-2H-chromen-2-one have been investigated. The experimental FT-IR (4000-400 cm-1) and Raman spectra (4000-100 cm-1) of the compound in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d, p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  10. Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis.

    PubMed

    Auffret, Marc; Labbé, Diane; Thouand, Gérald; Greer, Charles W; Fayolle-Guichard, Françoise

    2009-12-01

    Two strains, identified as Rhodococcus wratislaviensis IFP 2016 and Rhodococcus aetherivorans IFP 2017, were isolated from a microbial consortium that degraded 15 petroleum compounds or additives when provided in a mixture containing 16 compounds (benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, octane, hexadecane, 2,2,4-trimethylpentane [isooctane], cyclohexane, cyclohexanol, naphthalene, methyl tert-butyl ether [MTBE], ethyl tert-butyl ether [ETBE], tert-butyl alcohol [TBA], and 2-ethylhexyl nitrate [2-EHN]). The strains had broad degradation capacities toward the compounds, including the more recalcitrant ones, MTBE, ETBE, isooctane, cyclohexane, and 2-EHN. R. wratislaviensis IFP 2016 degraded and mineralized to different extents 11 of the compounds when provided individually, sometimes requiring 2,2,4,4,6,8,8-heptamethylnonane (HMN) as a cosolvent. R. aetherivorans IFP 2017 degraded a reduced spectrum of substrates. The coculture of the two strains degraded completely 13 compounds, isooctane and 2-EHN were partially degraded (30% and 73%, respectively), and only TBA was not degraded. Significant MTBE and ETBE degradation rates, 14.3 and 116.1 mumol of ether degraded h(-1) g(-1) (dry weight), respectively, were measured for R. aetherivorans IFP 2017. The presence of benzene, toluene, ethylbenzene, and xylenes (BTEXs) had a detrimental effect on ETBE and MTBE biodegradation, whereas octane had a positive effect on the MTBE biodegradation by R. wratislaviensis IFP 2016. BTEXs had either beneficial or detrimental effects on their own degradation by R. wratislaviensis IFP 2016. Potential genes involved in hydrocarbon degradation in the two strains were identified and partially sequenced.

  11. Spectroscopic, electrochemical, and alkylation reactions: tert-butyl N-(2-mercaptoethyl)carbamate copper(II) and nickel(II) complexes as structural mimics for the active site of thiolate-alkylating enzymes.

    PubMed

    Ibrahim, Mohamed M; Mersal, Gaber A M; El-Shafai, Nagi; Ramadan, Abdel-Motaleb M; Youssef, Mohamed M

    2014-01-01

    Two new dithiolate copper(II) and nickel(II) complexes with the ligand tert-butyl N-(2-mercaptoethyl)-carbamate (Boc-SH) were prepared. Their structures were established to be [(Boc-S)2M], where M=Cu (1) and Ni (2) by using elemental analysis, thermal analysis, molar conductivity, FT-IR, Raman, UV/VIS, and ESR as well as EI-mass spectroscopic methods. The X-ray structure of the ligand Boc-SH was also determined. Spectral data showed that the carbamate ligand act as anioinic bidentate through one immine nitrogen and one thiolate sulfur donor atoms. The spectral techniques suggest that both complexes appear to have square planar geometries. The very low electrical conductance of the two complexes supports their neutral nature. The redox behaviors of the obtained complexes were also investigated by cyclic voltammetry. The monomeric nature of both complexes was assessed from their magnetic susceptibility values. The thermoanalytical data evidence that complex (2) is stable up to 165°C and undergo complete decomposition, resulting in NiO as a residual product. The TEM image of the obtained oxide residue showed its nanosize cluster, suggesting that complex (2) may be used as a precursor for the formation of nanooxide. The methylation reactions of the two dithiolate complexes (1) and (2) with methyl iodide appear to occur intramolecularly at the metal(II)-bound dithiolates, forming the metal(II)-bound dithioether complexes [M(Boc-SCH3)2]I2 with clean second-order constants of 7.95×10(-2) and 10.59×10(-2) M(-1) s(-1), respectively.

  12. [Total analysis of organic rubber additives].

    PubMed

    He, Wen-Xuan; Robert, Shanks; You, Ye-Ming

    2010-03-01

    In the present paper, after middle pressure chromatograph separation using both positive phase and reversed-phase conditions, the organic additives in ethylene-propylene rubber were identified by infrared spectrometer. At the same time, by using solid phase extraction column to maintain the main component-fuel oil in organic additves to avoid its interfering with minor compounds, other organic additves were separated and analysed by GC/Ms. In addition, the remaining active compound such as benzoyl peroxide was identified by CC/Ms, through analyzing acetone extract directly. Using the above mentioned techniques, soften agents (fuel oil, plant oil and phthalte), curing agent (benzoylperoxide), vulcanizing accelerators (2-mercaptobenzothiazole, ethyl thiuram and butyl thiuram), and antiagers (2, 6-Di-tert-butyl-4-methyl phenol and styrenated phenol) in ethylene-propylene rubber were identified. Although the technique was established in ethylene-propylene rubber system, it can be used in other rubber system.

  13. Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in Salmonella typhimurium TA102.

    PubMed

    Edenharder, R; Grünhage, D

    2003-09-09

    Mutagenicity induced by tert-butyl hydroperoxide (BHP) or cumene hydroperoxide (CHP) in Salmonella typhimurium TA102 was effectively reduced by flavonols with 3',4'-hydroxyl groups such as fisetin, quercetin, rutin, isoquercitrin, hyperoxide, myricetin, myricitrin, robinetin, and to a lesser extent also by morin and kaempferol (ID50=0.25-1.05 micromol per plate). With the exception of isorhamnetin, rhamnetin, morin, and kaempferol, closely similar results were obtained with both peroxides. Hydrogenation of the double bond between carbons 2 and 3 (dihydroquercetin, dihydrorobinetin) as well as the additional elimination of the carbonyl function at carbon 4 (catechins) resulted in a loss of antimutagenicity with the notable exception of catechin itself. Again, all flavones and flavanones tested were inactive except luteolin, luteolin-7-glucoside, diosmetin, and naringenin. The typical radical scavenger butylated hydroxytoluene also showed strong antimutagenicity against CHP (ID50=5.4 micromol per plate) and BHP (ID50=11.4 micromol per plate). Other lipophilic scavengers such as alpha-tocopherol and N,N'-diphenyl-1,4-phenylenediamine exerted only moderate effects, the hydrophilic scavenger trolox was inactive. The metal chelating agent 1,10-phenanthroline strongly reduced mutagenicities induced by CHP and BHP (ID50=2.75 and 2.5 micromol per plate) at low concentrations but induced mutagenic activities at higher concentrations. The iron chelator deferoxamine mesylate, however, was less effective in both respects. The copper chelator neocuproine effectively inhibited mutagenicity induced by BHP (ID50=39.7 micromol per plate) and CHP (ID50=25.9 micrommol per plate), the iron chelator 2,2'-dipyridyl was less potent (ID50=6.25 mmol per plate against BHP, 0.42 mmol per plate against CHP). In the absence of BHP and CHP, yet not in the presence of these hydroperoxides, quercetin, rutin, catechin, epicatechin, and naringenin induced strong mutagenic activities in S

  14. Sterically directed nitronate complexes of 2,6-di-tert-butyl-4-nitrophenoxide with Cu(ii) and Zn(ii) and their H-atom transfer reactivity.

    PubMed

    Porter, Thomas R; Hayes, Ellen C; Kaminsky, Werner; Mayer, James M

    2017-02-21

    The bulky 2,6-di-tert-butyl-4-nitrophenolate ligand forms complexes with [Tp(tBu)Cu(II)](+) and [Tp(tBu)Zn(II)](+) binding via the nitro group in an unusual nitronato-quinone resonance form (Tp(tBu) = hydro-tris(3-tert-butyl-pyrazol-1-yl)borate). The Cu complex in the solid state has a five-coordinate κ(2)-nitronate structure, while the Zn analogue has a four-coordinate κ(1)-nitronate ligand. 4-Nitrophenol, without the 2,6-di-tert-butyl substituents, instead binds to [Tp(tBu)Cu(II)](+) through the phenolate oxygen. This difference in binding is very likely due to the steric difficulty in binding a 2,6-di-tert-butyl-phenolate ligand to the [Tp(tBu)M(II)](+) unit. Tp(tBu)Cu(II)(κ(2)-O2N(t)Bu2C6H2O) reacts with the hydroxylamine TEMPO-H (2,2,6,6-tetramethylpiperidin-1-ol) by abstracting a hydrogen atom. This system thus shows an unusual sterically enforced transition metal-ligand binding motif and a copper-phenolate interaction that differs from what is typically observed in biological and chemical catalysis.

  15. Mechanism-Based Inactivation of CYP2B1 and Its F-Helix Mutant by Two tert-Butyl Acetylenic Compounds: Covalent Modification of Prosthetic Heme Versus Apoprotein

    PubMed Central

    Lin, Hsia-lien; Zhang, Haoming; Noon, Kathleen R.

    2009-01-01

    The mechanism-based inactivation of cytochrome CYP2B1 [wild type (WT)] and its Thr205 to Ala mutant (T205A) by tert-butylphenylacetylene (BPA) and tert-butyl 1-methyl-2-propynyl ether (BMP) in the reconstituted system was investigated. The inactivation of WT by BPA exhibited a kinact/KI value of 1343 min−1mM−1 and a partition ratio of 1. The inactivation of WT by BMP exhibited a kinact/KI value of 33 min−1mM−1 and a partition ratio of 10. Liquid chromatography/tandem mass spectrometry analysis (LC/MS/MS) of the WT revealed 1) inactivation by BPA resulted in the formation of a protein adduct with a mass increase equivalent to the mass of BPA plus one oxygen atom, and 2) inactivation by BMP resulted in the formation of multiple heme adducts that all exhibited a mass increase equivalent to BMP plus one oxygen atom. LC/MS/MS analysis indicated the formation of glutathione (GSH) conjugates by the reaction of GSH with the ethynyl moiety of BMP or BPA with the oxygen being added to the internal or terminal carbon. For the inactivation of T205A by BPA and BMP, the kinact/KI values were suppressed by 100- and 4-fold, respectively, and the partition ratios were increased 9- and 3.5-fold, respectively. Only one major heme adduct was detected following the inactivation of the T205A by BMP. These results show that the Thr205 in the F-helix plays an important role in the efficiency of the mechanism-based inactivation of CYP2B1 by BPA and BMP. Homology modeling and substrate docking studies were presented to facilitate the interpretation of the experimental results. PMID:19700628

  16. Synthesis and properties of optically active nanostructured polymers bearing amino acid moieties by direct polycondensation of 4,4'-thiobis(2-tert-butyl-5-methylphenol) with chiral diacids.

    PubMed

    Mallakpour, Shadpour; Soltanian, Samaneh

    2012-06-01

    Four derivatives of N-trimellitylimido-L-amino acid (4a-4d) were prepared by the reaction of trimellitic anhydride (1) with the L-amino acids (2a-2d) in acetic acid as diacid monomers and were used with the aim to obtain a new family of amino acid based poly(ester-imide)s (PEI)s. The polymerization was performed by direct polycondensation of chiral diacids (4a-4d) with 4,4'-thiobis(2-tert-butyl-5-methylphenol) (5) in the presence of tosyl chloride (TsCl), pyridine and N,N-dimethyl formamide (DMF). Step-growth polymerization was carried out by varying the time of heating and the molar ratio of TsCl/diacid and the optimum conditions were achieved. The synthesized polymers were characterized by means of specific rotation experiments, FT-IR, 1H-NMR, X-ray diffraction techniques and elemental analysis. The surface morphology of the obtained polymers was studied by field emission scanning electron microscopy. The result showed nanostructure morphology of the resulting polymers. The obtained PEIs were soluble in polar aprotic solvents such as DMF, N,N-dimethyl acetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone and protic solvents such as sulfuric acid. Thermal stability and the weight-loss behavior of the PEIs were studied by thermal gravimetric analysis (TGA) techniques. TGA showed that the 10% weight loss temperature in a nitrogen atmosphere was more than 402°C, therefore they had useful levels of thermal stability associated with excellent solubility.

  17. Design, synthesis and antibacterial potential of 5-(benzo[d][1,3]dioxol-5-yl)-3-tert-butyl-1-substituted-4,5-dihydropyrazoles

    PubMed Central

    El-Behairy, Mohammed F.; Mazeed, Tarek E.; El-Azzouny, Aida A.; Aboul-Enein, Mohamed N.

    2014-01-01

    A series of 5-(benzo[d][1,3]dioxol-5-yl)-3-tert-butyl-1-substituted-4,5-dihydropyrazole derivatives 4a–e and 6a–g have been synthesized and spectrally characterized. The antibacterial activity of the novel candidates has been screened using the agar diffusion test. These compounds were endowed with high antibacterial activity against different Gram +ve and Gram −ve bacteria when compared with standard antibacterial drugs. In the light of zone of inhibition and MIC results, Sarcina and Staphylococcus aureus are the most sensitive bacteria where pyrrolidinomethanone derivative 4e showed MICs at 80 and 110 nM, respectively. While hydroxypiperidinoethanone derivative 6c showed MIC at 90 nM for Sarcina. PMID:25972742

  18. Microwave-assisted synthesis of sec/tert-butyl 2-arylbenzimidazoles and their unexpected antiproliferative activity towards ER negative breast cancer cells.

    PubMed

    Abdul Rahim, Aisyah Saad; Salhimi, Salizawati Muhamad; Arumugam, Natarajan; Pin, Lim Chung; Yee, Ng Shy; Muttiah, Nithya Niranjini; Keat, Wong Boon; Abd Hamid, Shafida; Osman, Hasnah; Mat, Ishak b

    2013-12-01

    A new series of N-sec/tert-butyl 2-arylbenzimidazole derivatives was synthesised in 85-96% yields within 2-3.5 min by condensing ethyl 3-amino-4-butylamino benzoate with various substituted metabisulfite adducts of benzaldehyde under focused microwave irradiation. The benzimidazole analogues were characterised using (1)H NMR, (13)C NMR, high resolution MS and melting points. Evaluation of antiproliferative activity of the benzimidazole analogues against MCF-7 and MDA-MB-231 revealed several compounds with unexpected selective inhibitions of MDA-MB-231 in micromolar range. All analogues were found inactive towards MCF-7. The most potent inhibition against MDA-MB-231 human breast cancer cell line came from the unsubstituted 2-phenylbenzimidazole 10a.

  19. Some features of the oxidative conversion of Mo(CO)/sub 6/ in a medium of hydroperoxide or tert-butyl hydroperoxide and an aromatic hydrocarbon

    SciTech Connect

    Fomin, V.M.; Lunin, A.V.; Aleksandrov, Yu.A.

    1988-03-10

    Occurrence of the reaction under study was followed from the decrease in hydroperoxide or of Mo(CO)/sub 6/. The Mo(CO)/sub 6/ content of the reaction was found by determining either the concentration of this compound directly or by determining the concentration of the gaseous products from its transformations (CO + CO/sub 2/). Hydroperoxides (I) and (II) were determined iodometrically. Metal-containing products of the oxidation of Mo(CO)/sub 6/, molybdenum oxides and peroxides, were analyzed by IR and ESR spectroscopy, elemental analysis, and iodometry. Analysis of transformation products of the hydroperoxides (phenol, acetone, dimethylphenylcarbinol, acetophenone, tert-butyl alcohol, water, and oxygen) was performed using gas chromatography. Results are presented.

  20. Determination of optical conductivity and different optical energy losses for non-crystalline Vanadyl tetra tert-butyl 2,3 Naphthalocyanine thinfilms

    SciTech Connect

    Dhanya, I.; Menon, C. S.

    2011-10-20

    Amorphous Vanadyl Tetra Tert Butyl 2, 3 naphthalocyanine thin films (VTTBNc) have been deposited using Physical Vapor Deposition technique. By analyzing the X-ray diffraction, the structure of as deposited films is found to be non-crystalline. Different optical properties of these thin films have been investigated by means of optical absorption and reflection spectra. Various optical constants like band gap energy, E{sub g} the width of band tails of localized states into the gap, E{sub U} and steepness parameter, {beta} gets calculated and the variation of different optical parameters like refractive index, extinction coefficient, dielectric constants, optical conductivity and surface and volume energy losses with photon energy are estimated.

  1. Crystal structure of di­aqua­bis­(4-tert-butyl­benzoato-κO)bis­(nicotinamide-κN 1)cobalt(II) dihydrate

    PubMed Central

    Aşkın, Gülçin Şefiye; Necefoğlu, Hacali; Özkaya, Safiye; Çatak Çelik, Raziye; Hökelek, Tuncer

    2016-01-01

    The asymmetric unit of the mononuclear cobalt complex, [Co(C11H13O2)2(C6H6N2O)2(H2O)2]·2H2O, contains one half of the complex mol­ecule, one coordinating and one non-coordinating water mol­ecule, one 4-tert-butyl­benzoate (TBB) ligand and one nicotinamide (NA) ligand; the Co atom lies on an inversion centre. All ligands coordinating to the Co atom are monodentate. The four nearest O atoms around the Co atom form a slightly distorted square-planar arrangement, with the distorted octa­hedral coordination completed by the two pyridine N atoms of the NA ligands at distances of 2.1638 (11) Å. The coordinating water mol­ecules are hydrogen bonded to the carboxyl O atoms [O ⋯ O = 2.6230 (17) Å], enclosing an S(6) hydrogen-bonding motif, while inter­molecular O—H⋯O hydrogen bonds link two of the non-coordinating water mol­ecules to the coordinating water mol­ecules and NA anions. The dihedral angle between the planar carboxyl­ate group and the adjacent benzene ring is 29.09 (10)°, while the benzene and pyridine rings are oriented at a dihedral angle of 88.53 (4)°. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules, enclosing R 2 2(8), R 2 2(10) and R 4 4(12) ring motifs, forming layers parallel to (001). The C and H atoms of the tert-butyl group of the TBB ligand are disordered over two sets of sites with an occupancy ratio of 0.631 (5):0.369 (5). PMID:27555924

  2. LASERS IN MEDICINE: Quantum efficiency of the laser-excited singlet-oxygen-sensitised delayed fluorescence of the zinc complex of tetra(4-tert-butyl)phthalocyanine

    NASA Astrophysics Data System (ADS)

    Bashtanov, M. E.; Drozdova, N. N.; Krasnovskii, A. A.

    1999-12-01

    An investigation was made of the ratios of the intensity Idf of the singlet-oxygen(1O2)-sensitised delayed fluorescence of the zinc complex of tetra(4-tert-butyl)phthalocyanine (ZnTBPc), with the maximum at λ = 685 nm, to the intensity I1270 of the photosensitised phosphorescence of 1O2 with the maximum at λ = 1270 nm in deuterated benzene when excited with λ = 337 nm nitrogen-laser pulses. Depending on the energy density of the laser radiation (0.25 — 0.7 mJ cm-2) and on the concentration of ZnTBPc (0.06 — 3.4 μM), the ratio of the zero-time intensities of the delayed fluorescence of ZnTBPc and of the singlet-oxygen phosphorescence Idf0/I12700 varied from 0.01 to 0.2 in air-saturated solutions of ZnTBPc. The intensity Idf0 decreased fivefold as a result of saturation with oxygen of air-saturated solutions. The quantum efficiency of the delayed fluorescence was represented by the coefficient α =(Idf0/I12700)kr/(γf[1O2]0[ZnTBPc]), where [1O2]0 is the zero-time concentration of 1O2 after a laser shot; kr is the rate constant of radiative deactivation of 1O2 in the investigated solvent; γf is the quantum yield of the ZnTBPc fluorescence. It was established that in the case of air-saturated solutions of ZnTBPc this coefficient was approximately 200 times less than for metal-free tetra(4-tert-butyl)phthalocyanine and its absolute value was ~2 × 1011 M-2 s-1.

  3. Discovery of 4-tert-butyl-2,6-dimethylphenylsulfur trifluoride as a deoxofluorinating agent with high thermal stability as well as unusual resistance to aqueous hydrolysis, and its diverse fluorination capabilities including deoxofluoro-arylsulfinylation with high stereoselectivity.

    PubMed

    Umemoto, Teruo; Singh, Rajendra P; Xu, Yong; Saito, Norimichi

    2010-12-29

    Versatile, safe, shelf-stable, and easy-to-handle fluorinating agents are strongly desired in both academic and industrial arenas, since fluorinated compounds have attracted considerable interest in many areas, such as drug discovery, due to the unique effects of fluorine atoms when incorporated into molecules. This article describes the synthesis, properties, and reactivity of many substituted and thermally stable phenylsulfur trifluorides, in particular, 4-tert-butyl-2,6-dimethylphenylsulfur trifluoride (Fluolead, 1k), as a crystalline solid having surprisingly high stability on contact with water and superior utility as a deoxofluorinating agent compared to current reagents, such as DAST and its analogues. The roles of substituents on 1k in thermal and hydrolytic stability, fluorination reactivity, and the high-yield fluorination mechanism it undergoes have been clarified. In addition to fluorinations of alcohols, aldehydes, and enolizable ketones, 1k smoothly converts non-enolizable carbonyls to CF(2) groups, and carboxylic groups to CF(3) groups, in high yields. 1k also converts C(=S) and CH(3)SC(=S)O groups to CF(2) and CF(3)O groups, respectively, in high yields. In addition, 1k effects highly stereoselective deoxofluoro-arylsulfinylation of diols and amino alcohols to give fluoroalkyl arylsulfinates and arylsulfinamides, with complete inversion of configuration at fluorine and the simultaneous, selective formation of one conformational isomer at the sulfoxide sulfur atom. Considering the unique and diverse properties, relative safety, and ease of handling of 1k in addition to its convenient synthesis, it is expected to find considerable use as a novel fluorinating agent in both academic and industrial arenas.

  4. Kinetics Aspects of the Reversible Assembly of Copper in Heterometallic Mo3CuS4 Clusters with 4,4'-Di-tert-butyl-2,2'-bipyridine.

    PubMed

    Pino-Chamorro, Jose Ángel; Laricheva, Yuliya A; Guillamón, Eva; Fernández-Trujillo, M Jesús; Algarra, Andrés G; Gushchin, Artem L; Abramov, Pavel A; Bustelo, Emilio; Llusar, Rosa; Sokolov, Maxim N; Basallote, Manuel G

    2016-10-03

    Treatment of the triangular [Mo3S4Cl3(dbbpy)3]Cl cluster ([1]Cl) with CuCl produces a novel tetrametallic cuboidal cluster [Mo3(CuCl)S4Cl3(dbbpy)3][CuCl2] ([2][CuCl2]), whose crystal structure was determined by X-ray diffraction (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine). This species, which contains two distinct types of Cu(I), is the first example of a diimine-functionalized heterometallic M3M'S4 cluster. Kinetics studies on both the formation of the cubane from the parent trinuclear cluster and its dissociation after treatment with halides, supported by NMR, electrospray ionization mass spectrometry, cyclic voltammetry, and density functional theory calculations, are provided. On the one hand, the results indicate that addition of Cu(I) to [1](+) is so fast that its kinetics can be monitored only by cryo-stopped flow at -85 °C. On the other hand, the release of the CuCl unit in [2](+) is also a fast process, which is unexpectedly assisted by the CuCl2(-) counteranion in a process triggered by halide (X(-)) anions. The whole set of results provide a detailed picture of the assembly-disassembly processes in this kind of cluster. Interconversion between trinuclear M3S4 clusters and their heterometallic M3M'S4 derivatives can be a fast process occurring readily under the conditions employed during reactivity and catalytic studies, so their occurrence is a possibility that must be taken into account in future studies.

  5. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone

    SciTech Connect

    Carney, J.M.; Starke-Reed, P.E.; Oliver, C.N.; Landum, R.W.; Cheng, M.S.; Wu, J.F.; Floyd, R.A. )

    1991-05-01

    Oxygen free radicals and oxidative events have been implicated as playing a role in bringing about the changes in cellular function that occur during aging. Brain readily undergoes oxidative damage, so it is important to determine if aging-induced changes in brain may be associated with oxidative events. Previously we demonstrated that brain damage caused by an ischemia/reperfusion insult involved oxidative events. In addition, pretreatment with the spin-trapping compound N-tert-butyl-alpha-phenylnitrone (PBN) diminished the increase in oxidized protein and the loss of glutamine synthetase (GS) activity that accompanied ischemia/reperfusion injury in brain. We report here that aged gerbils had a significantly higher level of oxidized protein as assessed by carbonyl residues and decreased GS and neutral protease activities as compared to young adult gerbils. We also found that chronic treatment with the spin-trapping compound PBN caused a decrease in the level of oxidized protein and an increase in both GS and neutral protease activity in aged Mongolian gerbil brain. In contrast to aged gerbils, PBN treatment of young adult gerbils had no significant effect on brain oxidized protein content or GS activity. Male gerbils, young adults (3 months of age) and retired breeders (15-18 months of age), were treated with PBN for 14 days with twice daily dosages of 32 mg/kg. If PBN administration was ceased after 2 weeks, the significantly decreased level of oxidized protein and increased GS and neutral protease activities in old gerbils changed in a monotonic fashion back to the levels observed in aged gerbils prior to PBN administration. We also report that old gerbils make more errors than young animals and that older gerbils treated with PBN made fewer errors in a radial arm maze test for temporal and spatial memory than the untreated aged controls.

  6. Parallel kinetic resolution of tert-butyl (RS)-3-oxy-substituted cyclopent-1-ene-carboxylates for the asymmetric synthesis of 3-oxy-substituted cispentacin and transpentacin derivatives.

    PubMed

    Aye, Yimon; Davies, Stephen G; Garner, A Christopher; Roberts, Paul M; Smith, Andrew D; Thomson, James E

    2008-06-21

    tert-Butyl (RS)-3-methoxy- and (RS)-3-tert-butyldiphenylsilyloxy-cyclopent-1-ene-carboxylates display excellent levels of enantiorecognition in mutual kinetic resolutions with both lithium (RS)-N-benzyl-N-(alpha-methylbenzyl)amide and lithium (RS)-N-3,4-dimethoxybenzyl-N-(alpha-methylbenzyl)amide. A 50 : 50 pseudoenantiomeric mixture of lithium (S)-N-benzyl-N-(alpha-methylbenzyl)amide and lithium (R)-N-3,4-dimethoxybenzyl-N-(alpha-methylbenzyl)amide allows for the efficient parallel kinetic resolution of the tert-butyl (RS)-3-oxy-substituted cyclopent-1-ene-carboxylates, affording differentially protected 3-oxy-substituted cispentacin derivatives in high yield and >98% de. Subsequent N-deprotection and hydrolysis provides access to 3-oxy-substituted cispentacin derivatives in good yield, and in >98% de and >98% ee, while stereoselective epimerisation and subsequent deprotection affords the corresponding transpentacin analogues in good yield, and in >98% de and >98% ee.

  7. Chlorido[2,3,5,6-tetra­kis­(tert-butyl­sulfanylmeth­yl)phenyl-κ3 S 2,C 1,S 6]palladium(II) dichloro­methane monosolvate

    PubMed Central

    Paz-Morales, Evelyn; Hernández-Ortega, Simón; Morales-Morales, David

    2013-01-01

    The title compound, [Pd(C26H45S4)Cl]·CH2Cl2, crystallizes with a disordered dichloro­methane solvent mol­ecule [occupancy ratio = 0.67 (4):0.33 (4)]. Two of the tert-butyl groups are also disordered [occupancy ratios = 0.70 (5):0.30 (5) and 0.63 (4):0.37 (4)]. Although the pincer ligand offers the possibility for coordination of two different metal atoms, the present structure shows only the coordination of a single PdII atom in a typical S—C—S tridentate pincer manner. The PdII atom is in a slightly distorted square-planar environment with the two tert-butyl­sulfanyl groups arranged in a trans con­formation and with a chloride ligand trans to the σ-bonded aromatic C atom. The structure exhibits a durene-like ligand frame, forming a dihedral angle of 13.6 (4)° with the metal coordination (Pd/S/S/Cl/C) environment. It is noteworthy that the tert-butyl groups are found in a syn arrangement, this being different to that found previously by Loeb, Shimizu & Wisner [(1998). Organometallics, 17, 2324–2327]. PMID:23476488

  8. Molecular structure, vibrational, UV, NMR, HOMO-LUMO, MEP, NLO, NBO analysis of 3,5 di tert butyl 4 hydroxy benzoic acid

    NASA Astrophysics Data System (ADS)

    Mathammal, R.; Sangeetha, K.; Sangeetha, M.; Mekala, R.; Gadheeja, S.

    2016-09-01

    In this study, we report a combined experimental and theoretical study on molecular structure and vibrational spectra of 3,5 di tert butyl 4 hydroxy benzoic acid. The properties of title compound have been evaluated by quantum chemical calculation (DFT) using B3LYP functional and 6-31 + G (d, p) as basis set. IR Spectra has been recorded using Fourier transform infrared spectroscopy (FT-IR) in the region 4000-400 cm-1. The vibrational assignment of the calculated normal modes has been made on the basis set. The isotropic chemical shifts computed by 13C and 1H NMR (Nuclear Magnetic Resonance) analyses also show good agreement with experimental observations. The theoretical UV-Vis spectrum of the compound are used to study the visible absorption maxima (λ max). The structure activity relationship have been interpreted by mapping electrostatic potential surface (MEP), which is valuable information for the quality control of medicines and drug receptor interactions. The Mullikan charges, HOMO (Highest Occupied Molecular Orbital) - LUMO (Lowest Unoccupied Molecular Orbital) energy are analyzed. HOMO-LUMO energy gap and other related molecular properties are also calculated. The Natural Bond Orbital (NBO) analysis is carried out to investigate the various intra and inter molecular interactions of molecular system. The Non-linear optical properties such as dipole moment (μ), polarizability (αtot) and molecular first order hyperpolarizability (β) of the title compound are computed with B3LYP/6-31 + G (d,p) level of theory.

  9. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    SciTech Connect

    Cloud, Andrew N.; Abelson, John R.; Davis, Luke M.; Girolami, Gregory S.

    2014-03-15

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300 °C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M = Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200 °C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18 nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

  10. Comparative study on thiol drugs' effect on tert-butyl hydroperoxide induced luminol chemiluminescence in human erythrocyte lysate and hemoglobin oxidation.

    PubMed

    Sajewicz, Waldemar; Zalewska, Marta; Milnerowicz, Halina

    2015-02-01

    The current studies have investigated the effect of heterocyclic drugs with the single thiol group (thiamazole, mercaptopurine) and dithiol aliphatic drugs (dimercaptosuccinic acid, dithiothreitol) under oxidative stress conditions, using tert-butyl hydroperoxide (t-BuOOH), in human erythrocyte lysate with the luminol-enhanced chemiluminescence technique. Knowing that oxidative processes induced by t-BuOOH are triggered by (oxy)hemoglobin (Hb), the effect of different thiol drugs (RSH) on isolated human Hb oxidation to methemoglobin (MHb) and hemichromes (HChr) was further considered. Three types of chemiluminescence curves, fitting to logistic-exponential model, have been revealed under influence of RSH. Structure of the data (MHb and HChr production, and free radical activity of RSH) in Principal Component Analysis visualization and kinetic profiles of chemiluminescence integrate information in terms of the diversity of RSH reaction mechanisms depending on the specific molecular context of the given thiol: aliphatic or aromatic nature as well as the number and position of the -SH groups in the molecule. The study conducted in presented in vitro systems indicates the potential role of thiol drugs mediated toxicity in an oxidative stress dependent mechanism.

  11. Neuroprotective effects of the novel brain-penetrating antioxidant U-101033E and the spin-trapping agent alpha-phenyl-N-tert-butyl nitrone (PBN).

    PubMed

    Schmid-Elsaesser, R; Hungerhuber, E; Zausinger, S; Baethmann, A; Reulen, H J

    2000-01-01

    Literature on the therapeutic efficacy of free radical scavengers suggests that drugs that are able to cross the blood-brain barrier are more effective in protecting the brain from ischemic damage. However, the exact mechanisms by which brain-penetrating antioxidants act have yet not been delineated. We compared the neuroprotective potential of the newly discovered pyrrolopyrimidine U-101033E with that of alpha-phenyl-N-tert-butyl nitrone (PBN) and investigated their influence on cerebral blood flow. Thirty male Sprague-Dawley rats were subjected to 90 min of middle cerebral artery (MCA) occlusion by an intraluminal filament. Local cerebral blood flow (LCBF) was bilaterally recorded by laser Doppler flowmetry. Neurological deficits were quantified daily. Infarct volume was assessed after 7 days. MCA occlusion reduced ipsilateral LCBF to 20-30% of baseline. After reperfusion, postischemic hyperemia was followed by a decrease in LCBF to about 70% of baseline. There was no difference in LCBF among groups. U-101033E improved neurological function and reduced infarct volume by 52% (P < 0.05). Improvement of neurological function and reduction of infarct volume (-25%) in animals treated with PBN was not significant. We conclude that U-101033E has superior neuroprotective properties compared with PBN. Neither drug improves blood flow during ischemia and 1 h of reperfusion. The mechanisms by which these brain-penetrating antioxidants act remain to be clarified.

  12. Conformational stability, molecular orbital studies (chemical hardness and potential), vibrational investigation and theoretical NBO analysis of 4-tert-butyl-3-methoxy-2,6-dinitrotoluene.

    PubMed

    Saravanan, S; Balachandran, V; Vishwanathan, K

    2014-04-24

    The FT-IR and FT-Raman spectra of 4-tert-butyl-3-methoxy-2,6-dinitrotoluene (musk ambrette) have been recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The total energy calculations of musk ambrette were tried for the possible conformers. The molecular structure, geometry optimization, vibrational frequencies were obtained by the density functional theory (DFT) using B3LYP and LSDA method with 6-311G(d,p) basis set for the most stable conformer "C1". The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated and the scaled values were compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The stability of the molecule arising from hyper conjugate interactions and the charge delocalization has been analyzed using bond orbital (NBO) analysis. The HOMO and LUMO energy gap reveals that the energy gap reflects the chemical activity of the molecule. The dipole moment (μ), polarizability (α), anisotropy polarizability (Δα) and first hyperpolarizability (βtot) of the molecule have been reported. The thermodynamic functions (heat capacity, entropy and enthalpy) were obtained for the range of temperature 100-1000 K. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP).

  13. Protective effects of alpha phenyl-tert-butyl nitrone and ascorbic acid in human adipose derived mesenchymal stem cells from differently aged donors

    PubMed Central

    Hohaus, Christian; Jörg Meisel, Hans; Krystel, llona; Stolzing, Alexandra

    2017-01-01

    Adipose-derived mesenchymal stem cells (ADSCs) are multipotent stem cells that promote therapeutic effects and are frequently used in autologous applications. Little is known about how ADSCs respond to genotoxic stress and whether or not donor age affects DNA damage and repair. In this study, we used the comet assay to assess DNA damage and repair in human ADSCs derived from young (20-40 years), middle-aged (41-60 years), and older (61+ years) donors following treatment with H2O2 or UV light. Tail lengths in H2O2-treated ADSCs were substantially higher than the tail lengths in UV-treated ADSCs. After 30 minutes of treatment with H2O2, ADSCs preconditioned with alpha phenyl-tert-butyl nitrone (PBN) or ascorbic acid (AA) showed a significant reduction in % tail DNA. The majority of ADSCs treated with PBN or AA displayed low olive tail movements at various timepoints. In general and indicative of DNA repair, % tail length and % tail DNA peaked at 30 minutes and then decreased to near-control levels at the 2 hour and 4 hour timepoints. Differently aged ADSCs displayed comparable levels of DNA damage in the majority of these experiments, suggesting that the age of the donor does not affect the DNA damage response in cultured ADSCs. PMID:27638293

  14. Effects of consumption of rooibos (Aspalathus linearis) and a rooibos-derived commercial supplement on hepatic tissue injury by tert-butyl hydroperoxide in Wistar rats.

    PubMed

    Canda, B D; Oguntibeju, O O; Marnewick, J L

    2014-01-01

    This study investigated the antioxidative effect of rooibos herbal tea and a rooibos-derived commercial supplement on tert-butyl hydroperoxide- (t-BHP-) induced oxidative stress in the liver. Forty male Wistar rats consumed fermented rooibos, unfermented rooibos, a rooibos-derived commercial supplement, or water for 10 weeks, while oxidative stress was induced during the last 2 weeks via intraperitoneal injection of 30 µmole of t-BHP per 100 g body weight. None of the beverages impaired the body weight gain of the respective animals. Rats consuming the rooibos-derived commercial supplement had the highest (P < 0.05) daily total polyphenol intake (169 mg/day) followed by rats consuming the unfermented rooibos (93.4 mg/day) and fermented rooibos (73.1 mg/day). Intake of both the derived supplement and unfermented rooibos restored the t-BHP-induced reduction and increased (P < 0.05) the antioxidant capacity status of the liver, while not impacting on lipid peroxidation. The rooibos herbal tea did not affect the hepatic antioxidant enzymes, except fermented rooibos that caused a decrease (P < 0.05) in superoxide dismutase activity. This study confirms rooibos herbal tea as good dietary antioxidant sources and, in conjunction with its many other components, offers a significantly enhanced antioxidant status of the liver in an induced oxidative stress situation.

  15. Facile synthesis and physical and spectral characterization of 2,6-di-tert-butyl-4-nitrophenol (DBNP): A potentially powerful uncoupler of oxidative phosphorylation

    SciTech Connect

    Rivera-Nevares, J.A.; Wyman, J.F.; Minden, D.L. von; Lacy, N.; Macys, D.A. ); Chabinyc, M.L.; Fratini, A.V. . Dept. of Chemistry)

    1995-02-01

    The compound 2,6-di-tert-butyl-4-nitrophenol (DBNP), a potentially powerful uncoupler of ATP-generating oxidative phosphorylation, has been physically and spectroscopically characterized using X-ray crystallography, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), GC-MS spectrometry, Fourier-transformed IR (FTIR) spectrophotometry, UV-Vis spectrophotometry, and FT [sup 1]H- and [sup 13]C-NMR spectroscopy. However, DBNP is not commercially available; therefore, it had to be synthesized in the laboratory prior to toxicity studies. The DBNP was prepared from 2,6-di-tert-butylphenol (DBP) precursor in hexane through an electrophilic aromatic substitution process using NO[sub 2]. A collective yield of 75% was obtained by using two empirically determined end points that prevented the coprecipitation of reaction by-products and resulted in the formation of DBNP in high purity. Excessive amounts of NO[sub 2] in reaction mixtures resulted in the decomposition of preformed DBNP. With a pK[sub a] value of 6.8 and a higher degree of lipophilicity, DBNP may prove to be a stronger uncoupler of oxidative phosphorylation than 2,4-dinitrophenol due to the expected enhancement of passive-diffusion kinetics across biological membranes at the physiological pH of 7.4. The present study is intended to provide analytical toxicologists, industrial hygiene monitors, and other professionals involved in chemical health and safety with a comprehensive source of basic information on the synthesis and analytical chemistry of DBNP.

  16. Disposition of 2,6-di-tert-butyl-4-nitrophenol (DBNP), a submarine atmosphere contaminant, in male Sprague-Dawley rats.

    PubMed

    Still, Kenneth R; Jung, Anne E; Ritchie, Glenn D; Jederberg, Warren W; Wilfong, Erin R; Briggs, G Bruce; Arfsten, Darryl P

    2005-07-01

    The phenol 2,6-di-tert-butyl-4-nitrophenol (DBNP) is a contaminant found onboard submarines and is formed by the nitration of an antioxidant present in turbine lubricating oil TEP 2190. DBNP has been found on submarine interior surfaces, on eating utensils and dishes, and on the skin of submariners. DBNP exposure is a potential health concern because it is an uncoupler of mitochondrial oxidative phosphorylation. Adult male rats were dosed once by oral gavage with 15 or 40 mg/kg DBNP mixed with 14C-DBNP in kanola oil and 0.8% v/v DMSO (n = 16/group). The distribution of 14C in major tissues was measured over time for up to 240 h post-dose. Unexpectedly, 6/16 (40%) of the rats gavaged with 40 mg/kg DBNP died within 24 h of dosing. Prostration, no auditory startle response, reduced locomotor activity, and muscular rigidity persisted in survivors for up to 8 days after dosing. For animals dosed with 15 mg/kg DBNP, radioactivity levels were significantly elevated in the following tissues 24h after dosing: fat>liver>kidneys>heart>lungs>brain>striated muscle>spleen. Radioactivity levels were elevated for fat, liver, kidney, heart, and lungs of animals euthanized 144 h post-dosing and in the liver of animals euthanized 240 h post-dosing. These findings suggest that DBNP may accumulate in the body as a result of continuous or repeat exposures of short interval to DBNP.

  17. Microbial phenolic metabolites improve glucose-stimulated insulin secretion and protect pancreatic beta cells against tert-butyl hydroperoxide-induced toxicity via ERKs and PKC pathways.

    PubMed

    Fernández-Millán, Elisa; Ramos, Sonia; Alvarez, Carmen; Bravo, Laura; Goya, Luis; Martín, María Ángeles

    2014-04-01

    Oxidative stress is accepted as one of the causes of beta cell failure in type 2 diabetes. Therefore, identification of natural antioxidant agents that preserve beta cell mass and function is considered an interesting strategy to prevent or treat diabetes. Recent evidences indicated that colonic metabolites derived from flavonoids could possess beneficial effects on various tissues. The aim of this work was to establish the potential anti-diabetic properties of the microbial-derived flavonoid metabolites 3,4-dihydroxyphenylacetic acid (DHPAA), 2,3-dihydroxybenzoic acid (DHBA) and 3-hydroxyphenylpropionic acid (HPPA). To this end, we tested their ability to influence beta cell function and to protect against tert-butyl hydroperoxide-induced beta cell toxicity. DHPAA and HPPA were able to potentiate glucose-stimulated insulin secretion (GSIS) in a beta cell line INS-1E and in rat pancreatic islets. Moreover, pre-treatment of cells with both compounds protected against beta cell dysfunction and death induced by the pro-oxidant. Finally, experiments with pharmacological inhibitors indicate that these effects were mediated by the activation of protein kinase C and the extracellular regulated kinases pathways. Altogether, these findings strongly suggest that the microbial-derived flavonoid metabolites DHPAA and HPPA may have anti-diabetic potential by promoting survival and function of pancreatic beta cells.

  18. Ethyl tert-butyl ether (ETBE) biodegradation by a syntrophic association of Rhodococcus sp. IFP 2042 and Bradyrhizobium sp. IFP 2049 isolated from a polluted aquifer.

    PubMed

    Le Digabel, Yoann; Demanèche, Sandrine; Benoit, Yves; Vogel, Timothy M; Fayolle-Guichard, Françoise

    2013-12-01

    Ethyl tert-butyl ether (ETBE) enrichment was obtained by adding contaminated groundwater to a mineral medium containing ETBE as the sole carbon and energy source. ETBE was completely degraded to biomass and CO2 with a transient production of tert-butanol (TBA) and a final biomass yield of 0.37 ± 0.08 mg biomass (dry weight).mg(-1) ETBE. Two bacterial strains, IFP 2042 and IFP 2049, were isolated from the enrichment, and their 16S rRNA genes (rrs) were similar to Rhodococcus sp. (99 % similarity to Rhodococcus erythropolis) and Bradyrhizobium sp. (99 % similarity to Bradyrhizobium japonicum), respectively. Rhodococcus sp. IFP 2042 degraded ETBE to TBA, and Bradyrhizobium sp. IFP 2049 degraded TBA to biomass and CO2. A mixed culture of IFP 2042 and IFP 2049 degraded ETBE to CO2 with a biomass yield similar to the original ETBE enrichment (0.31 ± 0.02 mg biomass.mg(-1) ETBE). Among the genes previously described to be involved in ETBE, MTBE, and TBA degradation, only alkB was detected in Rhodococcus sp. IFP 2042 by PCR, and none were detected in Bradyrhizobium sp. IFP 2049.

  19. Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms.

    PubMed

    Bombach, Petra; Nägele, Norbert; Rosell, Mònica; Richnow, Hans H; Fischer, Anko

    2015-04-09

    Ethyl tert-butyl ether (ETBE) is an upcoming groundwater pollutant in Europe whose environmental fate has been less investigated, thus far. In the present study, we investigated the in situ biodegradation of ETBE in a fuel-contaminated aquifer using compound-specific stable isotope analysis (CSIA), and in situ microcosms in combination with total lipid fatty acid (TLFA)-stable isotope probing (SIP). In a first field investigation, CSIA revealed insignificant carbon isotope fractionation, but low hydrogen isotope fractionation of up to +14‰ along the prevailing anoxic ETBE plume suggesting biodegradation of ETBE. Ten months later, oxygen injection was conducted to enhance the biodegradation of petroleum hydrocarbons (PH) at the field site. Within the framework of this remediation measure, in situ microcosms loaded with [(13)C6]-ETBE (BACTRAP(®)s) were exposed for 119 days in selected groundwater wells to assess the biodegradation of ETBE by TLFA-SIP under the following conditions: (i) ETBE as main contaminant; (ii) ETBE as main contaminant subjected to oxygen injection; (iii) ETBE plus other PH; (iv) ETBE plus other PH subjected to oxygen injection. Under all conditions investigated, significant (13)C-incorporation into microbial total lipid fatty acids extracted from the in situ microcosms was found, providing clear evidence of ETBE biodegradation.

  20. Hepatoprotective Activity of Water Extracts from Chaga Medicinal Mushroom, Inonotus obliquus (Higher Basidiomycetes) Against Tert-Butyl Hydroperoxide-Induced Oxidative Liver Injury in Primary Cultured Rat Hepatocytes.

    PubMed

    Hong, Ki Bae; Noh, Dong Ouk; Park, Yooheon; Suh, Hyung Joo

    2015-01-01

    We examined the hepatoprotective activity of Inonotus obliquus water extract (IO-W) against tert-butyl hydroperoxide (t-BHP)-induced oxidative liver injury in the primary cultured rat hepatocyte. The 50% radical scavenging concentrations (SC50s) of IO-W for radical-scavenging activity against 2,2'-azino-bis-(3-ethylbenzothi- azoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) were 5.19 mg/mL and 0.39 mg/mL, respectively. IO-W pretreatment to the primary cultured hepatocytes significantly (p<0.05) protected the cells from t-BHP-induced cytotoxic injury even at a low concentration of IO-W (10 µg/mL). The cellular leakage of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), as well as malondialdehyde (MDA) formation caused by t-BHP were significantly (p<0.05) suppressed by IO-W pretreatment (>100 µg/ mL). In conclusion, this study demonstrates that IO-W exhibited hepatoprotective activity against t-BHP-induced oxidative liver injury in the primary cultured hepatocyte probably via its abilities of quenching free radicals, inhibiting the leakage of ALT, AST, and LDH, and decreasing MDA formation.

  1. Identification of hepatoprotective xanthones from the pericarps of Garcinia mangostana, guided with tert-butyl hydroperoxide induced oxidative injury in HL-7702 cells.

    PubMed

    Wang, Anqi; Liu, Qianyu; Ye, Yang; Wang, Yitao; Lin, Ligen

    2015-09-01

    Bioactivity-guided fractionation of an ethanol-soluble extract from the pericarps of Garcinia mangostana, using tert-butyl hydroperoxide (t-BHP) induced oxidative damage in human normal hepatocytes (HL-7702), led to the identification of 10 known xanthones. Among them, γ-mangostin (γ-Man) exhibited the most potent activity to attenuate t-BHP induced hepatocyte injury. γ-Man significantly ameliorated t-BHP induced reactive oxygen species accumulation, mitochondrial membrane depolarization and cell nuclei morphology change in HL-7702 cells. t-BHP decreased the intracellular levels of key enzymes including glutamate oxaloacetate transaminase and glutamate pyruvate transaminase, which was totally reversed by γ-Man. Moreover, γ-Man significantly decreased the level of lipid peroxidation and increased the levels of superoxide dismutase and reduced glutathione, resulting in the alleviation of oxidative stress. The above results suggest γ-Man is a potential hepatoprotective agent against t-BHP induced oxidative injury, which may benefit the further application of G. mangostana as a health food.

  2. Antioxidant activity and protective effect of extract of Celosia cristata L. flower on tert-butyl hydroperoxide-induced oxidative hepatotoxicity.

    PubMed

    Kim, Yon-Suk; Hwang, Jin-Woo; Sung, Si-Heung; Jeon, You-Jin; Jeong, Jae-Hyun; Jeon, Byong-Tae; Moon, Sang-Ho; Park, Pyo-Jam

    2015-02-01

    This study was undertaken to evaluate the antioxidant potential and protective effects of Celosia cristata L. (Family: Amaranthaceae) flower (CCF) extracts on tert-butyl-hydroperoxide (t-BHP)-induced oxidative damage in the hepatocytes of Chang cells and rat livers. In vitro, CCF extracts exhibited protective effect through their radical scavenging ability to enhance cell viability, prevent reactive oxygen species (ROS) generation, and inhibit mitochondrial membrane depolarisation in t-BHP-induced hepatotoxicity in Chang cells. In vivo, oral feeding of CCF (100mg and 500mg/kg of body weight) to rats for five consecutive days before a single dose of t-BHP (2mmol/kg, i.p.) showed a significant (p<0.05) protective effect by lowering serum levels of glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT). The extract decreased the hepatic levels of lipid peroxidation (MDA) and serum level of triglyceride (TG) against t-BHP-induced oxidative stress. These results indicate that CCF extract prevented oxidative stress-induced liver injury by enhancing hepatocyte antioxidant abilities.

  3. Kilohertz Pulsed-Laser-Polymerization: Simultaneous Determination of Backbiting, Secondary, and Tertiary Radical Propagation Rate Coefficients for tert-Butyl Acrylate.

    PubMed

    Wenn, Benjamin; Junkers, Thomas

    2016-05-01

    For the first time, a 1000 Hz pulse laser has been applied to determine detailed kinetic rate coefficients from pulsed laser polymerization-size exclusion chromatography experiments. For the monomer tert-butyl acrylate, apparent propagation rate coefficients kp (app) have been determined in the temperature range of 0-80 °C. kp (app) in the range of few hundreds to close to 50 000 L·mol(-1) ·s(-1) are determined for low and high pulse frequencies, respectively. The apparent propagation coefficients show a distinct pulse-frequency dependency, which follows an S-shape curve. From these curves, rate coefficients for secondary radial propagation (kp (SPR) ), backbiting (kbb ), midchain radical propagation (kp (tert) ), and the (residual) effective propagation rate (kp (eff) ) can be deduced via a herein proposed simple Predici fitting procedure. For kp (SPR) , the activation energy is determined to be (17.9 ± 0.6) kJ·mol(-1) in excellent agreement with literature data. For kbb , an activation energy of (25.9 ± 2.2) kJ·mol(-1) is deduced.

  4. Discovery of the development candidate N-tert-butyl nodulisporamide: a safe and efficacious once monthly oral agent for the control of fleas and ticks on companion animals.

    PubMed

    Meinke, Peter T; Colletti, Steven L; Fisher, Michael H; Wyvratt, Matthew J; Shih, Thomas L; Ayer, Michelle B; Li, Chunshi; Lim, Julie; Ok, Dong; Salva, Steve; Warmke, Lynn M; Zakson, Michelle; Michael, Bruce F; Demontigny, Pierre; Ostlind, Dan A; Fink, David; Drag, Marlene; Schmatz, Dennis M; Shoop, Wesley L

    2009-06-11

    Nodulisporic acid A (1) is a structurally complex fungal metabolite that exhibits systemic efficacy against fleas via modulation of an invertebrate specific glutamate-gated ion channel. In order to identify a nodulisporamide suitable for monthly oral dosing in dogs, a library of 335 nodulisporamides was examined in an artificial flea feeding system for intrinsic systemic potency as well as in a mouse/bedbug assay for systemic efficacy and safety. A cohort of 66 nodulisporamides were selected for evaluation in a dog/flea model; pharmacokinetic analysis correlated plasma levels with flea efficacy. These efforts resulted in the identification of the development candidate N-tert-butyl nodulisporamide (3) as a potent and efficacious once monthly oral agent for the control of fleas and ticks on dogs and cats which was directly compared to the topical agents fipronil and imidacloprid, with favorable results obtained. Multidose studies over 3 months confirmed the in vivo ectoparasiticidal efficacy and established that 3 lacked overt mammalian toxicity. Tissue distribution studies in mice using [(14)C]-labeled 3 indicate that adipose beds serve as ligand depots, contributing to the long terminal half-lives of these compounds.

  5. Pressure and temperature effects on 2H spin-lattice relaxation times and 1H chemical shifts in tert-butyl alcohol- and urea-D2O solutions

    NASA Astrophysics Data System (ADS)

    Yoshida, Koji; Ibuki, Kazuyasu; Ueno, Masakatsu

    1998-01-01

    The pressure and temperature effects of hydrophobic hydration were studied by NMR spectroscopy. The 1H chemical shifts (δ) were measured at 7.7, 29.9, and 48.4 °C under high pressure up to 294 MPa for HDO contained as impurity in neat D2O, 1 mol kg-1 tert-butyl alcohol (TBA)-D2O, and 1 mol kg-1 urea-D2O solutions, for the methyl group of TBA in the TBA-D2O solution, and for the amino group of urea in the urea-D2O solution. The 2H spin-lattice relaxation times (T1) were measured under the same conditions as the chemical shift measurements for D2O in neat D2O, TBA-D2O and urea-D2O solutions with organic contents up to 8 mol%. The following features are observed for the pressure effect on δ (HDO) and 2H-T1 in TBA-D2O solutions: (1) The δ (HDO) exhibits a downfield shift relative to that in neat D2O, and the difference of δ (HDO) between TBA solution and neat D2O becomes larger with increasing pressure at lower temperature. (2) The decrement of the rotational correlation time of water in the hydration shell of TBA (τcs) relative to the value at atmospheric pressure is smaller than that in the bulk (τc0). (3) The pressure coefficients of T1 are positive in dilute solutions but are negative in more than 4 to 5 mol% solutions. These results suggest that the hydrophobic hydration shell of TBA is different than the open structure of water present in bulk, and resists pressure more strongly than the open structure of water in the bulk. In solutions of 4 to 5 mol%, the hydration shell collapses. On the other hand, the τcs in the hydration shell of urea is slightly larger than that in bulk water at lower pressure, but is obviously larger at higher pressure. In view of the rotational motion of water molecules, urea seems to strengthen the water structure slightly rather than weaken it, although δ (HDO) approaches that in the bulk with pressure. It is difficult to classify urea into a structure maker or a breaker.

  6. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    EPA Science Inventory

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  7. Facile Synthesis of Novel Polyethylene-Based A-B-C Block Copolymers Containing Poly(methyl methacrylate) Using a Living Polymerization System.

    PubMed

    Song, Xiangyang; Ma, Qiong; Cai, Zhengguo; Tanaka, Ryo; Shiono, Takeshi; Grubbs, Robert B

    2016-02-01

    Ethylene-propylene-methyl methacrylate (MMA) and ethylene-hexene-MMA A-B-C block copolymers with high molecular weight (>100,000) are synthesized using fluorenylamide-ligated titanium complex activated by modified methylaluminoxane and 2,6-di-tert-butyl-4-methylphenol for the first time. After diblock copolymerization of olefin is conducted completely, MMA is added and activated by aluminum Lewis acid to promote anionic polymerization. The length of polyolefin and poly (methyl methacrylate) (PMMA) is controllable precisely by the change of the additive amount of olefin and polymerization time, respectively. A soft amorphous polypropylene or polyhexene segment is located between two hard segments of semicrystalline polyethylene and glassy PMMA blocks.

  8. Simultaneous Analysis of Tertiary Butylhydroquinone and 2-tert-Butyl-1,4-benzoquinone in Edible Oils by Normal-Phase High-Performance Liquid Chromatography.

    PubMed

    Li, Jun; Bi, Yanlan; Liu, Wei; Sun, Shangde

    2015-09-30

    During the process of antioxidation of tertiary butylhydroquinone (TBHQ) in oil and fat systems, 2-tert-butyl-1,4-benzoquinone (TQ) can be formed. The toxicity of TQ was much more than that of TBHQ. In the work, a normal-phase high-performance liquid chromatography (NP-HPLC) method for the accurate and simultaneous detection of TBHQ and TQ in edible oils was investigated. A C18 column was used to separate TBHQ and TQ, and the gradient elution solutions consisted of n-hexane containing 5% ethyl acetate and n-hexane containing 5% isopropanol. The ultraviolet (UV) detector was set at dual wavelength mode (280 nm for TBHQ and 310 nm for TQ). The column temperature was 30 °C. Before the NP-HPLC analysis, TBHQ and TQ were first extracted by methanol, subjected to vortex treatment, and then filtered through a 0.45 μm membrane filter. Results showed that linear ranges of TBHQ and TQ were both within 0.10-500.00 μg/mL (R(2) > 0.9999). The limit of detection (LOD) and limit of quantification (LOQ) of TBHQ and TQ were below 0.30 and 0.91 μg/mL and below 0.10 and 0.30 μg/mL, respectively. The recoveries of TBHQ and TQ were 98.92-102.34 and 96.28-100.58% for soybean oil and 96.11-99.42 and 98.83-99.24% for lard, respectively. These results showed that NP-HPLC can be successfully used to analyze simultaneously TBHQ and TQ in the oils and fats.

  9. Relationship between sublethal injury and microbial inactivation by the combination of high hydrostatic pressure and citral or tert-butyl hydroquinone.

    PubMed

    Somolinos, Maria; García, Diego; Pagán, Rafael; Mackey, Bernard

    2008-12-01

    The aim was to investigate (i) the occurrence of sublethal injury in Listeria monocytogenes, Escherichia coli, and Saccharomyces cerevisiae after high hydrostatic pressure (HHP) treatment as a function of the treatment medium pH and composition and (ii) the relationship between the occurrence of sublethal injury and the inactivating effect of a combination of HHP and two antimicrobial compounds, tert-butyl hydroquinone (TBHQ) and citral. The three microorganisms showed a high proportion of sublethally injured cells (up to 99.99% of the surviving population) after HHP. In E. coli and L. monocytogenes, the extent of inactivation and sublethal injury depended on the pH and the composition of the treatment medium, whereas in S. cerevisiae, inactivation and sublethal injury were independent of medium pH or composition under the conditions tested. TBHQ alone was not lethal to E. coli or L. monocytogenes but acted synergistically with HHP and 24-h refrigeration, resulting in a viability decrease of >5 log(10) cycles of both organisms. The antimicrobial effect of citral depended on the microorganism and the treatment medium pH. Acting alone for 24 h under refrigeration, 1,000 ppm of citral caused a reduction of 5 log(10) cycles of E. coli at pH 7.0 and almost 3 log(10) cycles of L. monocytogenes at pH 4.0. The combination of citral and HHP also showed a synergistic effect. Our results have confirmed that the detection of sublethal injury after HHP may contribute to the identification of those treatment conditions under which HHP may act synergistically with other preserving processes.

  10. Simultaneous determination of organotin compounds in textiles by gas chromatography-flame photometry following liquid/liquid partitioning with tert-butyl ethyl ether after reflux-extraction.

    PubMed

    Hamasaki, Tetsuo

    2013-10-15

    A rapid and relatively clean method for determining six organotin compounds (OtC) in textile goods with a gas chromatograph equipped with a conventional flame photometric detector (GC-FPD) has been developed. After the reflux-extraction to use methanol containing 1% (v/v) of hydrochloric acid, five hydrophobic OtC (e.g. tributyltin: TBT) and slightly less hydrophobic dibutyltin (DBT) could be drawn out through partitioning between the methanolic buffer solution and tert-butyl ethyl ether instead of hazardous dichloromethane, of which usage is provided by the official-methods notified in Japan, and following the ethylation procedure to use sodium tetraethylborate, the OtC were determined with the GC-FPD. The recoveries of DBT, TBT, tetrabutyltin, triphenyltin, dioctyltin, and trioctyltin from textile products (cloth diaper, socks, and undershirt) were 60-77, 89-98, 86-94, 71-78, 85-109, and 70-79% respectively, and their coefficients of variation were 2.5-16.5%. Calibration curves for OtC were linear (0.01-0.20 μg as Sn mL(-1)), and the correlation coefficients were 0.9922-1.0000. Their detection limits were estimated to be 2.7-9.7 n gas Sn g(-1). These data suggested that this method would be applicable to their simultaneous determination. Five retailed textile goods were analyzed by this proposed method, and 0.013-0.65 µg as Sn g(-1) of OtC (e.g. DBT) were determined in three. Moreover, a possibility that various OtC including non-targeted species in textile would be specifically detected by applying the studying speciation-technique of controlling signal intensity-flame fuel gas pressures of the GC-FPD was found.

  11. Rate constants for the reaction of OH radicals with n-propyl, n-butyl, iso-butyl and tert-butyl vinyl ethers

    NASA Astrophysics Data System (ADS)

    Thiault, G.; Mellouki, A.

    Rate constants for the reaction of OH radicals with n-propyl vinyl ether (PVE, CH 3CH 2CH 2OCH dbnd CH 2), n-butyl vinyl ether (BVE, CH 3CH 2CH 2CH 2OCH dbnd CH 2), iso-butyl vinyl ether (IBVE, (CH 3) 2CHCH 2OCH dbnd CH 2) and tert-butyl vinyl ether (TBVE, (CH 3) 3COCH dbnd CH 2), have been measured in the temperature and pressure ranges 232-373 K and 30-300 Torr using the pulsed laser photolysis-laser-induced fluorescence method, and at 298 K and 760 Torr using the relative method. The obtained results are k1=(9.3±0.6)×10 -12 exp[(708±20)/ T], k2=(1.5±0.2)×10 -11 exp[(572±42)/ T], k3=(1.6±0.1)×10 -11 exp[(567±20)/ T], k4=(1.7±0.2)×10 -11 exp[(549±25)/ T] cm 3 molecule -1 s -1. The values at 298 K are k1=(1.0±0.1)×10 -10, k2=(1.0±0.1)×10 -10, k3=(1.1±0.1)×10 -10, k4=(1.1±0.1)×10 -10 cm 3 molecule -1 s -1. The deduced tropospheric lifetimes of these ethers for reaction with OH are of the order of 1 h and they are comparable to those for reaction with ozone.

  12. Cleavage of carbon-nitrogen bond in 1,3,5-tri-tert-butyl-1,3,5-triazacyclohexane by copper(I) bromide

    NASA Astrophysics Data System (ADS)

    Khatua, Suman; Majumdar, Amit

    2016-09-01

    Reactions of CuCl, CuCl2 and CuBr2 with 1,3,5-tri-tert-butyl-1,3,5-triazacyclohexane (tBu3tach) resulted in the formation of [(tBu3tach-H)+(CuCl2)] (1), [(tBu3tach)(CuCl2)] (2) and [(tBu3tach-H)+(CuBr2)] (3) respectively. Interestingly, CuBr was found to mediate the cleavage of the C-N bonds of tBu3tach in a vast range of solvents, namely, chloroform, dichloromethane, tetrahydrofuran, acetonitrile and methanol to yield [Cu4Br4(tBuNCH2)4] (4) and stands as an example of C-N bond cleavage of 1,3,5-triazacyclohexane rings by copper salts. Compounds 1 and 3 contains amidinium cations and are unstable in solution towards the release of copper. The release of copper from 3 in solution was confirmed by the isolation of the compound, [CuBr(MeCN)] (5). Formation of the amidinium cations [(tBu3tach-H)+] in 1 and 3 may be avoided by the use of PPh3 to yield [(tBu3tach)Cu(PPh3)](PF6) (6), while the coordinated N-tert-butylmethanimine (tBuNCH2) in 4 could be replaced by PPh3 to yield [Cu4Br4(PPh3)4] (7). Complexes 1-7 are characterized by a combination of single crystal X-ray structure determination and/or elemental analysis, NMR, IR, and UV-Vis spectroscopy, and Mass spectrometry.

  13. Blockade of the inward rectifier potassium current by the Ca(2+)-ATPase inhibitor 2',5'-di(tert-butyl)-1,4-benzohydroquinone (BHQ).

    PubMed Central

    Hasséssian, H.; Vaca, L.; Kunze, D. L.

    1994-01-01

    1. We have investigated the effect of 2',5'-di (tert-butyl)-1,4-benzohydroquinone (BHQ) and thapsigargin, inhibitors of the intracellular Ca(2+)-ATPase, on ionic currents in rat basophilic leukaemia (RBL-2H3) cells under whole cell voltage clamp. 2. The whole cell current was inwardly rectifying and reversed at -35 +/- 6 mV (n = 16). The conductance of the inward current increased as the concentration of extracellular K+ was raised from 2.7 to 5.4, 10.8 and 21.6 mM. BaCl2 (100 microM) reduced the current to a small linear component and shifted the reversal potential to -4 +/- 3 mV (n = 6). A concentration of 50 microM BaCl2 produced 45 +/- 10% (n = 4) blockade of the inward current. 3. BHQ and thapsigargin were examined for their effects on the inwardly rectifying current. A maximal blockade of inward current was obtained within 6 min after perfusion with 10 microM BHQ. The small current remaining after blockade with BHQ had a linear voltage-dependence and reversed direction at -6 +/- 9 mV (n = 6). Thapsigargin (up to 3 microM) was without effect on the inward rectifier. 4. In contrast to the blockade of the inward rectifier produced by BaCl2 which was predominantly on the steady state current, particularly at the very hyperpolarized holding potentials (-120 mV), blockade by BHQ was equally strong on the instantaneous as well as the steady state current. 5. Blockade of the inward rectifier by BHQ may cause depolarization of the cell which will affect Ca2+ influx during investigations with BHQ.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7952872

  14. Protective effect of the peroxisome proliferator-activated receptor (PPAR)-γ, ligand rosiglitazone on tert-butyl hydroperoxide-induced QZG cell injury.

    PubMed

    Li, Wen-Li; Liang, Xin; Wang, Xin; Zhang, Xiao-Di; Liu, Rui; Zhang, Wei; Chen, Hong-Li; Qin, Xu-Jun; Bai, Hua; Hai, Chun-Xu

    2011-09-01

    Tert-butyl hydroperoxide (t-BHP) can induce cell injury by forming free radical intermediates. Peroxisome proliferator-activated receptor (PPAR)-γ is a ligand-activated transcription factor belonging to nuclear hormone receptor superfamily, and is involved in oxidative stress response. Thiazolidinedione rosiglitazone is a potent PPARγ agonist. The main aim of this study was to investigate the protective effect of rosiglitazone on QZG cells from t-BHP-induced toxicity. MTT assay showed that t-BHP treatment resulted in decreased cell viability in a concentration dependent manner. Under 400 μM t-BHP treatment, QZG cell displayed significant loss of viability and dramatic morphological changes characterized by changing in shape from triangle to spherical, disappearance of cell cilia, swollen mitochondrial and typical apoptotic alteration such as condensation of chromatin, and appearance of crescent under light microscopy and electronic microscopy, respectively. Flow cytometry analysis indicated that 30.90±1.70% QZG cells were undergoing apoptosis compared to that of the control cells (2.80±0.85%, P<0.05). There was substantial population of the cells undergoing necrosis (28.5.%). 25 μM rosiglitazone treatment inhibited the t-BHP-induced cell toxicity significantly by restoring the cell viability, reducing cell population undergone apoptosis to normal level (3.5%) and ameliorating t-BHP-induced pathological changes. Real-time RT-PCR results showed that 400 μM t-BHP caused dramatic down-regulation of PPARγ expression in QZG cells, whereas combining treatment with 25 μM rosiglitazone resistant to PPARγ expression to normal level partially. Overall, our results indicate that rosiglitazone has protective effect against t-BHP-induced QZG cell injury. The protective effect of rosiglitazone is involved in its regulation on the function of PPARγ.

  15. Bis(5-tert-butyl-2-hydroxy-3-methylbenzyl)(6-hydroxyhexyl)ammonium chloride monohydrate, an anion receptor complex.

    PubMed

    Sopo, Harri; Sillanpää, Reijo

    2007-07-01

    In the title compound, C(30)H(48)NO(3)(+) x Cl(-) x H(2)O, the cation acts with a water molecule as a chloride ion receptor. The chloride ion forms three strong intramolecular hydrogen bonds. The water molecule forms both an intramolecular bridge between one phenol H atom and the chloride ion, and an intermolecular link to the aliphatic alcohol O atom. Weak intermolecular C-H...Cl and C-H ...O hydrogen bonds provide additional packing interactions.

  16. 3-tert-Butyl-1-(3-nitro­phen­yl)-1H-pyrazol-5-amine

    PubMed Central

    Hernández-Ortega, Simón; Cuenú-Cabezas, Fernando; Abonia-González, Rodrigo; Cabrera-Ortiz, Armando

    2012-01-01

    In the title compound, C13H16N4O2, the pyrazole ring forms a dihedral angle of 50.61 (6)° with the 3-nitro-phenyl ring. The plane of the nitro group is twisted by 6.8 (7)° out of the plane of the phenyl ring. In the crystal, the mol­ecules are linked by N—H⋯N and N—H⋯O hydrogen bonds, forming sheets in the bc plane. In addition, a weak C—H⋯N inter­action is observed. PMID:23284484

  17. Discovery of N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (VX-770, ivacaftor), a potent and orally bioavailable CFTR potentiator.

    PubMed

    Hadida, Sabine; Van Goor, Fredrick; Zhou, Jinglan; Arumugam, Vijayalaksmi; McCartney, Jason; Hazlewood, Anna; Decker, Caroline; Negulescu, Paul; Grootenhuis, Peter D J

    2014-12-11

    Quinolinone-3-carboxamide 1, a novel CFTR potentiator, was discovered using high-throughput screening in NIH-3T3 cells expressing the F508del-CFTR mutation. Extensive medicinal chemistry and iterative structure-activity relationship (SAR) studies to evaluate potency, selectivity, and pharmacokinetic properties resulted in the identification of N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (VX-770, 48, ivacaftor), an investigational drug candidate approved by the FDA for the treatment of CF patients 6 years of age and older carrying the G551D mutation.

  18. A proof for negative vicinal proton-proton and proton-carbon spin-spin couplings in aliphatic aldehydes by using temperature and solvent dependence. Conformational studies on glycolaldehyde and di- tert-butyl ethanal

    NASA Astrophysics Data System (ADS)

    Laatikainen, Reino; Král, Vladimir; Äyräs, Pertti

    A negative 1H, 1H three-bond coupling 3J( CHO), H) was found for glycolaldehyde by varying solvent composition. A negative 3J( CHO), C) is demonstrated for di- tert-butyl ethanal by following the temperature dependence of the coupling. 3JgB( CHO), H) of -0.73 and 3Jg( CHO), C) of -0.26 Hz (g = gauche) for the compounds were estimated by fitting the temperature dependence of the couplings by using the two-site approach. The conformational behavior of the vicinal couplings in aliphatic aldehydes and the conformations of the title compounds are briefly discussed.

  19. Mono- and binuclear tris(3-tert-butyl-2-sulfanylidene-1H-imidazol-1-yl)hydroborate bismuth(III) dichloride complexes: a soft scorpionate ligand can coordinate to p-block elements.

    PubMed

    Fujisawa, Kiyoshi; Kuboniwa, Ayaka; Kiss, Mercedesz; Szilagyi, Robert K

    2016-11-01

    Tris(pyrazolyl)hydroborate ligands have been utilized in the fields of inorganic and coordination chemistry due to the ease of introduction of steric and electronic substitutions at the pyrazole rings. The development and use of the tris(pyrazolyl)hydroborate ligand, called a `scorpionate', were pioneered by the late Professor Swiatoslaw Trofimenko. He developed a second generation for his ligand system by the introduction of 3-tert-butyl and 3-phenyl substituents and this new ligand system accounted for many remarkable developments in inorganic and coordination chemistry in stabilizing monomeric species while maintaining an open coordination site. Bismuth is remarkably harmless among the toxic heavy metal p-block elements and is now becoming popular as a replacement for highly toxic metal elements, such as lead. Two bismuth(III) complexes of the anionic sulfur-containing tripod tris(3-tert-butyl-2-sulfanylidene-1H-imidazol-1-yl)hydroborate ligand were prepared. By recrystallization from MeOH/CH2Cl2, orange crystals of dichlorido(methanol-κO)[tris(3-tert-butyl-2-sulfanylidene-1H-imidazol-1-yl-κS)hydroborato]bismuth(III), [Bi(C21H34BN6S3)Cl2(CH4O)], (I), were obtained, manifesting a mononuclear structure. By using a noncoordinating solvent, red crystals of the binuclear structure with bridging Cl atoms were obtained, namely di-μ-chlorido-bis{chlorido[tris(3-tert-butyl-2-sulfanylidene-1H-imidazol-1-yl-κS)hydroborato]bismuth(III)}, [Bi2(C21H34BN6S3)2Cl4], (II). These complexes show {Bi(III)S3Cl2O} and {Bi(III)S3Cl3} coordination geometries with average Bi(III)-S bond lengths of 2.73 and 2.78 Å in (I) and (II), respectively. The overall Bi(III) coordination geometry is distorted octahedral due to stereochemically active lone pairs. The three Bi(III)-S bond lengths are almost equal in (I) but show considerable differences in (II), with one long and two shorter distances that also correlate with changes in the UV-Vis and (1)H NMR spectra. For direct measurements

  20. Reversible molecular switching at a metal surface: A case study of tetra- tert-butyl-azobenzene on Au(1 1 1)

    NASA Astrophysics Data System (ADS)

    Wolf, Martin; Tegeder, Petra

    2009-06-01

    Molecular switches represent a fascinating class of functional molecules, whose properties can be reversibly changed between different molecular states by excitation with light or other external stimuli. Using surface science concepts like self assembly to align such molecules in a well-defined geometry at solid surfaces, new functional properties may arise, which are relevant for different fields like, e.g., molecular electronics, sensing or biocompatible interfaces. For a microscopic understanding of molecular switching at surfaces, it is essential to obtain detailed knowledge on the underlying elementary processes, for instance the excitation mechanism in photoinduced switching. Here we present a case study of a specifically designed azobenzene derivative on a metal surface, namely tetra- tert-butyl-azobenzene (TBA) adsorbed on Au(1 1 1), which is so far one of the best studied system for which reversible conformational changes have been demonstrated. TBA/Au(1 1 1) can thus be viewed as model system in order to gain deeper insights into molecular switching processes at metal surfaces. We have studied the photoinduced and thermally activated reversible switching of TBA in direct contact with a Au(1 1 1) surface using two-photon photoemission (2PPE) and high-resolution electron energy loss spectroscopy (HREELS). The trans/cis-isomerization of TBA is accompanied by reversible changes in the geometrical and electronic structure of the molecules, allowing to gain mechanistic and quantitative insight into the switching process. In particular, the cross sections for the photoisomerization, the ratio between the cis- and trans-TBA in the photostationary state, and the activation energy for the thermally induced cis→trans reaction have been determined and are found to be strongly reduced compared to the corresponding quantities in the liquid phase. Furthermore, the mechanism of optical excitation and molecular switching of TBA on Au(1 1 1) has been identified to arise

  1. A low-temperature modification of hexa-tert-butyldisilane and a new polymorph of 1,1,2,2-tetra-tert-butyl-1,2-diphenyldisilane.

    PubMed

    Scholz, Stefan; Lerner, Hans-Wolfram; Bats, Jan W

    2014-07-01

    Crystals of hexa-tert-butyldisilane, C24H54Si2, undergo a reversible phase transition at 179 (2) K. The space group changes from Ibca (high temperature) to Pbca (low temperature), but the lattice constants a, b and c do not change significantly during the phase transition. The crystallographic twofold axis of the molecule in the high-temperature phase is replaced by a noncrystallographic twofold axis in the low-temperature phase. The angle between the two axes is 2.36 (4)°. The centre of the molecule undergoes a translation of 0.123 (1) Å during the phase transition, but the conformation angles of the molecule remain unchanged. Between the two tri-tert-butylsilyl subunits there are six short repulsive intramolecular C-H···H-C contacts, with H···H distances between 2.02 and 2.04 Å, resulting in a significant lengthening of the Si-Si and Si-C bonds. The Si-Si bond length is 2.6863 (5) Å and the Si-C bond lengths are between 1.9860 (14) and 1.9933 (14) Å. Torsion angles about the Si-Si and Si-C bonds deviate by approximately 15° from the values expected for staggered conformations due to intramolecular steric H···H repulsions. A new polymorph is reported for the crystal structure of 1,1,2,2-tetra-tert-butyl-1,2-diphenyldisilane, C28H46Si2. It has two independent molecules with rather similar conformations. The Si-Si bond lengths are 2.4869 (8) and 2.4944 (8) Å. The C-Si-Si-C torsion angles deviate by between -3.4 (1) and -18.5 (1)° from the values expected for a staggered conformation. These deviations result from steric interactions. Four Si-C(t-Bu) bonds are almost staggered, while the other four Si-C(t-Bu) bonds are intermediate between a staggered and an eclipsed conformation. The latter Si-C(t-Bu) bonds are about 0.019 (2) Å longer than the staggered Si-C(t-Bu) bonds.

  2. Synthesis, crystal structures, insecticidal activities, and structure--activity relationships of novel N'-tert-Butyl-N'-substituted-benzoyl-N-[di(octa)hydro]benzofuran{(2,3-dihydro)benzo[1,3]([1,4])dioxine}carbohydrazide derivatives.

    PubMed

    Huang, Zhiqiang; Liu, Yuxiu; Li, Yongqiang; Xiong, Lixia; Cui, Zhipeng; Song, Hongjian; Liu, Hongli; Zhao, Qiqi; Wang, Qingmin

    2011-01-26

    Several series of novel N'-tert-butyl-N'-substituted-benzoyl-N-[di(octa)hydro]benzofuran{(2,3-dihydro)benzo[1,3]([1,4])dioxine}carbohydrazide derivatives Ia, Ib, IIa-IIg, IIIa, IIIb, and Va-Vc were designed and synthesized. Their structures were confirmed by (1)H NMR spectra, HRMS, and X-ray single-crystal structures. The larvicidal activities against oriental armyworm, beet armyworm, diamond-back moth, and corn borer of these compounds were evaluated and contrasted with those of RH-2485, JS-118, and ANS-118. The larvicidal activities against oriental armyworm indicate that monosubstituent or multisubstituents and the substituting group position cannot promote increasing activities and that the cycle region in the general structure of IIa-IIg is much more sensitive to activity than that in the general structure of Ia and Ib. The space volume of the A ring in the structure of Va cannot be too large; if it is, the activity will be decreased significantly. Stomach toxicities against beet armyworm, diamond-back moth, and corn borer of compounds Ia, Ib and IIg indicate that benzoheterocyclic analogues of N-tert-butyl-N,N'-diacylhydrazines show significant selectivities to different lepidopterous pests.

  3. A π-stacked chain of hydrogen-bonded dimers in 3-tert-butyl-1-(4-chlorophenyl)-4-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one and a π-stacked sheet of hydrogen-bonded chains in 3-tert-butyl-1-(4-chlorophenyl)-4-(4-methoxyphenyl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one.

    PubMed

    Portilla, Jaime; Lizarazo, Carolina; Cobo, Justo; Glidewell, Christopher

    2011-12-01

    In 3-tert-butyl-1-(4-chlorophenyl)-4-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one, C(29)H(22)ClN(3)O, (I), inversion-related pairs of molecules are linked by C-H...O hydrogen bonds to form R(2)(2)(18) dimers, which are themselves linked into a chain by a π-π stacking interaction between inversion-related pairs of molecules. In 3-tert-butyl-1-(4-chlorophenyl)-4-(4-methoxyphenyl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one, C(30)H(24)ClN(3)O(2), (II), which crystallizes in the space group P-1, with Z' = 2 and with different orientations for the methoxy groups in the two independent molecules, a combination of C-H···O and C-H···π(arene) hydrogen bonds links the molecules into chains of rings, which are further linked into sheets by a π-π stacking interaction.

  4. The role of the liver in the production of free radicals during halothane anaesthesia in the rat. Quantification of N-tert-butyl-alpha-(4- nitrophenyl)nitrone (PBN)-trapped adducts in bile from halothane as compared with carbon tetrachloride.

    PubMed Central

    Hughes, H M; George, I M; Evans, J C; Rowlands, C C; Powell, G M; Curtis, C G

    1991-01-01

    Halothane or CCl4 was co-administered with the spin trap N-tert-butyl-alpha-(4-nitrophenyl)nitrone (PBN) to rats fitted with bile duct cannuli or to isolated perfused liver preparations. Rats maintained under halothane anaesthesia generated significant amounts of free radicals, and 5-9 nmol was excreted in bile over 1 h. No adducts were detected in urine or plasma. The hepatic origin of these free radicals was confirmed by studies on isolated perfused livers where the addition of halothane to the perfusate resulted in the biliary elimination of the same PBN-trapped radical adducts. Similarly, following CCl4 administration, the same radical species were eliminated in bile in the whole animal and the perfused liver preparation. In the perfused liver, over 3 h the total biliary elimination of radicals derived from halothane or CCl4 (administered at equimolar concentrations) was approximately the same (5-7 nmol); however, the elimination of halothane-derived radicals was more rapid over the first 1 h. PMID:1651704

  5. A radical addition/cyclization of diverse ethers to 2-isocyanobiaryls under mildly basic aqueous conditions.

    PubMed

    Anton-Torrecillas, Cintia; Felipe-Blanco, Diego; Gonzalez-Gomez, Jose C

    2016-12-07

    Mildly basic aqueous conditions facilitated the tert-butyl peroxybenzoate (TBPB) mediated dehydrogenative addition of a range of ethers, including acetals, to diverse substituted 2-isocyanobiaryls. Mechanistic studies suggest that this radical cascade is an example of base promoted homolytic aromatic substitution (BHAS).

  6. Differential effects of tert-butyl-benzohydroquinone, a putative SR Ca2+ pump inhibitor, on isometric relaxation during the staircase in the rabbit and rat ventricle.

    PubMed Central

    Baudet, S.; Khammari, A.; Noireaud, J.; Le Marec, H.

    1996-01-01

    1. The effects of 2,5 di-(tert-butyl)-1,4-benzohydroquinone (TBQ), a putative inhibitor of the sarcoplasmic reticulum Ca2+ pump, on mechanical relaxation and contraction-relaxation coupling have been studied at different frequencies (0.5-3 Hz) in isometrically contracting isolated right ventricular preparations of rabbit and rat at 37 degrees C. Two types of mechanical responses have been studied: the twitch tension and the force transient (rewarming spike, RSp) following a rapid cooling contracture (RCC, an index of sarcoplasmic reticulum Ca2+ content) on return to 37 degrees C. 2. The coupling between contraction and relaxation was assessed by two methods: (a) by evaluation of the variation of the slope relating the maximal rate of tension fall to twitch peak tension; (b) by modelling the twitch according to the following equation: TwT (t) = C x (t/A)B x exp(1-(t/AB) where TwT(t) is the time course of isometric tension, t is time, C and A are an inotropic and a chronotropic index respectively and B, a contraction-relaxation coupling index (Nwasokwa, 1993). 3. In the rabbit ventricle, 30 microM TBQ did not prevent the frequency-induced shortening of the twitch time to half-relaxation (t1/2) and of the time constant (tau) describing the final part of the RSp relaxation (tau decreased from 140 ms (0.5 Hz) to 133 ms (3 Hz) in control and from 253 ms (0.5 Hz) to 197 ms (3 Hz) after exposure to TBQ). By contrast, at a given frequency, the prolongation of relaxation induced by TBQ was proportional to its inotropic effect (unchanged slopes and B values) but TBQ did not prevent the acceleration of relaxation observed at high frequencies: B increased from 2.02 (0.5 Hz) to a peak value of 2.18 (1 Hz) in control and from 1.88 (0.5 Hz) to a maximum of 2.48 (2 Hz) after TBQ exposure. TBQ significantly attenuated the decay of RCCs elicited after increasingly longer periods of muscle quiescence as normally observed in control conditions. 4. In the rat ventricle, TBQ depressed

  7. Dynamics of ultrafast intramolecular charge transfer with 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) in n-hexane and acetonitrile.

    PubMed

    Druzhinin, Sergey I; Kovalenko, Sergey A; Senyushkina, Tamara; Zachariasse, Klaas A

    2007-12-20

    The intramolecular charge transfer (ICT) reaction of 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) in n-hexane and acetonitrile (MeCN) is investigated by picosecond fluorescence experiments as a function of temperature and by femtosecond transient absorption measurements at room temperature. NTC6 in n-hexane is dual fluorescent from a locally excited (LE) and an ICT state, with a quantum yield ratio Phi'(ICT)/Phi(LE) of 0.35 at +25 degrees C and 0.67 at -95 degrees C, whereas in MeCN mainly an ICT emission is observed. From the temperature dependence of Phi'(ICT)/Phi(LE) for NTC6 in n-hexane, an LE/ICT enthalpy difference DeltaH of -2.4 kJ/mol is determined. For comparison, 1-isopropyl-6-cyano-1,2,3,4-tetrahydroquinoline (NIC6) is also investigated. This molecule does not undergo an ICT reaction, because of its larger energy gap DeltaE(S1,S2). From the molar absorption coefficient epsilonmax of NTC6 as compared with other aminobenzonitriles, a ground-state amino twist angle theta of approximately 22 degrees is deduced. The increase of epsilonmax between n-hexane and MeCN indicates that theta decreases when the solvent polarity becomes larger. Whereas single-exponential LE fluorescence decays are obtained for NIC6 in n-hexane and MeCN, the LE and ICT decays of NTC6 in these solvents are double exponential. For NTC6 in n-hexane at -95 degrees C, with a shortest decay time of 20 ps, the forward (ka=2.5x10(10) s(-1)) and backward (kd=2.7x10(10) s(-1)) rate constants for the LE<-->ICT reaction are determined from the time-resolved LE and ICT fluorescence spectra. For NTC6 in n-hexane and MeCN, the excited-state absorption (ESA) spectrum at 200 fs after excitation is similar to the LE(ESA) spectra of NIC6 and 4-(dimethylamino)benzonitrile (DMABN), showing that LE is the initially excited state for NTC6. These results indicate that the LE states of NTC6, NIC6, and DMABN have a comparable molecular structure. The ICT(ESA) spectrum of NTC6 in n-hexane and Me

  8. Methyl tert-butyl ether (MTBE) and other volatile organic compounds in lakes in Byram Township, Sussex County, New Jersey, summer 1998

    USGS Publications Warehouse

    Baehr, Arthur L.; Zapecza, Otto S.

    1998-01-01

    Oxygenated gasoline is used in watercraft on lakes across northern New Jersey. Many of these lakes are surrounded by communities similar to those at Cranberry Lake and at Lake Lackawanna, which depend largely on wells for water supply. Therefore, a regional assessment of the occurrence of these compounds in lakes and ground water is needed to determine the effect of the use of oxygenated gasoline on water quality in lakeside environments throughout northern New Jersey

  9. 3-tert-Butyl 5-methyl (2R,4S,5R)-2-(4-methoxyphenyl)-4-(3-nitrophenyl)-1,3-oxazolidine-3,5-dicarboxylate

    PubMed Central

    Montiel-Smith, Sara; Bernès, Sylvain; Sandoval-Ramírez, Jesús; Meza-Reyes, Socorro; Dubois, Joëlle

    2012-01-01

    The title mol­ecule, C23H26N2O8, was synthesized in three steps starting from m-nitro­cinnamic acid. The central oxazolidine ring adopts an almost perfect envelope conformation with the O atom as the flap [puckering parameter ϕ = 0.3 (6)°]. The dihedral angle formed by the benzene rings is 61.81 (9)°. In the crystal, mol­ecules are connected into double chains parallel to [010] by C—H⋯O hydrogen bonds. The absolute configuration was assigned from the synthetic procedure. PMID:23284466

  10. SIMULATION OF A METHYL TERT-BUTYL ETHER (MTBE) PLUME WITH MODFLOW, MT3D AND THE HYDROCARBON SPILL SCREENING MODEL (HSSM)

    EPA Science Inventory

    An MTBE plume in the Upper Glacial Aquifer of Long Island, NY was simulated by combining MODFLOW and MT3D with a semi-analytical model for a gasoline release. The first step was to develop and calibrate a 3-dimensional steady-state numerical ground water flow model of the aquife...

  11. Simulation of methyl tert-butyl ether (MTBE) transport to ground water from immobile sources of gasoline in the vadose zone

    USGS Publications Warehouse

    Lahvis, M.A.; Rehmann, L.C.

    1999-01-01

    The mathematical model, R-UNSAT, developed to simulate the transport of benzene and MTBE in representative sand and clay hydrogeologic systems was evaluated. The effects on groundwater were simulated for small, chronic-, and single-volume releases of gasoline trapped in unsaturated soil. Hydrocarbon biodegradation was simulated by using a dual Monod-type kinetics model that includes oxygen and the reactive constituents. MTBE was assumed to be non-reactive. For MTBE, infiltration had the greatest effect on transport to groundwater. Infiltration also affected mass losses of MTBE to the atmosphere, particularly, in fine-grained soils. Depth to groundwater and soil type primarily affected travel times of MTBE to groundwater, but could affect mass-loading rates to groundwater if infiltration is insignificant. For benzene, transport to groundwater was significant only if the depth to the water table was < 1 m or biodegradation was assumed to be negligible. Mass fluxed to groundwater were generally smaller for benzene than for MTBE by more than two orders of magnitude. Thus, water that recharges an aquifer beneath a spill can be enriched in MTBE relative to benzene when compared to the composition of water in equilibrium with gasoline.

  12. Crystal structure of 1,3-bis-(3-tert-butyl-2-hy-droxy-5-methyl-benz-yl)-1,3-diazinan-5-ol monohydrate.

    PubMed

    Rivera, Augusto; Miranda-Carvajal, Ingrid; Ríos-Motta, Jaime; Bolte, Michael

    2016-09-01

    In the title hydrate, C28H42N2O3·H2O, the central 1,3-diazinan-5-ol ring adopts a chair conformation with the two benzyl substituents equatorial and the lone pairs of the N atoms axial. The dihedral angle between the aromatic rings is 19.68 (38)°. There are two intra-molecular O-H⋯N hydrogen bonds, each generating an S(6) ring motif. In the crystal, classical O-H⋯O hydrogen bonds connect the 1,3-diazinane and water mol-ecules into columns extending along the b axis. The crystal structure was refined as a two-component twin with a fractional contribution to the minor domain of 0.0922 (18).

  13. Asymmetric syntheses of methyl N,O-diacetyl-D-3-epi-daunosaminide and methyl N,O-diacetyl-D-ristosaminide.

    PubMed

    Csatayová, Kristína; Davies, Stephen G; Ford, J Gair; Lee, James A; Roberts, Paul M; Thomson, James E

    2013-12-20

    Ab initio asymmetric syntheses of methyl N,O-diacetyl-D-3-epi-daunosaminide and methyl N,O-diacetyl-D-ristosaminide, employing diastereoselective epoxidation and dihydroxylation, respectively, of alkyl (3S,αR,Z)-3-[N-benzyl-N-(α-methylbenzyl)amino]hex-4-enoates as the key steps, are reported. The requisite substrates were readily prepared using the conjugate additions of lithium (R)-N-benzyl-N-(α-methylbenzyl)amide to methyl and tert-butyl (E)-hexa-2-en-4-ynoates followed by diastereoselective alkyne reduction. syn-Dihydroxylation using OsO4 proceeded under steric control on the 4Re,5Re face of the olefin to give the corresponding diol, which subsequently underwent lactonization. Meanwhile, epoxidation using F3CCO3H in conjunction with F3CCO2H proceeded on the opposite 4Si,5Si face of the olefin under hydrogen-bonding control from the in situ formed ammonium ion. Treatment of the intermediate epoxide with concd aq H2SO4 promoted highly regioselective ring-opening (distal to the in situ formed ammonium moiety) to give the corresponding diol (completing overall the formal anti-dihydroxylation of the olefin), which then underwent lactonization under the reaction conditions. Elaboration of these diastereoisomeric lactones through hydrogenolysis, N-Boc protection, reduction, methanolysis, and acetate protection gave methyl N,O-diacetyl-D-3-epi-daunosaminide and methyl N,O-diacetyl-D-ristosaminide.

  14. Characterization of redox states of Ru(OH(2))(Q)(tpy)(2+) (Q = 3,5-di-tert-butyl-1,2-benzoquinone, tpy = 2,2':6',2''-terpyridine) and related species through experimental and theoretical studies.

    PubMed

    Tsai, Ming-Kang; Rochford, Jonathan; Polyansky, Dmitry E; Wada, Tohru; Tanaka, Koji; Fujita, Etsuko; Muckerman, James T

    2009-05-18

    The redox states of Ru(OH(2))(Q)(tpy)(2+) (Q = 3,5-di-tert-butyl-1,2-benzoquinone, tpy = 2,2':6',2''-terpyridine) are investigated through experimental and theoretical UV-vis spectra and Pourbaix diagrams. The electrochemical properties are reported for the species resulting from deprotonation and redox processes in aqueous solution. The formal oxidation states of the redox couples in the various intermediate complexes are systematically assigned using electronic structure theory. The controversy over the electronic assignment of ferromagnetic vs. antiferromagnetic coupling is investigated through comparison of ab initio methods and the broken-symmetry density functional theory (DFT) approach. The various pK(a) values and reduction potentials, including the consideration of proton-coupled electron-transfer (PCET) processes, are calculated, and the theoretical version of the Pourbaix diagram is constructed in order to elucidate and assign several previously ambiguous regions in the experimental diagram.

  15. Crystal structure of (2,2′-bi­pyridine-κ2 N,N′)bis­(3,5-di-tert-butyl-o-benzo­quinonato-κ2 O,O′)ruthenium(II)

    PubMed Central

    Ali, Akram; Potaskalov, Vadim A.

    2017-01-01

    In the title mononuclear complex, [Ru(C14H20O2)2(C10H8N2)], the RuII ion has a distorted octa­hedral coordination environment defined by two N atoms of the chelating 2,2′-bi­pyridine ligand and four O atoms from two 3,5-di-tert-butyl-o-benzo­quinone ligands. In the crystal, the complex mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds and π–π stacking inter­actions between the 2,2′-bi­pyridine ligands [centroid–centroid distance = 3.538 (3) Å], resulting in a layer structure extending parallel to the ab plane. PMID:28316832

  16. Cobalt(II)-mediated synthesis of 2,6-bis[5,7-di-tert-butyl-1,3-benzoxazol-2-yl]-pyridine: Structural analysis and coordination behavior

    NASA Astrophysics Data System (ADS)

    Garza-Ortíz, Ariadna; Martínez, Pablo A.; Duarte-Hernández, Angelica M.; Mijangos, Edgar; Flores-Álamo, Marcos; Pérez-Casas, Carol; Camacho-Camacho, Carlos; Contreras, Rosalinda; Flores-Parra, Angelina; Reedijk, Jan; Barba-Behrens, Norah

    2013-01-01

    The oxidative cyclization of 2,6-bis[2,4-di-tert-butyl-6-(methylidenylamino)phenol]-pyridine (L1) in acetonitrile, through the cobalt(II) coordination compound of L1, has resulted in a convenient route for the preparation of 2,6-bis[5,7-di-tert-butyl-1,3-benzoxazol-2-yl]-pyridine (L3). The X-ray diffraction analysis of L3 shows a planar molecule, with the oxygen atoms from the benzoxazole rings oriented to the pyridine nitrogen atom (conformer L3a). Ab initio calculations indicate that from the three possible planar conformers of L3, the more stable is L3a. The solid state conformation of the free ligand L3 and the relative energy of the three calculated conformers indicated stabilizing N → O interactions. Calculations of the protonated derivative of L3, compound 7, indicated that the most stable conformer has the benzoxazole nitrogen atoms pointing to the protonated pyridine NH (7c). The X-ray crystal analysis of ligand L3 coordinated to cobalt(II) nitrate, compound 4 is presented and conformer L3c is found in this compound. Two acid:base complexes [Zn(NO3)2(H2O)2][L3c]2, compound 5, and [NEt2H2Cl][L3c], compound 6, have also been investigated. Complex 5 crystallized and its X-ray diffraction analysis is reported, whereas compound 6 was studied in solution by NMR, mass spectrometry and ab initio calculations. Both complexes show that conformer L3c can form stable hydrogen bonding associations, with molecules having the motif YH2 (Y = N or O), that are of interest for building up supramolecular associations.

  17. Crystal structure and absolute configuration of (3S,4aS,8aS)-N-tert-butyl-2-[(S)-3-(2-chloro-4-nitro-benzamido)-2-hy-droxy-prop-yl]deca-hydro-isoquinoline-3-carboxamide and (3S,4aS,8aS)-N-tert-butyl-2-{(S)-2-[(S)-1-(2-chloro-4-nitro-benzoyl)pyrrolidin-2-yl]-2-hy-droxy-eth-yl}deca-hydro-iso-quinoline-3-carboxamide.

    PubMed

    Maxson, Tucker; Bertke, Jeffery A; Gray, Danielle L; Mitchell, Douglas A

    2015-11-01

    The crystal structure and absolute configuration of the two new title nelfinavir analogs, C24H35ClN4O5, (I), and C27H39ClN4O5, (II), have been determined. Each of these mol-ecules exhibits a number of disordered moieties. There are intra-molecular N-H⋯O hydrogen bonds in both (I) and (II). In (I) it involves the two carboxamide groups, while in (II) it involves the N-tert-butyl carboxamide group and the 2-hydroxyl O atom. The inter-molecular hydrogen bonding in (I) (O-H⋯O and N-H⋯O) leads to two-dimensional sheets that extend parallel to the ac plane. The inter-molecular hydrogen bonding in (II) (O-H⋯O) leads to chains that extend parallel to the a axis.

  18. The ipso addition of OH to methylated benzenes

    NASA Astrophysics Data System (ADS)

    Alarcon, Paulo; Bohn, Birger; Zetzsch, Cornelius

    2013-04-01

    The reaction of OH with hexamethylbenzene has been observed to be a rapid process (Berndt and Böge, 2001) and to proceed via reversible addition (Koch et al., 2007, von Buttlar et al., 2008). Abstraction and elimination of a methyl group are only minor channels at room temperature (Loison et al., 2012). Obviously the ipso addition on an already occupied position of the ring is solely accessible for hexamethylbenzene, whereas for the lower methylated benzenes (toluene and the xylenes) this contribution is small. All three trimethylbenzenes (Bohn and Zetzsch, 2012) have been demonstrated very recently to comprise both channels. The present study reports on the reactions of OH with toluene, p-xylene, tetramethylated benzenes and pentamethylbenzene, employing the technique of pulsed vacuum UV flash photolysis of H2O with resonance fluorescence detection of OH. Triexponential decays of OH are observed (most clearly and pronounced for the highly symmetrical durene), and the analytical solution of the differential equation system describing the contribution of two adducts enables us to separate the two predominating addition channels for these compounds. The consequences of ipso addition of OH to aromatics for photochemical ozone production remain uncertain, and product studies for higher methylated benzenes are missing. References Berndt T, Böge O, Int J Chem Kinet, 33, 124-129 (2001). Bohn B, Zetzsch C, PCCP 14, 13933-13948 (2012). Loison JC, Rayez MT, Rayez JC, Gratien A, Morajkar P, Fittschen C, Villenave E, J Phys Chem A, 12189-12197 (2012). Koch R, Knispel R, Elend M, Siese M, Zetzsch C, Atmos Chem Phys 7, 2057-2071 (2007). von Buttlar J, Koch R, Siese M, Zetzsch C, What is the contribution of ipso-addition of OH in the reaction of methylated benzene-aromatics: first results on hexamethylbenzene, Geophys Abstr EGU2008-A-10576 (2008).

  19. Structural Basis for Small Molecule NDB (N-Benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) Benzamide) as a Selective Antagonist of Farnesoid X Receptor α (FXRα) in Stabilizing the Homodimerization of the Receptor*

    PubMed Central

    Xu, Xing; Xu, Xin; Liu, Peng; Zhu, Zhi-yuan; Chen, Jing; Fu, Hai-an; Chen, Li-li; Hu, Li-hong; Shen, Xu

    2015-01-01

    Farnesoid X receptor α (FXRα) as a bile acid sensor plays potent roles in multiple metabolic processes, and its antagonist has recently revealed special interests in the treatment of metabolic disorders, although the underlying mechanisms still remain unclear. Here, we identified that the small molecule N-benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) benzamide (NDB) functioned as a selective antagonist of human FXRα (hFXRα), and the crystal structure of hFXRα ligand binding domain (hFXRα-LBD) in complex with NDB was analyzed. It was unexpectedly discovered that NDB induced rearrangements of helix 11 (H11) and helix 12 (H12, AF-2) by forming a homodimer of hFXRα-LBD, totally different from the active conformation in monomer state, and the binding details were further supported by the mutation analysis. Moreover, functional studies demonstrated that NDB effectively antagonized the GW4064-stimulated FXR/RXR interaction and FXRα target gene expression in primary mouse hepatocytes, including the small heterodimer partner (SHP) and bile-salt export pump (BSEP); meanwhile, administration of NDB to db/db mice efficiently decreased the gene expressions of phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6-pase), small heterodimer partner, and BSEP. It is expected that our first analyzed crystal structure of hFXRα-LBD·NDB will help expound the antagonistic mechanism of the receptor, and NDB may find its potential as a lead compound in anti-diabetes research. PMID:26100621

  20. μ-Carbonato-κ(4) O,O':O',O''-bis-{[2'-(di-tert-butyl-phosphan-yl)biphenyl-2-yl-κ(2) P,C (1)]palladium(II)} dichloro-methane monosolvate.

    PubMed

    Muller, Alfred; Holzapfel, Cedric W

    2012-12-01

    The title compound, [(μ2-CO3){Pd(P(t-C4H9)2(C12H8)}2]·CH2Cl2, the first CO3-bridged palladium dimer complex reported to date, was obtained while preparing the Pd(0) complex with (2-biphen-yl)P( (t) Bu)2. In the crystal, each palladium dimer is accompanied by a dichloro-methane solvent mol-ecule. Coordination of the carbonate and chelated phosphane ligands gives distorted square-planar environments at the Pd atoms. Important geometrical parameters include Pd-P(av.) = 2.2135 (4) Å, Pd-C(av.) = 1.9648 (16) Å and P-Pd-C = 84.05 (5) and 87.98 (5)°, and O-Pd-O' = 60.56 (4) and 61.13 (4)°. Bonding with the carbonate O atoms shows values of 2.1616 (11) and 2.1452 (11) Å for the Pd-O-Pd bridge, whereas other Pd-O distances are slightly longer at 2.2136 (11) and 2.1946 (11) Å. One of the tert-butyl groups is disordered over two set of sites with an occupancy ratio of 0.723 (6):0.277 (6). Weak C-H⋯O interactions are observed propagating the molecules along the [100] direction.

  1. Synthesis, spectroscopy, magnetic and redox behaviors of copper(II) complexes with tert-butylated salen type ligands bearing bis(4-aminophenyl)ethane and bis(4-aminophenyl)amide backbones.

    PubMed

    Kasumov, Veli T; Yerli, Yusuf; Kutluay, Aysegul; Aslanoglu, Mehmet

    2013-03-01

    New salen type ligands, N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-ethylenedianiline [(X=H (1), 5-tert-butyl (2)] and N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-amidedianiline [X=H (3), 5-tert (4)] and their copper(II) complexes 5-8, have been synthesized. Their spectroscopic (IR, (1)H NMR, UV/vis, ESR) properties, as well as magnetic and redox-reactivity behavior are reported. IR spectra of 7 and 8 indicate the coordination of amide oxygen atoms of 3 and 4 ligands to Cu(II). The solid state ESR spectra of 5-8 exhibits less informative exchange narrowed isotropic or anisotropic signals with weak unresolved low field patterns. The magnetic moments of 5 (2.92 μ(B) per Cu(II)) and 6 (2.79 μ(B) per Cu(II)) are unusual for copper(II) complexes and considerably higher than those for complexes 7 and 8. Cryogenic measurements (300-10 K) show weak antiferromagnetic exchange interactions between the copper(II) centers in complexes 6 and 8. The results of electrochemical and chemical redox-reactivity studies are discussed.

  2. Effects of α-Phenyl-N-tert-Butyl Nitrone (PBN) on Brain Cell Membrane Function and Energy Metabolism during Transient Global Cerebral Hypoxia-Ischemia and Reoxygenation-Reperfusion in Newborn Piglets

    PubMed Central

    Choi, Chang Won; Hwang, Jong Hee; Chang, Yun Sil; Shin, Son Moon; Park, Won Soon

    2004-01-01

    We sought to know whether a free radical spin trap agent, α-phenyl-N-tert-butyl nitrone (PBN) influences brain cell membrane function and energy metabolism during and after transient global hypoxia-ischemia (HI) in the newborn piglets. Cerebral HI was induced by temporary complete occlusion of bilateral common carotid arteries and simultaneous breathing with 8% oxygen for 30 min, followed by release of carotid occlusion and normoxic ventilation for 1 hr (reoxygenation-reperfusion, RR). PBN (100 mg/kg) or vehicle was administered intravenously just before the induction of HI or RR. Brain cortex was harvested for the biochemical analyses at the end of HI or RR. The level of conjugated dienes significantly increased and the activity of Na+, K+-ATPase significantly decreased during HI, and they did not recover during RR. The levels of ATP and phosphocreatine (PCr) significantly decreased during HI, and recovered during RR. PBN significantly decreased the level of conjugated dienes both during HI and RR, but did not influence the activity of Na+, K+-ATPase and the levels of ATP and PCr. We demonstrated that PBN effectively reduced brain cell membrane lipid peroxidation, but did not reverse ongoing brain cell membrane dysfunction nor did restore brain cellular energy depletion, in our piglet model of global hypoxic-ischemic brain injury. PMID:15201509

  3. From the N-Heterocyclic Carbene-Catalyzed Conjugate Addition of Alcohols to the Controlled Polymerization of (Meth)acrylates.

    PubMed

    Ottou, Winnie Nzahou; Bourichon, Damien; Vignolle, Joan; Wirotius, Anne-Laure; Robert, Fredéric; Landais, Yannick; Sotiropoulos, Jean-Marc; Miqueu, Karinne; Taton, Daniel

    2015-06-22

    Among various N-heterocyclic carbenes (NHCs) tested, only 1,3-bis(tert-butyl)imidazol-2-ylidene (NHC(tBu) ) proved to selectively promote the catalytic conjugate addition of alcohols onto (meth)acrylate substrates. This rather rare example of NHC-catalyzed 1,4-addition of alcohols was investigated as a simple means to trigger the polymerization of both methyl methacrylate and methyl acrylate (MMA and MA, respectively). Well-defined α-alkoxy poly(methyl (meth)acrylate) (PM(M)A) chains, the molar masses of which could be controlled by the initial [(meth)acrylate]0/[ROH]0 molar ratio, were ultimately obtained in N,N-dimethylformamide at 25 °C. A hydroxyl-terminated poly(ethylene oxide) (PEO-OH) macro-initiator was also employed to directly access PEO-b-PMMA amphiphilic block copolymers. Investigations into the reaction mechanism by DFT calculations revealed the occurrence of two competitive concerted pathways, involving either the activation of the alcohol or that of the monomer by NHC(tBu) .

  4. Crystal structure of (E)-2,6-di-tert-butyl-4-{[2-(2,4-di-nitro-phen-yl)hydrazinylidene]meth-yl}phenol.

    PubMed

    Faizi, Md Serajul Haque; Dege, Necmi; Haque, Ashanul; Kalibabchuk, Valentina A; Cemberci, Mustafa

    2017-02-01

    The essential part (including all the non-hydrogen atoms except two methyl carbons) of the mol-ecule of the title compound, C21H26N4O5, lies on a mirror plane, which bis-ects the t-butyl groups. The conformation of the C=N bond of this Schiff base compound is E, and there is an intra-molecular N-H⋯O hydrogen bond present, forming an S(6) ring motif. In the crystal, mol-ecules are linked via O-H⋯O hydrogen bonds, forming zigzag chains propagating along the a-axis direction. There are no other significant inter-molecular contacts present.

  5. Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, UV-Visible) study, potential energy surface scan, Fukui function analysis and HOMO-LUMO analysis of 3-tert-butyl-4-methoxyphenol by DFT methods.

    PubMed

    Saravanan, S; Balachandran, V

    2014-09-15

    This study represents an integral approach towards understanding the electronic and structural aspects of 3-tert-butyl-4-methoxyphenol (TBMP). Fourier-transform Infrared (FT-IR) and Fourier-transform Raman (FT-Raman) spectra of TBMP was recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) methods using 6-311++G (d,p) basis set. The most stable conformer of TBMP was identified from the computational results. The assignments of vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of TBMP have been discussed. The stability and charge delocalization of the molecule was studied by Natural Bond Orbital (NBO) analysis. UV-Visible spectrum and effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach with B3LYP/6-311++G (d,p) level of theory. The molecule orbital contributions are studied by density of energy states (DOSs). The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MEP). Mulliken analysis of atomic charges is also calculated. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacities, standard entropy and standard enthalpy changes with temperatures. Global hardness, global softness, global electrophilicity and ionization potential of the title compound are determined.

  6. "Oxidative addition" of halogens to uranium(IV) bis(amidophenolate) complexes.

    PubMed

    Matson, Ellen M; Opperwall, Stacey R; Fanwick, Phillip E; Bart, Suzanne C

    2013-06-17

    A series of U(IV) complexes, ((R)ap)2U(THF)2 [R = tert-butyl (t-Bu) (1), adamantyl (Ad) (2), diisopropylphenyl (dipp) (3)], supported by the redox-active 4,6-di-tert-butyl-2-(R)amidophenolate ligand, have been synthesized by salt metathesis of 2 equiv of the alkali metal salt of the ligand, M2[(R)ap] [M = K (1 and 2), Na (3)], with UCl4. Exposure of these uranium complexes to 1 equiv of PhICl2 results in oxidative addition to uranium, forming the bis-(4,6-di-tert-butyl-2-(R)iminosemiquinone) ([(R)isq](1-)) uranium(IV) dichloride dimer, [((R)isq)2UCl]2(μ(2)-Cl)2 [R = t-Bu (4), Ad (5), dipp (6)]. The addition of iodine to 1 forms ((tBu)isq)2UI2(THF) (7), while the reactivity of I2 with 2 and 3 results in decomposition. Complexes 1-7 have been characterized by (1)H NMR and electronic absorption spectroscopies. X-ray crystallography was employed to elucidate structural parameters of 2, 3, 5, and 7.

  7. The txl1+ gene from Schizosaccharomyces pombe encodes a new thioredoxin-like 1 protein that participates in the antioxidant defence against tert-butyl hydroperoxide.

    PubMed

    Jiménez, Alberto; Mateos, Laura; Pedrajas, José R; Miranda-Vizuete, Antonio; Revuelta, José L

    2007-06-01

    Yeasts are equipped with several putative single-domain thioredoxins located in different subcellular compartments. However, additional proteins containing thioredoxin domains are also encoded by the yeast genomes as described for mammals and other eukaryotic organisms. We report here the characterization of the fission yeast orthologue thioredoxin-like 1 (txl1(+)), which has been previously identified in mammals. Similarly to the human protein, the fission yeast Txl1 is a two-domain protein comprising an N-terminal thioredoxin-like domain and a C-terminal domain of unknown function. Many other yeasts and fungi species contain homologues of txl1(+); however, there is no evidence of txl1(+) orthologues in either Saccharomyces cerevisiae or plants. Txl1 is found in both the nucleus and the cytoplasm of Schizosaccharomyces pombe cells and exhibits a strong reducing activity coupled to thioredoxin reductase. In humans, TXL1 expression is induced by glucose deprivation and overexpression of TXL1 confers resistance against this stress. In contrast, a Sz. pombe Deltatxl1 mutant was not affected in the response against glucose starvation but the Deltatxl1 mutant strain showed a clear hypersensitivity to alkyl hydroperoxide. The mRNA levels of txl1(+) in a h20 strain did not change in response to any oxidative insult (hydrogen peroxide or alkyl hydroperoxide) and the overexpression of an integrated copy of the wild-type txl1(+) gene did not confer a significant increased resistance against alkyl hydroperoxide. Overall, these results indicate that the Txl1 role in the cellular detoxification of alkyl hydroperoxide is exerted through a constitutive transcription of txl1(+).

  8. Substrate selectivity in the low temperature atomic layer deposition of cobalt metal films from bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and formic acid.

    PubMed

    Kerrigan, Marissa M; Klesko, Joseph P; Rupich, Sara M; Dezelah, Charles L; Kanjolia, Ravindra K; Chabal, Yves J; Winter, Charles H

    2017-02-07

    The initial stages of cobalt metal growth by atomic layer deposition are described using the precursors bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and formic acid. Ruthenium, platinum, copper, Si(100), Si-H, SiO2, and carbon-doped oxide substrates were used with a growth temperature of 180 °C. On platinum and copper, plots of thickness versus number of growth cycles were linear between 25 and 250 cycles, with growth rates of 0.98 Å/cycle. By contrast, growth on ruthenium showed a delay of up to 250 cycles before a normal growth rate was obtained. No films were observed after 25 and 50 cycles. Between 100 and 150 cycles, a rapid growth rate of ∼1.6 Å/cycle was observed, which suggests that a chemical vapor deposition-like growth occurs until the ruthenium surface is covered with ∼10 nm of cobalt metal. Atomic force microscopy showed smooth, continuous cobalt metal films on platinum after 150 cycles, with an rms surface roughness of 0.6 nm. Films grown on copper gave rms surface roughnesses of 1.1-2.4 nm after 150 cycles. Films grown on ruthenium, platinum, and copper showed resistivities of <20 μΩ cm after 250 cycles and had values close to those of the uncoated substrates at ≤150 cycles. X-ray photoelectron spectroscopy of films grown with 150 cycles on a platinum substrate showed surface oxidation of the cobalt, with cobalt metal underneath. Analogous analysis of a film grown with 150 cycles on a copper substrate showed cobalt oxide throughout the film. No film growth was observed after 1000 cycles on Si(100), Si-H, and carbon-doped oxide substrates. Growth on thermal SiO2 substrates gave ∼35 nm thick layers of cobalt(ii) formate after ≥500 cycles. Inherently selective deposition of cobalt on metallic substrates over Si(100), Si-H, and carbon-doped oxide was observed from 160 °C to 200 °C. Particle deposition occurred on carbon-doped oxide substrates at 220 °C.

  9. Characterization of (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one as a positive allosteric modulator of GABAB receptors

    PubMed Central

    Malherbe, P; Masciadri, R; Norcross, R D; Knoflach, F; Kratzeisen, C; Zenner, M-T; Kolb, Y; Marcuz, A; Huwyler, J; Nakagawa, T; Porter, R H P; Thomas, A W; Wettstein, J G; Sleight, A J; Spooren, W; Prinssen, E P

    2008-01-01

    Background and purpose: As baclofen is active in patients with anxiety disorders, GABAB receptors have been implicated in the modulation of anxiety. To avoid the side effects of baclofen, allosteric enhancers of GABAB receptors have been studied to provide an alternative therapeutic avenue for modulation of GABAB receptors. The aim of this study was to characterize derivatives of (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF) as enhancers of GABAB receptors. Experimental approach: Enhancing properties of rac-BHFF were assessed in the Chinese hamster ovary (CHO)-Gα16-hGABAB(1a,2a) cells by Fluorometric Imaging Plate Reader and GTPγ[35S]-binding assays, and in rat hippocampal slices by population spike (PS) recordings. In vivo activities of rac-BHFF were assessed using the loss of righting reflex (LRR) and stress-induced hyperthermia (SIH) models. Key results: In GTPγ[35S]-binding assays, 0.3 μM rac-BHFF or its pure enantiomer (+)-BHFF shifted the GABA concentration–response curve to the left, an effect that resulted in a large increase in both GABA potency (by 15.3- and 87.3-fold) and efficacy (149% and 181%), respectively. In hippocampal slices, rac-BHFF enhanced baclofen-induced inhibition of PS of CA1 pyramidal cells. In an in vivo mechanism-based model in mice, rac-BHFF increased dose-dependently the LRR induced by baclofen with a minimum effective dose of 3 mg kg−1 p.o. rac-BHFF (100 mg kg−1 p.o.) tested alone had no effect on LRR nor on spontaneous locomotor activity, but exhibited anxiolytic-like activity in the SIH model in mice. Conclusions and implications: rac-BHFF derivatives may serve as valuable pharmacological tools to elucidate the pathophysiological roles played by GABAB receptors in the central and peripheral nervous systems. PMID:18536733

  10. Substrate selectivity in the low temperature atomic layer deposition of cobalt metal films from bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and formic acid

    NASA Astrophysics Data System (ADS)

    Kerrigan, Marissa M.; Klesko, Joseph P.; Rupich, Sara M.; Dezelah, Charles L.; Kanjolia, Ravindra K.; Chabal, Yves J.; Winter, Charles H.

    2017-02-01

    The initial stages of cobalt metal growth by atomic layer deposition are described using the precursors bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and formic acid. Ruthenium, platinum, copper, Si(100), Si-H, SiO2, and carbon-doped oxide substrates were used with a growth temperature of 180 °C. On platinum and copper, plots of thickness versus number of growth cycles were linear between 25 and 250 cycles, with growth rates of 0.98 Å/cycle. By contrast, growth on ruthenium showed a delay of up to 250 cycles before a normal growth rate was obtained. No films were observed after 25 and 50 cycles. Between 100 and 150 cycles, a rapid growth rate of ˜1.6 Å/cycle was observed, which suggests that a chemical vapor deposition-like growth occurs until the ruthenium surface is covered with ˜10 nm of cobalt metal. Atomic force microscopy showed smooth, continuous cobalt metal films on platinum after 150 cycles, with an rms surface roughness of 0.6 nm. Films grown on copper gave rms surface roughnesses of 1.1-2.4 nm after 150 cycles. Films grown on ruthenium, platinum, and copper showed resistivities of <20 μ Ω cm after 250 cycles and had values close to those of the uncoated substrates at ≤150 cycles. X-ray photoelectron spectroscopy of films grown with 150 cycles on a platinum substrate showed surface oxidation of the cobalt, with cobalt metal underneath. Analogous analysis of a film grown with 150 cycles on a copper substrate showed cobalt oxide throughout the film. No film growth was observed after 1000 cycles on Si(100), Si-H, and carbon-doped oxide substrates. Growth on thermal SiO2 substrates gave ˜35 nm thick layers of cobalt(ii) formate after ≥500 cycles. Inherently selective deposition of cobalt on metallic substrates over Si(100), Si-H, and carbon-doped oxide was observed from 160 °C to 200 °C. Particle deposition occurred on carbon-doped oxide substrates at 220 °C.

  11. Fate of 3-tert-Butyl-4-hydroxyanisole, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8- hexamethylcyclopenta(g)-2-benzopyrane and chlorpyrifos in a Conventional Wastewater Treatement Plant

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Bodour, A.; Inniss, E. C.; Murray, K. E.

    2007-12-01

    Emerging contaminants (ECs) are a major concern in the environment, particularly those found in waters. Wastewater treatment plants (WWTPs) play a key role in reducing the concentrations in the environment because compounds may be transformed under either aerobic or anaerobic conditions or may sorb to wastewater sludges and therefore be removed from waters. If these ECs are not contained or treated then effluent discharged from the WWTP and to a receiving stream may contain hazardous levels of these contaminants. Reported here is a study of the fate of three emerging contaminants (ECs): 3-tert-Butyl-4-hydroxyanisole (BHA), 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyrane (HHCB) and chlorpyrifos. Experiments were conducted on a laboratory scale by emulating conditions of a conventional WWTP in San Antonio, TX. The goal of the research was to determine general characteristics for both sorption (to wastewater sludges) and degradation. The sorption experiments were performed by exposing the sludge to a variety of initial concentration of ECs for 24 hours. After exposure these three ECs were extracted and analyzed using gas chromatography followed by flame ionization detector (GC/FID). Sorption experiments indicated that HHCB and chlorpyrifos are more hydrophobic than BHA and, therefore, would be mostly contained in the sludges. The degradation rates for these ECs were also considered for both aerobic and anaerobic conditions using different bench-scale reactor setups for 21 days. The differences between the reactor setups included volume of reactor, amount of sludge, mode of supply of nutrients and acclimatization of sludge to the ECs. One sludge was first acclimated to EC concentrations and then used in the experiment. The acclimated reactor had reaction rate constants approximately double that of the non-acclimated sludge reactor setups and followed first order reaction kinetics. Aerobic degradation occurred more readily for all three compounds

  12. Acylated and unacylated ghrelin protect MC3T3-E1 cells against tert-butyl hydroperoxide-induced oxidative injury: pharmacological characterization of ghrelin receptor and possible epigenetic involvement.

    PubMed

    Dieci, Elisa; Casati, Lavinia; Pagani, Francesca; Celotti, Fabio; Sibilia, Valeria

    2014-07-01

    Increasing evidence suggests a role for oxidative stress in age-related decrease in osteoblast number and function leading to the development of osteoporosis. This study was undertaken to investigate whether ghrelin, previously reported to stimulate osteoblast proliferation, counteracts tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in MC3T3-E1 osteoblastic cells as well as to characterize the ghrelin receptor (GHS-R) involved in such activity. Pretreatment with ghrelin (10(-7)-10(-11)M) significantly increased viability and reduced apoptosis of MC3T3-E1 cells cultured with t-BHP (250 μM) for three hours at the low concentration of 10(-9)M as shown by MTT assay and Hoechst-33258 staining. Furthermore, ghrelin prevented t-BHP-induced osteoblastic dysfunction and changes in the cytoskeleton organization evidenced by the staining of the actin fibers with Phalloidin-FITC by reducing reactive oxygen species generation. The GHS-R type 1a agonist, EP1572 (10(-7)-10(-11)M), had no effect against t-BHP-induced cytotoxicity and pretreatment with the selective GHS-R1a antagonist, D-Lys(3)-GHRP-6 (10(-7)M), failed to remove ghrelin (10(-9) M)-protective effects against oxidative injury, indicating that GHS-R1a is not involved in such ghrelin activity. Accordingly, unacylated ghrelin (DAG), not binding GHS-R1a, displays the same protective actions of ghrelin against t-BHP-induced cytotoxicity. Preliminary observations indicate that ghrelin increased the trimethylation of lys4 on histones H3, a known epigenetic mark activator, which may regulate the expression of some genes limiting oxidative damage. In conclusion, our data demonstrate that ghrelin and DAG promote survival of MC3T3-E1 cell exposed to t-BHP-induced oxidative damage. Such effect is independent of GHS-R1a and is likely mediated by a common ghrelin/DAG binding site.

  13. Stereoselectivity of Michael Addition of P(X)-H-Type Nucleophiles to Cyclohexen-1-ylphosphine Oxide: The Case of Base-Selective Transformation.

    PubMed

    Jaklińska, Magdalena; Cordier, Marie; Stankevič, Marek

    2016-02-19

    Michael addition of phosphorus nucleophiles to the unsymmetrically substituted tert-butyl(1,4-cyclohexadien-3-yl)phosphine oxide and its derivatives has been described. The addition proceeds with the formation of the mixture of two isomeric products with good yield and diastereoselectivity. The reaction of tert-butyl(cyclohexen-1-yl)methylphosphine oxide with phosphorus nucleophiles is base sensitive and might afford two epimers which differ at one chirality center. The absolute configuration of the products has been assigned on the basis of conformational and (1)H NMR analysis, and the mechanism of the reaction has been discussed. The Michael addition of phosphorus nucleophiles is postulated to proceed with or without consecutive epimerization of two α-carbanions.

  14. Asymmetric synthesis of intermediates for otamixaban and premafloxacin by the chiral ligand-controlled asymmetric conjugate addition of a lithium amide.

    PubMed

    Sakai, Takeo; Kawamoto, Yoshito; Tomioka, Kiyoshi

    2006-06-09

    A chiral ligand-controlled conjugate addition reaction of lithium benzyl(trimethylsilyl)amide with tert-butyl enoates gave the corresponding lithium enolates that were then treated with electrophiles, giving anti-alkylation products with high ee up to 98%. The benzyl group on the amino nitrogen was removed by the oxidation of secondary amines to imines and subsequent transoximation to give 3-aminoalkanoates in good yields. The products are the possible key intermediates of otamixaban and premafloxacin.

  15. Photoreduction of methyl viologen in aqueous neutral solution without additives

    NASA Astrophysics Data System (ADS)

    Ebbesen, T. W.; Levey, G.; Patterson, L. K.

    1982-08-01

    The direct photoreduction of methyl viologen (paraquat) in aqueous solution to the reducd species radical cation MV(2+)Cl(-)2 was examined to study its effectiveness as a herbicide and in solar photochemical energy conversion devices. Dissolved crystalline cations were found to vary in absorption spectrum with added Cl(-), and excitation with a nitrogen laser at 377 nm indicated the presence of a transient species absorbing below 400 nm. The oxidation of Cl ions by a photolysis-excited state of the MV(2+) is shown to have a quantum yield of 0.2 at 337 nm, using anthracene as a reference. A parallel pathway to normal toxic oxidation of the substance on plants is suggested, involving the photoproduction of the radical Cl(2-), which reacts with thymine, uracil, guanine, histidine, thyrosine, tryptophan, cysteine, and ascorbic acid. The observed properties are suggested to be useful in the photoreduction and oxidation of water.

  16. Characterization of Redox States of Ru(OH2)(Q)(tpy)2+ (Q = 3,5-di-tert-butyl-1,2-benzoquinone, tpy = 2,2#:6#,2#-terpyridine)and Related Species through Experimental and Theoretical Studies

    SciTech Connect

    Muckerman, J.T.; Tsai, M.-K.; , Rochford, J.; Polyansky, D.E.; Wada, T.; Tanaka, K.; Fujita, E.

    2009-04-27

    The redox states of Ru(OH{sub 2})(Q)(tpy){sup 2+} (Q = 3,5-di-tert-butyl-1,2-benzoquinone, tpy = 2,2':6',2''-terpyridine) are investigated through experimental and theoretical UV-vis spectra and Pourbaix diagrams. The electrochemical properties are reported for the species resulting from deprotonation and redox processes in aqueous solution. The formal oxidation states of the redox couples in the various intermediate complexes are systematically assigned using electronic structure theory. The controversy over the electronic assignment of ferromagnetic vs. antiferromagnetic coupling is investigated through comparison of ab initio methods and the broken-symmetry density functional theory (DFT) approach. The various pK{sub a} values and reduction potentials, including the consideration of proton-coupled electron-transfer (PCET) processes, are calculated, and the theoretical version of the Pourbaix diagram is constructed in order to elucidate and assign several previously ambiguous regions in the experimental diagram.

  17. Crystal structure of 1,3-bis­(3-tert-butyl-2-hy­droxy-5-methyl­benz­yl)-1,3-diazinan-5-ol monohydrate

    PubMed Central

    Rivera, Augusto; Miranda-Carvajal, Ingrid; Ríos-Motta, Jaime; Bolte, Michael

    2016-01-01

    In the title hydrate, C28H42N2O3·H2O, the central 1,3-diazinan-5-ol ring adopts a chair conformation with the two benzyl substituents equatorial and the lone pairs of the N atoms axial. The dihedral angle between the aromatic rings is 19.68 (38)°. There are two intra­molecular O—H⋯N hydrogen bonds, each generating an S(6) ring motif. In the crystal, classical O—H⋯O hydrogen bonds connect the 1,3-diazinane and water mol­ecules into columns extending along the b axis. The crystal structure was refined as a two-component twin with a fractional contribution to the minor domain of 0.0922 (18). PMID:27920933

  18. Gas Chromatographic Determination of Methyl Salicylate in Rubbing Alcohol: An Experiment Employing Standard Addition.

    ERIC Educational Resources Information Center

    Van Atta, Robert E.; Van Atta, R. Lewis

    1980-01-01

    Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)

  19. Formation of poly(methyl methacrylate) thin films onto wool fiber surfaces by vapor deposition polymerization.

    PubMed

    Hassan, M Mahbubul; McLaughlin, J Robert

    2013-03-13

    Chemical vapor deposition (CVD) polymerization is a useful technique because of the possibility of forming very thin film of pure polymers on substrates with any geometric shape. In this work, thin films of poly(methyl methacrylate) or PMMA were formed on the surfaces of wool fabrics by a CVD polymerization process. Various polymerization initiators including dicumyl peroxide, tert-butyl peroxide, and potassium peroxydisulfate have been investigated to polymerize methyl methacrylate onto the surfaces of wool by the CVD polymerization. The wool fabrics were impregnated with initiators and were then exposed to MMA monomer vapor under vacuum at the boiling temperature of the monomer. Wool fabrics with vapor-deposited PMMA surfaces were characterized by elemental analysis, TGA, FTIR, disperse dye absorption, contact angles measurement, AFM, and SEM. PMMA-coated wool fabrics showed higher contact angle and absorbed more dyes than that of the control wool. It was evident from the results obtained by various characterization techniques that MMA was successfully polymerized and formed thin films on the surfaces of wool fabrics by all initiators investigated but the best results were achieved with tert-butyl peroxide.

  20. Crystal structure of bis­(η5-cyclo­penta­dien­yl)(1,4-di-tert-butyl­buta-1-en-3-yn-1-yl)zirconium(IV) μ2-hydroxido-bis­[tris(penta­fluoro­phen­yl)borate

    PubMed Central

    Burlakov, Vladimir V.; Spannenberg, Anke; Arndt, Perdita; Rosenthal, Uwe

    2015-01-01

    Alkyl zirconocene cations have been of considerable inter­est as reactive species in many polymerization processes. In the crystal structure of the title compound, [Zr(C12H19)(C5H5)2](C36HB2F30O), the [Zr(C5H5)2((t-Bu)C=C(H)—C2(t-Bu))]+ cation displays a buta-1-en-3-yne ligand side-on coordinated to a typical bent zirconocene [centroid(cp)—Zr—centroid(cp) = 131.4 (3)°, Zr—C(buta-1-en-3-yne) = 2.255 (3), 2.597 (3) and 2.452 (2) Å]. In the [HO(B(C6F5)3)2]− anion, intra­molecular O—H⋯F hydrogen bonds are observed. One tert-butyl group in the complex cation is disordered over two sets of sites with occupancies 0.701(4):0.299(4). PMID:25844214

  1. Discovery, Synthesis, And Structure-Based Optimization of a Series of N-(tert-Butyl)-2-(N-arylamido)-2-(pyridin-3-yl) Acetamides (ML188) as Potent Noncovalent Small Molecule Inhibitors of the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 3CL Protease

    SciTech Connect

    Jacobs, Jon; Grum-Tokars, Valerie; Zhou, Ya; Turlington, Mark; Saldanha, S. Adrian; Chase, Peter; Eggler, Aimee; Dawson, Eric S.; Baez-Santos, Yahira M.; Tomar, Sakshi; Mielech, Anna M.; Baker, Susan C.; Lindsley, Craig W.; Hodder, Peter; Mesecar, Andrew; Stauffer, Shaun R.

    2012-12-11

    A high-throughput screen of the NIH molecular libraries sample collection and subsequent optimization of a lead dipeptide-like series of severe acute respiratory syndrome (SARS) main protease (3CLpro) inhibitors led to the identification of probe compound ML188 (16-(R), (R)-N-(4-(tert-butyl)phenyl)-N-(2-(tert-butylamino)-2-oxo-1-(pyridin-3-yl)ethyl)furan-2-carboxamide, Pubchem CID: 46897844). But, unlike the majority of reported coronavirus 3CLpro inhibitors that act via covalent modification of the enzyme, 16-(R) is a noncovalent SARS-CoV 3CLpro inhibitor with moderate MW and good enzyme and antiviral inhibitory activity. A multicomponent Ugi reaction was utilized to rapidly explore structure–activity relationships within S1', S1, and S2enzyme binding pockets. Moreover, the X-ray structure of SARS-CoV 3CLpro bound with 16-(R) was instrumental in guiding subsequent rounds of chemistry optimization. 16-(R) provides an excellent starting point for the further design and refinement of 3CLpro inhibitors that act by a noncovalent mechanism of action.

  2. cis,fac-Dichlorido{N-[3,5-di-tert-butyl-2-(trimethyl­silyl­oxy)benz­yl]-N,N-bis­(2-pyridylmeth­yl)amine}(dimethyl sulfoxide)ruthenium(II) dichloro­methane disolvate

    PubMed Central

    Fischer, Paul J.; Minasian, Stefan G.; Arnold, John

    2009-01-01

    Reaction of dichloridotetra­kis(dimethyl sulfoxide)ruthenium(II) and N-[3,5-di-tert-butyl-2-(trimethyl­silyl­oxy)benz­yl]-N,N-bis­(2-pyridylmeth­yl)amine (BPPA-TMS) affords the thermodynamic product cis,fac-[RuCl2(BPPA-TMS)(DMSO)] and kinetic product trans,mer-[RuCl2(BPPA-TMS)(DMSO)]. The title complex, [RuCl2(C30H43N3OSi)(C2H6OS)]·2CH2Cl2, crystallizes as a dichloro­methane disolvate, with two formula units in the asymmetric unit. The complex exhibits a distorted-octa­hedral geometry about the low spin d 6 RuII center. The BPPA-TMS ligand is coordinated in a facial fashion, with the DMSO ligand cis to the aliphatic nitro­gen atom of the BPPA-TMS ligand. One of the two dichloromethane solvate molecules is disordered over two positions in a 0.695:0.305 ratio. PMID:21578123

  3. Quenching and enhancing of SERS of methyl orange after the addition of chlorine and nitrate anions

    NASA Astrophysics Data System (ADS)

    Zhang, Aiping; Zhang, Jinzhi

    2009-08-01

    The influence of Cl - and NO 3- anions on surface enhanced Raman scattering (SERS) of methyl orange adsorbed on “chemical pure” silver colloids was studied. It was found that NO 3- could give rise to a large enhancement of SERS of methyl orange, while Cl - could obviously weaken the SERS intensity of this molecule. Both quenching and enhancing effects were discussed and compared with each other. It indicated the coadsorbed process of these adsorbed species, and different adsorption behaviors of the molecules on silver surface directly resulted in the difference. In addition, the results of TEM pictures and UV-visible spectral experiments have also confirmed the conclusion above.

  4. Two-year drinking water carcinogenicity study of methyl tertiary-butyl ether (MTBE) in Wistar rats.

    PubMed

    Dodd, Darol; Willson, Gabrielle; Parkinson, Horace; Bermudez, Edilberto

    2013-07-01

    Methyl tertiary-butyl ether (MTBE) has been used as a gasoline additive to reduce tailpipe emissions and its use has been discontinued. There remains a concern that drinking water sources have been contaminated with MTBE. A two-year drinking water carcinogenicity study of MTBE was conducted in Wistar rats (males, 0, 0.5, 3, 7.5 mg ml(-1); and females, 0, 0.5, 3, and 15 mg ml(-1)). Body weights were unaffected and water consumption was reduced in MTBE-exposed males and females. Wet weights of male kidneys were increased at the end of two years of exposure to 7.5 mg ml(-1) MTBE. Chronic progressive nephropathy was observed in males and females, was more severe in males, and was exacerbated in the high MTBE exposure groups. Brain was the only tissue with a statistically significant finding of neoplasms. One astrocytoma (1/50) was found in a female rat (15 mg ml(-1)). The incidence of brain astrocytomas in male rats was 1/50, 1/50, 1/50 and 4/50 for the 0, 0.5, 3 and 7.5 mg ml(-1) exposure groups, respectively. This was a marginally significant statistical trend, but not statistically significant when pairwise comparisons were made or when multiple comparisons were taken into account. The incidence of astrocytoma fell within historical control ranges for Wistar rats, and the brain has not been identified as a target organ following chronic administration of MTBE, ethyl tert-butyl ether, or tertiary butyl alcohol (in drinking water) to mice and rats. We conclude that the astrocytomas observed in this study are not associated with exposure to MTBE.

  5. The effect of tailor-made additives on crystal growth of methyl paraben: Experiments and modelling

    NASA Astrophysics Data System (ADS)

    Cai, Zhihui; Liu, Yong; Song, Yang; Guan, Guoqiang; Jiang, Yanbin

    2017-03-01

    In this study, methyl paraben (MP) was selected as the model component, and acetaminophen (APAP), p-methyl acetanilide (PMAA) and acetanilide (ACET), which share the similar molecular structure as MP, were selected as the three tailor-made additives to study the effect of tailor-made additives on the crystal growth of MP. HPLC results indicated that the MP crystals induced by the three additives contained MP only. Photographs of the single crystals prepared indicated that the morphology of the MP crystals was greatly changed by the additives, but PXRD and single crystal diffraction results illustrated that the MP crystals were the same polymorph only with different crystal habits, and no new crystal form was found compared with other references. To investigate the effect of the additives on the crystal growth, the interaction between additives and facets was discussed in detail using the DFT methods and MD simulations. The results showed that APAP, PMAA and ACET would be selectively adsorbed on the growth surfaces of the crystal facets, which induced the change in MP crystal habits.

  6. Crystal structure of (E)-2,6-di-tert-butyl-4-{[2-(2,4-di­nitro­phen­yl)hydrazinylidene]meth­yl}phenol

    PubMed Central

    Kalibabchuk, Valentina A.

    2017-01-01

    The essential part (including all the non-hydrogen atoms except two methyl carbons) of the mol­ecule of the title compound, C21H26N4O5, lies on a mirror plane, which bis­ects the t-butyl groups. The conformation of the C=N bond of this Schiff base compound is E, and there is an intra­molecular N—H⋯O hydrogen bond present, forming an S(6) ring motif. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, forming zigzag chains propagating along the a-axis direction. There are no other significant inter­molecular contacts present. PMID:28217318

  7. Protective effects of xanthohumol against the genotoxicity of benzo(a)pyrene (BaP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and tert-butyl hydroperoxide (t-BOOH) in HepG2 human hepatoma cells.

    PubMed

    Plazar, Janja; Zegura, Bojana; Lah, Tamara T; Filipic, Metka

    2007-08-15

    Xanthohumol is the major prenylated flavonoid present in the hop plant Humulus lupulus L. (Cannabinaceae) and a common ingredient of beer. Recently, xanthohumol has gained considerable interest due to its potential cancer chemo-preventive effect. The aim of this study was to reveal the possible anti-genotoxic activity of xanthohumol in metabolically competent human hepatoma HepG2 cells, by use of the comet assay. Xanthohumol by itself was neither cytotoxic nor genotoxic to the cells at concentrations below 10microM. However, a significant protective effect against the pro-carcinogens benzo(a)pyrene (BaP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was observed at concentrations as low as 0.01microM. In cells treated with xanthohumol in combination with tert-butyl hydroperoxide (t-BOOH) - an inducer of reactive oxygen species (ROS) - no protective effect was observed and xanthohumol also showed no significant scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. On the other hand, HepG2 cells pre-treated with xanthohumol showed significantly reduced levels of t-BOOH-induced DNA strand breaks, indicating that its protective effect is mediated by induction of cellular defence mechanisms against oxidative stress. As xanthohumol is known to be an effective inhibitor of cytochrome P450 enzymes and an inducer of NAD(P)H: quinone reductase (QR), our findings can be explained by an inhibition of metabolic activation of pro-carcinogens and/or by induction of carcinogen-detoxifying and anti-oxidative enzymes by xanthohumol. These results provide evidence that xanthohumol displays anti-genotoxic activity in metabolically competent human cells.

  8. Different hydrogen-bonded chains in the crystal structures of three alkyl N-[(E)-1-(2-benzyl­idene-1-methyl­hydrazin­yl)-3-hy­droxy-1-oxopropan-2-yl]carbamates

    PubMed Central

    Noguiera, Thais C. M.; Pinheiro, Alessandra C.; Wardell, James L.; de Souza, Marcus V. N.; Abberley, Jordan P.; Harrison, William T. A.

    2015-01-01

    The crystal structures of three methyl­ated hydrazine carbamate derivatives prepared by multi-step syntheses from l-serine are presented, namely benzyl N-{(E)-1-[2-(4-cyanobenzylidene)-1-methylhydrazinyl]-3-hydroxy-1-oxopro­pan-2-yl}carbamate, C20H20N4O4, tert-butyl N-{(E)-1-[2-(4-cyanobenzylidene)-1-methylhydrazinyl]-3-hydroxy-1-oxopropan-2-yl}carbamate, C17H22N4O4, and tert-butyl N-[(E)-1-(2-benzylidene-1-methylhydrazinyl)-3-hydroxy-1-oxopro­pan-2-yl]carbamate, C16H23N3O4. One of them shows that an unexpected racemization has occurred during the mild-condition methyl­ation reaction. In each crystal structure, the mol­ecules are linked into chains by O—H⋯O hydrogen bonds, but with significant differences between them. PMID:26279859

  9. Octahedral Chiral-at-Metal Iridium Catalysts: Versatile Chiral Lewis Acids for Asymmetric Conjugate Additions.

    PubMed

    Shen, Xiaodong; Huo, Haohua; Wang, Chuanyong; Zhang, Bo; Harms, Klaus; Meggers, Eric

    2015-06-26

    Octahedral iridium(III) complexes containing two bidentate cyclometalating 5-tert-butyl-2-phenylbenzoxazole (IrO) or 5-tert-butyl-2-phenylbenzothiazole (IrS) ligands in addition to two labile acetonitrile ligands are demonstrated to constitute a highly versatile class of asymmetric Lewis acid catalysts. These complexes feature the metal center as the exclusive source of chirality and serve as effective asymmetric catalysts (0.5-5.0 mol % catalyst loading) for a variety of reactions with α,β-unsaturated carbonyl compounds, namely Friedel-Crafts alkylations (94-99% ee), Michael additions with CH-acidic compounds (81-97% ee), and a variety of cycloadditions (92-99% ee with high d.r.). Mechanistic investigations and crystal structures of an iridium-coordinated substrates and iridium-coordinated products are consistent with a mechanistic picture in which the α,β-unsaturated carbonyl compounds are activated by two-point binding (bidentate coordination) to the chiral Lewis acid.

  10. Mixed-mode acrylamide-based continuous beds bearing tert-butyl groups for capillary electrochromatography synthesized via complexation of N-tert-butylacrylamide with a water-soluble cyclodextrin. Part I: Retention properties.

    PubMed

    Al-Massaedh, Ayat Allah; Pyell, Ute

    2016-12-16

    With the aim to improve the understanding of morphology and efficiency properties, we investigate in this series the impact of the complex formation constant of the hydrophobic monomer with respect to statistically methylated-β-cyclodextrin (Me-β-CD) on the electrochromatographic properties of highly crosslinked amphiphilic mixed-mode acrylamide-based monolithic stationary phases. Based on our previous work on amphiphilic mixed-mode monolithic stationary phases for capillary electrochromatography (CEC) using N-(1-adamantyl)acrylamide (Ad-AAm) as hydrophobic monomer that forms an extremely strong water-soluble inclusion complex with Me-β-CD, we now selected N-tert-butylacrylamide (NTBA) as hydrophobic monomer forming an inclusion complex with Me-β-CD with a much lower value of the formation constant. Mixed-mode monolithic stationary phases are synthesized by in-situ free radical copolymerization of cyclodextrin-solubilized N-tert-butylacrylamide, a water soluble crosslinker (piperazinediacrylamide), a hydrophilic neutral monomer (methacrylamide), and a negatively charged monomer (vinylsulfonic acid) in aqueous medium in bind silane pre-treated fused silica capillaries. The synthesized monolithic stationary phases have both hydrophobic and hydrophilic moieties and can be employed in the reversed-phase mode, in the normal-phase mode, in a mixed-mode or in the hydrophilic interaction liquid chromatography (HILIC) mode (depending on the composition of the mobile phase and on the properties of the solute). Morphology and retention properties of this new type of stationary phase are compared to those reported in our previous series. With a homologues series of alkylphenones it is confirmed that the hydrophobicity (methylene selectivity αmeth) of the stationary phase is strongly dependent on the type of hydrophobic monomer employed. The studies reveal a significant influence of the formation constant of the involved host-guest inclusion complex on the morphology (i

  11. Ternary bulk heterojunction solar cells: addition of soluble NIR dyes for photocurrent generation beyond 800 nm.

    PubMed

    Lim, Bogyu; Bloking, Jason T; Ponec, Andrew; McGehee, Michael D; Sellinger, Alan

    2014-05-14

    The incorporation of a tert-butyl-functionalized silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) dye molecule as a third component in a ternary blend bulk heterojunction (BHJ) organic solar cell containing P3HT (donor) and PC60BM (acceptor) results in increased NIR absorption. This absorption yields an increase of up to 40% in the short-circuit current and up to 19% in the power conversion efficiency (PCE) in photovoltaic devices. Two-dimensional grazing incidence wide-angle X-ray scattering (2-D GIWAXS) experiments show that compared to the unfunctionalized dye the tert-butyl functionalization enables an increase in the volume fraction of the dye molecule that can be incorporated before the device performance decreases. Quantum efficiency and absorption spectra also indicate that, at dye concentrations above about 8 wt %, there is an approximately 30 nm red shift in the main silicon naphthalocyanine absorption peak, allowing further dye addition to contribute to added photocurrent. This peak shift is not observed in blends with unfunctionalized dye molecules, however. This simple approach of using ternary blends may be generally applicable for use in other unoptimized BHJ systems towards increasing PCEs beyond current levels. Furthermore, this may offer a new approach towards OPVs that absorb NIR photons without having to design, synthesize, and purify complicated donor-acceptor polymers.

  12. Assessment of Gasoline Additive Containing Ditert-butoxypropanol

    SciTech Connect

    West, Brian H.; Connatser, Raynella M.; Lewis, Samuel Arthur

    2016-04-01

    The Fuels, Engines, and Emissions Research Center completed analysis and testing of the CPS Powershot gasoline additive under the auspices of the Department of Energy’s Technical Assistance for US Small Businesses in Vehicle Technologies. Gas chromatography-mass spectrometry (GC-MS) was used to quantify the makeup of the additive, finding a predominance of 2,3-Ditert-Butoxypropanol, also known as Glyceryl Di-Tert-Butyl Ether (GTBE). Blends of the additive at 2 and 4 volume percent were subjected to a number of standard ASTM tests, including Research Octane Number, Motor Octane Number, distillation, and vapor pressure. Results show a high boiling range and low vapor pressure for the additive, and a very modest octane boosting effect in gasoline with and without ethanol.

  13. Lewis base catalyzed, enantioselective aldol addition of methyl trichlorosilyl ketene acetal to ketones.

    PubMed

    Denmark, Scott E; Fan, Yu; Eastgate, Martin D

    2005-06-24

    The catalytic enantioselective addition of an acetate enolate equivalent to ketones is described. Methyl trichlorosilyl ketene acetal reacts with a wide range of ketones in the presence of pyridine N-oxide to afford the aldol addition products in excellent yields. Chiral 2,2'-pyridyl bis-N-oxides bearing various substituents at the 3,3'- and 6,6'-positions also provide excellent yields of the aldol products with variable enantioselectivities ranging from 94/6 er for aromatic ketones to nearly racemic for aliphatic ketones. An X-ray crystal structure of the complex between a catalyst and silicon tetrachloride (((P)-(R,R)-19.SiCl(4))) has been obtained. Extensive computational analysis provides a stereochemical rationale for the observed trends in enantioselectivities.

  14. Analytical results from ground-water sampling using a direct-push technique at the Dover National Test Site, Dover Air Force Base, Delaware, June-July 2001

    USGS Publications Warehouse

    Guertal, William R.; Stewart, Marie; Barbaro, Jeffrey R.; McHale, Timthoy J.

    2004-01-01

    A joint study by the Dover National Test Site and the U.S. Geological Survey was conducted from June 27 through July 18, 2001 to determine the spatial distribution of the gasoline oxygenate additive methyl tert-butyl ether and selected water-quality constituents in the surficial aquifer underlying the Dover National Test Site at Dover Air Force Base, Delaware. The study was conducted to support a planned enhanced bio-remediation demonstration and to assist the Dover National Test Site in identifying possible locations for future methyl tert-butyl ether remediation demonstrations. This report presents the analytical results from ground-water samples collected during the direct-push ground-water sampling study. A direct-push drill rig was used to quickly collect 115 ground-water samples over a large area at varying depths. The ground-water samples and associated quality-control samples were analyzed for volatile organic compounds and methyl tert-butyl ether by the Dover National Test Site analytical laboratory. Volatile organic compounds were above the method reporting limits in 59 of the 115 ground-water samples. The concentrations ranged from below detection limits to maximum values of 12.4 micrograms per liter of cis-1,2-dichloroethene, 1.14 micrograms per liter of trichloroethene, 2.65 micrograms per liter of tetrachloroethene, 1,070 micrograms per liter of methyl tert-butyl ether, 4.36 micrograms per liter of benzene, and 1.8 micrograms per liter of toluene. Vinyl chloride, ethylbenzene, p,m-xylene, and o-xylene were not detected in any of the samples collected during this investigation. Methyl tert-butyl ether was detected in 47 of the 115 ground-water samples. The highest methyl tert-butyl ether concentrations were found in the surficial aquifer from -4.6 to 6.4 feet mean sea level, however, methyl tert-butyl ether was detected as deep as -9.5 feet mean sea level. Increased methane concentrations and decreased dissolved oxygen concentrations were found in

  15. A Multipurpose Additive for Lubricating Oils,

    DTIC Science & Technology

    The report describes the synthesis and properties of S-(3,5-di-tert-butyl-4-hydroxybenzyl)-O-O-(alkyl or aryl) phosphorodithioate. This compound was synthesized as wear inhibitor and antioxidant for lubricating oils .

  16. N-(N-[2-(3,5-Difluorophenyl)acetyl]-(S)-alanyl)-(S)-phenylglycine tert-butyl ester (DAPT): an inhibitor of γ-secretase, revealing fine electronic and hydrogen-bonding features

    SciTech Connect

    Czerwinski, Andrzej; Valenzuela, Francisco; Afonine, Pavel; Dauter, Miroslawa; Dauter, Zbigniew

    2010-12-01

    The title compound, C{sub 23}H{sub 26}F{sub 2}N{sub 2}O{sub 4}, is a dipeptidic inhibitor of γ-secretase, one of the enzymes involved in Alzheimer’s dis@@ease. The mol@@ecule adopts a compact conformation, without intra@@molecular hydrogen bonds. In the crystal structure, one of the amide N atoms forms the only inter@@molecular N—H⋯O hydrogen bond; the second amide N atom does not form hydrogen bonds. High-resolution synchrotron diffraction data permitted the unequivocal location and refinement without restraints of all H atoms, and the identification of the characteristic shift of the amide H atom engaged in the hydrogen bond from its ideal position, resulting in a more linear hydrogen bond. Significant residual densities for bonding electrons were revealed after the usual SHELXL refinement, and modeling of these features as additional inter@@atomic scatterers (IAS) using the program PHENIX led to a significant decrease in the R factor from 0.0411 to 0.0325 and diminished the r.m.s. deviation level of noise in the final difference Fourier map from 0.063 to 0.037 e Å{sup −3}.

  17. Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. To this end, a number of electrolyte formulations have been developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl butyrate-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalato)borate (LiBOB), which have been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. Improved performance has been demonstrated of Li-ion cells with methyl butyrate-based electrolytes, including 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %); 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 4% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + lithium oxalate; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% VC; and 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 0.10M LiBOB. These electrolytes have been shown to improve performance in MCMB-LiNiCoO2 and graphite-LiNi1/3Co1/3Mn1/3O2 experimental Li-ion cells. A number of LiPF6-based mixed carbonate electrolyte formulations have been developed that contain ester co-solvents, which have been optimized for operation at low temperature, while still providing reasonable performance at high temperature. For example, a number of ester co-solvents were investigated, including methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), and butyl butyrate (BB) in multi-component electrolytes of the following composition: 1.0M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (20:60:20 v/v %) [where X = ester co-solvent]. ["Optimized Car bon ate and Ester-Based Li-Ion Electrolytes", NASA Tech Briefs, Vol. 32, No. 4 (April 2008), p. 56.] Focusing upon improved rate

  18. Examination of Calcium Silicate Cements with Low-Viscosity Methyl Cellulose or Hydroxypropyl Cellulose Additive.

    PubMed

    Baba, Toshiaki; Tsujimoto, Yasuhisa

    2016-01-01

    The purpose of this study was to improve the operability of calcium silicate cements (CSCs) such as mineral trioxide aggregate (MTA) cement. The flow, working time, and setting time of CSCs with different compositions containing low-viscosity methyl cellulose (MC) or hydroxypropyl cellulose (HPC) additive were examined according to ISO 6876-2012; calcium ion release analysis was also conducted. MTA and low-heat Portland cement (LPC) including 20% fine particle zirconium oxide (ZO group), LPC including zirconium oxide and 2 wt% low-viscosity MC (MC group), and HPC (HPC group) were tested. MC and HPC groups exhibited significantly higher flow values and setting times than other groups (p < 0.05). Additionally, flow values of these groups were higher than the ISO 6876-2012 reference values; furthermore, working times were over 10 min. Calcium ion release was retarded with ZO, MC, and HPC groups compared with MTA. The concentration of calcium ions was decreased by the addition of the MC or HPC group compared with the ZO group. When low-viscosity MC or HPC was added, the composition of CSCs changed, thus fulfilling the requirements for use as root canal sealer. Calcium ion release by CSCs was affected by changing the CSC composition via the addition of MC or HPC.

  19. Examination of Calcium Silicate Cements with Low-Viscosity Methyl Cellulose or Hydroxypropyl Cellulose Additive

    PubMed Central

    Tsujimoto, Yasuhisa

    2016-01-01

    The purpose of this study was to improve the operability of calcium silicate cements (CSCs) such as mineral trioxide aggregate (MTA) cement. The flow, working time, and setting time of CSCs with different compositions containing low-viscosity methyl cellulose (MC) or hydroxypropyl cellulose (HPC) additive were examined according to ISO 6876-2012; calcium ion release analysis was also conducted. MTA and low-heat Portland cement (LPC) including 20% fine particle zirconium oxide (ZO group), LPC including zirconium oxide and 2 wt% low-viscosity MC (MC group), and HPC (HPC group) were tested. MC and HPC groups exhibited significantly higher flow values and setting times than other groups (p < 0.05). Additionally, flow values of these groups were higher than the ISO 6876-2012 reference values; furthermore, working times were over 10 min. Calcium ion release was retarded with ZO, MC, and HPC groups compared with MTA. The concentration of calcium ions was decreased by the addition of the MC or HPC group compared with the ZO group. When low-viscosity MC or HPC was added, the composition of CSCs changed, thus fulfilling the requirements for use as root canal sealer. Calcium ion release by CSCs was affected by changing the CSC composition via the addition of MC or HPC. PMID:27981048

  20. Renewable Gasoline, Solvents, and Fuel Additives from 2,3-Butanediol.

    PubMed

    Harvey, Benjamin G; Merriman, Walter W; Quintana, Roxanne L

    2016-07-21

    2,3-Butanediol (2,3-BD) is a renewable alcohol that can be prepared in high yield from biomass sugars. 2,3-BD was selectively dehydrated in a solvent-free process to a complex mixture of 2-ethyl-2,4,5-trimethyl-1,3-dioxolanes and 4,5-dimethyl-2isopropyl dioxolanes with the heterogeneous acid catalyst Amberlyst-15. The purified dioxolane mixture exhibited an anti-knock index of 90.5, comparable to high octane gasoline, and a volumetric net heat of combustion 34 % higher than ethanol. The solubility of the dioxolane mixture in water was only 0.8 g per 100 mL, nearly an order of magnitude lower than the common gasoline oxygenate methyl tert-butyl ether. The dioxolane mixture has potential applications as a sustainable gasoline blending component, diesel oxygenate, and industrial solvent.

  1. Biodegradation of potential diesel oxygenate additives: dibutyl maleate (DBM), and tripropylene glycol methyl ether (TGME).

    PubMed

    Marchetti, Alfredo A; Knize, Mark G; Chiarappa-Zucca, Marina L; Pletcher, Ronald J; Layton, David W

    2003-08-01

    The addition of oxygen-bearing compounds to diesel fuel considerably reduces particulate emissions. TGME and DBM have been identified as possible diesel additives based on their physicochemical characteristics and performance in engine tests. Although these compounds will reduce particulate emissions, their potential environmental impacts are unknown. As a means of characterizing their persistence in environmental media such as soil and groundwater, we conducted a series of biodegradation tests of DBM and TGME. Benzene and methyl tertiary butyl ether (MTBE) were also tested as reference compounds. Primary degradation of DBM fully occurred within 3 days, while TGME presented a lag phase of approximately 8 days and was not completely degraded by day 28. Benzene primary degradation occurred completely by day 3 and MTBE did not degrade at all. The total mineralized fractions of DBM and TGME achieved constant values as a function of time of approximately 65% and approximately 40%, respectively. Transport predictions show that, released to the environment, DBM and TGME would concentrate mostly in soils and waters with minimal impact to air. From an environmental standpoint, these results combined with the transport predictions indicate that DBM is a better choice than TGME as a diesel additive.

  2. 27 CFR 21.101 - tert-Butyl alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of distilled water, and filter when cool). Heat the mixture just to the boiling point and remove from... at 20 °C. Miscible without turbidity with 19 volumes of 60° Bé1. gasoline. (e) Freezing point...

  3. 27 CFR 21.101 - tert-Butyl alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of distilled water, and filter when cool). Heat the mixture just to the boiling point and remove from... at 20 °C. Miscible without turbidity with 19 volumes of 60° Bé1. gasoline. (e) Freezing point...

  4. 27 CFR 21.101 - tert-Butyl alcohol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of distilled water, and filter when cool). Heat the mixture just to the boiling point and remove from... at 20 °C. Miscible without turbidity with 19 volumes of 60° Bé1. gasoline. (e) Freezing point...

  5. 27 CFR 21.101 - tert-Butyl alcohol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of distilled water, and filter when cool). Heat the mixture just to the boiling point and remove from... at 20 °C. Miscible without turbidity with 19 volumes of 60° Bé1. gasoline. (e) Freezing point...

  6. 27 CFR 21.101 - tert-Butyl alcohol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of distilled water, and filter when cool). Heat the mixture just to the boiling point and remove from... at 20 °C. Miscible without turbidity with 19 volumes of 60° Bé1. gasoline. (e) Freezing point...

  7. A triclinic polymorph of bis-(μ-di-tert-butyl-phosphanido)bis-[(di-tert-butyl-phosphane)palladium(I)].

    PubMed

    Breunig, Jens; Lerner, Hans-Wolfram; Bolte, Michael

    2012-06-01

    A new polymorph of the title compound, [Pd(2)(C(8)H(18)P)(2)(C(8)H(19)P)(2)], has been found. It belongs to the triclinic P-1 space group, whereas the known form [Leoni, Sommovigo, Pasquali, Sabatino & Braga (1992 ▶), J. Organo-met. Chem.423, 263-270] crystallizes in the monoclinic C2/c space group. The title compound features a dinuclear palladium complex with a planar central Pd(2)(μ-P)(2) core (r.m.s. deviation = 0.003 Å). The Pd-Pd distance of 2.5988 (5) Å is within the range of a Pd(I)-Pd(I) bond. The mol-ecules of both polymorphs are located on a crystallographic centre of inversion. The mol-ecular conformations of the two polymorphs are essentially identical. The crystal packing patterns, on the other hand, are slightly different.

  8. Photosensitized decomposition of S-nitrosothiols and 2-methyl-2-nitrosopropane. Possible use for site-directed nitric oxide production.

    PubMed

    Singh, R J; Hogg, N; Joseph, J; Kalyanaraman, B

    1995-02-20

    Irradiation of S-nitrosoglutathione (GSNO) with light (lambda = 550 nm) resulted in the homolytic decomposition of GSNO to generate glutathionyl radical (GS.) and nitric oxide (.NO), which were monitored by ESR spectrometry. Inclusion of Rose Bengal (RB) resulted in a 9-fold increase in the quantum yield for .NO production and also an increase in the rate of thiyl radical formation. The bimolecular rate constant for the interaction of triplet RB with GSNO has been estimated to be approximately 1.2 x 10(9) M-1s-1 by competition with oxygen. Hematoporphyrin (HP) also enhanced the rate of .NO production by 2-3-fold. 2-Methyl-2-nitrosopropane (MNP) decomposed on irradiation (lambda = 660 nm) to form .NO and tert-butyl radical. Aluminum phthalocyanine tetrasulphonate enhanced the rate of decomposition of MNP by 10-fold. These studies show that photosensitizers enhance the release of .NO from donor compounds.

  9. Kinetics of Methyl t-Butyl Ether Cometabolism at Low Concentrations by Pure Cultures of Butane-Degrading Bacteria

    PubMed Central

    Liu, Catherine Y.; Speitel, Gerald E.; Georgiou, George

    2001-01-01

    Butane-oxidizing Arthrobacter (ATCC 27778) bacteria were shown to degrade low concentrations of methyl t-butyl ether (MTBE; range, 100 to 800 μg/liter) with an apparent half-saturation concentration (Ks) of 2.14 mg/liter and a maximum substrate utilization rate (kc) of 0.43 mg/mg of total suspended solids per day. Arthrobacter bacteria demonstrated MTBE degradation activity when grown on butane but not when grown on glucose, butanol, or tryptose phosphate broth. The presence of butane, tert-butyl alcohol, or acetylene had a negative impact on the MTBE degradation rate. Neither Methylosinus trichosporium OB3b nor Streptomyces griseus was able to cometabolize MTBE. PMID:11319100

  10. MTBE IN SITU BIODEGRADATION IN BIONETS USING ISOLITE, PM1, SLOW RELEASING OXYGEN AND AIR IN INDIAN COUNTRY

    EPA Science Inventory

    Methyl tert-Butyl Ether (MTBE), a gasoline additive, is a persistent, foul tasting chemical and more mobile in ground water than BTEX. Our objective was to determine if biologically active in situ Bionets could bioremediate MTBE. Seven Bionets, most containing 3 fractures each,...

  11. MTBE BIOREMEDIATION WITH BIONETS CONTAINING ISOLITE, PMI, SOS ON AIR

    EPA Science Inventory

    Methyl tert-Butyl Ether (MTBE), a gasoline additive, is a persistent and foul tasting contaminant that is more mobile in ground water than BTEX. It is turning up at many American crossroads. This study's objective was to determine if biologically active in situ Bionets could bior...

  12. BTEX MTBE BIOREMEDIATION: BIONETS CONTAINING ISOLITE, PM1, SOLID OXYGEN SOURCE

    EPA Science Inventory

    Methyl tert-Butyl Ether (MTBE), a gasoline additive, is a persistent and foul tasting contaminate that is more mobile in ground water than BTEX . It, along with BTEX, is turning up at many American crossroads. This study's objective was to determine if biologically active in sit...

  13. Separating Octadecyltrimethoxysilane Hydrolysis and Condensation at the Air/Water Interface through Addition of Methyl Stearate

    PubMed Central

    Britt, David W.; Hlady, Vladimir

    2012-01-01

    The hydrolysis and condensation of octadecyltrimethoxysilane (OTMS) at the air/water interface were monitored through molecular area changes at a constant surface pressure of 10 mN/m. The onset of condensation was delayed through the addition of methyl stearate (SME) acting as an inert filler molecule. In the absence of SME, complete gelation of OTMS required 30 h, during which time OTMS condensation occurred concomitantly with hydrolysis. In the presence of SME, the OTMS monolayer gelation rate increased in proportion to the amount of SME present. A 1:6 OTMS:SME molar ratio resulted in monolayer gelation within 30 min, suggesting completion of monomer hydrolysis prior to condensation. These findings indicate that lability of OTMS to hydrolysis at the air/water interface is governed by steric and conformational constraints at the silicon atom site, with monomeric OTMS being much more reactive than oligomeric OTMS. Fluorescence microscope images demonstrated that the OTMS condensed domain size also decreased with increasing SME concentrations, further implicating SME’s role as an inert filler. PMID:25132807

  14. 78 FR 68021 - Notice of Affirmation of Addition of a Treatment Schedule for Methyl Bromide Fumigation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... fumigation of blueberries for Mediterranean fruit fly and South American fruit fly. In a previous notice, we... fruit flies. DATES: Effective Date: Effective on November 13, 2013, we are affirming the addition to the... our determination that a new methyl bromide treatment schedule to mitigate risk from two fruit...

  15. 78 FR 14508 - Notice of Affirmation of Addition of a Treatment Schedule for Methyl Bromide Fumigation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... Treatment Schedule for Methyl Bromide Fumigation of Cottonseed AGENCY: Animal and Plant Health Inspection... to immediately add to the Plant Protection and Quarantine Treatment Manual a treatment schedule for...: Effective on March 6, 2013, we are affirming the addition to the Plant Protection and Quarantine...

  16. On the origins of diastereoselectivity in the conjugate additions of the antipodes of lithium N-benzyl-(N-α-methylbenzyl)amide to enantiopure cis- and trans-dioxolane containing α,β-unsaturated esters.

    PubMed

    Davies, Stephen G; Foster, Emma M; Frost, Aileen B; Lee, James A; Roberts, Paul M; Thomson, James E

    2012-08-14

    "Matching" and "mismatching" effects in the doubly diastereoselective conjugate additions of the antipodes of lithium N-benzyl-(N-α-methylbenzyl)amide to enantiopure cis- and trans-dioxolane containing α,β-unsaturated esters have been investigated. High levels of substrate control were established first upon conjugate addition of achiral lithium N-benzyl-N-isopropylamide to both tert-butyl (S,S,E)-4,5-O-isopropylidene-4,5-dihydroxyhex-2-enoate and tert-butyl (4R,5S,E)-4,5-O-isopropylidene-4,5-dihydroxyhex-2-enoate. However, upon conjugate addition of lithium (R)-N-benzyl-(N-α-methylbenzyl)amide and lithium (S)-N-benzyl-(N-α-methylbenzyl)amide to these substrates, neither reaction pairing reinforced the apparent sense of substrate control. These reactions do not, therefore, conform to the classical doubly diastereoselective "matching" or "mismatching" pattern usually exhibited by this class of reaction. A comparison of these reactions with the previously reported doubly diastereoselective conjugate addition reactions of lithium amide reagents to analogous substrates is also discussed.

  17. A mechanistic investigation of oxidative addition of methyl iodide to [Tp*Rh(CO)(L)].

    PubMed

    Chauby, Valérie; Daran, Jean-Claude; Serra-Le Berre, Carole; Malbosc, François; Kalck, Philippe; Delgado Gonzalez, Oscar; Haslam, Claire E; Haynes, Anthony

    2002-06-17

    Reaction of methyl iodide with square planar [kappa(2)-Tp*Rh(CO)(PMe(3))] 1a (Tp* = HB(3,5-Me(2)pz)(3)) at room temperature affords [kappa(3)-Tp*Rh(CO)(PMe(3))(Me)]I 2a, which was fully characterized by spectroscopy and X-ray crystallography. The pseudooctahedral geometry of cationic 2a, which contains a kappa(3)-coordinated Tp* ligand, indicates a reaction mechanism in which nucleophilic attack by Rh on MeI is accompanied by coordination of the pendant pyrazolyl group. In solution 2a transforms slowly into a neutral (acetyl)(iodo) rhodium complex [kappa(3)-Tp*Rh(PMe(3))(COMe)I] 3a, for which an X-ray crystal structure is also reported. Kinetic studies on the reactions of [kappa(2)-Tp*Rh(CO)(L)] (L = PMe(3), PMe(2)Ph, PMePh(2), PPh(3), CO)] with MeI show second-order behavior with large negative activation entropies, consistent with an S(N)2 mechanism. The second-order rate constants correlate well with phosphine basicity. For L = CO, reaction with MeI gives an acetyl complex, [kappa(3)-Tp*Rh(CO)(COMe)I]. The bis(pyrazolyl)borate complexes [kappa(2)-Bp*Rh(CO)(L)] (L = PPh(3), CO) are much less reactive toward MeI than the Tp* analogues, indicating the importance of the third pyrazolyl group and the accessibility of a kappa(3) coordination mode. The results strengthen the evidence in favor of an S(N)2 mechanism for oxidative addition of MeI to square planar d(8) transition metal complexes.

  18. Cold flow properties of fatty acid methyl esters: Additives versus diluents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is typically composed of fatty acid methyl esters (FAME) converted from agricultural lipids. Common feedstocks include soybean oil, canola oil, rapeseed oil, sunflower oil, and palm oil. Recent debate on the conversion of edible oils into non-food products has created opportunities to deve...

  19. Evaluation of granular activated carbon technology for the removal of methyl tertiary butyl ether (MTBE) from drinking water.

    PubMed

    Shih, Tom C; Wangpaichitr, Medhi; Suffet, Mel

    2003-01-01

    This study evaluated granular activated carbons (GACs) using rapid small-scale column tests (RSSCTs) on methyl tert-butyl ether (MTBE) levels from 20 to 2000 microg/L, with or without the presence of tert-butyl alcohol, benzene, toluene, p-xylene (BTX) in two groundwater (South Lake Tahoe Utility District [Lake Tahoe, CA] and Arcadia Well Field [Santa Monica, CA]) and a surface water source (Lake Perris, CA). Direct comparison between two GACs was made for RSSCTs conducted with surface water from Lake Perris. The impact of natural organic matter on GAC performance was investigated and found to correspond with total organic carbon concentration in the three source waters. Significant reduction in GAC performance for MTBE due to competitive adsorption from soluble fuel components (e.g., BTX) was observed. Little or no difference in GAC usage rate or bed life was detected as the empty-bed contact time is changed from 10 to 20 min for RSSCTs conducted in the two groundwater sources, whereas the RSSCTs conducted in the surface water source exhibited significant increase in GAC usage rate as the empty-bed contact time is decreased from 20 to 10 min. This finding suggests that the higher NOM content of the surface water over the groundwater sources caused a greater competitive-adsorption effect that made more sites on the GAC to be unavailable to MTBE, thus decreasing its rate of adsorption and GAC performance for MTBE. Finally, the impact of differential influent MTBE concentration on GAC performance was demonstrated.

  20. Dioxygen activation by non-adiabatic oxidative addition to a single metal center [O2 activation by non-adiabatic oxidative addition to a single metal center

    DOE PAGES

    Akturk, Eser S.; Yap, Glenn P. A.; Theopold, Klaus H.

    2015-10-16

    A chromium(I) dinitrogen complex reacts rapidly with O2 to form the mononuclear dioxo complex [TptBu,MeCrV(O)2] (TptBu,Me=hydrotris(3-tert-butyl-5-methylpyrazolyl)borate), whereas the analogous reaction with sulfur stops at the persulfido complex [TptBu,MeCrIII(S2)]. The transformation of the putative peroxo intermediate [TptBu,MeCrIII(O2)] (S=3/2) into [TptBu,MeCrV(O)2] (S=1/2) is spin-forbidden. The minimum-energy crossing point for the two potential energy surfaces has been identified. Finally, although the dinuclear complex [(TptBu,MeCr)2(μ-O)2] exists, mechanistic experiments suggest that O2 activation occurs on a single metal center, by an oxidative addition on the quartet surface followed by crossover to the doublet surface.

  1. Decision-Making, Science and Gasoline Additives

    NASA Astrophysics Data System (ADS)

    Weaver, J. W.; Small, M. C.

    2001-12-01

    Methyl-tert butyl ether (MTBE) has been used as a gasoline additive to serve two major purposes. The first use was as an octane-enhancer to replace organic lead, beginning in 1979. The second use, which began about 1992, was as a oxygenated additive to meet requirements of the Clean Air Act Amendments (CAAA) of 1990. Generally, the amount of MTBE used for octane enhancement was lower than that required to meet CAAA requirements. An unintended consequence of MTBE use has been widespread groundwater contamination. The decision to use certain amounts of MTBE or other chemcials as gasoline additives is the outcome of economic, regulatory, policy, political, and scientific considerations. Decision makers ask questions such as "How do ground water impacts change with changing MTBE content? How many wells would be impacted? and What are the associated costs?" These are best answered through scientific inquiry, but many different approaches could be developed. Decision criteria include time, money, comprehensiveness, and complexity of the approach. Because results must be communicated to a non-technical audience, there is a trade off between the complexity of the approach and the ability to convince economists, lawyers and policy makers that results make sense. The question on MTBE content posed above was investigated using transport models, a release scenario and gasoline composition. Because of the inability of transport models to predict future concentrations, an approach was chosen to base comparative assessment on a calibrated model. By taking this approach, "generic" modeling with arbitrarily selected parameters was avoided and the validity of the simulation results rests upon relatively small extrapolations from the original calibrated models. A set of simulations was performed that assumed 3% (octane enhancement) and 11% (CAAA) MTBE in gasoline. The results were that ground water concentrations would be reduced in proportion to the reduction of MTBE in the fuel

  2. Cytoplasmic 3' poly(A) addition induces 5' cap ribose methylation: implications for translational control of maternal mRNA.

    PubMed Central

    Kuge, H; Richter, J D

    1995-01-01

    During the early development of many animal species, the expression of new genetic information is governed by selective translation of stored maternal mRNAs. In many cases, this translational activation requires cytoplasmic poly(A) elongation. However, how this modification at the 3' end of an mRNA stimulates translation from the 5' end is unknown. Here we show that cytoplasmic polyadenylation stimulates cap ribose methylation during progesterone-induced oocyte maturation in Xenopus laevis. Translational recruitment of a chimeric reporter mRNA that is controlled by cytoplasmic polyadenylation coincides temporally with cap ribose methylation during this period. In addition, the inhibition of cap ribose methylation by S-isobutyladenosine significantly reduces translational activation of a reporter mRNA without affecting the increase of general protein synthesis or polyadenylation during maturation. These results provide evidence for a functional interaction between the termini of an mRNA molecule and suggest that 2'-O-ribose cap methylation mediates the translational recruitment of maternal mRNA. Images PMID:8557049

  3. Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition.

    PubMed

    Mnif, Inès; Maktouf, Sameh; Fendri, Raouia; Kriaa, Mouna; Ellouze, Semia; Ghribi, Dhouha

    2016-01-01

    Aeromonas veronii GRI (KF964486), isolated from acclimated textile effluent after selective enrichment on azo dye, was assessed for methyl orange biodegradation potency. Results suggested the potential of this bacterium for use in effective treatment of azo-dye-contaminated wastewaters under static conditions at neutral and alkaline pH value, characteristic of typical textile effluents. The strain could tolerate higher doses of dyes as it was able to decolorize up to 1000 mg/l. When used as microbial surfactant to enhance methyl orange biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized slightly the decolorization efficiency at an optimal concentration of about 0.025%. In order to enhance the process efficiency, a Taguchi design was conducted. Phytotoxicity bioassay using sesame and radish seeds were carried out to assess the biotreatment effectiveness. The bacterium was able to effectively decolorize the azo dye when inoculated with an initial optical density of about 0.5 with 0.25% sucrose, 0.125% yeast extract, 0.01% SPB1 biosurfactant, and when conducting an agitation phase of about 24 h after static incubation. Germination potency showed an increase toward the nonoptimized conditions indicating an improvement of the biotreatment. When comparing with synthetic surfactants, a drastic decrease and an inhibition of orange methyl decolorization were observed in the presence of CTAB and SDS. The nonionic surfactant Tween 80 had a positive effect on methyl orange biodecolorization. Also, studies ensured that methyl orange removal by this strain could be due to endocellular enzymatic activities. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing effective decolorization period, biosurfactant stimulated bacterial decolorization method may provide highly efficient, inexpensive, and time-saving procedure in treatment of textile effluents.

  4. Reversal of stereoselectivity in the Cu-catalyzed conjugate addition reaction of dialkylzinc to cyclic enone in the presence of a chiral azolium compound.

    PubMed

    Shibata, Naoatsu; Okamoto, Masaki; Yamamoto, Yuko; Sakaguchi, Satoshi

    2010-08-20

    Reversal of enantioselectivity in a Cu-catalyzed asymmetric conjugate addition reaction of dialkylzinc to cyclic enone with use of the same chiral ligand was successfully achieved. The reaction of 2-cyclohexen-1-one (30) with Et(2)Zn catalyzed by Cu(OTf)(2) in the presence of an azolium salt derived from a chiral beta-amino alcohol gave (S)-3-ethylcyclohexanone (31) in good enantioselectivity. Among a series of chiral azolium compounds examined, the benzimidazolium salt (10) having both a tert-butyl group at the stereogenic center and a benzyl substituent at the azolium ring was found to be the best choice of ligand in the Cu(OTf)(2)-catalyzed reaction. Good enantioselectivity was observed when the reaction was conducted by employing a benzimidazolium derivative rather than an imidazolium derivative. The influence of the substituent at the azolium ring on the stereoselectivity of the reaction was also examined. In addition, from the results of the reaction catalyzed by Cu(OTf)(2) combined with an azolium compound derived from (S)-leucine methyl ester, it was found that the hydroxy side chain in the chiral ligand is probably crucial for the enantiocontrol of the conjugate addition reaction. On the other hand, it was discovered from a screening test of copper species that the reversal of enantioselectivity was realized by allowing 30 to react with Et(2)Zn in the presence of Cu(acac)(2) combined with the same ligand precursor to afford (R)-31 as a major product. The influence of the stereodirecting group at the chiral ligand on the stereoselectivity in the Cu(acac)(2)-catalyzed reaction differed completely from that observed in the Cu(OTf)(2)-catalyzed reaction. Reaction with a cyclic enone consisting of a seven-membered ring such as 2-cyclohepten-1-one (40) resulted in increasing the enantioselectivity of the reaction. Thus, treatment of 40 with Et(2)Zn catalyzed by Cu(OTf)(2) combined with a benzimidazolium salt produced the corresponding (S)-conjugate adduct in a

  5. Effects of protonation and C5 methylation on the electrophilic addition reaction of cytosine: a computational study.

    PubMed

    Jin, Lingxia; Wang, Wenliang; Hu, Daodao; Min, Suotian

    2013-01-10

    The mechanism for the effects of protonation and C5 methylation on the electrophilic addition reaction of Cyt has been explored by means of CBS-QB3 and CBS-QB3/PCM methods. In the gas phase, three paths, two protonated paths (N3 and O2 protonated paths B and C) as well as one neutral path (path A), were mainly discussed, and the calculated results indicate that the reaction of the HSO(3)(-) group with neutral Cyt is unlikely because of its high activation free energy, whereas O2-protonated path (path C) is the most likely to occur. In the aqueous phase, path B is the most feasible mechanism to account for the fact that the activation free energy of path B decreases compared with the corresponding path in the gas phase, whereas those of paths A and C increase. The main striking results are that the HSO(3)(-) group directly interacts with the C5═C6 bond rather than the N3═C4 bond and that the C5 methylation, compared with Cyt, by decreasing values of global electrophilicity index manifests that C5 methylation forms are less electrophilic power as well as by decreasing values of NPA charges on C5 site of the intermediates make the trend of addition reaction weaken, which is in agreement with the experimental observation that the rate of 5-MeCyt reaction is approximately 2 orders of magnitude slower than that of Cyt in the presence of bisulfite. Apart from cis and trans isomers, the rare third isomer where both the CH(3) and SO(3) occupy axial positions has been first found in the reactions of neutral and protonated 5-MeCyt with the HSO(3)(-) group. Furthermore, the transformation of the third isomer from the cis isomer can occur easily.

  6. Anaerobic Activation of p-Cymene in Denitrifying Betaproteobacteria: Methyl Group Hydroxylation versus Addition to Fumarate

    PubMed Central

    Strijkstra, Annemieke; Trautwein, Kathleen; Jarling, René; Wöhlbrand, Lars; Dörries, Marvin; Reinhardt, Richard; Drozdowska, Marta; Golding, Bernard T.; Wilkes, Heinz

    2014-01-01

    The betaproteobacteria “Aromatoleum aromaticum” pCyN1 and “Thauera” sp. strain pCyN2 anaerobically degrade the plant-derived aromatic hydrocarbon p-cymene (4-isopropyltoluene) under nitrate-reducing conditions. Metabolite analysis of p-cymene-adapted “A. aromaticum” pCyN1 cells demonstrated the specific formation of 4-isopropylbenzyl alcohol and 4-isopropylbenzaldehyde, whereas with “Thauera” sp. pCyN2, exclusively 4-isopropylbenzylsuccinate and tentatively identified (4-isopropylphenyl)itaconate were observed. 4-Isopropylbenzoate in contrast was detected with both strains. Proteogenomic investigation of p-cymene- versus succinate-adapted cells of the two strains revealed distinct protein profiles agreeing with the different metabolites formed from p-cymene. “A. aromaticum” pCyN1 specifically produced (i) a putative p-cymene dehydrogenase (CmdABC) expected to hydroxylate the benzylic methyl group of p-cymene, (ii) two dehydrogenases putatively oxidizing 4-isopropylbenzyl alcohol (Iod) and 4-isopropylbenzaldehyde (Iad), and (iii) the putative 4-isopropylbenzoate-coenzyme A (CoA) ligase (Ibl). The p-cymene-specific protein profile of “Thauera” sp. pCyN2, on the other hand, encompassed proteins homologous to subunits of toluene-activating benzylsuccinate synthase (termed [4-isopropylbenzyl]succinate synthase IbsABCDEF; identified subunits, IbsAE) and protein homologs of the benzylsuccinate β-oxidation (Bbs) pathway (termed BisABCDEFGH; all identified except for BisEF). This study reveals that two related denitrifying bacteria employ fundamentally different peripheral degradation routes for one and the same substrate, p-cymene, with the two pathways apparently converging at the level of 4-isopropylbenzoyl-CoA. PMID:25261521

  7. An EPR study of the radical addition to 3-nitropentan-2-one as an archetype of α-carbonylnitroalkanes.

    PubMed

    Campredon, Mylène; Alberti, Angelo

    2014-06-01

    Carbon, silicon, germanium, tin and lead-centered radicals were reacted with 3-nitropentan-2-one and 3-nitropentan-2-ol inside the cavity of an electron paramagnetic resonance spectrometer. In all cases, selective addition to the nitrogroup was observed with detection of the corresponding oxynitroxide radicals. In the case of the carbonyl substrate, alkyl acyl nitroxides were also detected because of α-photocleavage. The oxynitroxides decayed with a first order kinetics via fragmentation of the carbon-nitrogen bond (denitration). Unexpectedly, the activation parameters were fairly similar to those previously reported for the corresponding tert-butyl oxynitroxides and almost independent from the presence of a carbonyl or a hydroxyl group on the carbon adjacent to the one bearing the nitrogroup.

  8. Irrigation, organic matter addition, and tarping as methods of reducing emissions of methyl iodide from agricultural soil.

    PubMed

    Ashworth, D J; Luo, L; Xuan, R; Yates, S R

    2011-02-15

    Methyl iodide (MeI) is increasingly being used as a highly effective alternative to the soil fumigant methyl bromide. Due to its volatile and toxic nature, MeI draws wide attention on its potential atmospheric emission following field fumigation treatment. Using soil columns that make it possible to determine emissions and gas phase distribution of soil fumigants, we studied MeI behavior in two soils differing in organic matter content. Additionally, the effectiveness of surface irrigation and tarping with virtually impermeable film (VIF) was assessed. In the lower organic matter, bare soil (control), emissions of MeI were rapid and high (83% of total). Although the peak emission flux was reduced by irrigation, the total loss was very similar to the control (82%). Tarping with VIF dramatically reduced emissions (0.04% total emissions). In the higher organic matter soil, degradation rate of MeI was increased around 4-fold, leading to a significant reduction in emissions (63% total emissions). The work suggests that surface tarping with VIF would be highly effective as an emissions reduction strategy and would also result in the maintenance of high soil gas concentrations (important for pest control). Ripping of the tarp after two weeks led to an immediate spike release of MeI, but, even so, the flux rate at this time was almost 20 times lower than the peak flux rate in the control. Even with tarp ripping, the total emission loss from the VIF treatment remained low (6%).

  9. Environmental effect of antioxidant additives on exhaust emission reduction in compression ignition engine fuelled with Annona methyl ester.

    PubMed

    Senthil, R; Silambarasan, R

    2015-01-01

    The aim of the present study is to analyse the effect of antioxidant l-ascorbic acid on engine performance and emissions of a diesel engine fuelled with methyl ester of Annona oil (MEAO). The antioxidant is mixed in various concentrations (100-400 mg) with MEAO. Result shows that the antioxidant additive mixture (MEAO+LA200) is effective in control of nitrogen oxides (NOx) and hydrocarbon (HC) emission of MEAO-fuelled engine without doing any engine modification. In this study by using MEAO, the NOx emission is reduced by about 23.38% at full load while compared with neat diesel fuel. Likewise there is a reduction in carbon monoxide, smoke, and HC by about 48%, 28.57% and 29.71% at full load condition compared with neat diesel fuel.

  10. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  11. Simultaneous determination of five common additives in insulating mineral oils by high-performance liquid chromatography with ultraviolet and coulometric detection.

    PubMed

    Bruzzoniti, Maria Concetta; Sarzanini, Corrado; Rivoira, Luca; Tumiatti, Vander; Maina, Riccardo

    2016-08-01

    Dielectric mineral oils are used to impregnate power transformers and large electrical apparatus, acting as both liquid insulation and heat dissipation media. Antioxidants and passivators are frequently added to mineral oils to enhance oxidation stability and reduce the electrostatic charging tendency, respectively. Since existing standard test methods only allow analysis of individual additives, new approaches are needed for the detection of mixtures. For the first time we investigate and discuss the performance of analytical methods, which require or do not require extraction as sample pretreatment, for the simultaneous reversed-phase high-performance liquid chromatography determination of passivators (benzotriazole, Irgamet(®) 39) and antioxidants (N-phenyl-1-naphtylamine, 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-p-cresol), chosen for their presence in marketed oils. Quick easy, cheap, effective, rugged and safe and solid phase extractions were evaluated as sample pretreatments. Direct sample-injection was also studied. Ultraviolet spectrophotometry and direct-current coulometry detection were explored. As less prone to additive concentrations variability, the direct-injection high-performance liquid chromatography with ultraviolet and coulometric detection method was validated through comparison with Standard Method IEC 60666 and through an ASTM interlaboratory proficiency test. Obtained detection limits are (mg kg(-1) ): benzotriazole (2.8), Irgamet(®) 39 (13.8), N-phenyl-1-naphtylamine (11.9), 2,6-di-tert-butylphenol (13.1), 2,6-di-tert-butyl-p-cresol (10.2). Simultaneous determination of selected additives was possible both in unused and used oils, with good precision and accuracy.

  12. [Simultaneous determination of eight additives in polymer food packaging materials by ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry].

    PubMed

    Zhang, Xulong; Liu, Yin; Gong, Zhiguo; Wang, Pengju; Wang, Jide; Feng, Shun

    2014-08-01

    An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was proposed for the simultaneous determination of eight additives (Irgafos 168 (tri(2.4-di-tert-butylphenyl)phosphite), Irganox 1076 (octadecyl-β-(4-hydroxy-3, 5-di-tert-butylphenyl)propionate), Irganox 1010 (pentaerythritol tetrakys 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate), BHA (butyl hydroxy anisole), TBHQ (tertiary butylhydroquinone), PG (propyl gallate), DG (dodecyl gallate), UV-326 (2-( 2'-hydroxyl-3'-tert-butyl-5'-methylphenyl)-5-chlorobenzotriazole) in food packaging materials. After extracted by chloromethane through ultrasonic extraction, the samples were analyzed by UPLC-MS/MS. The chromatographic conditions were optimized, and the best separation was obtained on a Waters BEH-C18 column (50 mm x 2. 1 mm, 1.7 μm) with gradient elution of 0. 05% acetic acid solu- tion and methanol. The analysis was performed by UPLC-MS/MS with electrospray ionization (ESI) source in switching between the positive and negative ion modes in one run for multiple reaction monitoring. The eight additives showed good linear relationships in the ranges with all the correlation coefficients (R2) more than 0. 993. The limits of detection (LODs, S/N= 3) and limits of quantitation (LOQs, S/N= 10) of this method were 0. 13-5.50 μg/L and 0.45-17.50 μg/L, respectively. The recoveries were in the range of 63. 9% - 127. 0% with all the RSDs < 15. 8% (n= 6). This method is simple, accurate and effective for the analysis of the eight additives in food packaging materials.

  13. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement

    PubMed Central

    Khandaker, Morshed; Vaughan, Melville B; Morris, Tracy L; White, Jeremiah J; Meng, Zhaotong

    2014-01-01

    The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate) (PMMA). Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size), such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell adhesion of the PMMA samples. The results of this study could be useful for improving the union of implant-PMMA or bone-PMMA interfaces by incorporating nanoparticles into PMMA cement for orthopedic and orthodontic applications. PMID:24920906

  14. 76 FR 32332 - BASF Corp.; Filing of Food Additive Petition (Animal Use); Methyl Esters of Conjugated Linoleic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... lactating dairy cow diets and for use of silicon dioxide as a carrier for the methyl esters of CLA. DATES... trans-10, cis-12 octadecadienoic acids) as a source of fatty acids in lactating dairy cow diets....

  15. STABLE ISOTOPE ANALYSIS OF MTBE TO EVALUATE THE SOURCE OF TBA IN GROUND WATER

    EPA Science Inventory

    Although tert-butyl alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared those of the conventional fuel oxygenate methyl tert-butyl ether (MTBE). In the year 2002, th...

  16. ANAEROBIC DEGRADATION OF MTBE TO TBA IN GROUND WATER AT GASOLINE SPILL SITES IN ORANGE COUNTY, CALIFORNIA

    EPA Science Inventory

    Although tert-Butyl Alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared to the concentrations of the conventional fuel oxygenate Methyl tert-Butyl Ether (MTBE). In t...

  17. Gibbs energy additivity approaches to QSRR in generating gas chromatographic retention time for identification of fatty acid methyl ester.

    PubMed

    Pojjanapornpun, Siriluck; Aryusuk, Kornkanok; Lilitchan, Supathra; Krisnangkura, Kanit

    2017-02-06

    The Gibbs energy additivity method was used to correlate the retention time (t R) of common fatty acid methyl esters (FAMEs) to their chemical structures. The t R of 20 standard FAMEs eluted from three capillary columns of different polarities (ZB-WAXplus, BPX70, and SLB-IL111) under both isothermal gas chromatography and temperature-programmed gas chromatography (TPGC) conditions were accurately predicted. Also, the predicted t R of FAMEs prepared from flowering pak choi seed oil obtained by multistep TPGC with the BPX70 column were within 1.0% of the experimental t R. The predicted t R or mathematical t R (t R(math)) values could possibly be used as references in identification of common FAMEs. Hence, FAMEs prepared from horse mussel and fish oil capsules were chromatographed on the BPX70 and ZB-WAXplus columns in single-step and multistep TPGC. Identification was done by comparison of t R with the t R of standard FAMEs and with t R(math). Both showed correct identifications. The proposed model has six numeric constants. Five of six could be directly transferred to other columns of the same stationary phase. The first numeric constant (a), which contained the column phase ratio, could also be transferred with the adjustment of the column phase ratio to the actual phase ratio of the transferred column. Additionally, the numeric constants could be transferred across laboratories, with similar correction of the first numeric constant. The TPGC t R predicted with the transferred column constants were in good agreement with the reported experimental t R of FAMEs. Moreover, hexane was used in place of the conventional t M marker in the calculation. Hence, the experimental methods were much simplified and practically feasible. The proposed method for using t R(math) as the references would provide an alternative to the uses of real FAMEs as the references. It is simple and rapid and with good accuracy compared with the use of experimental t R as references.

  18. Mixed N-Heterocyclic Carbene-Bis(oxazolinyl)borato Rhodium and Iridium Complexes in Photochemical and Thermal Oxidative Addition Reactions

    SciTech Connect

    Xu, Songchen; Manna, Kuntal; Ellern, Arkady; Sadow, Aaron D

    2014-12-08

    In order to facilitate oxidative addition chemistry of fac-coordinated rhodium(I) and iridium(I) compounds, carbene–bis(oxazolinyl)phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB(OxMe2)2(ImtBuH) (H[1]; OxMe2 = 4,4-dimethyl-2-oxazoline; ImtBuH = 1-tert-butylimidazole) and PhB(OxMe2)2(ImMesH) (H[2]; ImMesH = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K[1] and K[2], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB(OxMe2)2ImtBu}Rh(η4-C8H12) (3), {PhB(OxMe2)2ImMes}Rh(η4-C8H12) (4), {PhB(OxMe2)2ImMes}Rh(CO)2 (5), {PhB(OxMe2)2ImMes}Ir(η4-C8H12) (6), and {PhB(OxMe2)2ImMes}Ir(CO)2 (7) are synthesized along with ToMM(η4-C8H12) (M = Rh (8); M = Ir (9); ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). The spectroscopic and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (tert-butyl vs mesityl), effects of replacing an oxazoline in ToM with a carbene donor, and the influence of the donor ligand (CO vs C8H12). The reactions of K[2] and [M(μ-Cl)(η2-C8H14)2]2 (M = Rh, Ir) provide {κ4-PhB(OxMe2)2ImMes'CH2}Rh(μ-H)(μ-Cl)Rh(η2-C8H14)2 (10) and {PhB(OxMe2)2ImMes}IrH(η3-C8H13) (11). In the former compound, a spontaneous oxidative addition of a mesityl ortho-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds 5 and 7 result in C–H bond oxidative addition providing the compounds {κ4-PhB(OxMe2)2ImMes'CH2}RhH(CO) (12) and {PhB(OxMe2)2ImMes}IrH(Ph)CO (13). In 12, oxidative addition results in cyclometalation of the mesityl ortho-methyl similar to 10, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized cis

  19. A triclinic polymorph of bis­(μ-di-tert-butyl­phosphanido)bis­[(di-tert-butyl­phosphane)palladium(I)

    PubMed Central

    Breunig, Jens; Lerner, Hans-Wolfram; Bolte, Michael

    2012-01-01

    A new polymorph of the title compound, [Pd2(C8H18P)2(C8H19P)2], has been found. It belongs to the triclinic P-1 space group, whereas the known form [Leoni, Sommovigo, Pasquali, Sabatino & Braga (1992 ▶), J. Organo­met. Chem. 423, 263–270] crystallizes in the monoclinic C2/c space group. The title compound features a dinuclear palladium complex with a planar central Pd2(μ-P)2 core (r.m.s. deviation = 0.003 Å). The Pd—Pd distance of 2.5988 (5) Å is within the range of a PdI—PdI bond. The mol­ecules of both polymorphs are located on a crystallographic centre of inversion. The mol­ecular conformations of the two polymorphs are essentially identical. The crystal packing patterns, on the other hand, are slightly different. PMID:22719375

  20. The Synthesis and Isolation of N-Tert-Butyl-2-Phenylsuccinamic Acid and N-Tert-Butyl-3-Phenylsuccinamic Acid: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Cesare, Victor; Sadarangani, Ishwar; Rollins, Janet; Costello, Dennis

    2004-01-01

    The facile, high yielding synthesis of phenylsuccinamic acids is described and one of these syntheses, the reaction of phenylsuccinic anhydride with tert-butylamine, is successfully modified and adapted for use in the second-semester organic chemistry laboratory at St. John's University. Succinamic acids are compounds that contain both the amide…

  1. A biobased nitrogen-containing lubricant additive synthesized from expoxidized methyl oleate using an ionic liquid catalyst

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Utilizing an epoxidation route, an aniline adduct was synthesized from methyl oleate. An ionic liquid, 1-methylimidazolium tetrafluoroborate, was found to be the key for this catalytic system. The reaction produces a product with the aniline incorporated into the fatty chain, at the 9(10) position, ...

  2. Endonuclease IV (nfo) mutant of Escherichia coli.

    PubMed Central

    Cunningham, R P; Saporito, S M; Spitzer, S G; Weiss, B

    1986-01-01

    A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomycin. The nfo mutation enhanced the killing of xth (exonuclease III) mutants by methyl methanesulfonate, H2O2, tert-butyl hydroperoxide, and gamma rays, and it enhanced their mutability by methyl methanesulfonate. It also increased the temperature sensitivity of an xth dut (dUTPase) mutant that is defective in the repair of uracil-containing DNA. These results are consistent with earlier findings that endonuclease IV and exonuclease III both cleave DNA 5' to an apurinic-apyrimidinic site and that exonuclease III is more active. However, nfo mutants were more sensitive to tert-butyl hydroperoxide and to bleomycin than were xth mutants, suggesting that endonuclease IV might recognize some lesions that exonuclease III does not. The mutants displayed no marked increase in sensitivity to 254-nm UV radiation, and the addition of an nth (endonuclease III) mutation to nfo or nfo xth mutants did not significantly increase their sensitivity to any of the agents tested. Images PMID:2430946

  3. Fused ring and linking groups effect on overcharge protection for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Weng, Wei; Zhang, Zhengcheng; Redfern, Paul C.; Curtiss, Larry A.; Amine, Khalil

    The derivatives of 1,3-benzodioxan (DBBD1) and 1,4-benzodioxan (DBBD2) bearing two tert-butyl groups have been synthesized as new redox shuttle additives for overcharge protection of lithium-ion batteries. Both compounds exhibit a reversible redox wave over 4 V vs Li/Li + with better solubility in a commercial electrolyte (1.2 M LiPF 6 dissolved in ethylene carbonate/ethyl methyl carbonate (EC/EMC 3/7) than the di- tert-butyl-substituted 1,4-dimethoxybenzene (DDB). The electrochemical stability of DBBD1 and DBBD2 was tested under charge/discharge cycles with 100% overcharge at each cycle in MCMB/LiFePO 4 and Li 4Ti 5O 12/LiFePO 4 cells. DBBD2 shows significantly better performance than DBBD1 for both cell chemistries. The structural difference and reaction energies for decomposition have been studied by density functional calculations.

  4. 27 CFR 20.113 - Proprietary solvents general-use formula.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: ethyl acetate (equivalent to 85% ester content, as defined in § 21.106 of this chapter), methyl isobutyl ketone, methyl n-butyl ketone, tert-butyl alcohol, sec-butyl alcohol, nitropropane (mixed...

  5. 27 CFR 20.113 - Proprietary solvents general-use formula.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: ethyl acetate (equivalent to 85% ester content, as defined in § 21.106 of this chapter), methyl isobutyl ketone, methyl n-butyl ketone, tert-butyl alcohol, sec-butyl alcohol, nitropropane (mixed...

  6. 27 CFR 20.113 - Proprietary solvents general-use formula.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: ethyl acetate (equivalent to 85% ester content, as defined in § 21.106 of this chapter), methyl isobutyl ketone, methyl n-butyl ketone, tert-butyl alcohol, sec-butyl alcohol, nitropropane (mixed...

  7. Effect of additives on tribochemical stability of greases with easter base oil

    SciTech Connect

    Nikonorov, E.M.; Demina, L.V.; Skryabina, T.G.; Sosulina, L.N.

    1984-03-01

    This article investigates the possibility of improving the tribochemical stability of soap-base grease formulated with polyol ester oils, by the use of additives of the phenol and amine types. Model greases formulated with a pentaerythritol ester (PET) and the polyester PAK, taken in a 9:1 ratio, were examined. The tribochemical stability of the greases was evaluated according to the rate of conversion of their dispersion medium in a rolling friction zone. The rate of additive exhaustion was evaluated by analogy with the rate of triboconversion of the dispersion medium. The additives used were phenyl-..cap alpha..-naphthylamine (PAN), diphenylamine (DPA), 2, 6-di-tert-butyl-p-cresol (ionol), a technical-grade dialkylated diphenylamine (DAT), and mixtures of the inhibitors. It is determined that the greatest effect in increasing the tribochemical stability is achieved by the introduction of combinations of additives: DAT + ionol (in Li and cCa greases) and PAN + DAT (in cCa grease).

  8. Forestry Impacts on Mercury Mobility, Methylation, and Bioaccumulation - A Field Experiment with Enriched Stable Mercury Isotope Additions

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl; Haynes, Kristine; Mazur, Maxwell; Fidler, Nathan; Eckley, Chris; Kolka, Randy; Eggert, Susan; Sebestyen, Stephen

    2013-04-01

    Forest harvesting has clear impacts on terrestrial hydrology at least over the short term. Similar biogeochemical impacts, such as augmented mercury fluxes or downstream impacts on ecosystems are not as clear, and recent studies have not demonstrated consistent or predictable impacts across systems. To gain a better process understanding of mercury cycling in upland forest-lowland peatland ecosystems, we undertook a field-scale experiment at a study site in northern Minnesota (USA) where shallow subsurface hillslope runoff flows into an adjacent peatland ecosystem. Starting in 2009, three upland forest plots (< 1 hectare each) were delineated and hydrometric infrastructure such as runoff trenches, snow lysimeters, soil moisture probes, shallow piezometers, and throughfall gauges were installed in each plot. We added 14.2 to 16.7 μg/m2 of enriched mercury-200 and mercury-204 (as dilute mercuric nitrate) in the spring of 2011 and 2012, respectively, to distinguish between contemporary and legacy mercury and to provide some insight into the duration of contemporary mercury mobility in impacted terrestrial ecosystems. During the late winter of 2012, one of the study plots was clearcut and approximately 80% of slash was removed. We clearcut a second plot without slash removal, and left the third plot as a control. Throughout the study, we have monitored (including isotopes): mercury in runoff, soil-air gaseous Hg fluxes, methylation potentials in the adjacent peatland, and bioaccumulation into invertebrates inhabiting the adjacent peatland. Early results mostly indicate that slash removal actually lessens the impacts of clearcutting on mercury mobility (although forest harvesting in general does have a significant impact) and that forestry operations at this scale have little to no impact on methylation or bioaccumulation in downstream peatlands. Thus far, the greatest impact of slash removal in forest harvested systems is an increase in mercury evasion, likely as a

  9. Hierarchical pattern formation through photo-induced disorder in block copolymer/additive composite films

    NASA Astrophysics Data System (ADS)

    Yao, Li; Watkins, James

    2013-03-01

    Segregation strength in hybrid materials can be increased through selective hydrogen bonding between organic or nanoparticle additives and one block of weakly segregated block copolymers to generate well ordered hybrid materials. Here, we report the use of enantiopure tartaric acid as the additive to dramatically improve ordering in poly(ethylene oxide-block-tert-butyl acrylate) (PEO-b-PtBA) copolymers. Phase behavior and morphologies within both bulk and thin films were studied by TEM, AFM and X-ray scattering. Suppression of PEO crystallization by the interaction between tartaric acid and the PEO block enables the formation of well ordered smooth thin films. With the addition of a photo acid generator, photo-induced disorder in PEO-b-PtBA/tartaric acid composite system can be achieved upon UV exposure to deprotect PtBA block to yield poly(acrylic acid) (PAA), which is phase-miscible with PEO. Due to the strong interaction of tartaric acid with both blocks, the system undergoes a disordering transition within seconds during a post-exposure baking. With the assistance of trace-amounts of base quencher, high resolution, hierarchical patterns of sub-micron regions of ordered and disordered domains were achieved in thin films through area-selective UV exposure using a photo-mask. Funding from Center for Hierarchical Manufacturing (CHM); Facility support from Materials Research Science and Engineering Center at UMass Amherst and Cornell High Energy Synchrotron Source

  10. Adsorption and Photocatalyzed Oxidation of Methylated Arsenic Species in TiO2 Suspensions

    PubMed Central

    XU, TIELIAN; CAI, YONG; O’SHEA, KEVIN E.

    2008-01-01

    Monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) are used as herbicides in the agriculture industry. We have demonstrated that MMA and DMA are readily degraded upon TiO2 photocatalysis. DMA is oxidized to MMA as the primary oxidation product, which is subsequently oxidized to inorganic arsenate, As(V). The adsorption of MMA and DMA on TiO2 surface was measured as a function of initial arsenic concentration and solution pH. The pH of the solution influences the adsorption and photocatalytic degradation to a similar degree, due to the speciation of the arsenic substrates and surface charge of TiO2 as a function of pH. The mineralization of MMA and DMA by TiO2 photocatalysis follows the Langmuir–Hinshelwood kinetic model. Addition of tert-butyl alcohol, a hydroxyl radical scavenger, during TiO2 photocatalysis dramatically reduces the rate of degradation, indicating that •OH is the primary oxidant. For dilute solutions, TiO2 may also be applicable as an absorbent for direct removal of a variety of arsenic species, namely As(III), As(V), MMA, and DMA, all of which are strongly adsorbed, thus eliminating the need for a multistep treatment process. PMID:17822119

  11. Highly Active Gold(I)-Silver(I) Oxo Cluster Activating sp³ C-H Bonds of Methyl Ketones under Mild Conditions.

    PubMed

    Pei, Xiao-Li; Yang, Yang; Lei, Zhen; Chang, Shan-Shan; Guan, Zong-Jie; Wan, Xian-Kai; Wen, Ting-Bin; Wang, Quan-Ming

    2015-04-29

    The activation of C(sp(3))-H bonds is challenging, due to their high bond dissociation energy, low proton acidity, and highly nonpolar character. Herein we report a unique gold(I)-silver(I) oxo cluster protected by hemilabile phosphine ligands [OAu3Ag3(PPhpy2)3](BF4)4 (1), which can activate C(sp(3))-H bonds under mild conditions for a broad scope of methyl ketones (RCOCH3, R = methyl, phenyl, 2-methylphenyl, 2-aminophenyl, 2-hydroxylphenyl, 2-pyridyl, 2-thiazolyl, tert-butyl, ethyl, isopropyl). Activation happens via triple deprotonation of the methyl group, leading to formation of heterometallic Au(I)-Ag(I) clusters with formula RCOCAu4Ag4(PPhpy2)4(BF4)5 (PPhpy2 = bis(2-pyridyl)phenylphosphine). Cluster 1 can be generated in situ via the reaction of [OAu3Ag(PPhpy2)3](BF4)2 with 2 equiv of AgBF4. The oxo ion and the metal centers are found to be essential in the cleavage of sp(3) C-H bonds of methyl ketones. Interestingly, cluster 1 selectively activates the C-H bonds in -CH3 rather than the N-H bonds in -NH2 or the O-H bond in -OH which is traditionally thought to be more reactive than C-H bonds. Control experiments with butanone, 3-methylbutanone, and cyclopentanone as substrates show that the auration of the C-H bond of the terminal methyl group is preferred over secondary or tertiary sp(3) C-H bonds; in other words, the C-H bond activation is influenced by steric effect. This work highlights the powerful reactivity of metal clusters toward C-H activation and sheds new light on gold(I)-mediated catalysis.

  12. Computational study of the 1,3-dipolar cycloaddition between methyl 2-trifluorobutynoate and substituted azides in terms of reactivity indices and activation parameters.

    PubMed

    Salah, Mohammed; Komiha, Najia; Kabbaj, Oum Keltoum; Ghailane, Rachida; Marakchi, Khadija

    2017-03-01

    The 1,3-dipolar cycloaddition of methyl 2-trifluorobutynoate with various azides has been studied in terms of several theoretical approaches at DFT/B3LYP/6-311++G(d,p) level of theory. The mechanism of regioselectivity of these reactions was investigated through the evaluation of the potential energy surface of the cycloaddition process calculations and density DFT-based reactivity indices. These approaches were successfully applied to prediction of preferable regio-isomers for various reactions of 1,3-dipolar cycloadditions. The reactions were followed by performing transition state optimization, calculation of Intrinsic Reaction Coordinate and activation energies. Analysis of the geometries of the corresponding transition structures shows that the cycloaddition takes place along a single elementary step (one-step mechanism) but asynchronous mechanism. The calculation of the activation energies and reaction energies show that the 1,5-regioisomer for substituted phenyl azides as dipoles and the 1,4-regioisomer for substituted benzyl azides as dipoles are thermodynamically in all the cycloadditions reactions. The solvent effect was also studied in the solvent tert-butyl alcohol using self-consistent reaction field model. The observed regioselectivity was explained by using developed DFT-based reactivity descriptors, such as Fukui and Parr functions. The results were compared with experimental data to find a good agreement.

  13. Corrosion resistance of siloxane-poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    NASA Astrophysics Data System (ADS)

    Kunst, S. R.; Cardoso, H. R. P.; Oliveira, C. T.; Santana, J. A.; Sarmento, V. H. V.; Muller, I. L.; Malfatti, C. F.

    2014-04-01

    The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane-poly (methyl methacrylate) (PMMA) hybrid film prepared by sol-gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane-PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase and irregular surface coverage.

  14. Ultrasound-assisted oxidative desulfurization of bunker-C oil using tert-butyl hydroperoxide.

    PubMed

    Tang, Qiong; Lin, Song; Cheng, Ying; Liu, Sujun; Xiong, Jun-Ru

    2013-09-01

    This work investigated the ultrasonic assisted oxidative desulfurization of bunker-C oil with TBHP/MoO3 system. The operational parameters for the desulfurization procedure such as ultrasonic irradiation time, ultrasonic wave amplitude, catalyst initial concentration and oxidation agent initial concentration were studied. The experimental results show that the present oxidation system was very efficient for the desulfurization of bunker-C oil and ~35% sulfur was removed which was dependent on operational parameters. The application of ultrasonic irradiation allowed sulfur removal in a shorter time. The stronger the solvent polarity is, the higher the sulfur removal rate, but the recovery rate of oil is lower. The sulfur compounds in bunker-C oil reacted with TBHP to produce corresponding sulfoxide, and further oxidation produced the corresponding sulfone.

  15. IRIS Toxicological Review of Tert-Butyl Alcohol (Tert-Butanol) (Interagency Science Consultation Draft)

    EPA Science Inventory

    On April 29, 2016, the Toxicological Review of tert-Butyl Alcohol (tert-Butanol) (Public Comment Draft) was released for public comment. The draft Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and the Executive Office ...

  16. Preparation of tert-butyl-capped polyenes containing up to 15 double bonds

    SciTech Connect

    Knoll, K.; Schrock, R.R. )

    1989-11-27

    7,8-Bis(trifluoromethyl)tricyclo(4.2.2.0{sup 2.5})deca-3,7,9-triene (TCDT) can be ring-opened in a controlled manner by W(CH-t-Bu)(NAr)(O-t-Bu){sub 2} (Ar = 2,6-C{sub 6}H{sub 3}-i-Pr{sub 2}) to give living oligomers from which the metal can be removed in a Wittig-like reaction with pivaldehyde or 4,4-dimethyl-trans-2-pentenal. Mixtures of odd and even polyenes have been analyzed by reversed-phase HPLC methods, and those having as many as 13 double bonds have been isolated by column chromatography on silica gel under dinitrogen at {minus}40{degree}C and characterized by {sup 1}H and {sup 13}C NMR and UV-vis studies. The 17-ene has been observed by HPLC. Polyenes containing more than 17 double bonds are relatively unstable under the reaction and subsequent isolation conditions; those containing between 11 and 15 double bonds decompose thermally progressively more readily. UV-vis and {sup 13}C and {sup 1}H NMR data have been collected and analyzed in detail for the trans(cis,trans){sub x} isomers for x = 1-5 (up to 11 double bonds) and for the odd and even all-trans forms containing up to nine double bonds.

  17. (Biphenyl-2,2'-di-yl)di-tert-butyl-phos-phonium trifluoro-methane-sulfonate.

    PubMed

    Muller, Alfred; Holzapfel, Cedric W

    2013-01-01

    To aid in the elucidation of catalytic reaction mechanism of palladacycles, we found that reaction of trifluoro-methane-sulfonic acid with a phosphapalladacycle resulted in elimination of the palladium and formation of the title phospholium salt, C20H26P(+)·CF3SO3(-). Selected geometrical parameters include P-biphenyl (av.) = 1.801 (3) Å and P-t-Bu (av.) = 1.858 (3) Å, and significant distortion of the tetra-hedral P-atom environment with biphen-yl-P-biphenyl = 93.93 (13)° and t-Bu-P-t-Bu = 118.82 (14)°. In the crystal, weak C-H⋯O inter-actions lead to channels along the c axis that are occupied by CF3SO3(-) anions.

  18. Allylic oxidation of steroidal olefins by vanadyl acetylacetonate and tert-butyl hydroperoxide.

    PubMed

    Grainger, Wendell S; Parish, Edward J

    2015-09-01

    Readily available vanadyl acetylacetonate was found to oxidize the allylic sites of Δ(5) steroidal alcohols without protection of hydroxyl groups. Cholesterol, dehydroepiandrosterone, cholesterol benzoate, cholesterol acetate, pregnenolone, and 5-pregnen-3,20-diene were oxidized to 7-keto products using vanadyl acetylacetonate in one pot reactions at room temperature in the presence of oxygen and water.

  19. ``Living polymers'' in organic solvents : stress relaxation in bicopper tetracarboxylate/tert-butyl cyclohexane solutions

    NASA Astrophysics Data System (ADS)

    Terech, P.; Maldivi, P.; Dammer, C.

    1994-10-01

    Viscoelastic solutions of a bicopper tetracarboxylate complex in tert-butylcyclohexane have been studied by dynamic rheology in a wide range of concentrations (0.5-1.5 % volume fraction). The zero shear viscosity, the elastic modulus, the terminal stress relaxation time and the height of the high-frequency dip, in a Cole-Cole representation of the complex elastic modulus, follow scaling laws. The related exponents are discussed in the context of the physics of “living polymers” : a term used to describe worm-like species undergoing scission/recombination reactions competing mainly with the reptation motions of the chains. The current system, made up of molecular threads (17.5 Å diameter) of Cu2(O2C-CH(C2H5)C4H9)4 in the apolar solvent, is representative of a “living polymer” where, instead of mechanisms involving transient star polymeric crosslinks, a reversible scission mechanism prevails. The dynamics in the high-frequency range evolves from a regime where reptation is the dominant relaxation mechanism to a cross-over regime where “breathing” fluctuations and Rouse motions become important. Large modifications of the stress relaxation function occur for more concentrated systems. The binary system is the first example of a “living polymer” in an organic solvent and exhibits elastic moduli (G ≈ ca. 120 Pa à φ = 1 %) which are at least 20 times larger than those found for the aqueous “living polymer” systems. Les solutions viscoélastiques d'un tétracarboxylate binucléaire de cuivre dans le tert-butylcyclohexane sont étudiées par rhéologie en mode dynamique dans une gamme étendue de concentrations (0,5 %-15,5 %). La viscosité à gradient nul, le module élastique, le temps terminal de relaxation et la hauteur du puits à haute fréquence, dans une représentation Cole-Cole du module élastique complexe, suivent des lois d'échelles. Les exposants correspondants sont discutés dans le contexte de la physique des “polymères vivants" : un terme utilisé pour décrire des espèces vermiformes subissant des réactions de scission/recombinaison en compétition principalement avec les mouvements de reptation des chaînes. Le système constitué de fils moléculaires (17,5 Å de diamètre) de Cu2(O2C-CH(C2H5)C4H9)4 dans le solvant apolaire est typique de “polymères vivants” où le mécanisme de scission réversible prévaut plutôt que les mécanismes impliquant des nœuds transitoires branchés. La dynamique dans le domaine des hautes fréquences évolue d'un régime où la reptation est le mécanisme de relaxation dominant vers un régime intermédiaire où les modes de “respiration” et de Rouse deviennent importants. D'importantes modifications de la relaxation de contrainte se produisent pour les systèmes concentrés. Le système binaire est le premier exemple de “polymère vivant” en milieu organique et présente des modules élastiques (G ≈ ca. 120 Pa à φ = 1 %) qui sont au moins 20 fois plus grands que ceux des homologues aqueux.

  20. 5-[(tert-Butyl-diphenyl-sil-yloxy)meth-yl]pyridazin-3(2H)-one.

    PubMed

    Costas-Lago, María Carmen; Costas, Tamara; Vila, Noemí; Terán, Carmen

    2013-11-27

    In the title compound, C21H24N2O2Si, a new pyridazin-3(2H)-one derivative, the carbonyl group of the heterocyclic ring and the O atom of the silyl ether are located on the same side of the pyridazinone ring and the C-C-O-Si torsion angle is -140.69 (17)°. In the crystal, mol-ecules are linked by pairs of strong N-H⋯O hydrogen bonds into centrosymmetric dimers with graph-set notation R 2 (2)(8). Weak C-H⋯π inter-actions are also observed.

  1. IRIS Toxicological Review of tert-Butyl Alcohol (tert-Butanol) ...

    EPA Pesticide Factsheets

    In August 2013, EPA released the draft literature searches and associated search strategies, evidence tables, and exposure response arrays for TBA to obtain input from stakeholders and the public prior to developing the draft IRIS assessment. Specifically, EPA was interested in comments on the following: Draft literature search strategies The approach for identifying studies The screening process for selecting pertinent studies The resulting list of pertinent studies Preliminary evidence tables The process for selecting studies to include in evidence tables The quality of the studies in the evidence tables The literature search strategy, which describes the processes for identifying scientific literature, contains the studies that EPA considered and selected to include in the evidence tables. The preliminary evidence tables and exposure-response arrays present the key study data in a standardized format. The evidence tables summarize the available critical scientific literature. The exposure-response figures provide a graphical representation of the responses at different levels of exposure for each study in the evidence table. EPA is undertaking a new health assessment for t-butyl alcohol (TBA) for the Integrated Risk Information System (IRIS). The outcome of this project will be a Toxicological Review and IRIS and IRIS Summary of TBA that will be entered on the IRIS database. IRIS is an EPA da

  2. 1,1'-Bis(tert-butyl-dimethyl-sil-yl)ferrocene.

    PubMed

    Abri, Abdolreza; Soltani, Behzad; Ziegler, Christopher J; Engle, James T; Kia, Reza

    2013-01-01

    The asymmetric unit of the title compound, [Fe(C11H19Si)2], consists of one half of a ferrocene derivative. The Fe(II) atom lies on a twofold rotation axis, giving an eclipsed conformation for the cyclo-penta-dienyl ligands. No significant inter-molecular inter-actions are observed in the crystal structure.

  3. Hydrogen Oxidation Catalysis by a Nickel Diphosphine Complex with Pendant tert-Butyl Amines

    SciTech Connect

    Yang, Jenny Y.; Chen, Shentan; Dougherty, William G.; Kassel, W. S.; Bullock, R. Morris; DuBois, Daniel L.; Raugei, Simone; Rousseau, Roger J.; Dupuis, Michel; Rakowski DuBois, Mary

    2010-11-09

    A bis-diphosphine nickel complex with t-butyl functionalized pendant amines [Ni(PCy2Nt-Bu2)2]2+ has been synthesized. It is a highly active electrocatalyst for the oxidation of hydrogen in the presence of base. The turn-over rate of 50 s 1 under 1.0 atm H2 at a potential of –0.77 V vs the ferrocene couple is 5 times faster than the rate reported heretofore for any other molecular H2 oxidation catalyst. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. Computational resources were provided by the Environmental Molecular Science Laboratory (EMSL) and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.

  4. IRIS Toxicological Review of Tert-Butyl Alcohol (Tert-Butanol) (Public Comment Draft)

    EPA Science Inventory

    EPA is developing an Integrated Risk Information System (IRIS) assessment of tert-butyl Alcohol (tert-butanol) and has released the public comment draft assessment for public comment and external peer review. When final, the assessment will appear on the IRIS databa...

  5. IRIS Toxicological Review of tert-Butyl Alcohol (tert-Butanol) (Preliminary Assessment Materials)

    EPA Science Inventory

    In August 2013, EPA released the draft literature searches and associated search strategies, evidence tables, and exposure response arrays for TBA to obtain input from stakeholders and the public prior to developing the draft IRIS assessment. Specifically, EPA was interested in c...

  6. A green chemistry approach to a more efficient asymmetric catalyst: solvent-free and highly concentrated alkyl additions to ketones.

    PubMed

    Jeon, Sang-Jin; Li, Hongmei; Walsh, Patrick J

    2005-11-30

    There is a great demand for development of catalyst systems that are not only efficient and highly enantioselective but are also environmentally benign. Herein we report investigations into the catalytic asymmetric addition of alkyl and functionalized alkyl groups to ketones under highly concentrated and solvent-free conditions. In comparison with standard reaction conditions employing toluene and hexanes, the solvent-free and highly concentrated conditions permit reduction in catalyst loading by a factor of 2- to 40-fold. These new conditions are general and applicable to a variety of ketones and dialkylzinc reagents to provide diverse tertiary alcohols with high enantioselectivities. Using cyclic conjugated enones, we have performed a tandem asymmetric addition/diastereoselective epoxidation using the solvent-free addition conditions followed by introduction of a 5.5 M decane solution of tert-butyl hydroperoxide (TBHP) to generate epoxy alcohols. This one-pot procedure allows access to syn epoxy alcohols with three contiguous stereocenters with excellent enantio- and diastereoselectivities and high yields. Both the solvent-free asymmetric additions and asymmetric addition/diastereoselective epoxidation reactions have been conducted on larger scale (5 g substrate) with 0.5 mol % catalyst loadings. In these procedures, enantioselectivities equal to or better than 92% were obtained with isolated yields of 90%. The solvent-free and highly concentrated conditions are a significant improvement over previous solvent-based protocols. Further, this chemistry represents a rare example of a catalytic asymmetric reaction that is highly enantioselective under more environmentally friendly solvent-free conditions.

  7. Mono-N-methylation of primary amines with alkyl methyl carbonates over Y faujasites. 2. Kinetics and selectivity.

    PubMed

    Selva, Maurizio; Tundo, Pietro; Perosa, Alvise

    2002-12-27

    In the presence of a Na-exchanged Y faujasite, the reaction of primary aromatic amines 1 with 2-(2-methoxyethoxy)methylethyl carbonate [MeO(CH(2))(2)O(CH(2))(2)OCO(2)Me, 2a] yields the corresponding mono-N-methyl derivatives ArNHMe with selectivity up to 95%, at substantially quantitative conversions. At 130 degrees C, the reaction can be run under diffusion-free conditions and is strongly affected by the solvent polarity: for instance, in going from xylene (epsilon(r) = 2.40) to triglyme (epsilon(r) = 7.62) as the solvent, the pseudo-first-order rate constant for the aniline (1a) disappearance shows a 5-fold decrease. In DMF (epsilon(r) = 38.25), the same reaction does not occur at all. Competitive adsorption of the solvent and the substrate onto the catalytic sites accounts for this result. The behavior of alkyl-substituted anilines ZC(6)H(4)NH(2) [Z = p-Me, p-Et, p-Pr, p-(n-Bu) (1b-e); Z = 3,5-di-tert-butyl- and 2,4,6-tri-tert-butylanilines (1f,g)] and p-alkoxyanilines p-ZC(6)H(4)NH(2) [Z = OMe, OEt, OPr, O-n-Bu (1b'-e')] clearly indicates a steric effect of ring substituents: as diffusion of the amine into the catalytic pores is hindered, the reaction hardly proceeds and the mono-N-methyl selectivity (S(M/D)) drops as well. Moreover, the strength of adsorption of the amine onto the catalyst influences the rate and the selectivity as well: the reaction of p-anisidine and p-toluidine-despite the higher nucleophilicity of these compounds-is slower and even less selective with respect to aniline. From a mechanistic viewpoint, the intermediacy of carbamates ArN(Me)CO(2)R [R = MeO(CH(2))(2)O(CH(2))(2)] is suggested. At 90 degrees C, the reaction of benzylamine (7)-a model for aliphatic amines-with dimethyl carbonate shows that the reaction outcome can be improved by tuning the amphoteric properties of the catalyst: in going from CsY to the more acidic LiY zeolite, methylation is not only more selective (S(M/D) ratio increases from 77% to 84%) but even much faster (Cs

  8. Tunable Hydrophilic or Amphiphilic Coatings: A "Reactive Layer Stack" Approach.

    PubMed

    Frenzel, Ralf; Höhne, Susanne; Hanzelmann, Christian; Schmidt, Thomas; Winkler, René; Drechsler, Astrid; Bittrich, Eva; Eichhorn, Klaus-Jochen; Uhlmann, Petra

    2015-06-17

    Thin films with tunable properties are very interesting for potential applications as functional coatings with, for example, anti-icing or improved easy-to-clean properties. A novel "reactive layer stack" approach was developed to create covalently grafted mono- and multilayers of poly(glycidyl methacrylate)/poly(tert-butyl acrylate) diblock copolymers. Because these copolymers contain poly(glycidyl methacrylate) blocks they behave as self-cross-linking materials after creation of acrylic acid functionalities by splitting off the tert-butyl units. The ellipsometrically determined coating thickness of the resulting hydrophilic multilayers depended linearly on the number of applied layers. Amphiphilic films with tunable wettability were prepared using triblock terpolymers with an additional poly(methyl methacrylate) block. The mechanism of the formation of the (multi)layers was investigated in detail by studying the acidolysis of the surface-linked tert-butyl acrylate blocks by infrared reflection absorbance spectroscopy, accompanied by surface analysis using atomic force microscopy and contact angle measurements. In the case of the amphiphilic and switchable terpolymer layers this reaction was very sensitive to the used acidic reagent.

  9. Environmentally Benign CO2-Based Copolymers: Degradable Polycarbonates Derived from Dihydroxybutyric Acid and Their Platinum-Polymer Conjugates.

    PubMed

    Tsai, Fu-Te; Wang, Yanyan; Darensbourg, Donald J

    2016-04-06

    (S)-3,4-Dihydroxybutyric acid ((S)-3,4-DHBA), an endogenous straight chain fatty acid, is a normal human urinary metabolite and can be obtained as a valuable chiral biomass for synthesizing statin-class drugs. Hence, its epoxide derivatives should serve as promising monomers for producing biocompatible polymers via alternating copolymerization with carbon dioxide. In this report, we demonstrate the production of poly(tert-butyl 3,4-dihydroxybutanoate carbonate) from racemic-tert-butyl 3,4-epoxybutanoate (rac-(t)Bu 3,4-EB) and CO2 using bifunctional cobalt(III) salen catalysts. The copolymer exhibited greater than 99% carbonate linkages, 100% head-to-tail regioselectivity, and a glass-transition temperature (Tg) of 37 °C. By way of comparison, the similarly derived polycarbonate from the sterically less congested monomer, methyl 3,4-epoxybutanoate, displayed 91.8% head-to-tail content and a lower Tg of 18 °C. The tert-butyl protecting group of the pendant carboxylate group was removed using trifluoroacetic acid to afford poly(3,4-dihydroxybutyric acid carbonate). Depolymerization of poly(tert-butyl 3,4-dihydroxybutanoate carbonate) in the presence of strong base results in a stepwise unzipping of the polymer chain to yield the corresponding cyclic carbonate. Furthermore, the full degradation of the acetyl-capped poly(potassium 3,4-dihydroxybutyrate carbonate) resulted in formation of the biomasses, β-hydroxy-γ-butyrolacetone and 3,4-dihydroxybutyrate, in water (pH = 8) at 37 °C. In addition, water-soluble platinum-polymer conjugates were synthesized with platinum loading of 21.3-29.5%, suggesting poly(3,4-dihydroxybutyric acid carbonate) and related derivatives may serve as platinum drug delivery carriers.

  10. Modification of physical properties of poly(L-lactic acid) by addition of methyl-β-cyclodextrin.

    PubMed

    Suzuki, Toshiyuki; Ei, Ayaka; Takada, Yoshihisa; Uehara, Hiroki; Yamanobe, Takeshi; Takahashi, Keiko

    2014-01-01

    Poly(L-lactic acid) (PLLA) is a biodegradable plastic and one of the most famous plastics made from biobased materials. However, its physical strength is insufficient compared to general-purpose plastics. In this study, the effect of methylcyclodextrin (MeCD) addition on the structure and physical properties, especially the drawing behavior, of PLLA was investigated. Through thermal analysis, it was found that MeCD addition lowers the crystallinity and enhances the mobility of PLLA. The sample containing approximately 17% MeCD was drawn to more than 1000% at 60 °C, although PLLA fractured at a strain of less than 100%. Differential scanning calorimetry (DSC)-Raman in situ measurements also revealed decreases in the glass transition temperature (T g), cold crystallization temperature (T c), and melting point (T m), and improvement in structural distribution with temperature. DSC-Raman measurements simultaneously supplied information about crystallinity and thermal properties. Thus, it was concluded that MeCD had high affinity for PLLA, and the addition of MeCD increased the amorphous component of PLLA and enhanced the drawability.

  11. Modification of physical properties of poly(L-lactic acid) by addition of methyl-β-cyclodextrin

    PubMed Central

    Suzuki, Toshiyuki; Ei, Ayaka; Takada, Yoshihisa; Uehara, Hiroki; Takahashi, Keiko

    2014-01-01

    Summary Poly(L-lactic acid) (PLLA) is a biodegradable plastic and one of the most famous plastics made from biobased materials. However, its physical strength is insufficient compared to general-purpose plastics. In this study, the effect of methylcyclodextrin (MeCD) addition on the structure and physical properties, especially the drawing behavior, of PLLA was investigated. Through thermal analysis, it was found that MeCD addition lowers the crystallinity and enhances the mobility of PLLA. The sample containing approximately 17% MeCD was drawn to more than 1000% at 60 °C, although PLLA fractured at a strain of less than 100%. Differential scanning calorimetry (DSC)-Raman in situ measurements also revealed decreases in the glass transition temperature (T g), cold crystallization temperature (T c), and melting point (T m), and improvement in structural distribution with temperature. DSC-Raman measurements simultaneously supplied information about crystallinity and thermal properties. Thus, it was concluded that MeCD had high affinity for PLLA, and the addition of MeCD increased the amorphous component of PLLA and enhanced the drawability. PMID:25670970

  12. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  13. FENTON-DRIVEN CHEMICAL REGENERATION OF MTBE-SPENT GAC

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was chemically regenerated utilizing the Fenton mechanism. Two successive GAC regeneration cycles were performed involving iterative adsorption and oxidation processes: MTBE was adsorbed to the GAC, oxidized, r...

  14. Root and shoot gas exchange respond additively to moderate ozone and methyl jasmonate without induction of ethylene: ethylene is induced at higher O3 concentrations

    PubMed Central

    Grantz, D.A.; Vu, H.-B.

    2012-01-01

    The available literature is conflicting on the potential protection of plants against ozone (O3) injury by exogenous jasmonates, including methyl jasmonate (MeJA). Protective antagonistic interactions of O3 and MeJA have been observed in some systems and purely additive effects in others. Here it is shown that chronic exposure to low to moderate O3 concentrations (4–114 ppb; 12 h mean) and to MeJA induced additive reductions in carbon assimilation (A n) and root respiration (R r), and in calculated whole plant carbon balance. Neither this chronic O3 regime nor MeJA induced emission of ethylene (ET) from the youngest fully expanded leaves. ET emission was induced by acute 3 h pulse exposure to much higher O3 concentrations (685 ppb). ET emission was further enhanced in plants treated with MeJA. Responses of growth, allocation, photosynthesis, and respiration to moderate O3 concentrations and to MeJA appear to be independent and additive, and not associated with emission of ET. These results suggest that responses of Pima cotton to environmentally relevant O3 are not mediated by signalling pathways associated with ET and MeJA, though these pathways are inducible in this species and exhibit a synergistic O3×MeJA interaction at very high O3 concentrations. PMID:22563119

  15. Bacterial Degradation of tert-Amyl Alcohol Proceeds via Hemiterpene 2-Methyl-3-Buten-2-ol by Employing the Tertiary Alcohol Desaturase Function of the Rieske Nonheme Mononuclear Iron Oxygenase MdpJ

    PubMed Central

    Schuster, Judith; Schäfer, Franziska; Hübler, Nora; Brandt, Anne; Rosell, Mònica; Härtig, Claus; Harms, Hauke; Müller, Roland H.

    2012-01-01

    Tertiary alcohols, such as tert-butyl alcohol (TBA) and tert-amyl alcohol (TAA) and higher homologues, are only slowly degraded microbially. The conversion of TBA seems to proceed via hydroxylation to 2-methylpropan-1,2-diol, which is further oxidized to 2-hydroxyisobutyric acid. By analogy, a branched pathway is expected for the degradation of TAA, as this molecule possesses several potential hydroxylation sites. In Aquincola tertiaricarbonis L108 and Methylibium petroleiphilum PM1, a likely candidate catalyst for hydroxylations is the putative tertiary alcohol monooxygenase MdpJ. However, by comparing metabolite accumulations in wild-type strains of L108 and PM1 and in two mdpJ knockout mutants of strain L108, we could clearly show that MdpJ is not hydroxylating TAA to diols but functions as a desaturase, resulting in the formation of the hemiterpene 2-methyl-3-buten-2-ol. The latter is further processed via the hemiterpenes prenol, prenal, and 3-methylcrotonic acid. Likewise, 3-methyl-3-pentanol is degraded via 3-methyl-1-penten-3-ol. Wild-type strain L108 and mdpJ knockout mutants formed isoamylene and isoprene from TAA and 2-methyl-3-buten-2-ol, respectively. It is likely that this dehydratase activity is catalyzed by a not-yet-characterized enzyme postulated for the isomerization of 2-methyl-3-buten-2-ol and prenol. The vitamin requirements of strain L108 growing on TAA and the occurrence of 3-methylcrotonic acid as a metabolite indicate that TAA and hemiterpene degradation are linked with the catabolic route of the amino acid leucine, including an involvement of the biotin-dependent 3-methylcrotonyl coenzyme A (3-methylcrotonyl-CoA) carboxylase LiuBD. Evolutionary aspects of favored desaturase versus hydroxylation pathways for TAA conversion and the possible role of MdpJ in the degradation of higher tertiary alcohols are discussed. PMID:22194447

  16. Proteome analysis reveals differential expression of proteins involved in triacylglycerol accumulation by Rhodococcus jostii RHA1 after addition of methyl viologen.

    PubMed

    Dávila Costa, José Sebastián; Silva, Roxana A; Leichert, Lars; Alvarez, Héctor M

    2017-03-01

    Rhodococcus jostii RHA1 is able to degrade toxic compounds and accumulate high amounts of triacylglycerols (TAG) upon nitrogen starvation. These NADPH-dependent processes are essential for the adaptation of rhodococci to fluctuating environmental conditions. In this study, we used an MS-based, label-free and quantitative proteomic approach to better understand the integral response of R. jostii RHA1 to the presence of methyl viologen (MV) in relation to the synthesis and accumulation of TAG. The addition of MV promoted a decrease of TAG accumulation in comparison to cells cultivated under nitrogen-limiting conditions in the absence of this pro-oxidant. Proteomic analyses revealed that the abundance of key proteins of fatty acid biosynthesis, the Kennedy pathway, glyceroneogenesis and methylmalonyl-CoA pathway, among others, decreased in the presence of MV. In contrast, some proteins involved in lipolysis and β-oxidation of fatty acids were upregulated. Some metabolic pathways linked to the synthesis of NADPH remained activated during oxidative stress as well as under nitrogen starvation conditions. Additionally, exposure to MV resulted in the activation of complete antioxidant machinery comprising superoxide dismutases, catalases, mycothiol biosynthesis, mycothione reductase and alkyl hydroperoxide reductases, among others. Our study suggests that oxidative stress response affects TAG accumulation under nitrogen-limiting conditions through programmed molecular mechanisms when both stresses occur simultaneously.

  17. Can ionic liquid additives be used to extend the scope of poly(styrene)-block-poly(methyl methacrylate) for directed self-assembly?

    NASA Astrophysics Data System (ADS)

    Bennett, Thomas M.; Pei, Kevin; Cheng, Han-Hao; Thurecht, Kristofer J.; Jack, Kevin S.; Blakey, Idriss

    2014-07-01

    Directed self-assembly (DSA) is a promising approach for extending conventional lithographic techniques by being able to print features with critical dimensions under 10 nm. The most widely studied block copolymer system is polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA). This system is well understood in terms of its synthesis, properties, and performance in DSA. However, PS-b-PMMA also has a number of limitations that impact on its performance and hence scope of application. The primary limitation is the low Flory-Huggins polymer-polymer interaction parameter (χ), which limits the size of features that can be printed. Another issue with block copolymers in general is that specific molecular weights need to be synthesized to achieve desired morphologies and feature sizes. Here we explore blending ionic liquid (IL) additives with PS-b-PMMA to increase the χ parameter. ILs have a number of useful properties that include negligible vapor pressure, tunable solvent strength, thermal stability, and chemical stability. The blends of PS-b-PMMA with an IL selective for the PMMA block allowed the resolution of the block copolymer to be improved. Depending on the amount of additive, it is also possible to tune the domain size and the morphology of the systems. These findings may expand the scope of PS-b-PMMA for DSA.

  18. A COMPARISON OF LIQUID AND GAS-PHASE PHOTOOXIDATION TREATMENT OF METHYL TERTIARY BUTYL ETHER: SYNTHETIC AND FIELD SAMPLES

    EPA Science Inventory

    The feasibility of photo-oxidation treatment of metyl tert-butyl either (MTBE) in water was investigated using two systems, 1) a slurry falling film photo-reactor, and 2) an integrated air-stripping with gas phase photooxidation system. MTBE-contaminated synthetic water and field...

  19. Determining the fatty acid composition in plasma and tissues as fatty acid methyl esters using gas chromatography – a comparison of different derivatization and extraction procedures.

    PubMed

    Ostermann, Annika I; Müller, Maike; Willenberg, Ina; Schebb, Nils Helge

    2014-12-01

    Analysis of the fatty acid (FA) composition in biological samples is commonly carried out using gas liquid chromatography (GC) after transesterification to volatile FA methyl esters (FAME). We compared the efficacy of six frequently used protocols for derivatization of different lipid classes as well as for plasma and tissue samples. Transesterification with trimethylsulfonium hydroxide (TMSH) led to insufficient derivatization efficacies for polyunsaturated FAs (PUFA, <50%). Derivatization in presence of potassium hydroxide (KOH) failed at derivatizing free FAs (FFAs). Boron trifluoride (BF3) 7% in hexane/MeOH (1:1) was insufficient for the transesterification of cholesterol ester (CE) as well as triacylglycerols (TGs). In contrast, methanolic hydrochloric acid (HCl) as well as a combination of BF3 with methanolic sodium hydroxide (NaOH+BF3) were suitable for the derivatization of FFAs, polar lipids, TGs, and CEs (derivatization rate >80% for all tested lipids). Regarding plasma samples, all methods led to an overall similar relative FA pattern. However, significant differences were observed, for example, for the relative amount of EPA+DHA (n3-index). Absolute FA plasma concentrations differed considerably among the methods, with low yields for KOH and BF3. We also demonstrate that lipid extraction with tert-butyl methyl ether/methanol (MTBE/MeOH) is as efficient as the classical method according to Bligh and Dyer, making it possible to replace (environmentally) toxic chloroform.We conclude that HCl-catalyzed derivatization in combination with MeOH/MTBE extraction is the most appropriate among the methods tested for the analysis of FA concentrations and FA pattern in small biological samples. A detailed protocol for the analysis of plasma and tissues is included in this article.

  20. Synthesis, spectroscopic characterization, and crystal structure of a novel indoline derivative

    NASA Astrophysics Data System (ADS)

    Sharma, Sakshi; Brahmachari, Goutam; Banerjee, Bubun; Nurjamal, Khondekar; Kant, Rajni; Gupta, Vivek K.

    2016-12-01

    A new indoline derivative, tert-butyl 2'-amino-3'-cyano-6'-methyl-2-oxospiro[indoline-3,4'-pyran]-5'-carboxylate is eco-friendly synthesized, and its spectral properties and X-ray crystal structure are studied. In the molecule, the oxindole and pyran moieties are perpendicular to each other. The crystal structure is stabilized by intermolecular N-H···O and intramolecular C-H···O hydrogen bonds. Centrosymmetric dimer units are formed by intermolecular N-H···O hydrogen bonds. In addition, one C-H···π interaction is also observed.

  1. Identifying Safer Anti-Wear Triaryl Phosphate Additives for Jet Engine Lubricants

    PubMed Central

    Baker, Paul E.; Cole, Toby B.; Cartwright, Megan; Suzuki, Stephanie M.; Thummel, Kenneth E.; Lin, Yvonne S.; Co, Aila L.; Rettie, Allan E.; Kim, Jerry H.; Furlong, Clement E.

    2013-01-01

    Individuals aboard jet aircraft may be exposed to potentially toxic triaryl organophosphate anti-wear lubricant additives (TAPs) that are converted by cytochromes P450 into toxic metabolites. Consequences of exposure could be reduced by using less toxic TAPs. Our goal was to determine whether an in vitro assay for inhibition of butyrylcholinesterase (BChE) by bioactivated TAPs would be predictive of inhibition of serine active-site enzymes in vivo. The in vitro assay involved TAP bioactivation with liver microsomes and NADPH, followed by incubation with human BChE and measurement of BChE activity. Of 19 TAPs tested, tert-butylated isomers produced the least BChE inhibition. To determine the relevance of these results in vivo, mice were exposed to Durad 125 (D125; a commercial mixture of TAP esters) or to TAPs demonstrating low or no BChE inhibition when assayed in vitro. Inhibition of BChE by bioactivated TAPs in vitro correlated well with inhibition of other serine active-site enzymes in vivo, with the exception of brain acetylcholinesterase and neuropathy target esterase (NTE), which were not inhibited by any TAP tested following single exposures. A recombinant catalytic domain of NTE (rNEST) exhibited classical kinetic properties of NTE. The metabolite of tri-(o-cresyl) phosphate (ToCP), 2-(o-cresyl)-4H-1,3,2-benzodioxaphosphoran-2-one (CBDP), inhibited rNEST in vitro, but with an IC50 value almost 6-times higher than for inhibition of BChE. Physiologically-relevant concentrations of the flavonoid, naringenin, dramatically reduced D125 bioconversion in vitro. The in vitro assay should provide a valuable tool for prescreening candidate TAP anti-wear additives, identifying safer additives and reducing the number of animals required for in vivo toxicity testing. PMID:23085349

  2. Identifying safer anti-wear triaryl phosphate additives for jet engine lubricants.

    PubMed

    Baker, Paul E; Cole, Toby B; Cartwright, Megan; Suzuki, Stephanie M; Thummel, Kenneth E; Lin, Yvonne S; Co, Aila L; Rettie, Allan E; Kim, Jerry H; Furlong, Clement E

    2013-03-25

    Individuals aboard jet aircraft may be exposed to potentially toxic triaryl organophosphate anti-wear lubricant additives (TAPs) that are converted by cytochromes P450 into toxic metabolites. Consequences of exposure could be reduced by using less toxic TAPs. Our goal was to determine whether an in vitro assay for inhibition of butyrylcholinesterase (BChE) by bioactivated TAPs would be predictive of inhibition of serine active-site enzymes in vivo. The in vitro assay involved TAP bioactivation with liver microsomes and NADPH, followed by incubation with human BChE and measurement of BChE activity. Of 19 TAPs tested, tert-butylated isomers produced the least BChE inhibition. To determine the relevance of these results in vivo, mice were exposed to Durad 125 (D125; a commercial mixture of TAP esters) or to TAPs demonstrating low or no BChE inhibition when assayed in vitro. Inhibition of BChE by bioactivated TAPs in vitro correlated well with inhibition of other serine active-site enzymes in vivo, with the exception of brain acetylcholinesterase and neuropathy target esterase (NTE), which were not inhibited by any TAP tested following single exposures. A recombinant catalytic domain of NTE (rNEST) exhibited classical kinetic properties of NTE. The metabolite of tri-(o-cresyl) phosphate (ToCP), 2-(o-cresyl)-4H-1,3,2-benzodioxaphosphoran-2-one (CBDP), inhibited rNEST in vitro, but with an IC(50) value almost 6-times higher than for inhibition of BChE. Physiologically-relevant concentrations of the flavonoid naringenin dramatically reduced D125 bioconversion in vitro. The in vitro assay should provide a valuable tool for prescreening candidate TAP anti-wear additives, identifying safer additives and reducing the number of animals required for in vivo toxicity testing.

  3. The quantitative surface analysis of an antioxidant additive in a lubricant oil matrix by desorption electrospray ionization mass spectrometry

    PubMed Central

    Da Costa, Caitlyn; Reynolds, James C; Whitmarsh, Samuel; Lynch, Tom; Creaser, Colin S

    2013-01-01

    RATIONALE Chemical additives are incorporated into commercial lubricant oils to modify the physical and chemical properties of the lubricant. The quantitative analysis of additives in oil-based lubricants deposited on a surface without extraction of the sample from the surface presents a challenge. The potential of desorption electrospray ionization mass spectrometry (DESI-MS) for the quantitative surface analysis of an oil additive in a complex oil lubricant matrix without sample extraction has been evaluated. METHODS The quantitative surface analysis of the antioxidant additive octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix was carried out by DESI-MS in the presence of 2-(pentyloxy)ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate as an internal standard. A quadrupole/time-of-flight mass spectrometer fitted with an in-house modified ion source enabling non-proximal DESI-MS was used for the analyses. RESULTS An eight-point calibration curve ranging from 1 to 80 µg/spot of octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix and in the presence of the internal standard was used to determine the quantitative response of the DESI-MS method. The sensitivity and repeatability of the technique were assessed by conducting replicate analyses at each concentration. The limit of detection was determined to be 11 ng/mm2 additive on spot with relative standard deviations in the range 3–14%. CONCLUSIONS The application of DESI-MS to the direct, quantitative surface analysis of a commercial lubricant additive in a native oil lubricant matrix is demonstrated. © 2013 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons, Ltd. PMID:24097398

  4. Thermochemical Properties and Bond Dissociation Energies for Fluorinated Methanol, CH3-xFxOH, and Fluorinated Methyl Hydroperoxides, CH3-xFxOOH: Group Additivity.

    PubMed

    Wang, Heng; Bozzelli, Joseph W

    2016-09-08

    Oxygenated fluorocarbons are routinely found in sampling of environmental soils and waters as a result of the widespread use of fluoro and chlorofluoro carbons as heat transfer fluids, inert materials, polymers, fire retardants and solvents; the influence of these chemicals on the environment is a growing concern. The thermochemical properties of these species are needed for understanding their stability and reactions in the environment and in thermal process. Structures and thermochemical properties on the mono- to trifluoromethanol, CH3-xFxOH, and fluoromethyl hydroperoxide, CH3-xFxOOH (1 ≤ x ≤ 3), are determined by CBS-QB3, CBS-APNO, and G4 calculations. Entropy, S°298, and heat capacities, Cp(T)'s (300 ≤ T/K ≤ 1500) from vibration, translation, and external rotation contributions are calculated on the basis of the vibration frequencies and structures obtained from the B3LYP/6-31+G(d,p) density functional method. Potential barriers for the internal rotations are also calculated from this method and used to calculate hindered rotor contributions to S°298 and Cp(T)'s using direct integration over energy levels of the internal rotational potentials. Standard enthalpies of formation, ΔfH°298 (units in kcal mol(-1)) are CH2FOOH (-83.7), CHF2OOH (-138.1), CF3OOH (-193.6), CH2FOO(•) (-44.9), CHF2OO(•) (-99.6), CF3OO(•) (-153.8), CH2FOH (-101.9), CHF2OH (-161.6), CF3OH (-218.1), CH2FO(•) (-49.1), CHF2O(•) (-97.8), CF3O(•) (-150.5), CH2F(•) (-7.6), CHF2(•) (-58.8), and CF3(•) (-112.6). Bond dissociation energies for the R-OOH, RO-OH, ROO-H, R-OO(•), RO-O(•), R-OH, RO-H, R-O(•), and R-H bonds are determined and compared with methyl hydroperoxide to observe the trends from added fluoro substitutions. Enthalpy of formation for the fluoro-hydrocarbon oxygen groups C/F/H2/O, C/F2/H/O, C/F3/O, are derived from the above fluorinated methanol and fluorinated hydroperoxide species for use in Benson's Group Additivity. It was determined that

  5. Methylation matters

    PubMed Central

    Costello, J.; Plass, C.

    2001-01-01

    DNA methylation is not just for basic scientists any more. There is a growing awareness in the medical field that having the correct pattern of genomic methylation is essential for healthy cells and organs. If methylation patterns are not properly established or maintained, disorders as diverse as mental retardation, immune deficiency, and sporadic or inherited cancers may follow. Through inappropriate silencing of growth regulating genes and simultaneous destabilisation of whole chromosomes, methylation defects help create a chaotic state from which cancer cells evolve. Methylation defects are present in cells before the onset of obvious malignancy and therefore cannot be explained simply as a consequence of a deregulated cancer cell. Researchers are now able to detect with exquisite sensitivity the cells harbouring methylation defects, sometimes months or years before the time when cancer is clinically detectable. Furthermore, aberrant methylation of specific genes has been directly linked with the tumour response to chemotherapy and patient survival. Advances in our ability to observe the methylation status of the entire cancer cell genome have led us to the unmistakable conclusion that methylation abnormalities are far more prevalent than expected. This methylomics approach permits the integration of an ever growing repertoire of methylation defects with the genetic alterations catalogued from tumours over the past two decades. Here we discuss the current knowledge of DNA methylation in normal cells and disease states, and how this relates directly to our current understanding of the mechanisms by which tumours arise.


Keywords: methylation; cancer PMID:11333864

  6. Transcriptional Regulation of the GPX1 Gene by TFAP2C and Aberrant CpG Methylation in Human Breast Cancer

    PubMed Central

    Kulak, Mikhail V.; Cyr, Anthony R.; Woodfield, George W.; Bogachek, Maria; Spanheimer, Philip M.; Li, Tiandao; Price, David H.; Domann, Frederick E.; Weigel, Ronald J.

    2012-01-01

    The complexity of gene regulation has created obstacles to defining mechanisms that establish the patterns of gene expression characteristic of the different clinical phenotypes of breast cancer. TFAP2C is a transcription factor, which plays a critical role in the regulation of both estrogen receptor-alpha (ERα) and c-ErbB2/HER2 (Her2). Herein, we performed chromatin immunoprecipitation and direct sequencing (ChIP-seq) for TFAP2C in four breast cancer cell lines. Comparing the genomic binding sites for TFAP2C, we identified that glutathione peroxidase (GPX1) is regulated by TFAP2C through an AP-2 regulatory region in the promoter of the GPX1 gene. Knock down of TFAP2C, but not the related factor TFAP2A, resulted in an abrogation of GPX1 expression. Selenium-dependent GPX activity correlated with endogenous GPX1 expression and overexpression of exogenous GPX1 induced GPX activity and significantly increased resistance to tert-butyl hydroperoxide. Methylation of the CpG island encompassing the AP-2 regulatory region was identified in cell lines where TFAP2C failed to bind the GPX1 promoter and GPX1 expression was unresponsive to TFAP2C. Furthermore, in cell lines where GPX1 promoter methylation was associated with gene silencing, treatment with 5-aza-dC (an inhibitor of DNA methylation) allowed TFAP2C to bind to the GPX1 promoter resulting in activation of GPX1 RNA and protein expression. Methylation of the GPX1 promoter was identified in approximately 20% of primary breast cancers and a highly significant correlation between TFAP2C and GPX1 expression was confirmed when considering only those tumors with an unmethylated promoter, whereas the related factor, TFAP2A, failed to demonstrate a correlation. The results demonstrate that TFAP2C regulates the expression of GPX1, which influences the redox state and sensitivity to oxidative stress induced by peroxides. Given the established role of GPX1 in breast cancer, the results provide an important mechanism for TFAP2C

  7. 4,5-Dibromo-2,7-di-tert-butyl-9,9-dimethyl-9H-thioxanthene

    PubMed Central

    Rubio, Omayra H.; Fuentes de Arriba, Angel L.; Sanz, Francisca; Muniz, Francisco M.; Morán, Joaquín R.

    2012-01-01

    In the title compound, C23H28Br2S, the thioxanthene unit is twisted, showing a dihedral angle of 29.3 (5)° between the benzene rings. When projected along [001], the packing shows two types of channels. The crystal studied was a racemic twin. PMID:22719586

  8. Effects of tert-butyl hydroperoxide on Ca(2+) ATPase activity in isolated rat hepatocytes and its reversal by antioxidants.

    PubMed

    Singh, Sangram; Agarwal, Richa; Jamal, Farrukh; Mehrotra, Sudhir; Singh, Rakesh

    2012-09-01

    Calcium ions play an importantrole in various physiological processes such as nerve impulse transmission, muscle contraction, hormone action, blood clotting. They ions act as an intracellular second messenger, relaying information within cells to regulate their activity. To understand the mechanism of hepatotoxicity of t-BHP, studies were carried out using freshly isolated rat hepatocytes. The effect of t-BHP on Ca(2+) accumulation and Ca(2+) uptake by rat hepatocytes was monitored using 45Ca(2+). It caused decrease in 15% accumulation of 45Ca(2+) in comparison to the control group. t-BHP also significantly decreased the Ca(2+) ATPase activity in isolated hepatocytes .This decrease in Ca(2+) ATPase activity by t-BHP was reversed 40% by naturally occurring antioxidant glutathione (GSH) and 20% by the synthetic antioxidant butylated hydroxy toluene (BHT). These results indicate that the hepatotoxic action of t-BHP involves oxidative stress as evident by the protection accorded by various antioxidants employed in the study as well as impairment of intracellular calcium homeostasis which can lead to liver cell injury.

  9. Effect of vitamin C, deferoxamine, quercetin and rutin against tert-butyl hydroperoxide oxidative damage in human erythrocytes.

    PubMed

    Krukoski, Daniel Witchmichen; Comar, Samuel Ricardo; Claro, Ligia Maria; Leonart, Maria Suely Soares; do Nascimento, Aguinaldo José

    2009-06-01

    The mature human erythrocyte, when submitted to oxidative stress, can demonstrate depletion of reduced glutathione, oxidation of the hemoglobin molecule and aggregation of complexes of iron close to the membrane. These can produce abnormalities in the erythrocyte membrane and hemolysis. The aim of this work was to study the antioxidative action of vitamin C (vit. C), deferroxamine (DFO) and the flavonoids quercetin and rutin in normal human erythrocytes, submitted to in vitro oxidative stress induced by tert-butylhydroperoxide ((t)BHP). Venous blood was collected in citrate-phosphate-dextrose (CPD) solution, as anticoagulant, from healthy adult individuals after informed consent. The erythrocytes were resuspended in PBS to obtain 35% globular volume, and then submitted to the oxidative action of (t)BHP for up to 30 min, with or without previous incubation for 60 min with vit. C, DFO, quercetin and rutin. Decrease in the GSH concentration, G6-PD and GR activities, and increase in the methemoglobin and Heinz bodies (HB) formation, occurred with the increase in (t)BHP concentration. (t)BHP did not effect on the membrane proteins detected by SDS-PAGE. Quercetin, partially prevented the GSH decrease and the formation of HB, but did not prevent MetHb formation from oxidative damage by (t)BHP. Rutin, after (t)BHP induction, prevented the GSH decrease and the formation of HB. Vit. C, had no influence on the depletion of GSH, inhibited partially the metHb formation, and it protected GR, but not G6-PD from oxidative damage by (t)BHP. DFO partially inhibited the metHb formation and GSH decrease, but it did not protect GR and G6-PD from oxidative damage by (t)BHP. The results obtained suggest that vit. C, DFO and the flavonoids quercetin and rutin contribute to the decrease in the oxidative stress caused by (t)BHP.

  10. Aquatic toxicity of nine aircraft deicer and anti-icer formulations and relative toxicity of additive package ingredients alkylphenol ethoxylates and 4,5-methyl-1H-benzotriazoles

    USGS Publications Warehouse

    Corsi, S.R.; Geis, S.W.; Loyo-Rosales, J. E.; Rice, C.P.

    2006-01-01

    Characterization of the effects of aircraft deicer and anti-icer fluid (ADAF) runoff on aquatic organisms in receiving streams is a complex issue because the identities of numerous toxic additives are proprietary and not publicly available. Most potentially toxic and endocrine disrupting effects caused by ADAF are due to the numerous additive package ingredients which vary among manufacturers and types of ADAF formulation. Toxicity investigations of nine ADAF formulations indicate that endpoint concentrations for formulations of different manufacturers are widely variable. Type IV ADAF (anti-icers) are more toxic than Type I (deicers) for the four organisms tested (Vibrio fischeri, Pimephales promelas, Ceriodaphnia dubia, and Selenastrum capricornutum). Acute toxicity endpoint concentrations ranged from 347 to 7700 mg/L as ADAF for Type IV and from 1550 to 45 100 mg/L for Type I formulations. Chronic endpoint concentrations ranged from 70 to 1300 mg/L for Type IV and from 37 to 18 400 mg/L for Type I formulations. Alkylphenol ethoxylates and tolyltriazoles are two known classes of additives. Nonylphenol, nonylphenol ethoxylates, octylphenol, octylphenol ethoxylates, and 4,5-methyl-1H-benzotriazoles were quantified in the nine ADAF formulations, and toxicity tests were conducted with nonylphenol ethoxylates and 4,5-methyl-1H-benzotriazoles. Toxicity units computed for glycol and these additives, with respect to toxicity of the ADAF formulations, indicate that a portion of ADAF toxicity can be explained by the known additives and glycols, but much of the toxicity is due to unidentified additives. ?? 2006 American Chemical Society.

  11. Analogues of amphibian alkaloids: total synthesis of (5R,8S,8aS)-(-)-8-methyl-5-pentyloctahydroindolizine (8-epi-indolizidine 209B) and [(1S,4R,9aS)-(-)-4-pentyloctahydro-2H-quinolizin-1-yl]methanol

    PubMed Central

    Michael, Joseph P; Accone, Claudia; de Koning, Charles B; van der Westhuyzen, Christiaan W

    2008-01-01

    Background Prior work from these laboratories has centred on the development of enaminones as versatile intermediates for the synthesis of alkaloids and other nitrogen-containing heterocycles. In this paper we describe the enantioselective synthesis of indolizidine and quinolizidine analogues of bicyclic amphibian alkaloids via pyrrolidinylidene- and piperidinylidene-containing enaminones. Results Our previously reported synthesis of racemic 8-epi-indolizidine 209B has been extended to the laevorotatory enantiomer, (-)-9. Attempts to adapt the synthetic route in order to obtain quinolizidine analogues revealed that a key piperidinylidene-containing enaminone intermediate (+)-28 was less tractable than its pyrrolidinylidene counterpart, thereby necessitating modifications that included timing changes and additional protection-deprotection steps. A successful synthesis of [(1S,4R,9aS)-4-pentyloctahydro-2H-quinolizin-1-yl]methanol (-)-41 from the chiral amine tert-butyl (3R)-3-{benzyl [(1R)-1-phenylethyl]amino}octanoate (+)-14 was achieved in 14 steps and an overall yield of 20.4%. Conclusion The methodology reported in this article was successfully applied to the enantioselective synthesis of the title compounds. It paves the way for the total synthesis of a range of cis-5,8-disubstituted indolizidines and cis-1,4-disubstituted quinolizidines, as well as the naturally occurring trans-disubstituted alkaloids. PMID:18205934

  12. Nitric oxide inhibitor N omega -nitro-l-arginine methyl ester potentiates induction of heme oxygenase-1 in kidney ischemia/reperfusion model: a novel mechanism for regulation of the oxygenase.

    PubMed

    Mayer, Robert D; Wang, Xiaojun; Maines, Mahin D

    2003-07-01

    The biological significance of the heme oxygenase (HO) system's response to stress reflects functions of its products-CO and bile pigments. CO is a messenger molecule, whereas bile pigments are antioxidants and modulators of cell signaling. Presently, an unexpected mechanism for sustained suprainduction of renal HO-1 following ischemia/reperfusion injury is described. Inhibition of nitric-oxide synthase (NOS) activity by Nomega-nitro-l-arginine methyl ester (l-NAME) at the resumption of reperfusion of rat kidney subjected to bilateral ischemia (30 min) was as effective as the most potent HO-1 inducer, the spin trap agent n-tert-butyl-alpha-phenyl nitrone (PBN), in causing sustained suprainduction of HO-1 mRNA. PBN forms stable radicals of oxygen and nitrogen. Twenty-four hours after reperfusion, HO-1 mRNA measured approximately 30-fold that of the control in the presence of l-NAME treatment; in its absence, the transcript increased to only approximately 5-fold. At 4 h in the presence or absence of the l-NAME HO-1, mRNA was increased by approximately 30-fold. The transcript was translated to active protein as indicated by Western blotting, immunohistochemistry, and activity analyses. l-NAME was not effective given 1 h after resumption of reperfusion. Suprainduction was restricted to the kidney and not detected in the heart and aorta; ferritin expression in the kidney was not effected. It is reasoned that in tissue directly insulted by ischemia/reperfusion, increased production of NO radicals promotes the loss of HO-1 transcript. Because the absence of NO radicals and presence of PBN had a similar effect on HO-1, we propose that suprainduction of the gene is mainly caused by O2 radicals formed on reperfusion. Inhibition of NOS is potentially useful for sustained induction of HO-1 in organs that will be subjected to oxidative-stress insult.

  13. Comparison of reactivity of Pt(II) center in the mononuclear and binuclear organometallic diimineplatinum complexes toward oxidative addition of methyl iodide

    NASA Astrophysics Data System (ADS)

    Hashemi, Majid

    2016-01-01

    The reactivities of Pt(II) center in a series of organometallic mononuclear Pt(II), binuclear Pt(II) and binuclear mixed-valence Pt(II)-Pt(IV) complexes toward oxidative addition of MeI have been compared from a theoretical point of view. The nucleophilicity index and electron-donation power were calculated for each of these complexes. The energies of HOMO and dZ2 orbital were determined for these complexes. Very good correlations were found between logk2 (k2 is the experimentally determined second order rate constant for the oxidative addition of MeI on these complexes) and nucleophilicity index or electron-donation power for these complexes. The correlation between logk2 and the energy of HOMO or the energy of dZ2 orbital were also very good. The condensed-to-atom Fukui functions for electrophilic attack on these complexes showed that the Pt(II) center is the preferred site for the oxidative addition of MeI. All of these observations are in agreement with the proposed SN2 type mechanism in the oxidative addition of MeI on the Pt(II) center in these complexes.

  14. Interaction between alkyl radicals and single wall carbon nanotubes.

    PubMed

    Denis, Pablo A

    2012-06-30

    The addition of primary, secondary, and tertiary alkyl radicals to single wall carbon nanotubes (SWCNTs) was studied by means of dispersion corrected density functional theory. The PBE, B97-D, M06-L, and M06-2X functionals were used. Consideration of Van der Waals interactions is essential to obtain accurate addition energies. In effect, the enthalpy changes at 298 K, for the addition of methyl, ethyl, isopropyl, and tert-butyl radicals onto a (5,5) SWCNT are: -25.7, -25.1, -22.4, and -16.6 kcal/mol, at the M06-2X level, respectively, whereas at PBE/6-31G* level they are significantly lower: -25.0, -19.0, -16.7, and -5.0 kcal/mol respectively. Although the binding energies are small, the attached alkyl radicals are expected to be stable because of the large desorption barriers. The importance of nonbonded interactions was more noticeable as we moved from primary to tertiary alkyl radicals. Indeed, for the tert-butyl radical, physisorption onto the (11,0) SWCNT is preferred rather than chemisorption. The bond dissociation energies determined for alkyl radicals and SWCNT follow the trend suggested by the consideration of radical stabilization energies. However, they are in disagreement with some degrees of functionalization observed in recent experiments. This discrepancy would stem from the fact that for some HiPco nanotubes, nonbonded interactions with alkyl radicals are stronger than covalent bonds.

  15. CG methylation.

    PubMed

    Vinson, Charles; Chatterjee, Raghunath

    2012-12-01

    A striking feature of mammalian genomes is the paucity of the CG dinucleotide. There are approximately 20,000 regions termed CpG islands where CGs cluster. This represents 5% of all CGs and 1% of the genome. CpG islands are typically unmethylated and are often promoters for housekeeping genes. The remaining 95% of CG dinucleotides are disposed throughout 99% of the genome and are typically methylated and found in half of all promoters. CG methylation facilitates binding of the C/EBP family of transcription factors, proteins critical for differentiation of many tissues. This allows these proteins to localize in the methylated CG poor regions of the genome where they may produce advantageous changes in gene expression at nearby or more distant regions of the genome. In this review, our growing understanding of the consequences of CG methylation will be surveyed.

  16. Methyl methacrylate

    Integrated Risk Information System (IRIS)

    TOXICOLOGICAL REVIEW of METHYL METHACRYLATE ( CAS No . 80 - 62 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) January 1998 U.S . Environmental Protection Agency Washington , DC TABLE OF CONTENTS DISCLAIMER . . . . . . . . . . . . . . . . . . . . . . . . .

  17. Role of back diffusion and biodegradation reactions in sustaining an MTBE/TBA plume in alluvial media

    USGS Publications Warehouse

    Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.

    2011-01-01

    A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer.

  18. Design and Synthesis of Coumarin Derivatives as Novel PI3K Inhibitors.

    PubMed

    Chen-Chen, Ma; Liu, Zhao-Peng

    2016-02-23

    A variety of coumarin derivatives possessing the pyridinylurea units were designed to increase their potency and isoform selectivity against PI3Ks. These novel coumarins 4a-m were prepared from 5-methyl-pyridin-2-ylamine in a straightforward way via the protection of the amino by Boc groups, benzyl bromination, ethyl acetoacetate alkylation with the generated bromomethyl pyridine, Pechmann coumarin core construction, and ureas formation by the coupling of amine 3 with a variety of aryl isocyanates. When the alkylated acetoacetate 2 was reacted with resorcinol in concentrated sulfuric acid, a cascade reaction occurred that included the Pechmann cyclization to form the coumarin core, removal of the N-Boc protective groups to generate a tert-butyl carbocation, and the Friedel-Crafts tert-butylation of the phenol ring. In general, these coumarin analogs exhibited good in vitro growth inhibitory activities against tumor K562, Hela, A549 and MCF-7 cells. Some of them showed comparable or better potency than BENC-511. Compounds 4b and 4h were found to be much more potent PI3K (~10-fold) inhibitors than S14161 or BENC-511. In addition, coumarin 4b was more selective to PI3Kα/β over PI3Kδ/γ, while analog 4h was a selective PI3Kα/β/δ inhibitor. Moreover, compound 4h suppressed the phosphorylation of Akt, increased the cleaved caspase 3 and PARP, and induced K562 cell apoptosis.

  19. Air oxygenation chemistry of 4-TBC catalyzed by chloro bridged dinuclear copper(II) complexes of pyrazole based tridentate ligands: synthesis, structure, magnetic and computational studies.

    PubMed

    Banerjee, Ishita; Samanta, Pabitra Narayan; Das, Kalyan Kumar; Ababei, Rodica; Kalisz, Marguerite; Girard, Adrien; Mathonière, Corine; Nethaji, M; Clérac, Rodolphe; Ali, Mahammad

    2013-02-07

    Four dinuclear bis(μ-Cl) bridged copper(II) complexes, [Cu(2)(μ-Cl)(2)(L(X))(2)](ClO(4))(2) (L(X) = N,N-bis[(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine with X = H(1), OMe(2), Me(3) and Cl(4)), have been synthesized and characterized by the single crystal X-ray diffraction method. In these complexes, each copper(II) center is penta-coordinated with square-pyramidal geometry. In addition to the tridentate L(X) ligand, a chloride ion occupies the last position of the square plane. This chloride ion is also bonded to the neighboring Cu(II) site in its axial position forming an SP-I dinuclear Cu(II) unit that exhibits small intramolecular ferromagnetic interactions and supported by DFT calculations. The complexes 1-3 exhibit methylmonooxygenase (pMMO) behaviour and oxidise 4-tert-butylcatechol (4-TBCH(2)) with molecular oxygen in MeOH or MeCN to 4-tert-butyl-benzoquinone (4-TBQ), 5-methoxy-4-tert-butyl-benzoquinone (5-MeO-4-TBQ) as the major products along with 6,6'-Bu(t)-biphenyl-3,4,3',4'-tetraol and others as minor products. These are further confirmed by ESI- and FAB-mass analyses. A tentative catalytic cycle has been framed based on the mass spectral analysis of the products and DFT calculations on individual intermediates that are energetically feasible.

  20. Role of back diffusion and biodegradation reactions in sustaining an MTBE/TBA plume in alluvial media

    PubMed Central

    Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.

    2012-01-01

    A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer. PMID:22115089

  1. 27 CFR 20.113 - Proprietary solvents general-use formula.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...: ethyl acetate (equivalent to 85% ester content, as defined in § 21.106 of this chapter), methyl isobutyl ketone, methyl n-butyl ketone, tert-butyl alcohol, sec-butyl alcohol, nitropropane (mixed isomers), ethylene glycol monoethyl ether, or toluene. (b) If this article contains more than 4% by weight of...

  2. A theoretical study of rhodium(I) catalyzed carbonylative ring expansion of aziridines to beta-lactams: crucial activation of the breaking C-N bond by hyperconjugation.

    PubMed

    Ardura, Diego; López, Ramón; Sordo, Tomas L

    2006-09-15

    The regioselectivity and enantiospecificity of the [Rh(CO)2Cl]2-catalyzed carbonylative ring expansions of N-tert-butyl-2-phenylaziridine to yield 2-azetidinone and the lack of reactivity of N-tert-butyl-2-methylaziridine along this process were investigated at the B3LYP/6-31G(d) (LANL2DZ for Rh) theory level taking into account solvent effects. According to our results, the regioselectivity in the ring expansion of N-tert-butyl-2-phenylaziridine and the unreactivity of N-tert-butyl-2-methylaziridine experimentally observed are determined by the different degree of activation of the breaking C-N bond in the initial aziridine-Rh(CO)2Cl complex due to its hyperconjugation interaction with the substituent on the carbon atom. When a phenyl substituent is present its hyperconjugation interaction with the C(alpha)-N bond facilitates the insertion of the metal atom into this bond. On the other hand, when the substituent is a methyl group, a larger stability of the initial complex along with a lower stabilization through hyperconjugation of the TS for insertion of the Rh atom into the C(alpha)-N bond make the ring expansion of N-tert-butyl-2-methylaziridine unviable. The enantiospecificity experimentally observed is also reproduced by our calculations given that the stereogenic center is never perturbed to change its configuration.

  3. In vitro analysis of the cytotoxic and anti-inflammatory effects of antioxidant compounds used as additives in ultra high-molecular weight polyethylene in total joint replacement components.

    PubMed

    Bladen, C L; Tzu-Yin, L; Fisher, J; Tipper, J L

    2013-04-01

    Ultra high-molecular weight polyethylene (UHMWPE) remains the most commonly used material in modern joint replacement prostheses. However, UHMWPE wear particles, formed as the bearing articulates, are one of the main factors leading to joint replacement failure via the induction of osteolysis and subsequent aseptic loosening. Previous studies have shown that the addition of antioxidants such as vitamin E to UHMWPE can improve wear resistance of the polymer and reduce oxidative fatigue. However, little is known regarding the biological consequences of such antioxidant chemicals. This study investigated the cytotoxic and anti-inflammatory effects of a variety of antioxidant compounds currently being tested experimentally for use in hip and knee prostheses, including nitroxides, hindered phenols, and lanthanides on U937 human histocyte cells and human peripheral blood mononuclear cells (PBMNCs) in vitro. After addition of the compounds, cell viability was determined by dose response cytotoxicity studies. Anti-inflammatory effects were determined by quantitation of TNF-α release in lipopolysaccharide (LPS)-stimulated cells. This study has shown that many of these compounds were cytotoxic to U937 cells and PBMNCs, at relatively low concentrations (micromolar), specifically the hindered phenol 3,5-di-tert-butyl-4-hydroxyhydrocinnamate (HPAO1), and the nitroxide 2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO). Lanthanides were only cytotoxic at very high concentrations and were well tolerated by the cells at lower concentrations. Cytotoxic compounds also showed reduced anti-inflammatory effects, particularly in PBMNCs. Careful consideration should therefore be given to the use of any of these compounds as potential additives to UHMWPE.

  4. Kenaf methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this paper, for the first time, the fuel properties of kenaf (Hibiscus cannabinus L.) seed oil methyl esters are comprehensively reported. This biodiesel is also relatively unique by containing small ...

  5. Enantioselective Lewis acid-catalyzed Mukaiyama-Michael reactions of acyclic enones. Catalysis by allo-threonine-derived oxazaborolidinones.

    PubMed

    Wang, Xiaowei; Adachi, Shinya; Iwai, Hiroyoshi; Takatsuki, Hiroshi; Fujita, Katsuhiro; Kubo, Mikako; Oku, Akira; Harada, Toshiro

    2003-12-26

    allo-Threonine-derived O-aroyl-B-phenyl-N-tosyl-1,3,2-oxazaborolidin-5-ones 1g,n catalyze the asymmetric Mukaiyama-Michael reaction of acyclic enones with a trimethylsilyl ketene S,O-acetal in high enantioselectivity. A range of alkenyl methyl ketones is successfully employed as Michael acceptors affording ee values of 85-90% by using 10 mol % of the catalyst. The use of 2,6-diisopropylphenol and tert-butyl methyl ether as additives is found to be essential to achieve high enantioselectivity in these reactions. The effects of the additives are discussed in terms of the retardation of an Si(+)-catalyzed racemic pathway, which seriously deteriorates the enantioselectivity of asymmetric Mukaiyama-Michael reactions. A working model for asymmetric induction is proposed based on correlation between catalyst structures and enantioselectivities.

  6. Photoisomerization of azobenzene moiety in crosslinking polymer materials

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Chen, Wei-Qiang; Jin, Feng; Dong, Xian-Zi; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2012-10-01

    In this study, a series of acryloyloxy-substituted azobenzene derivatives, 3-(tert-butyl)-4,4'-bisacryoloxy-azobenzene (tBu-Azo-AO), 3-(tert-butyl)-4,4'-bis[3-(acryoloxy)propoxy]-azobenzene (tBu-Azo-AO3) and 3-(tert-butyl)-4,4'-bis[6-(acryoloxy)hexyloxy]-azobenzene (tBu-Azo-AO6) were synthesized and employed as monomers to prepare polymer films by copolymerizing dipentaerythritol hexaacrylate (DPE-6A) and methyl methacrylate (MMA), respectively. When exposed to a nanosecond laser beam at the wavelength of 355 nm, ultraviolet-visible (UV-Vis) absorption spectra of the resultant polymer films with different irradiation time were monitored. On the basis of the absorbance of the π-π* electronic transition, the kinetics of trans-to-cis photoisomerization of three kinds of azobenzene moieties were demonstrated and found to be influenced by both the pump energy and azobenzene concentration.

  7. Methyl isocyanate

    Integrated Risk Information System (IRIS)

    Methyl isocyanate ; CASRN 624 - 83 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  8. Methyl chlorocarbonate

    Integrated Risk Information System (IRIS)

    Methyl chlorocarbonate ; CASRN 79 - 22 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  9. Methyl iodide

    Integrated Risk Information System (IRIS)

    Methyl iodide ; CASRN 74 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  10. Methyl parathion

    Integrated Risk Information System (IRIS)

    Methyl parathion ; CASRN 298 - 00 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  11. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  12. Methyl chloride

    Integrated Risk Information System (IRIS)

    EPA / 635 / R01 / 003 TOXICOLOGICAL REVIEW OF METHYL CHLORIDE ( CAS No . 74 - 87 - 3 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2001 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed in accordance with U.

  13. Investigation of Molecule-Surface Interactions With Overtone Absorption Spectroscopy and Computational Methods

    DTIC Science & Technology

    2010-11-01

    2,6-Difluorotoluene. J. Chem. Phys. 1997, 107 (3), 691-701. 14. Kjaergaard, H. G.; Henry , B. R.; Wei, H.; Lefebvre , S.; Carrington, T. Jr.; Mortensen...Phys. Chem. 1982, 86 (4), 459-462. 27 13. Zhu, C; Kjaergaard, H. G.; Henry , B. R. CH-Stretching Overtone Spectra and Internal Methyl Rotation in...M. W. P.; Henry , B. R. CH Stretching Vibrational Overtone Spectra of Tert-Butylbenzene, Tert-Butyl Chloride, and Tert-Butyl Iodide. J. Phys. Chem

  14. Biosynthetic origin of butyrolactol A, an antifungal polyketide produced by a marine-derived Streptomyces

    PubMed Central

    Harunari, Enjuro; Komaki, Hisayuki

    2017-01-01

    Butyrolactol A is an antifungal polyketide of Streptomyces bearing an uncommon tert-butyl starter unit and a polyol system in which eight hydroxy/acyloxy carbons are contiguously connected. Except for its congener butyrolactol B, there exist no structurally related natural products to date. In this study, inspired by our previous genomic analysis, incorporation of 13C- and 2H-labeled precursors into butyrolactol A was investigated. Based on the labeling pattern and sequencing analytical data, we confirmed that the tert-butyl group is derived from valine and its C-methylation with methionine and the polyol carbons are derived from a glycolysis intermediate, possibly hydroxymalonyl-ACP. PMID:28382182

  15. Methyl eucomate

    PubMed Central

    Li, Linglin; Zhou, Guang-Xiong; Jiang, Ren-Wang

    2008-01-01

    The crystal structure of the title compound [systematic name: methyl 3-carboxy-3-hydr­oxy-3-(4-hydroxy­benz­yl)propanoate], C12H14O6, is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds. The mol­ecules are arranged in layers, parallel to (001), which are inter­connected by the O—H⋯O hydrogen bonds. PMID:21202973

  16. Methyl Halide Production by Fungi

    NASA Astrophysics Data System (ADS)

    Dailey, G. D.; Varner, R. K.; Blanchard, R. O.; Sive, B. C.; Crill, P. M.

    2005-12-01

    Methyl chloride (CH3Cl), methyl bromide (CH3Br) and methyl iodide (CH3I) are methyl halide gases that contribute significant amounts of halogen radicals to the atmosphere. In an effort to better understand the global budget of methyl halides and their impact on the atmosphere, we need to identify the natural sources in addition to the known anthropogenic sources of these compounds. We are investigating the role of fungi in the production of methyl halides in the soils and wetlands in southern New Hampshire, USA. Previous research has shown that wood decay fungi and ectomycorrhizal fungi, which are within a group of fungi called basidiomycetes, emit methyl halides. In our study, measurements of headspace gas extracted from flasks containing fungi grown in culture demonstrate that a variety of fungi, including basidiomycetes and non-basidiomycetes, emit methyl halides. Our research sites include four ecosystems: an agricultural field, a temperate forest, a fresh water wetland, and coastal salt marshes. We have collected and isolated fungi at each site by culturing tissue samples of fruiting bodies and plant material, by using wood baits, and from the direct culture of soil. We compared the rates of methyl halide emissions from the fungi in the four ecosystems. In addition, we measured emissions from previously assayed fungal isolates after reintroducing them to sterilized soils that were collected from their original environments. Fungal biomass was determined by substrate-induced respiration (SIR). The emission rate by the fungus was determined by a linear regression of the concentration of methyl halide in the sample headspace over time divided by the fungal biomass.

  17. Identification of endometrial cancer methylation features using combined methylation analysis methods

    PubMed Central

    Trimarchi, Michael P.; Yan, Pearlly; Groden, Joanna; Bundschuh, Ralf; Goodfellow, Paul J.

    2017-01-01

    Background DNA methylation is a stable epigenetic mark that is frequently altered in tumors. DNA methylation features are attractive biomarkers for disease states given the stability of DNA methylation in living cells and in biologic specimens typically available for analysis. Widespread accumulation of methylation in regulatory elements in some cancers (specifically the CpG island methylator phenotype, CIMP) can play an important role in tumorigenesis. High resolution assessment of CIMP for the entire genome, however, remains cost prohibitive and requires quantities of DNA not available for many tissue samples of interest. Genome-wide scans of methylation have been undertaken for large numbers of tumors, and higher resolution analyses for a limited number of cancer specimens. Methods for analyzing such large datasets and integrating findings from different studies continue to evolve. An approach for comparison of findings from a genome-wide assessment of the methylated component of tumor DNA and more widely applied methylation scans was developed. Methods Methylomes for 76 primary endometrial cancer and 12 normal endometrial samples were generated using methylated fragment capture and second generation sequencing, MethylCap-seq. Publically available Infinium HumanMethylation 450 data from The Cancer Genome Atlas (TCGA) were compared to MethylCap-seq data. Results Analysis of methylation in promoter CpG islands (CGIs) identified a subset of tumors with a methylator phenotype. We used a two-stage approach to develop a 13-region methylation signature associated with a “hypermethylator state.” High level methylation for the 13-region methylation signatures was associated with mismatch repair deficiency, high mutation rate, and low somatic copy number alteration in the TCGA test set. In addition, the signature devised showed good agreement with previously described methylation clusters devised by TCGA. Conclusion We identified a methylation signature for a

  18. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium methyl sulfate. 173.385 Section 173.385... CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in... pectin by sulfuric acid and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It...

  19. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pectin by sulfuric acid and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It does... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium methyl sulfate. 173.385 Section 173.385... CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present...

  20. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... pectin by sulfuric acid and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It does... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium methyl sulfate. 173.385 Section 173.385... CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present...

  1. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sulfuric acid and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It does not exceed 0... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium methyl sulfate. 173.385 Section 173.385 Food... Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in pectin...

  2. Fenton-driven regeneration of MTBE-spent granular activated carbon - Effects of particle size and Iron Amendment Procedures

    EPA Science Inventory

    Fenton-driven regeneration of spent granular activated carbon (GAC) is a technology being developed to regenerate organic contaminant-spent GAC. Here, the effect of GAC particle size (>2 mm to <0.35 mm) on Fenton-driven oxidation of methyl tert-butyl ether (MTBE)-spent GAC was ev...

  3. Magnesium nitride as a convenient source of ammonia: preparation of primary amides.

    PubMed

    Veitch, Gemma E; Bridgwood, Katy L; Ley, Steven V

    2008-08-21

    The use of magnesium nitride (Mg 3N 2) as a convenient source of ammonia has been explored for the direct transformation of esters to primary amides. Methyl, ethyl, isopropyl, and tert-butyl esters are converted to the corresponding carboxamides in good yields (75-99%).

  4. Quantifying residues from postharvest fumigation of almonds and walnuts with propylene oxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel analytical approach, involving solvent extraction with methyl tert-butyl ether (MTBE) followed by gas chromatography (GC), was developed to quantify residues that result from the postharvest fumigation of almonds and walnuts with propylene oxide (PPO). Verification and quantification of PPO,...

  5. OBSERVATIONS FROM CONTAMINANT PLUMES ON LONG ISLAND

    EPA Science Inventory

    The aquifers of Long Island serve as a sole source drinking water supply for the entire
    local population of about three million people. Where the shallow Upper Glacial Aquifer has been contaminated with petroleum hydrocarbons and methyl tert-butyl ether (MTBE), intensive site ...

  6. LOCALIZED RECHARGE INFLUENCES ON MTBE TRANSPORT AND WELL PLACEMENT CONSIDERATIONS

    EPA Science Inventory

    Vertical characterization of a gasoline release site at East Patchogue, New York showed that methyl tert-butyl ether (MTBE) and aromatic plumes "dived" as they passed beneath a sand pit. That this behavior was caused by aquifer recharge was shown by two pieces of evidence. Fir...

  7. Persulfate Oxidation of MTBE- and Chloroform-Spent Granular Activated Carbon

    EPA Science Inventory

    Activated persulfate (Na2S2O8) regeneration of methyl tert-butyl ether (MTBE) and chloroform-spent GAC was evaluated in this study. Thermal-activation of persulfate was effective and resulted in greater MTBE removal than either alkaline-activation or H2O2–persulfate binary mixtur...

  8. Demonstration/Validation of the Snap Sampler Passive Groundwater Sampling Device at the Former McClellan Air Force Base

    DTIC Science & Technology

    2011-02-01

    SO4 Sulfate SS Stainless steel SVE Soil Vapor Extraction TCE Trichloroethylene TDS Total Dissolved Solids USEPA U.S. Environmental...anions, metalloids, and metals), and four VOCs (three chlorinated solvents and methyl tert-butyl ether [MTBE]). For this demonstration, 10 wells...were used in- cluded industrial organic solvents , caustic cleaners, electroplating chemicals, metals, po- lychlorinated biphenyls (PCBs), low-level

  9. COST OF MTBE REMEDIATION

    EPA Science Inventory

    Widespread contamination of methyl tert-butyl ether (MTBE) in ground water has raised concerns about the increased cost of remediation of MTBE releases compared to BTEX-only sites. To evaluate these cost, cost information for 311 sites was furnished by U.S. EPA Office of Undergr...

  10. COSTS TO REMEDIATE MTBE-CONTAMINATED SITES

    EPA Science Inventory

    The extensive contamination of methyl tert-butyl ether (MTBE) in ground water has introduced concerns about the increased cost of remediation of MTBE releases compared to sites with BTEX only contamination. In an attempt to evaluate these costs, cost information for 311 sites wa...

  11. ANAEROBIC BIODEGRADATION OF MTBE AT A GASOLINE SPILL SITE

    EPA Science Inventory

    To manage risk or to implement natural attenuation as a remedy, regulatory agencies must understand the processes that attenuate methyl-tert-butyl ether (MTBE) in ground water. Most case studies and laboratory studies in the literature indicate that natural biodegradation is not ...

  12. Fenton-like Degradation of MTBE: Effects of Iron Counter Anion and Radical Scavengers

    EPA Science Inventory

    Fenton-driven oxidation of Methyl tert-butyl ether (MTBE) (0.11-0.16 mM) in batch reactors containing ferric iron (5 mM), hydrogen peroxide (H2O2) (6 mM) (pH=3) was performed to investigate MTBE transformation mechanisms. Independent variables included the form of iron (Fe) (Fe2(...

  13. NOVEL EMBEDDED CERAMIC ELECTRODE SYSTEM TO ACTIVATE NANOSTRUCTURED TITANIUM DIOXIDE FOR DEGRADATION OF MTBE

    EPA Science Inventory

    A novel reactor combining a flame-deposited nanostructured titanium dioxide film and a set of embedded ceramic electrodes was designed, developed and tested for degradation of methyl tert-butyl ether (MTBE) in water. On applying a voltage to the ceramic electrodes, a surface coro...

  14. Fenton-Driven Regeneration of MTBE-spent Granular Activated Carbon

    EPA Science Inventory

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto activated carbon and Fenton-driven oxidation regeneration of the spent-GAC...

  15. Iron Amendment and Fenton Oxidation of MTBE-Spent Granular Activated Carbon

    EPA Science Inventory

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves Fe amendment to the GAC to catalyze H2O2 reactions and to enhance the rate of MTBE oxidation and GAC regeneration. Four forms of iron (ferric sulfate, ferric chloride, fer...

  16. Composition and Behavior of Fuel Ethanol

    EPA Science Inventory

    Ethanol usage in the United States has increased due in part to the elimination of methyl tert-butyl ether from the fuel supply and to the mandates of Congress. Two samples, one each from a wet mill and a dry mill ethanol plant, were obtained before denaturing. Each of these ...

  17. AVOIDING HYDROLYSIS OF FUEL ETHER OXYGENATES DURING STATIC HEADSPACE ANALYSIS

    EPA Science Inventory

    A headspace autosampler, gas chromatograph and ion trap mass spectrometer (headspace GC/MS) were used for trace analysis of fuel oxygenates and related compounds and aromatics in water. A method has been developed for determination of methyl tert-butyl ether (MTBE), ethyl tert-b...

  18. 40 CFR 63.420 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and complies with requirements in paragraphs (c), (d), (e), and (f) of this section: ET=CF +0.04(OE) where: ET = emissions screening factor for bulk gasoline terminals; CF=0.161 for bulk gasoline terminals....6 percent by volume or greater methyl tert-butyl ether (MTBE), OR CF=1.0 for bulk gasoline...

  19. 40 CFR 63.420 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and complies with requirements in paragraphs (c), (d), (e), and (f) of this section: ET=CF +0.04(OE) where: ET = emissions screening factor for bulk gasoline terminals; CF=0.161 for bulk gasoline terminals....6 percent by volume or greater methyl tert-butyl ether (MTBE), OR CF=1.0 for bulk gasoline...

  20. 40 CFR 63.420 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and complies with requirements in paragraphs (c), (d), (e), and (f) of this section: ET=CF +0.04(OE) where: ET = emissions screening factor for bulk gasoline terminals; CF=0.161 for bulk gasoline terminals....6 percent by volume or greater methyl tert-butyl ether (MTBE), OR CF=1.0 for bulk gasoline...