Science.gov

Sample records for additive noise model

  1. Stochastic resonance in a piecewise nonlinear model driven by multiplicative non-Gaussian noise and additive white noise

    NASA Astrophysics Data System (ADS)

    Guo, Yongfeng; Shen, Yajun; Tan, Jianguo

    2016-09-01

    The phenomenon of stochastic resonance (SR) in a piecewise nonlinear model driven by a periodic signal and correlated noises for the cases of a multiplicative non-Gaussian noise and an additive Gaussian white noise is investigated. Applying the path integral approach, the unified colored noise approximation and the two-state model theory, the analytical expression of the signal-to-noise ratio (SNR) is derived. It is found that conventional stochastic resonance exists in this system. From numerical computations we obtain that: (i) As a function of the non-Gaussian noise intensity, the SNR is increased when the non-Gaussian noise deviation parameter q is increased. (ii) As a function of the Gaussian noise intensity, the SNR is decreased when q is increased. This demonstrates that the effect of the non-Gaussian noise on SNR is different from that of the Gaussian noise in this system. Moreover, we further discuss the effect of the correlation time of the non-Gaussian noise, cross-correlation strength, the amplitude and frequency of the periodic signal on SR.

  2. NB-PLC channel modelling with cyclostationary noise addition & OFDM implementation for smart grid

    NASA Astrophysics Data System (ADS)

    Thomas, Togis; Gupta, K. K.

    2016-03-01

    Power line communication (PLC) technology can be a viable solution for the future ubiquitous networks because it provides a cheaper alternative to other wired technology currently being used for communication. In smart grid Power Line Communication (PLC) is used to support communication with low rate on low voltage (LV) distribution network. In this paper, we propose the channel modelling of narrowband (NB) PLC in the frequency range 5 KHz to 500 KHz by using ABCD parameter with cyclostationary noise addition. Behaviour of the channel was studied by the addition of 11KV/230V transformer, by varying load location and load. Bit error rate (BER) Vs signal to noise ratio SNR) was plotted for the proposed model by employing OFDM. Our simulation results based on the proposed channel model show an acceptable performance in terms of bit error rate versus signal to noise ratio, which enables communication required for smart grid applications.

  3. Rotorcraft Noise Model

    NASA Technical Reports Server (NTRS)

    Lucas, Michael J.; Marcolini, Michael A.

    1997-01-01

    The Rotorcraft Noise Model (RNM) is an aircraft noise impact modeling computer program being developed for NASA-Langley Research Center which calculates sound levels at receiver positions either on a uniform grid or at specific defined locations. The basic computational model calculates a variety of metria. Acoustic properties of the noise source are defined by two sets of sound pressure hemispheres, each hemisphere being centered on a noise source of the aircraft. One set of sound hemispheres provides the broadband data in the form of one-third octave band sound levels. The other set of sound hemispheres provides narrowband data in the form of pure-tone sound pressure levels and phase. Noise contours on the ground are output graphically or in tabular format, and are suitable for inclusion in Environmental Impact Statements or Environmental Assessments.

  4. Community noise model

    SciTech Connect

    Not Available

    1989-09-01

    MVMA has sponsored a study to assist the motor vehicle manufacturers and others in assessing the impact of motor vehicle noise on the community. As part of this study, a computer model was developed to quantify, by mathematical simulation, the impact of traffic noise on the community, with particular emphasis on passenger cars, light trucks and vans under 10,000 pounds gross vehicle weight rating. The primary objective of the program was to evaluate the incremental changes in exposure to traffic noise which would result from the promulgation of various new-vehicle emission standards and to compare these incremental changes with those which result from alternative approaches to vehicle noise abatement. The model is available for use on microcomputers and is capable of evaluating local, as well as national, noise control strategies.

  5. Threshold detection in generalized non-additive signals and noise

    SciTech Connect

    Middleton, D., LLNL

    1997-12-22

    The classical theory of optimum (binary-on-off) threshold detection for additive signals and generalized (i.e. nongaussian) noise is extended to the canonical nonadditive threshold situation. In the important (and usual) applications where the noise is sampled independently, a canonical threshold optimum theory is outlined here, which is found formally to parallel the earlier additive theory, including the critical properties of locally optimum Bayes detection algorithms, which are asymptotically normal and optimum as well. The important Class A clutter model provides an explicit example of optimal threshold envelope detection, for the non-additive cases of signal and noise. Various extensions are noted in the concluding section, as are selected references.

  6. Forensic detection of noise addition in digital images

    NASA Astrophysics Data System (ADS)

    Cao, Gang; Zhao, Yao; Ni, Rongrong; Ou, Bo; Wang, Yongbin

    2014-03-01

    We proposed a technique to detect the global addition of noise to a digital image. As an anti-forensics tool, noise addition is typically used to disguise the visual traces of image tampering or to remove the statistical artifacts left behind by other operations. As such, the blind detection of noise addition has become imperative as well as beneficial to authenticate the image content and recover the image processing history, which is the goal of general forensics techniques. Specifically, the special image blocks, including constant and strip ones, are used to construct the features for identifying noise addition manipulation. The influence of noising on blockwise pixel value distribution is formulated and analyzed formally. The methodology of detectability recognition followed by binary decision is proposed to ensure the applicability and reliability of noising detection. Extensive experimental results demonstrate the efficacy of our proposed noising detector.

  7. [Utility of noise addition image made by using water phantom and image addition and subtraction software].

    PubMed

    Watanabe, Ryo; Ogawa, Masato; Mituzono, Hiroki; Aoki, Takahiro; Hayano, Mizuho; Watanabe, Yuka

    2010-08-20

    In optimizing exposures, it is very important to evaluate the impact of image noise on image quality. To realize this, there is a need to evaluate how much image noise will make the subject disease invisible. But generally it is very difficult to shoot images of different quality in a clinical examination. Thus, a method to create a noise addition image by adding the image noise to raw data has been reported. However, this approach requires a special system, so it is difficult to implement in many facilities. We have invented a method to easily create a noise addition image by using the water phantom and image add-subtract software that accompanies the device. To create a noise addition image, first we made a noise image by subtracting the water phantom with different SD. A noise addition image was then created by adding the noise image to the original image. By using this method, a simulation image with intergraded SD can be created from the original. Moreover, the noise frequency component of the created noise addition image is as same as the real image. Thus, the relationship of image quality to SD in the clinical image can be evaluated. Although this method is an easy method of LDSI creation on image data, a noise addition image can be easily created by using image addition and subtraction software and water phantom, and this can be implemented in many facilities. PMID:20953102

  8. Reduction of Additive Colored Noise Using Coupled Dynamics

    NASA Astrophysics Data System (ADS)

    Kohar, Vivek; Kia, Behnam; Lindner, John F.; Ditto, William L.

    We study the effect of additive colored noise on the evolution of maps and demonstrate that the deviations caused by such noise can be reduced using coupled dynamics. We consider both Ornstein-Uhlenbeck process as well as 1/fα noise in our numerical simulations. We observe that though the variance of deviations caused by noise depends on the correlations in the noise, under optimal coupling strength, it decreases by a factor equal to the number of coupled elements in the array as compared to the variance of deviations in a single isolated map. This reduction in noise levels occurs in chaotic as well as periodic regime of the maps. Lastly, we examine the effect of colored noise in chaos computing and find that coupling the chaos computing elements enhances the robustness of chaos computing.

  9. Multiplicative noise effects on electroconvection in controlling additive noise by a magnetic field

    NASA Astrophysics Data System (ADS)

    Huh, Jong-Hoon

    2015-12-01

    We report multiplicative noise-induced threshold shift of electroconvection (EC) in the presence of a magnetic field H . Controlling the thermal fluctuation (i.e., additive noise) of the rodlike molecules of nematic liquid crystals by H , the EC threshold is examined at various noise levels [characterized by their intensity and cutoff frequency (fc) ]. For a sufficiently strong H (i.e., ignorable additive noise), a modified noise sensitivity characterizing the shift problem is in good agreement with experimental results for colored as well as white noise (fc→∞ ) ; until now, there was a large deviation for (sufficiently) colored noises. The present study shows that H provides us with ideal conditions for studying the corresponding Carr-Helfrich theory considering pure multiplicative noise.

  10. Multiplicative noise effects on electroconvection in controlling additive noise by a magnetic field.

    PubMed

    Huh, Jong-Hoon

    2015-12-01

    We report multiplicative noise-induced threshold shift of electroconvection (EC) in the presence of a magnetic field H. Controlling the thermal fluctuation (i.e., additive noise) of the rodlike molecules of nematic liquid crystals by H, the EC threshold is examined at various noise levels [characterized by their intensity and cutoff frequency (f(c))]. For a sufficiently strong H (i.e., ignorable additive noise), a modified noise sensitivity characterizing the shift problem is in good agreement with experimental results for colored as well as white noise (f(c)→∞); until now, there was a large deviation for (sufficiently) colored noises. The present study shows that H provides us with ideal conditions for studying the corresponding Carr-Helfrich theory considering pure multiplicative noise. PMID:26764708

  11. Time jitter versus additive noise in a game theory context

    NASA Astrophysics Data System (ADS)

    Zaidi, Abdellatif; Boyer, Remy; Duhamel, Pierre

    2005-03-01

    Imperfectly synchronized watermark communication is almost the most hostile watermark channel. A desynchronization attack can yield a very high probability of bit error rate by simply moving the watermark from elements it has been embedded in, inhibiting hence its reliable retrieval from the original. In this paper, we adress attacks that can be modelled by an Additive White Gaussian Noise and Jitter (AWGN&J) channel in a game theory context. The AWGN&J channel was initially introduced to model local time fluctuations in the context of magnetic recording media. This channel is first briefly presented and characterized in terms of induced objective and perceptual distorsions. Also, performance loss of the one-bit watermarking Spread-Spectrum based scheme over an AWGN&J channel is derived. Then, results are applied in a game theoretic context to answer some questions such as: (i) for a given distortion budget, and from the attacker point of view, what part should be allocated to the desynchronization, and what part should be allocated to the additive noise?, (ii) from the defender point of view, what is the worst distortion? and (iii) is there means to countermeasure the attacker (limit the amount of objective distorsion)?

  12. Effect of multiplicative and additive noise on genetic transcriptional regulatory mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Mei; Xie, Hui-Zhang; Liu, Liang-Gang; Li, Zhi-Bing

    2009-02-01

    A multiplicative noise and an additive noise are introduced in the kinetic model of Smolen-Baxter-Byrne [P. Smolen, D.A. Baxter, J.H. Byrne, Amer. J. Physiol. Cell. Physiol. 274 (1998) 531], in which the expression of gene is controlled by protein concentration of transcriptional activator. The Fokker-Planck equation is solved and the steady-state probability distribution is obtained numerically. It is found that the multiplicative noise converts the bistability to monostability that can be regarded as a noise-induced transition. The additive noise reduces the transcription efficiency. The correlation between the multiplicative noise and the additive noise works as a genetic switch and regulates the gene transcription effectively.

  13. Model of aircraft noise adaptation

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  14. Functional Generalized Additive Models.

    PubMed

    McLean, Mathew W; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David

    2014-01-01

    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F(·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X(t) is a signal from diffusion tensor imaging at position, t, along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online. PMID:24729671

  15. Low Frequency Noise Contamination in Fan Model Testing

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Schifer, Nicholas A.

    2008-01-01

    Aircraft engine noise research and development depends on the ability to study and predict the noise created by each engine component in isolation. The presence of a downstream pylon for a model fan test, however, may result in noise contamination through pylon interactions with the free stream and model exhaust airflows. Additionally, there is the problem of separating the fan and jet noise components generated by the model fan. A methodology was therefore developed to improve the data quality for the 9 15 Low Speed Wind Tunnel (LSWT) at the NASA Glenn Research Center that identifies three noise sources: fan noise, jet noise, and rig noise. The jet noise and rig noise were then measured by mounting a scale model of the 9 15 LSWT model fan installation in a jet rig to simulate everything except the rotating machinery and in duct components of fan noise. The data showed that the spectra measured in the LSWT has a strong rig noise component at frequencies as high as 3 kHz depending on the fan and airflow fan exit velocity. The jet noise was determined to be significantly lower than the rig noise (i.e., noise generated by flow interaction with the downstream support pylon). A mathematical model for the rig noise was then developed using a multi-dimensional least squares fit to the rig noise data. This allows the rig noise to be subtracted or removed, depending on the amplitude of the rig noise relative to the fan noise, at any given frequency, observer angle, or nozzle pressure ratio. The impact of isolating the fan noise with this method on spectra, overall power level (OAPWL), and Effective Perceived Noise Level (EPNL) is studied.

  16. Propeller aircraft interior noise model

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.

    1984-01-01

    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  17. On the nonlinear modeling of shot noise

    PubMed Central

    Eliazar, Iddo; Klafter, Joseph

    2005-01-01

    We introduced a nonlinear shot-noise model, a natural generalization of the “classic” shot-noise model, which differs markedly from the existing linear shot-noise models. This model produces a wide spectrum of stationary noise processes. Because of its intrinsic nonlinearity, the model's resulting noise processes are capable of displaying a rich variety of both amplitudal and temporal statistical behaviors. Surprisingly, the nonlinear model is amenable to mathematical analysis and yields closed-form formulae for the characterizing statistics of its resulting noise processes. PMID:16172376

  18. Modeling aircraft noise induced sleep disturbance

    NASA Astrophysics Data System (ADS)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the

  19. Noise variance analysis using a flat panel x-ray detector: A method for additive noise assessment with application to breast CT applications

    SciTech Connect

    Yang Kai; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M.

    2010-07-15

    Purpose: A simplified linear model approach was proposed to accurately model the response of a flat panel detector used for breast CT (bCT). Methods: Individual detector pixel mean and variance were measured from bCT projection images acquired both in air and with a polyethylene cylinder, with the detector operating in both fixed low gain and dynamic gain mode. Once the coefficients of the linear model are determined, the fractional additive noise can be used as a quantitative metric to evaluate the system's efficiency in utilizing x-ray photons, including the performance of different gain modes of the detector. Results: Fractional additive noise increases as the object thickness increases or as the radiation dose to the detector decreases. For bCT scan techniques on the UC Davis prototype scanner (80 kVp, 500 views total, 30 frames/s), in the low gain mode, additive noise contributes 21% of the total pixel noise variance for a 10 cm object and 44% for a 17 cm object. With the dynamic gain mode, additive noise only represents approximately 2.6% of the total pixel noise variance for a 10 cm object and 7.3% for a 17 cm object. Conclusions: The existence of the signal-independent additive noise is the primary cause for a quadratic relationship between bCT noise variance and the inverse of radiation dose at the detector. With the knowledge of the additive noise contribution to experimentally acquired images, system modifications can be made to reduce the impact of additive noise and improve the quantum noise efficiency of the bCT system.

  20. Mixed additive models

    NASA Astrophysics Data System (ADS)

    Carvalho, Francisco; Covas, Ricardo

    2016-06-01

    We consider mixed models y =∑i =0 w Xiβi with V (y )=∑i =1 w θiMi Where Mi=XiXi⊤ , i = 1, . . ., w, and µ = X0β0. For these we will estimate the variance components θ1, . . ., θw, aswell estimable vectors through the decomposition of the initial model into sub-models y(h), h ∈ Γ, with V (y (h ))=γ (h )Ig (h )h ∈Γ . Moreover we will consider L extensions of these models, i.e., y˚=Ly+ɛ, where L=D (1n1, . . ., 1nw) and ɛ, independent of y, has null mean vector and variance covariance matrix θw+1Iw, where w =∑i =1 n wi .

  1. Ultimate capacity of linear time-invariant bosonic channels with additive Gaussian noise

    NASA Astrophysics Data System (ADS)

    Roy Bardhan, Bhaskar; Shapiro, Jeffrey H.

    2016-03-01

    Fiber-optic communications are moving to coherent detection in order to increase their spectral efficiency, i.e., their channel capacity per unit bandwidth. At power levels below the threshold for significant nonlinear effects, the channel model for such operation a linear time-invariant filter followed by additive Gaussian noise is one whose channel capacity is well known from Shannon's noisy channel coding theorem. The fiber channel, however, is really a bosonic channel, meaning that its ultimate classical information capacity must be determined from quantum-mechanical analysis, viz. from the Holevo-Schumacher-Westmoreland (HSW) theorem. Based on recent results establishing the HSW capacity of a linear (lossy or amplifying) channel with additive Gaussian noise, we provide a general continuous-time result, namely the HSW capacity of a linear time-invariant (LTI) bosonic channel with additive Gaussian noise arising from a thermal environment. In particular, we treat quasi-monochromatic communication under an average power constraint through a channel comprised of a stable LTI filter that may be attenuating at all frequencies or amplifying at some frequencies and attenuating at others. Phase-insensitive additive Gaussian noise-associated with the continuous-time Langevin noise operator needed to preserve free-field commutator brackets is included at the filter output. We compare the resulting spectral efficiencies with corresponding results for heterodyne and homodyne detection over the same channel to assess the increased spectral efficiency that might be realized with optimum quantum reception.

  2. Acoustical scale modeling of roadway traffic noise

    SciTech Connect

    Anderson, G.S.

    1980-03-01

    During the planning and design of any federally assisted highway project, noise levels must be predicted for the highway in its operational mode. The use of an acoustical scale modeling technique to predict roadway traffic noise is described. Literature pertaining to acoustical scale modeling of outdoor noise propagation, particularly roadway noise, is reviewed. Field and laboratory measurements validated the predictions of the acoustical scale modeling technique. (1 photo)

  3. Thermodynamically valid noise models for nonlinear devices

    NASA Astrophysics Data System (ADS)

    Coram, Geoffrey J.

    2000-11-01

    Noise has been a concern from the very beginning of signal processing and electrical engineering in general, although it was perhaps of less interest until vacuum- tube amplifiers made it audible just after 1900. Rigorous noise models for linear resistors were developed in 1927 by Nyquist and Johnson [1, 2]. However, the intervening years have not brought similarly well-established models for noise in nonlinear devices. This thesis proposes using thermodynamic principles to determine whether a given nonlinear device noise model is physically valid. These tests are applied to several models. One conclusion is that the standard Gaussian noise models for nonlinear devices predict thermodynamically impossible circuit behavior: these models should be abandoned. But the nonlinear shot-noise model predicts thermodynamically acceptable behavior under a constraint derived here. This thesis shows how the thermodynamic requirements can be reduced to concise mathematical tests, involving no approximations, for the Gaussian and shot-noise models. When the above-mentioned constraint is satisfied, the nonlinear shot-noise model specifies the current noise amplitude at each operating point from knowledge of the device v - i curve alone. This relation between the dissipative behavior and the noise fluctuations is called, naturally enough, a fluctuation- dissipation relation. This thesis further investigates such FDRs, including one for linear resistors in nonlinear circuits that was previously unexplored. The aim of this thesis is to provide thermodynamically solid foundations for noise models. It is hoped that hypothesized noise models developed to match experiment will be validated against the concise mathematical tests of this thesis. Finding a correct noise model will help circuit designers and physicists understand the actual processes causing the noise, and perhaps help them minimize the noise or its effect in the circuit. (Copies available exclusively from MIT Libraries, Rm

  4. Industrial machinery noise impact modeling, volume 1

    NASA Astrophysics Data System (ADS)

    Hansen, C. H.; Kugler, B. A.

    1981-07-01

    The development of a machinery noise computer model which may be used to assess the effect of occupational noise on the health and welfare of industrial workers is discussed. The purpose of the model is to provide EPA with the methodology to evaluate the personnel noise problem, to identify the equipment types responsible for the exposure and to assess the potential benefits of a given noise control action. Due to its flexibility in design and application, the model and supportive computer program can be used by other federal agencies, state governments, labor and industry as an aid in the development of noise abatement programs.

  5. Modeling Noise in Geared Transmission Systems

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, C. V. S. R.

    2010-11-01

    Noise is an unwanted sound that affects human and environment if not controlled properly. In the present article an effort is made to reduce noise in geared transmission systems by modeling noise. Numerical solution methods are suggested at the end. Energy considerations in geared transmissions are discussed.

  6. Detection of continuous-time quaternion signals in additive noise

    NASA Astrophysics Data System (ADS)

    Navarro-Moreno, Jesús; Ruiz-Molina, Juan Carlos; Oya, Antonia; Quesada-Rubio, José M.

    2012-12-01

    Different kinds of quaternion signal detection problems in continuous-time by using a widely linear processing are dealt with. The suggested solutions are based on an extension of the Karhunen-Loève expansion to the quaternion domain which provides uncorrelated scalar real-valued random coefficients. This expansion presents the notable advantage of transforming the original four-dimensional eigen problem to a one-dimensional problem. Firstly, we address the problem of detecting a quaternion deterministic signal in quaternion Gaussian noise and a version of Pitcher's Theorem is given. Also the particular case of a general quaternion Wiener noise is studied and an extension of the Cameron-Martin formula is presented. Finally, the problem of detecting a quaternion random signal in quaternion white Gaussian noise is tackled. In such a case, it is shown that the detector depends on the quaternion widely linear estimator of the signal.

  7. Modeling and adaptive control of acoustic noise

    NASA Astrophysics Data System (ADS)

    Venugopal, Ravinder

    Active noise control is a problem that receives significant attention in many areas including aerospace and manufacturing. The advent of inexpensive high performance processors has made it possible to implement real-time control algorithms to effect active noise control. Both fixed-gain and adaptive methods may be used to design controllers for this problem. For fixed-gain methods, it is necessary to obtain a mathematical model of the system to design controllers. In addition, models help us gain phenomenological insights into the dynamics of the system. Models are also necessary to perform numerical simulations. However, models are often inadequate for the purpose of controller design because they involve parameters that are difficult to determine and also because there are always unmodeled effects. This fact motivates the use of adaptive algorithms for control since adaptive methods usually require significantly less model information than fixed-gain methods. The first part of this dissertation deals with derivation of a state space model of a one-dimensional acoustic duct. Two types of actuation, namely, a side-mounted speaker (interior control) and an end-mounted speaker (boundary control) are considered. The techniques used to derive the model of the acoustic duct are extended to the problem of fluid surface wave control. A state space model of small amplitude surfaces waves of a fluid in a rectangular container is derived and two types of control methods, namely, surface pressure control and map actuator based control are proposed and analyzed. The second part of this dissertation deals with the development of an adaptive disturbance rejection algorithm that is applied to the problem of active noise control. ARMARKOV models which have the same structure as predictor models are used for system representation. The algorithm requires knowledge of only one path of the system, from control to performance, and does not require a measurement of the disturbance nor

  8. Modeling and Prediction of Krueger Device Noise

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Burley, Casey L.; Thomas, Russell H.

    2016-01-01

    This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.

  9. Enhanced Core Noise Modeling for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  10. Observations and Modeling of Seismic Background Noise

    USGS Publications Warehouse

    Peterson, Jon R.

    1993-01-01

    INTRODUCTION The preparation of this report had two purposes. One was to present a catalog of seismic background noise spectra obtained from a worldwide network of seismograph stations. The other purpose was to refine and document models of seismic background noise that have been in use for several years. The second objective was, in fact, the principal reason that this study was initiated and influenced the procedures used in collecting and processing the data. With a single exception, all of the data used in this study were extracted from the digital data archive at the U.S. Geological Survey's Albuquerque Seismological Laboratory (ASL). This archive dates from 1972 when ASL first began deploying digital seismograph systems and collecting and distributing digital data under the sponsorship of the Defense Advanced Research Projects Agency (DARPA). There have been many changes and additions to the global seismograph networks during the past twenty years, but perhaps none as significant as the current deployment of very broadband seismographs by the U.S. Geological Survey (USGS) and the University of California San Diego (UCSD) under the scientific direction of the IRIS consortium. The new data acquisition systems have extended the bandwidth and resolution of seismic recording, and they utilize high-density recording media that permit the continuous recording of broadband data. The data improvements and continuous recording greatly benefit and simplify surveys of seismic background noise. Although there are many other sources of digital data, the ASL archive data were used almost exclusively because of accessibility and because the data systems and their calibration are well documented for the most part. Fortunately, the ASL archive contains high-quality data from other stations in addition to those deployed by the USGS. Included are data from UCSD IRIS/IDA stations, the Regional Seismic Test Network (RSTN) deployed by Sandia National Laboratories (SNL), and the

  11. Complete positivity, finite-temperature effects, and additivity of noise for time-local qubit dynamics

    NASA Astrophysics Data System (ADS)

    Lankinen, Juho; Lyyra, Henri; Sokolov, Boris; Teittinen, Jose; Ziaei, Babak; Maniscalco, Sabrina

    2016-05-01

    We present a general model of qubit dynamics which entails pure dephasing and dissipative time-local master equations. This allows us to describe the combined effect of thermalization and dephasing beyond the usual Markovian approximation. We investigate the complete positivity conditions and introduce a heuristic model that is always physical and provides the correct Markovian limit. We study the effects of temperature on the non-Markovian behavior of the system and show that the noise additivity property discussed by Yu and Eberly [Phys. Rev. Lett. 97, 140403 (2006), 10.1103/PhysRevLett.97.140403] holds beyond the Markovian limit.

  12. Modeling and Prediction of Fan Noise

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2008-01-01

    Fan noise is a significant contributor to the total noise signature of a modern high bypass ratio aircraft engine and with the advent of ultra high bypass ratio engines like the geared turbofan, it is likely to remain so in the future. As such, accurate modeling and prediction of the basic characteristics of fan noise are necessary ingredients in designing quieter aircraft engines in order to ensure compliance with ever more stringent aviation noise regulations. In this paper, results from a comprehensive study aimed at establishing the utility of current tools for modeling and predicting fan noise will be summarized. It should be emphasized that these tools exemplify present state of the practice and embody what is currently used at NASA and Industry for predicting fan noise. The ability of these tools to model and predict fan noise is assessed against a set of benchmark fan noise databases obtained for a range of representative fan cycles and operating conditions. Detailed comparisons between the predicted and measured narrowband spectral and directivity characteristics of fan nose will be presented in the full paper. General conclusions regarding the utility of current tools and recommendations for future improvements will also be given.

  13. Enhanced Fan Noise Modeling for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Stone, James R.

    2014-01-01

    This report describes work by consultants to Diversitech Inc. for the NASA Glenn Research Center (GRC) to revise the fan noise prediction procedure based on fan noise data obtained in the 9- by 15 Foot Low-Speed Wind Tunnel at GRC. The purpose of this task is to begin development of an enhanced, analytical, more physics-based, fan noise prediction method applicable to commercial turbofan propulsion systems. The method is to be suitable for programming into a computational model for eventual incorporation into NASA's current aircraft system noise prediction computer codes. The scope of this task is in alignment with the mission of the Propulsion 21 research effort conducted by the coalition of NASA, state government, industry, and academia to develop aeropropulsion technologies. A model for fan noise prediction was developed based on measured noise levels for the R4 rotor with several outlet guide vane variations and three fan exhaust areas. The model predicts the complete fan noise spectrum, including broadband noise, tones, and for supersonic tip speeds, combination tones. Both spectra and directivity are predicted. Good agreement with data was achieved for all fan geometries. Comparisons with data from a second fan, the ADP fan, also showed good agreement.

  14. The properties of the anti-tumor model with coupling non-Gaussian noise and Gaussian colored noise

    NASA Astrophysics Data System (ADS)

    Guo, Qin; Sun, Zhongkui; Xu, Wei

    2016-05-01

    The anti-tumor model with correlation between multiplicative non-Gaussian noise and additive Gaussian-colored noise has been investigated in this paper. The behaviors of the stationary probability distribution demonstrate that the multiplicative non-Gaussian noise plays a dual role in the development of tumor and an appropriate additive Gaussian colored noise can lead to a minimum of the mean value of tumor cell population. The mean first passage time is calculated to quantify the effects of noises on the transition time of tumors between the stable states. An increase in both the non-Gaussian noise intensity and the departure from the Gaussian noise can accelerate the transition from the disease state to the healthy state. On the contrary, an increase in cross-correlated degree will slow down the transition. Moreover, the correlation time can enhance the stability of the disease state.

  15. Impact of correlated noise in an energy depot model

    NASA Astrophysics Data System (ADS)

    Zeng, Chunhua; Zeng, Jiakui; Liu, Feng; Wang, Hua

    2016-01-01

    Based on the depot model of the motion of active Brownian particles (ABPs), the impact of cross-correlated multiplicative and additive noises has been investigated. Using a nonlinear Langevin approach, we discuss a new mechanism for the transport of ABPs in which the energy originates from correlated noise. It is shown that the correlation between two types of noise breaks the symmetry of the potential to generate motion of the ABPs with a net velocity. The absolute maximum value of the mean velocity depends on correlated noise or multiplicative noise, whereas a monotonic decrease in the mean velocity occurs with additive noise. In the case of no correlation, the ABPs undergo pure diffusion with zero mean velocity, whereas in the case of perfect correlation, the ABPs undergo pure drift with zero diffusion. This shows that the energy stemming from correlated noise is primarily converted to kinetic energy of the intrawell motion and is eventually dissipated in drift motion. A physical explanation of the mechanisms for noise-driven transport of ABPs is derived from the effective potential of the Fokker-Planck equation.

  16. Impact of correlated noise in an energy depot model

    PubMed Central

    Zeng, Chunhua; Zeng, Jiakui; Liu, Feng; Wang, Hua

    2016-01-01

    Based on the depot model of the motion of active Brownian particles (ABPs), the impact of cross-correlated multiplicative and additive noises has been investigated. Using a nonlinear Langevin approach, we discuss a new mechanism for the transport of ABPs in which the energy originates from correlated noise. It is shown that the correlation between two types of noise breaks the symmetry of the potential to generate motion of the ABPs with a net velocity. The absolute maximum value of the mean velocity depends on correlated noise or multiplicative noise, whereas a monotonic decrease in the mean velocity occurs with additive noise. In the case of no correlation, the ABPs undergo pure diffusion with zero mean velocity, whereas in the case of perfect correlation, the ABPs undergo pure drift with zero diffusion. This shows that the energy stemming from correlated noise is primarily converted to kinetic energy of the intrawell motion and is eventually dissipated in drift motion. A physical explanation of the mechanisms for noise-driven transport of ABPs is derived from the effective potential of the Fokker-Planck equation. PMID:26786478

  17. Impact of correlated noise in an energy depot model.

    PubMed

    Zeng, Chunhua; Zeng, Jiakui; Liu, Feng; Wang, Hua

    2016-01-01

    Based on the depot model of the motion of active Brownian particles (ABPs), the impact of cross-correlated multiplicative and additive noises has been investigated. Using a nonlinear Langevin approach, we discuss a new mechanism for the transport of ABPs in which the energy originates from correlated noise. It is shown that the correlation between two types of noise breaks the symmetry of the potential to generate motion of the ABPs with a net velocity. The absolute maximum value of the mean velocity depends on correlated noise or multiplicative noise, whereas a monotonic decrease in the mean velocity occurs with additive noise. In the case of no correlation, the ABPs undergo pure diffusion with zero mean velocity, whereas in the case of perfect correlation, the ABPs undergo pure drift with zero diffusion. This shows that the energy stemming from correlated noise is primarily converted to kinetic energy of the intrawell motion and is eventually dissipated in drift motion. A physical explanation of the mechanisms for noise-driven transport of ABPs is derived from the effective potential of the Fokker-Planck equation. PMID:26786478

  18. Microscopic traffic modelling in urban noise assessment

    NASA Astrophysics Data System (ADS)

    de Coensel, Bert; Botteldooren, Dick; de Muer, Tom; Peeters, Bert; van Blokland, Gijsjan

    2005-04-01

    The temporal structure of the urban soundscape can be rather complex, due to the presence of many screening and reflecting surfaces and many different sound sources, of which traffic noise is the most dominant. From the point of view of soundscape research, the background level as well as the time structure of noise peaks are important. However, these indicators cannot be estimated easily by current noise prediction models, based on static traffic flows. Therefore, a dynamic traffic noise model was used, based on a microscopic traffic simulation. This way, individual vehicles can be traced, each having an associated set of noise sources that can depend on vehicle properties such as speed and acceleration, as well as on road properties such as the surface type. The model further consists of an ISO 9613 based propagation component, which can account for multiple reflections and diffractions. Maps of statistical noise levels, but also of more complicated measures reflecting the time structure of the soundscape, can be produced. This way, the soundscape contribution of single vehicles can be traced, as well as the influence of more general vehicle properties, such as the contribution of vehicle acceleration noise to the soundscape at junctions.

  19. A Comparison of Combustor-Noise Models

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    The present status of combustor-noise prediction in the NASA Aircraft Noise Prediction Program (ANOPP)1 for current-generation (N) turbofan engines is summarized. Several semi-empirical models for turbofan combustor noise are discussed, including best methods for near-term updates to ANOPP. An alternate turbine-transmission factor2 will appear as a user selectable option in the combustor-noise module GECOR in the next release. The three-spectrum model proposed by Stone et al.3 for GE turbofan-engine combustor noise is discussed and compared with ANOPP predictions for several relevant cases. Based on the results presented herein and in their report,3 it is recommended that the application of this fully empirical combustor-noise prediction method be limited to situations involving only General-Electric turbofan engines. Long-term needs and challenges for the N+1 through N+3 time frame are discussed. Because the impact of other propulsion-noise sources continues to be reduced due to turbofan design trends, advances in noise-mitigation techniques, and expected aircraft configuration changes, the relative importance of core noise is expected to greatly increase in the future. The noise-source structure in the combustor, including the indirect one, and the effects of the propagation path through the engine and exhaust nozzle need to be better understood. In particular, the acoustic consequences of the expected trends toward smaller, highly efficient gas-generator cores and low-emission fuel-flexible combustors need to be fully investigated since future designs are quite likely to fall outside of the parameter space of existing (semi-empirical) prediction tools.

  20. The Flight Track Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Burn, Melissa; Carey, Jeffrey; Czech, Joseph; Wingrove, Earl R., III

    1997-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Flight Track Noise Impact Model (FTNIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operations might have on air carrier operating efficiency at any one of 8 selected U.S. airports. The analyst selects an airport and case year for study, chooses a set of flight tracks for use in the case, and has the option of reducing the noise of the aircraft by 3, 6, or 10 decibels. Two sets of flight tracks are available for each airport: one that represents actual current conditions, including noise abatement tracks, which avoid flying over noise-sensitive areas; and a second set that offers more efficient routing. FTNIM computes the resultant noise impact and the time and distance saved for each operation on the more efficient, alternate tracks. Noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to the more efficient alternate routing.

  1. A laboratory study of the perceived benefit of additional noise attenuation by houses

    NASA Technical Reports Server (NTRS)

    Flindell, I. H.

    1983-01-01

    Two Experiments were conducted to investigate the perceived benefit of additional house attenuation against aircraft flyover noise. First, subjects made annoyance judgments in a simulated living room while an operative window with real and dummy storm windows was manipulated in full view of those subjects. Second, subjects made annoyance judgments in an anechoic audiometric test chamber of frequency shaped noise signals having spectra closely matched to those of the aircraft flyover noises reproduced in the first experiment. These stimuli represented the aircraft flyover noises in levels and spectra but without the situational and visual cues present in the simulated living room. Perceptual constancy theory implies that annoyance tends to remain constant despite reductions in noise level caused by additional attenuation of which the subjects are fully aware. This theory was supported when account was taken for a reported annoyance overestimation for certain spectra and for a simulated condition cue overreaction.

  2. Noise modeling of microwave heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Escotte, Laurent; Roux, Jean-Phillippe; Plana, Robert; Graffeuil, Jacques; Gruhle, Andreas

    1995-05-01

    Analytical expressions of microwave heterojunction bipolar transistors minimum noise figure and noise parameter are reported in this paper. These expressions are derived from a noise model including nonideal junctions, emitter and base resistances and have been compared with measured data obtained on a Si/SiGe HBT. An agreement between theoretical and experimental data was observed up to 20 GHz for several bias conditions. The limits of the model or the range of validity of the proposed equations have been also examined with the help of an appropriate CAD software. The analysis of the influence of parasitic elements on noise parameters has shown a strong influence of the extrinsic base collector capacitance at microwave frequencies.

  3. Theoretical models of helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Hawkings, D. L.

    1978-01-01

    For low speed rotors, it is shown that unsteady load models are only partially successful in predicting experimental levels. A theoretical model is presented which leads to the concept of unsteady thickness noise. This gives better agreement with test results. For high speed rotors, it is argued that present models are incomplete and that other mechanisms are at work. Some possibilities are briefly discussed.

  4. Noise modeling from high-permeability shields using Kirchhoff equations

    SciTech Connect

    Sandin, Henrik J; Volegov, Petr L; Espy, Michelle A; Matlashov, Andrei N; Savukov, Igor M; Schultz, Larry J

    2010-01-01

    Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding magnetic noise of conductive materials, especially of magnetic shields (DC or rf) based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have rf shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems arbitrary shapes and complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies the knowledge of the noise correlation between sensors is as important as the knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for any geometrically shaped shield and multiple sensor systems. The approach uses a fraction of the processing power of other approaches and with a multiple sensor system our approach not only calculates the noise for each sensor but it also calculates the noise correlation matrix between sensors. Here we will show the algorithm and examples where it can be implemented.

  5. A Semiconductor Device Noise Model: A Deterministic Approach to Semiconductor Device Current Noise for Semiclassical Transport

    SciTech Connect

    Noaman, B. A.; Korman, C. E.

    2009-04-23

    In this paper, we present a deterministic approach to calculate terminal current noise characteristics in semiconductor devices in the framework of semiclassical transport based on the spherical harmonics of the Boltzmann Transport Equation. The model relies on the solution of the Boltzmann equation in the frequency domain with special initial and boundary conditions. The terminal current fluctuation is directly related to scattering without the additional Langevin noise term added to the calculation. Simulation results are presented for the terminal current spectral density for a 1-D n{sup +}nn{sup +} structure due to elastic-acoustic and intervally scattering.

  6. Statistics of a neuron model driven by asymmetric colored noise

    NASA Astrophysics Data System (ADS)

    Müller-Hansen, Finn; Droste, Felix; Lindner, Benjamin

    2015-02-01

    Irregular firing of neurons can be modeled as a stochastic process. Here we study the perfect integrate-and-fire neuron driven by dichotomous noise, a Markovian process that jumps between two states (i.e., possesses a non-Gaussian statistics) and exhibits nonvanishing temporal correlations (i.e., represents a colored noise). Specifically, we consider asymmetric dichotomous noise with two different transition rates. Using a first-passage-time formulation, we derive exact expressions for the probability density and the serial correlation coefficient of the interspike interval (time interval between two subsequent neural action potentials) and the power spectrum of the spike train. Furthermore, we extend the model by including additional Gaussian white noise, and we give approximations for the interspike interval (ISI) statistics in this case. Numerical simulations are used to validate the exact analytical results for pure dichotomous noise, and to test the approximations of the ISI statistics when Gaussian white noise is included. The results may help to understand how correlations and asymmetry of noise and signals in nerve cells shape neuronal firing statistics.

  7. A path model of aircraft noise annoyance

    NASA Astrophysics Data System (ADS)

    Taylor, S. M.

    1984-09-01

    This paper describes the development and testing of a path model of aircraft noise annoyance by using noise and social survey data collected in the vicinity of Toronto International Airport. Path analysis is used to estimate the direct and indirect effects of seventeen independent variables on individual annoyance. The results show that the strongest direct effects are for speech interference, attitudes toward aircraft operations, sleep interruption and personal sensitivity to noise. The strongest indirect effects are for aircraft Leq(24) and sensitivity. Overall the model explains 41 percent of the variation in the annoyance reported by the 673 survey respondents. The findings both support and extend existing statements in the literature on the antecedents of annoyance.

  8. Addition of visual noise boosts evoked potential-based brain-computer interface.

    PubMed

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili

    2014-01-01

    Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs. PMID:24828128

  9. Dichotomous noise models of gene switches.

    PubMed

    Potoyan, Davit A; Wolynes, Peter G

    2015-11-21

    Molecular noise in gene regulatory networks has two intrinsic components, one part being due to fluctuations caused by the birth and death of protein or mRNA molecules which are often present in small numbers and the other part arising from gene state switching, a single molecule event. Stochastic dynamics of gene regulatory circuits appears to be largely responsible for bifurcations into a set of multi-attractor states that encode different cell phenotypes. The interplay of dichotomous single molecule gene noise with the nonlinear architecture of genetic networks generates rich and complex phenomena. In this paper, we elaborate on an approximate framework that leads to simple hybrid multi-scale schemes well suited for the quantitative exploration of the steady state properties of large-scale cellular genetic circuits. Through a path sum based analysis of trajectory statistics, we elucidate the connection of these hybrid schemes to the underlying master equation and provide a rigorous justification for using dichotomous noise based models to study genetic networks. Numerical simulations of circuit models reveal that the contribution of the genetic noise of single molecule origin to the total noise is significant for a wide range of kinetic regimes. PMID:26590554

  10. Dichotomous noise models of gene switches

    NASA Astrophysics Data System (ADS)

    Potoyan, Davit. A.; Wolynes, Peter. G.

    2015-11-01

    Molecular noise in gene regulatory networks has two intrinsic components, one part being due to fluctuations caused by the birth and death of protein or mRNA molecules which are often present in small numbers and the other part arising from gene state switching, a single molecule event. Stochastic dynamics of gene regulatory circuits appears to be largely responsible for bifurcations into a set of multi-attractor states that encode different cell phenotypes. The interplay of dichotomous single molecule gene noise with the nonlinear architecture of genetic networks generates rich and complex phenomena. In this paper, we elaborate on an approximate framework that leads to simple hybrid multi-scale schemes well suited for the quantitative exploration of the steady state properties of large-scale cellular genetic circuits. Through a path sum based analysis of trajectory statistics, we elucidate the connection of these hybrid schemes to the underlying master equation and provide a rigorous justification for using dichotomous noise based models to study genetic networks. Numerical simulations of circuit models reveal that the contribution of the genetic noise of single molecule origin to the total noise is significant for a wide range of kinetic regimes.

  11. Dichotomous noise models of gene switches

    SciTech Connect

    Potoyan, Davit A. Wolynes, Peter G.

    2015-11-21

    Molecular noise in gene regulatory networks has two intrinsic components, one part being due to fluctuations caused by the birth and death of protein or mRNA molecules which are often present in small numbers and the other part arising from gene state switching, a single molecule event. Stochastic dynamics of gene regulatory circuits appears to be largely responsible for bifurcations into a set of multi-attractor states that encode different cell phenotypes. The interplay of dichotomous single molecule gene noise with the nonlinear architecture of genetic networks generates rich and complex phenomena. In this paper, we elaborate on an approximate framework that leads to simple hybrid multi-scale schemes well suited for the quantitative exploration of the steady state properties of large-scale cellular genetic circuits. Through a path sum based analysis of trajectory statistics, we elucidate the connection of these hybrid schemes to the underlying master equation and provide a rigorous justification for using dichotomous noise based models to study genetic networks. Numerical simulations of circuit models reveal that the contribution of the genetic noise of single molecule origin to the total noise is significant for a wide range of kinetic regimes.

  12. Sensitivity, noise and quantitative model of Laser Speckle Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai

    based on our model. In our experimental results, we saw significant improvements in data analyses using our model and calibration procedure, though they are still not as large as we had hoped. (2) The major noise source affecting the quantitative model is CCD systematic noise, which can add additional contrast in the image. We studied this separately to understand its nature. We proposed several methods to reduce CCD noise based on our noise model. Beyond those studies, we also did the following: (1) we performed several studies of statistical properties of laser speckle image. Our results show that intensities in static speckle images and dynamic speckle patterns follow gamma probability distributions. (2) For future implantation and instrumentation of LSCI, we studied different approximation algorithms to speed the SC processing in software and hardware as well as the requirements of the camera. (3) The study of polarization effect shows that the experimental result is consistent with theoretical analyses. (4) By comparing different models, we found that Brownian motion model can be used as a general model for most biomedical applications and Durian's new model is slightly better than Briers' original model, though the latter is still applicable to general theory analyses. (5) The new technique combining LSCI with phosphorescence lifetime imaging (PLI) can provide simultaneous 2D maps of partial pressure of oxygen (pO2) and cerebral blood flow (CBF). The capability of the system was demonstrated by monitoring the propagation of cortical spreading depression (CSD) waves through the sealed cranial window. This technique has the potential to be a novel tool for quantitative analysis of the dynamic delivery of oxygen and brain tissue metabolism.

  13. Flap Side-Edge Noise: Acoustic Analysis of Sen's Model

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.; Martin, James E.

    1996-01-01

    The two-dimensional flap side-edge flow model developed by Sen is analyzed to reveal the noise production potential of the proposed mechanism. The model assumes that a vortex will form at the equilibrium position off the side edge of the flap. The vortex is then perturbed away from the equilibrium position by incoming turbulence causing it to oscillate and thus radiate sound. The noise field is calculated three-dimensionally by taking the flap to have a finite chord. Spectra and directivity of the farfield sound are presented. In addition, the effect of retarded time differences is evaluated. The parameters in the model are related to typical aircraft parameters and noise reduction possibilities are proposed.

  14. Identification of the noise using mathematical modelling

    NASA Astrophysics Data System (ADS)

    Dobeš, Josef; Kozubková, Milada; Mahdal, Miroslav

    2016-03-01

    In engineering applications the noisiness of a component or the whole device is a common problem. Currently, a lot of effort is put to eliminate noise of the already produced devices, to prevent generation of acoustic waves during the design of new components, or to specify the operating problems based on noisiness change. The experimental method and the mathematical modelling method belong to these identification methods. With the power of today's computers the ability to identify the sources of the noise on the mathematical modelling level is a very appreciated tool for engineers. For example, the noise itself may be generated by the vibration of the solid object, combustion, shock, fluid flow around an object or cavitation at the fluid flow in an object. For the given task generating the noise using fluid flow on the selected geometry and propagation of the acoustic waves and their subsequent identification are solved and evaluated. In this paper the principle of measurement of variables describing the fluid flow field and acoustic field are described. For the solution of fluid flow a mathematical model implemented into the CFD code is used. The mathematical modelling evaluation of the flow field is compared to the experimental data.

  15. Nonlinear GARCH model and 1 / f noise

    NASA Astrophysics Data System (ADS)

    Kononovicius, A.; Ruseckas, J.

    2015-06-01

    Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.

  16. Equivalence of time and aperture domain additive noise in ultrasound coherence

    PubMed Central

    Bottenus, Nick B.; Trahey, Gregg E.

    2015-01-01

    Ultrasonic echoes backscattered from diffuse media, recorded by an array transducer and appropriately focused, demonstrate coherence predicted by the van Cittert–Zernike theorem. Additive noise signals from off-axis scattering, reverberation, phase aberration, and electronic (thermal) noise can all superimpose incoherent or partially coherent signals onto the recorded echoes, altering the measured coherence. An expression is derived to describe the effect of uncorrelated random channel noise in terms of the noise-to-signal ratio. Equivalent descriptions are made in the aperture dimension to describe uncorrelated magnitude and phase apodizations of the array. Binary apodization is specifically described as an example of magnitude apodization and adjustments are presented to minimize the artifacts caused by finite signal length. The effects of additive noise are explored in short-lag spatial coherence imaging, an image formation technique that integrates the calculated coherence curve of acquired signals up to a small fraction of the array length for each lateral and axial location. A derivation of the expected contrast as a function of noise-to-signal ratio is provided and validation is performed in simulation. PMID:25618045

  17. Neural Field Models with Threshold Noise.

    PubMed

    Thul, Rüdiger; Coombes, Stephen; Laing, Carlo R

    2016-12-01

    The original neural field model of Wilson and Cowan is often interpreted as the averaged behaviour of a network of switch like neural elements with a distribution of switch thresholds, giving rise to the classic sigmoidal population firing-rate function so prevalent in large scale neuronal modelling. In this paper we explore the effects of such threshold noise without recourse to averaging and show that spatial correlations can have a strong effect on the behaviour of waves and patterns in continuum models. Moreover, for a prescribed spatial covariance function we explore the differences in behaviour that can emerge when the underlying stationary distribution is changed from Gaussian to non-Gaussian. For travelling front solutions, in a system with exponentially decaying spatial interactions, we make use of an interface approach to calculate the instantaneous wave speed analytically as a series expansion in the noise strength. From this we find that, for weak noise, the spatially averaged speed depends only on the choice of covariance function and not on the shape of the stationary distribution. For a system with a Mexican-hat spatial connectivity we further find that noise can induce localised bump solutions, and using an interface stability argument show that there can be multiple stable solution branches. PMID:26936267

  18. A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise

    SciTech Connect

    Hong, Jialin; Zhang, Liying

    2014-07-01

    In this paper we investigate a stochastic multi-symplectic method for stochastic Maxwell equations with additive noise. Based on the stochastic version of variational principle, we find a way to obtain the stochastic multi-symplectic structure of three-dimensional (3-D) stochastic Maxwell equations with additive noise. We propose a stochastic multi-symplectic scheme and show that it preserves the stochastic multi-symplectic conservation law and the local and global stochastic energy dissipative properties, which the equations themselves possess. Numerical experiments are performed to verify the numerical behaviors of the stochastic multi-symplectic scheme.

  19. Underwater Noise Modeling and Direction-Finding Based on Heteroscedastic Time Series

    NASA Astrophysics Data System (ADS)

    Amiri, Hadi; Amindavar, Hamidreza; Kamarei, Mahmoud

    2006-12-01

    We propose a new method for practical non-Gaussian and nonstationary underwater noise modeling. This model is very useful for passive sonar in shallow waters. In this application, measurement of additive noise in natural environment and exhibits shows that noise can sometimes be significantly non-Gaussian and a time-varying feature especially in the variance. Therefore, signal processing algorithms such as direction-finding that is optimized for Gaussian noise may degrade significantly in this environment. Generalized autoregressive conditional heteroscedasticity (GARCH) models are suitable for heavy tailed PDFs and time-varying variances of stochastic process. We use a more realistic GARCH-based noise model in the maximum-likelihood approach for the estimation of direction-of-arrivals (DOAs) of impinging sources onto a linear array, and demonstrate using measured noise that this approach is feasible for the additive noise and direction finding in an underwater environment.

  20. Application of land use regression modelling to assess the spatial distribution of road traffic noise in three European cities.

    PubMed

    Aguilera, Inmaculada; Foraster, Maria; Basagaña, Xavier; Corradi, Elisabetta; Deltell, Alexandre; Morelli, Xavier; Phuleria, Harish C; Ragettli, Martina S; Rivera, Marcela; Thomasson, Alexandre; Slama, Rémy; Künzli, Nino

    2015-01-01

    Noise prediction models and noise maps are used to estimate the exposure to road traffic noise, but their availability and the quality of the noise estimates is sometimes limited. This paper explores the application of land use regression (LUR) modelling to assess the long-term intraurban spatial variability of road traffic noise in three European cities. Short-term measurements of road traffic noise taken in Basel, Switzerland (n=60), Girona, Spain (n=40), and Grenoble, France (n=41), were used to develop two LUR models: (a) a "GIS-only" model, which considered only predictor variables derived with Geographic Information Systems; and (b) a "Best" model, which in addition considered the variables collected while visiting the measurement sites. Both noise measurements and noise estimates from LUR models were compared with noise estimates from standard noise models developed for each city by the local authorities. Model performance (adjusted R(2)) was 0.66-0.87 for "GIS-only" models, and 0.70-0.89 for "Best" models. Short-term noise measurements showed a high correlation (r=0.62-0.78) with noise estimates from the standard noise models. LUR noise estimates did not show any systematic differences in the spatial patterns when compared with those from standard noise models. LUR modelling with accurate GIS source data can be a promising tool for noise exposure assessment with applications in epidemiological studies. PMID:25227731

  1. A comprehensive model for quantum noise characterization in digital mammography.

    PubMed

    Monnin, P; Bosmans, H; Verdun, F R; Marshall, N W

    2016-03-01

    A version of cascaded systems analysis was developed specifically with the aim of studying quantum noise propagation in x-ray detectors. Signal and quantum noise propagation was then modelled in four types of x-ray detectors used for digital mammography: four flat panel systems, one computed radiography and one slot-scan silicon wafer based photon counting device. As required inputs to the model, the two dimensional (2D) modulation transfer function (MTF), noise power spectra (NPS) and detective quantum efficiency (DQE) were measured for six mammography systems that utilized these different detectors. A new method to reconstruct anisotropic 2D presampling MTF matrices from 1D radial MTFs measured along different angular directions across the detector is described; an image of a sharp, circular disc was used for this purpose. The effective pixel fill factor for the FP systems was determined from the axial 1D presampling MTFs measured with a square sharp edge along the two orthogonal directions of the pixel lattice. Expectation MTFs were then calculated by averaging the radial MTFs over all possible phases and the 2D EMTF formed with the same reconstruction technique used for the 2D presampling MTF. The quantum NPS was then established by noise decomposition from homogenous images acquired as a function of detector air kerma. This was further decomposed into the correlated and uncorrelated quantum components by fitting the radially averaged quantum NPS with the radially averaged EMTF(2). This whole procedure allowed a detailed analysis of the influence of aliasing, signal and noise decorrelation, x-ray capture efficiency and global secondary gain on NPS and detector DQE. The influence of noise statistics, pixel fill factor and additional electronic and fixed pattern noises on the DQE was also studied. The 2D cascaded model and decompositions performed on the acquired images also enlightened the observed quantum NPS and DQE anisotropy. PMID:26895467

  2. A comprehensive model for quantum noise characterization in digital mammography

    NASA Astrophysics Data System (ADS)

    Monnin, P.; Bosmans, H.; Verdun, F. R.; Marshall, N. W.

    2016-03-01

    A version of cascaded systems analysis was developed specifically with the aim of studying quantum noise propagation in x-ray detectors. Signal and quantum noise propagation was then modelled in four types of x-ray detectors used for digital mammography: four flat panel systems, one computed radiography and one slot-scan silicon wafer based photon counting device. As required inputs to the model, the two dimensional (2D) modulation transfer function (MTF), noise power spectra (NPS) and detective quantum efficiency (DQE) were measured for six mammography systems that utilized these different detectors. A new method to reconstruct anisotropic 2D presampling MTF matrices from 1D radial MTFs measured along different angular directions across the detector is described; an image of a sharp, circular disc was used for this purpose. The effective pixel fill factor for the FP systems was determined from the axial 1D presampling MTFs measured with a square sharp edge along the two orthogonal directions of the pixel lattice. Expectation MTFs were then calculated by averaging the radial MTFs over all possible phases and the 2D EMTF formed with the same reconstruction technique used for the 2D presampling MTF. The quantum NPS was then established by noise decomposition from homogenous images acquired as a function of detector air kerma. This was further decomposed into the correlated and uncorrelated quantum components by fitting the radially averaged quantum NPS with the radially averaged EMTF2. This whole procedure allowed a detailed analysis of the influence of aliasing, signal and noise decorrelation, x-ray capture efficiency and global secondary gain on NPS and detector DQE. The influence of noise statistics, pixel fill factor and additional electronic and fixed pattern noises on the DQE was also studied. The 2D cascaded model and decompositions performed on the acquired images also enlightened the observed quantum NPS and DQE anisotropy.

  3. Random attractors for the stochastic coupled fractional Ginzburg-Landau equation with additive noise

    SciTech Connect

    Shu, Ji E-mail: 530282863@qq.com; Li, Ping E-mail: 530282863@qq.com; Zhang, Jia; Liao, Ou

    2015-10-15

    This paper is concerned with the stochastic coupled fractional Ginzburg-Landau equation with additive noise. We first transform the stochastic coupled fractional Ginzburg-Landau equation into random equations whose solutions generate a random dynamical system. Then we prove the existence of random attractor for random dynamical system.

  4. MJO empirical modeling and improved prediction by "Past Noise Forecasting"

    NASA Astrophysics Data System (ADS)

    Kondrashov, D. A.; Chekroun, M.; Robertson, A. W.; Ghil, M.

    2011-12-01

    The Madden-Julian oscillation (MJO) is the dominant mode of intraseasonal variability in tropics and plays an important role in global climate. Here we presents modeling and prediction study of MJO by using Empirical Model Reduction (EMR). EMR is a methodology for constructing stochastic models based on the observed evolution of selected climate fields; these models represent unresolved processes as multivariate, spatially correlated stochastic forcing. In EMR, multiple polynomial regression is used to estimate the nonlinear, deterministic propagator of the dynamics, as well as multi-level additive stochastic forcing -"noise", directly from the observational dataset. The EMR approach has been successfully applied on the seasonal-to-interannual time scale for real-time ENSO prediction (Kondrashov et al. 2005), as well as atmospheric midlatitude intraseasonal variability (Kondrashov et al. 2006,2010). In this study nonlinear (quadratic) with annual cycle, three-level EMR model was developed to model and predict leading pair of real-time multivariate Madden-Julian oscillation (RMM1,2) daily indices (June 1974- January 2009, http://cawcr.gov.au/staff/mwheeler/maproom/RMM/). The EMR model captures essential MJO statistical features, such as seasonal dependence, RMM1,2 autocorrelations and spectra. By using the "Past Noise Forecasting" (PNF) approach developed and successfully applied to improve long-term ENSO prediction in Chekroun et al. (2011), we are able to notably improve the cross-validated prediction skill of RMM indices- especially at lead times of 15-to-30 days. The EMR/PNF method has two steps: (i) select noise samples - or "snippets" - from the past noise, which have forced the EMR model to yield the MJO phase resembling the one at the the currently observed state; and (ii) use these "noise" snippets to create ensemble forecast of EMR model. The MJO phase identification is based on Singular Spectrum Analysis reconstruction of 30-60 day MJO cycle.

  5. Adjustment on subjective annoyance of low frequency noise by adding additional sound

    NASA Astrophysics Data System (ADS)

    Di, Guo-qing; Li, Zheng-guang; Zhang, Bang-jun; Shi, Yao

    2011-11-01

    Structure-borne noise originating from a heat pump unit was selected to study the influence on subjective annoyance of low frequency noise (LFN) combined with additional sound. Paired comparison test was used for evaluating the subjective annoyance of LFN combined with different sound pressure levels (SPL) of pink noise, frequency-modulated pure tones (FM pure tones) and natural sounds. The results showed that, with pink noise of 250-1000 Hz combined with the original LFN, the subjective annoyance value (SAV) first dropped then rose with increasing SPL. When SPL of the pink noise was 15-25 dB, SAV was lower than that of the original LFN. With pink noise of frequency 250-20,000 Hz added to LFN, SAV increased linearly with increasing SPL. SAV and the psychoacoustic annoyance value (PAV) obtained by semi-theoretical formulas were well correlated. The determination coefficient ( R2) was 0.966 and 0.881, respectively, when the frequency range of the pink noise was 250-1000 and 250-20,000 Hz. When FM pure tones with central frequencies of 500, 2000 and 8000 Hz, or natural sounds (including the sound of singing birds, flowing water, wind or ticking clock) were, respectively, added to the original sound, the SAV increased as the SPL of the added sound increased. However, when a FM pure tone of 15 dB with a central frequency of 2000 Hz and a modulation frequency of 10 Hz was added, the SAV was lower than that of the original LFN. With SPL and central frequency held invariable, the SAV declined primarily when modulation frequency increased. With SPL and modulation frequency held invariable, the SAV became lowest when the central frequency was 2000 Hz. This showed a preferable correlation between SAV and fluctuation extent of FM pure tones.

  6. On estimating the phase of periodic waveform in additive Gaussian noise, part 2

    NASA Astrophysics Data System (ADS)

    Rauch, L. L.

    1984-11-01

    Motivated by advances in signal processing technology that support more complex algorithms, a new look is taken at the problem of estimating the phase and other parameters of a periodic waveform in additive Gaussian noise. The general problem was introduced and the maximum a posteriori probability criterion with signal space interpretation was used to obtain the structures of optimum and some suboptimum phase estimators for known constant frequency and unknown constant phase with an a priori distribution. Optimal algorithms are obtained for some cases where the frequency is a parameterized function of time with the unknown parameters and phase having a joint a priori distribution. In the last section, the intrinsic and extrinsic geometry of hypersurfaces is introduced to provide insight to the estimation problem for the small noise and large noise cases.

  7. Model helicopter rotor low frequency broadband noise

    NASA Technical Reports Server (NTRS)

    Humbad, N. G.; Harris, W. L.

    1982-01-01

    The results of an experimental investigation of low frequency broadband noise (LFBN) radiated from model helicopter rotors are presented. The results up to tip Mach number of 0.50 suggest that the peak sound pressure level (SPL) of LFBN appears to follow tip Mach number to a fourth power law and rms velocity of turbulence to a second power law. The experimental results on the effect of tip speed and advance ratio on the peak SPL of LFBN can be explained on the basis of a simple scaling law. However, the experimental results on the effect of blade loading on the peak SPL of LFBN is still not clearly understood. A simple peak SPL scaling law for noise from a helicopter in forward flight encountering a sinusoidal gust is also developed. The trends predicted by the scaling law with the experimental results are found satisfactory for the cases of variation of the peak SPL of LFBN with tip speed and advance ratio.

  8. Scale Modelling of Railway Noise Barriers

    NASA Astrophysics Data System (ADS)

    HOTHERSALL, D. C.; HOROSHENKOV, K. V.; MORGAN, P. A.; SWIFT, M. J.

    2000-07-01

    Experiments were carried out in an anechoic chamber using a 1:20 scale model of a high-speed train to determine the insertion loss of various forms of track-side noise barrier. All the barriers investigated had the upper edge level with the bottom of the train windows and were positioned as close as possible to the train, within the limitations of the structure gauge. They thus provided attenuation of noise from sources in the lower portion of the train, in the region of the rails and wheels. The measured performance of plane screens with rigid and sound-absorbing surfaces is compared with values predicted by standard prediction methods for railway noise and the results of a numerical model. The effect of barrier shape and absorptive surfaces upon screening performance is investigated. Results are presented in terms of the insertion loss of the peak SPL of the pass-by profile for a single bogie noise source and for the whole train, and also insertion loss based onLAeq,1 h . Results for these three measures show similar trends. For the conditions tested insertion loss values for all the screens were lower when the ground behind the barrier was absorbing than when the ground was rigid. The relative changes in insertion loss for the different forms of barrier were similar for the two ground types. Insertion loss values for rigid screens were between 6 and 10 dB lower than those for similar screens with complete sound absorbing surfaces. The application of absorbing areas on rigid screens significantly increases the insertion loss by between 3 and 6 dB. The least efficient screen was a corrugated barrier with a rigid surface. The most efficient screens tested were plane and curved barriers with absorbing surfaces and a multiple edge screen with a part-absorbing surface.

  9. LHC Beam Diffusion Dependence on RF Noise: Models And Measurements

    SciTech Connect

    Mastorides, T.; Rivetta, C.; Fox, J.D.; Van Winkle, D.; Baudrenghien, P.; Butterworth, A.; Molendijk, J.; /CERN

    2010-09-14

    Radio Frequency (RF) accelerating system noise and non-idealities can have detrimental impact on the LHC performance through longitudinal motion and longitudinal emittance growth. A theoretical formalism has been developed to relate the beam and RF loop dynamics with the bunch length growth [1]. Measurements were conducted at LHC to validate the formalism, determine the performance limiting RF components, and provide the foundation for beam diffusion estimates for higher energies and intensities. A brief summary of these results is presented in this work. During a long store, the relation between the energy lost to synchrotron radiation and the noise injected to the beam by the RF accelerating voltage determines the growth of the bunch energy spread and longitudinal emittance. Since the proton synchrotron radiation in the LHC is very low, the beam diffusion is extremely sensitive to RF perturbations. The theoretical formalism presented in [1], suggests that the noise experienced by the beam depends on the cavity phase noise power spectrum, filtered by the beam transfer function, and aliased due to the periodic sampling of the accelerating voltage signal V{sub c}. Additionally, the dependence of the RF accelerating cavity noise spectrum on the Low Level RF (LLRF) configurations has been predicted using time-domain simulations and models [2]. In this work, initial measurements at the LHC supporting the above theoretical formalism and simulation predictions are presented.

  10. Urban daytime traffic noise prediction models.

    PubMed

    da Paz, Elaine Carvalho; Zannin, Paulo Henrique Trombetta

    2010-04-01

    An evaluation was made of the acoustic environment generated by an urban highway using in situ measurements. Based on the data collected, a mathematical model was designed for the main sound levels (L (eq), L (10), L (50), and L (90)) as a function of the correlation between sound levels and between the equivalent sound pressure level and traffic variables. Four valid groups of mathematical models were generated to calculate daytime sound levels, which were statistically validated. It was found that the new models can be considered as accurate as other models presented in the literature to assess and predict daytime traffic noise, and that they stand out and differ from the existing models described in the literature thanks to two characteristics, namely, their linearity and the application of class intervals. PMID:19353296

  11. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  12. Noise in Josepson effect mixers and the RSJ model

    NASA Technical Reports Server (NTRS)

    Schoelkopf, R.; Phillips, T.; Zmuidzinas, J.

    1992-01-01

    Josephson effect mixers have previously been observed to display 'excess' noise both in experiments with point contacts and in numerical simulations using the resistively shunted junction (RSJ) model. This excess noise causes the mixer noise temperature to be a factor of typically 20-100 times the physical temperature of the device. Previously, this excess was ascribed to conversion from unwanted sidebands of the local oscillator and Josephson frequencies and their harmonics. Our numerical modeling of the RSJ equations has led to a new understanding of the excess noise, which is simply due to the intrinsic Josephson oscillations of the device. In addition, we have extended the modeling to include the previously ignored case of finite device capacitance (i.e. RSJ capacitance parameter beta(sub c) does not equal 0, which is more realistic for lithographically defined Josephson such as shunted tunnel junctions or SNS bridges. For some cases, this yields an improvement of a factor of two in noise temperature from the zero capacitance models. We will discuss the device parameters which optimize the mixer performance for frequencies approaching the characteristic frequency of the device, which is given by the Josephson frequency at the I(sub c)R(sub n) voltage (nu = 2eI(sub c)R(sub n)/h). These modeling results predict good conversion efficiency and a noise temperature within a factor of a few of the physical temperature. Experiments are in progress to determine the accuracy of this modeling using a waveguide mixer at 100 GHz with optimized, resistively shunted Nb tunnel junctions. If the modeling results are valid, they are particularly encouraging for mixers in the submillimeter regime, given the possibility of obtaining non-hysteretic Josephson devices with I(sub c)R(sub n) products in excess of a millivolt, using for instance, high-T(sub c) SNS bridges. We discuss the modifications to the classical RSJ model which are necessary in the quantum regime (h nu greater

  13. Comparison of the polynomial model against explicit measurements of noise components for different mammography systems

    NASA Astrophysics Data System (ADS)

    Monnin, P.; Bosmans, H.; Verdun, F. R.; Marshall, N. W.

    2014-10-01

    Given the adverse impact of image noise on the perception of important clinical details in digital mammography, routine quality control measurements should include an evaluation of noise. The European Guidelines, for example, employ a second-order polynomial fit of pixel variance as a function of detector air kerma (DAK) to decompose noise into quantum, electronic and fixed pattern (FP) components and assess the DAK range where quantum noise dominates. This work examines the robustness of the polynomial method against an explicit noise decomposition method. The two methods were applied to variance and noise power spectrum (NPS) data from six digital mammography units. Twenty homogeneously exposed images were acquired with PMMA blocks for target DAKs ranging from 6.25 to 1600 µGy. Both methods were explored for the effects of data weighting and squared fit coefficients during the curve fitting, the influence of the additional filter material (2 mm Al versus 40 mm PMMA) and noise de-trending. Finally, spatial stationarity of noise was assessed. Data weighting improved noise model fitting over large DAK ranges, especially at low detector exposures. The polynomial and explicit decompositions generally agreed for quantum and electronic noise but FP noise fraction was consistently underestimated by the polynomial method. Noise decomposition as a function of position in the image showed limited noise stationarity, especially for FP noise; thus the position of the region of interest (ROI) used for noise decomposition may influence fractional noise composition. The ROI area and position used in the Guidelines offer an acceptable estimation of noise components. While there are limitations to the polynomial model, when used with care and with appropriate data weighting, the method offers a simple and robust means of examining the detector noise components as a function of detector exposure.

  14. Correlated noise in bipolar transistors: Model implementation issues

    NASA Astrophysics Data System (ADS)

    Huszka, Zoltan; Chakravorty, Anjan

    2015-12-01

    A new orthogonalization scheme is suggested for implementing correlated noise of bipolar transistors. The scheme provides a necessary condition on the non-quasi-static (NQS) models that can be used to obtain an implementation-suitable correlated noise model. One of the solutions presented here corresponds to a single node realization not reported so far. The gm -factor is introduced in the noise analysis explaining the deviations of a former noise model from device simulations. The model is extended to include the collector space-charge-region induced noise by retaining the simplicity of the realization and preserving the model parameter count.

  15. How to Address Measurement Noise in Bayesian Model Averaging

    NASA Astrophysics Data System (ADS)

    Schöniger, A.; Wöhling, T.; Nowak, W.

    2014-12-01

    When confronted with the challenge of selecting one out of several competing conceptual models for a specific modeling task, Bayesian model averaging is a rigorous choice. It ranks the plausibility of models based on Bayes' theorem, which yields an optimal trade-off between performance and complexity. With the resulting posterior model probabilities, their individual predictions are combined into a robust weighted average and the overall predictive uncertainty (including conceptual uncertainty) can be quantified. This rigorous framework does, however, not yet explicitly consider statistical significance of measurement noise in the calibration data set. This is a major drawback, because model weights might be instable due to the uncertainty in noisy data, which may compromise the reliability of model ranking. We present a new extension to the Bayesian model averaging framework that explicitly accounts for measurement noise as a source of uncertainty for the weights. This enables modelers to assess the reliability of model ranking for a specific application and a given calibration data set. Also, the impact of measurement noise on the overall prediction uncertainty can be determined. Technically, our extension is built within a Monte Carlo framework. We repeatedly perturb the observed data with random realizations of measurement error. Then, we determine the robustness of the resulting model weights against measurement noise. We quantify the variability of posterior model weights as weighting variance. We add this new variance term to the overall prediction uncertainty analysis within the Bayesian model averaging framework to make uncertainty quantification more realistic and "complete". We illustrate the importance of our suggested extension with an application to soil-plant model selection, based on studies by Wöhling et al. (2013, 2014). Results confirm that noise in leaf area index or evaporation rate observations produces a significant amount of weighting

  16. New Seismic Noise Models Obtained Using Very Broadband Stations

    NASA Astrophysics Data System (ADS)

    Abd el-aal, Abd el-aziz Khairy; Soliman, Mahmoud Sami

    2013-11-01

    It has been two decades since the last comprehensive standard model of ambient earth noise was published Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93-322, 1993). The PETERSON model was updated by analyzing the absolute quietest conditions for stations within the GSN ( Berger et al. in J Geophys Res 109, 2005; Mcnamara and Buland in Bull Seism Soc Am 94:1517-1527, 2004; Ringler et al. in Seismol Res Lett 81(4) doi:10.1785/gssrl.81.4.605, 2010). Unfortunately, both the original model and the updated models did not include any deployed station in North Africa and Middle East, which reflects the noise levels within the desert environment of those regions. In this study, a survey was conducted to create a new seismic noise model from very broadband stations which recently deployed in North Africa. For this purpose, 1 year of continuous recording of seismic noise data of the Egyptian National Seismic Network (ENSN) was analyzed in order to create a new noise model. Seasonal and diurnal variations in noise spectra were recorded at each station. Moreover, we constructed a new noise model for each individual station. Finally, we obtained a new cumulative noise model for all the stations. We compared the new high-noise model (EHNM) and new low-noise model (ELNM) with both the high-noise model (NHNM) and low-noise model (NLNM) of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93-322, 1993). The obtained noise levels are considerably lower than low-noise model of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93-322, 1993) at ultra long period band (ULP band), but they are still below the high-noise model of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93-322, 1993). The results of this study could be considered as a first step to create

  17. Stochastic model for detection of signals in noise.

    PubMed

    Klein, Stanley A; Levi, Dennis M

    2009-11-01

    Fifty years ago Birdsall, Tanner, and colleagues made rapid progress in developing signal detection theory into a powerful psychophysical tool. One of their major insights was the utility of adding external noise to the signals of interest. These methods have been enhanced in recent years by the addition of multipass and classification-image methods for opening up the black box. There remain a number of as yet unresolved issues. In particular, Birdsall developed a theorem that large amounts of external input noise can linearize nonlinear systems, and Tanner conjectured, with mathematical backup, that what had been previously thought of as a nonlinear system could actually be a linear system with uncertainty. Recent findings, both experimental and theoretical, have validated Birdsall's theorem and Tanner's conjecture. However, there have also been experimental and theoretical findings with the opposite outcome. In this paper we present new data and simulations in an attempt to sort out these issues. Our simulations and experiments plus data from others show that Birdsall's theorem is quite robust. We argue that uncertainty can serve as an explanation for violations of Birdsall's linearization by noise and also for reports of stochastic resonance. In addition, we modify present models to better handle detection of signals with both noise and pedestal backgrounds. PMID:19884912

  18. The method of narrow-band audio classification based on universal noise background model

    NASA Astrophysics Data System (ADS)

    Rui, Rui; Bao, Chang-chun

    2013-03-01

    Audio classification is the basis of content-based audio analysis and retrieval. The conventional classification methods mainly depend on feature extraction of audio clip, which certainly increase the time requirement for classification. An approach for classifying the narrow-band audio stream based on feature extraction of audio frame-level is presented in this paper. The audio signals are divided into speech, instrumental music, song with accompaniment and noise using the Gaussian mixture model (GMM). In order to satisfy the demand of actual environment changing, a universal noise background model (UNBM) for white noise, street noise, factory noise and car interior noise is built. In addition, three feature schemes are considered to optimize feature selection. The experimental results show that the proposed algorithm achieves a high accuracy for audio classification, especially under each noise background we used and keep the classification time less than one second.

  19. Noise Level Estimation for Model Selection in Kernel PCA Denoising.

    PubMed

    Varon, Carolina; Alzate, Carlos; Suykens, Johan A K

    2015-11-01

    One of the main challenges in unsupervised learning is to find suitable values for the model parameters. In kernel principal component analysis (kPCA), for example, these are the number of components, the kernel, and its parameters. This paper presents a model selection criterion based on distance distributions (MDDs). This criterion can be used to find the number of components and the σ(2) parameter of radial basis function kernels by means of spectral comparison between information and noise. The noise content is estimated from the statistical moments of the distribution of distances in the original dataset. This allows for a type of randomization of the dataset, without actually having to permute the data points or generate artificial datasets. After comparing the eigenvalues computed from the estimated noise with the ones from the input dataset, information is retained and maximized by a set of model parameters. In addition to the model selection criterion, this paper proposes a modification to the fixed-size method and uses the incomplete Cholesky factorization, both of which are used to solve kPCA in large-scale applications. These two approaches, together with the model selection MDD, were tested in toy examples and real life applications, and it is shown that they outperform other known algorithms. PMID:25608316

  20. A simple-source model of military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Morgan, Jessica; Gee, Kent L.; Neilsen, Tracianne; Wall, Alan T.

    2010-10-01

    The jet plumes produced by military jet aircraft radiate significant amounts of noise. A need to better understand the characteristics of the turbulence-induced aeroacoustic sources has motivated the present study. The purpose of the study is to develop a simple-source model of jet noise that can be compared to the measured data. The study is based off of acoustic data collected near a tied-down F-22 Raptor. The simplest model consisted of adjusting the origin of a monopole above a rigid planar reflector until the locations of the predicted and measured interference nulls matched. The model has developed into an extended Rayleigh distribution of partially correlated monopoles which fits the measured data from the F-22 significantly better. The results and basis for the model match the current prevailing theory that jet noise consists of both correlated and uncorrelated sources. In addition, this simple-source model conforms to the theory that the peak source location moves upstream with increasing frequency and lower engine conditions.

  1. An airport community noise-impact assessment model

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1980-01-01

    A computer model was developed to assess the noise impact of an airport on the community which it serves. Assessments are made using the Fractional Impact Method by which a single number describes the community aircraft noise environment in terms of exposed population and multiple event noise level. The model is comprised of three elements: a conventional noise footprint model, a site specific population distribution model, and a dose response transfer function. The footprint model provides the noise distribution for a given aircraft operating scenario. This is combined with the site specific population distribution obtained from a national census data base to yield the number of residents exposed to a given level of noise. The dose response relationship relates noise exposure levels to the percentage of individuals highly annoyed by those levels.

  2. A high-resolution ambient seismic noise model for Europe

    NASA Astrophysics Data System (ADS)

    Kraft, Toni

    2014-05-01

    measurement precision (i.e. earthquake location), while considering this extremely complex boundary condition. To solve this problem I have developed a high-resolution ambient seismic noise model for Europe. The model is based on land-use data derived from satellite imagery by the EU-project CORINE in a resolution of 100x100m. The the CORINE data consists of several land-use classes, which, besides others, contain: industrial areas, mines, urban fabric, agricultural areas, permanent corps, forests and open spaces. Additionally, open GIS data for highways, and major and minor roads and railway lines were included from the OpenStreetMap project (www.openstreetmap.org). This data was divided into three classes that represent good, intermediate and bad ambient conditions of the corresponding land-use class based on expert judgment. To account for noise propagation away from its source a smoothing operator was applied to individual land-use noise-fields. Finally, the noise-fields were stacked to obtain an European map of ambient noise conditions. A calibration of this map with data of existing seismic stations Europe allowed me to estimate the expected noise level in actual ground motion units for the three ambient noise condition classes of the map. The result is a high-resolution ambient seismic noise map, that allows the network designer to make educated predictions on the expected noise level for arbitrary location in Europe. The ambient noise model was successfully tested in several network optimization projects in Switzerland and surrounding countries and will hopefully be a valuable contribution to improving the data quality of microseismic monitoring networks in Europe.

  3. Additive non-Gaussian noise attacks on the scalar Costa scheme (SCS)

    NASA Astrophysics Data System (ADS)

    Tzschoppe, Roman; Bauml, Robert; Fischer, Robert; Huber, Johannes; Kaup, Andre

    2005-03-01

    The additive attack public mutual information game is explicitly solved for one of the simplest quantization based watermarking schemes, the scalar Costa scheme (SCS). It is a zero-sum game played between the embedder and the attacker, and the payoff function is the mutual information. The solution of the game, a subgame perfect nash equilibrium, is found by backward induction. Therefore, the Blahut-Arimoto algorithm is employed for numerically optimizing the mutual information over noise distributions. Although the worst case distribution is in general strongly non-Gaussian, the capacity degradation compared to a suboptimal Gaussian noise attack is quite small. The loss, if the embedder optimizes SCS for a Gaussian attack but the worst case attack is employed, is negligible.

  4. A measurement model for general noise reaction in response to aircraft noise.

    PubMed

    Kroesen, Maarten; Schreckenberg, Dirk

    2011-01-01

    In this paper a measurement model for general noise reaction (GNR) in response to aircraft noise is developed to assess the performance of aircraft noise annoyance and a direct measure of general reaction as indicators of this concept. For this purpose GNR is conceptualized as a superordinate latent construct underlying particular manifestations. This conceptualization is empirically tested through estimation of a second-order factor model. Data from a community survey at Frankfurt Airport are used for this purpose (N=2206). The data fit the hypothesized factor structure well and support the conceptualization of GNR as a superordinate construct. It is concluded that noise annoyance and a direct measure of general reaction to noise capture a large part of the negative feelings and emotions in response to aircraft noise but are unable to capture all relevant variance. The paper concludes with recommendations for the valid measurement of community reaction and several directions for further research. PMID:21303002

  5. Numerical noise in ocean and estuarine models

    USGS Publications Warehouse

    Walters, R.; Carey, G.F.

    1984-01-01

    Approximate methods for solving the shallow water equations may lead to solutions exhibiting large fictitious, numerically-induced oscillations. The analysis of the discrete dispersion relation and modal solutions of small wavelengths provides a powerful technique for assessing the sensitivity of alternative numerical schemes to irregular data which may lead to such oscillatory numerical noise. For those schemes where phase speed vanishes at a finite wavenumber or there are multiple roots for wavenumber, oscillation modes can exist which are uncoupled from the dynamics of the problem. The discrete modal analysis approach is used here to identify two classes of spurious oscillation modes associated respectively with the two different asymptotic limits corresponding to estuarine and large scale ocean models. The analysis provides further insight into recent numerical results for models which include large spatial scales and Coriolis acceleration. ?? 1984.

  6. A Goldilocks principle for modelling radial velocity noise

    NASA Astrophysics Data System (ADS)

    Feng, F.; Tuomi, M.; Jones, H. R. A.; Butler, R. P.; Vogt, S.

    2016-09-01

    The Doppler measurements of stars are diluted and distorted by stellar activity noise. Different choices of noise models and statistical methods have led to much controversy in the confirmation of exoplanet candidates obtained through analysing radial velocity data. To quantify the limitation of various models and methods, we compare different noise models and signal detection criteria for various simulated and real data sets in the Bayesian framework. According to our analyses, the white noise model tend to interpret noise as signal, leading to false positives. On the other hand, the red noise models are likely to interpret signal as noise, resulting in false negatives. We find that the Bayesian information criterion combined with a Bayes factor threshold of 150 can efficiently rule out false positives and confirm true detections. We further propose a Goldilocks principle aimed at modelling radial velocity noise to avoid too many false positives and too many false negatives. We propose that the noise model with RHK-dependent jitter is used in combination with the moving average model to detect planetary signals for M dwarfs. Our work may also shed light on the noise modelling for hotter stars, and provide a valid approach for finding similar principles in other disciplines.

  7. Analysis and modeling on noise factor of microchannel plate

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Chen, Xiaomei; Ni, Guoqiang

    2013-12-01

    The Microchannel plate (MCP) is the main noise source of low-level light (LLL) image intensifier. Material and the whole manufacturing process of MCP have great impact on the noises of MCP. In this paper, based on the physical mechanisms of MCP, noises of MCP are classified scientifically. By using the data obtained from the actual production and the process test, the regression equation of the noise figure of MCP is derived, and the theoretical model of MCP noise figure is established, including the background noise figure model caused by the dark current of the MCP primarily about the time of the alkali corrosion technic, the ion feedback induced noise figure model caused by the patterns of the MCP channel wall primarily about the time and temperature of the hydrogen reduction technic, and the electronic scattering noise figure model caused by the open area ratio of the MCP primarily about the time of the alkali corrosion technic. Guided by the theoretical model of noise figure, the methods of suppressing noises of MCP are obtained and the technics are optimized. Taking advantage of the new techniques, the noise figure of the third generation MCP has been reduced to below 1.8.

  8. A Tool for Low Noise Procedures Design and Community Noise Impact Assessment: The Rotorcraft Noise Model (RNM)

    NASA Technical Reports Server (NTRS)

    Conner, David A.; Page, Juliet A.

    2002-01-01

    To improve aircraft noise impact modeling capabilities and to provide a tool to aid in the development of low noise terminal area operations for rotorcraft and tiltrotors, the Rotorcraft Noise Model (RNM) was developed by the NASA Langley Research Center and Wyle Laboratories. RNM is a simulation program that predicts how sound will propagate through the atmosphere and accumulate at receiver locations located on flat ground or varying terrain, for single and multiple vehicle flight operations. At the core of RNM are the vehicle noise sources, input as sound hemispheres. As the vehicle "flies" along its prescribed flight trajectory, the source sound propagation is simulated and accumulated at the receiver locations (single points of interest or multiple grid points) in a systematic time-based manner. These sound signals at the receiver locations may then be analyzed to obtain single event footprints, integrated noise contours, time histories, or numerous other features. RNM may also be used to generate spectral time history data over a ground mesh for the creation of single event sound animation videos. Acoustic properties of the noise source(s) are defined in terms of sound hemispheres that may be obtained from theoretical predictions, wind tunnel experimental results, flight test measurements, or a combination of the three. The sound hemispheres may contain broadband data (source levels as a function of one-third octave band) and pure-tone data (in the form of specific frequency sound pressure levels and phase). A PC executable version of RNM is publicly available and has been adopted by a number of organizations for Environmental Impact Assessment studies of rotorcraft noise. This paper provides a review of the required input data, the theoretical framework of RNM's propagation model and the output results. Code validation results are provided from a NATO helicopter noise flight test as well as a tiltrotor flight test program that used the RNM as a tool to aid in

  9. Recursive ideal observer detection of known M-ary signals in multiplicative and additive Gaussian noise.

    NASA Technical Reports Server (NTRS)

    Painter, J. H.; Gupta, S. C.

    1973-01-01

    This paper presents the derivation of the recursive algorithms necessary for real-time digital detection of M-ary known signals that are subject to independent multiplicative and additive Gaussian noises. The motivating application is minimum probability of error detection of digital data-link messages aboard civil aircraft in the earth reflection multipath environment. For each known signal, the detector contains one Kalman filter and one probability computer. The filters estimate the multipath disturbance. The estimates and the received signal drive the probability computers. Outputs of all the computers are compared in amplitude to give the signal decision. The practicality and usefulness of the detector are extensively discussed.

  10. Modelling nonstationary Doppler noise in exoplanetary radial velocity data

    NASA Astrophysics Data System (ADS)

    Baluev, Roman V.

    2015-08-01

    We construct a new class of analytic nonstationary noise models for exoplanetary Doppler data. The observable correlated noise is represented as a convolution of a parent activity process with a given memory function. The model honours the casuality principle, meaning that only past values of the activity may affect the observable value. This model does not approximate detailedly any real stellar activity phenomena, but it becomes mathematically simple, simultaneously satisfying the basic natural principles of physical sensibility and self-consistency.Additionally, we develop a new type of periodograms that can be used to detect periodic modulations in the Doppler noise characteristics, rather than in the observed radial velocity curve itself. We present first results of applying this technique to public Doppler time series available for a set of planet-hosting stars.This work was supported by the Russian Foundation for Basic Research (project No. 14-02-92615 KO_a), the UK Royal Society International Exchange grant IE140055, by the President of Russia grant for young scientists (No. MK-733.2014.2), by the programme of the Presidium of Russian Academy of Sciences P21, and by the Saint Petersburg State University research grant 6.37.341.2015.

  11. A ring-source model for jet noise

    NASA Technical Reports Server (NTRS)

    Maestrello, L.

    1978-01-01

    A model consisting of two ring sources was developed to study the direct radiation of jet noise in terms of correlation, coherence, and phase and also to aid in solving the inverse radiation problem of determining the noise source in terms of far-field measurements. The rings consist of discrete sources which are either monopoles or quadrupoles with Gaussian profiles. Only adjacent sources, both within the rings and between rings, are correlated. Results show that from the far-field information can be used to determine when the sources are compact or noncompact with respect to the acoustic wavelength and to distinguish between the types of sources. In addition, from the inverse radiation approach, the center of mass, the location and separation distance of the ring, and the diameters can be recovered.

  12. Numerical modeling of electron noise in nanoscale Si devices

    NASA Astrophysics Data System (ADS)

    Jungemann, Christoph

    2007-06-01

    A deterministic solver for the Langevin Boltzmann equation is presented, which is based on a spherical harmonics expansion, box integration, and a maximum entropy dissipation principle. The numerical properties of this method are very similar to the classical approaches (drift-diffusion or hydrodynamic models), and the same numerical methods can be used (ac analysis, adjoint method, harmonic balance, etc). Since the equations can be solved directly in the frequency domain, the full frequency range down to zero frequency is accessible. In addition, rare events can be simulated without excessive CPU times. This is demonstrated for a silicon NPN BJT. Not only the terminal current noise is calculated, but also the spatial origin of noise and the corresponding Green's functions.

  13. Non-stationary noise estimation using dictionary learning and Gaussian mixture models

    NASA Astrophysics Data System (ADS)

    Hughes, James M.; Rockmore, Daniel N.; Wang, Yang

    2014-02-01

    Stationarity of the noise distribution is a common assumption in image processing. This assumption greatly simplifies denoising estimators and other model parameters and consequently assuming stationarity is often a matter of convenience rather than an accurate model of noise characteristics. The problematic nature of this assumption is exacerbated in real-world contexts, where noise is often highly non-stationary and can possess time- and space-varying characteristics. Regardless of model complexity, estimating the parameters of noise dis- tributions in digital images is a difficult task, and estimates are often based on heuristic assumptions. Recently, sparse Bayesian dictionary learning methods were shown to produce accurate estimates of the level of additive white Gaussian noise in images with minimal assumptions. We show that a similar model is capable of accu- rately modeling certain kinds of non-stationary noise processes, allowing for space-varying noise in images to be estimated, detected, and removed. We apply this modeling concept to several types of non-stationary noise and demonstrate the model's effectiveness on real-world problems, including denoising and segmentation of images according to noise characteristics, which has applications in image forensics.

  14. Computational Process Modeling for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2014-01-01

    Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.

  15. Rotor Broadband Noise Prediction with Comparison to Model Data

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Burley, Casey L.

    2001-01-01

    This paper reports an analysis and prediction development of rotor broadband noise. The two primary components of this noise are Blade-Wake Interaction (BWI) noise, due to the blades' interaction with the turbulent wakes of the preceding blades, and "Self" noise, due to the development and shedding of turbulence within the blades' boundary layers. Emphasized in this report is the new code development for Self noise. The analysis and validation employs data from the HART program, a model BO-105 rotor wind tunnel test conducted in the German-Dutch Wind Tunnel (DNW). The BWI noise predictions are based on measured pressure response coherence functions using cross-spectral methods. The Self noise predictions are based on previously reported semiempirical modeling of Self noise obtained from isolated airfoil sections and the use of CAMRAD.Modl to define rotor performance and local blade segment flow conditions. Both BWI and Self noise from individual blade segments are Doppler shifted and summed at the observer positions. Prediction comparisons with measurements show good agreement for a range of rotor operating conditions from climb to steep descent. The broadband noise predictions, along with those of harmonic and impulsive Blade-Vortex Interaction (BVI) noise predictions, demonstrate a significant advance in predictive capability for main rotor noise.

  16. Noise

    MedlinePlus

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  17. Evaluation of internal noise methods for Hotelling observer models

    SciTech Connect

    Zhang Yani; Pham, Binh T.; Eckstein, Miguel P.

    2007-08-15

    The inclusion of internal noise in model observers is a common method to allow for quantitative comparisons between human and model observer performance in visual detection tasks. In this article, we studied two different strategies for inserting internal noise into Hotelling model observers. In the first strategy, internal noise was added to the output of individual channels: (a) Independent nonuniform channel noise, (b) independent uniform channel noise. In the second strategy, internal noise was added to the decision variable arising from the combination of channel responses. The standard deviation of the zero mean internal noise was either constant or proportional to: (a) the decision variable's standard deviation due to the external noise, (b) the decision variable's variance caused by the external noise, (c) the decision variable magnitude on a trial to trial basis. We tested three model observers: square window Hotelling observer (HO), channelized Hotelling observer (CHO), and Laguerre-Gauss Hotelling observer (LGHO) using a four alternative forced choice (4AFC) signal known exactly but variable task with a simulated signal embedded in real x-ray coronary angiogram backgrounds. The results showed that the internal noise method that led to the best prediction of human performance differed across the studied model observers. The CHO model best predicted human observer performance with the channel internal noise. The HO and LGHO best predicted human observer performance with the decision variable internal noise. The present results might guide researchers with the choice of methods to include internal noise into Hotelling model observers when evaluating and optimizing medical image quality.

  18. Model for noise-induced hearing loss using support vector machine

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Ye, Jun; Liu-White, Xiaohong; Hamernik, Roger P.

    2005-09-01

    Contemporary noise standards are based on the assumption that an energy metric such as the equivalent noise level is sufficient for estimating the potential of a noise stimulus to cause noise-induced hearing loss (NIHL). Available data, from laboratory-based experiments (Lei et al., 1994; Hamernik and Qiu, 2001) indicate that while an energy metric may be necessary, it is not sufficient for the prediction of NIHL. A support vector machine (SVM) NIHL prediction model was constructed, based on a 550-subject (noise-exposed chinchillas) database. Training of the model used data from 367 noise-exposed subjects. The model was tested using the remaining 183 subjects. Input variables for the model included acoustic, audiometric, and biological variables, while output variables were PTS and cell loss. The results show that an energy parameter is not sufficient to predict NIHL, especially in complex noise environments. With the kurtosis and other noise and biological parameters included as additional inputs, the performance of SVM prediction model was significantly improved. The SVM prediction model has the potential to reliably predict noise-induced hearing loss. [Work supported by NIOSH.

  19. Transition under noise in the Sznajd model on square lattice

    NASA Astrophysics Data System (ADS)

    Lima, F. W. S.

    2016-08-01

    In order to describe the formation of a consensus in human opinion dynamics, in this paper, we study the Sznajd model with probabilistic noise in two dimensions. The time evolution of this system is performed via Monte Carlo simulations. This social behavior model with noise presents a well defined second-order phase transition. For small enough noise q < 0.33 most agents end up sharing the same opinion.

  20. Study on Noise Prediction Model and Control Schemes for Substation

    PubMed Central

    Gao, Yang; Liu, Songtao

    2014-01-01

    With the government's emphasis on environmental issues of power transmission and transformation project, noise pollution has become a prominent problem now. The noise from the working transformer, reactor, and other electrical equipment in the substation will bring negative effect to the ambient environment. This paper focuses on using acoustic software for the simulation and calculation method to control substation noise. According to the characteristics of the substation noise and the techniques of noise reduction, a substation's acoustic field model was established with the SoundPLAN software to predict the scope of substation noise. On this basis, 4 reasonable noise control schemes were advanced to provide some helpful references for noise control during the new substation's design and construction process. And the feasibility and application effect of these control schemes can be verified by using the method of simulation modeling. The simulation results show that the substation always has the problem of excessive noise at boundary under the conventional measures. The excess noise can be efficiently reduced by taking the corresponding noise reduction methods. PMID:24672356

  1. Study on noise prediction model and control schemes for substation.

    PubMed

    Chen, Chuanmin; Gao, Yang; Liu, Songtao

    2014-01-01

    With the government's emphasis on environmental issues of power transmission and transformation project, noise pollution has become a prominent problem now. The noise from the working transformer, reactor, and other electrical equipment in the substation will bring negative effect to the ambient environment. This paper focuses on using acoustic software for the simulation and calculation method to control substation noise. According to the characteristics of the substation noise and the techniques of noise reduction, a substation's acoustic field model was established with the SoundPLAN software to predict the scope of substation noise. On this basis, 4 reasonable noise control schemes were advanced to provide some helpful references for noise control during the new substation's design and construction process. And the feasibility and application effect of these control schemes can be verified by using the method of simulation modeling. The simulation results show that the substation always has the problem of excessive noise at boundary under the conventional measures. The excess noise can be efficiently reduced by taking the corresponding noise reduction methods. PMID:24672356

  2. Clean wing airframe noise modeling for multidisciplinary design and optimization

    NASA Astrophysics Data System (ADS)

    Hosder, Serhat

    A new noise metric has been developed that may be used for optimization problems involving aerodynamic noise from a clean wing. The modeling approach uses a classical trailing edge noise theory as the starting point. The final form of the noise metric includes characteristic velocity and length scales that are obtained from three-dimensional, steady, RANS simulations with a two equation k-o turbulence model. The noise metric is not the absolute value of the noise intensity, but an accurate relative noise measure as shown in the validation studies. One of the unique features of the new noise metric is the modeling of the length scale, which is directly related to the turbulent structure of the flow at the trailing edge. The proposed noise metric model has been formulated so that it can capture the effect of different design variables on the clean wing airframe noise such as the aircraft speed, lift coefficient, and wing geometry. It can also capture three dimensional effects which become important at high lift coefficients, since the characteristic velocity and the length scales are allowed to vary along the span of the wing. Noise metric validation was performed with seven test cases that were selected from a two-dimensional NACA 0012 experimental database. The agreement between the experiment and the predictions obtained with the new noise metric was very good at various speeds, angles of attack, and Reynolds Number, which showed that the noise metric is capable of capturing the variations in the trailing edge noise as a relative noise measure when different flow conditions and parameters are changed. Parametric studies were performed to investigate the effect of different design variables on the noise metric. Two-dimensional parametric studies were done using two symmetric NACA four-digit airfoils (NACA 0012 and NACA 0009) and two supercritical (SC(2)-0710 and SC(2)-0714) airfoils. The three-dimensional studies were performed with two versions of a conventional

  3. Source Noise Modeling Efforts for Fan Noise in NASA Research Programs

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    There has been considerable progress made in fan noise prediction over the past 15 years. NASA has conducted and sponsored research that has improved both tone and broadband fan noise prediction methods. This presentation highlights progress in these areas with emphasis on rotor/stator interaction noise sources. Tone noise predictions are presented for an advanced prediction code called "LINFLUX". Comparisons with data are" included for individual fan duct modes. There has also been considerable work developing new fan broadband noise prediction codes and validation data from wind tunnel model tests. Results from several code validation exercises are presented that show improvement of predicted sound power levels. A summary is included with recommendations for future work.

  4. A method for predicting DCT-based denoising efficiency for grayscale images corrupted by AWGN and additive spatially correlated noise

    NASA Astrophysics Data System (ADS)

    Rubel, Aleksey S.; Lukin, Vladimir V.; Egiazarian, Karen O.

    2015-03-01

    Results of denoising based on discrete cosine transform for a wide class of images corrupted by additive noise are obtained. Three types of noise are analyzed: additive white Gaussian noise and additive spatially correlated Gaussian noise with middle and high correlation levels. TID2013 image database and some additional images are taken as test images. Conventional DCT filter and BM3D are used as denoising techniques. Denoising efficiency is described by PSNR and PSNR-HVS-M metrics. Within hard-thresholding denoising mechanism, DCT-spectrum coefficient statistics are used to characterize images and, subsequently, denoising efficiency for them. Results of denoising efficiency are fitted for such statistics and efficient approximations are obtained. It is shown that the obtained approximations provide high accuracy of prediction of denoising efficiency.

  5. Optical linear algebra processors - Noise and error-source modeling

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  6. A study of noise source location on a model scale augmentor wing using correlation techniques. [noise measurement of far field noise by wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Scharton, T. D.

    1975-01-01

    An experimental investigation, conducted on a model-scale augmentor wing to identify the sources of far-field noise, is examined. The measurement procedure followed in the investigation involved the cross-correlation of far field sound pressures with fluctuating pressures on the surface of the augmentor flap and shroud. In addition pressures on the surfaces of the augmentor were cross-correlated. The results are interpreted as showing that the surface pressure fluctuations are mainly aerodynamic in character and are convected in the downstream direction with a velocity which is dependent on the jet exhaust velocity. However the far field sound levels in the mid and high frequency ranges are dominated by jet noise. There is an indication that in the low frequency range trailing edge noise, associated with interaction of the jet flow and the flap trailing edge, plays a significant role in the radiated sound field.

  7. Evaluation of the additive noise of a flat panel detector and its effect on cone-beam CT applications

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Huang, Shih-Ying C.; Packard, Nathan J.; Boone, John M.

    2009-02-01

    Cone-beam systems designed for breast cancer detection bear a unique radiation dose limitation and are vulnerable to the additive noise from the detector. Additive noise is the signal fluctuation from detector elements and is independent of the incident exposure level. In this study, two different approaches (single pixel based and region of interest based) to measure the additive noise were explored using continuously acquired air images at different exposure levels, with both raw images and flat-field corrected images. The influence from two major factors, inter-pixel variance and image lag, were studied. The pixel variance measured from dark images was used as the gold standard (for the entire detector 15.12+/-1.3 ADU2) for comparison. Image noise propagation through reconstruction procedures was also investigated and a mathematically derived quadratic relationship between the image noise and the inverse of the radiation dose was confirmed with experiment data. The additive noise level was proved to affect the CT image noise as the second order coefficient and thus determines the lower limit of the scan radiation dose, above which the scanner operates at quantum limited region and utilizes the x-ray photon most efficiently.

  8. Performance of peaky template matching under additive white Gaussian noise and uniform quantization

    NASA Astrophysics Data System (ADS)

    Horvath, Matthew S.; Rigling, Brian D.

    2015-05-01

    Peaky template matching (PTM) is a special case of a general algorithm known as multinomial pattern matching originally developed for automatic target recognition of synthetic aperture radar data. The algorithm is a model- based approach that first quantizes pixel values into Nq = 2 discrete values yielding generative Beta-Bernoulli models as class-conditional templates. Here, we consider the case of classification of target chips in AWGN and develop approximations to image-to-template classification performance as a function of the noise power. We focus specifically on the case of a uniform quantization" scheme, where a fixed number of the largest pixels are quantized high as opposed to using a fixed threshold. This quantization method reduces sensitivity to the scaling of pixel intensities and quantization in general reduces sensitivity to various nuisance parameters difficult to account for a priori. Our performance expressions are verified using forward-looking infrared imagery from the Army Research Laboratory Comanche dataset.

  9. A Comparison of Combustor-Noise Models

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart, S.

    2012-01-01

    The current status of combustor-noise prediction in the NASA Aircraft Noise Prediction Program (ANOPP) for current-generation (N) turbofan engines is summarized. Best methods for near-term updates are reviewed. Long-term needs and challenges for the N+1 through N+3 timeframe are discussed. This work was carried out under the NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project, Quiet Aircraft Subproject.

  10. Noise levels from a model turbofan engine with simulated noise control measures applied

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Woodward, Richard P.

    1993-01-01

    A study of estimated full-scale noise levels based on measured levels from the Advanced Ducted Propeller (ADP) sub-scale model is presented. Testing of this model was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. Effective Perceived Noise Level (EPNL) estimates for the baseline configuration are documented, and also used as the control case in a study of the potential benefits of two categories of noise control. The effect of active noise control is evaluated by artificially removing various rotor-stator interaction tones. Passive noise control is simulated by applying a notch filter to the wind tunnel data. Cases with both techniques are included to evaluate hybrid active-passive noise control. The results for EPNL values are approximate because the original source data was limited in bandwidth and in sideline angular coverage. The main emphasis is on comparisons between the baseline and configurations with simulated noise control measures.

  11. Shot-noise in resistive-diode mixers and the attenuator noise model

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.

    1979-01-01

    The representation of a pumped exponential diode, operating as a mixer, by an equivalent lossy network, is reexamined. It is shown that the model is correct provided the network has ports for all sideband frequencies at which (real) power flow can occur between the diode and its embedding. The temperature of the equivalent network is eta/2 times the physical temperature of the diode. The model is valid only if the series resistance and nonlinear capacitance of the diode are negligible. Expressions are derived for the input and output noise temperature and the noise-temperature ratio of ideal mixers. Some common beliefs concerning noise-figure and noise-temperature ratio are shown to be incorrect.

  12. A high and low noise model for strong motion accelerometers

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; <155dB dynamic range) coupled with a 24-bit Nanometrics Taurus datalogger. The proposed noise models are based on power spectral density (PSD) noise levels for each strong motion station computed via PQLX (McNamara and Buland, 2004) from several years of continuous recording. The 'Accelerometer Low Noise Model', ALNM, is dominated by instrument noise from the sensor and datalogger. The 'Accelerometer High Noise Model', AHNM, reflects 1) at high frequencies the acceptable site noise in urban areas, 2) at mid-periods the peak microseismal energy, as determined by the Peterson High Noise Model and 3) at long periods the maximum noise observed from well insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular

  13. An improved source model for aircraft interior noise studies

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Fuller, C. R.

    1985-01-01

    There is concern that advanced turboprop engines currently being developed may produce excessive aircraft cabin noise levels. This concern has stimulated renewed interest in developing aircraft interior noise reduction methods that do not significantly increase take off weight. An existing analytical model for noise transmission into aircraft cabins was utilized to investigate the behavior of an improved propeller source model for use in aircraft interior noise studies. The new source model, a virtually rotating dipole, is shown to adequately match measured fuselage sound pressure distributions, including the correct phase relationships, for published data. The virtually rotating dipole is used to study the sensitivity of synchrophasing effectiveness to the fuselage sound pressure trace velocity distribution. Results of calculations are presented which reveal the importance of correctly modeling the surface pressure phase relations in synchrophasing and other aircraft interior noise studies.

  14. Film grain noise modeling in advanced video coding

    NASA Astrophysics Data System (ADS)

    Oh, Byung Tae; Kuo, C.-C. Jay; Sun, Shijun; Lei, Shawmin

    2007-01-01

    A new technique for film grain noise extraction, modeling and synthesis is proposed and applied to the coding of high definition video in this work. The film grain noise is viewed as a part of artistic presentation by people in the movie industry. On one hand, since the film grain noise can boost the natural appearance of pictures in high definition video, it should be preserved in high-fidelity video processing systems. On the other hand, video coding with film grain noise is expensive. It is desirable to extract film grain noise from the input video as a pre-processing step at the encoder and re-synthesize the film grain noise and add it back to the decoded video as a post-processing step at the decoder. Under this framework, the coding gain of the denoised video is higher while the quality of the final reconstructed video can still be well preserved. Following this idea, we present a method to remove film grain noise from image/video without distorting its original content. Besides, we describe a parametric model containing a small set of parameters to represent the extracted film grain noise. The proposed model generates the film grain noise that is close to the real one in terms of power spectral density and cross-channel spectral correlation. Experimental results are shown to demonstrate the efficiency of the proposed scheme.

  15. Human vision noise model validation for the U.S. Army sensor performance metric

    NASA Astrophysics Data System (ADS)

    Preece, Bradley L.; Olson, Jeffrey T.; Reynolds, Joseph P.; Fanning, Jonathan D.; Haefner, David P.

    2014-06-01

    Image noise originating from a sensor system is often the limiting factor in target acquisition performance, especially when limited by atmospheric transmission or low-light conditions. To accurately predict target acquisition range performance for a wide variety of imaging systems, image degradation introduced by the sensor must be properly combined with the limitations of the human visual system (HVS). This crucial step of incorporating the HVS has been improved and updated within NVESD's latest imaging system performance model. The new noise model discussed here shows how an imaging system's noise and blur are combined with the contrast threshold function (CTF) to form the system CTF. Model calibration constants were found by presenting low-contrast sine gratings with additive noise in a two alternative forced choice experiment. One of the principal improvements comes from adding an eye photon noise term allowing the noise CTF to be accurate over a wide range of luminance. The latest HVS noise model is then applied to the targeting task performance metric responsible for predicting system performance from the system CTF. To validate this model, human target acquisition performance was measured from a series of infrared and visible-band noise-limited imaging systems.

  16. Measuring the levels of noise at the İstanbul Atatürk Airport and comparisons with model simulations.

    PubMed

    Sari, Deniz; Ozkurt, Nesimi; Akdag, Ali; Kutukoglu, Murat; Gurarslan, Aliye

    2014-06-01

    Airport noise and its impact on the surrounding areas are major issues in the aviation industry. The İstanbul Atatürk Airport is a major global airport with passenger numbers increasing rapidly per annum. The noise levels for day, evening and night times were modeled around the İstanbul Atatürk Airport according to the European Noise Directive using the actual data records for the year 2011. The "ECAC Doc. 29-Interim" method was used for the computation of the aircraft traffic noise. In the setting the noise model for the local airport topography was taken into consideration together with the noise source data, the airport loadings, features of aircraft and actual air traffic data. Model results were compared with long-term noise measurement values for calibration. According to calibration results, classifications of the aircraft type and flight tracks were revised. For noise model validation, the daily noise measurements at four additional locations were used during the verification period. The input data was re-edited only for these periods and the model was validated. A successful model performance was obtained in several zones around the airport. The validated noise model of the İstanbul Atatürk Airport can be now utilized both for determining the noise levels in the future and for producing new strategies which are about the land use planning, operational considerations for the air traffic management and the noise abatement procedures. PMID:23972900

  17. Public policy and environmental noise: modeling exposure or understanding effects.

    PubMed

    Staples, S L

    1997-12-01

    This paper argues that if the federal government is to successfully protect the public from the adverse effects of environmental noise, its policies will need to be informed by a scientific understanding of the psychological and social factors that determine when noise results in annoyance and when noise may affect health as an environmental stressor. The overreliance of federal agencies on mathematical modeling of average group responses to physical noise levels is discussed as oversimplifying and limiting the understanding of noise effects in crucial ways. The development of a more sophisticated information base is related to policy needs, such as the need to make accurate predictions about the annoyance of particular communities, the need to understand relationships between public participation in noise abatement efforts and annoyance, and the need to identify populations that may be susceptible to stress-related health effects. PMID:9431308

  18. Public policy and environmental noise: modeling exposure or understanding effects.

    PubMed Central

    Staples, S L

    1997-01-01

    This paper argues that if the federal government is to successfully protect the public from the adverse effects of environmental noise, its policies will need to be informed by a scientific understanding of the psychological and social factors that determine when noise results in annoyance and when noise may affect health as an environmental stressor. The overreliance of federal agencies on mathematical modeling of average group responses to physical noise levels is discussed as oversimplifying and limiting the understanding of noise effects in crucial ways. The development of a more sophisticated information base is related to policy needs, such as the need to make accurate predictions about the annoyance of particular communities, the need to understand relationships between public participation in noise abatement efforts and annoyance, and the need to identify populations that may be susceptible to stress-related health effects. PMID:9431308

  19. Range performance impact of noise for thermal system modeling

    NASA Astrophysics Data System (ADS)

    Fanning, Jonathan D.; Teaney, Brian P.; Reynolds, Joseph P.; Du Bosq, Todd W.

    2009-05-01

    This paper presents a comparison of the predictions of NVThermIP to human perception experiment results in the presence of large amounts of noise where the signal to noise ratio is around 1. First, the calculations used in the NVESD imager performance models that deal with sensor noise are described outlining a few errors that appear in the NVThermIP code. A perception experiment is designed to test the range performance predictions of NVThermIP with varying amounts of noise and varying frame rates. NVThermIP is found to overestimate the impact of noise, leading to pessimistic range performance predictions for noisy systems. The perception experiment results are used to find a best fit value of the constant α used to relate system noise to eye noise in the NVESD models. The perception results are also fit to an alternate eye model that handles frame rates below 30Hz and smoothly approaches an accurate prediction of the performance in the presence of static noise. The predictions using the fit data show significantly less error than the predictions from the current model.

  20. Background noise model development for seismic stations of KMA

    NASA Astrophysics Data System (ADS)

    Jeon, Youngsoo

    2010-05-01

    The background noise recorded at seismometer is exist at any seismic signal due to the natural phenomena of the medium which the signal passed through. Reducing the seismic noise is very important to improve the data quality in seismic studies. But, the most important aspect of reducing seismic noise is to find the appropriate place before installing the seismometer. For this reason, NIMR(National Institution of Meteorological Researches) starts to develop a model of standard background noise for the broadband seismic stations of the KMA(Korea Meteorological Administration) using a continuous data set obtained from 13 broadband stations during the period of 2007 and 2008. We also developed the model using short period seismic data from 10 stations at the year of 2009. The method of Mcmara and Buland(2004) is applied to analyse background noise of Korean Peninsula. The fact that borehole seismometer records show low noise level at frequency range greater than 1 Hz compared with that of records at the surface indicate that the cultural noise of inland Korean Peninsula should be considered to process the seismic data set. Reducing Double Frequency peak also should be regarded because the Korean Peninsula surrounded by the seas from eastern, western and southern part. The development of KMA background model shows that the Peterson model(1993) is not applicable to fit the background noise signal generated from Korean Peninsula.

  1. Noise in models of neurological and psychiatric disorders.

    PubMed

    Spitzer, M; Neumann, M

    1996-09-01

    The concept of noise has only recently been applied to modelling neuropsychiatric disorders. Two examples of such models are presented. 1. A phantom limb is a neurological condition after the amputation of an extremity. It consists of sensations of the presence of the lost limb and has been attributed to cortical as well as non-cortical mechanisms. A neural network model of phantom limbs is proposed which can parsimoniously account for a large number of clinical features and recent findings of cortical map plasticity after deafferentation. In trained self-organizing feature maps, deafferentation was simulated. Reorganization is shown to be driven by input noise. According to the model, the production of input noise by the deafferented primary sensory neuron drives cortical reorganization in amputees. No such noise is generated and/or conducted to the cortex in paraplegics. 2. Several clinical features of schizophrenia have been related to the ratio of signal to noise in neuronal information processing. In particular, dopamine--which has been implicated in the causation of schizophrenia for decades--has been proposed to modulate signal-to-noise ratio. Data are presented which suggest that schizophrenic thought disorder is the result of a hypodopaminergic state and concomitant increased effects of noise in semantic information processing. Possible functions of noise in the nervous systems are discussed. PMID:8968824

  2. Advanced simulation noise model for modern fighter aircraft

    NASA Astrophysics Data System (ADS)

    Ikelheimer, Bruce

    2005-09-01

    NoiseMap currently represents the state of the art for military airfield noise analysis. While this model is sufficient for the current fleet of aircraft, it has limits in its capability to model the new generation of fighter aircraft like the JSF and the F-22. These aircraft's high-powered engines produce noise with significant nonlinear content. Combining this with their ability to vector the thrust means they have noise characteristics that are outside of the basic modeling assumptions of the currently available noise models. Wyle Laboratories, Penn State University, and University of Alabama are in the process of developing a new noise propagation model for the Strategic Environmental Research and Development Program. Source characterization will be through complete spheres (or hemispheres if there is not sufficient data) for each aircraft state (including thrust vector angles). Fixed and rotor wing aircraft will be included. Broadband, narrowband, and pure tone propagation will be included. The model will account for complex terrain and weather effects, as well as the effects of nonlinear propagation. It will be a complete model capable of handling a range of noise sources from small subsonic general aviation aircraft to the latest fighter aircraft like the JSF.

  3. Computation of Supersonic Jet Mixing Noise Using PARC Code With a kappa-epsilon Turbulence Model

    NASA Technical Reports Server (NTRS)

    Khavaran, A.; Kim, C. M.

    1999-01-01

    A number of modifications have been proposed in order to improve the jet noise prediction capabilities of the MGB code. This code which was developed at General Electric, employees the concept of acoustic analogy for the prediction of turbulent mixing noise. The source convection and also refraction of sound due to the shrouding effect of the mean flow are accounted for by incorporating the high frequency solution to Lilley's equation for cylindrical jets (Balsa and Mani). The broadband shock-associated noise is estimated using Harper-Bourne and Fisher's shock noise theory. The proposed modifications are aimed at improving the aerodynamic predictions (source/spectrum computations) and allowing for the non- axisymmetric effects in the jet plume and nozzle geometry (sound/flow interaction). In addition, recent advances in shock noise prediction as proposed by Tam can be employed to predict the shock-associated noise as an addition to the jet mixing noise when the flow is not perfectly expanded. Here we concentrate on the aerodynamic predictions using the PARC code with a k-E turbulence model and the ensuing turbulent mixing noise. The geometry under consideration is an axisymmetric convergent-divergent nozzle at its design operating conditions. Aerodynamic and acoustic computations are compared with data as well as predictions due to the original MGB model using Reichardt's aerodynamic theory.

  4. Testing Models for Perceptual Discrimination Using Repeatable Noise

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Adding noise to stimuli to be discriminated allows estimation of observer classification functions based on the correlation between observer responses and relevant features of the noisy stimuli. Examples will be presented of stimulus features that are found in auditory tone detection and visual Vernier acuity. Using the standard signal detection model (Thurstone scaling), we derive formulas to estimate the proportion of the observer's decision variable variance that is controlled by the added noise. One is based on the probability of agreement of the observer with him/herself on trials with the same noise sample. Another is based on the relative performance of the observer and the model. When these do not agree, the model can be rejected. A second derivation gives the probability of agreement of observer and model when the observer follows the model except for internal noise. Agreement significantly less than this amount allows rejection of the model.

  5. A long wave TE/TM noise prediction model

    NASA Astrophysics Data System (ADS)

    Warber, C. R.; Field, E. C., Jr.

    1993-05-01

    A computer model that predicts both horizontally and vertically polarized noise in the ELF to LF band (10 Hz-60 kHz) is described. Since naturally occurring radio noise in this band is produced by lightning, and propagates to the receiver via the earth-ionosphere waveguide, the model starts with average lightning flash density data which it turns into radiated power for horizontal and vertical noise. Adjustments are made to the radiated power to account for seasonal and latitudinal differences in the lightning processes. The noise power is then integrated over fairly large geographic areas into horizontal and vertical equivalent noise transmitters. The power radiated from each of these transmitters is propagated to the receiver location using standard anisotropic long wave propagation algorithms and well-known models of the earth-ionosphere waveguide. From the received power, the model predicts RMS noise, standard deviation, voltage deviation VD, and the amplitude probability distribution of the noise for both polarizations. Since the model is based on theory, it can also predict these parameters under disturbed ionospheric conditions. The model's agreement with data is demonstrated.

  6. Modeling of Turbulence Generated Noise in Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2004-01-01

    A numerically calculated Green's function is used to predict jet noise spectrum and its far-field directivity. A linearized form of Lilley's equation governs the non-causal Green s function of interest, with the non-linear terms on the right hand side identified as the source. In this paper, contributions from the so-called self- and shear-noise source terms will be discussed. A Reynolds-averaged Navier-Stokes solution yields the required mean flow as well as time- and length scales of a noise-generating turbulent eddy. A non-compact source, with exponential temporal and spatial functions, is used to describe the turbulence velocity correlation tensors. It is shown that while an exact non-causal Green's function accurately predicts the observed shift in the location of the spectrum peak with angle as well as the angularity of sound at moderate Mach numbers, at high subsonic and supersonic acoustic Mach numbers the polar directivity of radiated sound is not entirely captured by this Green's function. Results presented for Mach 0.5 and 0.9 isothermal jets, as well as a Mach 0.8 hot jet conclude that near the peak radiation angle a different source/Green's function convolution integral may be required in order to capture the peak observed directivity of jet noise.

  7. 3D filtering technique in presence of additive noise in color videos implemented on DSP

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr I.; Montenegro-Monroy, Hector; Palacios, Alfredo

    2014-05-01

    A filtering method for color videos contaminated by additive noise is presented. The proposed framework employs three filtering stages: spatial similarity filtering, neighboring frame denoising, and spatial post-processing smoothing. The difference with other state-of- the-art filtering methods, is that this approach, based on fuzzy logic, analyses basic and related gradient values between neighboring pixels into a 7 fi 7 sliding window in the vicinity of a central pixel in each of the RGB channels. Following, the similarity measures between the analogous pixels in the color bands are taken into account during the denoising. Next, two neighboring video frames are analyzed together estimating local motions between the frames using block matching procedure. In the final stage, the edges and smoothed areas are processed differently in a current frame during the post-processing filtering. Numerous simulations results confirm that this 3D fuzzy filter perform better than other state-of-the- art methods, such as: 3D-LLMMSE, WMVCE, RFMDAF, FDARTF G, VBM3D and NLM, in terms of objective criteria (PSNR, MAE, NCD and SSIM) as well as subjective perception via human vision system in the different color videos. An efficiency analysis of the designed and other mentioned filters have been performed on the DSPs TMS320 DM642 and TMS320DM648 by Texas Instruments through MATLAB and Simulink module showing that the novel 3D fuzzy filter can be used in real-time processing applications.

  8. A shock absorber model for structure-borne noise analyses

    NASA Astrophysics Data System (ADS)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  9. Modelling of noise-like pulses generated in fibre lasers

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey; Kobtsev, Sergey

    2016-03-01

    The present paper for the first time proposes and studies a relatively simple model of noise-like pulses that matches the experimental data well and suggests that there is a correlation between phases of adjacent spectral components of noiselike pulses. Comparison of a relatively basic model of `random' pulses with the results of noise-like pulse modelling in mode-locked fibre lasers based on coupled non-linear Schrödinger equations demonstrates that it adequately reproduces temporal and spectral properties of noise-like pulses as well as correlation between adjacent modes so that it's possible to use the proposed model for highly efficient simulations of promising applications of noise-like pulses, such as material processing, non-linear frequency conversion, microscopy, and others.

  10. Langevin approach to noise modelling of bipolar microwave transistors

    NASA Astrophysics Data System (ADS)

    Patti, F.; Miceli, V.; Spagnolo, B.

    2000-04-01

    We present a new approach to study the complete stochastic properties of fluctuations of the output current of microwave transistors. We obtain the π-hybrid model of bipolar microwave transistors with the noise internal sources starting from experimental on-wafer measurements of the scattering and noise parameters. We derive the stochastic differential equations of the Giacoletto model for different loads and source admittances. We give the analytical temporal behavior of the second moment of the output current, assuming particular given correlation functions between the internal noise sources.

  11. Sound Modeling Simplifies Vehicle Noise Management

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Under two SBIR contracts with Langley Research Center, Ann Arbor, Michigan-based Comet Technology Corporation developed Comet EnFlow, a software program capable of predicting both high- and low-frequency noise and vibration behavior in plane fuselages and other structures. The company now markets the software to airplane, automobile, and ship manufacturers, and Langley has found an unexpected use for it in leak detection on the International Space Station.

  12. Model for excess noise in voltage-biased superconducting bolometers.

    PubMed

    Gildemeister, J M; Lee, A T; Richards, P L

    2001-12-01

    We are developing superconducting transition-edge bolometers for far-infrared and millimeter wavelengths. The bolometers described here are suspended by thin legs of silicon nitride for thermal isolation. At frequencies between 200 mHz and 10-50 Hz these devices show white noise at their thermal fluctuation limit (NEP approximately 10(-17) W/ radicalHz). At higher frequencies a broad peak appears in the noise spectrum, which we attribute to a combination of thermal fluctuations in complex thermal circuits and electrothermal feedback. Detailed noise calculations fit the noise measured in three different devices that were specifically designed to test the model. We discuss how changes in bolometer materials can shift the noise peak above the frequency range of interest for most applications. PMID:18364926

  13. Modeling and estimation of signal-dependent noise in hyperspectral imagery.

    PubMed

    Meola, Joseph; Eismann, Michael T; Moses, Randolph L; Ash, Joshua N

    2011-07-20

    The majority of hyperspectral data exploitation algorithms are developed using statistical models for the data that include sensor noise. Hyperspectral data collected using charge-coupled devices or other photon detectors have sensor noise that is directly dependent on the amplitude of the signal collected. However, this signal dependence is often ignored. Additionally, the statistics of the noise can vary spatially and spectrally as a result of camera characteristics and the calibration process applied to the data. Here, we examine the expected noise characteristics of both raw and calibrated visible/near-infrared hyperspectral data and provide a method for estimating the noise statistics using calibration data or directly from the imagery if calibration data is unavailable. PMID:21772364

  14. Wall Modeled Large Eddy Simulation of Airfoil Trailing Edge Noise

    NASA Astrophysics Data System (ADS)

    Kocheemoolayil, Joseph; Lele, Sanjiva

    2014-11-01

    Large eddy simulation (LES) of airfoil trailing edge noise has largely been restricted to low Reynolds numbers due to prohibitive computational cost. Wall modeled LES (WMLES) is a computationally cheaper alternative that makes full-scale Reynolds numbers relevant to large wind turbines accessible. A systematic investigation of trailing edge noise prediction using WMLES is conducted. Detailed comparisons are made with experimental data. The stress boundary condition from a wall model does not constrain the fluctuating velocity to vanish at the wall. This limitation has profound implications for trailing edge noise prediction. The simulation over-predicts the intensity of fluctuating wall pressure and far-field noise. An improved wall model formulation that minimizes the over-prediction of fluctuating wall pressure is proposed and carefully validated. The flow configurations chosen for the study are from the workshop on benchmark problems for airframe noise computations. The large eddy simulation database is used to examine the adequacy of scaling laws that quantify the dependence of trailing edge noise on Mach number, Reynolds number and angle of attack. Simplifying assumptions invoked in engineering approaches towards predicting trailing edge noise are critically evaluated. We gratefully acknowledge financial support from GE Global Research and thank Cascade Technologies Inc. for providing access to their massively-parallel large eddy simulation framework.

  15. Brady 1D seismic velocity model ambient noise prelim

    DOE Data Explorer

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  16. Airframe Noise Sub-Component Definition and Model

    NASA Technical Reports Server (NTRS)

    Golub, Robert A. (Technical Monitor); Sen, Rahul; Hardy, Bruce; Yamamoto, Kingo; Guo, Yue-Ping; Miller, Gregory

    2004-01-01

    Both in-house, and jointly with NASA under the Advanced Subsonic Transport (AST) program, Boeing Commerical Aircraft Company (BCA) had begun work on systematically identifying specific components of noise responsible for total airframe noise generation and applying the knowledge gained towards the creation of a model for airframe noise prediction. This report documents the continuation of the collection of database from model-scale and full-scale airframe noise measurements to compliment the earlier existing databases, the development of the subcomponent models and the generation of a new empirical prediction code. The airframe subcomponent data includes measurements from aircraft ranging in size from a Boeing 737 to aircraft larger than a Boeing 747 aircraft. These results provide the continuity to evaluate the technology developed under the AST program consistent with the guidelines set forth in NASA CR-198298.

  17. Low-frequency broadband noise generated by a model rotor

    NASA Technical Reports Server (NTRS)

    Aravamudan, K. S.; Harris, W. L.

    1979-01-01

    Low-frequency broadband noise generated by model rotors is attributed to the interaction of ingested turbulence with the rotor blades. The influence of free-stream turbulence in the low-frequency broadband noise radiation from model rotors has been experimentally investigated. The turbulence was generated in the M.I.T. anechoic wind tunnel facility with the aid of bipolar grids of various sizes. The spectra and the intensity of the low-frequency broadband noise have been studied as a function of parameters which characterize the turbulence and of helicopter performance parameters. The location of the peak intensity was observed to be strongly dependent on the rotor-tip velocity and on the longitudinal integral scale of turbulence. The size scale of turbulence had negligible effect on the intensity of low-frequency broadband noise. The experimental data show good agreement with an ad hoc model based on unsteady aerodynamics.

  18. Using transportation demand models to assess regional noise exposure

    NASA Astrophysics Data System (ADS)

    Kaliski, Kenneth

    2005-09-01

    In the United States, most metropolitan areas run some type of transportation demand model to estimate regional travel patterns, and, to some extent, air pollution. The more advanced of these models accurately represent the geographic contours of the roadways (in contrast to the older straight-line node and link models). This allows an almost seamless integration of these new transportation demand models into noise prediction models. Combined with the locations of individual homes from a separate E911 database, we can readily make estimates of the noise exposure of populations over large areas. In this paper, the regional traffic noise exposure of residences of Chittenden County, VT is estimated and mapped. It was found that 30% of the residences are exposed to noise levels exceeding the WHO sleep disturbance level of 45 dB LAeq(8) and 20% of residences are exposed to levels exceeding the WHO ``serious annoyance'' level of 55 dB LAeq(16). Maps show noise contours as well as individual homes color coded based on relative day and night noise exposure levels. Measured sound level data are given for particular locations to validate the predictions.

  19. Characterizing Observers Using External Noise and Observer Models: Assessing Internal Representations with External Noise

    ERIC Educational Resources Information Center

    Lu, Zhong-Lin; Dosher, Barbara Anne

    2008-01-01

    External noise methods and observer models have been widely used to characterize the intrinsic perceptual limitations of human observers and changes of the perceptual limitations associated with cognitive, developmental, and disease processes by highlighting the variance of internal representations. The authors conducted a comprehensive review of…

  20. Efficient Modelling and Prediction of Meshing Noise from Chain Drives

    NASA Astrophysics Data System (ADS)

    ZHENG, H.; WANG, Y. Y.; LIU, G. R.; LAM, K. Y.; QUEK, K. P.; ITO, T.; NOGUCHI, Y.

    2001-08-01

    This paper presents a practical approach for predicting the meshing noise due to the impact of chain rollers against the sprocket of chain drives. An acoustical model relating dynamic response of rollers and its induced sound pressure is developed based on the fact that the acoustic field is mainly created by oscillating rigid cylindrical rollers. Finite element techniques and numerical software codes are employed to model and simulate the acceleration response of each chain roller which is necessary for noise level prediction of a chain drive under varying operation conditions and different sprocket configurations. The predicted acoustic pressure levels of meshing noise are compared with the available experimental measurements. It is shown that the predictions are in reasonable agreement with the experiments and the approach enables designers to obtain required information on the noise level of a selected chain drive in a time- and cost-efficient manner.

  1. Stochastic bifurcation in a model of love with colored noise

    NASA Astrophysics Data System (ADS)

    Yue, Xiaokui; Dai, Honghua; Yuan, Jianping

    2015-07-01

    In this paper, we wish to examine the stochastic bifurcation induced by multiplicative Gaussian colored noise in a dynamical model of love where the random factor is used to describe the complexity and unpredictability of psychological systems. First, the dynamics in deterministic love-triangle model are considered briefly including equilibrium points and their stability, chaotic behaviors and chaotic attractors. Then, the influences of Gaussian colored noise with different parameters are explored such as the phase plots, top Lyapunov exponents, stationary probability density function (PDF) and stochastic bifurcation. The stochastic P-bifurcation through a qualitative change of the stationary PDF will be observed and bifurcation diagram on parameter plane of correlation time and noise intensity is presented to find the bifurcation behaviors in detail. Finally, the top Lyapunov exponent is computed to determine the D-bifurcation when the noise intensity achieves to a critical value. By comparison, we find there is no connection between two kinds of stochastic bifurcation.

  2. Quantifying the Effects of Noise on Diffuse Interface Models: Cahn-Hilliard-Cook equations

    NASA Astrophysics Data System (ADS)

    Pfeifer, Spencer; Ganapathysubramanian, Baskar

    2015-03-01

    We present an investigation into the dynamics of phase separation through numerical simulations of the Cahn-Hilliard-Cook (CHC) equation. This model is an extension of the well-known Cahn- Hilliard equation, perturbed by an additive white noise. Studies have shown that random fluctuations are critical for proper resolution of physical phenomena. This is especially true for phase critical systems. We explore the transient behavior of the solution space for varying levels of noise. This is enabled by our massively scalable finite element-based numerical framework. We briefly examine the interplay between noise level and discretization (spatial and temporal) in obtaining statistically consistent solutions. We show that the added noise accelerates progress towards phase separation, but retards dynamics throughout subsequent coarsening. We identify a scaling exponent relating morphology metrics with the level of noise. We observe a very clear scaling effect of finite domain size, which is observed to be offset by increasing levels of noise. Domain scaling reveals a clear microstructural asymmetry at various stages of the evolution for lower noise levels. In contrast, higher noise levels tend to produce more uniform morphologies.

  3. Jet Noise Physics and Modeling Using First-principles Simulations

    NASA Technical Reports Server (NTRS)

    Freund, Jonathan B.

    2003-01-01

    An extensive analysis of our jet DNS database has provided for the first time the complex correlations that are the core of many statistical jet noise models, including MGBK. We have also for the first time explicitly computed the noise from different components of a commonly used noise source as proposed in many modeling approaches. Key findings are: (1) While two-point (space and time) velocity statistics are well-fitted by decaying exponentials, even for our low-Reynolds-number jet, spatially integrated fourth-order space/retarded-time correlations, which constitute the noise "source" in MGBK, are instead well-fitted by Gaussians. The width of these Gaussians depends (by a factor of 2) on which components are considered. This is counter to current modeling practice, (2) A standard decomposition of the Lighthill source is shown by direct evaluation to be somewhat artificial since the noise from these nominally separate components is in fact highly correlated. We anticipate that the same will be the case for the Lilley source, and (3) The far-field sound is computed in a way that explicitly includes all quadrupole cancellations, yet evaluating the Lighthill integral for only a small part of the jet yields a far-field noise far louder than that from the whole jet due to missing nonquadrupole cancellations. Details of this study are discussed in a draft of a paper included as appendix A.

  4. The Aviation System Analysis Capability Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Ege, Russell; Burn, Melissa; Carey, Jeffrey; Bradley, Kevin

    1998-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Noise Impact Model (NIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operations might have on community noise impact and air carrier operating efficiency at any of 16 large- and medium-sized U.S. airports. The analyst chooses an airport and case year for study, selects a runway use configuration and set of flight tracks for the scenario, and has the option of reducing the noise of the aircraft that operate at the airport by 3, 6, or 10 decibels. NIM computes the resultant noise impact and estimates any airline operations improvements. Community noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the.contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to a less circuitous alternate routing. For a more efficient runway use configuration, the increase in capacity and reduction in delay are shown.

  5. The Aviation System Analysis Capability Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Ege, Russell A.; Brown, Jerome; Bradley, Kevin; Grandi, Fabio

    1999-01-01

    To meet its objective of assisting the US aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Noise Impact Model (NIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operation might have on community noise impact and air carrier operating efficiency at any of 16 large and medium size US airports. The analyst chooses an airport and case year for study, selects a runway use configuration and set of flight tracks for the scenario, and has the option of reducing the noise of the aircraft that operate at the airport by 3, 6, and 10 decibels, NIM computes the resultant noise impact and estimates any airline operational improvements. Community noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to a less circuitous alternated routing. For a more efficient runway use configuration, the increase in capacity and reduction in delay are shown.

  6. Developing an Empirical Model for Jet-Surface Interaction Noise

    NASA Technical Reports Server (NTRS)

    Brown, Clif

    2014-01-01

    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are t to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  7. Developing an Empirical Model for Jet-Surface Interaction Noise

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2014-01-01

    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are fit to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  8. Colored noise and memory effects on formal spiking neuron models

    NASA Astrophysics Data System (ADS)

    da Silva, L. A.; Vilela, R. D.

    2015-06-01

    Simplified neuronal models capture the essence of the electrical activity of a generic neuron, besides being more interesting from the computational point of view when compared to higher-dimensional models such as the Hodgkin-Huxley one. In this work, we propose a generalized resonate-and-fire model described by a generalized Langevin equation that takes into account memory effects and colored noise. We perform a comprehensive numerical analysis to study the dynamics and the point process statistics of the proposed model, highlighting interesting new features such as (i) nonmonotonic behavior (emergence of peak structures, enhanced by the choice of colored noise characteristic time scale) of the coefficient of variation (CV) as a function of memory characteristic time scale, (ii) colored noise-induced shift in the CV, and (iii) emergence and suppression of multimodality in the interspike interval (ISI) distribution due to memory-induced subthreshold oscillations. Moreover, in the noise-induced spike regime, we study how memory and colored noise affect the coherence resonance (CR) phenomenon. We found that for sufficiently long memory, not only is CR suppressed but also the minimum of the CV-versus-noise intensity curve that characterizes the presence of CR may be replaced by a maximum. The aforementioned features allow to interpret the interplay between memory and colored noise as an effective control mechanism to neuronal variability. Since both variability and nontrivial temporal patterns in the ISI distribution are ubiquitous in biological cells, we hope the present model can be useful in modeling real aspects of neurons.

  9. Noise of a model helicopter rotor due to ingestion of turbulence

    NASA Technical Reports Server (NTRS)

    Paterson, R. W.; Amiet, R. K.

    1979-01-01

    A theoretical and experimental investigation of the noise of a model helicoper rotor due to ingestion of turbulence was conducted. Experiments were performed with a 0.76 m dia, articulated model rotor for a range of inflow turbulence and rotor operating conditions. Inflow turbulence levels varied from approximately 2 to 19 percent and tip Mach number was varied from 0.3 to 0.52. Test conditions included ingestion of a atmospheric turbulence in outdoor hover as well as ingestion of grid generated isotropic turbulence in the wind tunnel airstream. In wind tunnel testing, both forward flight and vertical ascent (climb) were simulated. Far field noise spectra and directivity were measured in addition to incident turbulence intensities, length scales, and spectra. Results indicate that ingestion of atmospheric turbulence is the dominant helicopter rotor hover noise mechanism at the moderate to high frequencies which determine perceived noise level.

  10. Modeling of relative intensity noise and terminal electrical noise of semiconductor lasers using artificial neural network

    NASA Astrophysics Data System (ADS)

    Rezaei, A.; Noori, L.

    2016-06-01

    In this paper, artificial neural network (ANN) is used to predict the source laser's relative intensity noise (RIN) and the terminal electrical noise (TEN) of semiconductor lasers. For this purpose, the multi-layer perceptron (MLP) neural network trained with the back propagation algorithm is used. To develop this model, the normalized bias current and frequency are selected as the input parameters and the RIN and TEN of semiconductor lasers are selected as the output parameters. The obtained results show that the proposed ANN model is in a good agreement with the numerical method, and a small error between the predicted values and the numerical solution is obtained. Therefore, the proposed ANN model is a useful, reliable, fast and cheap tool to predict the RIN and TEN of semiconductor lasers.

  11. Network Reconstruction Using Nonparametric Additive ODE Models

    PubMed Central

    Henderson, James; Michailidis, George

    2014-01-01

    Network representations of biological systems are widespread and reconstructing unknown networks from data is a focal problem for computational biologists. For example, the series of biochemical reactions in a metabolic pathway can be represented as a network, with nodes corresponding to metabolites and edges linking reactants to products. In a different context, regulatory relationships among genes are commonly represented as directed networks with edges pointing from influential genes to their targets. Reconstructing such networks from data is a challenging problem receiving much attention in the literature. There is a particular need for approaches tailored to time-series data and not reliant on direct intervention experiments, as the former are often more readily available. In this paper, we introduce an approach to reconstructing directed networks based on dynamic systems models. Our approach generalizes commonly used ODE models based on linear or nonlinear dynamics by extending the functional class for the functions involved from parametric to nonparametric models. Concomitantly we limit the complexity by imposing an additive structure on the estimated slope functions. Thus the submodel associated with each node is a sum of univariate functions. These univariate component functions form the basis for a novel coupling metric that we define in order to quantify the strength of proposed relationships and hence rank potential edges. We show the utility of the method by reconstructing networks using simulated data from computational models for the glycolytic pathway of Lactocaccus Lactis and a gene network regulating the pluripotency of mouse embryonic stem cells. For purposes of comparison, we also assess reconstruction performance using gene networks from the DREAM challenges. We compare our method to those that similarly rely on dynamic systems models and use the results to attempt to disentangle the distinct roles of linearity, sparsity, and derivative

  12. The role of wind tunnel models in helicopter noise research

    NASA Technical Reports Server (NTRS)

    Sternfeld, H., Jr.; Schaeffer, E. G.

    1986-01-01

    A study was conducted to determine the applicability of using small-scale powered helicopter models operating in nonanechoic wind tunnels to predict the sound pressure levels of full-scale rotor harmonic noise components. The investigation included noise generation due to high-tip-speed effects, tandem-rotor blade/vortex interactions, single rotors operating on test towers, and the interaction between main rotor vortices and tail rotors. In all cases it was found that the pressure time history waveforms characteristic of different noise-generating mechanisms were properly reproduced by the models. Corrections for microphone locations, acoustical reverberation, and tunnel wind velocity were developed. Application of these corrections to the model data were found to yield satisfactory correlation with full-scale sound pressure levels except for the isolated single rotor, where highly transient data, both model and full-scale, recluded good agreement of absolute values.

  13. Tracking performance of a combined Costas/AFC-loop under noisy Rayleigh/Rician channel conditions with additive Gaussian noise jamming

    NASA Astrophysics Data System (ADS)

    Kleine, Achim

    Models were developed to investigate the tracking behavior of combined Costas/AFC (Automatic Frequency Control) feedback loops under Rayleigh/Rician fading conditions with additive Gaussian noise jamming. A general linearized tracking model was developed for land-mobile channels. The model can be used for the nonlinearized case with sinusoidal phase detection characteristic using a standard solution of the Fokker-Planck equation. A tracking analysis for Costas/AFC loops with coherent automatic gain control, and an accuracy analysis for interferometers equipped with Costas/AFC loops are treated as examples. The tracking model is the most inaccurate in the case of quasistationary channels.

  14. Computational Process Modeling for Additive Manufacturing (OSU)

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2015-01-01

    Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.

  15. CREATION OF THE MODEL ADDITIONAL PROTOCOL

    SciTech Connect

    Houck, F.; Rosenthal, M.; Wulf, N.

    2010-05-25

    In 1991, the international nuclear nonproliferation community was dismayed to discover that the implementation of safeguards by the International Atomic Energy Agency (IAEA) under its NPT INFCIRC/153 safeguards agreement with Iraq had failed to detect Iraq's nuclear weapon program. It was now clear that ensuring that states were fulfilling their obligations under the NPT would require not just detecting diversion but also the ability to detect undeclared materials and activities. To achieve this, the IAEA initiated what would turn out to be a five-year effort to reappraise the NPT safeguards system. The effort engaged the IAEA and its Member States and led to agreement in 1997 on a new safeguards agreement, the Model Protocol Additional to the Agreement(s) between States and the International Atomic Energy Agency for the Application of Safeguards. The Model Protocol makes explicit that one IAEA goal is to provide assurance of the absence of undeclared nuclear material and activities. The Model Protocol requires an expanded declaration that identifies a State's nuclear potential, empowers the IAEA to raise questions about the correctness and completeness of the State's declaration, and, if needed, allows IAEA access to locations. The information required and the locations available for access are much broader than those provided for under INFCIRC/153. The negotiation was completed in quite a short time because it started with a relatively complete draft of an agreement prepared by the IAEA Secretariat. This paper describes how the Model Protocol was constructed and reviews key decisions that were made both during the five-year period and in the actual negotiation.

  16. Trichotomous noise controlled signal amplification in a generalized Verhulst model

    NASA Astrophysics Data System (ADS)

    Mankin, Romi; Soika, Erkki; Lumi, Neeme

    2014-10-01

    The long-time limit of the probability distribution and statistical moments for a population size are studied by means of a stochastic growth model with generalized Verhulst self-regulation. The effect of variable environment on the carrying capacity of a population is modeled by a multiplicative three-level Markovian noise and by a time periodic deterministic component. Exact expressions for the moments of the population size have been calculated. It is shown that an interplay of a small periodic forcing and colored noise can cause large oscillations of the mean population size. The conditions for the appearance of such a phenomenon are found and illustrated by graphs. Implications of the results on models of symbiotic metapopulations are also discussed. Particularly, it is demonstrated that the effect of noise-generated amplification of an input signal gets more pronounced as the intensity of symbiotic interaction increases.

  17. Detecting contaminated birthdates using generalized additive models

    PubMed Central

    2014-01-01

    Background Erroneous patient birthdates are common in health databases. Detection of these errors usually involves manual verification, which can be resource intensive and impractical. By identifying a frequent manifestation of birthdate errors, this paper presents a principled and statistically driven procedure to identify erroneous patient birthdates. Results Generalized additive models (GAM) enabled explicit incorporation of known demographic trends and birth patterns. With false positive rates controlled, the method identified birthdate contamination with high accuracy. In the health data set used, of the 58 actual incorrect birthdates manually identified by the domain expert, the GAM-based method identified 51, with 8 false positives (resulting in a positive predictive value of 86.0% (51/59) and a false negative rate of 12.0% (7/58)). These results outperformed linear time-series models. Conclusions The GAM-based method is an effective approach to identify systemic birthdate errors, a common data quality issue in both clinical and administrative databases, with high accuracy. PMID:24923281

  18. Lightning Climatology with a Generalized Additive Model

    NASA Astrophysics Data System (ADS)

    Simon, Thorsten; Mayr, Georg; Umlauf, Nikolaus; Zeileis, Achim

    2016-04-01

    This study present a lightning climatology on a 1km x 1km grid estimated via generalized additive models (GAM). GAMs provide a framework to account for non-linear effects in time and space and for non-linear spatial-temporal interaction terms simultaneously. The degrees of smoothness of the non-linear effects is selected automatically in our approach. Furthermore, the influence of topography is captured in the model by including a non-linear term. To illustrate our approach we use lightning data from the ALDIS networks and selected a region in Southeastern Austria, where complex terrain extends from 200 an 3800 m asl and summertime lightning activity is high compared to other parts of the Eastern Alps. The temporal effect in the GAM shows a rapid increase in lightning activity in early July and a slow decay in activity afterwards. The estimated spatial effect is not very smooth and requires approximately 225 effective degrees of freedom. It reveals that lightning is more likely in the Eastern and Southern part of the region of interest. This spatial effect only accounts for variability not already explained by the topography. The topography effect shows lightning to be more likely at higher altitudes. The effect describing the spatio-temporal interactions takes approximately 200 degrees of freedom, and reveals local deviations of the climatology.

  19. Noise characteristics of model counter-rotating Prop-Fans

    NASA Technical Reports Server (NTRS)

    Magliozzi, B.

    1987-01-01

    Results of acoustics tests of 24.5 in. diameter model counter-rotating propfans are presented. In these tests several configurations were investigated, including tractors and pushers downstream of a pylon, both at zero degrees and at four degrees angle-of-attack. The effects on noise of spacing between rotors and between the pylon and the rotors were also measured. Effects of rotor spacing were found to cause small changes in noise. Increasing blade count from 5-front and 5-rear to 6-front and 6-rear results in about a 1 EPNdB reduction in noise. Increasing only the front rotor blade count to six blades resulted in a noise reduction of about 2 EPNdB. The presence of the pylon resulted in a 1 EPNdB increase in noise. Angle of attack effects showed an increase of 3.5 EPNdB for the tractor configuration and only 1.5 EPNdB for the pusher configuration. Tip speed was found to be the strongest parameter in reducing noise. However, for a given thrust loading, an optimum tip speed is seen. Correlations between measurements and predictions are shown to be in good agreement.

  20. Noise characteristics of model counter-rotating Prop-Fans

    NASA Astrophysics Data System (ADS)

    Magliozzi, B.

    1987-10-01

    Results of acoustics tests of 24.5 in. diameter model counter-rotating propfans are presented. In these tests several configurations were investigated, including tractors and pushers downstream of a pylon, both at zero degrees and at four degrees angle-of-attack. The effects on noise of spacing between rotors and between the pylon and the rotors were also measured. Effects of rotor spacing were found to cause small changes in noise. Increasing blade count from 5-front and 5-rear to 6-front and 6-rear results in about a 1 EPNdB reduction in noise. Increasing only the front rotor blade count to six blades resulted in a noise reduction of about 2 EPNdB. The presence of the pylon resulted in a 1 EPNdB increase in noise. Angle of attack effects showed an increase of 3.5 EPNdB for the tractor configuration and only 1.5 EPNdB for the pusher configuration. Tip speed was found to be the strongest parameter in reducing noise. However, for a given thrust loading, an optimum tip speed is seen. Correlations between measurements and predictions are shown to be in good agreement.

  1. The Hopfield Model as the Minimum Noise Model for Neurons with Variable Firing Strength

    NASA Astrophysics Data System (ADS)

    Bassias, K. V.; Frank, B.

    A “non-standard Hopfield” network of neurons with variable maximum firing strength ai is studied and a noise analysis is employed. It is shown that the requirement of minimum noise forces the solution with ai=1, ∀i, namely, the standard Hopfield model. The minimum noise is calculated.

  2. [Denoising and assessing method of additive noise in the ultraviolet spectrum of SO2 in flue gas].

    PubMed

    Zhou, Tao; Sun, Chang-Ku; Liu, Bin; Zhao, Yu-Mei

    2009-11-01

    The problem of denoising and assessing method of the spectrum of SO2 in flue gas was studied based on DOAS. The denoising procedure of the additive noise in the spectrum was divided into two parts: reducing the additive noise and enhancing the useful signal. When obtaining the absorption feature of measured gas, a multi-resolution preprocessing method of original spectrum was adopted for denoising by DWT (discrete wavelet transform). The signal energy operators in different scales were used to choose the denoising threshold and separate the useful signal from the noise. On the other hand, because there was no sudden change in the spectra of flue gas in time series, the useful signal component was enhanced according to the signal time dependence. And the standard absorption cross section was used to build the ideal absorption spectrum with the measured gas temperature and pressure. This ideal spectrum was used as the desired signal instead of the original spectrum in the assessing method to modify the SNR (signal-noise ratio). There were two different environments to do the proof test-in the lab and at the scene. In the lab, SO2 was measured several times with the system using this method mentioned above. The average deviation was less than 1.5%, while the repeatability was less than 1%. And the short range experiment data were better than the large range. In the scene of a power plant whose concentration of flue gas had a large variation range, the maximum deviation of this method was 2.31% in the 18 groups of contrast data. The experimental results show that the denoising effect of the scene spectrum was better than that of the lab spectrum. This means that this method can improve the SNR of the spectrum effectively, which is seriously polluted by additive noise. PMID:20101989

  3. Stochastic resonance and noise delayed extinction in a model of two competing species

    NASA Astrophysics Data System (ADS)

    Valenti, D.; Fiasconaro, A.; Spagnolo, B.

    2004-01-01

    We study the role of the noise in the dynamics of two competing species. We consider generalized Lotka-Volterra equations in the presence of a multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence of a periodic driving term, which accounts for the environment temperature variation. We find noise-induced periodic oscillations of the species concentrations and stochastic resonance phenomenon. We find also a nonmonotonic behavior of the mean extinction time of one of the two competing species as a function of the additive noise intensity.

  4. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed us- ing a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify de ciencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the mea- sured data, a sensitivity analysis of the model parameters with emphasis on the de nition of the convection velocity parameter, and a least-squares t of the predicted to the mea- sured shock-associated noise component spectra, resulted in a new de nition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  5. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify deficiencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the measured data, a sensitivity analysis of the model parameters with emphasis on the definition of the convection velocity parameter, and a least-squares fit of the predicted to the measured shock-associated noise component spectra, resulted in a new definition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  6. Semi-Empirical Modelling of Broadband Noise for Aerofoils

    NASA Astrophysics Data System (ADS)

    De Gennaro, Michele; Kuehnelt, Helmut

    2011-09-01

    Turbulence related noise is widely recognized to be one of the most important aerodynamic noise sources for many applications and the development of computational tools for its modelling and prediction is an even more important target in many areas of applied engineering. On a general basis the noise generation mechanisms that can occur on an aerofoil surface can be classified in three main categories: Turbulent Boundary Layer-Trailing Edge noise (TBL-TE), the Laminar Boundary Layer—Vortex Shedding (LBL-VS) noise and the Separation Stall (S-S) noise, respectively related to the boundary layer turbulent eddies, to the boundary layer laminar instabilities and to the large vorticity that can be experienced for different Angle of Attacks, Reynolds and Mach numbers. Despite of the recent improvements of Computational Fluid Dynamics in the frame of turbulence modelling, the numerical computation of high Reynolds flow field turbulence for acoustic purposes is still a hard task to perform as it requires a time-dependant, fully-resolved Large Eddy Simulation often resulting in a prohibitive computational cost. Furthermore in most of the cases it is of fundamental importance to have fast and reliable tools able to capture the driving phenomena and noise sources, in order to be able to perform a large number of simulations embedded in an optimization cycle. The target of this paper is testing the Brooks, Pope and Marcolini semi-empirical model for noise prediction of the NACA 0012 aerofoil on the DU96 geometry in a range of Angle of Attacks from 3 to 10 degrees and Reynolds numbers from 1.5 to 3.1 M. The semi-empirical model input parameters (boundary layer, displacement and momentum thickness) on the suction and pressure side of the aerofoil at the trailing edge location are computed with a steady RANS simulation while the BPM approach has been implemented as an external tool. Computed noise spectra show a good agreement with experimental data from literature in terms of

  7. On spurious and corrupted multifractality: The effects of additive noise, short-term memory and periodic trends

    NASA Astrophysics Data System (ADS)

    Ludescher, Josef; Bogachev, Mikhail I.; Kantelhardt, Jan W.; Schumann, Aicko Y.; Bunde, Armin

    2011-07-01

    We study the performance of multifractal detrended fluctuation analysis (MF-DFA) applied to long-term correlated and multifractal data records in the presence of additive white noise, short-term memory and periodicities. Such additions and disturbances that can be typically found in the observational records of various complex systems ranging from climate dynamics to physiology, network traffic, and finance. In monofractal records, we find that (i) additive white noise hardly results in spurious multifractality, but causes underestimated generalized Hurst exponents h(q) for all q values; (ii) short-range correlations lead to pronounced crossovers in the generalized fluctuation functions Fq(s) at positions that decrease with increasing moment q, thus causing significantly overestimated h(q) for small q and spurious multifractality; (iii) periodicities like seasonal trends (with standard deviations comparable with the one of the studied process) result in spurious “reversed” multifractality where h(q) increases with increasing q (except for very short time windows). We also show that in multifractal cascades moderate additions of noise, short-range memory, or periodic trends cause flawed results for h(q) with q<2, while h(q) with q>2 remains nearly unchanged.

  8. Optical coherence tomography noise modeling and fundamental bounds on human retinal layer segmentation accuracy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    DuBose, Theodore B.; Milanfar, Peyman; Izatt, Joseph A.; Farsiu, Sina

    2016-03-01

    The human retina is composed of several layers, visible by in vivo optical coherence tomography (OCT) imaging. To enhance diagnostics of retinal diseases, several algorithms have been developed to automatically segment one or more of the boundaries of these layers. OCT images are corrupted by noise, which is frequently the result of the detector noise and speckle, a type of coherent noise resulting from the presence of several scatterers in each voxel. However, it is unknown what the empirical distribution of noise in each layer of the retina is, and how the magnitude and distribution of the noise affects the lower bounds of segmentation accuracy. Five healthy volunteers were imaged using a spectral domain OCT probe from Bioptigen, Inc, centered at 850nm with 4.6µm full width at half maximum axial resolution. Each volume was segmented by expert manual graders into nine layers. The histograms of intensities in each layer were then fit to seven possible noise distributions from the literature on speckle and image processing. Using these empirical noise distributions and empirical estimates of the intensity of each layer, the Cramer-Rao lower bound (CRLB), a measure of the variance of an estimator, was calculated for each boundary layer. Additionally, the optimum bias of a segmentation algorithm was calculated, and a corresponding biased CRLB was calculated, which represents the improved performance an algorithm can achieve by using prior knowledge, such as the smoothness and continuity of layer boundaries. Our general mathematical model can be easily adapted for virtually any OCT modality.

  9. A trade-off analysis design tool. Aircraft interior noise-motion/passenger satisfaction model

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1977-01-01

    A design tool was developed to enhance aircraft passenger satisfaction. The effect of aircraft interior motion and noise on passenger comfort and satisfaction was modelled. Effects of individual aircraft noise sources were accounted for, and the impact of noise on passenger activities and noise levels to safeguard passenger hearing were investigated. The motion noise effect models provide a means for tradeoff analyses between noise and motion variables, and also provide a framework for optimizing noise reduction among noise sources. Data for the models were collected onboard commercial aircraft flights and specially scheduled tests.

  10. Jet Noise Modeling for Supersonic Business Jet Application

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2004-01-01

    This document describes the development of an improved predictive model for coannular jet noise, including noise suppression modifications applicable to small supersonic-cruise aircraft such as the Supersonic Business Jet (SBJ), for NASA Langley Research Center (LaRC). For such aircraft a wide range of propulsion and integration options are under consideration. Thus there is a need for very versatile design tools, including a noise prediction model. The approach used is similar to that used with great success by the Modern Technologies Corporation (MTC) in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research Program and in developing a more recent model for coannular nozzles over a wide range of conditions. If highly suppressed configurations are ultimately required, the 2DME model is expected to provide reasonable prediction for these smaller scales, although this has not been demonstrated. It is considered likely that more modest suppression approaches, such as dual stream nozzles featuring chevron or chute suppressors, perhaps in conjunction with inverted velocity profiles (IVP), will be sufficient for the SBJ.

  11. Propeller sheet cavitation noise source modeling and inversion

    NASA Astrophysics Data System (ADS)

    Lee, Keunhwa; Lee, Jaehyuk; Kim, Dongho; Kim, Kyungseop; Seong, Woojae

    2014-02-01

    Propeller sheet cavitation is the main contributor to high level of noise and vibration in the after body of a ship. Full measurement of the cavitation-induced hull pressure over the entire surface of the affected area is desired but not practical. Therefore, using a few measurements on the outer hull above the propeller in a cavitation tunnel, empirical or semi-empirical techniques based on physical model have been used to predict the hull-induced pressure (or hull-induced force). In this paper, with the analytic source model for sheet cavitation, a multi-parameter inversion scheme to find the positions of noise sources and their strengths is suggested. The inversion is posed as a nonlinear optimization problem, which is solved by the optimization algorithm based on the adaptive simplex simulated annealing algorithm. Then, the resulting hull pressure can be modeled with boundary element method from the inverted cavitation noise sources. The suggested approach is applied to the hull pressure data measured in a cavitation tunnel of the Samsung Heavy Industry. Two monopole sources are adequate to model the propeller sheet cavitation noise. The inverted source information is reasonable with the cavitation dynamics of the propeller and the modeled hull pressure shows good agreement with cavitation tunnel experimental data.

  12. Aftershocks in coherent-noise models

    NASA Astrophysics Data System (ADS)

    Wilke, C.; Altmeyer, S.; Martinetz, T.

    1998-09-01

    The decay pattern of aftershocks in the so-called ‘coherent-noise’ models [M.E.J. Newman, K. Sneppen, Phys. Rev. E 54 (1996) 6226] is studied in detail. Analytical and numerical results show that the probability to find a large event at time t after an initial major event decreases as t- τ for small t, with the exponent τ ranging from 0 to values well above 1. This is in contrast to Sneppen and Newman, who stated that the exponent is about 1, independent of the microscopic details of the simulation. Numerical simulations of an extended model [C. Wilke, T. Martinetz, Phys. Rev. E 56 (1997) 7128] show that the power-law is only a generic feature of the original dynamics and does not necessarily appear in a more general context. Finally, the implications of the results to the modelling of earthquakes are discussed.

  13. Preservation of physical properties of stochastic Maxwell equations with additive noise via stochastic multi-symplectic methods

    NASA Astrophysics Data System (ADS)

    Chen, Chuchu; Hong, Jialin; Zhang, Liying

    2016-02-01

    Stochastic Maxwell equations with additive noise are a system of stochastic Hamiltonian partial differential equations intrinsically, possessing the stochastic multi-symplectic conservation law. It is shown that the averaged energy increases linearly with respect to the evolution of time and the flow of stochastic Maxwell equations with additive noise preserves the divergence in the sense of expectation. Moreover, we propose three novel stochastic multi-symplectic methods to discretize stochastic Maxwell equations in order to investigate the preservation of these properties numerically. We make theoretical discussions and comparisons on all of the three methods to observe that all of them preserve the corresponding discrete version of the averaged divergence. Meanwhile, we obtain the corresponding dissipative property of the discrete averaged energy satisfied by each method. Especially, the evolution rates of the averaged energies for all of the three methods are derived which are in accordance with the continuous case. Numerical experiments are performed to verify our theoretical results.

  14. Stochastic speckle noise compensation in optical coherence tomography using non-stationary spline-based speckle noise modelling

    PubMed Central

    Cameron, Andrew; Lui, Dorothy; Boroomand, Ameneh; Glaister, Jeffrey; Wong, Alexander; Bizheva, Kostadinka

    2013-01-01

    Optical coherence tomography (OCT) allows for non-invasive 3D visualization of biological tissue at cellular level resolution. Often hindered by speckle noise, the visualization of important biological tissue details in OCT that can aid disease diagnosis can be improved by speckle noise compensation. A challenge with handling speckle noise is its inherent non-stationary nature, where the underlying noise characteristics vary with the spatial location. In this study, an innovative speckle noise compensation method is presented for handling the non-stationary traits of speckle noise in OCT imagery. The proposed approach centers on a non-stationary spline-based speckle noise modeling strategy to characterize the speckle noise. The novel method was applied to ultra high-resolution OCT (UHROCT) images of the human retina and corneo-scleral limbus acquired in-vivo that vary in tissue structure and optical properties. Test results showed improved performance of the proposed novel algorithm compared to a number of previously published speckle noise compensation approaches in terms of higher signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and better overall visual assessment. PMID:24049697

  15. Theoretical outdoor noise propagation models: Application to practical predictions

    NASA Astrophysics Data System (ADS)

    Tuominen, H. T.; Lahti, T.

    1982-02-01

    The theoretical calculation approaches for outdoor noise propagation are reviewed. Possibilities for their application to practical engineering calculations are outlined. A calculation procedure, which is a combination and extension of several theoretical models, is described. Calculation examples are compared with the results of some propagation studies.

  16. Assessment of noise impact on the urban environment: a study on noise-prediction models. Environmental health series

    SciTech Connect

    Lang, J.

    1986-01-01

    The report identifies, compares, and evaluates the major methods developed in Europe and North America to predict noise levels resulting from urban-development projects. Hopefully, it will guide countries that have not yet developed their own noise-prediction models to choose the model most appropriate for their particular situation. It covers prediction methods for road traffic noise and railroad traffic noise in Austria, Czecheslovakia, France, both Germany's Hungary, Netherlands, Scandinavia, Switzerland, U.K. and USA, as well as the Commission of the European Communities, and a comparison of methods. It also covers prediction methods for industrial noise from Austria, both Germany's Netherlands, Scandinavia, and U.K., and discusses calculation methods for aircraft noise around airports.

  17. The Effect of Nondeterministic Parameters on Shock-Associated Noise Prediction Modeling

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Khavaran, Abbas

    2010-01-01

    Engineering applications for aircraft noise prediction contain models for physical phenomenon that enable solutions to be computed quickly. These models contain parameters that have an uncertainty not accounted for in the solution. To include uncertainty in the solution, nondeterministic computational methods are applied. Using prediction models for supersonic jet broadband shock-associated noise, fixed model parameters are replaced by probability distributions to illustrate one of these methods. The results show the impact of using nondeterministic parameters both on estimating the model output uncertainty and on the model spectral level prediction. In addition, a global sensitivity analysis is used to determine the influence of the model parameters on the output, and to identify the parameters with the least influence on model output.

  18. A Maneuvering Flight Noise Model for Helicopter Mission Planning

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Rau, Robert; May, Benjamin; Hobbs, Christopher

    2015-01-01

    A new model for estimating the noise radiation during maneuvering flight is developed in this paper. The model applies the Quasi-Static Acoustic Mapping (Q-SAM) method to a database of acoustic spheres generated using the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique. A method is developed to generate a realistic flight trajectory from a limited set of waypoints and is used to calculate the quasi-static operating condition and corresponding acoustic sphere for the vehicle throughout the maneuver. By using a previously computed database of acoustic spheres, the acoustic impact of proposed helicopter operations can be rapidly predicted for use in mission-planning. The resulting FRAME-QS model is applied to near-horizon noise measurements collected for the Bell 430 helicopter undergoing transient pitch up and roll maneuvers, with good agreement between the measured data and the FRAME-QS model.

  19. A weighted dictionary learning model for denoising images corrupted by mixed noise.

    PubMed

    Liu, Jun; Tai, Xue-Cheng; Huang, Haiyang; Huan, Zhongdan

    2013-03-01

    This paper proposes a general weighted l(2)-l(0) norms energy minimization model to remove mixed noise such as Gaussian-Gaussian mixture, impulse noise, and Gaussian-impulse noise from the images. The approach is built upon maximum likelihood estimation framework and sparse representations over a trained dictionary. Rather than optimizing the likelihood functional derived from a mixture distribution, we present a new weighting data fidelity function, which has the same minimizer as the original likelihood functional but is much easier to optimize. The weighting function in the model can be determined by the algorithm itself, and it plays a role of noise detection in terms of the different estimated noise parameters. By incorporating the sparse regularization of small image patches, the proposed method can efficiently remove a variety of mixed or single noise while preserving the image textures well. In addition, a modified K-SVD algorithm is designed to address the weighted rank-one approximation. The experimental results demonstrate its better performance compared with some existing methods. PMID:23193456

  20. Quasi-thermal noise measurements on STEREO: Kinetic temperature deduction using electron shot noise model

    NASA Astrophysics Data System (ADS)

    Martinović, M. M.; Zaslavsky, A.; Maksimović, M.; Meyer-Vernet, N.; Å egan, S.; Zouganelis, I.; Salem, C.; Pulupa, M.; Bale, S. D.

    2016-01-01

    Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. A QTN spectrum is determined by plasma and antenna properties. On STEREO/WAVES, since the antennas are relatively short and thick, the QTN spectrum is dominated by electron shot noise, especially at low frequencies, which reduces the accuracy of the method. Here we use the STEREO low-frequency receiver, proton density measured by Plasma and Suprathermal Ion Composition instrument, and a QTN and shot noise models to provide electron temperature data from both STEREO A and B spacecraft. This derivation is important since no reliable measurements of electron temperature exist on board these spacecraft. We compare the results of our analysis with the electron temperature provided by the Wind spacecraft during the period when Wind and STEREO B were close to each other. The comparison shows that our technique is reliable when results are integrated on a time scale of the order of 50 to 60 min.

  1. Modelling Aerodynamically Generated Sound: Recent Advances in Rotor Noise Prediction

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    2000-01-01

    A great deal of progress has been made in the modeling of aerodynamically generated sound for rotors over the past decade. The Ffowcs Williams-Hawkings (FW-H ) equation has been the foundation for much of the development. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H has also been utilized on permeable surfaces surrounding all physical noise sources. Comparison of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems.

  2. Current noise of the interacting resonant level model

    NASA Astrophysics Data System (ADS)

    Suzuki, T. J.; Kennes, D. M.; Meden, V.

    2016-02-01

    We study the zero-frequency current noise of the interacting resonant level model for arbitrary bias voltages using a functional renormalization group approach. For this we extend the existing nonequilibrium scheme by deriving and solving flow equations for the current-vertex functions. On-resonance artificial divergences of the latter found in lowest-order perturbation theory in the two-particle interaction are consistently removed. Away from resonance they are shifted to higher orders. This allows us to gain a comprehensive picture of the current noise in the scaling limit. At high bias voltages, the current noise exhibits a universal power-law decay, whose exponent is, to leading order in the interaction, identical to that of the current. The effective charge on resonance is analyzed in detail, employing properties of the vertex correction. We find that it is only modified to second or higher order in the two-particle interaction.

  3. Analysis of noise-induced eruptions in a geyser model

    NASA Astrophysics Data System (ADS)

    Alexandrov, Dmitri V.; Bashkirtseva, Irina A.; Ryashko, Lev B.

    2016-03-01

    Motivated by important geophysical applications we study a non-linear model of geyser dynamics under the influence of external stochastic forcing. It is shown that the deterministic dynamics is substantially dependent on system parameters leading to the following evolutionary scenaria: (i) oscillations near a stable equilibrium and a transient tendency of the phase trajectories to a spiral sink or a stable node (pre-eruption regime), and (ii) fast escape from equilibrium (eruption regime). Even a small noise changes the system dynamics drastically. Namely, a low-intensity noise generates the small amplitude stochastic oscillations in the regions adjoining to the stable equilibrium point. A small buildup of noise intensity throws the system over its separatrix and leads to eruption. The role of the friction coefficient and relative pressure in the deterministic and stochastic dynamics is studied by direct numerical simulations and stochastic sensitivity functions technique.

  4. Review of Integrated Noise Model (INM) Equations and Processes

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P. (Technical Monitor); Forsyth, David W.; Gulding, John; DiPardo, Joseph

    2003-01-01

    The FAA's Integrated Noise Model (INM) relies on the methods of the SAE AIR-1845 'Procedure for the Calculation of Airplane Noise in the Vicinity of Airports' issued in 1986. Simplifying assumptions for aerodynamics and noise calculation were made in the SAE standard and the INM based on the limited computing power commonly available then. The key objectives of this study are 1) to test some of those assumptions against Boeing source data, and 2) to automate the manufacturer's methods of data development to enable the maintenance of a consistent INM database over time. These new automated tools were used to generate INM database submissions for six airplane types :737-700 (CFM56-7 24K), 767-400ER (CF6-80C2BF), 777-300 (Trent 892), 717-200 (BR7 15), 757-300 (RR535E4B), and the 737-800 (CFM56-7 26K).

  5. Suction-generated noise in an anatomic silicon ear model.

    PubMed

    Luxenberger, Wolfgang; Lahousen, T; Walch, C

    2012-10-01

    The objectives of this study were to evaluate noise levels generated during micro-suction aural toilet using an anatomic silicon ear model. It is an experimental study. In an anatomic ear model made of silicone, the eardrum was replaced by a 1-cm diameter microphone of a calibrated sound-level measuring device. Ear wax was removed using the sucker of a standard ENT treatment unit (Atmos Servant 5(®)). Mean and peak sound levels during the suction procedure were recorded with suckers of various diameters (Fergusson-Frazier 2.7-4 mm as well as Rosen 1.4-2.5 mm). Average noise levels during normal suction in a distance of 1 cm in front of the eardrum ranged between 97 and 103.5 dB(A) (broadband noise). Peak noise levels reached 118 dB(A). During partial obstruction of the sucker by cerumen or dermal flakes, peak noise levels reached 146 dB(A). Peak noise levels observed during the so-called clarinet phenomena were independent of the diameter or type of suckers used. Although micro-suction aural toilet is regarded as an established, widespread and usually safe method to clean the external auditory canal, some caution seems advisable. The performance of long-lasting suction periods straight in front of the eardrum without sound-protecting earwax between sucker and eardrum should be avoided. In particular, when clarinet phenomena are occurring (as described above), the suction procedure should be aborted immediately. In the presence of dermal flakes blocking the auditory canal, cleaning with micro-forceps or other non-suctioning instruments might represent a reasonable alternative. PMID:22740154

  6. Validation of Aircraft Noise Models at Lower Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Plotkin, Kenneth J.; Carey, Jeffrey N.; Bradley, Kevin A.

    1996-01-01

    Noise levels around airports and airbases in the United States arc computed via the FAA's Integrated Noise Model (INM) or the Air Force's NOISEMAP (NMAP) program. These models were originally developed for use in the vicinity of airports, at distances which encompass a day night average sound level in decibels (Ldn) of 65 dB or higher. There is increasing interest in aircraft noise at larger distances from the airport. including en-route noise. To evaluate the applicability of INM and NMAP at larger distances, a measurement program was conducted at a major air carrier airport with monitoring sites located in areas exposed to an Ldn of 55 dB and higher. Automated Radar Terminal System (ARTS) radar tracking data were obtained to provide actual flight parameters and positive identification of aircraft. Flight operations were grouped according to aircraft type. stage length, straight versus curved flight tracks, and arrival versus departure. Sound exposure levels (SEL) were computed at monitoring locations, using the INM, and compared with measured values. While individual overflight SEL data was characterized by a high variance, analysis performed on an energy-averaging basis indicates that INM and similar models can be applied to regions exposed to an Ldn of 55 dB with no loss of reliability.

  7. Critical noise of majority-vote model on complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Hanshuang; Shen, Chuansheng; He, Gang; Zhang, Haifeng; Hou, Zhonghuai

    2015-02-01

    The majority-vote model with noise is one of the simplest nonequilibrium statistical model that has been extensively studied in the context of complex networks. However, the relationship between the critical noise where the order-disorder phase transition takes place and the topology of the underlying networks is still lacking. In this paper, we use the heterogeneous mean-field theory to derive the rate equation for governing the model's dynamics that can analytically determine the critical noise fc in the limit of infinite network size N →∞ . The result shows that fc depends on the ratio of to , where and are the average degree and the 3 /2 order moment of degree distribution, respectively. Furthermore, we consider the finite-size effect where the stochastic fluctuation should be involved. To the end, we derive the Langevin equation and obtain the potential of the corresponding Fokker-Planck equation. This allows us to calculate the effective critical noise fc(N ) at which the susceptibility is maximal in finite-size networks. We find that the fc-fc(N ) decays with N in a power-law way and vanishes for N →∞ . All the theoretical results are confirmed by performing the extensive Monte Carlo simulations in random k -regular networks, Erdös-Rényi random networks, and scale-free networks.

  8. Modeling the characteristics of wheel/rail rolling noise

    NASA Astrophysics Data System (ADS)

    Lui, Wai Keung; Li, Kai Ming; Frommer, Glenn H.

    2005-04-01

    To study the sound radiation characteristics of a passing train, four sets of noise measurements for different train operational conditions have been conducted at three different sites, including ballast tracks at grade and railway on a concrete viaduct. The time histories computed by the horizontal radiation models were compared with the measured noise profiles. The measured sound exposure levels are used to deduce the vertical directivity pattern for different railway systems. It is found that the vertical directivity of different railway systems shows a rather similar pattern. The vertical directivity of train noise is shown to increase up to about 30× before reducing to a minimum at 90×. A multipole expansion model is proposed to account for the vertical radiation directivity of the train noise. An empirical formula, which has been derived, compares well with the experimental data. The empirical model is found to be applicable to different train/rail systems at train speeds ranging up to 120 km/h in this study. [Work supported by MTR Corporation Ltd., Innovation Technology Commission of the HKSAR Government and The Hong Kong Polytechnic University.

  9. Cruise noise measurements of a scale model advanced ducted propulsor

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Hughes, Christopher E.; Bock, Lawrence A.; Hall, David G.

    1993-01-01

    A scale model Advanced Ducted Propulsor (ADP) was tested in NASA Lewis Research Center's 8- by 6-Foot Wind Tunnel to obtain acoustic data at cruise conditions. The model, designed and manufactured by Pratt & Whitney Division of United Technologies, was tested with three inlet lengths. The model has 16 rotor blades and 22 stator vanes, which results in a cut-on condition with respect to rotor-stator interaction noise. Comparisons of the noise directivity of the ADP with that of a previously tested high-speed, unducted propeller showed that the ADP peak blade passing tone was about 30 dB below that of the propeller, and therefore, should not present a cabin or enroute noise problem. The maximum blade passing tone first increased with increasing helical tip Mach number, peaked, and then decreased at a higher Mach number. The ADP tests with the shortest inlet showed more noise in the inlet arc than did tests with either of the other two inlet lengths.

  10. Modeling for Airframe Noise Prediction Using Vortex Methods

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Charlie

    2002-12-01

    Various components of the airframe are known to be a significant source of noise. With the advent of technology in quieting modern engines, airframe generated noise competes and, in certain instances, surpasses the engine noise. Airframe noise is most pronounced during aircraft approach when the engines are operating at reduced thrust, and airframe components such as high-lift devices and landing gears are in deployed conditions. Recent experimental studies have reaffirmed that the most significant sources of high-lift noise are from the leading-edge slat and the side edges of flaps. Studies of flow field around these structures have consistently shown that there are complicated unsteady vortical flows such as vortex shedding, secondary vortices and vortex breakdown, which are susceptible to far-field radiated sound. The near-field CFD computational data have been used to calculate the far-field acoustics by employing Ffowcs-Williams/Hawkings equation using Lighthill's analogy. However, because of the limit of current computing capacity, it is very time consuming to generate unsteady Navier-Stokes (N-S) computational data for aeroacoustics. Although the N-S simulations are probably necessary to reveal many complex flow phenomena that are unsteady and fully nonlinear, these simulations are not feasible to be used for parametric design. purposes. The objective of this study is thus to develop theoretical models for airframe noise predictions which have quick turn-around computing time. Since it is known that vorticity is a major mechanism responsible for noise generation on high-lift devices, vortex methods have been chosen as modeling tools. Vortex methods are much faster in comparison with other numerical methods, yet they are able to incorporate nonlinear interactions between vortices. Obviously, as with any theoretical model, assumptions have to be made and justified when such models are used in complex flow. The merit and applicability of the models for

  11. Squeal noise in simple numerical brake models

    NASA Astrophysics Data System (ADS)

    Oberst, S.; Lai, J. C. S.

    2015-09-01

    Since the early 1920s, automotive disc brake squeal has caused warranty issues and customer dissatisfaction. Despite a good deal of progress achieved, predicting brake squeal propensity is as difficult as ever as not all mechanisms and interactions are known owing to their highly fugitive complex nature. In recent years, research has been focused on the prediction of unstable vibration modes by the complex eigenvalue analysis (CEA) for the mode-coupling type of instability. There has been very limited consideration given to the calculation of the acoustic radiation properties due to friction contact between a pad and a rotor. Recent analyses using a forced response analysis with harmonic contact pressure excitation indicates negative dissipated energy at some pad eigenfrequencies predicted to be stable by the CEA. A transient nonlinear time domain analysis with no external excitation indicates that squeal could develop at these eigenfrequencies. Here, the acoustic radiation characteristics of those pad modes are determined by analysing the acoustic power levels and radiation efficiencies of simplified brake models in the form of a pad rubbing on a plate or on a disc using the acoustic boundary element method based on velocities extracted from the forced response analysis. Results show that unstable pad modes trigger unstable disc vibrations resulting in instantaneous mode squeal similar to those observed experimentally. Changes in the radiation efficiency with pressure variations are smaller than those with friction coefficient variations and are caused by the phase difference of the velocities out-of-plane vibration between the pad and the disc.

  12. Propeller aircraft interior noise model: User's manual for computer program

    NASA Astrophysics Data System (ADS)

    Wilby, E. G.; Pope, L. D.

    1985-01-01

    A computer program entitled PAIN (Propeller Aircraft Interior Noise) has been developed to permit calculation of the sound levels in the cabin of a propeller-driven airplane. The fuselage is modeled as a cylinder with a structurally integral floor, the cabin sidewall and floor being stiffened by ring frames, stringers and floor beams of arbitrary configurations. The cabin interior is covered with acoustic treatment and trim. The propeller noise consists of a series of tones at harmonics of the blade passage frequency. Input data required by the program include the mechanical and acoustical properties of the fuselage structure and sidewall trim. Also, the precise propeller noise signature must be defined on a grid that lies in the fuselage skin. The propeller data are generated with a propeller noise prediction program such as the NASA Langley ANOPP program. The program PAIN permits the calculation of the space-average interior sound levels for the first ten harmonics of a propeller rotating alongside the fuselage. User instructions for PAIN are given in the report. Development of the analytical model is presented in NASA CR 3813.

  13. A Stochastic Approach to Noise Modeling for Barometric Altimeters

    PubMed Central

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2013-01-01

    The question whether barometric altimeters can be applied to accurately track human motions is still debated, since their measurement performance are rather poor due to either coarse resolution or drifting behavior problems. As a step toward accurate short-time tracking of changes in height (up to few minutes), we develop a stochastic model that attempts to capture some statistical properties of the barometric altimeter noise. The barometric altimeter noise is decomposed in three components with different physical origin and properties: a deterministic time-varying mean, mainly correlated with global environment changes, and a first-order Gauss-Markov (GM) random process, mainly accounting for short-term, local environment changes, the effects of which are prominent, respectively, for long-time and short-time motion tracking; an uncorrelated random process, mainly due to wideband electronic noise, including quantization noise. Autoregressive-moving average (ARMA) system identification techniques are used to capture the correlation structure of the piecewise stationary GM component, and to estimate its standard deviation, together with the standard deviation of the uncorrelated component. M-point moving average filters used alone or in combination with whitening filters learnt from ARMA model parameters are further tested in few dynamic motion experiments and discussed for their capability of short-time tracking small-amplitude, low-frequency motions. PMID:24253189

  14. Airport-Noise Levels and Annoyance Model (ALAMO) user's guide

    NASA Technical Reports Server (NTRS)

    Deloach, R.; Donaldson, J. L.; Johnson, M. J.

    1986-01-01

    A guide for the use of the Airport-Noise Level and Annoyance MOdel (ALAMO) at the Langley Research Center computer complex is provided. This document is divided into 5 primary sections, the introduction, the purpose of the model, and an in-depth description of the following subsystems: baseline, noise reduction simulation and track analysis. For each subsystem, the user is provided with a description of architecture, an explanation of subsystem use, sample results, and a case runner's check list. It is assumed that the user is familiar with the operations at the Langley Research Center (LaRC) computer complex, the Network Operating System (NOS 1.4) and CYBER Control Language. Incorporated within the ALAMO model is a census database system called SITE II.

  15. Noise, vibration, harshness model of a rotating tyre

    NASA Astrophysics Data System (ADS)

    Bäcker, Manfred; Gallrein, Axel; Roller, Michael

    2016-04-01

    The tyre plays a fundamental role in the generation of acoustically perceptible driving noise and vibrations inside the vehicle. An essential part of these vibrations is induced by the road excitation and transferred via the tyre into the vehicle. There are two basic ways to study noise, vibration, harshness (NVH) behaviour: Simulations in time and frequency domains. Modelling the tyre transfer behaviour in frequency domain requires special attention to the rotation of the tyre. This paper shows the approach taken by the authors to include the transfer behaviour in the frequency range up to 250 Hz from geometric road excitations to resulting spindle forces in frequency domain. This paper validates the derived NVH tyre model by comparison with appropriate transient simulations of the base transient model.

  16. Noise analysis of genome-scale protein synthesis using a discrete computational model of translation

    SciTech Connect

    Racle, Julien; Hatzimanikatis, Vassily; Stefaniuk, Adam Jan

    2015-07-28

    Noise in genetic networks has been the subject of extensive experimental and computational studies. However, very few of these studies have considered noise properties using mechanistic models that account for the discrete movement of ribosomes and RNA polymerases along their corresponding templates (messenger RNA (mRNA) and DNA). The large size of these systems, which scales with the number of genes, mRNA copies, codons per mRNA, and ribosomes, is responsible for some of the challenges. Additionally, one should be able to describe the dynamics of ribosome exchange between the free ribosome pool and those bound to mRNAs, as well as how mRNA species compete for ribosomes. We developed an efficient algorithm for stochastic simulations that addresses these issues and used it to study the contribution and trade-offs of noise to translation properties (rates, time delays, and rate-limiting steps). The algorithm scales linearly with the number of mRNA copies, which allowed us to study the importance of genome-scale competition between mRNAs for the same ribosomes. We determined that noise is minimized under conditions maximizing the specific synthesis rate. Moreover, sensitivity analysis of the stochastic system revealed the importance of the elongation rate in the resultant noise, whereas the translation initiation rate constant was more closely related to the average protein synthesis rate. We observed significant differences between our results and the noise properties of the most commonly used translation models. Overall, our studies demonstrate that the use of full mechanistic models is essential for the study of noise in translation and transcription.

  17. Noise analysis of genome-scale protein synthesis using a discrete computational model of translation

    NASA Astrophysics Data System (ADS)

    Racle, Julien; Stefaniuk, Adam Jan; Hatzimanikatis, Vassily

    2015-07-01

    Noise in genetic networks has been the subject of extensive experimental and computational studies. However, very few of these studies have considered noise properties using mechanistic models that account for the discrete movement of ribosomes and RNA polymerases along their corresponding templates (messenger RNA (mRNA) and DNA). The large size of these systems, which scales with the number of genes, mRNA copies, codons per mRNA, and ribosomes, is responsible for some of the challenges. Additionally, one should be able to describe the dynamics of ribosome exchange between the free ribosome pool and those bound to mRNAs, as well as how mRNA species compete for ribosomes. We developed an efficient algorithm for stochastic simulations that addresses these issues and used it to study the contribution and trade-offs of noise to translation properties (rates, time delays, and rate-limiting steps). The algorithm scales linearly with the number of mRNA copies, which allowed us to study the importance of genome-scale competition between mRNAs for the same ribosomes. We determined that noise is minimized under conditions maximizing the specific synthesis rate. Moreover, sensitivity analysis of the stochastic system revealed the importance of the elongation rate in the resultant noise, whereas the translation initiation rate constant was more closely related to the average protein synthesis rate. We observed significant differences between our results and the noise properties of the most commonly used translation models. Overall, our studies demonstrate that the use of full mechanistic models is essential for the study of noise in translation and transcription.

  18. Wind tunnel investigations of model rotor noise at low tip speeds

    NASA Technical Reports Server (NTRS)

    Aravamudan, K. S.; Lee, A.; Harris, W. L.

    1978-01-01

    Experimental and related analytical results on model rotor rotational and broadband noise obtained in the anechoic wind tunnel and rotor facility are summarized. Factors studied include various noise sources, effects of helicopter performance parameters on noise generated by a model main rotor, appropriate scaling laws for the various types of main rotor noise, and the effects of intensity and size scales of injected turbulence on the intensity and spectra of broadband noise.

  19. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  20. Flight Acoustic Testing and Data Acquisition For the Rotor Noise Model (RNM)

    NASA Technical Reports Server (NTRS)

    Conner, David A.; Burley, Casey L.; Smith, Charles D.

    2006-01-01

    Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the Acoustics Week flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

  1. Flight Acoustic Testing and For the Rotorcraft Noise Data Acquisition Model (RNM)

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Smith, Charles D.; Conner, David A.

    2006-01-01

    Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the "Acoustics Week" flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

  2. Assessment of physiological noise modelling methods for functional imaging of the spinal cord.

    PubMed

    Kong, Yazhuo; Jenkinson, Mark; Andersson, Jesper; Tracey, Irene; Brooks, Jonathan C W

    2012-04-01

    The spinal cord is the main pathway for information between the central and the peripheral nervous systems. Non-invasive functional MRI offers the possibility of studying spinal cord function and central sensitisation processes. However, imaging neural activity in the spinal cord is more difficult than in the brain. A significant challenge when dealing with such data is the influence of physiological noise (primarily cardiac and respiratory), and currently there is no standard approach to account for these effects. We have previously studied the various sources of physiological noise for spinal cord fMRI at 1.5T and proposed a physiological noise model (PNM) (Brooks et al., 2008). An alternative de-noising strategy, selective averaging filter (SAF), was proposed by Deckers et al. (2006). In this study we reviewed and implemented published physiological noise correction methods at higher field (3T) and aimed to find the optimal models for gradient-echo-based BOLD acquisitions. Two general techniques were compared: physiological noise model (PNM) and selective averaging filter (SAF), along with regressors designed to account for specific signal compartments and physiological processes: cerebrospinal fluid (CSF), motion correction (MC) parameters, heart rate (HR), respiration volume per time (RVT), and the associated cardiac and respiratory response functions. Functional responses were recorded from the cervical spinal cord of 18 healthy subjects in response to noxious thermal and non-noxious punctate stimulation. The various combinations of models and regressors were compared in three ways: the model fit residuals, regression model F-tests and the number of activated voxels. The PNM was found to outperform SAF in all three tests. Furthermore, inclusion of the CSF regressor was crucial as it explained a significant amount of signal variance in the cord and increased the number of active cord voxels. Whilst HR, RVT and MC explained additional signal (noise) variance

  3. Noise-induced extinction in Bazykin-Berezovskaya population model

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev

    2016-07-01

    A nonlinear Bazykin-Berezovskaya prey-predator model under the influence of parametric stochastic forcing is considered. Due to Allee effect, this conceptual population model even in the deterministic case demonstrates both local and global bifurcations with the change of predator mortality. It is shown that random noise can transform system dynamics from the regime of coexistence, in equilibrium or periodic modes, to the extinction of both species. Geometry of attractors and separatrices, dividing basins of attraction, plays an important role in understanding the probabilistic mechanisms of these stochastic phenomena. Parametric analysis of noise-induced extinction is carried out on the base of the direct numerical simulation and new analytical stochastic sensitivity functions technique taking into account the arrangement of attractors and separatrices.

  4. Coherence estimation in synthetic aperture radar data based on speckle noise modeling.

    PubMed

    López-Martínez, Carlos; Pottier, Eric

    2007-02-01

    In the past we proposed a multidimensional speckle noise model to which we now include systematic phase variation effects. This extension makes it possible to define what is believed to be a novel coherence model able to identify the different sources of bias when coherence is estimated on multidimensional synthetic radar aperture (SAR) data. On the one hand, low coherence biases are basically due to the complex additive speckle noise component of the Hermitian product of two SAR images. On the other hand, the availability of the coherence model permits us to quantify the bias due to topography when multilook filtering is considered, permitting us to establish the conditions upon which information may be estimated independently of topography. Based on the coherence model, two coherence estimation approaches, aiming to reduce the different biases, are proposed. Results with simulated and experimental polarimetric and interferometric SAR data illustrate and validate both, the coherence model and the coherence estimation algorithms. PMID:17230249

  5. A Model for Shear Layer Effects on Engine Noise Radiation

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Farassat, F.; Pope, D. Stuart; Vatsa, V.

    2004-01-01

    Prediction of aircraft engine noise is an important aspect of addressing the issues of community noise and cabin noise control. The development of physics based methodologies for performing such predictions has been a focus of Computational Aeroacoustics (CAA). A recent example of code development in this area is the ducted fan noise propagation and radiation code CDUCT-LaRC. Included within the code is a duct radiation model that is based on the solution of FfowcsWilliams-Hawkings (FW-H) equation with a penetrable data surface. Testing of this equation for many acoustic problems has shown it to provide generally better results than the Kirchhoff formula for moving surfaces. Currently, the data surface is taken to be the inlet or exhaust plane for inlet or aft-fan cases, respectively. While this provides reasonable results in many situations, these choices of data surface location lead to a few limitations. For example, the shear layer between the bypass ow and external stream can refract the sound waves radiated to the far field. Radiation results can be improved by including this effect, as well as the rejection of the sound in the bypass region from the solid surface external to the bypass duct surrounding the core ow. This work describes the implementation, and possible approximation, of a shear layer boundary condition within CDUCT-LaRC. An example application also illustrates the improvements that this extension offers for predicting noise radiation from complex inlet and bypass duct geometries, thereby providing a means to evaluate external treatments in the vicinity of the bypass duct exhaust plane.

  6. Model- based filtering for artifact and noise suppression with state estimation for electrodermal activity measurements in real time.

    PubMed

    Tronstad, Christian; Staal, Odd M; Saelid, Steinar; Martinsen, Orjan G

    2015-08-01

    Measurement of electrodermal activity (EDA) has recently made a transition from the laboratory into daily life with the emergence of wearable devices. Movement and nongelled electrodes make these devices more susceptible to noise and artifacts. In addition, real-time interpretation of the measurement is needed for user feedback. The Kalman filter approach may conveniently deal with both these issues. This paper presents a biophysical model for EDA implemented in an extended Kalman filter. Employing the filter on data from Physionet along with simulated noise and artifacts demonstrates noise and artifact suppression while implicitly providing estimates of model states and parameters such as the sudomotor nerve activation. PMID:26736861

  7. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance

    SciTech Connect

    Li, Ke; Tang, Jie; Chen, Guang-Hong

    2014-04-15

    Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose){sup −β} with the component β ≈ 0.25, which violated the classical σ ∝ (dose){sup −0.5} power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial

  8. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance

    PubMed Central

    Li, Ke; Tang, Jie; Chen, Guang-Hong

    2014-01-01

    Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo®, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose)−β with the component β ≈ 0.25, which violated the classical σ ∝ (dose)−0.5 power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial uniformity when compared

  9. Critical noise of majority-vote model on complex networks.

    PubMed

    Chen, Hanshuang; Shen, Chuansheng; He, Gang; Zhang, Haifeng; Hou, Zhonghuai

    2015-02-01

    The majority-vote model with noise is one of the simplest nonequilibrium statistical model that has been extensively studied in the context of complex networks. However, the relationship between the critical noise where the order-disorder phase transition takes place and the topology of the underlying networks is still lacking. In this paper, we use the heterogeneous mean-field theory to derive the rate equation for governing the model's dynamics that can analytically determine the critical noise f(c) in the limit of infinite network size N→∞. The result shows that f(c) depends on the ratio of 〈k〉 to 〈k(3/2)〉, where 〈k〉 and 〈k(3/2)〉 are the average degree and the 3/2 order moment of degree distribution, respectively. Furthermore, we consider the finite-size effect where the stochastic fluctuation should be involved. To the end, we derive the Langevin equation and obtain the potential of the corresponding Fokker-Planck equation. This allows us to calculate the effective critical noise f(c)(N) at which the susceptibility is maximal in finite-size networks. We find that the f(c)-f(c)(N) decays with N in a power-law way and vanishes for N→∞. All the theoretical results are confirmed by performing the extensive Monte Carlo simulations in random k-regular networks, Erdös-Rényi random networks, and scale-free networks. PMID:25768561

  10. Modeling techniques for gaining additional urban space

    NASA Astrophysics Data System (ADS)

    Thunig, Holger; Naumann, Simone; Siegmund, Alexander

    2009-09-01

    One of the major accompaniments of the globalization is the rapid growing of urban areas. Urban sprawl is the main environmental problem affecting those cities across different characteristics and continents. Various reasons for the increase in urban sprawl in the last 10 to 30 years have been proposed [1], and often depend on the socio-economic situation of cities. The quantitative reduction and the sustainable handling of land should be performed by inner urban development instead of expanding urban regions. Following the principal "spare the urban fringe, develop the inner suburbs first" requires differentiated tools allowing for quantitative and qualitative appraisals of current building potentials. Using spatial high resolution remote sensing data within an object-based approach enables the detection of potential areas while GIS-data provides information for the quantitative valuation. This paper presents techniques for modeling urban environment and opportunities of utilization of the retrieved information for urban planners and their special needs.

  11. Combined action of time-delay and colored cross-associated multiplicative and additive noises on stability and stochastic resonance for a stochastic metapopulation system

    NASA Astrophysics Data System (ADS)

    Wang, Kang-Kang; Zong, De-Cai; Wang, Ya-Jun; Li, Sheng-Hong

    2016-05-01

    In this paper, the transition between the stable state of a big density and the extinction state and stochastic resonance (SR) for a time-delayed metapopulation system disturbed by colored cross-correlated noises are investigated. By applying the fast descent method, the small time-delay approximation and McNamara and Wiesenfeld's SR theory, we investigate the impacts of time-delay, the multiplicative, additive noises and colored cross-correlated noise on the SNR and the shift between the two states of the system. Numerical results show that the multiplicative, additive noises and time-delay can all speed up the transition from the stable state to the extinction state, while the correlation noise and its correlation time can slow down the extinction process of the population system. With respect to SNR, the multiplicative noise always weakens the SR effect, while noise correlation time plays a dual role in motivating the SR phenomenon. Meanwhile, time-delay mainly plays a negative role in stimulating the SR phenomenon. Conversely, it could motivate the SR effect to increase the strength of the cross-correlation noise in the SNR-β plot, while the increase of additive noise intensity will firstly excite SR, and then suppress the SR effect.

  12. Speech synthesis with pitch modification using harmonic plus noise model

    NASA Astrophysics Data System (ADS)

    Lehana, Parveen K.; Pandey, Prem C.

    2003-10-01

    In harmonic plus noise model (HNM) based speech synthesis, the input signal is modeled as two parts: the harmonic part using amplitudes and phases of the harmonics of the fundamental and the noise part using an all-pole filter excited by random white Gaussian noise. This method requires relatively less number of parameters and computations, provides good quality output, and permits pitch and time scaling without explicit estimation of vocal tract parameters. Pitch scaling to synthesize the speech with interpolated original amplitudes and phases at the multiples of the scaled pitch frequency results in an unnatural quality. Our investigation for obtaining natural quality output showed that the frequency scale of the amplitudes and phases of the harmonics of the original signal needed to be modified by a speaker dependent warping function. The function was obtained by studying the relationship between pitch frequency and formant frequencies for the three cardinal vowels naturally occurring with different pitches in a passage with intonation. Listening tests showed that good quality speech was obtained by linear frequency scaling of the amplitude and phase spectra, by the same factor as the pitch-scaling.

  13. Noise model for low-frequency through-the-Earth communication

    NASA Astrophysics Data System (ADS)

    Raab, Frederick H.

    2010-12-01

    Analysis and simulation of through-the-Earth communication links and signal processing techniques require a more complete noise model than is needed for the analysis of conventional communication systems. This paper presents a multicomponent noise model that includes impulsive characteristics, direction-of-arrival characteristics, and effects of local geology. The noise model is derived from theoretical considerations and confirmed by field tests.

  14. Noise, Bifurcations, and Modeling of Interacting Particle Systems

    PubMed Central

    Mier-y-Teran-Romero, Luis; Forgoston, Eric; Schwartz, Ira B.

    2011-01-01

    We consider the stochastic patterns of a system of communicating, or coupled, self-propelled particles in the presence of noise and communication time delay. For sufficiently large environmental noise, there exists a transition between a translating state and a rotating state with stationary center of mass. Time delayed communication creates a bifurcation pattern dependent on the coupling amplitude between particles. Using a mean field model in the large number limit, we show how the complete bifurcation unfolds in the presence of communication delay and coupling amplitude. Relative to the center of mass, the patterns can then be described as transitions between translation, rotation about a stationary point, or a rotating swarm, where the center of mass undergoes a Hopf bifurcation from steady state to a limit cycle. Examples of some of the stochastic patterns will be given for large numbers of particles. PMID:22124204

  15. Propeller aircraft interior noise model utilization study and validation

    NASA Technical Reports Server (NTRS)

    Pope, L. D.

    1984-01-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  16. Propeller aircraft interior noise model utilization study and validation

    NASA Astrophysics Data System (ADS)

    Pope, L. D.

    1984-09-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  17. Phase transitions in the majority-vote model with two types of noises

    NASA Astrophysics Data System (ADS)

    Vieira, Allan R.; Crokidakis, Nuno

    2016-05-01

    In this work we study the majority-vote model with the presence of two distinct noises. The first one is the usual noise q, that represents the probability that a given agent follows the minority opinion of his/her social contacts. On the other hand, we consider the independent behavior, such that an agent can choose his/her own opinion + 1 or - 1 with equal probability, independent of the group's norm. We study the impact of the presence of such two kinds of stochastic driving in the phase transitions of the model, considering the mean field and the square lattice cases. Our results suggest that the model undergoes a nonequilibrium order-disorder phase transition even in the absence of the noise q, due to the independent behavior, but this transition may be suppressed. In addition, for both topologies analyzed, we verified that the transition is in the same universality class of the equilibrium Ising model, i.e., the critical exponents are not affected by the presence of the second noise, associated with independence.

  18. A basic neural traffic noise prediction model for Tehran's roads.

    PubMed

    Givargis, Sh; Karimi, H

    2010-12-01

    We present an artificial neural network model to predict hourly A-weighted equivalent sound pressure levels (L(Aeq,1h)) for roads in Tehran at distances less than 4 m from the nearside carriageway edge. Our model uses the UK Calculation of Road Traffic Noise (CORTN) approach. Data were obtained from 50 sampling locations near five roads in Tehran at nearside carriageway edge distances of less than 4 m. The data were randomly assigned to training, testing, and holdout subsets. Model training was carried out using the training and testing subsets and comprised 60% and 20% of the data, respectively. Model validation was performed using the remaining 20% of data as a holdout subset. We examine the overall model efficiency using non-parametric tests, such as the Wilcoxon matched-pairs signed-rank test for the training step and the Kolmogorov-Smirnov test for two independent samples for the validation step. Our results indicate that a neural network approach can be applied for traffic noise prediction in Tehran in a statistically sound manner. The Wilcoxon matched-pairs signed-ranks test detects no significant difference between the absolute testing set errors of the developed neural network and a calibrated version of the CORTN model. PMID:20678858

  19. High accuracy localization of long term evolution based on a new multiple carrier noise model.

    PubMed

    Lee, Wah Ching; Hung, Faan Hei; Tsang, Kim Fung; Wu, Chung Kit; Chi, Hao Ran; Chui, Kwok Tai; Lau, Wing Hong

    2014-01-01

    A high accuracy localization technique using Long Term Evolution (LTE) based on a new and accurate multiple carrier noise model has been developed. In the noise consideration, the LTE multiple carriers phase noise has been incorporated so that a new and accurate noise model is achieved. An experiment was performed to characterize the phase noise of carriers at 2 GHz. The developed noise model was incorporated into LTE localization analysis in a high traffic area in Hong Kong to evaluate the accuracy of localization. The evaluation and analysis reveals that the new localization method achieves an improvement of about 10% accuracy comparing to existing widely adopted schemes. PMID:25436658

  20. High Accuracy Localization of Long Term Evolution Based on a New Multiple Carrier Noise Model

    PubMed Central

    Lee, Wah Ching; Hung, Faan Hei; Tsang, Kim Fung; Wu, Chung Kit; Chi, Hao Ran; Chui, Kwok Tai; Lau, Wing Hong

    2014-01-01

    A high accuracy localization technique using Long Term Evolution (LTE) based on a new and accurate multiple carrier noise model has been developed. In the noise consideration, the LTE multiple carriers phase noise has been incorporated so that a new and accurate noise model is achieved. An experiment was performed to characterize the phase noise of carriers at 2 GHz. The developed noise model was incorporated into LTE localization analysis in a high traffic area in Hong Kong to evaluate the accuracy of localization. The evaluation and analysis reveals that the new localization method achieves an improvement of about 10% accuracy comparing to existing widely adopted schemes. PMID:25436658

  1. Fault diagnosis using noise modeling and a new artificial immune system based algorithm

    NASA Astrophysics Data System (ADS)

    Abbasi, Farshid; Mojtahedi, Alireza; Ettefagh, Mir Mohammad

    2015-12-01

    A new fault classification/diagnosis method based on artificial immune system (AIS) algorithms for the structural systems is proposed. In order to improve the accuracy of the proposed method, i.e., higher success rate, Gaussian and non-Gaussian noise generating models are applied to simulate environmental noise. The identification of noise model, known as training process, is based on the estimation of the noise model parameters by genetic algorithms (GA) utilizing real experimental features. The proposed fault classification/diagnosis algorithm is applied to the noise contaminated features. Then, the results are compared to that obtained without noise modeling. The performance of the proposed method is examined using three laboratory case studies in two healthy and damaged conditions. Finally three different types of noise models are studied and it is shown experimentally that the proposed algorithm with non-Gaussian noise modeling leads to more accurate clustering of memory cells as the major part of the fault classification procedure.

  2. Enhanced propagation modeling of directional aviation noise: A hybrid parabolic equation-fast field program method

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Joyce E.

    2011-12-01

    Commercial air traffic is anticipated to increase rapidly in the coming years. The impact of aviation noise on communities surrounding airports is, therefore, a growing concern. Accurate prediction of noise can help to mitigate the impact on communities and foster smoother integration of aerospace engineering advances. The problem of accurate sound level prediction requires careful inclusion of all mechanisms that affect propagation, in addition to correct source characterization. Terrain, ground type, meteorological effects, and source directivity can have a substantial influence on the noise level. Because they are difficult to model, these effects are often included only by rough approximation. This dissertation presents a model designed for sound propagation over uneven terrain, with mixed ground type and realistic meteorological conditions. The model is a hybrid of two numerical techniques: the parabolic equation (PE) and fast field program (FFP) methods, which allow for physics-based inclusion of propagation effects and ensure the low frequency content, a factor in community impact, is predicted accurately. Extension of the hybrid model to a pseudo-three-dimensional representation allows it to produce aviation noise contour maps in the standard form. In order for the model to correctly characterize aviation noise sources, a method of representing arbitrary source directivity patterns was developed for the unique form of the parabolic equation starting field. With this advancement, the model can represent broadband, directional moving sound sources, traveling along user-specified paths. This work was prepared for possible use in the research version of the sound propagation module in the Federal Aviation Administration's new standard predictive tool.

  3. Fluctuation loops in a noise-driven linear circuit model

    NASA Astrophysics Data System (ADS)

    Teitsworth, Stephen; Ghanta, Akhil; Neu, John

    Understanding the spatio-temporal structure of most probable fluctuation pathways to rarely occurring states is a central problem in the study of noise-driven, non-equilibrium dynamical systems. When the underlying system does not possess detailed balance, the optimal fluctuation pathway to a particular state and relaxation pathway from that state may combine to form a loop-like structure in the system phase space which we call a fluctuation loop. Here, we study fluctuation loops in a linear circuit model consisting of coupled RC elements, where each element is driven by its own noise source and, generally, the effective noise strengths of different elements are not equal. Using a stochastic Hamiltonian approach, we determine the optimal fluctuation pathways, and construct corresponding fluctuation loops. Analytical results agree closely with suitably averaged simulation results based on the associated Langevin equation. To better characterize fluctuation loops, we study the time-dependent area tensor that is swept out by individual stochastic trajectories in the system phase space. At long times, the area tensor scales linearly with time, with a coefficient that precisely vanishes when the system satisfies detailed balance.

  4. The transport exponent in percolation models with additional loops

    NASA Astrophysics Data System (ADS)

    Babalievski, F.

    1994-10-01

    Several percolation models with additional loops were studied. The transport exponents for these models were estimated numerically by means of a transfer-matrix approach. It was found that the transport exponent has a drastically changed value for some of the models. This result supports some previous numerical studies on the vibrational properties of similar models (with additional loops).

  5. Bicoherence analysis of model-scale jet noise.

    PubMed

    Gee, Kent L; Atchley, Anthony A; Falco, Lauren E; Shepherd, Micah R; Ukeiley, Lawrence S; Jansen, Bernard J; Seiner, John M

    2010-11-01

    Bicoherence analysis has been used to characterize nonlinear effects in the propagation of noise from a model-scale, Mach-2.0, unheated jet. Nonlinear propagation effects are predominantly limited to regions near the peak directivity angle for this jet source and propagation range. The analysis also examines the practice of identifying nonlinear propagation by comparing spectra measured at two different distances and assuming far-field, linear propagation between them. This spectral comparison method can lead to erroneous conclusions regarding the role of nonlinearity when the observations are made in the geometric near field of an extended, directional radiator, such as a jet. PMID:21110528

  6. Improved Earth Sensor Performance Using a Sequentially Correlated Noise Model

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph

    1999-01-01

    Spacecraft attitude estimation by means of an extended Kalman filter requires a reasonably true model of the inherent noise of each sensor. For some sensors, the largest uncorrected noise comes not from the sensor itself, but from errors in the model for the predicted observations. This is certainly the case for Earth horizon sensors. The Earth horizon as seen from low Earth orbit is nearly a circle whose radius depends primarily on altitude. A straightforward latitude-dependent correction is added to this to account for the oblateness of the Earth. There also are both seasonal and stochastic variations in the horizon height. The seasonal variations can be predicted to some limited degree based on models de(ived from historical data. The stochastic component characteristically shows variations that are correlated both in time and space but which are unpredictable over long time spans. This work investigates whether Earth horizon sensor performance can be improved by solving for its systematic error as an augmentation of an attitude Kalman filter. It is found that using only Earth and Sun sensors, the augmented state is not fully observable. Even when magnetometer data is included, only the pitch axis component of the error can be improved; the roll component is unobservable.

  7. Improved Earth Sensor Performance Using a Sequentially Correlated Noise Model

    NASA Technical Reports Server (NTRS)

    Sedlak, J.

    1999-01-01

    Spacecraft attitude estimation by means of an extended Kalman filter requires a reasonably true model of the inherent noise of each sensor. For some sensors, the largest uncorrected noise comes not from the sensor itself, but from errors in the model for the predicted observations. This is certainly the case for Earth horizon sensors. The Earth horizon as seen from low Earth orbit is nearly a circle whose radius depends primarily on altitude. A straightforward latitude-dependent correction is added to this to account for the oblateness of the Earth. There also are both seasonal and stochastic variations in the horizon height. The seasonal variations can be predicted to some limited degree based on models derived from historical data. The stochastic component characteristically shows variations that are correlated both in time and space but which are unpredictable over long time spans. This work investigates whether Earth horizon sensor performance can be improved by solving for its systematic error as an augmentation of an attitude Kalman filter. It is found that using only Earth and Sun sensors, the augmented state is not fully observable. Even when magnetometer data is included, only the pitch axis component of the error can be improved; the roll component is unobservable.

  8. Noise with memory as a model of lemming cycles

    NASA Astrophysics Data System (ADS)

    Chichigina, O. A.

    2008-10-01

    Population cycles in small rodents of the north are modeled by noise with memory. Multiannual lemming density fluctuations are presented as a pulse sequence. These pulses correspond to the peaks of lemming density. The memory is presented as some delay time after each pulse. During this time the next pulse is forbidden. Parameter of periodicity, average period, correlation function and parameter of synchronization are calculated for different places of North America. Examples of equations modeling population dynamics of lemmings (or their predators) are considered. The model of connected oscillators gives the qualitative explanation of synchronization effects and relation between synchronization and periodicity. These results have implication for the testing of hypotheses regarding lemming cycles.

  9. Statistical modeling for particle impact noise detection testing

    SciTech Connect

    Prairie, R.R. ); Zimmer, W.J. )

    1990-01-01

    Particle Impact Noise Detection (PIND) testing is widely used to test electronic devices for the presence of conductive particles which can cause catastrophic failure. This paper develops a statistical model based on the rate of particles contaminating the part, the rate of particles induced by the test vibration, the escape rate, and the false alarm rate. Based on data from a large number of PIND tests for a canned transistor, the model is shown to fit the observed results closely. Knowledge of the parameters for which this fit is made is important in evaluating the effectiveness of the PIND test procedure and for developing background judgment about the performance of the PIND test. Furthermore, by varying the input parameters to the model, the resulting yield, failure rate and percent fallout can be examined and used to plan and implement PIND test programs.

  10. Performance Analysis of a New Coded TH-CDMA Scheme in Dispersive Infrared Channel with Additive Gaussian Noise

    NASA Astrophysics Data System (ADS)

    Hamdi, Mazda; Kenari, Masoumeh Nasiri

    2013-06-01

    We consider a time-hopping based multiple access scheme introduced in [1] for communication over dispersive infrared links, and evaluate its performance for correlator and matched filter receivers. In the investigated time-hopping code division multiple access (TH-CDMA) method, the transmitter benefits a low rate convolutional encoder. In this method, the bit interval is divided into Nc chips and the output of the encoder along with a PN sequence assigned to the user determines the position of the chip in which the optical pulse is transmitted. We evaluate the multiple access performance of the system for correlation receiver considering background noise which is modeled as White Gaussian noise due to its large intensity. For the correlation receiver, the results show that for a fixed processing gain, at high transmit power, where the multiple access interference has the dominant effect, the performance improves by the coding gain. But at low transmit power, in which the increase of coding gain leads to the decrease of the chip time, and consequently, to more corruption due to the channel dispersion, there exists an optimum value for the coding gain. However, for the matched filter, the performance always improves by the coding gain. The results show that the matched filter receiver outperforms the correlation receiver in the considered cases. Our results show that, for the same bandwidth and bit rate, the proposed system excels other multiple access techniques, like conventional CDMA and time hopping scheme.

  11. Modeling the cardiovascular system using a nonlinear additive autoregressive model with exogenous input

    NASA Astrophysics Data System (ADS)

    Riedl, M.; Suhrbier, A.; Malberg, H.; Penzel, T.; Bretthauer, G.; Kurths, J.; Wessel, N.

    2008-07-01

    The parameters of heart rate variability and blood pressure variability have proved to be useful analytical tools in cardiovascular physics and medicine. Model-based analysis of these variabilities additionally leads to new prognostic information about mechanisms behind regulations in the cardiovascular system. In this paper, we analyze the complex interaction between heart rate, systolic blood pressure, and respiration by nonparametric fitted nonlinear additive autoregressive models with external inputs. Therefore, we consider measurements of healthy persons and patients suffering from obstructive sleep apnea syndrome (OSAS), with and without hypertension. It is shown that the proposed nonlinear models are capable of describing short-term fluctuations in heart rate as well as systolic blood pressure significantly better than similar linear ones, which confirms the assumption of nonlinear controlled heart rate and blood pressure. Furthermore, the comparison of the nonlinear and linear approaches reveals that the heart rate and blood pressure variability in healthy subjects is caused by a higher level of noise as well as nonlinearity than in patients suffering from OSAS. The residue analysis points at a further source of heart rate and blood pressure variability in healthy subjects, in addition to heart rate, systolic blood pressure, and respiration. Comparison of the nonlinear models within and among the different groups of subjects suggests the ability to discriminate the cohorts that could lead to a stratification of hypertension risk in OSAS patients.

  12. Modeling and measuring self-noise in velocity and acceleration sensors

    SciTech Connect

    Gabrielson, T.B.

    1996-04-01

    Evaluation of the inherent noise levels of high-responsivity sensors is critical for good design but this area is often treated casually until testing reveals a problem. Careful noise analysis early in the design process can save time, effort, and much frustration and reveal options for better performance. Once the sensor is fabricated, careful measurement of its noise can uncover deficiencies in the design or construction. In fact, serious examination of sensor noise can often reveal more about the fundamental workings of the sensor than can measurement of its transduction response. The usual assumption that the preamplifier dominates the noise of a sensor system, while sometimes true over limited bands, often leads either to suboptimal performance or to unrealistic expectations. This paper contains a discussion of noise resulting from thermal-equilibrium agitation of mechanical elements, internal Johnson noise, equilibrium and non-equilibrium shot noise, 1/f noise, stress-induced noise in piezoceramics, various optical noise sources in fiber sensors, and preamplifier voltage and current noise. In addition, several measurement techniques are presented. These include effective isolation techniques for sub-nano-g resolution in ordinary laboratory spaces; coherence measurement; use of resistors as primary noise sources; and evaluation of preamplifier noise. {copyright} {ital 1996 American Institute of Physics.}

  13. Flux noise resulting from vortex avalanches using a simple kinetic model

    SciTech Connect

    Mohler, G.; Stroud, D.

    1999-10-01

    We have carried out a model calculation of the flux noise produced by vortex avalanches in a type-II superconductor, using a simple kinetic model proposed by Bassler and Paczuski. Over a broad range of frequencies, we find that the flux noise S{sub {Phi}}({omega}) has a power-law dependence on frequency, S{sub {Phi}}({omega}){approximately}{omega}{sup {minus}s}, with s{approximately}1.4 in reasonable agreement with experiment. In addition, for small lattices, the calculated S{sub {Phi}}({omega}) has a high-frequency knee, which is seen in some experiments, and which is due to the finite lattice size. Deviations between calculation and experiment are attributed mostly to uncertainties in the measured critical current densities and pinning strengths of the experimental samples. {copyright} {ital 1999} {ital The American Physical Society}

  14. Noise-induced absorbing phase transition in a model of opinion formation

    NASA Astrophysics Data System (ADS)

    Vieira, Allan R.; Crokidakis, Nuno

    2016-08-01

    In this work we study a 3-state (+1, -1, 0) opinion model in the presence of noise and disorder. We consider pairwise competitive interactions, with a fraction p of those interactions being negative (disorder). Moreover, there is a noise q that represents the probability of an individual spontaneously change his opinion to the neutral state. Our aim is to study how the increase/decrease of the fraction of neutral agents affects the critical behavior of the system and the evolution of opinions. We derive analytical expressions for the order parameter of the model, as well as for the stationary fraction of each opinion, and we show that there are distinct phase transitions. One is the usual ferro-paramagnetic transition, that is in the Ising universality class. In addition, there are para-absorbing and ferro-absorbing transitions, presenting the directed percolation universality class. Our results are complemented by numerical simulations.

  15. A cocktail party model of spatial release from masking by both noise and speech interferers a)

    PubMed Central

    Jones, Gary L.; Litovsky, Ruth Y.

    2011-01-01

    A mathematical formula for estimating spatial release from masking (SRM) in a cocktail party environment would be useful as a simpler alternative to computationally intensive algorithms and may enhance understanding of underlying mechanisms. The experiment presented herein was designed to provide a strong test of a model that divides SRM into contributions of asymmetry and angular separation [Bronkhorst (2000). Acustica 86, 117–128] and to examine whether that model can be extended to include speech maskers. Across masker types the contribution to SRM of angular separation of maskers from the target was found to grow at a diminishing rate as angular separation increased within the frontal hemifield, contrary to predictions of the model. Speech maskers differed from noise maskers in the overall magnitude of SRM and in the contribution of angular separation (both greater for speech). These results were used to develop a modified model that achieved good fits to data for noise maskers (ρ = 0.93) and for speech maskers (ρ = 0.94) while using the same functions to describe separation and asymmetry components of SRM for both masker types. These findings suggest that this approach can be used to accurately model SRM for speech maskers in addition to primarily “energetic” noise maskers. PMID:21895087

  16. Numerical modeling of wind turbine aerodynamic noise in the time domain.

    PubMed

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

    2013-02-01

    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine. PMID:23363200

  17. Reducing Centroid Error Through Model-Based Noise Reduction

    NASA Technical Reports Server (NTRS)

    Lee, Shinhak

    2006-01-01

    A method of processing the digitized output of a charge-coupled device (CCD) image detector has been devised to enable reduction of the error in computed centroid of the image of a point source of light. The method involves model-based estimation of, and correction for, the contributions of bias and noise to the image data. The method could be used to advantage in any of a variety of applications in which there are requirements for measuring precise locations of, and/or precisely aiming optical instruments toward, point light sources. In the present method, prior to normal operations of the CCD, one measures the point-spread function (PSF) of the telescope or other optical system used to project images on the CCD. The PSF is used to construct a database of spot models representing the nominal CCD pixel outputs for a point light source projected onto the CCD at various positions incremented by small fractions of a pixel.

  18. Design and modeling of Faraday cages for substrate noise isolation

    NASA Astrophysics Data System (ADS)

    Wu, Joyce H.; del Alamo, Jesús A.

    2013-07-01

    A Faraday cage structure using through-substrate vias is an effective strategy to suppress substrate crosstalk, particularly at high frequencies. Faraday cages can reduce substrate noise by 32 dB at 10 GHz, and 26 dB at 50 GHz. We have developed lumped-element, equivalent circuit models of the Faraday cages and test structures to better understand the performance of the Faraday cages. These models compare well to measured results and show that the vias of the Faraday cage act as an RLC shunt to ground that draws substrate current. Designing a Faraday cage to achieve optimum isolation requires low via impedance and mitigation of via sidewall capacitance. The Faraday cage inductance is correlated to the number of vias and via spacing of the cage and can be optimized for the frequency of operation.

  19. Modelling the Noise-Robustness of Infants’ Word Representations: The Impact of Previous Experience

    PubMed Central

    Bergmann, Christina; Bosch, Louis ten; Fikkert, Paula; Boves, Lou

    2015-01-01

    During language acquisition, infants frequently encounter ambient noise. We present a computational model to address whether specific acoustic processing abilities are necessary to detect known words in moderate noise—an ability attested experimentally in infants. The model implements a general purpose speech encoding and word detection procedure. Importantly, the model contains no dedicated processes for removing or cancelling out ambient noise, and it can replicate the patterns of results obtained in several infant experiments. In addition to noise, we also addressed the role of previous experience with particular target words: does the frequency of a word matter, and does it play a role whether that word has been spoken by one or multiple speakers? The simulation results show that both factors affect noise robustness. We also investigated how robust word detection is to changes in speaker identity by comparing words spoken by known versus unknown speakers during the simulated test. This factor interacted with both noise level and past experience, showing that an increase in exposure is only helpful when a familiar speaker provides the test material. Added variability proved helpful only when encountering an unknown speaker. Finally, we addressed whether infants need to recognise specific words, or whether a more parsimonious explanation of infant behaviour, which we refer to as matching, is sufficient. Recognition involves a focus of attention on a specific target word, while matching only requires finding the best correspondence of acoustic input to a known pattern in the memory. Attending to a specific target word proves to be more noise robust, but a general word matching procedure can be sufficient to simulate experimental data stemming from young infants. A change from acoustic matching to targeted recognition provides an explanation of the improvements observed in infants around their first birthday. In summary, we present a computational model

  20. Model rotor low frequency broadband noise at moderate tip speeds

    NASA Technical Reports Server (NTRS)

    Humbad, N. G.; Harris, W. L.

    1980-01-01

    The results of an experimental investigation of low frequency broadband noise (LFBN) radiated from model helicopter rotors are presented. The results are for a range of tip Mach numbers (Mt) up to 0.50. The effect of rotor blade loading, advance ratio, tip speed, number of blades and free stream turbulence on the sound pressure level (SPL) and the spectrum of LFBN have been investigated. The peak SPL of LFBN appears to follow an M(4) law if the effect of rms turbulence velocity is removed. The peak SPL of LFBN seems to saturate with increases in advance ratio and with blade loading, and is proportional to the square of the turbulence integral scale when the effect of rms turbulence velocity and Mt are removed. Also, a simple peak SPL scaling law for noise from a helicopter rotor in forward flight due to convected sinusoidal gust is developed. The trend predicted by this scaling law is found to be satisfactory for the variation of the peak SPL of LFBN with tip speed.

  1. White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves

    NASA Astrophysics Data System (ADS)

    Tordeux, Antoine; Schadschneider, Andreas

    2016-05-01

    A class of microscopic stochastic models is proposed to describe 1D pedestrian trajectories obtained in laboratory experiments. The class contains continuous first-order models that are based on statistically calibrated optimal velocity functions. More specifically, we consider a model with an additive white noise and another one where the noise is determined by the inertial Ornstein–Uhlenbeck process. Simulation results show that both stochastic models give a good description of the characteristic relation between speed and spacing (fundamental diagram) and its variability. However, only the inertial noise model can reproduce the observed stop-and-go waves, bimodal speed distributions, and non-zero speed or spacing autocorrelations. This allows us to identify minimal microscopic stochastic mechanisms for the emergence of stable traffic waves.

  2. Civil helicopter noise assessment study Boeing-Vertol model 347. [recommendations for reduction of helicopter noise levels

    NASA Technical Reports Server (NTRS)

    Hinterkeuser, E. G.; Sternfeld, H., Jr.

    1974-01-01

    A study was conducted to forecast the noise restrictions which may be imposed on civil transport helicopters in the 1975-1985 time period. Certification and community acceptance criteria were predicted. A 50 passenger tandem rotor helicopter based on the Boeing-Vertol Model 347 was studied to determine the noise reductions required, and the means of achieving them. Some of the important study recommendations are: (1) certification limits should be equivalent to 95 EPNdb at data points located at 500 feet to each side of the touchdown/takeoff point, and 1000 feet from this point directly under the approach and departure flight path. (2) community acceptance should be measured as Equivalent Noise Level (Leq), based on dBA, with separate limits for day and night operations, and (3) in order to comply with the above guidelines, the Model 347 helicopter will require studies and tests leading to several modifications.

  3. Criteria for deviation from predictions by the concentration addition model.

    PubMed

    Takeshita, Jun-Ichi; Seki, Masanori; Kamo, Masashi

    2016-07-01

    Loewe's additivity (concentration addition) is a well-known model for predicting the toxic effects of chemical mixtures under the additivity assumption of toxicity. However, from the perspective of chemical risk assessment and/or management, it is important to identify chemicals whose toxicities are additive when present concurrently, that is, it should be established whether there are chemical mixtures to which the concentration addition predictive model can be applied. The objective of the present study was to develop criteria for judging test results that deviated from the predictions by the concentration addition chemical mixture model. These criteria were based on the confidence interval of the concentration addition model's prediction and on estimation of errors of the predicted concentration-effect curves by toxicity tests after exposure to single chemicals. A log-logit model with 2 parameters was assumed for the concentration-effect curve of each individual chemical. These parameters were determined by the maximum-likelihood method, and the criteria were defined using the variances and the covariance of the parameters. In addition, the criteria were applied to a toxicity test of a binary mixture of p-n-nonylphenol and p-n-octylphenol using the Japanese killifish, medaka (Oryzias latipes). Consequently, the concentration addition model using confidence interval was capable of predicting the test results at any level, and no reason for rejecting the concentration addition was found. Environ Toxicol Chem 2016;35:1806-1814. © 2015 SETAC. PMID:26660330

  4. Enhanced models for stellar Doppler noise reveal hints of a 13-year activity cycle of 55 Cancri

    NASA Astrophysics Data System (ADS)

    Baluev, Roman V.

    2015-01-01

    We consider the impact of Doppler noise models on the statistical robustness of the exoplanetary radial velocity fits. We show that the traditional model of the Doppler noise with an additive jitter can generate large non-linearity effects, decreasing the reliability of the fit, especially in the cases when a correlated Doppler noise is involved. We introduce a regularization of the additive noise model that can gracefully eliminate its singularities together with the associated non-linearity effects. We apply this approach to Doppler time series data of several exoplanetary systems. It demonstrates that our new regularized noise model yields orbital fits that have either increased or at least the same statistical robustness, in comparison with the simple additive jitter. Various statistical uncertainties in the parametric estimations are often reduced, while planet detection significance is often increased. Concerning the 55 Cnc five-planet system, we show that its Doppler data contain significant correlated (`red') noise. Its correlation time-scale is in the range from days to months, and its magnitude is much larger than the effect of the planetary N-body perturbations in the radial velocity (these perturbations thus appear undetectable). Characteristics of the red noise depend on the spectrograph/observatory, and also show a cyclic time variation in phase with the public Ca II H&K and photometry measurements. We interpret this modulation as a hint of the long-term activity cycle of 55 Cnc, similar to the solar 11-yr cycle. We estimate the 55 Cnc activity period by 12.6± ^{2.5}_{1.0} yr, with the nearest minimum presumably expected in 2014 or 2015.

  5. On low-frequency errors of uniformly modulated filtered white-noise models for ground motions

    USGS Publications Warehouse

    Safak, Erdal; Boore, David M.

    1988-01-01

    Low-frequency errors of a commonly used non-stationary stochastic model (uniformly modulated filtered white-noise model) for earthquake ground motions are investigated. It is shown both analytically and by numerical simulation that uniformly modulated filter white-noise-type models systematically overestimate the spectral response for periods longer than the effective duration of the earthquake, because of the built-in low-frequency errors in the model. The errors, which are significant for low-magnitude short-duration earthquakes, can be eliminated by using the filtered shot-noise-type models (i. e. white noise, modulated by the envelope first, and then filtered).

  6. A mathematical model for simulating noise suppression of lined ejectors

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.

    1994-01-01

    A mathematical model containing the essential features embodied in the noise suppression of lined ejectors is presented. Although some simplification of the physics is necessary to render the model mathematically tractable, the current model is the most versatile and technologically advanced at the current time. A system of linearized equations and the boundary conditions governing the sound field are derived starting from the equations of fluid dynamics. A nonreflecting boundary condition is developed. In view of the complex nature of the equations, a parametric study requires the use of numerical techniques and modern computers. A finite element algorithm that solves the differential equations coupled with the boundary condition is then introduced. The numerical method results in a matrix equation with several hundred thousand degrees of freedom that is solved efficiently on a supercomputer. The model is validated by comparing results either with exact solutions or with approximate solutions from other works. In each case, excellent correlations are obtained. The usefulness of the model as an optimization tool and the importance of variable impedance liners as a mechanism for achieving broadband suppression within a lined ejector are demonstrated.

  7. Image discrimination models predict detection in fixed but not random noise

    NASA Technical Reports Server (NTRS)

    Ahumada, A. J. Jr; Beard, B. L.; Watson, A. B. (Principal Investigator)

    1997-01-01

    By means of a two-interval forced-choice procedure, contrast detection thresholds for an aircraft positioned on a simulated airport runway scene were measured with fixed and random white-noise masks. The term fixed noise refers to a constant, or unchanging, noise pattern for each stimulus presentation. The random noise was either the same or different in the two intervals. Contrary to simple image discrimination model predictions, the same random noise condition produced greater masking than the fixed noise. This suggests that observers seem unable to hold a new noisy image for comparison. Also, performance appeared limited by internal process variability rather than by external noise variability, since similar masking was obtained for both random noise types.

  8. The fundamental structure function of oscillator noise models

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1983-01-01

    Continuous-time models of oscillator phase noise x(t) usually have stationary nth differences, for some n. The covariance structure of such a model can be characterized in the time domain by the structure function: D sub n (t;gamma sub 1, gamma sub 2) = E delta (n) sub gamma sub 1 x(s+t) delta(n) sub gamma sub 2 x (s). Although formulas for the special case D sub 2 (0;gamma,gamma) (the Allan variance times 2 gamma(2)) exist for power-law spectral models, certain estimation problems require a more complete knowledge of (0). Exhibited is a much simpler function of one time variable, D(t), from which (0) can easily be obtained from the spectral density by uncomplicated integrations. Believing that D(t) is the simplest function of time that holds the same information as (0), D(t) is called the fundamental structure function. D(t) is computed for several power-law spectral models. Two examples are D(t) = K/t/(3) for random walk FM, D(t) = Kt(2) 1n/t/ for flicker FM. Then, to demonstrate its use, a BASIC program is given that computes means and variances of two Allan variance estimators, one of which incorporates a method of frequency drift estimation and removal.

  9. Parameter dependence of stochastic resonance in the FitzHugh-Nagumo neuron model driven by trichotomous noise

    NASA Astrophysics Data System (ADS)

    Zhang, Huiqing; Yang, Tingting; Xu, Yong; Xu, Wei

    2015-05-01

    We investigate the stochastic resonance in a FitzHugh-Nagumo neuron model driven by trichotomous noise and periodic signal, focusing on the dependence of properties of stochastic resonance (SR) on system parameters. The stochastic resonance is shown through several different measures: system response, power spectrum and signal-to-noise ratio. Firstly, it is found that whether the neuron can fire regularly depends on the cooperative effect of the signal frequency and the signal amplitude for the deterministic FHN neuron. When the forcing amplitude alone is insufficient to cause the neuron firing, the neuron can fire with the addition of trichotomous noise. Secondly, we show that power spectrum is maximized for an optimal value of the noise correlation time, which is the signature of SR. Finally, from studying SNR, the specific system parameters are found to optimize the SR phenomenon.

  10. ROUTEMAP model for predicting noise exposure from aircraft operations on Military Training Routes

    NASA Astrophysics Data System (ADS)

    Lucas, Michael J.; Plotkin, Kenneth J.

    1988-09-01

    Low altitude, high speed training operations are routinely conducted along specially designated Military Training Routes (MTRs). The location of these routes is continually changed for a variety of reasons. Each new route requires an environmental assessment to determine the community noise impact. A computer program, ROUTEMAP, is described which calculates the noise level on the ground along an MTR corridor. Program ROUTEMAP is a menu-driven program that runs on any IBM PC or PC-compatible computer. ROUTEMAP requires MS DOS Version 2.0 or later, with at least one megabyte of available disk space, 640 K of random access memory, and an 8087/80287 math coprocessor. The model requires the Air Force planner to specify the nature of the flight activity for the segment of the route in question. The information needed for each aircraft type are the number of day and night operations during a month, and nominal values for the airspeed, engine power setting, and altitude. In addition, the user must input whether the activity is usually under visual or instrument flying rules and if there are single or multiple flight tracks within the route corridor. With this input data, the program computes the onset rate-adjusted monthly day-night average A-weighted sound level, L sub dnmr in dB for ground positions located within 13 miles of the route centerline. For comparison purposes, the program also computes the monthly average A-weighted noise exposure level without the penalty for high onset rates and without the penalty for operations during the night. The program also computes the probability of being highly annoyed as a function of the L sub dnmr values. This information, along with the noise-compatible land-use guides normally associated with planning around airbases, can be used to interpret the noise resulting from military training route operations.

  11. Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling

    NASA Astrophysics Data System (ADS)

    Bertagnolio, Franck; Fischer, Andreas; Jun Zhu, Wei

    2014-02-01

    The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient along the airfoil chord. It is shown that discrepancies between measurements and results from the TNO model increase as the pressure gradient increases. The original model is modified by introducing anisotropy in the definition of the turbulent vertical velocity spectrum across the boundary layer and by considering a frequency-dependent vertical correlation length. The degree of anisotropy is directly related to the strength of the pressure gradient. It is shown that by appropriately normalizing the pressure gradient and by tuning the degree of anisotropy, experimental results can be closely reproduced by the modified model. The model is validated against Large Eddy Simulation results and additional wind tunnel measurements. It is further validated in the context of trailing edge noise for which the model formulation makes use of the above surface pressure spectrum.

  12. An investigation of rotor harmonic noise by the use of small scale wind tunnel models

    NASA Technical Reports Server (NTRS)

    Sternfeld, H., Jr.; Schaffer, E. G.

    1982-01-01

    Noise measurements of small scale helicopter rotor models were compared with noise measurements of full scale helicopters to determine what information about the full scale helicopters could be derived from noise measurements of small scale helicopter models. Comparisons were made of the discrete frequency (rotational) noise for 4 pairs of tests. Areas covered were tip speed effects, isolated rotor, tandem rotor, and main rotor/tail rotor interaction. Results show good comparison of noise trends with configuration and test condition changes, and good comparison of absolute noise measurements with the corrections used except for the isolated rotor case. Noise measurements of the isolated rotor show a great deal of scatter reflecting the fact that the rotor in hover is basically unstable.

  13. Analysis and modeling of flicker noise in lateral asymmetric channel MOSFETs

    NASA Astrophysics Data System (ADS)

    Agarwal, Harshit; Kushwaha, Pragya; Gupta, Chetan; Khandelwal, Sourabh; Hu, Chenming; Chauhan, Yogesh Singh

    2016-01-01

    In this paper, flicker noise behavior of lateral non-uniformly doped MOSFET is studied using impedance field method. Our study shows that Klaassen Prins (KP) method, which forms the basis of noise model in MOSFETs, underestimates flicker noise in such devices. The same KP method overestimates thermal noise by 2-3 orders of magnitude in similar devices as demonstrated in Roy et al. (2007). This apparent discrepancy between thermal and flicker noise behavior lies in origin of these noises, which leads to opposite trend of local noise power spectral density vs doping. We have modeled the physics behind such behavior, which also explain the trends observed in the measurements (Agarwal et al., 2015).

  14. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor

  15. Slat Cove Noise Modeling: A Posteriori Analysis of Unsteady RANS Simulations

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Khorrami, Mehdi R.; Lockard, David P.; Atkins, Harold L.; Lilley, Geoffrey M.

    2002-01-01

    A companion paper by Khorrami et al demonstrates the feasibility of simulating the (nominally) self-sustained, large-scale unsteadiness within the leading-edge slat-cove region of multi-element airfoils using unsteady Reynolds-Averaged Navier-Stokes (URANS) equations, provided that the turbulence production term in the underlying two-equation turbulence model is switched off within the cove region. In conjunction with a FfowesWilliams-Hawkings solver, the URANS computations were shown to capture the dominant portion of the acoustic spectrum attributed to slat noise, as well as reproducing the increased intensity of slat cove motions (and, correspondingly, far-field noise as well) at the lower angles of attack. This paper examines that simulation database, augmented by additional simulations, with the objective of transitioning this apparent success to aeroacoustic predictions in an engineering context. As a first step towards this goal, the simulated flow and acoustic fields are compared with experiment and simplified analytical model. Rather intense near-field fluctuations in the simulated flow are found to be associated with unsteady separation along the slat bottom surface, relatively close to the slat cusp. Accuracy of the laminar-cove simulations in this near-wall region is raised to be an open issue. The adjoint Green's function approach is also explored in an attempt to identify the most efficient noise source locations.

  16. Core-Noise

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2010-01-01

    This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase

  17. A Semi-Empirical Noise Modeling Method for Helicopter Maneuvering Flight Operations

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Schmitz, Fredric; Sickenberger, Richard D.

    2012-01-01

    A new model for Blade-Vortex Interaction noise generation during maneuvering flight is developed in this paper. Acoustic and performance data from both flight and wind tunnels are used to derive a non-dimensional and analytical performance/acoustic model that describes BVI noise in steady flight. The model is extended to transient maneuvering flight (pure pitch and roll transients) by using quasisteady assumptions throughout the prescribed maneuvers. Ground noise measurements, taken during maneuvering flight of a Bell 206B helicopter, show that many of the noise radiation details are captured. The result is a computationally efficient Blade-Vortex Interaction noise model with sufficient accuracy to account for transient maneuvering flight. The code can be run in real time to predict transient maneuver noise and is suitable for use in an acoustic mission-planning tool.

  18. Effects of noise variance model on optimal feedback design and actuator placement

    NASA Technical Reports Server (NTRS)

    Ruan, Mifang; Choudhury, Ajit K.

    1994-01-01

    In optimal placement of actuators for stochastic systems, it is commonly assumed that the actuator noise variances are not related to the feedback matrix and the actuator locations. In this paper, we will discuss the limitation of that assumption and develop a more practical noise variance model. Various properties associated with optimal actuator placement under the assumption of this noise variance model are discovered through the analytical study of a second order system.

  19. Channel-noise-induced stochastic facilitation in an auditory brainstem neuron model

    NASA Astrophysics Data System (ADS)

    Schmerl, Brett A.; McDonnell, Mark D.

    2013-11-01

    Neuronal membrane potentials fluctuate stochastically due to conductance changes caused by random transitions between the open and closed states of ion channels. Although it has previously been shown that channel noise can nontrivially affect neuronal dynamics, it is unknown whether ion-channel noise is strong enough to act as a noise source for hypothesized noise-enhanced information processing in real neuronal systems, i.e., “stochastic facilitation”. Here we demonstrate that biophysical models of channel noise can give rise to two kinds of recently discovered stochastic facilitation effects in a Hodgkin-Huxley-like model of auditory brainstem neurons. The first, known as slope-based stochastic resonance (SBSR), enables phasic neurons to emit action potentials that can encode the slope of inputs that vary slowly relative to key time constants in the model. The second, known as inverse stochastic resonance (ISR), occurs in tonically firing neurons when small levels of noise inhibit tonic firing and replace it with burstlike dynamics. Consistent with previous work, we conclude that channel noise can provide significant variability in firing dynamics, even for large numbers of channels. Moreover, our results show that possible associated computational benefits may occur due to channel noise in neurons of the auditory brainstem. This holds whether the firing dynamics in the model are phasic (SBSR can occur due to channel noise) or tonic (ISR can occur due to channel noise).

  20. A critical review of principal traffic noise models: Strategies and implications

    SciTech Connect

    Garg, Naveen; Maji, Sagar

    2014-04-01

    The paper presents an exhaustive comparison of principal traffic noise models adopted in recent years in developed nations. The comparison is drawn on the basis of technical attributes including source modelling and sound propagation algorithms. Although the characterization of source in terms of rolling and propulsion noise in conjunction with advanced numerical methods for sound propagation has significantly reduced the uncertainty in traffic noise predictions, the approach followed is quite complex and requires specialized mathematical skills for predictions which is sometimes quite cumbersome for town planners. Also, it is sometimes difficult to follow the best approach when a variety of solutions have been proposed. This paper critically reviews all these aspects pertaining to the recent models developed and adapted in some countries and also discusses the strategies followed and implications of these models. - Highlights: • Principal traffic noise models developed are reviewed. • Sound propagation algorithms used in traffic noise models are compared. • Implications of models are discussed.

  1. GRACE follow-on sensor noise with realistic background models

    NASA Astrophysics Data System (ADS)

    Ellmer, Matthias; Mayer-Gürr, Torsten

    2015-04-01

    We performed multiple simulation studies of a GRACE-like satellite mission based on the current K-Band ranging instrument (KBR). We also simulated a laser-ranging instrument (LRI) configuration as a drop-in replacement for GRACE low-low satellite to satellite tracking, the remaining parameters of the simulation are shared between the two scenarios. Our simulated data are based on real GRACE observations for April 2006, which allows us to compare our results to published gravity field models for this particular month. The variational equation approach was employed to generate independent reduced-dynamic orbits for both GRACE satellites. These orbits were then fitted to the actual GRACE kinematic orbits. The resulting orbit was then used to synthesize artificial satellite ranging, star camera, accelerometer and kinematic orbit data. We synchronized all simulated instruments with real instrument data for the simulated month, which guarantees realistic data gaps. Appropriate noise was added to all observables. In the recovery step, the AOD1B de-aliasing product -- previously used in the generation of the fundamental reduced-dynamic orbit data -- was degraded with partial constituents of the updated ESA earth system model dataset. Specifically, the atmosphere, ocean, and hydrology components were used. This has the effect that the computed gravity field possesses the characteristic structure associated with a residual time-variable gravity field signal. An overview of the achieved results is given in the presentation.

  2. Comment on ``Correlated noise in a logistic growth model''

    NASA Astrophysics Data System (ADS)

    Behera, Anita; O'Rourke, S. Francesca C.

    2008-01-01

    We argue that the results published by Ai [Phys. Rev. E 67, 022903 (2003)] on “correlated noise in logistic growth” are not correct. Their conclusion that, for larger values of the correlation parameter λ , the cell population is peaked at x=0 , which denotes a high extinction rate, is also incorrect. We find the reverse behavior to their results, that increasing λ promotes the stable growth of tumor cells. In particular, their results for the steady-state probability, as a function of cell number, at different correlation strengths, presented in Figs. 1 and 2 of their paper show different behavior than one would expect from the simple mathematical expression for the steady-state probability. Additionally, their interpretation that at small values of cell number the steady-state probability increases as the correlation parameter is increased is also questionable. Another striking feature in their Figs. 1 and 3 is that, for the same values of the parameters λ and α , their simulation produces two different curves, both qualitatively and quantitatively.

  3. Complex Modelling Scheme Of An Additive Manufacturing Centre

    NASA Astrophysics Data System (ADS)

    Popescu, Liliana Georgeta

    2015-09-01

    This paper presents a modelling scheme sustaining the development of an additive manufacturing research centre model and its processes. This modelling is performed using IDEF0, the resulting model process representing the basic processes required in developing such a centre in any university. While the activities presented in this study are those recommended in general, changes may occur in specific existing situations in a research centre.

  4. A microscopic model for noise induced transport: Heat-bath nonlinearly driven by external white noise.

    PubMed

    Ghosh, Pradipta; Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray

    2011-03-01

    This work explores the observation that, even in the absence of a net externally applied bias, a symmetric homogeneous system coupled linearly to two heat baths is capable of producing unidirectional motion simply by nonlinearly driving one of the heat baths by an external Gaussian white noise. This is quite contrary to the traditional observation that, in order to obtain a net drift current, a state-dependent dissipation, which is a consequence of nonlinear system-bath coupling, is ubiquitous. PMID:21456831

  5. A microscopic model for noise induced transport: Heat-bath nonlinearly driven by external white noise

    SciTech Connect

    Ghosh, Pradipta; Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray

    2011-03-15

    This work explores the observation that, even in the absence of a net externally applied bias, a symmetric homogeneous system coupled linearly to two heat baths is capable of producing unidirectional motion simply by nonlinearly driving one of the heat baths by an external Gaussian white noise. This is quite contrary to the traditional observation that, in order to obtain a net drift current, a state-dependent dissipation, which is a consequence of nonlinear system-bath coupling, is ubiquitous.

  6. Noise-induced transitions in a generalized Verhulst model with a reflecting boundary

    NASA Astrophysics Data System (ADS)

    Lumi, N.; Rekker, A.; Ainsaar, A.; Mankin, R.

    2013-10-01

    The dynamics of a population growth model with generalized Verhulst self-regulation driven by a multiplicative three-level Markovian noise (trichotomous noise) as well as by a time-dependent deterministic stimulus is considered. In the white noise limit, the exact formulae for the conditional probability density of the population size and for the first passage time distribution are derived separately for both the reflecting and absorbing boundary conditions at the carrying capacity. In the case of multiplicative trichotomous noise, using the reflecting boundary condition, an exact analytical solution for the stationary probability distribution is found. It is established that a variation of noise parameters, such as correlation time, amplitude, and kurtosis, can cause noise-induced phase transitions. The dependence of the critical noise characteristic, which marks a transition between different phases, on other system parameters is analysed.

  7. Investigation of airframe noise for a large-scale wing model with high-lift devices

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Zaytsev, M. Yu.; Belyaev, I. V.

    2016-01-01

    The acoustic characteristics of a large-scale model of a wing with high-lift devices in the landing configuration have been studied in the DNW-NWB wind tunnel with an anechoic test section. For the first time in domestic practice, data on airframe noise at high Reynolds numbers (1.1-1.8 × 106) have been obtained, which can be used for assessment of wing noise levels in aircraft certification tests. The scaling factor for recalculating the measurement results to natural conditions has been determined from the condition of collapsing the dimensionless noise spectra obtained at various flow velocities. The beamforming technique has been used to obtain localization of noise sources and provide their ranking with respect to intensity. For flap side-edge noise, which is an important noise component, a noise reduction method has been proposed. The efficiency of this method has been confirmed in DNW-NWB experiments.

  8. End-to-End Models for Effects of System Noise on LIMS Analysis of Igneous Rocks

    SciTech Connect

    Clegg, Samuel M; Bender, Steven; Wiens, R. C.; Carmosino, Marco L; Speicher, Elly A; Dyar, M. D.

    2010-12-23

    The ChemCam instrument on the Mars Science Laboratory will be the first extraterrestial deployment of laser-induced breakdown spectroscopy (UBS) for remote geochemical analysis. LIBS instruments are also being proposed for future NASA missions. In quantitative LIBS applications using multivariate analysis techniques, it is essential to understand the effects of key instrument parameters and their variability on the elemental predictions. Baseline experiments were run on a laboratory instrument in conditions reproducing ChemCam performance on Mars. These experiments employed Nd:YAG laser producing 17 mJ/pulse on target and an with a 200 {micro}m FWHM spot size on the surface of a sample. The emission is collected by a telescope, imaged on a fiber optic and then interfaced to a demultiplexer capable of >40% transmission into each spectrometer. We report here on an integrated end-to-end system performance model that simulates the effects of output signal degradation that might result from the input signal chain and the impact on multivariate model predictions. There are two approaches to modifying signal to noise (SNR): degrade the signal and/or increase the noise. Ishibashi used a much smaller data set to show that the addition of noise had significant impact while degradation of spectral resolution had much less impact on accuracy and precision. Here, we specifically focus on aspects of remote LIBS instrument performance as they relate to various types of signal degradation. To assess the sensitivity of LIBS analysis to signal-to-noise ratio (SNR) and spectral resolution, the signal in each spectrum from a suite of 50 laboratory spectra of igneous rocks was variably degraded by increasing the peak widths (simulating misalignment) and decreasing the spectral amplitude (simulating decreases in SNR).

  9. Noise and disorder: Phase transitions and universality in a model of opinion formation

    NASA Astrophysics Data System (ADS)

    Crokidakis, Nuno

    2016-02-01

    In this work, we study a three-state opinion formation model considering two distinct mechanisms, namely independence and conviction. Independence is introduced in the model as a noise by means of a probability of occurrence q. On the other hand, conviction acts as a disorder in the system, and it is introduced by two discrete probability distributions. We analyze the effects of such two mechanisms on the phase transitions of the model, and we found that the critical exponents are universal over the order-disorder frontier, presenting the same universality class of the mean-field Ising model. In addition, for one of the probability distributions, the transition may be eliminated for a wide range of the parameters.

  10. Comprehensive European dietary exposure model (CEDEM) for food additives.

    PubMed

    Tennant, David R

    2016-05-01

    European methods for assessing dietary exposures to nutrients, additives and other substances in food are limited by the availability of detailed food consumption data for all member states. A proposed comprehensive European dietary exposure model (CEDEM) applies summary data published by the European Food Safety Authority (EFSA) in a deterministic model based on an algorithm from the EFSA intake method for food additives. The proposed approach can predict estimates of food additive exposure provided in previous EFSA scientific opinions that were based on the full European food consumption database. PMID:26987377

  11. Noise Benefits of Rotor Trailing Edge Blowing for a Model Turbofan

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Fite, E. Brian; Podboy, Gary G.

    2007-01-01

    An advanced model turbofan was tested in the NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) to explore far field acoustic effects associated with rotor Trailing-Edge-Blowing (TEB) for a modern, 1.294 stage pressure ratio turbofan model. The TEB rotor (Fan9) was designed to be aerodynamically similar to the previously tested Fan1, and used the same stator and nacelle hardware. Fan9 was designed with trailing edge blowing slots using an external air supply directed through the rotor hub. The TEB flow was heated to approximate the average fan exit temperature at each fan test speed. Rotor root blockage inserts were used to block TEB to all but the outer 40 and 20% span in addition to full-span blowing. A configuration with full-span TEB on alternate rotor blades was also tested. Far field acoustic data were taken at takeoff/approach conditions at 0.10 tunnel Mach. Far-field acoustic results showed that full-span blowing near 2.0% of the total flow could reduce the overall sound power level by about 2 dB. This noise reduction was observed in both the rotor-stator interaction tones and for the spectral broadband noise levels. Blowing only the outer span region was not very effective for lowering noise, and actually increased the far field noise level in some instances. Full-span blowing of alternate blades at 1.0% of the overall flow rate (equivalent to full-span blowing of all blades at 2.0% flow) showed a more modest noise decrease relative to full-span blowing of all blades. Detailed hot film measurements of the TEB rotor wake at 2.0% flow showed that TEB was not every effective for filling in the wake defect at approach fan speed toward the tip region, but did result in overfilling the wake toward the hub. Downstream turbulence measurements supported this finding, and support the observed reduction in spectral broadband noise.

  12. Experimental study of noise reduction for an unstiffened cylindrical model of an airplane fuselage

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Daniels, E. F.

    1981-01-01

    Noise reduction measurements were made for a simplified model of an airplane fuselage consisting of an unstiffened aluminum cylinder 0.5 m in diameter by 1.2 m long with a 1.6-mm-thick wall. Noise reduction was first measured with a reverberant field pink-noise load on the cylinder exterior. Next, noise reduction was measured by using a propeller to provide a more realistic noise load on the cylinder. Structural resonance frequencies and acoustic reverberation times for the cylinder interior volume were also measured. Comparison of data from the relatively simple test using reverberant-field noise with data from the more complex propeller-noise tests indicates some similarity in both the overall noise reduction and the spectral distribution. However, all of the test parameters investigated (propeller speed, blade pitch, and tip clearance) had some effect on the noise-reduction spectra. Thus, the amount of noise reduction achieved appears to be somewhat dependent upon the spectral and spatial characteristics of the flight conditions. Information is also presented on cyclinder resonance frequencies, damping, and characteristics of propeller-noise loads.

  13. Varying Coefficient Models for Sparse Noise-contaminated Longitudinal Data

    PubMed Central

    2014-01-01

    Summary In this paper we propose a varying coefficient model for highly sparse longitudinal data that allows for error-prone time-dependent variables and time-invariant covariates. We develop a new estimation procedure, based on covariance representation techniques, that enables effective borrowing of information across all subjects in sparse and irregular longitudinal data observed with measurement error, a challenge in which there is no adequate solution currently. More specifically, sparsity is addressed via a functional analysis approach that considers the observed longitudinal data as noise contaminated realizations of a random process that produces smooth trajectories. This approach allows for estimation based on pooled data, borrowing strength from all subjects, in targeting the mean functions and auto- and cross-covariances to overcome sparse noisy designs. The resulting estimators are shown to be uniformly consistent. Consistent prediction for the response trajectories are also obtained via conditional expectation under Gaussian assumptions. Asymptotic distribution of the predicted response trajectories are derived, allowing for construction of asymptotic pointwise confidence bands. Efficacy of the proposed method is investigated in simulation studies and compared to the commonly used local polynomial smoothing method. The proposed method is illustrated with a sparse longitudinal data set, examining the age-varying relationship between calcium absorption and dietary calcium. Prediction of individual calcium absorption curves as a function of age are also examined. PMID:25589822

  14. Quantitative nonlinearity analysis of model-scale jet noise

    NASA Astrophysics Data System (ADS)

    Miller, Kyle G.; Reichman, Brent O.; Gee, Kent L.; Neilsen, Tracianne B.; Atchley, Anthony A.

    2015-10-01

    The effects of nonlinearity on the power spectrum of jet noise can be directly compared with those of atmospheric absorption and geometric spreading through an ensemble-averaged, frequency-domain version of the generalized Burgers equation (GBE) [B. O. Reichman et al., J. Acoust. Soc. Am. 136, 2102 (2014)]. The rate of change in the sound pressure level due to the nonlinearity, in decibels per jet nozzle diameter, is calculated using a dimensionless form of the quadspectrum of the pressure and the squared-pressure waveforms. In this paper, this formulation is applied to atmospheric propagation of a spherically spreading, initial sinusoid and unheated model-scale supersonic (Mach 2.0) jet data. The rate of change in level due to nonlinearity is calculated and compared with estimated effects due to absorption and geometric spreading. Comparing these losses with the change predicted due to nonlinearity shows that absorption and nonlinearity are of similar magnitude in the geometric far field, where shocks are present, which causes the high-frequency spectral shape to remain unchanged.

  15. RETRACTED: Flap side edge noise modeling and prediction

    NASA Astrophysics Data System (ADS)

    Guo, Yueping

    2013-08-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).This article has been retracted at the request of the first author because of the overlap with previously published papers. The first author takes full responsibility and sincerely apologizes for the error made.This article has been retracted at the request of the Editor-in-Chief.The article duplicates significant parts of an earlier paper by the same author, published in AIAA (Y.P. Guo, Aircraft flap side edge noise modeling and prediction. American Institute of Aeronautics and Astronautics, (2011), 10.2514/6.2011-2731). Prior to republication, conference papers should be comprehensively extended, and re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  16. Improvement in perception of image sharpness through the addition of noise and its relationship with memory texture

    NASA Astrophysics Data System (ADS)

    Wan, Xiazi; Kobayashi, Hiroyuki; Aoki, Naokazu

    2015-03-01

    In a preceding study, we investigated the effects of image noise on the perception of image sharpness using white noise, and one- and two-dimensional single-frequency sinusoidal patterns as stimuli. This study extends our preceding study by evaluating natural color images, rather than black-and-white patterns. The results showed that the effect of noise in improving image sharpness perception is more evident in blurred images than in sharp images. This is consistent with the results of the preceding study. In another preceding study, we proposed "memory texture" to explain the preferred granularity of images, as a concept similar to "memory color" for preferred color reproduction. We observed individual differences in type of memory texture for each object, that is, white or 1/f noise. This study discusses the relationship between improvement of sharpness perception by adding noise, and the memory texture, following its individual differences. We found that memory texture is one of the elements that affect sharpness perception.

  17. Gate voltage dependent 1/f noise variance model based on physical noise generation mechanisms in n-channel metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Arai, Yukiko; Aoki, Hitoshi; Abe, Fumitaka; Todoroki, Shunichiro; Khatami, Ramin; Kazumi, Masaki; Totsuka, Takuya; Wang, Taifeng; Kobayashi, Haruo

    2015-04-01

    1/f noise is one of the most important characteristics for designing analog/RF circuits including operational amplifiers and oscillators. We have analyzed and developed a novel 1/f noise model in the strong inversion, saturation, and sub-threshold regions based on SPICE2 type model used in any public metal-oxide-semiconductor field-effect transistor (MOSFET) models developed by the University of California, Berkeley. Our model contains two noise generation mechanisms that are mobility and interface trap number fluctuations. Noise variability dependent on gate voltage is also newly implemented in our model. The proposed model has been implemented in BSIM4 model of a SPICE3 compatible circuit simulator. Parameters of the proposed model are extracted with 1/f noise measurements for simulation verifications. The simulation results show excellent agreements between measurement and simulations.

  18. Additive-multiplicative rates model for recurrent events.

    PubMed

    Liu, Yanyan; Wu, Yuanshan; Cai, Jianwen; Zhou, Haibo

    2010-07-01

    Recurrent events are frequently encountered in biomedical studies. Evaluating the covariates effects on the marginal recurrent event rate is of practical interest. There are mainly two types of rate models for the recurrent event data: the multiplicative rates model and the additive rates model. We consider a more flexible additive-multiplicative rates model for analysis of recurrent event data, wherein some covariate effects are additive while others are multiplicative. We formulate estimating equations for estimating the regression parameters. The estimators for these regression parameters are shown to be consistent and asymptotically normally distributed under appropriate regularity conditions. Moreover, the estimator of the baseline mean function is proposed and its large sample properties are investigated. We also conduct simulation studies to evaluate the finite sample behavior of the proposed estimators. A medical study of patients with cystic fibrosis suffered from recurrent pulmonary exacerbations is provided for illustration of the proposed method. PMID:20229314

  19. Spontaneous dynamics and response properties of a Hodgkin-Huxley-type neuron model driven by harmonic synaptic noise

    PubMed Central

    Nguyen, Hoai; Neiman, Alexander B.

    2010-01-01

    We study statistical properties, response dynamics, and information transmission in a Hodgkin-Huxley–type neuron system, modeling peripheral electroreceptors in paddlefish. In addition to sodium and potassium currents, the neuron model includes fast calcium and slow afterhyperpolarization (AHP) potassium currents. The synaptic transmission from sensory epithelium is modeled by a Poission process with a rate modulated by narrow-band noise, mimicking stochastic epithelial oscillations observed experimentally. We study how the interplay of parameters of AHP current and synaptic noise affects the statistics of spontaneous dynamics and response properties of the system. In particular, we confirm predictions made earlier with perfect integrate and fire and phase neuron models that epithelial oscillations enhance stimulus–response coherence and thus information transmission in electroreceptor system. In addition, we consider a strong stimulus regime and show that coherent epithelial oscillations may reduce variability of electroreceptor responses to time-varying stimuli. PMID:20975925

  20. Simple analytical model for low-frequency frequency-modulation noise of monolithic tunable lasers.

    PubMed

    Huynh, Tam N; Ó Dúill, Seán P; Nguyen, Lim; Rusch, Leslie A; Barry, Liam P

    2014-02-10

    We employ simple analytical models to construct the entire frequency-modulation (FM)-noise spectrum of tunable semiconductor lasers. Many contributions to the laser FM noise can be clearly identified from the FM-noise spectrum, such as standard Weiner FM noise incorporating laser relaxation oscillation, excess FM noise due to thermal fluctuations, and carrier-induced refractive index fluctuations from stochastic carrier generation in the passive tuning sections. The contribution of the latter effect is identified by noting a correlation between part of the FM-noise spectrum with the FM-modulation response of the passive sections. We pay particular attention to the case of widely tunable lasers with three independent tuning sections, mainly the sampled-grating distributed Bragg reflector laser, and compare with that of a distributed feedback laser. The theoretical model is confirmed with experimental measurements, with the calculations of the important phase-error variance demonstrating excellent agreement. PMID:24663260

  1. Stability of a Beddington-DeAngelis type predator-prey model with trichotomous noises

    NASA Astrophysics Data System (ADS)

    Jin, Yanfei; Niu, Siyong

    2016-06-01

    The stability analysis of a Beddington-DeAngelis (B-D) type predator-prey model driven by symmetric trichotomous noises is presented in this paper. Using the Shapiro-Loginov formula, the first-order and second-order solution moments of the system are obtained. The moment stability conditions of the B-D predator-prey model are given by using Routh-Hurwitz criterion. It is found that the stabilities of the first-order and second-order solution moments depend on the noise intensities and correlation time of noise. The first-order and second-order moments are stable when the correlation time of noise is increased. That is, the trichotomous noise plays a constructive role in stabilizing the solution moment with regard to Gaussian white noise. Finally, some numerical results are performed to support the theoretical analyses.

  2. Accurate and Fast Simulation of Channel Noise in Conductance-Based Model Neurons by Diffusion Approximation

    PubMed Central

    Linaro, Daniele; Storace, Marco; Giugliano, Michele

    2011-01-01

    Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here. PMID:21423712

  3. A long wave transverse electric-transverse magnetic noise prediction model

    NASA Astrophysics Data System (ADS)

    Warber, C. R.; Field, E. C., Jr.

    1995-05-01

    This paper describes a computerized physical model that predicts both horizontally and vertically polarized noise in the ELF to LF band (10 Hz to 60 kHz). Since naturally occurring radio noise in this band is produced by lightning and propagates to the receiver via the Earth-ionosphere waveguide, the model starts with average lightning flash density data from which it calculates radiated power for horizontal and vertical noise. Adjustments are made to the radiated power to account for seasonal and latitudinal differences in the lightning processes. The noise power is then integrated over fairly large geographic areas to formulate horizontal and vertical equivalent noise transmitters. The power radiated from each of these transmitters is propagated to the receiver location using standard anisotropic long wave propagation algorithms and well-known models of the Earth-ionosphere waveguide. From the received power the model predicts RMS noise, standard deviation, voltage deviation VD, and the amplitude probability distribution of the noise for both polarizations. Since the model is based on theory, it can also predict these parameters under disturbed ionospheric conditions. The model's generally good agreement with RMS noise data is demonstrated.

  4. Accelerated Nucleation Due to Trace Additives: A Fluctuating Coverage Model.

    PubMed

    Poon, Geoffrey G; Peters, Baron

    2016-03-01

    We develop a theory to account for variable coverage of trace additives that lower the interfacial free energy for nucleation. The free energy landscape is based on classical nucleation theory and a statistical mechanical model for Langmuir adsorption. Dynamics are modeled by diffusion-controlled attachment and detachment of solutes and adsorbing additives. We compare the mechanism and kinetics from a mean-field model, a projection of the dynamics and free energy surface onto nucleus size, and a full two-dimensional calculation using Kramers-Langer-Berezhkovskii-Szabo theory. The fluctuating coverage model predicts rates more accurately than mean-field models of the same process primarily because it more accurately estimates the potential of mean force along the size coordinate. PMID:26485064

  5. Comparison of Far-Field Noise for Three Significantly Different Model Turbofans

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    2008-01-01

    Far-field noise sound power level (PWL) spectra and overall sound pressure level (OASPL) directivities were compared for three significantly different model fan stages which were tested in the NASA Glenn 9x15 Low Speed Wind Tunnel. The test fans included the Advanced Ducted Propulsor (ADP) Fan1, the baseline Source Diagnostic Test (SDT) fan, and the Quiet High Speed Fan2 (QHSF2) These fans had design rotor tangential tip speeds from 840 to 1474 ft/s and stage pressure ratios from 1.29 to 1.82. Additional parameters included rotor-stator spacing, stator sweep, and downstream support struts. Acoustic comparison points were selected on the basis of stage thrust. Acoustic results for the low tip speed/low pressure ratio fan (ADP Fan1) were thrust-adjusted to show how a geometrically-scaled version of this fan might compare at the higher design thrust levels of the other two fans. Lowest noise levels were typically observed for ADP Fan1 (which had a radial stator) and for the intermediate tip speed fan (Source Diagnostics Test, SDT, R4 rotor) with a swept stator. Projected noise levels for the ADP fan to the SDT swept stator configuration at design point conditions showed the fans to have similar noise levels. However, it is possible that the ADP fan could be 2 to 3 dB quieter with incorporation of a swept stator. Benefits of a scaled ADP fan include avoidance of multiple pure tones associated with transonic and higher blade tip speeds. Penalties of a larger size ADP fan would include increased nacelle size and drag.

  6. Comparison of Far-field Noise for Three Significantly Different Model Turbofans

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    2008-01-01

    Far-field noise sound power level (PWL) spectra and overall sound pressure level (OASPL) directivities were compared for three significantly different model fan stages which were tested in the NASA Glenn 9 15 Low Speed Wind Tunnel. The test fans included the Advanced Ducted Propulsor (ADP) Fan1, the baseline Source Diagnostic Test (SDT) fan, and the Quiet High Speed Fan2 (QHSF2). These fans had design rotor tangential tip speeds from 840 to 1474 ft/s and stage pressure ratios from 1.29 to 1.82. Additional parameters included rotor-stator spacing, stator sweep, and downstream support struts. Acoustic comparison points were selected on the basis of stage thrust. Acoustic results for the low tip speed/low pressure ratio fan (ADP Fan1) were thrust-adjusted to show how a geometrically-scaled version of this fan might compare at the higher design thrust levels of the other two fans. Lowest noise levels were typically observed for ADP Fan1 (which had a radial stator) and for the intermediate tip speed fan (Source Diagnostics Test, SDT, R4 rotor) with a swept stator. Projected noise levels for the ADP fan to the SDT swept stator configuration at design point conditions showed the fans to have similar noise levels. However, it is possible that the ADP fan could be 2 to 3 dB quieter with incorporation of a swept stator. Benefits of a scaled ADP fan include avoidance of multiple pure tones associated with transonic and higher blade tip speeds. Penalties of a larger size ADP fan would include increased nacelle size and drag.

  7. Modeling and Prediction of the Noise from Non-Axisymmetric Jets

    NASA Technical Reports Server (NTRS)

    Leib, Stewart J.

    2014-01-01

    mean flows which were meant to represent noise reduction concepts being considered by NASA. Testing (Ref. 5) showed that the method was feasible for the types of mean flows of interest in jet noise applications. Subsequently, this method was further developed to allow use of mean flow profiles obtained from a Reynolds-averaged Navier-Stokes (RANS) solution of the flow. Preliminary testing of the generalized code was among the last tasks completed under this contract. The stringent noise-reduction goals of NASA's Fundamental Aeronautics Program suggest that, in addition to potentially complex exhaust nozzle geometries, next generation aircraft will also involve tighter integration of the engine with the airframe. Therefore, noise generated and propagated by jet flows in the vicinity of solid surfaces is expected to be quite significant, and reduced-order noise prediction tools will be needed that can deal with such geometries. One important source of noise is that generated by the interaction of a turbulent jet with the edge of a solid surface (edge noise). Such noise is generated, for example, by the passing of the engine exhaust over a shielding surface, such as a wing. Work under this task supported an effort to develop a RANS-based prediction code for edge noise based on an extension of the classical Rapid Distortion Theory (RDT) to transversely sheared base flows (Refs. 6 and 7). The RDT-based theoretical analysis was applied to the generic problem of a turbulent jet interacting with the trailing edge of a flat plate. A code was written to evaluate the formula derived for the spectrum of the noise produced by this interaction and results were compared with data taken at NASA Glenn for a variety of jet/plate configurations and flow conditions (Ref. 8). A longer-term goal of this task was to work toward the development of a high-fidelity model of sound propagation in spatially developing non-axisymmetric jets using direct numerical methods for solving the relevant

  8. Modeling helicopter near-horizon harmonic noise due to transient maneuvers

    NASA Astrophysics Data System (ADS)

    Sickenberger, Richard D.

    A new first principles model has been developed to estimate the external harmonic noise radiation for a helicopter performing transient maneuvers in the longitudinal plane. This model, which simulates the longitudinal fuselage dynamics, main rotor blade flapping, and far field acoustics, was validated using in-flight measurements and recordings from ground microphones during a full-scale flight test featuring a Bell 206B-3 helicopter. The flight test was specifically designed to study transient maneuvers. The validated model demonstrated that the flapping of the main rotor blades does not significantly affect the acoustics radiated by the helicopter during maneuvering flight. Furthermore, the model also demonstrated that Quasi-Static Acoustic Mapping (Q-SAM) methods can be used to reliably predict the noise radiated during transient maneuvers. The model was also used to identify and quantify the contributions of main rotor thickness noise, low frequency loading noise, and blade-vortex interaction (BVI) noise during maneuvering flight for the Bell 206B-3 helicopter. Pull-up and push-over maneuvers from pure longitudinal cyclic and pure collective control inputs were investigated. The contribution of thickness noise and low frequency loading noise during maneuvering flight was found to depend on the orientation of the tip-path plane relative to the observer. The contribution of impulsive BVI noise during maneuvering flight was found to depend on the inflow through the main rotor and the orientation of the tip-path plane relative to the observer.

  9. fMRI data analysis with nonstationary noise models: a Bayesian approach.

    PubMed

    Luo, Huaien; Puthusserypady, Sadasivan

    2007-09-01

    The assumption of noise stationarity in the functional magnetic resonance imaging (fMRI) data analysis may lead to the loss of crucial dynamic features of the data and thus result in inaccurate activation detection. In this paper, a Bayesian approach is proposed to analyze the fMRI data with two nonstationary noise models (the time-varying variance noise model and the fractional noise model). The covariance matrices of the time-varying variance noise and the fractional noise after wavelet transform are diagonal matrices. This property is investigated under the Bayesian framework. The Bayesian estimator not only gives an accurate estimate of the weights in general linear model, but also provides posterior probability of activation in a voxel and, hence, avoids the limitations (i.e., using only hypothesis testing) in the classical methods. The performance of the proposed Bayesian methods (under the assumption of different noise models) are compared with the ordinary least squares (OLS) and the weighted least squares (WLS) methods. Results from the simulation studies validate the superiority of the proposed approach to the OLS and WLS methods considering the complex noise structures in the fMRI data. PMID:17867354

  10. Inductively coupled plasma spectrometry: Noise characteristics of aerosols, application of generalized standard additions method, and Mach disk as an emission source

    SciTech Connect

    Shen, Luan

    1995-10-06

    This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.

  11. Effect of wind on seismic exploration random noise on land: Modeling and analyzing

    NASA Astrophysics Data System (ADS)

    Li, Guanghui; Li, Yue; Yang, Baojun

    2015-08-01

    Random noise is a key factor which impacts the Signal Noise Ratio (SNR) of seismic records, and its interference without regularity makes seismic data process difficult. It is a first requirement for noise attenuation to know how random noise generated. Since the main effect of wind on seismic noise, we model wind-induced noise by wind induced vibration theory, aeroacoustics and wave equation, and analyze the influencing factors which cause the differences of noise in the desert in Tarim basin, the loess tableland in northern Shaanxi, the mountain land in Yunnan and the forest belt in north in China in this paper. There are wind speed, surface roughness, terrain, and vegetation. The greater the wind speed, the rougher the surface, the higher and the steeper the mountain, the more the vegetations and the thinner the branches and leaves of vegetations, the greater the amplitude and the frequency of wind-induced noise is. The simulated results explain the differences of wind induced noise in different areas. It lays a foundation for random noise attenuation both in data acquisition and data processing.

  12. Noise-enhanced information transmission in a model of multichannel cochlear implantation

    NASA Astrophysics Data System (ADS)

    Allingham, David; Stocks, Nigel G.; Morse, Robert P.; Meyer, Georg F.

    2004-05-01

    Cochlear implants are used to restore functional hearing to people with profound deafness. Success, as measured by speech intelligibility scores, varies greatly amongst patients; a few receive almost no benefit while some are able to use a telephone under favourable listening conditions. Using a novel nerve model and the principles of suprathreshold stochastic resonance, we demonstrate that the rate of information transfer through a cochlear implant system can be globally maximized by the addition of noise. If this additional information could be used by the brain then it would lead to greater speech intelligibility, which is important given that the intelligibility of all cochlear implant recipients is poorer than that of people with normal hearing, particularly in adverse listening conditions.

  13. Noise Cancelling of Multichannel MRS Signals with a Time Dependent Harmonic Model

    NASA Astrophysics Data System (ADS)

    Larsen, J.; Dalgaard, E.; Auken, E.

    2013-12-01

    Magnetic resonance sounding (MRS) is a non-invasive geophysical technique applicable to groundwater investigations and provides a direct quantification of the subsurface water content from surface measurements. The technique is susceptible to electromagnetic noise and signal processing must be employed to retrieve the NMR signal from noisy measurements. The latest generation of MRS equipment is multichannel systems where a primary coil records the noisy NMR signal. Additional coils, physically displaced from the primary coil, synchronously measure the noise which is then subtracted from the primary coil with multichannel Wiener filtering. Unfortunately, this approach fails to take into account that noise can originate from several sources and as a result the noise cancelling is not always optimum. To remedy this problem it can be utilized that one of the major noise components in MRS signals is powerline harmonics, i.e. the noise is a sum of sinusoidal signals all harmonically related to the same fundamental powerline frequency. This implies that it is possible to create a model of the powerline harmonic noise that can be fitted to the MRS recordings and subtracted from these before employing multichannel Wiener filtering as we have recently demonstrated. A fundamental assumption in that work was that the powerline frequency and the amplitude and phase of each harmonic remained constant throughout a signal record of approximately 1 s duration. This assumption is often valid, but not always. In this study we present an extension of this method where the variations in the powerline signal are accounted for by a time dependent model. The signal records from each coil are divided into short overlapping segments, with a typical duration of 100 ms, and a harmonic model with time independent parameters is fitted to each segment. The fitting parameters from each segment are subsequently splined to a full harmonic model where all parameters; fundamental powerline frequency

  14. Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative?

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Huffman, George J.; Adler, Robert F.; Tang, Ling; Sapiano, Matthew; Maggioni, Viviana; Wu, Huan

    2013-01-01

    The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application.In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as non constant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.

  15. Modelling the behaviour of additives in gun barrels

    NASA Astrophysics Data System (ADS)

    Rhodes, N.; Ludwig, J. C.

    1986-01-01

    A mathematical model which predicts the flow and heat transfer in a gun barrel is described. The model is transient, two-dimensional and equations are solved for velocities and enthalpies of a gas phase, which arises from the combustion of propellant and cartridge case, for particle additives which are released from the case; volume fractions of the gas and particles. Closure of the equations is obtained using a two-equation turbulence model. Preliminary calculations are described in which the proportions of particle additives in the cartridge case was altered. The model gives a good prediction of the ballistic performance and the gas to wall heat transfer. However, the expected magnitude of reduction in heat transfer when particles are present is not predicted. The predictions of gas flow invalidate some of the assumptions made regarding case and propellant behavior during combustion and further work is required to investigate these effects and other possible interactions, both chemical and physical, between gas and particles.

  16. Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter.

    PubMed

    Huang, Lei

    2015-01-01

    To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409

  17. Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter

    PubMed Central

    Huang, Lei

    2015-01-01

    To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409

  18. Survey of Turbulence Models for the Computation of Turbulent Jet Flow and Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, N.

    1999-01-01

    The report presents an overview of jet noise computation utilizing the computational fluid dynamic solution of the turbulent jet flow field. The jet flow solution obtained with an appropriate turbulence model provides the turbulence characteristics needed for the computation of jet mixing noise. A brief account of turbulence models that are relevant for the jet noise computation is presented. The jet flow solutions that have been directly used to calculate jet noise are first reviewed. Then, the turbulent jet flow studies that compute the turbulence characteristics that may be used for noise calculations are summarized. In particular, flow solutions obtained with the k-e model, algebraic Reynolds stress model, and Reynolds stress transport equation model are reviewed. Since, the small scale jet mixing noise predictions can be improved by utilizing anisotropic turbulence characteristics, turbulence models that can provide the Reynolds stress components must now be considered for jet flow computations. In this regard, algebraic stress models and Reynolds stress transport models are good candidates. Reynolds stress transport models involve more modeling and computational effort and time compared to algebraic stress models. Hence, it is recommended that an algebraic Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds stress components.

  19. An Additional Symmetry in the Weinberg-Salam Model

    SciTech Connect

    Bakker, B.L.G.; Veselov, A.I.; Zubkov, M.A.

    2005-06-01

    An additional Z{sub 6} symmetry hidden in the fermion and Higgs sectors of the Standard Model has been found recently. It has a singular nature and is connected to the centers of the SU(3) and SU(2) subgroups of the gauge group. A lattice regularization of the Standard Model was constructed that possesses this symmetry. In this paper, we report our results on the numerical simulation of its electroweak sector.

  20. The effects of meteorological parameters in ambient noise modelling studies in Delhi.

    PubMed

    Singh, Deepak; Prakash, Amit; Srivastava, A K; Kumar, Krishan; Jain, V K

    2013-02-01

    The acoustic environment in urban areas has gained prominence in recent times due to rapid industrial and commercial development in metropolitan cities. Various attempts have been made to predict and model the trends in urban ambient noise levels using different statistical and dynamic models. The present study makes an attempt to examine the role of meteorological parameters affecting the ambient noise levels in Delhi. The results show significant improvement in overall noise scenario of Delhi since the introduction of compressed natural gas vehicles in public transport of Delhi. The noise level is significantly reduced by high vegetation cover as well as by low relative humidity over Delhi. The regression models developed for the present study clearly show the significant contribution of meteorological parameters in governing the ambient noise levels in Delhi. PMID:22580749

  1. Improved Airport Noise Modeling for High Altitudes and Flexible Flight Operations

    NASA Technical Reports Server (NTRS)

    Forsyth, David W.; Follet, Jesse I.

    2006-01-01

    The FAA's Integrated Noise Model (INM) is widely used to estimate noise in the vicinity of airports. This study supports the development of standards by which the fleet data in the INM can be updated. A comparison of weather corrections to noise data using INM Spectral Classes is made with the Boeing integrated method. The INM spectral class method is shown to work well, capturing noise level differences due to weather especially at long distances. Two studies conducted at the Denver International Airport are included in the appendices. The two studies adopted different approaches to modeling flight operations at the airport. When compared to the original, year 2000, results, it is apparent that changes made to the INM in terms of modeling processes and databases have resulted in improved agreement between predicted and measured noise levels.

  2. Mechanism of stochastic resonance enhancement in neuronal models driven by 1/f noise

    NASA Astrophysics Data System (ADS)

    Nozaki, Daichi; Collins, James J.; Yamamoto, Yoshiharu

    1999-10-01

    Noise can assist neurons in the detection of weak signals via a mechanism known as stochastic resonance (SR). In a previous study [Phys. Lett. A 243, 281 (1998)], we showed that when colored noise with 1/fβ spectrum is added to the FitzHugh-Nagumo (FHN) neuronal model, the optimal noise variance for SR could be minimized with β~1. In this study, we investigate analytically how the noise color (β) affects the SR profile in a linearized version of the FHN model. We demonstrate that the aforementioned effect of 1/f noise is related to the dynamical characteristics of the model neuron, i.e., the refractory period, the low-pass filtering effect of the membrane capacitance, and the high-pass filtering effect of the recovery variable.

  3. Helicopter main-rotor noise: Determination of source contributions using scaled model data

    NASA Astrophysics Data System (ADS)

    Brooks, Thomas F.; Jolly, J. Ralph, Jr.; Marcolini, Michael A.

    1988-08-01

    Acoustic data from a test of a 40 percent model MBB BO-105 helicopter main rotor are scaled to equivalent full-scale flyover cases. The test was conducted in the anechoic open test section of the German-Dutch Windtunnel (DNW). The measured data are in the form of acoustic pressure time histories and spectra from two out-of-flow microphones underneath and foward of the model. These are scaled to correspond to measurements made at locations 150 m below the flight path of a full-scale rotor. For the scaled data, a detailed analysis is given for the identification in the data of the noise contributions from different rotor noise sources. Key results include a component breakdown of the noise contributions, in terms of noise criteria calculations of a weighted sound pressure level (dBA) and perceived noise level (PNL), as functions of rotor advance ratio and descent angle. It is shown for the scaled rotor that, during descent, impulsive blade-vortex interaction (BVI) noise is the dominant contributor to the noise. In level flight and mild climb, broadband blade-turbulent wake interaction (BWI) noise is dominant due to the absence of BVI activity. At high climb angles, BWI is reduced and self-noise from blade boundary-layer turbulence becomes the most prominent.

  4. ANOPP Landing Gear Noise Prediction Comparisons to Model-scale Data

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; Humphreys, William M., Jr.; Rawls, John W., Jr.

    2007-01-01

    The NASA Aircraft NOise Prediction Program (ANOPP) includes two methods for computing the noise from landing gear: the "Fink" method and the "Guo" method. Both methods have been predominately validated and used to predict full-scale landing gear noise. The two methods are compared, and their ability to predict the noise for model-scale landing gear is investigated. Predictions are made using both the Fink and Guo methods and compared to measured acoustic data obtained for a high-fidelity, 6.3%-scale, Boeing 777 main landing gear. A process is developed by which full-scale predictions can be scaled to compare with model-scale data. The measurements were obtained in the NASA Langley Quiet Flow Facility for a range of Mach numbers at a large number of observer polar (flyover) and azimuthal (sideline) observer angles. Spectra and contours of the measured sound pressure levels as a function of polar and azimuthal angle characterize the directivity of landing gear noise. Comparisons of predicted noise spectra and contours from each ANOPP method are made. Both methods predict comparable amplitudes and trends for the flyover locations, but deviate at the sideline locations. Neither method fully captures the measured noise directivity. The availability of these measured data provides the opportunity to further understand and advance noise prediction capabilities, particularly for noise directivity.

  5. Helicopter main-rotor noise: Determination of source contributions using scaled model data

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Jolly, J. Ralph, Jr.; Marcolini, Michael A.

    1988-01-01

    Acoustic data from a test of a 40 percent model MBB BO-105 helicopter main rotor are scaled to equivalent full-scale flyover cases. The test was conducted in the anechoic open test section of the German-Dutch Windtunnel (DNW). The measured data are in the form of acoustic pressure time histories and spectra from two out-of-flow microphones underneath and foward of the model. These are scaled to correspond to measurements made at locations 150 m below the flight path of a full-scale rotor. For the scaled data, a detailed analysis is given for the identification in the data of the noise contributions from different rotor noise sources. Key results include a component breakdown of the noise contributions, in terms of noise criteria calculations of a weighted sound pressure level (dBA) and perceived noise level (PNL), as functions of rotor advance ratio and descent angle. It is shown for the scaled rotor that, during descent, impulsive blade-vortex interaction (BVI) noise is the dominant contributor to the noise. In level flight and mild climb, broadband blade-turbulent wake interaction (BWI) noise is dominant due to the absence of BVI activity. At high climb angles, BWI is reduced and self-noise from blade boundary-layer turbulence becomes the most prominent.

  6. Modeling uranium transport in acidic contaminated groundwater with base addition

    SciTech Connect

    Zhang, Fan; Luo, Wensui; Parker, Jack C.; Brooks, Scott C; Watson, David B; Jardine, Philip; Gu, Baohua

    2011-01-01

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  7. Noise reduction tests of large-scale-model externally blown flap using trailing-edge blowing and partial flap slot covering. [jet aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    Mckinzie, D. J., Jr.; Burns, R. J.; Wagner, J. M.

    1976-01-01

    Noise data were obtained with a large-scale cold-flow model of a two-flap, under-the-wing, externally blown flap proposed for use on future STOL aircraft. The noise suppression effectiveness of locating a slot conical nozzle at the trailing edge of the second flap and of applying partial covers to the slots between the wing and flaps was evaluated. Overall-sound-pressure-level reductions of 5 db occurred below the wing in the flyover plane. Existing models of several noise sources were applied to the test results. The resulting analytical relation compares favorably with the test data. The noise source mechanisms were analyzed and are discussed.

  8. Self-noise models of five commercial strong-motion accelerometers

    USGS Publications Warehouse

    Ringler, Adam; Evans, John R.; Hutt, Charles R.

    2015-01-01

    To better characterize the noise of a number of commonly deployed accelerometers in a standardized way, we conducted noise measurements on five different models of strong‐motion accelerometers. Our study was limited to traditional accelerometers (Fig. 1) and is in no way exhaustive.

  9. Using Set Model for Learning Addition of Integers

    ERIC Educational Resources Information Center

    Lestari, Umi Puji; Putri, Ratu Ilma Indra; Hartono, Yusuf

    2015-01-01

    This study aims to investigate how set model can help students' understanding of addition of integers in fourth grade. The study has been carried out to 23 students and a teacher of IVC SD Iba Palembang in January 2015. This study is a design research that also promotes PMRI as the underlying design context and activity. Results showed that the…

  10. Noise models for superoperators in the chord representation

    SciTech Connect

    Aolita, Mario Leandro; Garcia-Mata, Ignacio; Saraceno, Marcos

    2004-12-01

    We study many-qubit generalizations of quantum noise channels that can be written as an incoherent sum of translations in phase space, for which the chord representation results specially useful. Physical descriptions in terms of the spectral properties of the superoperator and the action in phase space are provided. A very natural description of decoherence leading to a preferred basis is achieved with diffusion along a phase space line. The numerical advantages of using the chord representation are illustrated in the case of coarse-graining noise.

  11. Modeling of certain electrode parameters on the electrochemical noise response

    SciTech Connect

    Danielson, M.

    1997-10-01

    Electrical circuit analogs of electrochemical corrosion processes were used to investigate the electrochemical noise (EN) behavior of electrodes. The Simulation Program with Integrated-Circuit Emphasis (SPICE) was used to solve the equations that describe the current-vs-potential transient response of the electrical circuits. Results provided insight into the effects of electrode area, solution conductivity, coatings, and instrumentation on the measurement and interpretation of EN events in one- and two-electrode configurations. A technique was suggested to permit measurement of the current and potential noise for polarized electrodes.

  12. Impact of noise on self-rated job satisfaction and health in open-plan offices: a structural equation modelling approach.

    PubMed

    Lee, Pyoung Jik; Lee, Byung Kwon; Jeon, Jin Yong; Zhang, Mei; Kang, Jian

    2016-02-01

    This study uses a structural equation model to examine the effects of noise on self-rated job satisfaction and health in open-plan offices. A total of 334 employees from six open-plan offices in China and Korea completed a questionnaire survey. The questionnaire included questions assessing noise disturbances and speech privacy, as well as job satisfaction and health. The results indicated that noise disturbance affected self-rated health. Contrary to popular expectation, the relationship between noise disturbance and job satisfaction was not significant. Rather, job satisfaction and satisfaction with the environment were negatively correlated with lack of speech privacy. Speech privacy was found to be affected by noise sensitivity, and longer noise exposure led to decreased job satisfaction. There was also evidence that speech privacy was a stronger predictor of satisfaction with environment and job satisfaction for participants with high noise sensitivity. In addition, fit models for employees from China and Korea showed slight differences. Practitioner Summary: This study is motivated by strong evidence that noise is the key source of complaints in open-plan offices. Survey results indicate that self-rated job satisfaction of workers in open-plan offices was negatively affected by lack of speech privacy and duration of disturbing noise. PMID:26366940

  13. A summation and inhibition model of annoyance response to multiple community noise sources

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1979-01-01

    A model of annoyance due to combined noise sources was developed. The model provides for the summation of the subjective magnitudes of annoyance due to the separate noise sources and for the inhibition of the subjective magnitudes of each source by the presence of the other noise sources. The inhibition process is assumed to mathematically obey a power-group transformation. The results of an experiment in which subjects judged the annoyance of 15 minute sessions of combined aircraft and with several other models of combined source annoyance. These comparisons indicated that the model developed herein provides better qualitative and quantitative agreement with experimental responses than the other models. The application of the model to multiple community noises is discussed.

  14. Tone-dependent error diffusion based on an updated blue-noise model

    NASA Astrophysics Data System (ADS)

    Fung, Yik-Hing; Chan, Yuk-Hee

    2016-01-01

    The conventional blue-noise model that specifies the desired noise characteristics of an ideal halftone has been updated recently, and simulation results showed that the updated model can serve as a better guideline for developing halftone algorithms. At the moment, only a feature-preserving multiscale error diffusion-based algorithm was developed based on the updated noise model. As the algorithm does not support real-time applications, a tone-dependent error diffusion (TDED) algorithm is developed based on the updated noise model. To support the proposed TDED algorithm, we optimize a diffusion filter and a quantizer threshold for each possible input gray level based on the updated noise model, such that the algorithm can adapt its diffusion filter and quantizer according to the input intensity value of a pixel to produce a halftone. Simulation results showed that the proposed TDED algorithm can successfully produce halftones bearing the desired noise characteristics as specified by the updated noise model. As a consequence, it provides better performance than conventional error diffusion-based algorithms in terms of various measures including radially averaged power spectrum density and anisotropy. When processing real images, it can eliminate directional artifacts, regular structure patterns, and unintended sharpening effects in its halftoning outputs.

  15. Installation noise measurements of model SR and CR propellers

    NASA Astrophysics Data System (ADS)

    Block, P. J. W.

    1984-05-01

    Noise measurements on a 0.1 scale SR-2 propeller in a single and counter rotation mode, in a pusher and tractor configuration, and operating at non-zero angles of attack are summarized. A measurement scheme which permitted 143 measurements of each of these configurations in the Langley 4- by 7-meter low speed tunnel is also described.

  16. Installation noise measurements of model SR and CR propellers

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1984-01-01

    Noise measurements on a 0.1 scale SR-2 propeller in a single and counter rotation mode, in a pusher and tractor configuration, and operating at non-zero angles of attack are summarized. A measurement scheme which permitted 143 measurements of each of these configurations in the Langley 4- by 7-meter low speed tunnel is also described.

  17. Ultra-Low Noise HEMT Device Models: Application of On-Wafer Cryogenic Noise Analysis and Improved Parameter Extraction Techniques

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.; Hamai, M.; Nishimoto, M.; Laskar, J.; Szydlik, P.; Lai, R.

    1995-01-01

    Significant advances in the development of HEMT technology have resulted in high performance cryogenic low noise amplifiers whose noise temperatures are within an order of magnitude of the quantum noise limit. Key to the identification of optimum HEMT structures at cryogenic temperatures is the development of on-wafer noise and device parameter extraction techniques. Techniques and results are described.

  18. Fan broadband interaction noise modeling using a low-order method

    NASA Astrophysics Data System (ADS)

    Grace, S. M.

    2015-06-01

    A low-order method for simulating broadband interaction noise downstream of the fan stage in a turbofan engine is explored in this paper. The particular noise source of interest is due to the interaction of the fan rotor wake with the fan exit guide vanes (FEGVs). The vanes are modeled as flat plates and the method utilizes strip theory relying on unsteady aerodynamic cascade theory at each strip. This paper shows predictions for 6 of the 9 cases from NASA's Source Diagnostic Test (SDT) and all 4 cases from the 2014 Fan Broadband Workshop Fundamental Case 2 (FC2). The turbulence in the rotor wake is taken from hot-wire data for the low speed SDT cases and the FC2 cases. Additionally, four different computational simulations of the rotor wake flow for all of the SDT rotor speeds have been used to determine the rotor wake turbulence parameters. Comparisons between predictions based on the different inputs highlight the possibility of a potential effect present in the hot-wire data for the SDT as well as the importance of accurately describing the turbulence length scale when using this model. The method produces accurate predictions of the spectral shape for all of the cases. It also predicts reasonably well all of the trends that can be considered based on the included cases such as vane geometry, vane count, turbulence level, and rotor speed.

  19. Estimating soil water retention using soil component additivity model

    NASA Astrophysics Data System (ADS)

    Zeiliger, A.; Ermolaeva, O.; Semenov, V.

    2009-04-01

    Soil water retention is a major soil hydraulic property that governs soil functioning in ecosystems and greatly affects soil management. Data on soil water retention are used in research and applications in hydrology, agronomy, meteorology, ecology, environmental protection, and many other soil-related fields. Soil organic matter content and composition affect both soil structure and adsorption properties; therefore water retention may be affected by changes in soil organic matter that occur because of both climate change and modifications of management practices. Thus, effects of organic matter on soil water retention should be understood and quantified. Measurement of soil water retention is relatively time-consuming, and become impractical when soil hydrologic estimates are needed for large areas. One approach to soil water retention estimation from readily available data is based on the hypothesis that soil water retention may be estimated as an additive function obtained by summing up water retention of pore subspaces associated with soil textural and/or structural components and organic matter. The additivity model and was tested with 550 soil samples from the international database UNSODA and 2667 soil samples from the European database HYPRES containing all textural soil classes after USDA soil texture classification. The root mean square errors (RMSEs) of the volumetric water content estimates for UNSODA vary from 0.021 m3m-3 for coarse sandy loam to 0.075 m3m-3 for sandy clay. Obtained RMSEs are at the lower end of the RMSE range for regression-based water retention estimates found in literature. Including retention estimates of organic matter significantly improved RMSEs. The attained accuracy warrants testing the 'additivity' model with additional soil data and improving this model to accommodate various types of soil structure. Keywords: soil water retention, soil components, additive model, soil texture, organic matter.

  20. Image signal-to-noise ratio estimation using adaptive slope nearest-neighbourhood model.

    PubMed

    Sim, K S; Teh, V

    2015-12-01

    A new technique based on nearest neighbourhood method is proposed. In this paper, considering the noise as Gaussian additive white noise, new technique single-image-based estimator is proposed. The performance of this new technique such as adaptive slope nearest neighbourhood is compared with three of the existing method which are original nearest neighbourhood (simple method), first-order interpolation method and shape-preserving piecewise cubic hermite autoregressive moving average. In a few cases involving images with different brightness and edges, this adaptive slope nearest neighbourhood is found to deliver an optimum solution for signal-to-noise ratio estimation problems. For different values of noise variance, the adaptive slope nearest neighbourhood has highest accuracy and less percentage estimation error. Being more robust with white noise, the new proposed technique estimator has efficiency that is significantly greater than those of the three methods. PMID:26292081

  1. Fluorescence microscopy image noise reduction using a stochastically-connected random field model

    PubMed Central

    Haider, S. A.; Cameron, A.; Siva, P.; Lui, D.; Shafiee, M. J.; Boroomand, A.; Haider, N.; Wong, A.

    2016-01-01

    Fluorescence microscopy is an essential part of a biologist’s toolkit, allowing assaying of many parameters like subcellular localization of proteins, changes in cytoskeletal dynamics, protein-protein interactions, and the concentration of specific cellular ions. A fundamental challenge with using fluorescence microscopy is the presence of noise. This study introduces a novel approach to reducing noise in fluorescence microscopy images. The noise reduction problem is posed as a Maximum A Posteriori estimation problem, and solved using a novel random field model called stochastically-connected random field (SRF), which combines random graph and field theory. Experimental results using synthetic and real fluorescence microscopy data show the proposed approach achieving strong noise reduction performance when compared to several other noise reduction algorithms, using quantitative metrics. The proposed SRF approach was able to achieve strong performance in terms of signal-to-noise ratio in the synthetic results, high signal to noise ratio and contrast to noise ratio in the real fluorescence microscopy data results, and was able to maintain cell structure and subtle details while reducing background and intra-cellular noise. PMID:26884148

  2. Noise-and delay-induced phase transitions of the dimer-monomer surface reaction model

    NASA Astrophysics Data System (ADS)

    Zeng, Chunhua; Wang, Hua

    2012-06-01

    The effects of noise and time-delayed feedback in the dimer-monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker-Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  3. Modified jet noise source model for twin-jet shielding analysis

    NASA Technical Reports Server (NTRS)

    Gerhold, C. H.; Kim, C.

    1983-01-01

    An analytical method to estimate the influence that a jet of heated flow has on the noise emission from a parallel jet is presented. The shielding jet is modelled as a cylinder of constant cross-section in which the flow speed and temperature are uniform throughout. The jet noise emission is modelled by a point source with directivity imposed. The directivity term consists of: a self-noise term, a shear-noise term, and a convection factor. The self- and shear-noise terms each contain a basic directivity factor multiplying a spectral shape function. The various components are evaluated based on comparison with isothermal jet radiation experimental data. The modified source term is incorporated into the jet shielding model and compared to heated twin jet shielding data. The estimated spectra agree well except further downstream of the nozzle where peak of the noise spectrum estimated by the model lies approximately one octave below the experimental peak. The noise reduction estimated by the model agrees favorably with experiment in the near downstream region. This discrepancy is explained in terms of the shielding mechanism which is dominant far downstream.

  4. The amplification of environmental noise in population models: causes and consequences.

    PubMed

    Greenman, J V; Benton, T G

    2003-02-01

    Environmental variability is a ubiquitous feature of every organism's habitat. However, the interaction between density dependence and those density-independent factors that are manifested as environmental noise is poorly understood. We are interested in the conditions under which noise interacts with the density dependence to cause amplification of that noise when filtered by the system. For a broad family of structured population models, we show that amplification occurs near the threshold from stable to unstable dynamics by deriving an analytic formula for the amplification under weak noise. We confirm that the effect of noise is to sustain oscillations that would otherwise decay, and we show that it is the amplitude and not the phase that is affected. This is a feature noted in several recent studies. We study this phenomenon in detail for the lurchin and LPA models of population dynamics. We find that the degree of amplification is sensitive to both the noise input and life-history stage through which it acts, that the results hold for surprisingly high levels of noise, and that stochastic chaos (as measured by local Lyapunov exponents) is a concomitant feature of amplification. Further, it is shown that the temporal autocorrelation, or "color," of the noise has a major impact on the system response. We discuss the conditions under which color increases population variance and hence the risk of extinction, and we show that periodicity is sharpened when the color of the noise and dynamics coincide. Otherwise, there is interference, which shows how difficult it is in practice to separate the effects of nonlinearity and noise in short time series. The sensitivity of the population dynamics to noise when close to a bifurcation has wide-ranging consequences for the evolution and ecology of population dynamics. PMID:12675369

  5. Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems. Volume 2; Fan Suppression Model Development

    NASA Technical Reports Server (NTRS)

    Kontos, Karen B.; Kraft, Robert E.; Gliebe, Philip R.

    1996-01-01

    The Aircraft Noise Predication Program (ANOPP) is an industry-wide tool used to predict turbofan engine flyover noise in system noise optimization studies. Its goal is to provide the best currently available methods for source noise prediction. As part of a program to improve the Heidmann fan noise model, models for fan inlet and fan exhaust noise suppression estimation that are based on simple engine and acoustic geometry inputs have been developed. The models can be used to predict sound power level suppression and sound pressure level suppression at a position specified relative to the engine inlet.

  6. Roughness modelling based on human auditory perception for sound quality evaluation of vehicle interior noise

    NASA Astrophysics Data System (ADS)

    Wang, Y. S.; Shen, G. Q.; Guo, H.; Tang, X. L.; Hamade, T.

    2013-08-01

    In this paper, a roughness model, which is based on human auditory perception (HAP) and known as HAP-RM, is developed for the sound quality evaluation (SQE) of vehicle noise. First, the interior noise signals are measured for a sample vehicle and prepared for roughness modelling. The HAP-RM model is based on the process of sound transfer and perception in the human auditory system by combining the structural filtering function and nonlinear perception characteristics of the ear. The HAP-RM model is applied to the measured vehicle interior noise signals by considering the factors that affect hearing, such as the modulation and carrier frequencies, the time and frequency maskings and the correlations of the critical bands. The HAP-RM model is validated by jury tests. An anchor-scaled scoring method (ASM) is used for subjective evaluations in the jury tests. The verification results show that the novel developed model can accurately calculate vehicle noise roughness below 0.6 asper. Further investigation shows that the total roughness of the vehicle interior noise can mainly be attributed to frequency components below 12 Bark. The time masking effects of the modelling procedure enable the application of the HAP-RM model to stationary and nonstationary vehicle noise signals and the SQE of other sound-related signals in engineering problems.

  7. Modeling Thermal Noise from Crystaline Coatings for Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2016-03-01

    The sensitivity of current and future ground-based gravitational-wave detectors are, in part, limited in sensitivity by Brownian and thermoelastic noise in each detector's mirror substrate and coating. Crystalline mirror coatings could potentially reduce thermal noise, but thermal noise is challenging to model analytically in the case of crystalline materials. Thermal noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. In this poster, I will present results from a new code that numerically models thermal noise by numerically solving the auxiliary elastic problem for various types of crystalline mirror coatings. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. I will present preliminary results for a crystal coating on a fused silica substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  8. A directional HF noise model: Calibration and validation in the Australian region

    NASA Astrophysics Data System (ADS)

    Pederick, L. H.; Cervera, M. A.

    2016-01-01

    The performance of systems using HF (high frequency) radio waves, such as over-the-horizon radars, is strongly dependent on the external noise environment. However, this environment has complex behavior and is known to vary with location, time, season, sunspot number, and radio frequency. It is also highly anisotropic, with the directional variation of noise being very important for the design and development of next generation over-the-horizon radar. By combining global maps of lightning occurrence, raytracing propagation, a model background ionosphere and ionospheric absorption, the behavior of noise at HF may be modeled. This article outlines the principles, techniques, and current progress of the model and calibrates it against a 5 year data set of background noise measurements. The calibrated model is then compared with data at a second site.

  9. Additions to Mars Global Reference Atmospheric Model (Mars-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1991-01-01

    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification has also been made which allows heights to go below local terrain height and return realistic pressure, density, and temperature (not the surface values) as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local valley areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch version of Mars-GRAM are presented.

  10. Additions to Mars Global Reference Atmospheric Model (MARS-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie

    1992-01-01

    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification was also made which allows heights to go 'below' local terrain height and return 'realistic' pressure, density, and temperature, and not the surface values, as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local 'valley' areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch versions of Mars-GRAM are presented.

  11. Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.

  12. Model ducted propulsor noise characteristics at takeoff conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Bock, Lawrence A.; Heidelberg, Laurence J.; Hall, David G.

    1994-01-01

    A model Advanced Ducted Propulsor (ADP) was tested in the NASA Lewis Low-Speed Anechoic Wind Tunnel at a simulated takeoff velocity of Mach 0.2. The model was designed and manufactured by Pratt & Whitney. The 16-blade rotor ADP was tested with 22- and 40-vane stators to achieve cut-on and cut-off criterion with respect to propagation of the fundamental rotor-stator interaction tone. Additional test parameters included three inlet lengths, three nozzle sizes, two spinner configurations, and two rotor rub strip configurations. The model was tested over a range of rotor blade setting angles and inlet angles of attack. Acoustic data were taken with a sideline translating microphone probe and with a unique inlet microphone probe that identified inlet rotating acoustic modes. The beneficial acoustic effects of cut-off were clearly demonstrated. A 10-dB fundamental tone reduction was associated with the long inlet and 40-vane stator. The fundamental tone level was essentially unaffected by inlet angle of attack at rotor speeds of above 96% design.

  13. Models of reduced-noise, probabilistic linear amplifiers

    NASA Astrophysics Data System (ADS)

    Combes, Joshua; Walk, Nathan; Lund, A. P.; Ralph, T. C.; Caves, Carlton M.

    2016-05-01

    We construct an amplifier that interpolates between a nondeterministic, immaculate linear amplifier and a deterministic, ideal linear amplifier and beyond to nonideal linear amplifiers. The construction involves cascading an immaculate linear amplifier that has amplitude gain g1 with a (possibly) nonideal linear amplifier that has gain g2. With respect to normally ordered moments, the device has output noise μ2(G2-1 ) where G =g1g2 is the overall amplitude gain and μ2 is a noise parameter. When μ2≥1 , our devices realize ideal (μ2=1 ) and nonideal (μ2>1 ) linear amplifiers. When 0 ≤μ2<1 , these devices work effectively only over a restricted region of phase space and with some subunity success probability p✓. We investigate the performance of our μ2 amplifiers in terms of a gain-corrected probability-fidelity product and the ratio of input to output signal-to-noise ratios corrected for success probability.

  14. Considerations on the acoustic energy radiated by toothed gears. [model for calculating noise intensity

    NASA Technical Reports Server (NTRS)

    Popinceanu, N. G.; Kremmer, I.

    1974-01-01

    A mechano-acoustic model is reported for calculating acoustic energy radiated by a working gear. According to this model, a gear is an acoustic coublet formed of the two wheels. The wheel teeth generate cylindrical acoustic waves while the front surfaces of the teeth behave like vibrating pistons. Theoretical results are checked experimentally and good agreement is obtained with open gears. The experiments show that the air noise effect is negligible as compared with the structural noise transmitted to the gear box.

  15. Flap noise and aerodynamic results for model QCSEE over-the-wing configurations

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Burns, R.; Groesbeck, D. E.

    1977-01-01

    Noise spectra in three dimensions and aerodynamic data were measured for a model of the NASA quiet clean short-haul experimental engine (QCSEE) over-the-wing configuration. The effects of flap length, nozzle exhaust velocity, and nozzle geometry were determined using a single nozzle and wing-flap segment. The scaled-up model data is representative of full scale flap noise with the QCSEE engine.

  16. Understanding Rasch Measurement: The Rasch Model, Additive Conjoint Measurement, and New Models of Probabilistic Measurement Theory.

    ERIC Educational Resources Information Center

    Karabatsos, George

    2001-01-01

    Describes similarities and differences between additive conjoint measurement and the Rasch model, and formalizes some new nonparametric item response models that are, in a sense, probabilistic measurement theory models. Applies these new models to published and simulated data. (SLD)

  17. Experimental evidence and theoretical modeling of two-photon absorption dynamics in the reduction of intensity noise of solid-state Er:Yb lasers

    NASA Astrophysics Data System (ADS)

    El Amili, Abdelkrim; Kervella, Gaël; Alouini, Mehdi

    2013-04-01

    A theoretical and experimental investigation of the intensity noise reduction induced by two-photon absorption in a Er,Yb:Glass laser is reported. The time response of the two-photon absorption mechanism is shown to play an important role on the behavior of the intensity noise spectrum of the laser. A model including an additional rate equation for the two-photon-absorption losses is developed and allows the experimental observations to be predicted.

  18. Backbone additivity in the transfer model of protein solvation

    PubMed Central

    Hu, Char Y; Kokubo, Hironori; Lynch, Gillian C; Bolen, D Wayne; Pettitt, B Montgomery

    2010-01-01

    The transfer model implying additivity of the peptide backbone free energy of transfer is computationally tested. Molecular dynamics simulations are used to determine the extent of change in transfer free energy (ΔGtr) with increase in chain length of oligoglycine with capped end groups. Solvation free energies of oligoglycine models of varying lengths in pure water and in the osmolyte solutions, 2M urea and 2M trimethylamine N-oxide (TMAO), were calculated from simulations of all atom models, and ΔGtr values for peptide backbone transfer from water to the osmolyte solutions were determined. The results show that the transfer free energies change linearly with increasing chain length, demonstrating the principle of additivity, and provide values in reasonable agreement with experiment. The peptide backbone transfer free energy contributions arise from van der Waals interactions in the case of transfer to urea, but from electrostatics on transfer to TMAO solution. The simulations used here allow for the calculation of the solvation and transfer free energy of longer oligoglycine models to be evaluated than is currently possible through experiment. The peptide backbone unit computed transfer free energy of −54 cal/mol/M compares quite favorably with −43 cal/mol/M determined experimentally. PMID:20306490

  19. Backbone Additivity in the Transfer Model of Protein Solvation

    SciTech Connect

    Hu, Char Y.; Kokubo, Hironori; Lynch, Gillian C.; Bolen, D Wayne; Pettitt, Bernard M.

    2010-05-01

    The transfer model implying additivity of the peptide backbone free energy of transfer is computationally tested. Molecular dynamics simulations are used to determine the extent of change in transfer free energy (ΔGtr) with increase in chain length of oligoglycine with capped end groups. Solvation free energies of oligoglycine models of varying lengths in pure water and in the osmolyte solutions, 2M urea and 2M trimethylamine N-oxide (TMAO), were calculated from simulations of all atom models, and ΔGtr values for peptide backbone transfer from water to the osmolyte solutions were determined. The results show that the transfer free energies change linearly with increasing chain length, demonstrating the principle of additivity, and provide values in reasonable agreement with experiment. The peptide backbone transfer free energy contributions arise from van der Waals interactions in the case of transfer to urea, but from electrostatics on transfer to TMAO solution. The simulations used here allow for the calculation of the solvation and transfer free energy of longer oligoglycine models to be evaluated than is currently possible through experiment. The peptide backbone unit computed transfer free energy of –54 cal/mol/Mcompares quite favorably with –43 cal/mol/M determined experimentally.

  20. Ising-Glauber Spin Cluster Model for Temperature-Dependent Magnetization Noise in SQUIDs

    NASA Astrophysics Data System (ADS)

    De, Amrit

    2014-11-01

    Clusters of interacting two-level-systems, likely due to Farbe+(F+) centers at the metal-insulator interface, are shown to self-consistently lead to 1 /fα magnetization noise [with α (T )≲1 ] in SQUIDs. Model calculations, based on a new method of obtaining correlation functions, explains various puzzling experimental features. It is shown why the inductance noise is inherently temperature dependent while the flux noise is not, despite the same underlying microscopics. Magnetic ordering in these systems, established by three-point correlation functions, explains the observed flux- inductance-noise cross correlations. Since long-range ferromagnetic interactions are shown to lead to a more weakly temperature dependent flux noise when compared to short-range interactions, the time reversal symmetry of the clusters is also not likely broken by the same mechanism which mediates surface ferromagnetism in nanoparticles and thin films of the same insulator materials.

  1. International scale implementation of the CNOSSOS-EU road traffic noise prediction model for epidemiological studies.

    PubMed

    Morley, D W; de Hoogh, K; Fecht, D; Fabbri, F; Bell, M; Goodman, P S; Elliott, P; Hodgson, S; Hansell, A L; Gulliver, J

    2015-11-01

    The EU-FP7-funded BioSHaRE project is using individual-level data pooled from several national cohort studies in Europe to investigate the relationship of road traffic noise and health. The detailed input data (land cover and traffic characteristics) required for noise exposure modelling are not always available over whole countries while data that are comparable in spatial resolution between different countries is needed for harmonised exposure assessment. Here, we assess the feasibility using the CNOSSOS-EU road traffic noise prediction model with coarser input data in terms of model performance. Starting with a model using the highest resolution datasets, we progressively introduced lower resolution data over five further model runs and compared noise level estimates to measurements. We conclude that a low resolution noise model should provide adequate performance for exposure ranking (Spearman's rank = 0.75; p < 0.001), but with relatively large errors in predicted noise levels (RMSE = 4.46 dB(A)). PMID:26232738

  2. Noise propagation in resolution modeled PET imaging and its impact on detectability

    NASA Astrophysics Data System (ADS)

    Rahmim, Arman; Tang, Jing

    2013-10-01

    Positron emission tomography imaging is affected by a number of resolution degrading phenomena, including positron range, photon non-collinearity and inter-crystal blurring. An approach to this issue is to model some or all of these effects within the image reconstruction task, referred to as resolution modeling (RM). This approach is commonly observed to yield images of higher resolution and subsequently contrast, and can be thought of as improving the modulation transfer function. Nonetheless, RM can substantially alter the noise distribution. In this work, we utilize noise propagation models in order to accurately characterize the noise texture of reconstructed images in the presence of RM. Furthermore we consider the task of lesion or defect detection, which is highly determined by the noise distribution as quantified using the noise power spectrum. Ultimately, we use this framework to demonstrate why conventional trade-off analyses (e.g. contrast versus noise, using simplistic noise metrics) do not provide a complete picture of the impact of RM and that improved performance of RM according to such analyses does not necessarily translate to the superiority of RM in detection task performance.

  3. Applicability of a noise-based model to estimate in-traffic exposure to black carbon and particle number concentrations in different cultures.

    PubMed

    Dekoninck, Luc; Botteldooren, Dick; Panis, Luc Int; Hankey, Steve; Jain, Grishma; S, Karthik; Marshall, Julian

    2015-01-01

    Several studies show that a significant portion of daily air pollution exposure, in particular black carbon (BC), occurs during transport. In a previous work, a model for the in-traffic exposure of bicyclists to BC was proposed based on spectral evaluation of mobile noise measurements and validated with BC measurements in Ghent, Belgium. In this paper, applicability of this model in a different cultural context with a totally different traffic and mobility situation is presented. In addition, a similar modeling approach is tested for particle number (PN) concentration. Indirectly assessing BC and PN exposure through a model based on noise measurements is advantageous because of the availability of very affordable noise monitoring devices. Our previous work showed that a model including specific spectral components of the noise that relate to engine and rolling emission and basic meteorological data, could be quite accurate. Moreover, including a background concentration adjustment improved the model considerably. To explore whether this model could also be used in a different context, with or without tuning of the model parameters, a study was conducted in Bangalore, India. Noise measurement equipment, data storage, data processing, continent, country, measurement operators, vehicle fleet, driving behavior, biking facilities, background concentration, and meteorology are all very different from the first measurement campaign in Belgium. More than 24h of combined in-traffic noise, BC, and PN measurements were collected. It was shown that the noise-based BC exposure model gives good predictions in Bangalore and that the same approach is also successful for PN. Cross validation of the model parameters was used to compare factors that impact exposure across study sites. A pooled model (combining the measurements of the two locations) results in a correlation of 0.84 when fitting the total trip exposure in Bangalore. Estimating particulate matter exposure with traffic

  4. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  5. Acoustical model and theory for predicting effects of environmental noise on people.

    PubMed

    Kryter, Karl D

    2009-06-01

    The Schultz [(1978). J. Acoust. Soc. Am. 64, 377-405]; Fidell et al. [(1991). J. Acoust. Soc. Am. 89, 221-233] and Finegold et al. [(1994). Noise Control Eng. 42, 25-30] curves present misleading research information regarding DENL/DENL levels of environmental noises from transportation vehicles and the impact of annoyance and associated adverse effects on people living in residential areas. The reasons are shown to be jointly due to (a) interpretations of early research data, (b) plotting of annoyance data for noise exposure from different types of transportation vehicles on a single set of coordinates, and (c) the assumption that the effective, as heard, levels of noise from different sources are proportional to day, night level (DNL)/day, evening night level (DENL) levels measured at a common-point outdoors. The subtraction of on-site attenuations from the measured outdoor levels of environmental noises used in the calculation of DNL/DENL provides new metrics, labeled EDNL/EDENL, for the calculation of the effective exposure levels of noises perceived as equaling annoying. Predictions of judged annoyance in residential areas from the noises of transportation vehicles are made with predicted errors of <1 dB EDNL/EDENL, compared to errors ranging from approximately 6 to approximately 14 dB by DNL/DENL. A joint neurological, physiological, and psychological theory, and an effective acoustical model for the prediction of public annoyance and related effects from exposures to environment noises are presented. PMID:19507953

  6. Noise performance of statistical model based iterative reconstruction in clinical CT systems

    NASA Astrophysics Data System (ADS)

    Li, Ke; Tang, Jie; Chen, Guang-Hong

    2014-03-01

    The statistical model based iterative reconstruction (MBIR) method has been introduced to clinical CT systems. Due to the nonlinearity of this method, the noise characteristics of MBIR are expected to differ from those of filtered backprojection (FBP). This paper reports an experimental characterization of the noise performance of MBIR equipped on several state-of-the-art clinical CT scanners at our institution. The thoracic section of an anthropomorphic phantom was scanned 50 times to generate image ensembles for noise analysis. Noise power spectra (NPS) and noise standard deviation maps were assessed locally at different anatomical locations. It was found that MBIR lead to significant reduction in noise magnitude and improvement in noise spatial uniformity when compared with FBP. Meanwhile, MBIR shifted the NPS of the reconstructed CT images towards lower frequencies along both the axial and the z frequency axes. This effect was confirmed by a relaxed slice thicknesstradeoff relationship shown in our experimental data. The unique noise characteristics of MBIR imply that extra effort must be made to optimize CT scanning parameters for MBIR to maximize its potential clinical benefits.

  7. Noise reduction for model counterrotation propeller at cruise by reducing aft-propeller diameter

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Stang, David B.

    1987-01-01

    The forward propeller of a model counterrotation propeller was tested with its original aft propeller and with a reduced diameter aft propeller. Noise reductions with the reduced diameter aft propeller were measured at simulated cruise conditions. Reductions were as large as 7.5 dB for the aft-propeller passing tone and 15 dB in the harmonics at specific angles. The interaction tones, mostly the first, were reduced probably because the reduced-diameter aft-propeller blades no longer interacted with the forward propeller tip vortex. The total noise (sum of primary and interaction noise) at each harmonic was significantly reduced. The chief noise reduction at each harmonic came from reduced aft-propeller-alone noise, with the interaction tones contributing little to the totals at cruise. Total cruise noise reductions were as much as 3 dB at given angles for the blade passing tone and 10 dB for some of the harmonics. These reductions would measurably improve the fuselage interior noise levels and represent a definite cruise noise benefit from using a reduced diameter aft propeller.

  8. Numerical modeling of multi-mode active control of turbofan tonal noise using a boundary element method

    NASA Astrophysics Data System (ADS)

    Ireland, Laralee Gordon

    A numerical model was developed to investigate the possibility of implementing active control (ANC) to minimize noise radiation from high-bypass turbofan engines. Previous experimental work on the NASA Glenn Research Center active noise control fan (ANCF) was encouraging, but the question remained whether the modal approach investigated could be effective on real engines. The engine model developed for this research project uses an indirect boundary element method, implemented with Sysnoise, and a multi-mode Newton's algorithm, implemented with MATLAB(TM), to simulate the active control. Noise from the inlet was targeted. Both the experimental and numerical results based on the NASA ANCF simplified cylindrical engine geometry indicate overall reductions in the m = 2 component of the noise. Reductions obtained at the numerical sensor rings range from 17 dB to 63 dB and at a plane in the duct inlet, -8 dB to 33 dB. Rings mounted on the inlet duct are unable to accurately predict the total reduction of the inlet field, but the controller is still able to effectively reduce the total acoustic field. Generally, one sensor ring and one actuator ring per propagating mode were necessary to control the inlet field. At frequencies close to the cut-off frequency of a mode, an additional sensor and actuator ring were needed to adequately control the inlet field due to the evanescent mode. A more realistic, but still axisymmetric, engine geometry based on the GE CF6-80C engine was developed and the same algorithm used. Reductions obtained at the sensor rings range from 4 dB to 56 dB and at the duct inlet plane, from 12 dB to 26 dB. The overall far field noise radiation from the engine remained unchanged (0.4 dB) or decreased slightly (3.6 dB). The inlet noise was controlled at all frequencies but the noise from the exhaust was increased. The effect of inlet control on the exhaust radiation suggests the need for a controller that targets both the inlet and exhaust noise

  9. Effects of two types of noise and switching on the asymptotic dynamics of an epidemic model

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Wang, Xi-Ying; Liu, Xin-Zhi

    2015-05-01

    This paper mainly investigates dynamics behavior of HIV (human immunodeficiency virus) infectious disease model with switching parameters, and combined bounded noise and Gaussian white noise. This model is different from existing HIV models. Based on stochastic Itô lemma and Razumikhin-type approach, some threshold conditions are established to guarantee the disease eradication or persistence. Results show that the smaller amplitude of bounded noise and R¯0 < 1 can cause the disease to die out; the disease becomes persistent if R̂0 > 1 Moreover, it is found that larger noise intensity suppresses the prevalence of the disease even if R̂0 > 1. Some numerical examples are given to verify the obtained results. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172233, 11472212, 11272258, and 11302170) and the Natural Science and Engineering Research Council of Canada (NSERC).

  10. Secondary Path Modeling Method for Active Noise Control of Power Transformer

    NASA Astrophysics Data System (ADS)

    Zhao, Tong; Liang, Jiabi; Liang, Yuanbin; Wang, Lixin; Pei, Xiugao; Li, Peng

    The accuracy of the secondary path modeling is critical to the stability of active noise control system. On condition of knowing the input and output of the secondary path, system identification theory can be used to identify the path. Based on the experiment data, correlation analysis is adopted to eliminate the random noise and nonlinear harmonic in the output data in order to obtain the accurate frequency characteristic of the secondary path. After that, Levy's Method is applied to identify the transfer function of the path. Computer simulation results are given respectively, both showing the proposed off-line modeling method is feasible and applicable. At last, Levy's Method is used to attain an accurate secondary path model in the active control of transformer noise experiment and achieves to make the noise sound level decrease about 10dB.

  11. Helicopter Model Rotor-Blade Vortex Interaction Impulsive Noise: Scalability and Parametric Variations

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1987-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade-vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model-scale data were compared with averaged full-scale, in-flight acoustic data under similar non-dimensional test conditions using an improved data analysis technique. At low advance ratios (mu = 0.164 - 0.194), the BVI impulsive noise data scale remarkably well in level, waveform, and directivity patterns. At moderate advance ratios (mu = 0.224 - 0.270), the scaling deteriorates, suggesting that the model-scale rotor is not adequately simulating the full-scale BVI noise. Presently, no proved explanation of this discrepancy exists. Measured BVI noise radiation is highly sensitive to all of the four governing nondimensional parameters--hover tip Mach number, advance ratio, local inflow ratio, and thrust coefficient.

  12. Performance analysis for time-frequency MUSIC algorithm in presence of both additive noise and array calibration errors

    NASA Astrophysics Data System (ADS)

    Khodja, Mohamed; Belouchrani, Adel; Abed-Meraim, Karim

    2012-12-01

    This article deals with the application of Spatial Time-Frequency Distribution (STFD) to the direction finding problem using the Multiple Signal Classification (MUSIC)algorithm. A comparative performance analysis is performed for the method under consideration with respect to that using data covariance matrix when the received array signals are subject to calibration errors in a non-stationary environment. An unified analytical expression of the Direction Of Arrival (DOA) error estimation is derived for both methods. Numerical results show the effect of the parameters intervening in the derived expression on the algorithm performance. It is particularly observed that for low Signal to Noise Ratio (SNR) and high Signal to sensor Perturbation Ratio (SPR) the STFD method gives better performance, while for high SNR and for the same SPR both methods give similar performance.

  13. Masking by Gratings Predicted by an Image Sequence Discriminating Model: Testing Models for Perceptual Discrimination Using Repeatable Noise

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Adding noise to stimuli to be discriminated allows estimation of observer classification functions based on the correlation between observer responses and relevant features of the noisy stimuli. Examples will be presented of stimulus features that are found in auditory tone detection and visual vernier acuity. using the standard signal detection model (Thurstone scaling), we derive formulas to estimate the proportion of the observers decision variable variance that is controlled by the added noise. one is based on the probability of agreement of the observer with him/herself on trials with the same noise sample. Another is based on the relative performance of the observer and the model. When these do not agree, the model can be rejected. A second derivation gives the probability of agreement of observer and model when the observer follows the model except for internal noise. Agreement significantly less than this amount allows rejection of the model.

  14. Airframe noise prediction evaluation

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kingo J.; Donelson, Michael J.; Huang, Shumei C.; Joshi, Mahendra C.

    1995-01-01

    The objective of this study is to evaluate the accuracy and adequacy of current airframe noise prediction methods using available airframe noise measurements from tests of a narrow body transport (DC-9) and a wide body transport (DC-10) in addition to scale model test data. General features of the airframe noise from these aircraft and models are outlined. The results of the assessment of two airframe prediction methods, Fink's and Munson's methods, against flight test data of these aircraft and scale model wind tunnel test data are presented. These methods were extensively evaluated against measured data from several configurations including clean, slat deployed, landing gear-deployed, flap deployed, and landing configurations of both DC-9 and DC-10. They were also assessed against a limited number of configurations of scale models. The evaluation was conducted in terms of overall sound pressure level (OASPL), tone corrected perceived noise level (PNLT), and one-third-octave band sound pressure level (SPL).

  15. Retrospective Correction of Physiological Noise in DTI Using an Extended Tensor Model and Peripheral Measurements

    PubMed Central

    Mohammadi, Siawoosh; Hutton, Chloe; Nagy, Zoltan; Josephs, Oliver; Weiskopf, Nikolaus

    2013-01-01

    Diffusion tensor imaging is widely used in research and clinical applications, but this modality is highly sensitive to artefacts. We developed an easy-to-implement extension of the original diffusion tensor model to account for physiological noise in diffusion tensor imaging using measures of peripheral physiology (pulse and respiration), the so-called extended tensor model. Within the framework of the extended tensor model two types of regressors, which respectively modeled small (linear) and strong (nonlinear) variations in the diffusion signal, were derived from peripheral measures. We tested the performance of four extended tensor models with different physiological noise regressors on nongated and gated diffusion tensor imaging data, and compared it to an established data-driven robust fitting method. In the brainstem and cerebellum the extended tensor models reduced the noise in the tensor-fit by up to 23% in accordance with previous studies on physiological noise. The extended tensor model addresses both large-amplitude outliers and small-amplitude signal-changes. The framework of the extended tensor model also facilitates further investigation into physiological noise in diffusion tensor imaging. The proposed extended tensor model can be readily combined with other artefact correction methods such as robust fitting and eddy current correction. PMID:22936599

  16. Addition Table of Colours: Additive and Subtractive Mixtures Described Using a Single Reasoning Model

    ERIC Educational Resources Information Center

    Mota, A. R.; Lopes dos Santos, J. M. B.

    2014-01-01

    Students' misconceptions concerning colour phenomena and the apparent complexity of the underlying concepts--due to the different domains of knowledge involved--make its teaching very difficult. We have developed and tested a teaching device, the addition table of colours (ATC), that encompasses additive and subtractive mixtures in a single…

  17. Rotor noise

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.

    1991-01-01

    The physical characteristics and sources of rotorcraft noise as they exist today are presented. Emphasis is on helicopter-like vehicles, that is, on rotorcraft in nonaxial flight. The mechanisms of rotor noise are reviewed in a simple physical manner for the most dominant sources of rotorcraft noise. With simple models, the characteristic time- and frequency-domain features of these noise sources are presented for idealized cases. Full-scale data on several rotorcraft are then reviewed to allow for the easy identification of the type and extent of the radiating noise. Methods and limitations of using scaled models to test for several noise sources are subsequently presented. Theoretical prediction methods are then discussed and compared with experimental data taken under very controlled conditions. Finally, some promising noise reduction technology is reviewed.

  18. Sensitivity analysis of geometric errors in additive manufacturing medical models.

    PubMed

    Pinto, Jose Miguel; Arrieta, Cristobal; Andia, Marcelo E; Uribe, Sergio; Ramos-Grez, Jorge; Vargas, Alex; Irarrazaval, Pablo; Tejos, Cristian

    2015-03-01

    Additive manufacturing (AM) models are used in medical applications for surgical planning, prosthesis design and teaching. For these applications, the accuracy of the AM models is essential. Unfortunately, this accuracy is compromised due to errors introduced by each of the building steps: image acquisition, segmentation, triangulation, printing and infiltration. However, the contribution of each step to the final error remains unclear. We performed a sensitivity analysis comparing errors obtained from a reference with those obtained modifying parameters of each building step. Our analysis considered global indexes to evaluate the overall error, and local indexes to show how this error is distributed along the surface of the AM models. Our results show that the standard building process tends to overestimate the AM models, i.e. models are larger than the original structures. They also show that the triangulation resolution and the segmentation threshold are critical factors, and that the errors are concentrated at regions with high curvatures. Errors could be reduced choosing better triangulation and printing resolutions, but there is an important need for modifying some of the standard building processes, particularly the segmentation algorithms. PMID:25649961

  19. Airframe Noise Prediction of a Full Aircraft in Model and Full Scale Using a Lattice Boltzmann Approach

    NASA Technical Reports Server (NTRS)

    Fares, Ehab; Duda, Benjamin; Khorrami, Mehdi R.

    2016-01-01

    Unsteady flow computations are presented for a Gulfstream aircraft model in landing configuration, i.e., flap deflected 39deg and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW(Trademark) to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. Two geometry representations of the same aircraft are analyzed: an 18% scale, high-fidelity, semi-span model at wind tunnel Reynolds number and a full-scale, full-span model at half-flight Reynolds number. Previously published and newly generated model-scale results are presented; all full-scale data are disclosed here for the first time. Reynolds number and geometrical fidelity effects are carefully examined to discern aerodynamic and aeroacoustic trends with a special focus on the scaling of surface pressure fluctuations and farfield noise. An additional study of the effects of geometrical detail on farfield noise is also documented. The present investigation reveals that, overall, the model-scale and full-scale aeroacoustic results compare rather well. Nevertheless, the study also highlights that finer geometrical details that are typically not captured at model scales can have a non-negligible contribution to the farfield noise signature.

  20. The Effects of Ambient Conditions on Helicopter Rotor Source Noise Modeling

    NASA Technical Reports Server (NTRS)

    Schmitz, Frederic H.; Greenwood, Eric

    2011-01-01

    A new physics-based method called Fundamental Rotorcraft Acoustic Modeling from Experiments (FRAME) is used to demonstrate the change in rotor harmonic noise of a helicopter operating at different ambient conditions. FRAME is based upon a non-dimensional representation of the governing acoustic and performance equations of a single rotor helicopter. Measured external noise is used together with parameter identification techniques to develop a model of helicopter external noise that is a hybrid between theory and experiment. The FRAME method is used to evaluate the main rotor harmonic noise of a Bell 206B3 helicopter operating at different altitudes. The variation with altitude of Blade-Vortex Interaction (BVI) noise, known to be a strong function of the helicopter s advance ratio, is dependent upon which definition of airspeed is flown by the pilot. If normal flight procedures are followed and indicated airspeed (IAS) is held constant, the true airspeed (TAS) of the helicopter increases with altitude. This causes an increase in advance ratio and a decrease in the speed of sound which results in large changes to BVI noise levels. Results also show that thickness noise on this helicopter becomes more intense at high altitudes where advancing tip Mach number increases because the speed of sound is decreasing and advance ratio increasing for the same indicated airspeed. These results suggest that existing measurement-based empirically derived helicopter rotor noise source models may give incorrect noise estimates when they are used at conditions where data were not measured and may need to be corrected for mission land-use planning purposes.

  1. Analysis and models of pre-injection surface seismic array noise recorded at the Aquistore carbon storage site

    NASA Astrophysics Data System (ADS)

    Birnie, Claire; Chambers, Kit; Angus, Doug; Stork, Anna

    2016-05-01

    Noise is a persistent feature in seismic data and so poses challenges in extracting increased accuracy in seismic images and physical interpretation of the subsurface. In this paper, we analyse passive seismic data from the Aquistore carbon capture and storage pilot project permanent seismic array to characterise, classify and model seismic noise. We perform noise analysis for a three month subset of passive seismic data from the array and provide conclusive evidence that the noise field is not white, stationary, or Gaussian; characteristics commonly yet erroneously assumed in most conventional noise models. We introduce a novel noise modelling method that provides a significantly more accurate characterisation of real seismic noise compared to conventional methods, which is quantified using the Mann-Whitney-White statistical test. This method is based on a statistical covariance modelling approach created through the modelling of individual noise signals. The identification of individual noise signals, broadly classified as stationary, pseudo-stationary and non-stationary, provides a basis on which to build an appropriate spatial and temporal noise field model. Furthermore, we have developed a workflow to incorporate realistic noise models within synthetic seismic datasets providing an opportunity to test and analyse detection and imaging algorithms under realistic noise conditions.

  2. Analysis and models of pre-injection surface seismic array noise recorded at the Aquistore carbon storage site

    NASA Astrophysics Data System (ADS)

    Birnie, Claire; Chambers, Kit; Angus, Doug; Stork, Anna L.

    2016-08-01

    Noise is a persistent feature in seismic data and so poses challenges in extracting increased accuracy in seismic images and physical interpretation of the subsurface. In this paper, we analyse passive seismic data from the Aquistore carbon capture and storage pilot project permanent seismic array to characterise, classify and model seismic noise. We perform noise analysis for a three-month subset of passive seismic data from the array and provide conclusive evidence that the noise field is not white, stationary, or Gaussian; characteristics commonly yet erroneously assumed in most conventional noise models. We introduce a novel noise modelling method that provides a significantly more accurate characterisation of real seismic noise compared to conventional methods, which is quantified using the Mann-Whitney-White statistical test. This method is based on a statistical covariance modelling approach created through the modelling of individual noise signals. The identification of individual noise signals, broadly classified as stationary, pseudo-stationary and non-stationary, provides a basis on which to build an appropriate spatial and temporal noise field model. Furthermore, we have developed a workflow to incorporate realistic noise models within synthetic seismic data sets providing an opportunity to test and analyse detection and imaging algorithms under realistic noise conditions.

  3. Additive Manufacturing of Medical Models--Applications in Rhinology.

    PubMed

    Raos, Pero; Klapan, Ivica; Galeta, Tomislav

    2015-09-01

    In the paper we are introducing guidelines and suggestions for use of 3D image processing SW in head pathology diagnostic and procedures for obtaining physical medical model by additive manufacturing/rapid prototyping techniques, bearing in mind the improvement of surgery performance, its maximum security and faster postoperative recovery of patients. This approach has been verified in two case reports. In the treatment we used intelligent classifier-schemes for abnormal patterns using computer-based system for 3D-virtual and endoscopic assistance in rhinology, with appropriate visualization of anatomy and pathology within the nose, paranasal sinuses, and scull base area. PMID:26898064

  4. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras.

    PubMed

    Wolf, Alejandro; Pezoa, Jorge E; Figueroa, Miguel

    2016-01-01

    Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘ C, when the array's temperature varies by approximately 15 ∘ C. PMID:27447637

  5. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    PubMed Central

    Wolf, Alejandro; Pezoa, Jorge E.; Figueroa, Miguel

    2016-01-01

    Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘C, when the array’s temperature varies by approximately 15 ∘C. PMID:27447637

  6. Strategies for reducing the climate noise in model simulations: ensemble runs versus a long continuous run

    NASA Astrophysics Data System (ADS)

    Decremer, Damien; Chung, Chul E.; Räisänen, Petri

    2015-03-01

    Climate modelers often integrate the model with constant forcing over a long time period, and make an average over the period in order to reduce climate noise. If the time series is persistent, as opposed to rapidly varying, such an average does not reduce noise efficiently. In this case, ensemble runs, which ideally represent independent runs, can reduce noise more efficiently. We quantify the noise reduction gain by using ensemble runs over a long continuous run in constant-forcing simulations. We find that in terms of the amplitude of the noise, a continuous simulation of 30 years may be equivalent to as few as five 3-year long ensemble runs in a slab ocean-atmosphere coupled model and as few as two 3-year long ensemble runs in a fully coupled model. The outperformance of ensemble runs over a continuous run is strictly a function of the persistence of the time series. We find that persistence depends on model, location and variable, and that persistence in surface air temperature has robust spatial structures in coupled models. We demonstrate that lag-1 year autocorrelation represents persistence fairly well, but the use of lag-1 year-lag-5 years autocorrelations represents the persistence far more sufficiently. Furthermore, there is more persistence in coupled model output than in the output of a first-order autoregressive model with the same lag-1 autocorrelation.

  7. Multiscale Modeling of Powder Bed–Based Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Markl, Matthias; Körner, Carolin

    2016-07-01

    Powder bed fusion processes are additive manufacturing technologies that are expected to induce the third industrial revolution. Components are built up layer by layer in a powder bed by selectively melting confined areas, according to sliced 3D model data. This technique allows for manufacturing of highly complex geometries hardly machinable with conventional technologies. However, the underlying physical phenomena are sparsely understood and difficult to observe during processing. Therefore, an intensive and expensive trial-and-error principle is applied to produce components with the desired dimensional accuracy, material characteristics, and mechanical properties. This review presents numerical modeling approaches on multiple length scales and timescales to describe different aspects of powder bed fusion processes. In combination with tailored experiments, the numerical results enlarge the process understanding of the underlying physical mechanisms and support the development of suitable process strategies and component topologies.

  8. A noise model for the evaluation of defect states in solar cells

    NASA Astrophysics Data System (ADS)

    Landi, G.; Barone, C.; Mauro, C.; Neitzert, H. C.; Pagano, S.

    2016-07-01

    A theoretical model, combining trapping/detrapping and recombination mechanisms, is formulated to explain the origin of random current fluctuations in silicon-based solar cells. In this framework, the comparison between dark and photo-induced noise allows the determination of important electronic parameters of the defect states. A detailed analysis of the electric noise, at different temperatures and for different illumination levels, is reported for crystalline silicon-based solar cells, in the pristine form and after artificial degradation with high energy protons. The evolution of the dominating defect properties is studied through noise spectroscopy.

  9. A noise model for the evaluation of defect states in solar cells.

    PubMed

    Landi, G; Barone, C; Mauro, C; Neitzert, H C; Pagano, S

    2016-01-01

    A theoretical model, combining trapping/detrapping and recombination mechanisms, is formulated to explain the origin of random current fluctuations in silicon-based solar cells. In this framework, the comparison between dark and photo-induced noise allows the determination of important electronic parameters of the defect states. A detailed analysis of the electric noise, at different temperatures and for different illumination levels, is reported for crystalline silicon-based solar cells, in the pristine form and after artificial degradation with high energy protons. The evolution of the dominating defect properties is studied through noise spectroscopy. PMID:27412097

  10. Validation of Aircraft Noise Prediction Models at Low Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Hobbs, Christopher M.; Plotkin, Kenneth J.; Stusnick, Eric; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Aircraft noise measurements were made at Denver International Airport for a period of four weeks. Detailed operational information was provided by airline operators which enabled noise levels to be predicted using the FAA's Integrated Noise Model. Several thrust prediction techniques were evaluated. Measured sound exposure levels for departure operations were found to be 4 to 10 dB higher than predicted, depending on the thrust prediction technique employed. Differences between measured and predicted levels are shown to be related to atmospheric conditions present at the aircraft altitude.

  11. A noise model for the evaluation of defect states in solar cells

    PubMed Central

    Landi, G.; Barone, C.; Mauro, C.; Neitzert, H. C.; Pagano, S.

    2016-01-01

    A theoretical model, combining trapping/detrapping and recombination mechanisms, is formulated to explain the origin of random current fluctuations in silicon-based solar cells. In this framework, the comparison between dark and photo-induced noise allows the determination of important electronic parameters of the defect states. A detailed analysis of the electric noise, at different temperatures and for different illumination levels, is reported for crystalline silicon-based solar cells, in the pristine form and after artificial degradation with high energy protons. The evolution of the dominating defect properties is studied through noise spectroscopy. PMID:27412097

  12. Effects of noise on a computational model for disease states of mood disorders

    NASA Astrophysics Data System (ADS)

    Tobias Huber, Martin; Krieg, Jürgen-Christian; Braun, Hans Albert; Moss, Frank

    2000-03-01

    Nonlinear dynamics are currently proposed to explain the progressive course of recurrent mood disorders starting with isolated episodes and ending with accelerated irregular (``chaotic") mood fluctuations. Such a low-dimensional disease model is attractive because of its principal accordance with biological disease models, i.e. the kindling and biological rhythms model. However, most natural systems are nonlinear and noisy and several studies in the neuro- and physical sciences have demonstrated interesting cooperative behaviors arising from interacting random and deterministic dynamics. Here, we consider the effects of noise on a recent neurodynamical model for the timecourse of affective disorders (Huber et al.: Biological Psychiatry 1999;46:256-262). We describe noise effects on temporal patterns and mean episode frequencies of various in computo disease states. Our simulations demonstrate that noise can cause unstructured randomness or can maximize periodic order. The frequency of episode occurence can increase with noise but it can also remain unaffected or even can decrease. We show further that noise can make visible bifurcations before they would normally occur under deterministic conditions and we quantify this behavior with a recently developed statistical method. All these effects depend critically on both, the dynamic state and the noise intensity. Implications for neurobiology and course of mood disorders are discussed.

  13. Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 1: Development and validation of preliminary analytical models

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Rennison, D. C.; Wilby, E. G.

    1980-01-01

    The basic theoretical work required to understand sound transmission into an enclosed space (that is, one closed by the transmitting structure) is developed for random pressure fields and for harmonic (tonal) excitation. The analysis is used to predict the noise reducton of unpressurized unstiffened cylinder, and also the interior response of the cylinder given a tonal (plane wave) excitation. Predictions and measurements are compared and the transmission is analyzed. In addition, results for tonal (harmonic) mechanical excitation are considered.

  14. Single velocity-component modeling of leading edge turbulence interaction noise.

    PubMed

    Gill, J; Zhang, X; Joseph, P

    2015-06-01

    A computational aeroacoustics approach is used to predict leading edge turbulence interaction noise for real airfoils. One-component (transverse), two-component (transverse and streamwise), and three-component (transverse, streamwise, and spanwise) synthesized turbulence disturbances are modeled instead of harmonic transverse gusts, to which previous computational studies of leading edge noise have often been confined. The effects of the inclusion of streamwise and spanwise disturbances on the noise are assessed. It is shown that accurate noise predictions can be made by modeling only transverse disturbances which reduces the computational expense of simulations. The accuracy of using only transverse disturbances is assessed for symmetric and cambered airfoils, and also for airfoils at non-zero angle of attack. PMID:26093411

  15. Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises

    NASA Astrophysics Data System (ADS)

    Ahn, Shin Mi; Ha, Seung-Yeal

    2010-10-01

    We present a strong asymptotic stochastic flocking estimate for the stochastically perturbed Cucker-Smale model. We characterize a form of multiplicative white noises and present sufficient conditions on the control parameters to guarantee the almost sure exponential convergence toward constant equilibrium states. When the strength of multiplicative noises is sufficiently large, we show that the strong stochastic flocking occurs even for negative communication weights.

  16. Noise variation by compressive stress on the model core of power transformers

    NASA Astrophysics Data System (ADS)

    Mizokami, Masato; Kurosaki, Yousuke

    2015-05-01

    The reduction of audible noise generated by cores for power transformers has been required due to environmental concern. It is known that compressive stress in the rolling direction of electrical steel affects magnetostriction and it can result in an increase in noise level. In this research, the effect of compressive stress to noise was investigated on a 3-phase 3-limb model core. Compressive stress was applied in the rolling direction of the limbs from the outside of the core. It increased the sound pressure levels and the slope of the rise was about 2 dBA/MPa. Magnetostriction on single sheet samples was also measured under compressive stress and the harmonic components of the magnetostriction were compared with those of noise. It revealed that the variation in magnetostriction with compressive stress did not entirely correspond to that in noise. In one of the experiments, localized bending happened on one limb during compressing the core. While deformation of the core had not been intended, the noise was measured. The deformation increased the noise by more than 10 dBA and it occurred on most of the harmonic components.

  17. A general procedure to generate models for urban environmental-noise pollution using feature selection and machine learning methods.

    PubMed

    Torija, Antonio J; Ruiz, Diego P

    2015-02-01

    The prediction of environmental noise in urban environments requires the solution of a complex and non-linear problem, since there are complex relationships among the multitude of variables involved in the characterization and modelling of environmental noise and environmental-noise magnitudes. Moreover, the inclusion of the great spatial heterogeneity characteristic of urban environments seems to be essential in order to achieve an accurate environmental-noise prediction in cities. This problem is addressed in this paper, where a procedure based on feature-selection techniques and machine-learning regression methods is proposed and applied to this environmental problem. Three machine-learning regression methods, which are considered very robust in solving non-linear problems, are used to estimate the energy-equivalent sound-pressure level descriptor (LAeq). These three methods are: (i) multilayer perceptron (MLP), (ii) sequential minimal optimisation (SMO), and (iii) Gaussian processes for regression (GPR). In addition, because of the high number of input variables involved in environmental-noise modelling and estimation in urban environments, which make LAeq prediction models quite complex and costly in terms of time and resources for application to real situations, three different techniques are used to approach feature selection or data reduction. The feature-selection techniques used are: (i) correlation-based feature-subset selection (CFS), (ii) wrapper for feature-subset selection (WFS), and the data reduction technique is principal-component analysis (PCA). The subsequent analysis leads to a proposal of different schemes, depending on the needs regarding data collection and accuracy. The use of WFS as the feature-selection technique with the implementation of SMO or GPR as regression algorithm provides the best LAeq estimation (R(2)=0.94 and mean absolute error (MAE)=1.14-1.16 dB(A)). PMID:25461071

  18. Airframe noise

    NASA Astrophysics Data System (ADS)

    Crighton, David G.

    1991-08-01

    Current understanding of airframe noise was reviewed as represented by experiment at model and full scale, by theoretical modeling, and by empirical correlation models. The principal component sources are associated with the trailing edges of wing and tail, deflected trailing edge flaps, flap side edges, leading edge flaps or slats, undercarriage gear elements, gear wheel wells, fuselage and wing boundary layers, and panel vibration, together with many minor protrusions like radio antennas and air conditioning intakes which may contribute significantly to perceived noise. There are also possibilities for interactions between the various mechanisms. With current engine technology, the principal airframe noise mechanisms dominate only at low frequencies, typically less than 1 kHz and often much lower, but further reduction of turbomachinery noise in particular may make airframe noise the principal element of approach noise at frequencies in the sensitive range.

  19. A distributed, dynamic, parallel computational model: the role of noise in velocity storage

    PubMed Central

    Merfeld, Daniel M.

    2012-01-01

    Networks of neurons perform complex calculations using distributed, parallel computation, including dynamic “real-time” calculations required for motion control. The brain must combine sensory signals to estimate the motion of body parts using imperfect information from noisy neurons. Models and experiments suggest that the brain sometimes optimally minimizes the influence of noise, although it remains unclear when and precisely how neurons perform such optimal computations. To investigate, we created a model of velocity storage based on a relatively new technique–“particle filtering”–that is both distributed and parallel. It extends existing observer and Kalman filter models of vestibular processing by simulating the observer model many times in parallel with noise added. During simulation, the variance of the particles defining the estimator state is used to compute the particle filter gain. We applied our model to estimate one-dimensional angular velocity during yaw rotation, which yielded estimates for the velocity storage time constant, afferent noise, and perceptual noise that matched experimental data. We also found that the velocity storage time constant was Bayesian optimal by comparing the estimate of our particle filter with the estimate of the Kalman filter, which is optimal. The particle filter demonstrated a reduced velocity storage time constant when afferent noise increased, which mimics what is known about aminoglycoside ablation of semicircular canal hair cells. This model helps bridge the gap between parallel distributed neural computation and systems-level behavioral responses like the vestibuloocular response and perception. PMID:22514288

  20. Optimization and Modeling of Noise Reduction for Turbulent Jets with Induced Asymmetry

    NASA Astrophysics Data System (ADS)

    Rostamimonjezi, Sara

    This project relates to the development of next-generation high-speed aircraft that are efficient and environmentally compliant. The emphasis of the research is on reducing noise from high-performance engines that will power these aircraft. A strong component of engine noise is jet mixing noise that comes from the turbulent mixing process between the high-speed exhaust flow of the engine and the atmosphere. The fan flow deflection method (FFD) suppresses jet noise by deflecting the fan stream downward, by a few degrees, with respect to the core stream. This reduces the convective Mach number of the primary shear layer and turbulent kinetic energy in the downward direction and therefore reduces the noise emitted towards the ground. The redistribution of the fan stream is achieved with inserting airfoil-shaped vanes inside the fan duct. Aerodynamic optimization of FFD has been done by Dr. Juntao Xiong using a computational fluid dynamics code to maximize reduction of noise perceived by the community while minimizing aerodynamic losses. The optimal vane airfoils are used in a parametric experimental study of 50 4-vane deflector configurations. The vane chord length, angle of attack, and azimuthal location are the parameters studied in acoustic optimization. The best vane configuration yields a reduction in cumulative (downward + sideline) effective perceived noise level (EPNL) of 5.3 dB. The optimization study underscores the sensitivity of FFD to deflector parameters and the need for careful design in the practical implementation of this noise reduction approach. An analytical model based on Reynolds Averaged Navier Stokes (RANS) and acoustic analogy is developed to predict the spectral changes from a known baseline in the direction of peak emission. A generalized form for space-time correlation is introduced that allows shapes beyond the traditional exponential forms. Azimuthal directivity based on the wavepacket model of jet noise is integrated with the acoustic

  1. Measurement of Model Noise in a Hard-Wall Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    2006-01-01

    Identification, analysis, and control of fluid-mechanically-generated sound from models of aircraft and automobiles in special low-noise, semi-anechoic wind tunnels are an important research endeavor. Such studies can also be done in aerodynamic wind tunnels that have hard walls if phased microphone arrays are used to focus on the noise-source regions and reject unwanted reflections or background noise. Although it may be difficult to simulate the total flyover or drive-by noise in a closed wind tunnel, individual noise sources can be isolated and analyzed. An acoustic and aerodynamic study was made of a 7-percent-scale aircraft model in a NASA Ames 7-by-10-ft (about 2-by-3-m) wind tunnel for the purpose of identifying and attenuating airframe noise sources. Simulated landing, takeoff, and approach configurations were evaluated at Mach 0.26. Using a phased microphone array mounted in the ceiling over the inverted model, various noise sources in the high-lift system, landing gear, fins, and miscellaneous other components were located and compared for sound level and frequency at one flyover location. Numerous noise-alleviation devices and modifications of the model were evaluated. Simultaneously with acoustic measurements, aerodynamic forces were recorded to document aircraft conditions and any performance changes caused by geometric modifications. Most modern microphone-array systems function in the frequency domain in the sense that spectra of the microphone outputs are computed, then operations are performed on the matrices of microphone-signal cross-spectra. The entire acoustic field at one station in such a system is acquired quickly and interrogated during postprocessing. Beam-forming algorithms are employed to scan a plane near the model surface and locate noise sources while rejecting most background noise and spurious reflections. In the case of the system used in this study, previous studies in the wind tunnel have identified noise sources up to 19 d

  2. Noise cancelling of MRS signals combining model-based removal of powerline harmonics and multichannel Wiener filtering

    NASA Astrophysics Data System (ADS)

    Larsen, Jakob Juul; Dalgaard, Esben; Auken, Esben

    2014-02-01

    The fidelity of magnetic resonance sounding signals is often severely degraded by noise, primarily electrical interference from powerline harmonics and short electromagnetic discharges. In many circumstances, the noise originates from multiple sources. We show that noise cancelling can be improved if the multiple origins of noise are taken into account. In particular, a method is developed where powerline harmonics are efficiently removed through a model-based approach. Subsequently, standard multichannel Wiener filtering can be used to provide a further noise reduction. The performance of the method depends on the distribution of noise on the particular site of measurement. Simulations on synthetic signals embedded in real noise recordings show that the combined approach can improve the signal-to-noise ratio with an accompanying improvement in retrieval of model parameters.

  3. [Critical of the additive model of the randomized controlled trial].

    PubMed

    Boussageon, Rémy; Gueyffier, François; Bejan-Angoulvant, Theodora; Felden-Dominiak, Géraldine

    2008-01-01

    Randomized, double-blind, placebo-controlled clinical trials are currently the best way to demonstrate the clinical effectiveness of drugs. Its methodology relies on the method of difference (John Stuart Mill), through which the observed difference between two groups (drug vs placebo) can be attributed to the pharmacological effect of the drug being tested. However, this additive model can be questioned in the event of statistical interactions between the pharmacological and the placebo effects. Evidence in different domains has shown that the placebo effect can influence the effect of the active principle. This article evaluates the methodological, clinical and epistemological consequences of this phenomenon. Topics treated include extrapolating results, accounting for heterogeneous results, demonstrating the existence of several factors in the placebo effect, the necessity to take these factors into account for given symptoms or pathologies, as well as the problem of the "specific" effect. PMID:18387273

  4. Construction and solution of an adaptive image-restoration model for removing blur and mixed noise

    NASA Astrophysics Data System (ADS)

    Wang, Youquan; Cui, Lihong; Cen, Yigang; Sun, Jianjun

    2016-03-01

    We establish a practical regularized least-squares model with adaptive regularization for dealing with blur and mixed noise in images. This model has some advantages, such as good adaptability for edge restoration and noise suppression due to the application of a priori spatial information obtained from a polluted image. We further focus on finding an important feature of image restoration using an adaptive restoration model with different regularization parameters in polluted images. A more important observation is that the gradient of an image varies regularly from one regularization parameter to another under certain conditions. Then, a modified graduated nonconvexity approach combined with a median filter version of a spatial information indicator is proposed to seek the solution of our adaptive image-restoration model by applying variable splitting and weighted penalty techniques. Numerical experiments show that the method is robust and effective for dealing with various blur and mixed noise levels in images.

  5. SEA extension of a F. E. model to predict total engine noise

    NASA Astrophysics Data System (ADS)

    Stimpson, G.; Lalor, N.

    Automotive engine noise has been the subject of much research and development in recent years, mainly due to the pressures of legislation. Most of this research has been concentrated on the design of the cylinder block, since this is where the vibration originates. However, on many engines the ligth covers (i.e. timing gear cover, rocker cover and sump) are the predominant sources of structurally radiated noise and usually 2 to 3 decibel (dBA) reduction can be achieved by quietening them. Because of its inherent stiffness, the block casting vibrates with quite simple (low order) mode shapes even at the top end of the acoustically important 300 Hz to 3000 Hz frequency band. Thus, relatively coarse mesh Finite Element (FE) models are adequate for noise prediction. In contrast to this, many light covers have a high modal density in their predominant noise radiating region, making finite element techniques difficult to apply. The block, cylinder head and bearing caps assembly can also be considered as a subsystem of a Statistical Energy Analysis (SEA) model. Thus the vibration energy calculated by the FE model can be fed into the SEA model of the complete engine - which can include ancillary equipment (starter motor, alternator, exhaust system etc.), if required. This paper describes how such a SEA model is constructed and how it can be used to evaluate noise reduction strategies.

  6. Generalized Least-Squares CT Reconstruction with Detector Blur and Correlated Noise Models.

    PubMed

    Stayman, J Webster; Zbijewski, Wojciech; Tilley, Steven; Siewerdsen, Jeffrey

    2014-03-19

    The success and improved dose utilization of statistical reconstruction methods arises, in part, from their ability to incorporate sophisticated models of the physics of the measurement process and noise. Despite the great promise of statistical methods, typical measurement models ignore blurring effects, and nearly all current approaches make the presumption of independent measurements - disregarding noise correlations and a potential avenue for improved image quality. In some imaging systems, such as flat-panel-based cone-beam CT, such correlations and blurs can be a dominant factor in limiting the maximum achievable spatial resolution and noise performance. In this work, we propose a novel regularized generalized least-squares reconstruction method that includes models for both system blur and correlated noise in the projection data. We demonstrate, in simulation studies, that this approach can break through the traditional spatial resolution limits of methods that do not model these physical effects. Moreover, in comparison to other approaches that attempt deblurring without a correlation model, superior noise-resolution trade-offs can be found with the proposed approach. PMID:25328638

  7. An Immune Quantum Communication Model for Dephasing Noise Using Four-Qubit Cluster State

    NASA Astrophysics Data System (ADS)

    Wang, Rui-jin; Li, Dong-fen; Qin, Zhi-guang

    2016-01-01

    Quantum secure communication of dephasing in the presence of noise is a hot spot in research in the field of quantum secure communication. Quantum steganography aims is to transfer secret information in public quantum channel. But because effect of annealing phase noise, quantum states which is need to transfer easily delayed or changed. So, quantum steganography is very meaning apply to transmit secret information covertly in quantum noisy channels. The article introduced dephasing noise impact on the physics of quantum state, through the theoretical research, construct the logic of quantum states to back the phase noise immunity, and construct the decoherence free subspace, It can guarantees fidelity secret information exchange through quantum communication model in a noisy environment.

  8. Preliminary experiments on the noise generated by target-type thrust reverser models

    NASA Technical Reports Server (NTRS)

    Gutierrez, O. A.; Stone, J. R.

    1972-01-01

    Experiments are reported on the noise generated by model V-gutter and semicylindrical target-type reversers with circular nozzles. Nozzles were 5.24 and 7.78 cm in diameter. Nozzle pressure ratio ranged from 1.25 to 1.72. The spacing between reversers and nozzle, as well as the reverser orientation, was also varied. More noise was generated with reversers than with the nozzle alone. The measured maximum overall sound pressure level varied with the sixth power of the nozzle exit velocity. Noise levels were more uniform in regard to directivity with reversers than with the nozzle alone. It is concluded that thrust reversers, can be a significant noise problem, especially for STOL aircraft using thrust reversers during approach.

  9. Effects of geometry and jet velocity on noise associated with an upper-surface-blowing model

    NASA Technical Reports Server (NTRS)

    Clark, L. R.; Yu, J. C.

    1977-01-01

    The noise characteristics associated with various upper surface blowing configurations were investigated using a small model consisting of a plate and flap assembly (simulated wing with flap) attached to a rectangular nozzle. Nozzle aspect ratio, flow-run length, and flap-deflection angle were the experimental parameters studied. Three nozzle-exit velocities were used. The normalized noise spectra obtained for different nozzle aspect ratios proved to be similar in terms of Strouhal number based on jet velocity and flow-run length. Consequently, the need for knowing local flow velocity and length scales (for example, at the flap trailing edge) as required in some of the existing noise prediction schemes is eliminated. Data are compared with results computed from three different noise prediction schemes, and the validity of each scheme is assessed. A simple method is proposed to evaluate the frequency dependence of acoustic shielding obtained with the simulated wing flap.

  10. Evaluation of Turbulence-Model Performance as Applied to Jet-Noise Prediction

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.

    1998-01-01

    The accurate prediction of jet noise is possible only if the jet flow field can be predicted accurately. Predictions for the mean velocity and turbulence quantities in the jet flowfield are typically the product of a Reynolds-averaged Navier-Stokes solver coupled with a turbulence model. To evaluate the effectiveness of solvers and turbulence models in predicting those quantities most important to jet noise prediction, two CFD codes and several turbulence models were applied to a jet configuration over a range of jet temperatures for which experimental data is available.

  11. Bursting noise in gene expression dynamics: linking microscopic and mesoscopic models

    PubMed Central

    2016-01-01

    The dynamics of short-lived mRNA results in bursts of protein production in gene regulatory networks. We investigate the propagation of bursting noise between different levels of mathematical modelling and demonstrate that conventional approaches based on diffusion approximations can fail to capture bursting noise. An alternative coarse-grained model, the so-called piecewise deterministic Markov process (PDMP), is seen to outperform the diffusion approximation in biologically relevant parameter regimes. We provide a systematic embedding of the PDMP model into the landscape of existing approaches, and we present analytical methods to calculate its stationary distribution and switching frequencies. PMID:26763330

  12. Jet Noise Modeling for Suppressed and Unsuppressed Aircraft in Simulated Flight

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J; Berton, Jeffrey J.

    2009-01-01

    This document describes the development of further extensions and improvements to the jet noise model developed by Modern Technologies Corporation (MTC) for the National Aeronautics and Space Administration (NASA). The noise component extraction and correlation approach, first used successfully by MTC in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research (HSR) Program, has been applied to dual-stream nozzles, then extended and improved in earlier tasks under this contract. Under Task 6, the coannular jet noise model was formulated and calibrated with limited scale model data, mainly at high bypass ratio, including a limited-range prediction of the effects of mixing-enhancement nozzle-exit chevrons on jet noise. Under Task 9 this model was extended to a wider range of conditions, particularly those appropriate for a Supersonic Business Jet, with an improvement in simulated flight effects modeling and generalization of the suppressor model. In the present task further comparisons are made over a still wider range of conditions from more test facilities. The model is also further generalized to cover single-stream nozzles of otherwise similar configuration. So the evolution of this prediction/analysis/correlation approach has been in a sense backward, from the complex to the simple; but from this approach a very robust capability is emerging. Also from these studies, some observations emerge relative to theoretical considerations. The purpose of this task is to develop an analytical, semi-empirical jet noise prediction method applicable to takeoff, sideline and approach noise of subsonic and supersonic cruise aircraft over a wide size range. The product of this task is an even more consistent and robust model for the Footprint/Radius (FOOTPR) code than even the Task 9 model. The model is validated for a wider range of cases and statistically quantified for the various reference facilities. The possible

  13. Research on the effect of noise at different times of day: Models, methods and findings

    NASA Technical Reports Server (NTRS)

    Fields, J. M.

    1985-01-01

    Social surveys of residents' responses to noise at different times of day are reviewed. Some of the discrepancies in published reports about the importance of noise at different times of day are reduced when the research findings are classified according to the type of time of day reaction model, the type of time of day weight calculated and the method which is used to estimate the weight. When the estimates of nighttime weights from 12 studies are normalized, it is found that they still disagree, but do not support stronger nighttime weights than those used in existing noise indices. Challenges to common assumptions in nighttime response models are evaluated. Two of these challenges receive enough support to warrant further investigation: the impact of changes in numbers of noise events may be less at night than in the day and nighttime annoyance may be affected by noise levels in other periods. All existing social survey results in which averages of nighttime responses were plotted by nighttime noise levels are reproduced.

  14. Fatigue Modeling via Mammalian Auditory System for Prediction of Noise Induced Hearing Loss

    PubMed Central

    Sun, Pengfei; Qin, Jun; Campbell, Kathleen

    2015-01-01

    Noise induced hearing loss (NIHL) remains as a severe health problem worldwide. Existing noise metrics and modeling for evaluation of NIHL are limited on prediction of gradually developing NIHL (GDHL) caused by high-level occupational noise. In this study, we proposed two auditory fatigue based models, including equal velocity level (EVL) and complex velocity level (CVL), which combine the high-cycle fatigue theory with the mammalian auditory model, to predict GDHL. The mammalian auditory model is introduced by combining the transfer function of the external-middle ear and the triple-path nonlinear (TRNL) filter to obtain velocities of basilar membrane (BM) in cochlea. The high-cycle fatigue theory is based on the assumption that GDHL can be considered as a process of long-cycle mechanical fatigue failure of organ of Corti. Furthermore, a series of chinchilla experimental data are used to validate the effectiveness of the proposed fatigue models. The regression analysis results show that both proposed fatigue models have high corrections with four hearing loss indices. It indicates that the proposed models can accurately predict hearing loss in chinchilla. Results suggest that the CVL model is more accurate compared to the EVL model on prediction of the auditory risk of exposure to hazardous occupational noise. PMID:26691685

  15. Towards a Comprehensive Model of Jet Noise Using an Acoustic Analogy and Steady RANS Solutions

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2013-01-01

    An acoustic analogy is developed to predict the noise from jet flows. It contains two source models that independently predict the noise from turbulence and shock wave shear layer interactions. The acoustic analogy is based on the Euler equations and separates the sources from propagation. Propagation effects are taken into account by calculating the vector Green's function of the linearized Euler equations. The sources are modeled following the work of Tam and Auriault, Morris and Boluriaan, and Morris and Miller. A statistical model of the two-point cross-correlation of the velocity fluctuations is used to describe the turbulence. The acoustic analogy attempts to take into account the correct scaling of the sources for a wide range of nozzle pressure and temperature ratios. It does not make assumptions regarding fine- or large-scale turbulent noise sources, self- or shear-noise, or convective amplification. The acoustic analogy is partially informed by three-dimensional steady Reynolds-Averaged Navier-Stokes solutions that include the nozzle geometry. The predictions are compared with experiments of jets operating subsonically through supersonically and at unheated and heated temperatures. Predictions generally capture the scaling of both mixing noise and BBSAN for the conditions examined, but some discrepancies remain that are due to the accuracy of the steady RANS turbulence model closure, the equivalent sources, and the use of a simplified vector Green's function solver of the linearized Euler equations.

  16. An Empirical Jet-Surface Interaction Noise Model with Temperature and Nozzle Aspect Ratio Effects

    NASA Technical Reports Server (NTRS)

    Brown, Cliff

    2015-01-01

    An empirical model for jet-surface interaction (JSI) noise produced by a round jet near a flat plate is described and the resulting model evaluated. The model covers unheated and hot jet conditions (1 less than or equal to jet total temperature ratio less than or equal to 2.7) in the subsonic range (0.5 less than or equal to M(sub a) less than or equal to 0.9), surface lengths 0.6 less than or equal to (axial distance from jet exit to surface trailing edge (inches)/nozzle exit diameter) less than or equal to 10, and surface standoff distances (0 less than or equal to (radial distance from jet lipline to surface (inches)/axial distance from jet exit to surface trailing edge (inches)) less than or equal to 1) using only second-order polynomials to provide predictable behavior. The JSI noise model is combined with an existing jet mixing noise model to produce exhaust noise predictions. Fit quality metrics and comparisons to between the predicted and experimental data indicate that the model is suitable for many system level studies. A first-order correction to the JSI source model that accounts for the effect of nozzle aspect ratio is also explored. This correction is based on changes to the potential core length and frequency scaling associated with rectangular nozzles up to 8:1 aspect ratio. However, more work is needed to refine these findings into a formal model.

  17. Statistics of a leaky integrate-and-fire model of neurons driven by dichotomous noise

    NASA Astrophysics Data System (ADS)

    Mankin, Romi; Lumi, Neeme

    2016-05-01

    The behavior of a stochastic leaky integrate-and-fire model of neurons is considered. The effect of temporally correlated random neuronal input is modeled as a colored two-level (dichotomous) Markovian noise. Relying on the Riemann method, exact expressions for the output interspike interval density and for the serial correlation coefficient are derived, and their dependence on noise parameters (such as correlation time and amplitude) is analyzed. Particularly, noise-induced sign reversal and a resonancelike amplification of the kurtosis of the interspike interval distribution are established. The features of spike statistics, analytically revealed in our study, are compared with recently obtained results for a perfect integrate-and-fire neuron model.

  18. Air blast circuit breaker noise and hearing loss: a multifactorial model for risk assessment.

    PubMed

    McBride, D I; Williams, S

    2000-04-01

    The assessment of the risk to hearing from impulse noise exposure may be a problem for the occupational physician because existing legislative and international noise exposure standards deal primarily with continuous noise, and are not valid in excess of the peak exposure limit of 200 pa (140 dB). Noise exposure in excess of this level, for example that due to firearms, is frequently perceived as harmful, but this is not necessarily the case, as impulse noise standards do, in fact, allow exposure with a maximum in the order of 6.3 kPa (170 dB). To illustrate this, a cross-sectional group of electrical transmission workers have been studied who were exposed to significant levels of impulse noise from air blast circuit breakers and firearms. Important hearing loss factors have been identified by means of a specially designed questionnaire. Using the Health & Safety Executive definition, the risk of hearing loss was determined by calculating prevalence odds ratios (ORs) for exposure to these factors. The OR for those with fewer than eight unprotected air blast circuit breaker exposures was 2.27 (95% confidence interval (CI), 1.01-5.08), whilst for those with more than eight exposures the OR was 2.10 (95% CI, 0.97-4.54). For firearm exposure, ORs of 1.61 (95% CI, 0.95-2.74) were noted in the medium exposure group and 2.05 (95% CI, 1.08-3.86) in the high exposure group. When all the factors were included in the model, the most significant factor was age. The study gives support to the impulse noise exposure criteria, confirming the borderline risk from air blast circuit breaker noise exposure and the relative safety of moderate gunfire exposure. PMID:10912360

  19. Modeling Barkhausen Noise in magnetic glasses with dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Dubey, Awadhesh K.; Hentschel, H. George E.; Jaiswal, Prabhat K.; Mondal, Chandana; Procaccia, Itamar; Gupta, Bhaskar Sen

    2015-10-01

    Long-ranged dipole-dipole interactions in magnetic glasses give rise to magnetic domains having labyrinthine patterns on the scale of about 1 micron. Barkhausen Noise then results from the movement of domain boundaries which is modeled by the motion of elastic membranes with random pinning. Here we propose that on the nanoscale new sources of Barkhausen Noise can arise. We propose an atomistic model of magnetic glasses in which we measure the Barkhausen Noise which results from the creation of new domains and the movement of domain boundaries on the nanoscale. The statistics of the Barkhausen Noise found in our simulations is in striking disagreement with the expectations in the literature. In fact we find exponential statistics without any power law, stressing the fact that Barkhausen Noise can belong to very different universality classes. In the present model the essence of the phenomenon is the fact that the spin response Green's function is decaying too rapidly for having sufficiently large magnetic jumps. A theory is offered in excellent agreement with the measured data without any free parameter.

  20. A survey of models for the prediction of ambient ocean noise: Circa 1995

    SciTech Connect

    Doolittle, R.

    1996-01-01

    The state of the art of model development for application to computer studies of undersea search systems utilizing acoustics is surveyed in this document. Due to the demands for surveillance of submarines operating in ocean basins, the development of noise models for application in deep oceans is fairly advanced and somewhat generic. This is due to the deep sound channel, discovered during World War II, which when present allows for long-range sound propagation with little or no interaction with the bottom. Exceptions to this channel, also well understood, are found in both the high latitudes where the sound is upward refracting and in tropical ocean areas with downward refracting sound transmission. The controlling parameter is the sound speed as a function of depth within the ocean, the sound speed profile. When independent of range, this profile may be converted to a noise-versus-depth profile with well-validated consequences for deep-ocean ambient noise. When considering ocean areas of shallow water, the littoral regions, the idea of a genenic ocean channel advisedly is abandoned. The locally unique nature of both the noise production mechanisms and of the channel carrying the sound, obviates the generic treatment. Nevertheless, idealizations of this case exist and promote the understanding if not the exact predictability of the statistics of shallow water ambient noise. Some examples of these models are given in this document.

  1. Direct estimation and correction of bias from temporally variable non-stationary noise in a channelized Hotelling model observer

    NASA Astrophysics Data System (ADS)

    Fetterly, Kenneth A.; Favazza, Christopher P.

    2016-08-01

    of bias in Hotelling model observers due to temporally variable non-stationary noise and correct this bias when the temporally variable non-stationary noise is independent and additive with respect to the test object signal.

  2. Direct estimation and correction of bias from temporally variable non-stationary noise in a channelized Hotelling model observer.

    PubMed

    Fetterly, Kenneth A; Favazza, Christopher P

    2016-08-01

    presence of bias in Hotelling model observers due to temporally variable non-stationary noise and correct this bias when the temporally variable non-stationary noise is independent and additive with respect to the test object signal. PMID:27385086

  3. Dispersion modelling approaches for near road applications involving noise barriers

    EPA Science Inventory

    The talk will present comparisons with two datasets of the barrier algorithms implemented in two different dispersion models: US EPA’s R-LINE (a research dispersion modelling tool under development by the US EPA’s Office of Research and Development) and CERC’s A...

  4. Creep damage in a localized load sharing fibre bundle model with additional ageing

    NASA Astrophysics Data System (ADS)

    Lennartz-Sassinek, Sabine; Danku, Zsuzsa; Main, Ian; Kun, Ferenc

    2013-04-01

    Many fields of science are interested in the damage growth in earth materials. Often the damage propagates not in big avalanches like the crack growth measured by acoustic emissions. Also "silent" damage may occur whose emissions are either to small to be detected or mix with back ground noise. These silent emissions may carry the majority of the over all damage in a system until failure. One famous model for damage growth is the fibre bundle model. Here we consider an extended version of a localized load sharing fibre bundle model which incorporates additional time dependent ageing of each fibre motivated by a chemically active environment. We present the non-trivial time dependent damage growth in this model in the low load limit representing creep damage far away from failure. We show both numerical simulations and analytical equations describing the damage rate of silent events and the corresponding amount of triggered "acoustic" damage. The analytical description is in agreement with the numerical results.

  5. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  6. Noise tests of a model engine-over-the-wing STOL configuration using a multijet nozzle with deflector

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Friedman, R.

    1973-01-01

    Noise data were obtained with a small scale model stationary STOL configuration that used an eight lobe mixer nozzle with deflector mounted above a 32-cm-chord wing section. The factors varied to determine their effect upon the noise were wing flap angle, nozzle shape, nozzle location, deflector configuration, and jet velocity. The noise from the mixer nozzle model was compared to the noise from a model using a circular nozzle of the same area. The mixer nozzle model was quieter at the low to middle frequencies, while the circular nozzle was quieter at high frequencies. The perceived noise level (PNL) was calculated for an aircraft 10 times larger than the model. The PNL at 500 feet for the mixer nozzle turned out to be within 1 db of the PNL for the circular nozzle. For some configurations at highly directional broadband noise, which could be eliminated by changes in nozzle and/or deflector location, occurred below the wing.

  7. Atmospheric Weather Noise Characteristics in 20th Century Coupled Atmosphere-Ocean Model Simulations

    NASA Astrophysics Data System (ADS)

    Colfescu, Ioana; Schneider, Edwin

    2016-04-01

    The statistical characteristics of the atmospheric internal variability (hereafter weather noise) for surface pressure (PS) in 20th century simulations of a coupled general circulation model are documented. The weather noise is determined from post-industrial (1871-1998) Community Climate System Model 3 simulations by removing the SST and externally forced responses from the total fields.The forced responses are found from atmosphere-only simulations forced by the SST and external forcing of the coupled runs. The spatial patterns of the main modes of weather noise variability of the noise are found for boreal winter and summer from empirical orthogonal function (EOF) analyses performed globally, and for various regions, including the North Atlantic, the North Pacific, and the equatorial Pacific. The temporal characteristics of the modes are illustrated by power spectra and probability density functions (PDF) of the principal components (PC). Our findings show that, for two different realizations of weather noise, the variability is dominated by large scale spatial structures of the weather noise that resemble observed patterns, and that their relative amplitudes in the CGCM and AGCM simulations are very similar. The regional expression of the seasonally dependent AO-like or AAO-like dominant global pattern is also found in the regional analyses, giving similar PCs. The PCs in the CGCM and the corresponding SST forced AGCM simulations are uncorrelated, but the spectra and PDFs of the CGCM and AGCM PCs are similar. The temporal structures of the PCs are white at timescales larger than few months, so that these modes can be thought of as stochastic forcings (in time) for the climate system. The PDFs of the weather noise PCs are not statistically distinguishable from Gaussian distributions with the same standard deviation. The PDFs do not change substantially between the first and second half of the 20th century.

  8. Aerodynamic Performance of Scale-Model Turbofan Outlet Guide Vanes Designed for Low Noise

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on an understanding of the noise sources and noise generation mechanisms in the modern turbofan engine. In order to more fully understand the physics of noise in a turbofan engine, a comprehensive aeroacoustic wind tunnel test programs was conducted called the 'Source Diagnostic Test.' The text was cooperative effort between NASA and General Electric Aircraft Engines, as part of the NASA Advanced Subsonic Technology Noise Reduction Program. A 1/5-scale model simulator representing the bypass stage of a current technology high bypass ratio turbofan engine was used in the test. The test article consisted of the bypass fan and outlet guide vanes in a flight-type nacelle. The fan used was a medium pressure ratio design with 22 individual, wide chord blades. Three outlet guide vane design configurations were investigated, representing a 54-vane radial Baseline configuration, a 26-vane radial, wide chord Low Count configuration and a 26-vane, wide chord Low Noise configuration with 30 deg of aft sweep. The test was conducted in the NASA Glenn Research Center 9 by 15-Foot Low Speed Wind Tunnel at velocities simulating the takeoff and approach phases of the aircraft flight envelope. The Source Diagnostic Test had several acoustic and aerodynamic technical objectives: (1) establish the performance of a scale model fan selected to represent the current technology turbofan product; (2) assess the performance of the fan stage with each of the three distinct outlet guide vane designs; (3) determine the effect of the outlet guide vane configuration on the fan baseline performance; and (4) conduct detailed flowfield diagnostic surveys, both acoustic and aerodynamic, to characterize and understand the noise generation mechanisms in a turbofan engine. This paper addresses the fan and stage aerodynamic performance results from the Source Diagnostic Test.

  9. Low-order stochastic model and "past-noise forecasting" of the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Kondrashov, D.; Chekroun, M. D.; Robertson, A. W.; Ghil, M.

    2013-10-01

    This paper presents a predictability study of the Madden-Julian Oscillation (MJO) that relies on combining empirical model reduction (EMR) with the "past-noise forecasting" (PNF) method. EMR is a data-driven methodology for constructing stochastic low-dimensional models that account for nonlinearity, seasonality and serial correlation in the estimated noise, while PNF constructs an ensemble of forecasts that accounts for interactions between (i) high-frequency variability (noise), estimated here by EMR, and (ii) the low-frequency mode of MJO, as captured by singular spectrum analysis (SSA). A key result is that—compared to an EMR ensemble driven by generic white noise—PNF is able to considerably improve prediction of MJO phase. When forecasts are initiated from weak MJO conditions, the useful skill is of up to 30 days. PNF also significantly improves MJO prediction skill for forecasts that start over the Indian Ocean.

  10. Noise-driven neuroplasticity in self-organizing feature maps: a neurocomputational model of phantom limbs.

    PubMed

    Spitzer, M

    1997-01-01

    The term "phantom limb" denotes the sensation that an extremity is present although it has been lost. A number of clinical features and recent findings of cortical map plasticity after destruction of afferent pathways (deafferentation) suggest that phantom limbs are caused by large-scale cortical reorganization processes. However, in paraplegics, who also suffer from cortical deafferentation, phantom sensations rarely develop, and if they do, they are weak, lacking in detail, and delayed, occurring after months. This has been taken to suggest a non-cortical genesis of phantom limbs. This article proposes a biologically plausible minimal neural network model to solve this apparent puzzle. Deafferentation was simulated in trained self-organizing feature maps. Reorganization was found to be directed by input noise. According to the model, the production of input noise by the deafferented primary sensory neuron promotes cortical reorganization in amputees. No such noise is generated or conducted to the cortex in paraplegics. PMID:9151509

  11. High-fidelity Simulation of Jet Noise from Rectangular Nozzles . [Large Eddy Simulation (LES) Model for Noise Reduction in Advanced Jet Engines and Automobiles

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj

    2014-01-01

    This Phase II project validated a state-of-the-art LES model, coupled with a Ffowcs Williams-Hawkings (FW-H) far-field acoustic solver, to support the development of advanced engine concepts. These concepts include innovative flow control strategies to attenuate jet noise emissions. The end-to-end LES/ FW-H noise prediction model was demonstrated and validated by applying it to rectangular nozzle designs with a high aspect ratio. The model also was validated against acoustic and flow-field data from a realistic jet-pylon experiment, thereby significantly advancing the state of the art for LES.

  12. Spherical Deconvolution of Multichannel Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regularization.

    PubMed

    Canales-Rodríguez, Erick J; Daducci, Alessandro; Sotiropoulos, Stamatios N; Caruyer, Emmanuel; Aja-Fernández, Santiago; Radua, Joaquim; Yurramendi Mendizabal, Jesús M; Iturria-Medina, Yasser; Melie-García, Lester; Alemán-Gómez, Yasser; Thiran, Jean-Philippe; Sarró, Salvador; Pomarol-Clotet, Edith; Salvador, Raymond

    2015-01-01

    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on many factors such as the number of coils and the methodology used to combine multichannel MRI signals. Indeed, the two prevailing methods for multichannel signal combination lead to noise patterns better described by Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in human brain data. PMID:26470024

  13. Spherical Deconvolution of Multichannel Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regularization

    PubMed Central

    Canales-Rodríguez, Erick J.; Caruyer, Emmanuel; Aja-Fernández, Santiago; Radua, Joaquim; Yurramendi Mendizabal, Jesús M.; Iturria-Medina, Yasser; Melie-García, Lester; Alemán-Gómez, Yasser; Thiran, Jean-Philippe; Sarró, Salvador; Pomarol-Clotet, Edith; Salvador, Raymond

    2015-01-01

    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on many factors such as the number of coils and the methodology used to combine multichannel MRI signals. Indeed, the two prevailing methods for multichannel signal combination lead to noise patterns better described by Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in human brain data. PMID:26470024

  14. Modeling and mitigating noise in graph and manifold representations of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Jin, Can; Bachmann, Charles M.

    2015-05-01

    Over the past decade, manifold and graph representations of hyperspectral imagery (HSI) have been explored widely in HSI applications. There are a large number of data-driven approaches to deriving manifold coordinate representations including Isometric Mapping (ISOMAP)1, Local Linear Embedding (LLE)2, Laplacian Eigenmaps (LE)3, Diffusion Kernels (DK)4, and many related methods. Improvements to specific algorithms have been developed to ease computational burden or otherwise improve algorithm performance. For example, the best way to estimate the size of the locally linear neighborhoods used in graph construction have been addressed6 as well as the best method of linking the manifold representation with classifiers in applications. However, the problem of how to model and mitigate noise in manifold representations of hyperspectral imagery has not been well studied and remains a challenge for graph and manifold representations of hyperspectral imagery and their application. It is relatively easy to apply standard linear methods to remove noise from the data in advance of further processing, however, these approaches by and large treat the noise model in a global sense, using statistics derived from the entire data set and applying the results globally over the data set. Graph and manifold representations by their nature attempt to find an intrinsic representation of the local data structure, so it is natural to ask how can one best represent the noise model in a local sense. In this paper, we explore the approaches to modeling and mitigating noise at a local level, using manifold coordinates of local spectral subsets. The issue of landmark selection of the current landmark ISOMAP algorithm5 is addressed and a workflow is proposed to make use of manifold coordinates of local spectral subsets to make optimal landmark selection and minimize the effect of local noise.

  15. A critical review of noise production models for turbulent, gas-fueled burners

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1984-01-01

    The combustion noise literature for the period between 1952 and early 1984 is critically reviewed. Primary emphasis is placed on past theoretical and semi-empirical attempts to predict or explain observed direct combustion noise characteristics of turbulent, gas-fueled burners; works involving liquid-fueled burners are reviewed only when ideas equally applicable to gas-fueled burners are pesented. The historical development of the most important contemporary direct combustion noise theories is traced, and the theories themselves are compared and criticized. While most theories explain combustion noise production by turbulent flames in terms of randomly distributed acoustic monopoles produced by turbulent mixing of products and reactants, none is able to predict the sound pressure in the acoustic farfield of a practical burner because of the lack of a proven model which relates the combustion noise source strenght at a given frequency to the design and operating parameters of the burner. Recommendations are given for establishing a benchmark-quality data base needed to support the development of such a model.

  16. Percolation model with an additional source of disorder.

    PubMed

    Kundu, Sumanta; Manna, S S

    2016-06-01

    The ranges of transmission of the mobiles in a mobile ad hoc network are not uniform in reality. They are affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference in the environment, etc. How the varying range of transmission of the individual active elements affects the global connectivity in the network may be an important practical question to ask. Here a model of percolation phenomena, with an additional source of disorder, is introduced for a theoretical understanding of this problem. As in ordinary percolation, sites of a square lattice are occupied randomly with probability p. Each occupied site is then assigned a circular disk of random value R for its radius. A bond is defined to be occupied if and only if the radii R_{1} and R_{2} of the disks centered at the ends satisfy a certain predefined condition. In a very general formulation, one divides the R_{1}-R_{2} plane into two regions by an arbitrary closed curve. One defines a point within one region as representing an occupied bond; otherwise it is a vacant bond. The study of three different rules under this general formulation indicates that the percolation threshold always varies continuously. This threshold has two limiting values, one is p_{c}(sq), the percolation threshold for the ordinary site percolation on the square lattice, and the other is unity. The approach of the percolation threshold to its limiting values are characterized by two exponents. In a special case, all lattice sites are occupied by disks of random radii R∈{0,R_{0}} and a percolation transition is observed with R_{0} as the control variable, similar to the site occupation probability. PMID:27415234

  17. Percolation model with an additional source of disorder

    NASA Astrophysics Data System (ADS)

    Kundu, Sumanta; Manna, S. S.

    2016-06-01

    The ranges of transmission of the mobiles in a mobile ad hoc network are not uniform in reality. They are affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference in the environment, etc. How the varying range of transmission of the individual active elements affects the global connectivity in the network may be an important practical question to ask. Here a model of percolation phenomena, with an additional source of disorder, is introduced for a theoretical understanding of this problem. As in ordinary percolation, sites of a square lattice are occupied randomly with probability p . Each occupied site is then assigned a circular disk of random value R for its radius. A bond is defined to be occupied if and only if the radii R1 and R2 of the disks centered at the ends satisfy a certain predefined condition. In a very general formulation, one divides the R1-R2 plane into two regions by an arbitrary closed curve. One defines a point within one region as representing an occupied bond; otherwise it is a vacant bond. The study of three different rules under this general formulation indicates that the percolation threshold always varies continuously. This threshold has two limiting values, one is pc(sq) , the percolation threshold for the ordinary site percolation on the square lattice, and the other is unity. The approach of the percolation threshold to its limiting values are characterized by two exponents. In a special case, all lattice sites are occupied by disks of random radii R ∈{0 ,R0} and a percolation transition is observed with R0 as the control variable, similar to the site occupation probability.

  18. Simulated masking of right whale sounds by shipping noise: incorporating a model of the auditory periphery.

    PubMed

    Cunningham, Kane A; Mountain, David C

    2014-03-01

    Many species of large, mysticete whales are known to produce low-frequency communication sounds. These low-frequency sounds are susceptible to communication masking by shipping noise, which also tends to be low frequency in nature. The size of these species makes behavioral assessment of auditory capabilities in controlled, captive environments nearly impossible, and field-based playback experiments are expensive and necessarily limited in scope. Hence, it is desirable to produce a masking model for these species that can aid in determining the potential effects of shipping and other anthropogenic noises on these protected animals. The aim of this study was to build a model that combines a sophisticated representation of the auditory periphery with a spectrogram-based decision stage to predict masking levels. The output of this model can then be combined with a habitat-appropriate propagation model to calculate the potential effects of noise on communication range. For this study, the model was tested on three common North Atlantic right whale communication sounds, both to demonstrate the method and to probe how shipping noise affects the detection of sounds with varying spectral and temporal characteristics. PMID:24606298

  19. Jet Noise Modeling for Coannular Nozzles Including the Effects of Chevrons

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2003-01-01

    Development of good predictive models for jet noise has always been plagued by the difficulty in obtaining good quality data over a wide range of conditions in different facilities.We consider such issues very carefully in selecting data to be used in developing our model. Flight effects are of critical importance, and none of the means of determining them are without significant problems. Free-jet flight simulation facilities are very useful, and can provide meaningful data so long as they can be analytically transformed to the flight frame of reference. In this report we show that different methodologies used by NASA and industry to perform this transformation produce very different results, especially in the rear quadrant; this compels us to rely largely on static data to develop our model, but we show reasonable agreement with simulated flight data when these transformation issues are considered. A persistent problem in obtaining good quality data is noise generated in the experimental facility upstream of the test nozzle: valves, elbows, obstructions, and especially the combustor can contribute significant noise, and much of this noise is of a broadband nature, easily confused with jet noise. Muffling of these sources is costly in terms of size as well as expense, and it is particularly difficult in flight simulation facilities, where compactness of hardware is very important, as discussed by Viswanathan (Ref. 13). We feel that the effects of jet density on jet mixing noise may have been somewhat obscured by these problems, leading to the variable density exponent used in most jet noise prediction procedures including our own. We investigate this issue, applying Occam s razor, (e.g., Ref. 14), in a search for the simplest physically meaningful model that adequately describes the observed phenomena. In a similar vein, we see no reason to reject the Lighthill approach; it provides a very solid basis upon which to build a predictive procedure, as we believe we

  20. Power spectrum for inflation models with quantum and thermal noises

    SciTech Connect

    Ramos, Rudnei O.; Silva, L.A. da E-mail: las.leandro@gmail.com

    2013-03-01

    We determine the power spectrum for inflation models covering all regimes from cold (isentropic) to warm (nonisentropic) inflation. We work in the context of the stochastic inflation approach, which can nicely describe both types of inflationary regimes concomitantly. A throughout analysis is carried out to determine the allowed parameter space for simple single field polynomial chaotic inflation models that is consistent with the most recent cosmological data from the nine-year Wilkinson Microwave Anisotropy Probe (WMAP) and in conjunction with other observational cosmological sources. We present the results for both the amplitude of the power spectrum, the spectral index and for the tensor to scalar curvature perturbation amplitude ratio. We briefly discuss cases when running is present. Despite single field polynomial-type inflaton potential models be strongly disfavored, or even be already ruled out in their simplest versions in the case of cold inflation, this is not the case for nonisentropic inflation models in general (warm inflation in particular), though higher order polynomial potentials (higher than quartic order) tend to become less favorable also in this case, presenting a much smaller region of parameter space compatible with the recent observational cosmological data.

  1. Identifying Modeled Ship Noise Hotspots for Marine Mammals of Canada's Pacific Region

    PubMed Central

    Erbe, Christine; Williams, Rob; Sandilands, Doug; Ashe, Erin

    2014-01-01

    The inshore, continental shelf waters of British Columbia (BC), Canada are busy with ship traffic. South coast waters are heavily trafficked by ships using the ports of Vancouver and Seattle. North coast waters are less busy, but expected to get busier based on proposals for container port and liquefied natural gas development and expansion. Abundance estimates and density surface maps are available for 10 commonly seen marine mammals, including northern resident killer whales, fin whales, humpback whales, and other species with at-risk status under Canadian legislation. Ship noise is the dominant anthropogenic contributor to the marine soundscape of BC, and it is chronic. Underwater noise is now being considered in habitat quality assessments in some countries and in marine spatial planning. We modeled the propagation of underwater noise from ships and weighted the received levels by species-specific audiograms. We overlaid the audiogram-weighted maps of ship audibility with animal density maps. The result is a series of so-called “hotspot” maps of ship noise for all 10 marine mammal species, based on cumulative ship noise energy and average distribution in the boreal summer. South coast waters (Juan de Fuca and Haro Straits) are hotspots for all species that use the area, irrespective of their hearing sensitivity, simply due to ubiquitous ship traffic. Secondary hotspots were found on the central and north coasts (Johnstone Strait and the region around Prince Rupert). These maps can identify where anthropogenic noise is predicted to have above-average impact on species-specific habitat, and where mitigation measures may be most effective. This approach can guide effective mitigation without requiring fleet-wide modification in sites where no animals are present or where the area is used by species that are relatively insensitive to ship noise. PMID:24598866

  2. Identifying modeled ship noise hotspots for marine mammals of Canada's Pacific region.

    PubMed

    Erbe, Christine; Williams, Rob; Sandilands, Doug; Ashe, Erin

    2014-01-01

    The inshore, continental shelf waters of British Columbia (BC), Canada are busy with ship traffic. South coast waters are heavily trafficked by ships using the ports of Vancouver and Seattle. North coast waters are less busy, but expected to get busier based on proposals for container port and liquefied natural gas development and expansion. Abundance estimates and density surface maps are available for 10 commonly seen marine mammals, including northern resident killer whales, fin whales, humpback whales, and other species with at-risk status under Canadian legislation. Ship noise is the dominant anthropogenic contributor to the marine soundscape of BC, and it is chronic. Underwater noise is now being considered in habitat quality assessments in some countries and in marine spatial planning. We modeled the propagation of underwater noise from ships and weighted the received levels by species-specific audiograms. We overlaid the audiogram-weighted maps of ship audibility with animal density maps. The result is a series of so-called "hotspot" maps of ship noise for all 10 marine mammal species, based on cumulative ship noise energy and average distribution in the boreal summer. South coast waters (Juan de Fuca and Haro Straits) are hotspots for all species that use the area, irrespective of their hearing sensitivity, simply due to ubiquitous ship traffic. Secondary hotspots were found on the central and north coasts (Johnstone Strait and the region around Prince Rupert). These maps can identify where anthropogenic noise is predicted to have above-average impact on species-specific habitat, and where mitigation measures may be most effective. This approach can guide effective mitigation without requiring fleet-wide modification in sites where no animals are present or where the area is used by species that are relatively insensitive to ship noise. PMID:24598866

  3. Airport-Noise Levels and Annoyance Model (ALAMO) system's reference manual

    NASA Technical Reports Server (NTRS)

    Deloach, R.; Donaldson, J. L.; Johnson, M. J.

    1986-01-01

    The airport-noise levels and annoyance model (ALAMO) is described in terms of the constituent modules, the execution of ALAMO procedure files, necessary for system execution, and the source code documentation associated with code development at Langley Research Center. The modules constituting ALAMO are presented both in flow graph form, and through a description of the subroutines and functions that comprise them.

  4. Modeling random telegraph signal noise in CMOS image sensor under low light based on binomial distribution

    NASA Astrophysics Data System (ADS)

    Yu, Zhang; Xinmiao, Lu; Guangyi, Wang; Yongcai, Hu; Jiangtao, Xu

    2016-07-01

    The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result, the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated, and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures. Project supported by the National Natural Science Foundation of China (Grant Nos. 61372156 and 61405053) and the Natural Science Foundation of Zhejiang Province of China (Grant No. LZ13F04001).

  5. Investigation of the Jet Noise Prediction Theory and Application Utilizing the PAO Formulation. [mathematical model for calculating noise radiation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Application of the Phillips theory to engineering calculations of rocket and high speed jet noise radiation is reported. Presented are a detailed derivation of the theory, the composition of the numerical scheme, and discussions of the practical problems arising in the application of the present noise prediction method. The present method still contains some empirical elements, yet it provides a unified approach in the prediction of sound power, spectrum, and directivity.

  6. Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    Empirical models for the shielding and reflection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and reflection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.

  7. Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface

    NASA Technical Reports Server (NTRS)

    Brown, Cliff

    2015-01-01

    Empirical models for the shielding and refection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and rejection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.

  8. Stochastic resonance induced by Lévy noise in a tumor growth model with periodic treatment

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Hao, Mengli; Gu, Xudong; Yang, Guidong

    2014-05-01

    In this paper, the stochastic resonance phenomenon in a tumor growth model under subthreshold periodic therapy and Lévy noise excitation is investigated. The possible reoccurrence of tumor due to stochastic resonance is discussed. The signal-to-noise ratio (SNR) is calculated numerically to measure the stochastic resonance. It is found that smaller stability index is better for avoiding tumor reappearance. Besides, the effect of the skewness parameter on the tumor regrowth is related to the stability index. Furthermore, increasing the intensity of periodic treatment does not always facilitate tumor therapy. These results are beneficial to the optimization of periodic tumor therapy.

  9. Numerical Verification of an Analytical Model for Phase Noise in MEMS Oscillators.

    PubMed

    Agrawal, D K; Bizzarri, F; Brambilla, A; Seshia, A A

    2016-08-01

    A new analytical formulation for phase noise in MEMS oscillators was recently presented encompassing the role of essential nonlinearities in the electrical and mechanical domains. In this paper, we validate the effectiveness of the proposed analytical formulation with respect to the unified theory developed by Demir et al. describing phase noise in oscillators. In particular, it is shown that, over a range of the second-order mechanical nonlinear stiffness of the MEMS resonator, both models exhibit an excellent match in the phase diffusion coefficient calculation for a square-wave MEMS oscillator. PMID:27295660

  10. Model studies of surface noise interference in ground-probing radar

    NASA Astrophysics Data System (ADS)

    Arcone, S. A.; Delaney, A. J.

    1985-11-01

    Ground-probing radar can be an effective tool for exploring the top 10 to 20 m of ground, especially in cold regions where the freezing of water decreases signal absorption. However, the large electrical variability of the surface, combined with the short wavelengths used, can often cause severe ground clutter that can mask a desired, deeper return. In this study a model facility was constructed consisting of a metallic reflector covered by sand. Troughs of saturated sand were emplaced at the surface to carry surface electrical properties and to act as a noise source to interfere with the bottom reflections. Antenna polarization and height, and signal stacking in both static (antennas stationary) and dynamic (antennas moving) modes were then investigated as methods for reducing the surface clutter. Polarization parallel to the profile direction (perpendicular to the troughs' axes) gave profiles superior to the perpendicular case because of the dimensional sensitivity of the antenna radiation. Dynamic stacking greatly improved the signal-to-noise ratio because noise sources were averaged as the antennas moved, while the desired reflector, buried at constant depth, was enhanced. Raising the antennas above the surface also reduced noise because the surface area over which reflections were integrated increased. All three noise reduction techniques could be effective in surveys for reflectors at nearly constant depth such as groundwater tables or ice/water interfaces.

  11. Static and wind tunnel model tests for the development of externally blown flap noise reduction techniques

    NASA Technical Reports Server (NTRS)

    Pennock, A. P.; Swift, G.; Marbert, J. A.

    1975-01-01

    Externally blown flap models were tested for noise and performance at one-fifth scale in a static facility and at one-tenth scale in a large acoustically-treated wind tunnel. The static tests covered two flap designs, conical and ejector nozzles, third-flap noise-reduction treatments, internal blowing, and flap/nozzle geometry variations. The wind tunnel variables were triple-slotted or single-slotted flaps, sweep angle, and solid or perforated third flap. The static test program showed the following noise reductions at takeoff: 1.5 PNdB due to treating the third flap; 0.5 PNdB due to blowing from the third flap; 6 PNdB at flyover and 4.5 PNdB in the critical sideline plane (30 deg elevation) due to installation of the ejector nozzle. The wind tunnel program showed a reduction of 2 PNdB in the sideline plane due to a forward speed of 43.8 m/s (85 kn). The best combination of noise reduction concepts reduced the sideline noise of the reference aircraft at constant field length by 4 PNdB.

  12. A model and plan for a longitudinal study of community response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.; Patterson, H. P.; Cornog, J.; Klaus, P.; Connor, W. K.

    1975-01-01

    A new approach is discussed for the study of the effects of aircraft noise on people who live near large airports. The approach was an outgrowth of a planned study of the reactions of individuals exposed to changing aircraft noise conditions around the Dallas-Ft. Worth (DFW) regional airport. The rationale, concepts, and methods employed in the study are discussed. A critical review of major past studies traces the history of community response research in an effort to identify strengths and limitations of the various approaches and methodologies. A stress-reduction model is presented to provide a framework for studying the dynamics of human response to a changing noise environment. The development of the survey instrument is detailed, and preliminary results of pretest data are discussed.

  13. Reduction of high-speed impulsive noise by blade planform modification of a model helicopter rotor

    NASA Technical Reports Server (NTRS)

    Conner, D. A.; Hoad, D. R.

    1982-01-01

    The reduction of high speed impulsive noise for the UH-1H helicopter was investigated by using an advanced main rotor system. The advanced rotor system had a tapered blade planform compared with the rectangular planform of the standard rotor system. Models of both the advanced main rotor system and the UH-1H standard main rotor system were tested at 1/4 scale in the 4 by 7 Meter Tunnel. In plane acoustic measurements of the high speed impulsive noise demonstrated that the advanced rotor system on the UH-1H helicopter reduced the high speed impulsive noise by up to 20 dB, with a reduction in overall sound pressure level of up to 5 dB.

  14. Squeak noise in lead screw systems: Self-excited vibration of continuous model

    NASA Astrophysics Data System (ADS)

    Kang, Jaeyoung; Kim, Keysun

    2010-08-01

    The dynamic instability of a spinning lead screw in contact with a screw nut is investigated analytically. The lead screw is modeled as a circular beam vibrating in transverse and torsion direction. The contact kinematics between the lead screw and the nut is described on the contact threads in the lead screw. The onset of squeak noise is numerically predicted with a variety of system parameters. Stability analysis shows that the transverse vibration modes can generate squeak noise in the lead screw system. It is highlighted that squeak noise can be controlled by system design parameters in such a manner that the squeak propensity is dependent on rotation speed, screw radius, axial load, contact location, and so on.

  15. Restoring the encoding properties of a stochastic neuron model by an exogenous noise

    PubMed Central

    Paffi, Alessandra; Camera, Francesca; Apollonio, Francesca; d'Inzeo, Guglielmo; Liberti, Micaela

    2015-01-01

    Here we evaluate the possibility of improving the encoding properties of an impaired neuronal system by superimposing an exogenous noise to an external electric stimulation signal. The approach is based on the use of mathematical neuron models consisting of stochastic HH-like circuit, where the impairment of the endogenous presynaptic inputs is described as a subthreshold injected current and the exogenous stimulation signal is a sinusoidal voltage perturbation across the membrane. Our results indicate that a correlated Gaussian noise, added to the sinusoidal signal can significantly increase the encoding properties of the impaired system, through the Stochastic Resonance (SR) phenomenon. These results suggest that an exogenous noise, suitably tailored, could improve the efficacy of those stimulation techniques used in neuronal systems, where the presynaptic sensory neurons are impaired and have to be artificially bypassed. PMID:25999845

  16. Image simulation and a model of noise power spectra across a range of mammographic beam qualities

    SciTech Connect

    Mackenzie, Alistair Dance, David R.; Young, Kenneth C.; Diaz, Oliver

    2014-12-15

    Purpose: The aim of this work is to create a model to predict the noise power spectra (NPS) for a range of mammographic radiographic factors. The noise model was necessary to degrade images acquired on one system to match the image quality of different systems for a range of beam qualities. Methods: Five detectors and x-ray systems [Hologic Selenia (ASEh), Carestream computed radiography CR900 (CRc), GE Essential (CSI), Carestream NIP (NIPc), and Siemens Inspiration (ASEs)] were characterized for this study. The signal transfer property was measured as the pixel value against absorbed energy per unit area (E) at a reference beam quality of 28 kV, Mo/Mo or 29 kV, W/Rh with 45 mm polymethyl methacrylate (PMMA) at the tube head. The contributions of the three noise sources (electronic, quantum, and structure) to the NPS were calculated by fitting a quadratic at each spatial frequency of the NPS against E. A quantum noise correction factor which was dependent on beam quality was quantified using a set of images acquired over a range of radiographic factors with different thicknesses of PMMA. The noise model was tested for images acquired at 26 kV, Mo/Mo with 20 mm PMMA and 34 kV, Mo/Rh with 70 mm PMMA for three detectors (ASEh, CRc, and CSI) over a range of exposures. The NPS were modeled with and without the noise correction factor and compared with the measured NPS. A previous method for adapting an image to appear as if acquired on a different system was modified to allow the reference beam quality to be different from the beam quality of the image. The method was validated by adapting the ASEh flat field images with two thicknesses of PMMA (20 and 70 mm) to appear with the imaging characteristics of the CSI and CRc systems. Results: The quantum noise correction factor rises with higher beam qualities, except for CR systems at high spatial frequencies, where a flat response was found against mean photon energy. This is due to the dominance of secondary quantum noise

  17. Rotorcraft Transmission Noise Path Model, Including Distributed Fluid Film Bearing Impedance Modeling

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.; Hanford, Amanda D.; Shepherd, Micah R.; Campbell, Robert L.; Smith, Edward C.

    2010-01-01

    A computational approach for simulating the effects of rolling element and journal bearings on the vibration and sound transmission through gearboxes has been demonstrated. The approach, using ARL/Penn State s CHAMP methodology, uses Component Mode Synthesis of housing and shafting modes computed using Finite Element (FE) models to allow for rapid adjustment of bearing impedances in gearbox models. The approach has been demonstrated on NASA GRC s test gearbox with three different bearing configurations: in the first condition, traditional rolling element (ball and roller) bearings were installed, and in the second and third conditions, the traditional bearings were replaced with journal and wave bearings (wave bearings are journal bearings with a multi-lobed wave pattern on the bearing surface). A methodology for computing the stiffnesses and damping in journal and wave bearings has been presented, and demonstrated for the journal and wave bearings used in the NASA GRC test gearbox. The FE model of the gearbox, along with the rolling element bearing coupling impedances, was analyzed to compute dynamic transfer functions between forces applied to the meshing gears and accelerations on the gearbox housing, including several locations near the bearings. A Boundary Element (BE) acoustic model was used to compute the sound radiated by the gearbox. Measurements of the Gear Mesh Frequency (GMF) tones were made by NASA GRC at several operational speeds for the rolling element and journal bearing gearbox configurations. Both the measurements and the CHAMP numerical model indicate that the journal bearings reduce vibration and noise for the second harmonic of the gear meshing tones, but show no clear benefit to using journal bearings to reduce the amplitudes of the fundamental gear meshing tones. Also, the numerical model shows that the gearbox vibrations and radiated sound are similar for journal and wave bearing configurations.

  18. A first-principles model for estimating the prevalence of annoyance with aircraft noise exposure.

    PubMed

    Fidell, Sanford; Mestre, Vincent; Schomer, Paul; Berry, Bernard; Gjestland, Truls; Vallet, Michel; Reid, Timothy

    2011-08-01

    Numerous relationships between noise exposure and transportation noise-induced annoyance have been inferred by curve-fitting methods. The present paper develops a different approach. It derives a systematic relationship by applying an a priori, first-principles model to the findings of forty three studies of the annoyance of aviation noise. The rate of change of annoyance with day-night average sound level (DNL) due to aircraft noise exposure was found to closely resemble the rate of change of loudness with sound level. The agreement of model predictions with the findings of recent curve-fitting exercises (cf. Miedma and Vos, 1998) is noteworthy, considering that other analyses have relied on different analytic methods and disparate data sets. Even though annoyance prevalence rates within individual communities consistently grow in proportion to duration-adjusted loudness, variability in annoyance prevalence rates across communities remains great. The present analyses demonstrate that 1) community-specific differences in annoyance prevalence rates can be plausibly attributed to the joint effect of acoustic and non-DNL related factors and (2) a simple model can account for the aggregate influences of non-DNL related factors on annoyance prevalence rates in different communities in terms of a single parameter expressed in DNL units-a "community tolerance level." PMID:21877795

  19. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    NASA Technical Reports Server (NTRS)

    Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.

    1984-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.

  20. Helicopter model rotor-blade vortex interaction impulsive noise - Scalability and parametric variations

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1985-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scalig deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.

  1. Are Quasi-Steady-State Approximated Models Suitable for Quantifying Intrinsic Noise Accurately?

    PubMed Central

    Sengupta, Dola; Kar, Sandip

    2015-01-01

    Large gene regulatory networks (GRN) are often modeled with quasi-steady-state approximation (QSSA) to reduce the huge computational time required for intrinsic noise quantification using Gillespie stochastic simulation algorithm (SSA). However, the question still remains whether the stochastic QSSA model measures the intrinsic noise as accurately as the SSA performed for a detailed mechanistic model or not? To address this issue, we have constructed mechanistic and QSSA models for few frequently observed GRNs exhibiting switching behavior and performed stochastic simulations with them. Our results strongly suggest that the performance of a stochastic QSSA model in comparison to SSA performed for a mechanistic model critically relies on the absolute values of the mRNA and protein half-lives involved in the corresponding GRN. The extent of accuracy level achieved by the stochastic QSSA model calculations will depend on the level of bursting frequency generated due to the absolute value of the half-life of either mRNA or protein or for both the species. For the GRNs considered, the stochastic QSSA quantifies the intrinsic noise at the protein level with greater accuracy and for larger combinations of half-life values of mRNA and protein, whereas in case of mRNA the satisfactory accuracy level can only be reached for limited combinations of absolute values of half-lives. Further, we have clearly demonstrated that the abundance levels of mRNA and protein hardly matter for such comparison between QSSA and mechanistic models. Based on our findings, we conclude that QSSA model can be a good choice for evaluating intrinsic noise for other GRNs as well, provided we make a rational choice based on experimental half-life values available in literature. PMID:26327626

  2. Analysis of Acoustic Modeling and Sound Propagation in Aircraft Noise Prediction

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.; Shepherd, Kevin P. (Technical Monitor)

    2006-01-01

    An analysis has been performed of measured and predicted aircraft noise levels around Denver International Airport. A detailed examination was made of 90 straight-out departures that yielded good measurements on multiple monitors. Predictions were made with INM 5, INM 6 and the simulation model NMSIM. Predictions were consistently lower than measurements, less so for the simulation model than for the integrated models. Lateral directivity ("installation effect") patterns were seen which are consistent with other recent measurements. Atmospheric absorption was determined to be a significant factor in the underprediction. Calculations of atmospheric attenuation were made over a full year of upper air data at seven locations across the United States. It was found that temperature/humidity effects could cause variations of up to +/-4 dB, depending on season, for the sites examined. It was concluded that local temperature and humidity should be accounted for in aircraft noise modeling.

  3. Aspects of investigating STOL noise using large scale wind tunnel models

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Koenig, D. G.; Soderman, P. T.

    1972-01-01

    The applicability of the NASA Ames 40- by 80-ft wind tunnel for acoustic research on STOL concepts has been investigated. The acoustic characteristics of the wind tunnel test section has been studied with calibrated acoustic sources. Acoustic characteristics of several large-scale STOL models have been studied both in the free-field and wind tunnel acoustic environments. The results indicate that the acoustic characteristics of large-scale STOL models can be measured in the wind tunnel if the test section acoustic environment and model acoustic similitude are taken into consideration. The reverberant field of the test section must be determined with an acoustically similar noise source. Directional microphone and extrapolation of near-field data to far-field are some of the techniques being explored as possible solutions to the directivity loss in a reverberant field. The model sound pressure levels must be of sufficient magnitude to be discernable from the wind tunnel background noise.

  4. Predicting the Inflow Distortion Tone Noise of the NASA Glenn Advanced Noise Control Fan with a Combined Quadrupole-Dipole Model

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2012-01-01

    A combined quadrupole-dipole model of fan inflow distortion tone noise has been extended to calculate tone sound power levels generated by obstructions arranged in circumferentially asymmetric locations upstream of a rotor. Trends in calculated sound power level agreed well with measurements from tests conducted in 2007 in the NASA Glenn Advanced Noise Control Fan. Calculated values of sound power levels radiated upstream were demonstrated to be sensitive to the accuracy of the modeled wakes from the cylindrical rods that were placed upstream of the fan to distort the inflow. Results indicate a continued need to obtain accurate aerodynamic predictions and measurements at the fan inlet plane as engineers work towards developing fan inflow distortion tone noise prediction tools.

  5. Noise Prediction for Maneuvering Rotorcraft

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Jones, Henry E.

    2000-01-01

    This paper presents the initial work toward first-principles noise prediction for maneuvering rotors. Both the aeromechanical and acoustics aspects of the maneuver noise problem are discussed. The comprehensive analysis code, CAMRAD 2. was utilized to predict the time-dependent aircraft position and attitude, along - with the rotor blade airloads and motion. The major focus of this effort was the enhancement of the acoustic code WOPWOP necessary to compute the noise from a maneuvering rotorcraft. Full aircraft motion, including arbitrary transient motion, is modeled together with arbitrary rotor blade motions. Noise from a rotorcraft in turning and descending flight is compared to level flight. A substantial increase in the rotor noise is found both for turning flight and during a transient maneuver. Additional enhancements to take advantage of parallel computers and clusters of workstations, in addition to a new compact-chordwise loading formulation, are also described.

  6. The mirrors model: macroscopic diffusion without noise or chaos

    NASA Astrophysics Data System (ADS)

    Chiffaudel, Yann; Lefevere, Raphaël

    2016-03-01

    Before stating our main result, we first clarify through classical examples the status of the laws of macroscopic physics as laws of large numbers. We next consider the mirrors model in a finite d-dimensional domain and connected to particles reservoirs at fixed chemical potentials. The dynamics is purely deterministic and non-ergodic but takes place in a random environment. We study the macroscopic current of particles in the stationary regime. We show first that when the size of the system goes to infinity, the behaviour of the stationary current of particles is governed by the proportion of orbits crossing the system. This allows us to formulate a necessary and sufficient condition on the distribution of the set of orbits that ensures the validity of Fick’s law. Using this approach, we show that Fick’s law relating the stationary macroscopic current of particles to the concentration difference holds in three dimensions and above. The negative correlations between crossing orbits play a key role in the argument.

  7. Simulations of Bluff Body Flow Interaction for Noise Source Modeling

    NASA Technical Reports Server (NTRS)

    Khorrami, Medi R.; Lockard David P.; Choudhari, Meelan M.; Jenkins, Luther N.; Neuhart, Dan H.; McGinley, Catherine B.

    2006-01-01

    The current study is a continuation of our effort to characterize the details of flow interaction between two cylinders in a tandem configuration. This configuration is viewed to possess many of the pertinent flow features of the highly interactive unsteady flow field associated with the main landing gear of large civil transports. The present effort extends our previous two-dimensional, unsteady, Reynolds Averaged Navier-Stokes computations to three dimensions using a quasilaminar, zonal approach, in conjunction with a two-equation turbulence model. Two distinct separation length-to-diameter ratios of L/D = 3.7 and 1.435, representing intermediate and short separation distances between the two cylinders, are simulated. The Mach 0.166 simulations are performed at a Reynolds number of Re = 1.66 105 to match the companion experiments at NASA Langley Research Center. Extensive comparisons with the measured steady and unsteady surface pressure and off-surface particle image velocimetry data show encouraging agreement. Both prominent and some of the more subtle trends in the mean and fluctuating flow fields are correctly predicted. Both computations and the measured data reveal a more robust and energetic shedding process at L/D = 3.7 in comparison with the weaker shedding in the shorter separation case of L/D = 1.435. The vortex shedding frequency based on the computed surface pressure spectra is in reasonable agreement with the measured Strouhal frequency.

  8. Evaluation of Channelized Hotelling Observer with Internal-Noise Model in a Train-Test Paradigm for Cardiac SPECT defect detection

    PubMed Central

    Brankov, Jovan G.

    2014-01-01

    prone to overfitting, and will not likely generalize well to new data. In addition, we present an alternative interpretation of the CHO as a penalized linear regression wherein the penalization term is defined by the internal noise model. PMID:24051342

  9. Evaluation of the channelized Hotelling observer with an internal-noise model in a train-test paradigm for cardiac SPECT defect detection

    NASA Astrophysics Data System (ADS)

    Brankov, Jovan G.

    2013-10-01

    to overfitting, and will not likely generalize well to new data. In addition, we present an alternative interpretation of the CHO as a penalized linear regression wherein the penalization term is defined by the internal-noise model.

  10. Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, I.; Ryashko, L.

    2011-12-01

    We study a stochastically forced predator-prey model with Allee effect. In the deterministic case, this model exhibits non-trivial stable equilibrium or limit cycle corresponding to the coexistence of both species. Computational methods based on the stochastic sensitivity functions technique are suggested for the analysis of the dispersion of random states in stochastic attractors. Our method allows to construct confidence domains and estimate the threshold value of the intensity for noise generating a transition from the coexistence to the extinction.

  11. Simplified model for nonlinear noise calculation in coherent optical OFDM systems.

    PubMed

    Uzunidis, Dimitris; Matrakidis, Chris; Stavdas, Alexandros

    2014-11-17

    A simplified closed form expression for the noise power due to four-wave mixing in coherent OFDM systems is derived. The proposed model is in very good agreement with the exact model. The derived analytical expressions can be used in performance evaluation of systems employing CO-OFDM with any number of subcarriers and/or as an integral part of physical layer aware routing algorithms. PMID:25402073

  12. Using Generalized Additive Models to Analyze Single-Case Designs

    ERIC Educational Resources Information Center

    Shadish, William; Sullivan, Kristynn

    2013-01-01

    Many analyses for single-case designs (SCDs)--including nearly all the effect size indicators-- currently assume no trend in the data. Regression and multilevel models allow for trend, but usually test only linear trend and have no principled way of knowing if higher order trends should be represented in the model. This paper shows how Generalized…

  13. Noise-induced coherence and network oscillations in a reduced bursting model.

    PubMed

    Reinker, Stefan; Li, Yue-Xian; Kuske, Rachel

    2006-08-01

    The dynamics of the Hindmarsh-Rose (HR) model of bursting thalamic neurons is reduced to a system of two linear differential equations that retains the subthreshold resonance properties of the HR model. Introducing a reset mechanism after a threshold crossing, we turn this system into a resonant integrate-and-fire (RIF) model. Using Monte-Carlo simulations and mathematical analysis, we examine the effects of noise and the subthreshold dynamic properties of the RIF model on the occurrence of coherence resonance (CR). Synchronized burst firing occurs in a network of such model neurons with excitatory pulse-coupling. The coherence level of the network oscillations shows a stochastic resonance-like dependence on the noise level. Stochastic analysis of the equations shows that the slow recovery from the spike-induced inhibition is crucial in determining the frequencies of the CR and the subthreshold resonance in the original HR model. In this particular type of CR, the oscillation frequency strongly depends on the intrinsic time scales but changes little with the noise intensity. We give analytical quantities to describe this CR mechanism and illustrate its influence on the emerging network oscillations. We discuss the profound physiological roles this kind of CR may have in information processing in neurons possessing a subthreshold resonant frequency and in generating synchronized network oscillations with a frequency that is determined by intrinsic properties of the neurons. PMID:17149822

  14. How much additional model complexity do the use of catchment hydrological signatures, additional data and expert knowledge warrant?

    NASA Astrophysics Data System (ADS)

    Hrachowitz, M.; Fovet, O.; RUIZ, L.; Gascuel-odoux, C.; Savenije, H.

    2013-12-01

    In the frequent absence of sufficient suitable data to constrain hydrological models, it is not uncommon to represent catchments at a range of scales by lumped model set-ups. Although process heterogeneity can average out on the catchment scale to generate simple catchment integrated responses whose general flow features can frequently be reproduced by lumped models, these models often fail to get details of the flow pattern as well as catchment internal dynamics, such as groundwater level changes, right to a sufficient degree, resulting in considerable predictive uncertainty. Traditionally, models are constrained by only one or two objectives functions, which does not warrant more than a handful of parameters to avoid elevated predictive uncertainty, thereby preventing more complex model set-ups accounting for increased process heterogeneity. In this study it was tested how much additional process heterogeneity is warranted in models when optimizing the model calibration strategy, using additional data and expert knowledge. Long-term timeseries of flow and groundwater levels for small nested experimental catchments in French Brittany with considerable differences in geology, topography and flow regime were used in this study to test which degree of model process heterogeneity is warranted with increased availability of information. In a first step, as a benchmark, the system was treated as one lumped entity and the model was trained based only on its ability to reproduce the hydrograph. Although it was found that the overall modelled flow generally reflects the observed flow response quite well, the internal system dynamics could not be reproduced. In further steps the complexity of this model was gradually increased, first by adding a separate riparian reservoir to the lumped set-up and then by a semi-distributed set-up, allowing for independent, parallel model structures, representing the contrasting nested catchments. Although calibration performance increased

  15. Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.

    PubMed

    Gür, Y

    2014-12-01

    The purpose of the study presented here was to investigate the manufacturability of human anatomical models from Computed Tomography (CT) scan data via a 3D desktop printer which uses fused deposition modelling (FDM) technology. First, Digital Imaging and Communications in Medicine (DICOM) CT scan data were converted to 3D Standard Triangle Language (STL) format by using In Vaselius digital imaging program. Once this STL file is obtained, a 3D physical version of the anatomical model can be fabricated by a desktop 3D FDM printer. As a case study, a patient's skull CT scan data was considered, and a tangible version of the skull was manufactured by a 3D FDM desktop printer. During the 3D printing process, the skull was built using acrylonitrile-butadiene-styrene (ABS) co-polymer plastic. The printed model showed that the 3D FDM printing technology is able to fabricate anatomical models with high accuracy. As a result, the skull model can be used for preoperative surgical planning, medical training activities, implant design and simulation to show the potential of the FDM technology in medical field. It will also improve communication between medical stuff and patients. Current result indicates that a 3D desktop printer which uses FDM technology can be used to obtain accurate anatomical models. PMID:26336695

  16. Homoclinic Spike adding in a neuronal model in the presence of noise

    NASA Astrophysics Data System (ADS)

    Fuwape, Ibiyinka; Neiman, Alexander; Shilnikov, Andrey

    2008-03-01

    We study the influence of noise on a spike adding transitions within the bursting activity in a Hodgkin-Huxley-type model of the leech heart interneuron. Spike adding in this model occur via homoclinic bifurcation of a saddle periodic orbit. Although narrow chaotic regions are observed near bifurcation transition, overall bursting dynamics is regular and is characterized by a constant number of spikes per burst. Experimental studies, however, show variability of bursting patterns whereby number of spikes per burst varies randomly. Thus, introduction of external synaptic noise is a necessary step to account for variability of burst durations observed experimentally. We show that near every such transition the neuron is highly sensitive to random perturbations that lead to and enhance broadly the regions of chaotic dynamics of the cell. For each spike adding transition there is a critical noise level beyond which the dynamics of the neuron becomes chaotic throughout the entire region of the given transition. Noise-induced chaotic dynamics is characterized in terms of the Lyapunov exponents and the Shannon entropy and reflects variability of firing patterns with various numbers of spikes per burst, traversing wide range of the neuron's parameters

  17. Addition of Diffusion Model to MELCOR and Comparison with Data

    SciTech Connect

    Brad Merrill; Richard Moore; Chang Oh

    2004-06-01

    A chemical diffusion model was incorporated into the thermal-hydraulics package of the MELCOR Severe Accident code (Reference 1) for analyzing air ingress events for a very high temperature gas-cooled reactor.

  18. Modelling dissimilarity: generalizing ultrametric and additive tree representations.

    PubMed

    Hubert, L; Arabie, P; Meulman, J

    2001-05-01

    Methods for the hierarchical clustering of an object set produce a sequence of nested partitions such that object classes within each successive partition are constructed from the union of object classes present at the previous level. Any such sequence of nested partitions can in turn be characterized by an ultrametric. An approach to generalizing an (ultrametric) representation is proposed in which the nested character of the partition sequence is relaxed and replaced by the weaker requirement that the classes within each partition contain objects consecutive with respect to a fixed ordering of the objects. A method for fitting such a structure to a given proximity matrix is discussed, along with several alternative strategies for graphical representation. Using this same ultrametric extension, additive tree representations can also be generalized by replacing the ultrametric component in the decomposition of an additive tree (into an ultrametric and a centroid metric). A common numerical illustration is developed and maintained throughout the paper. PMID:11393895

  19. Applications of the predictability of the Coherent Noise Model to aftershock sequences

    NASA Astrophysics Data System (ADS)

    Christopoulos, Stavros-Richard; Sarlis, Nicholas

    2014-05-01

    A study [1] of the coherent noise model [2-4] in natural time [5-7] has shown that it exhibits predictability. Interestingly, one of the predictors suggested [1] for the coherent noise model can be generalized and applied to the case of (real) aftershock sequences. The results obtained [8] so far are beyond chance. Here, we apply this approach to several aftershock sequences of strong earthquakes with magnitudes Mw ≥6.9 in Indonesia, California and Greece, including the Mw9.2 earthquake that occurred on 26 December 2004 in Sumatra. References. [1] N. V. Sarlis and S.-R. G. Christopoulos, Predictability of the coherent-noise model and its applications, Physical Review E, 85, 051136, 2012. [2] M.E.J. Newman, Self-organized criticality, evolution and the fossil extinction record, Proc. R. Soc. London B, 263, 1605-1610, 1996. [3] M. E. J. Newman and K. Sneppen, Avalanches, scaling, and coherent noise, Phys. Rev. E, 54, 6226-6231, 1996. [4] K. Sneppen and M. Newman, Coherent noise, scale invariance and intermittency in large systems, Physica D, 110, 209 - 222. [5] P. Varotsos, N. Sarlis, and E. Skordas, Spatiotemporal complexity aspects on the interrelation between Seismic Electric Signals and seismicity, Practica of Athens Academy, 76, 294-321, 2001. [6] P.A. Varotsos, N.V. Sarlis, and E.S. Skordas, Long-range correlations in the electric signals that precede rupture, Phys. Rev. E, 66, 011902, 2002. [7] Varotsos P. A., Sarlis N. V. and Skordas E. S., Natural Time Analysis: The new view of time. Precursory Seismic Electric Signals, Earthquakes and other Complex Time-Series (Springer-Verlag, Berlin Heidelberg) 2011. [8] N. V. Sarlis and S.-R. G. Christopoulos, "Visualization of the significance of Receiver Operating Characteristics based on confidence ellipses", Computer Physics Communications, http://dx.doi.org/10.1016/j.cpc.2013.12.009

  20. Additional Research Needs to Support the GENII Biosphere Models

    SciTech Connect

    Napier, Bruce A.; Snyder, Sandra F.; Arimescu, Carmen

    2013-11-30

    In the course of evaluating the current parameter needs for the GENII Version 2 code (Snyder et al. 2013), areas of possible improvement for both the data and the underlying models have been identified. As the data review was implemented, PNNL staff identified areas where the models can be improved both to accommodate the locally significant pathways identified and also to incorporate newer models. The areas are general data needs for the existing models and improved formulations for the pathway models. It is recommended that priorities be set by NRC staff to guide selection of the most useful improvements in a cost-effective manner. Suggestions are made based on relatively easy and inexpensive changes, and longer-term more costly studies. In the short term, there are several improved model formulations that could be applied to the GENII suite of codes to make them more generally useful. • Implementation of the separation of the translocation and weathering processes • Implementation of an improved model for carbon-14 from non-atmospheric sources • Implementation of radon exposure pathways models • Development of a KML processor for the output report generator module data that are calculated on a grid that could be superimposed upon digital maps for easier presentation and display • Implementation of marine mammal models (manatees, seals, walrus, whales, etc.). Data needs in the longer term require extensive (and potentially expensive) research. Before picking any one radionuclide or food type, NRC staff should perform an in-house review of current and anticipated environmental analyses to select “dominant” radionuclides of interest to allow setting of cost-effective priorities for radionuclide- and pathway-specific research. These include • soil-to-plant uptake studies for oranges and other citrus fruits, and • Development of models for evaluation of radionuclide concentration in highly-processed foods such as oils and sugars. Finally, renewed

  1. Nonlinear statistical reconstruction for flat-panel cone-beam CT with blur and correlated noise models

    NASA Astrophysics Data System (ADS)

    Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster

    2016-03-01

    Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications.

  2. Nonlinear Statistical Reconstruction for Flat-Panel Cone-Beam CT with Blur and Correlated Noise Models

    PubMed Central

    Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster

    2016-01-01

    Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications. PMID:27110051

  3. Weberized Mumford-Shah Model with Bose-Einstein Photon Noise

    SciTech Connect

    Shen Jianhong Jung, Yoon-Mo

    2006-05-15

    Human vision works equally well in a large dynamic range of light intensities, from only a few photons to typical midday sunlight. Contributing to such remarkable flexibility is a famous law in perceptual (both visual and aural) psychology and psychophysics known as Weber's Law. The current paper develops a new segmentation model based on the integration of Weber's Law and the celebrated Mumford-Shah segmentation model (Comm. Pure Appl. Math., vol. 42, pp. 577-685, 1989). Explained in detail are issues concerning why the classical Mumford-Shah model lacks light adaptivity, and why its 'weberized' version can more faithfully reflect human vision's superior segmentation capability in a variety of illuminance conditions from dawn to dusk. It is also argued that the popular Gaussian noise model is physically inappropriate for the weberization procedure. As a result, the intrinsic thermal noise of photon ensembles is introduced based on Bose and Einstein's distributions in quantum statistics, which turns out to be compatible with weberization both analytically and computationally. The current paper focuses on both the theory and computation of the weberized Mumford-Shah model with Bose-Einstein noise. In particular, Ambrosio-Tortorelli's {gamma}-convergence approximation theory is adapted (Boll. Un. Mat. Ital. B, vol. 6, pp. 105-123, 1992), and stable numerical algorithms are developed for the associated pair ofnonlinear Euler-Lagrange PDEs.

  4. Martian Ambient Seismic Noise: from the first modeling to the future data of the InSight Seismic experiment.

    NASA Astrophysics Data System (ADS)

    Lognonne, P. H.; Banerdt, W. B.; Mimoun, D.; Kobayashi, N.; Panning, M. P.; Pike, W. T.; Giardini, D.; Christensen, U. R.; Nishikawa, Y.; Murdoch, N.; Kawamura, T.; Kedar, S.; Spiga, A.

    2014-12-01

    The InSight NASA Discovery mission is expected to deploy a 3 axis VBB and a 3 axis SP seismometer on Mars by late september 2016. This seismic station will explore the Martian ambient noise, in addition to more classical science goals related to the detection of Marsquakes, Meteoritic Impacts and Tides. Mars, in contrast with the Earth (with both atmosphere and ocean) and the Moon (with no atmosphere nor ocean) is expected to have ambient noise only related to its atmosphere. Mars seismic data are therefore expecting to reveal the atmospheric coupling for a different atmospheric dynamics than Earth, especially in the 0.1-1 Hz bandwidth, dominated by oceanic microseisms on Earth. We rapidly present the expected performances of the SEIS experiment onboard InSight. This experiment is based on two 3 axis seismometers, one covering the tide and low seismic frequencies (up to 10 Hz) and a second one covering the high frequencies (from 0.1 Hz to 50 Hz). Both sensors are mounted on a sensors plateform, deployed by a robotic arm 1-2 meters from the lander and covered by thermal protection and a wind protection. The expected performances indicates that signal as low as 10**(-9) m/s**2/Hz**(1/2) will be detected in the 0.005-2 Hz bandwidth. We then focus on the modeling of this ambient atmospheric noise.This modeling has been done not only from constraints gathered by the atmospheric sensors of previous Mars missions (e.g. Viking and Pathfinder) but also by numerical modeling of the atmospheric perturbations, both at global scale and mesoscale. Theoretical estimation of the ambient noise has then been obtained for the pressure-correlated surface loading and the stochastic excitation of surface waves, at both long and very long period (e.g. Mars hum) and at medium or short period (e.g. regional and local generated surface waves). Results shows that most of these source of ambient noise will be detected, likely during the day for those generated locally and possibly during the

  5. Performance analysis of precoding-based asymmetrically clipped optical orthogonal frequency division multiplexing wireless system in additive white Gaussian noise and indoor multipath channel

    NASA Astrophysics Data System (ADS)

    Ranjha, Bilal; Zhou, Zhou; Kavehrad, Mohsen

    2014-08-01

    We have compared the bit error rate (BER) performance of precoding-based asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) and pulse amplitude modulated discrete multitone (PAM-DMT) optical wireless (OW) systems in additive white Gaussian noise (AWGN) and indoor multipath frequency selective channel. Simulation and analytical results show that precoding schemes such as discrete Fourier transform, discrete cosine transform, and Zadoff-Chu sequences do not affect the performance of the OW systems in the AWGN channel while they do reduce the peak-to-average power ratio (PAPR) of the OFDM output signal. However, in a multipath indoor channel, using zero forcing frequency domain equalization precoding-based systems give better BER performance than their conventional counterparts. With additional clipping to further reduce the PAPR, precoding-based systems also show better BER performance compared to nonprecoded systems when clipped relative to the peak of nonprecoded systems. Therefore, precoding-based ACO-OFDM and PAM-DMT systems offer better BER performance, zero signaling overhead, and low PAPR compared to conventional systems.

  6. Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons.

    PubMed

    Goldwyn, Joshua H; Imennov, Nikita S; Famulare, Michael; Shea-Brown, Eric

    2011-04-01

    The random transitions of ion channels between conducting and nonconducting states generate a source of internal fluctuations in a neuron, known as channel noise. The standard method for modeling the states of ion channels nonlinearly couples continuous-time Markov chains to a differential equation for voltage. Beginning with the work of R. F. Fox and Y.-N. Lu [Phys. Rev. E 49, 3421 (1994)], there have been attempts to generate simpler models that use stochastic differential equation (SDEs) to approximate the stochastic spiking activity produced by Markov chain models. Recent numerical investigations, however, have raised doubts that SDE models can capture the stochastic dynamics of Markov chain models.We analyze three SDE models that have been proposed as approximations to the Markov chain model: one that describes the states of the ion channels and two that describe the states of the ion channel subunits. We show that the former channel-based approach can capture the distribution of channel noise and its effects on spiking in a Hodgkin-Huxley neuron model to a degree not previously demonstrated, but the latter two subunit-based approaches cannot. Our analysis provides intuitive and mathematical explanations for why this is the case. The temporal correlation in the channel noise is determined by the combinatorics of bundling subunits into channels, but the subunit-based approaches do not correctly account for this structure. Our study confirms and elucidates the findings of previous numerical investigations of subunit-based SDE models. Moreover, it presents evidence that Markov chain models of the nonlinear, stochastic dynamics of neural membranes can be accurately approximated by SDEs. This finding opens a door to future modeling work using SDE techniques to further illuminate the effects of ion channel fluctuations on electrically active cells. PMID:21599202

  7. Concentration Addition, Independent Action and Generalized Concentration Addition Models for Mixture Effect Prediction of Sex Hormone Synthesis In Vitro

    PubMed Central

    Hadrup, Niels; Taxvig, Camilla; Pedersen, Mikael; Nellemann, Christine; Hass, Ulla; Vinggaard, Anne Marie

    2013-01-01

    Humans are concomitantly exposed to numerous chemicals. An infinite number of combinations and doses thereof can be imagined. For toxicological risk assessment the mathematical prediction of mixture effects, using knowledge on single chemicals, is therefore desirable. We investigated pros and cons of the concentration addition (CA), independent action (IA) and generalized concentration addition (GCA) models. First we measured effects of single chemicals and mixtures thereof on steroid synthesis in H295R cells. Then single chemical data were applied to the models; predictions of mixture effects were calculated and compared to the experimental mixture data. Mixture 1 contained environmental chemicals adjusted in ratio according to human exposure levels. Mixture 2 was a potency adjusted mixture containing five pesticides. Prediction of testosterone effects coincided with the experimental Mixture 1 data. In contrast, antagonism was observed for effects of Mixture 2 on this hormone. The mixtures contained chemicals exerting only limited maximal effects. This hampered prediction by the CA and IA models, whereas the GCA model could be used to predict a full dose response curve. Regarding effects on progesterone and estradiol, some chemicals were having stimulatory effects whereas others had inhibitory effects. The three models were not applicable in this situation and no predictions could be performed. Finally, the expected contributions of single chemicals to the mixture effects were calculated. Prochloraz was the predominant but not sole driver of the mixtures, suggesting that one chemical alone was not responsible for the mixture effects. In conclusion, the GCA model seemed to be superior to the CA and IA models for the prediction of testosterone effects. A situation with chemicals exerting opposing effects, for which the models could not be applied, was identified. In addition, the data indicate that in non-potency adjusted mixtures the effects cannot always be

  8. Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling to Generate Diverse Collective Behaviors.

    PubMed

    Ren, Jiaping; Wang, Xinjie; Jin, Xiaogang; Manocha, Dinesh

    2016-01-01

    We present a biologically plausible dynamics model to simulate swarms of flying insects. Our formulation, which is based on biological conclusions and experimental observations, is designed to simulate large insect swarms of varying densities. We use a force-based model that captures different interactions between the insects and the environment and computes collision-free trajectories for each individual insect. Furthermore, we model the noise as a constructive force at the collective level and present a technique to generate noise-induced insect movements in a large swarm that are similar to those observed in real-world trajectories. We use a data-driven formulation that is based on pre-recorded insect trajectories. We also present a novel evaluation metric and a statistical validation approach that takes into account various characteristics of insect motions. In practice, the combination of Curl noise function with our dynamics model is used to generate realistic swarm simulations and emergent behaviors. We highlight its performance for simulating large flying swarms of midges, fruit fly, locusts and moths and demonstrate many collective behaviors, including aggregation, migration, phase transition, and escape responses. PMID:27187068

  9. Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling to Generate Diverse Collective Behaviors

    PubMed Central

    Ren, Jiaping; Wang, Xinjie; Manocha, Dinesh

    2016-01-01

    We present a biologically plausible dynamics model to simulate swarms of flying insects. Our formulation, which is based on biological conclusions and experimental observations, is designed to simulate large insect swarms of varying densities. We use a force-based model that captures different interactions between the insects and the environment and computes collision-free trajectories for each individual insect. Furthermore, we model the noise as a constructive force at the collective level and present a technique to generate noise-induced insect movements in a large swarm that are similar to those observed in real-world trajectories. We use a data-driven formulation that is based on pre-recorded insect trajectories. We also present a novel evaluation metric and a statistical validation approach that takes into account various characteristics of insect motions. In practice, the combination of Curl noise function with our dynamics model is used to generate realistic swarm simulations and emergent behaviors. We highlight its performance for simulating large flying swarms of midges, fruit fly, locusts and moths and demonstrate many collective behaviors, including aggregation, migration, phase transition, and escape responses. PMID:27187068

  10. Modeling the impact of solid noise barriers on near road air quality

    NASA Astrophysics Data System (ADS)

    Venkatram, Akula; Isakov, Vlad; Deshmukh, Parikshit; Baldauf, Richard

    2016-09-01

    Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutant concentrations as much as 80% next to the barrier relative to an open area under unstable meteorological conditions, which corresponds to typical daytime conditions when residents living or children going to school near roadways are most likely to be exposed to traffic emissions. The data from this tracer gas study and a wind tunnel simulation were used to develop a model to describe dispersion of traffic emissions near a highway in the presence of a solid noise barrier. The model is used to interpret real-world data collected during a field study conducted in a complex urban environment next to a large highway in Phoenix, Arizona, USA. We show that the analysis of the data with the model yields useful information on the emission factors and the mitigation impact of the barrier on near-road air quality. The estimated emission factors for the four species, ultrafine particles, CO, NO2, and black carbon, are consistent with data cited in the literature. The results suggest that the model accounted for reductions in pollutant concentrations from a 4.5 m high noise barrier, ranging from 40% next to the barrier to 10% at 300 m from the barrier.

  11. The addition of algebraic turbulence modeling to program LAURA

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. Mcneil; Thompson, R. A.

    1993-01-01

    The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is modified to allow the calculation of turbulent flows. This is accomplished using the Cebeci-Smith and Baldwin-Lomax eddy-viscosity models in conjunction with the thin-layer Navier-Stokes options of the program. Turbulent calculations can be performed for both perfect-gas and equilibrium flows. However, a requirement of the models is that the flow be attached. It is seen that for slender bodies, adequate resolution of the boundary-layer gradients may require more cells in the normal direction than a laminar solution, even when grid stretching is employed. Results for axisymmetric and three-dimensional flows are presented. Comparison with experimental data and other numerical results reveal generally good agreement, except in the regions of detached flow.

  12. Simultaneous bilateral laser therapy accelerates recovery after noise-induced hearing loss in a rat model

    PubMed Central

    Lee, Jae-Hun; Chang, So-Young; Moy, Wesley J.; Oh, Connie; Kim, Se-Hyung; Rhee, Chung-Ku; Ahn, Jin-Chul; Chung, Phil-Sang; Jung, Jae Yun

    2016-01-01

    Noise-induced hearing loss is a common type of hearing loss. The effects of laser therapy have been investigated from various perspectives, including in wound healing, inflammation reduction, and nerve regeneration, as well as in hearing research. A promising feature of the laser is its capability to penetrate soft tissue; depending on the wavelength, laser energy can penetrate into the deepest part of the body without damaging non-target soft tissues. Based on this idea, we developed bilateral transtympanic laser therapy, which uses simultaneous laser irradiation in both ears, and evaluated the effects of bilateral laser therapy on cochlear damage caused by noise overexposure. Thus, the purpose of this research was to assess the benefits of simultaneous bilateral laser therapy compared with unilateral laser therapy and a control. Eighteen Sprague-Dawley rats were exposed to narrow-band noise at 115 dB SPL for 6 h. Multiple auditory brainstem responses were measured after each laser irradiation, and cochlear hair cells were counted after the 15th such irradiation. The penetration depth of the 808 nm laser was also measured after sacrifice. Approximately 5% of the laser energy reached the contralateral cochlea. Both bilateral and unilateral laser therapy decreased the hearing threshold after noise overstimulation in the rat model. The bilateral laser therapy group showed faster functional recovery at all tested frequencies compared with the unilateral laser therapy group. However, there was no difference in the endpoint ABR results or final hair cell survival, which was analyzed histologically. PMID:27547558

  13. Statistical methods for efficient design of community surveys of response to noise: Random coefficients regression models

    NASA Technical Reports Server (NTRS)

    Tomberlin, T. J.

    1985-01-01

    Research studies of residents' responses to noise consist of interviews with samples of individuals who are drawn from a number of different compact study areas. The statistical techniques developed provide a basis for those sample design decisions. These techniques are suitable for a wide range of sample survey applications. A sample may consist of a random sample of residents selected from a sample of compact study areas, or in a more complex design, of a sample of residents selected from a sample of larger areas (e.g., cities). The techniques may be applied to estimates of the effects on annoyance of noise level, numbers of noise events, the time-of-day of the events, ambient noise levels, or other factors. Methods are provided for determining, in advance, how accurately these effects can be estimated for different sample sizes and study designs. Using a simple cost function, they also provide for optimum allocation of the sample across the stages of the design for estimating these effects. These techniques are developed via a regression model in which the regression coefficients are assumed to be random, with components of variance associated with the various stages of a multi-stage sample design.

  14. Simultaneous bilateral laser therapy accelerates recovery after noise-induced hearing loss in a rat model.

    PubMed

    Lee, Jae-Hun; Chang, So-Young; Moy, Wesley J; Oh, Connie; Kim, Se-Hyung; Rhee, Chung-Ku; Ahn, Jin-Chul; Chung, Phil-Sang; Jung, Jae Yun; Lee, Min Young

    2016-01-01

    Noise-induced hearing loss is a common type of hearing loss. The effects of laser therapy have been investigated from various perspectives, including in wound healing, inflammation reduction, and nerve regeneration, as well as in hearing research. A promising feature of the laser is its capability to penetrate soft tissue; depending on the wavelength, laser energy can penetrate into the deepest part of the body without damaging non-target soft tissues. Based on this idea, we developed bilateral transtympanic laser therapy, which uses simultaneous laser irradiation in both ears, and evaluated the effects of bilateral laser therapy on cochlear damage caused by noise overexposure. Thus, the purpose of this research was to assess the benefits of simultaneous bilateral laser therapy compared with unilateral laser therapy and a control. Eighteen Sprague-Dawley rats were exposed to narrow-band noise at 115 dB SPL for 6 h. Multiple auditory brainstem responses were measured after each laser irradiation, and cochlear hair cells were counted after the 15th such irradiation. The penetration depth of the 808 nm laser was also measured after sacrifice. Approximately 5% of the laser energy reached the contralateral cochlea. Both bilateral and unilateral laser therapy decreased the hearing threshold after noise overstimulation in the rat model. The bilateral laser therapy group showed faster functional recovery at all tested frequencies compared with the unilateral laser therapy group. However, there was no difference in the endpoint ABR results or final hair cell survival, which was analyzed histologically. PMID:27547558

  15. Vortex Noise Reductions from a Flexible Fiber Model of Owl Down

    NASA Astrophysics Data System (ADS)

    Jaworski, Justin; Peake, Nigel

    2013-11-01

    Many species of owl rely on specialized plumage to reduce their self-noise levels and enable hunting in acoustic stealth. In contrast to the leading-edge comb and compliant trailing-edge fringe attributes of owls, the aeroacoustic impact of the fluffy down material on the upper wing surface remains largely speculative as a means to eliminate aerodynamic noise across a broad range of frequencies. The down is presently idealized as a collection of independent and rigid fibers, which emerge perpendicularly from a rigid plane and are allowed to rotate under elastic restraint. Noise generation from an isolated fiber is effected by its interaction with a point vortex, whose motion is induced by the presence of the rigid half-plane and the elastically-restrained fiber. Numerical evaluations of the vortex path and acoustic signature furnish a comparison with known analytical results for stationary fibers, and results from this primitive model seek to address how aerodynamic noise could be mitigated by flexible fibers.

  16. A p-Adic model for the process of thinking disturbed by physiological and information noise.

    PubMed

    Dubischar, D; Gundlach, V M; Steinkamp, O; Khrennikov, A

    1999-04-21

    We develop a model of the process of thinking in the presence of noise (which is produced by the simultaneous action of a huge number of neurons in the brain as well as by external information and internal cognitive processes). Our model is based on Freud's idea on the splitting of cognitive processes into two (closely connected) domains: consciousness and subconsciousness. We represent the process of thinking as a random dynamical process in a space of ideas endowed with a non-Euclidean geometry (which differs extremely from the ordinary Euclidean geometry of spatial location of neurons in the brain). The so-called p-adic geometry on a space of ideas describes the ability of cognitive systems to form associations. We show that random dynamical thinking systems on a p -adic space of ideas still generate only deterministic ideas. We also study positive and negative effects of noise (in particular, creativeness and stress). PMID:10196089

  17. Model and observations of Schottky-noise suppression in a cold heavy-ion beam.

    PubMed

    Danared, H; Källberg, A; Rensfelt, K-G; Simonsson, A

    2002-04-29

    Some years ago it was found at GSI in Darmstadt that the momentum spread of electron-cooled beams of highly charged ions dropped abruptly to very low values when the particle number decreased to 10 000 or less. This has been interpreted as an ordering of the ions, such that they line up after one another in the ring. We report observations of similar transitions at CRYRING, including an accompanying drop in Schottky-noise power. We also introduce a model of the ordered beam from which the Schottky-noise power can be calculated numerically. The good agreement between the model calculation and the experimental data is seen as evidence for a spatial ordering of the ions. PMID:12005764

  18. Signal-to-noise ratio for temporal integrated drifting images: a model for perceived image sharpening.

    PubMed

    Power, G J; Sturtz, K E

    2000-12-10

    A formulation of signal-to-noise ratio is constructed that uses temporal integrated images from image sequences. Given a blurred image that drifts horizontally at various speeds and at various linear blurs, we prove that this formulation of the signal-to-noise ratio consistently increases with an increase in speed. This increase is shown to model the trends in the human vision system by which drifting blurred images are perceived with increased sharpness. The existing widely used objective quality techniques fail to model the perceptual increase in sharpness. This new formulation, along with other objective quality measures, is tested on several blurred drifting image sequences. The new formulation reflects the theoretically predicted increase in perceived sharpness. PMID:18354675

  19. Waveform modeling and inversion of ambient noise cross-correlation functions in a coastal ocean environment.

    PubMed

    Zang, Xiaoqin; Brown, Michael G; Godin, Oleg A

    2015-09-01

    Theoretical studies have shown that cross-correlation functions (CFs) of time series of ambient noise measured at two locations yield approximations to the Green's functions (GFs) that describe propagation between those locations. Specifically, CFs are estimates of weighted GFs. In this paper, it is demonstrated that measured CFs in the 20-70 Hz band can be accurately modeled as weighted GFs using ambient noise data collected in the Florida Straits at ∼100 m depth with horizontal separations of 5 and 10 km. Two weighting functions are employed. These account for (1) the dipole radiation pattern produced by a near-surface source, and (2) coherence loss of surface-reflecting energy in time-averaged CFs resulting from tidal fluctuations. After describing the relationship between CFs and GFs, the inverse problem is considered and is shown to result in an environmental model for which agreement between computed and simulated CFs is good. PMID:26428771

  20. Effect of a Simulated Analogue Telephone Channel on the Performance of a Remote Automatic System for the Detection of Pathologies in Voice: Impact of Linear Distortions on Cepstrum-Based Assessment - Band Limitation, Frequency Response and Additive Noise

    NASA Astrophysics Data System (ADS)

    Fraile, Rubén; Sáenz-Lechón, Nicolás; Godino-Llorente, Juan Ignacio; Osma-Ruiz, Víctor; Fredouille, Corinne

    Advances in speech signal analysis during the last decade have allowed the development of automatic algorithms for a non-invasive detection of laryngeal pathologies. Performance assessment of such techniques reveals that classification success rates over 90 % are achievable. Bearing in mind the extension of these automatic methods to remote diagnosis scenarios, this paper analyses the performance of a pathology detector based on Mel Frequency Cepstral Coefficients when the speech signal has undergone the distortion of an analogue communications channel, namely the phone channel. Such channel is modeled as a concatenation of linear effects. It is shown that while the overall performance of the system is degraded, success rates in the range of 80% can still be achieved. This study also shows that the performance degradation is mainly due to band limitation and noise addition.

  1. Characterization of Flap Edge Noise Radiation from a High-Fidelity Airframe Model

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Khorrami, Mehdi R.; Lockhard, David P.; Neuhart, Dan H.; Bahr, Christopher J.

    2015-01-01

    The results of an experimental study of the noise generated by a baseline high-fidelity airframe model are presented. The test campaign was conducted in the open-jet test section of the NASA Langley 14- by 22-foot Subsonic Tunnel on an 18%-scale, semi-span Gulfstream airframe model incorporating a trailing edge flap and main landing gear. Unsteady surface pressure measurements were obtained from a series of sensors positioned along the two flap edges, and far field acoustic measurements were obtained using a 97-microphone phased array that viewed the pressure side of the airframe. The DAMAS array deconvolution method was employed to determine the locations and strengths of relevant noise sources in the vicinity of the flap edges and the landing gear. A Coherent Output Power (COP) spectral method was used to couple the unsteady surface pressures measured along the flap edges with the phased array output. The results indicate that outboard flap edge noise is dominated by the flap bulb seal cavity with very strong COP coherence over an approximate model-scale frequency range of 1 to 5 kHz observed between the array output and those unsteady pressure sensors nearest the aft end of the cavity. An examination of experimental COP spectra for the inboard flap proved inconclusive, most likely due to a combination of coherence loss caused by decorrelation of acoustic waves propagating through the thick wind tunnel shear layer and contamination of the spectra by tunnel background noise at lower frequencies. Directivity measurements obtained from integration of DAMAS pressure-squared values over defined geometric zones around the model show that the baseline flap and landing gear are only moderately directional as a function of polar emission angle.

  2. Active noise control - Piezoceramic actuators in fluid/structure interaction models

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Fang, W.; Smith, R. C.

    1991-01-01

    A model for a 2-D acoustic cavity with a flexible boundary (a beam) controlled via piezoceramic patches producing bending moments in the beam is considered. The associated control problem for this fluid/structure interaction system to reduce the acoustic pressure in the cavity involves unbounded control inputs. Approximation methods in the context of an LQR state space formulation are discussed, and numerical results are presented to demonstrate the effectiveness of this approach in computing feedback controls for noise reduction.

  3. Multichannel ECG and Noise Modeling: Application to Maternal and Fetal ECG Signals

    NASA Astrophysics Data System (ADS)

    Sameni, Reza; Clifford, Gari D.; Jutten, Christian; Shamsollahi, Mohammad B.

    2007-12-01

    A three-dimensional dynamic model of the electrical activity of the heart is presented. The model is based on the single dipole model of the heart and is later related to the body surface potentials through a linear model which accounts for the temporal movements and rotations of the cardiac dipole, together with a realistic ECG noise model. The proposed model is also generalized to maternal and fetal ECG mixtures recorded from the abdomen of pregnant women in single and multiple pregnancies. The applicability of the model for the evaluation of signal processing algorithms is illustrated using independent component analysis. Considering the difficulties and limitations of recording long-term ECG data, especially from pregnant women, the model described in this paper may serve as an effective means of simulation and analysis of a wide range of ECGs, including adults and fetuses.

  4. Narrow band noise as a model of time-dependent accelerations - Study of the stability of a fluid surface in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Casademunt, Jaume; Zhang, Wenbin; Vinals, Jorge; Sekerka, Robert F.

    1993-01-01

    We introduce a stochastic model to analyze in quantitative detail the effect of the high frequency components of the residual accelerations onboard spacecraft (often called g-jitter) on fluid motion. The residual acceleration field is modeled as a narrow band noise characterized by three independent parameters: its intensity G squared, a dominant frequency Omega, and a characteristic spectral width tau exp -1. The white noise limit corresponds to Omega tau goes to O, with G squared tau finite, and the limit of a periodic g-jitter (or deterministic limit) can be recovered for Omega tau goes to infinity, G squared finite. The analysis of the response of a fluid surface subjected to a fluctuating gravitational field leads to the stochastic Mathieu equation driven by both additive and multiplicative noise. We discuss the stability of the solutions of this equation in the two limits of white noise and deterministic forcing, and in the general case of narrow band noise. The results are then applied to typical microgravity conditions.

  5. Calculation of signal-to-noise ratio (SNR) of infrared detection system based on MODTRAN model

    NASA Astrophysics Data System (ADS)

    Lu, Xue; Li, Chuang; Fan, Xuewu

    2013-09-01

    Signal-to-noise ratio (SNR) is an important parameter of infrared detection system. SNR of infrared detection system is determined by the target infrared radiation, atmospheric transmittance, background infrared radiation and the detector noise. The infrared radiation flux in the atmosphere is determined by the selective absorption of the gas molecules, the atmospheric environment, and the transmission distance of the radiation, etc, so the atmospheric transmittance and infrared radiance flux are intricate parameters. A radiometric model for the calculation of SNR of infrared detection system is developed and used to evaluate the effects of various parameters on signal-to-noise ratio (SNR). An atmospheric modeling tool, MODTRAN, is used to model wavelength-dependent atmospheric transmission and sky background radiance. Then a new expression of SNR is deduced. Instead of using constants such as average atmospheric transmission and average wavelength in traditional method, it uses discrete values for atmospheric transmission and sky background radiance. The integrals in general expression of SNR are converted to summations. The accuracy of SNR obtained from the new method can be improved. By adopting atmospheric condition of the 1976 US standard, no clouds urban aerosols, fall-winter aerosol profiles, the typical spectrum characters of sky background radiance and transmittance are computed by MODTRON. Then the operating ranges corresponding to the threshold quantity of SNR are calculated with the new method. The calculated operating ranges are more close to the measured operating range than those calculated with the traditional method.

  6. q-exponential relaxation of the expected avalanche size in the coherent noise model

    NASA Astrophysics Data System (ADS)

    Christopoulos, S.-R. G.; Sarlis, N. V.

    2014-08-01

    Recently (Sarlis and Christopoulos (2012)) the threshold distribution function pthres(k)(x) of the coherent noise model for infinite number of agents after the k-th avalanche has been studied as a function of k, and hence natural time. An analytic expression of the expectation value E(S) for the size S of the next avalanche has been obtained in the case that the coherent stresses are exponentially distributed with an average value σ. Here, by using a statistical ensemble of initially identical systems, we investigate the relaxation of the average versus k. For k values smaller than k(σ,f), the numerical results indicate that collapses to the q-exponential (Tsallis (1988)) as a function of k. For larger k values, the ensemble average can be effectively described by the time average threshold distribution function obtained by Newman and Sneppen (1996). An estimate k0(σ,f)(>k(σ,f)) of this transition is provided. This ensemble of coherent noise models may be considered as a simple prototype following q-exponential relaxation. The resulting q-values are compatible with those reported in the literature for the coherent noise model.

  7. Software reliability: Additional investigations into modeling with replicated experiments

    NASA Technical Reports Server (NTRS)

    Nagel, P. M.; Schotz, F. M.; Skirvan, J. A.

    1984-01-01

    The effects of programmer experience level, different program usage distributions, and programming languages are explored. All these factors affect performance, and some tentative relational hypotheses are presented. An analytic framework for replicated and non-replicated (traditional) software experiments is presented. A method of obtaining an upper bound on the error rate of the next error is proposed. The method was validated empirically by comparing forecasts with actual data. In all 14 cases the bound exceeded the observed parameter, albeit somewhat conservatively. Two other forecasting methods are proposed and compared to observed results. Although demonstrated relative to this framework that stages are neither independent nor exponentially distributed, empirical estimates show that the exponential assumption is nearly valid for all but the extreme tails of the distribution. Except for the dependence in the stage probabilities, Cox's model approximates to a degree what is being observed.

  8. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2016-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 90deg observation angle, the low-frequency noise could be as much as 10 dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite decorrelation region. Numerical predictions of the sound field, based on three-dimensional RANS solutions to determine the mean flow, turbulent kinetic energy and turbulence length and time scales, for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region in the turbulence spectrum increases the low-frequency algebraic decay (the low frequency "roll-off") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal

  9. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2015-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 900 observation angle, the low-frequency noise could be as much as 10dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite de-correlation region. Numerical predictions, based on three-dimensional RANS solutions for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region increases the low-frequency algebraic decay (the low frequency "rolloff") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal numbers less than 0.1. Secondly, the large-aspectratio theory is able to predict the low-frequency amplification due to the jet

  10. A model of the holographic principle: Randomness and additional dimension

    NASA Astrophysics Data System (ADS)

    Boyarsky, Abraham; Góra, Paweł; Proppe, Harald

    2010-01-01

    In recent years an idea has emerged that a system in a 3-dimensional space can be described from an information point of view by a system on its 2-dimensional boundary. This mysterious correspondence is called the Holographic Principle and has had profound effects in string theory and our perception of space-time. In this note we describe a purely mathematical model of the Holographic Principle using ideas from nonlinear dynamical systems theory. We show that a random map on the surface S of a 3-dimensional open ball B has a natural counterpart in B, and the two maps acting in different dimensional spaces have the same entropy. We can reverse this construction if we start with a special 3-dimensional map in B called a skew product. The key idea is to use the randomness, as imbedded in the parameter of the 2-dimensional random map, to define a third dimension. The main result shows that if we start with an arbitrary dynamical system in B with entropy E we can construct a random map on S whose entropy is arbitrarily close to E.

  11. Additional Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.

    2013-01-01

    NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM)

  12. Additional Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.; Gomez, Carlos

    2013-01-01

    NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.

  13. Measurements of plasma quasi-thermal noise on STEREO spacecraft and plasma temperature deduction using antenna electron shot noise model

    NASA Astrophysics Data System (ADS)

    Martinović, M.; Zaslavsky, A.; Maksimovic, M.; Zouganelis, Y.

    2014-12-01

    Quasi-thermal noise spectroscopy is very accurate technique for in situ measurements of electron density and temperature in space plasmas. This technique uses the voltage fluctuation spectrum, which is ubiquitous in interplanetary space, obtained by an electric antenna. It is independent of antenna orientation if velocity distribution function of plasma particles is considered to be isotropic. On STEREO/WAVES antennas electron shot noise spectrum dominates because of large antenna surface area, especially at lower frequencies. This feature of antennas disables simultaneous measurements of electron density and temperature. However, technique may work accurately in high-density filamentary structures, where Debye length is small. In this paper, it has been illustrated on magnetic clouds. Obtained results have been used to recalibrate the data of PLASTIC instrument. Further on, in unperturbed solar wind, electron shot noise has been used to infer electron temperature. Electron density data, necessary in data processing, has been estimated from recalibrated PLASTIC data. For this purpose, data of both STEREO A and STEREO B spacecraft have been processed by selecting only spectra from free solar wind.

  14. Noise Spectra and Directivity For a Scale-Model Landing Gear

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Brooks, Thomas F.

    2007-01-01

    An extensive experimental study has been conducted to acquire detailed noise spectra and directivity data for a high-fidelity, 6.3%-scale, Boeing 777 main landing gear. The measurements were conducted in the NASA Langley Quiet Flow Facility using a 41-microphone directional array system positioned at a range of polar and azimuthal observer angles with respect to the model. DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources) array processing as well as straightforward individual microphone processing were employed to compile unique flyover and sideline directivity databases for a range of freestream Mach numbers (0.11 - 0.17) covering typical approach conditions. Comprehensive corrections were applied to the test data to account for shear layer ray path and amplitude variations. This allowed proper beamforming at different measurement orientations, as well as directivity presentation in free-field emission coordinates. Four different configurations of the landing gear were tested: a baseline configuration with and without an attached side door, and a noise reduction concept "toboggan" truck fairing with and without side door. DAMAS noise source distributions were determined. Spectral analyses demonstrated that individual microphones could establish model spectra. This finding permitted the determination of unique, spatially-detailed directivity contours of spectral band levels over a hemispherical surface. Spectral scaling for the baseline model confirmed that the acoustic intensity scaled with the expected sixth-power of the Mach number. Finally, comparison of spectra and directivity between the baseline gear and the gear with an attached toboggan indicated that the toboggan fairing may be of some value in reducing gear noise over particular frequency ranges.

  15. A simple microstructure return model explaining microstructure noise and Epps effects

    NASA Astrophysics Data System (ADS)

    Saichev, A.; Sornette, D.

    2014-01-01

    We present a novel simple microstructure model of financial returns that combines (i) the well-known ARFIMA process applied to tick-by-tick returns, (ii) the bid-ask bounce effect, (iii) the fat tail structure of the distribution of returns and (iv) the non-Poissonian statistics of inter-trade intervals. This model allows us to explain both qualitatively and quantitatively important stylized facts observed in the statistics of both microstructure and macrostructure returns, including the short-ranged correlation of returns, the long-ranged correlations of absolute returns, the microstructure noise and Epps effects. According to the microstructure noise effect, volatility is a decreasing function of the time-scale used to estimate it. The Epps effect states that cross correlations between asset returns are increasing functions of the time-scale at which the returns are estimated. The microstructure noise is explained as the result of the negative return correlations inherent in the definition of the bid-ask bounce component (ii). In the presence of a genuine correlation between the returns of two assets, the Epps effect is due to an average statistical overlap of the momentum of the returns of the two assets defined over a finite time-scale in the presence of the long memory process (i).

  16. Validation of an interior noise prediction model for a composite cylinder

    NASA Technical Reports Server (NTRS)

    Beyer, Todd B.; Grosveld, Ferdinand W.

    1987-01-01

    An acoustic modal analysis has been performed in the cavity of a composite cylinder model of an aircraft fuselage. The filament wound, composite shell is 12 feet long and 5.5 feet in diameter. A one-half-in. thick plywood floor is attached to the shell 69 deg from the vertical centerline through the bottom of the shell. The acoustic modal frequencies were obtained from a sound pressure level and phase survey conducted throughout the interior volume bounded by the floor, endcaps and stiffened shell, while being excited by white noise from a loudspeaker source. The measured acoustic resonance frequencies and mode shapes compare well with analytical predictions from the Propeller Aircraft Interior Noise (PAIN) model. Details of the theory and derivation of the acoustic characteristics have been included. Reverberation time measurements, using the integrated impulse technique, have been performed to determine acoustic loss factors. These measured loss factors have been input to the PAIN program in order to more accurately predict the space-averaged interior noise of the composite cylinder.

  17. Noise reduction studies for the Cessna model 337 (0-2) airplane

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Connor, A. B.; Dingeldein, R. C.

    1975-01-01

    A study was undertaken to determine the noise reduction potential of the 0-2 airplane in order to reduce its aural detection distance. Static and flyover noise measurements were made to document the noise signature of the unmodified airplane. The results show that significant reductions in aural detection distance can be achieved by the combination of propeller geometry changes and the addition of engine exhaust mufflers. The best results were estimated for the aircraft equipped with a six-blade propeller operating at 3/4 engine speed in combination with a 3.49 cubic foot exhaust muffler installed on each engine. Detection distance for the modified aircraft is estimated to be reduced from about 4-1/4 miles to about 1-1/2 miles when the aircraft is operating at an altitude of 1,000 ft over grassy terrain. Reducing the altitude to 300 ft over a leafy jungle ground cover should reduce the aural detection distance to 0.9 miles. Reduced aural detection distances were also indicated for a modification utilizing a direct-drive six-blade propeller of reduced radius along with smaller exhaust mufflers.

  18. Transferability of regional permafrost disturbance susceptibility modelling using generalized linear and generalized additive models

    NASA Astrophysics Data System (ADS)

    Rudy, Ashley C. A.; Lamoureux, Scott F.; Treitz, Paul; van Ewijk, Karin Y.

    2016-07-01

    To effectively assess and mitigate risk of permafrost disturbance, disturbance-prone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape characteristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Peninsula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed locations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) > 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Additionally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results indicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of disturbances were

  19. ECG-based detection of body position changes using a Laplacian noise model.

    PubMed

    Mincholé, Ana; Sörnmo, Leif; Laguna, Pablo

    2011-01-01

    Body position changes (BPC), which are often manifested in the ECG as shifts in the electrical axis of the heart, result in ST changes, and thus, may be misclassified as ischemic events during ambulatory monitoring. We have developed a BPC detector by modeling shifts as changes in the Karhunen-Loève transform coefficients of the QRS complex and the ST-T waveform. The noise is assumed to have a Laplacian distribution. A generalized likelihood ratio test has been chosen as the strategy to detect BPCs. Two different databases have been used to assess detection performance. The obtained results were 93%/99% in terms of sensitivity/positive predictivity value (S/+PV) and a false alarm rate of 2 events/hour. The results clearly outperform current techniques (S/+PV: 85%/99%) based on the Gaussian noise assumption. PMID:22255932

  20. Behavioral responses of gray whales to industrial noise: feeding observations and predictive modeling

    SciTech Connect

    Malme, C.I.; Wuersig, B.; Bird, J.E.; Tyack, P.

    1986-08-01

    An investigation was made of the potential effects of underwater noise from petroleum-industry activities on feeding gray whales. The investigation consisted of two components, a field study and an acoustic model study. The field study was performed near Southeast Cape, St. Lawrence Island in August, 1985, using a 100 cu. in. air gun source and playback of drillship noise. Sound-source levels and acoustic-propagation losses were measured to permit estimation of sound exposure levels at whale-sighting positions. For the air-gun source there was a 0.5 probability that the whales would stop feeding and move away from the area when the average pulse levels reached 173 dB.