Random attractors for the stochastic coupled fractional Ginzburg-Landau equation with additive noise
Shu, Ji E-mail: 530282863@qq.com; Li, Ping E-mail: 530282863@qq.com; Zhang, Jia; Liao, Ou
2015-10-15
This paper is concerned with the stochastic coupled fractional Ginzburg-Landau equation with additive noise. We first transform the stochastic coupled fractional Ginzburg-Landau equation into random equations whose solutions generate a random dynamical system. Then we prove the existence of random attractor for random dynamical system.
Quantum-noise randomized ciphers
Nair, Ranjith; Yuen, Horace P.; Kumar, Prem; Corndorf, Eric; Eguchi, Takami
2006-11-15
We review the notion of a classical random cipher and its advantages. We sharpen the usual description of random ciphers to a particular mathematical characterization suggested by the salient feature responsible for their increased security. We describe a concrete system known as {alpha}{eta} and show that it is equivalent to a random cipher in which the required randomization is affected by coherent-state quantum noise. We describe the currently known security features of {alpha}{eta} and similar systems, including lower bounds on the unicity distances against ciphertext-only and known-plaintext attacks. We show how {alpha}{eta} used in conjunction with any standard stream cipher such as the Advanced Encryption Standard provides an additional, qualitatively different layer of security from physical encryption against known-plaintext attacks on the key. We refute some claims in the literature that {alpha}{eta} is equivalent to a nonrandom stream cipher.
Qubit Metrology of Ultralow Phase Noise Using Randomized Benchmarking
NASA Astrophysics Data System (ADS)
O'Malley, P. J. J.; Kelly, J.; Barends, R.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A. G.; Hoi, I.-C.; Jeffrey, E.; Megrant, A.; Mutus, J.; Neill, C.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Korotkov, A. N.; Cleland, A. N.; Martinis, John M.
2015-04-01
A precise measurement of dephasing over a range of time scales is critical for improving quantum gates beyond the error correction threshold. We present a metrological tool based on randomized benchmarking capable of greatly increasing the precision of Ramsey and spin-echo sequences by the repeated but incoherent addition of phase noise. We find our superconducting-quantum-interference-device-based qubit is not limited by 1 /f flux noise at short time scales but instead observe a telegraph noise mechanism that is not amenable to study with standard measurement techniques.
The deterministic chaos and random noise in turbulent jet.
Yao, Tian-Liang; Liu, Hai-Feng; Xu, Jian-Liang; Li, Wei-Feng
2014-06-01
A turbulent flow is usually treated as a superposition of coherent structure and incoherent turbulence. In this paper, the largest Lyapunov exponent and the random noise in the near field of round jet and plane jet are estimated with our previously proposed method of chaotic time series analysis [T. L. Yao, et al., Chaos 22, 033102 (2012)]. The results show that the largest Lyapunov exponents of the round jet and plane jet are in direct proportion to the reciprocal of the integral time scale of turbulence, which is in accordance with the results of the dimensional analysis, and the proportionality coefficients are equal. In addition, the random noise of the round jet and plane jet has the same linear relation with the Kolmogorov velocity scale of turbulence. As a result, the random noise may well be from the incoherent disturbance in turbulence, and the coherent structure in turbulence may well follow the rule of chaotic motion.
The deterministic chaos and random noise in turbulent jet
Yao, Tian-Liang; Liu, Hai-Feng Xu, Jian-Liang; Li, Wei-Feng
2014-06-01
A turbulent flow is usually treated as a superposition of coherent structure and incoherent turbulence. In this paper, the largest Lyapunov exponent and the random noise in the near field of round jet and plane jet are estimated with our previously proposed method of chaotic time series analysis [T. L. Yao, et al., Chaos 22, 033102 (2012)]. The results show that the largest Lyapunov exponents of the round jet and plane jet are in direct proportion to the reciprocal of the integral time scale of turbulence, which is in accordance with the results of the dimensional analysis, and the proportionality coefficients are equal. In addition, the random noise of the round jet and plane jet has the same linear relation with the Kolmogorov velocity scale of turbulence. As a result, the random noise may well be from the incoherent disturbance in turbulence, and the coherent structure in turbulence may well follow the rule of chaotic motion.
Effect of noise correlations on randomized benchmarking
NASA Astrophysics Data System (ADS)
Ball, Harrison; Stace, Thomas M.; Flammia, Steven T.; Biercuk, Michael J.
2016-02-01
Among the most popular and well-studied quantum characterization, verification, and validation techniques is randomized benchmarking (RB), an important statistical tool used to characterize the performance of physical logic operations useful in quantum information processing. In this work we provide a detailed mathematical treatment of the effect of temporal noise correlations on the outcomes of RB protocols. We provide a fully analytic framework capturing the accumulation of error in RB expressed in terms of a three-dimensional random walk in "Pauli space." Using this framework we derive the probability density function describing RB outcomes (averaged over noise) for both Markovian and correlated errors, which we show is generally described by a Γ distribution with shape and scale parameters depending on the correlation structure. Long temporal correlations impart large nonvanishing variance and skew in the distribution towards high-fidelity outcomes—consistent with existing experimental data—highlighting potential finite-sampling pitfalls and the divergence of the mean RB outcome from worst-case errors in the presence of noise correlations. We use the filter-transfer function formalism to reveal the underlying reason for these differences in terms of effective coherent averaging of correlated errors in certain random sequences. We conclude by commenting on the impact of these calculations on the utility of single-metric approaches to quantum characterization, verification, and validation.
Distinguishing chaotic time series from noise: A random matrix approach
NASA Astrophysics Data System (ADS)
Ye, Bin; Chen, Jianxing; Ju, Chen; Li, Huijun; Wang, Xuesong
2017-03-01
Deterministically chaotic systems can often give rise to random and unpredictable behaviors which make the time series obtained from them to be almost indistinguishable from noise. Motivated by the fact that data points in a chaotic time series will have intrinsic correlations between them, we propose a random matrix theory (RMT) approach to identify the deterministic or stochastic dynamics of the system. We show that the spectral distributions of the correlation matrices, constructed from the chaotic time series, deviate significantly from the predictions of random matrix ensembles. On the contrary, the eigenvalue statistics for a noisy signal follow closely those of random matrix ensembles. Numerical results also indicate that the approach is to some extent robust to additive observational noise which pollutes the data in many practical situations. Our approach is efficient in recognizing the continuous chaotic dynamics underlying the evolution of the time series.
BIFURCATIONS OF RANDOM DIFFERENTIAL EQUATIONS WITH BOUNDED NOISE ON SURFACES
Homburg, Ale Jan; Young, Todd R.
2011-01-01
In random differential equations with bounded noise minimal forward invariant (MFI) sets play a central role since they support stationary measures. We study the stability and possible bifurcations of MFI sets. In dimensions 1 and 2 we classify all minimal forward invariant sets and their codimension one bifurcations in bounded noise random differential equations. PMID:22211081
Discriminating additive from dynamical noise for chaotic time series.
Strumik, Marek; Macek, Wiesław M; Redaelli, Stefano
2005-09-01
We consider the dynamics of the Hénon and Ikeda maps in the presence of additive and dynamical noise. We show that, from the point of view of computations of some statistical quantities, dynamical noise corrupting these deterministic systems can be considered effectively as an additive "pseudonoise" with the Cauchy distribution. In the case of the Hénon and Ikeda maps, this effect occurs only for one variable of the system, while the noise corrupting the second variable is still Gaussian distributed independent of distribution of dynamical noise. Based on these results and using scaling properties of the correlation entropy, we propose a simple method of discriminating additive from dynamical noise. This approach is also useful for estimation of noise level for chaotic time series. We show that the proposed method works well in a wide range of noise levels, providing that one kind of noise predominates and we analyze the variable of the system for which the contamination follows Cauchy-like distribution in the presence of dynamical noise.
Random telegraph noise in metallic single-walled carbon nanotubes
Chung, Hyun-Jong; Woo Uhm, Tae; Won Kim, Sung; Gyu You, Young; Wook Lee, Sang; Ho Jhang, Sung; Campbell, Eleanor E. B.; Woo Park, Yung
2014-05-12
We have investigated random telegraph noise (RTN) observed in individual metallic carbon nanotubes (CNTs). Mean lifetimes in high- and low-current states, τ{sub high} and τ{sub low}, have been studied as a function of bias-voltage and gate-voltage as well as temperature. By analyzing the statistics and features of the RTN, we suggest that this noise is due to the random transition of defects between two metastable states, activated by inelastic scattering with conduction electrons. Our results indicate an important role of defect motions in the 1/f noise in CNTs.
Noise removal using thresholding and segmentation for random noise Sentinel-1 data
NASA Astrophysics Data System (ADS)
Suka Dyatmika, Haris; Sambodo, Katmoko Ari; Eko Budiono, Marendra; Hendayani
2017-01-01
Sentinel-1 constellation will cover the entire world’s land area continuously. Although Sentinel-1 data show consistency and stability, several noise have been observed in the data i.e. random noise on the right and left of the scene. The noise exists on the right and left of the scene of the SAR data that should be no data value. The noise is quite disturbing and interferes the data especially on mosaic product of some scene data sets. The mosaic product have a seam line that separate a scene and the neighbor that should be disappear after the mosaic process. This paper shows study on how to remove the random noise without losing the information contained. Some Sentinel-1 Level-1 GRD (Ground Range Detected) data in Kalimantan area were used in this study. Principally, the methods used for the noise removal were thresholding and segmentation. If the noise removal process using thresholding only, many noise still exist in the data. Region on the right and left of the scene filtered by a certain value of intensity and segmentation area. Generally, improvement of the data was evaluated both after each scene noise removal process and mosaic product. The noise in each scene Sentinel-1 data disappear and the mosaic product look seamless after applying the noise removal.
Listening to the noise: random fluctuations reveal gene network parameters.
Munsky, Brian; Trinh, Brooke; Khammash, Mustafa
2009-01-01
The cellular environment is abuzz with noise originating from the inherent random motion of reacting molecules in the living cell. In this noisy environment, clonal cell populations show cell-to-cell variability that can manifest significant phenotypic differences. Noise-induced stochastic fluctuations in cellular constituents can be measured and their statistics quantified. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We show that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. This establishes a potentially powerful approach for the identification of gene networks and offers a new window into the workings of these networks.
Random seismic noise attenuation using the Wavelet Transform
NASA Astrophysics Data System (ADS)
Aliouane, L.; Ouadfeul, S.; Boudella, A.; Eladj, S.
2012-04-01
In this paper we propose a technique of random noises attenuation from seismic data using the discrete and continuous wavelet transforms. Firstly the discrete wavelet transform (DWT) is applied to denoise seismic data. This last is based on the threshold method applied at the modulus of the DWT. After we calculate the continuous wavelet transform of the denoised seismic seismogram, the final denoised seismic seismogram is the continuous wavelet transform coefficients at the low scale. Application at a synthetic seismic seismogram shows the robustness of the proposed tool for random noises attenuation. We have applied this idea at a real seismic data of a vertical seismic profile realized in Algeria. Keywords: Seismic data, denoising, DWT, CWT, random noise.
Random Noise Monopulse Radar System for Covert Tracking of Targets
NASA Astrophysics Data System (ADS)
Narayanan, Ram M.
2002-07-01
The University of Nebraska is currently developing a unique monopulse radar concept based on the use of random noise signal for covert tracking applications. This project is funded by the Missile Defense Agency (MDA). The advantage of this system over conventional frequency-modulated continuous wave (FMCW) or short pulse systems is its covertness resulting from the random waveform's immunity from interception and jamming. The system integrates a novel heterodyne correlation receiver with conventional monopulse architecture. Based on the previous work such as random noise interferometry, a series of theoretical analysis and simulations were conducted to examine the potential performance of this monopulse system. Furthermore, a prototype system is under development to exploit practical design aspects of phase comparison angle measurement. It is revealed that random noise monopulse radar can provide the same function as traditional monopulse radar, i.e., implement range and angular estimation and tracking in real time. The bandwidth of random noise signal can be optimized to achieve the best range resolution as well as the angular accuracy.
Oblivious Transfer from the Additive White Gaussian Noise Channel
NASA Astrophysics Data System (ADS)
Isaka, Motohiko
We consider the use of the additive white Gaussian noise channel to achieve information theoretically secure oblivious transfer. A protocol for this primitive that ensures the correctness and privacy for players is presented together with the signal design. We also study the information theoretic efficiency of the protocol, and some more practical issues where the parameter of the channel is unknown to the players.
Analysis of Additive Random Number Generators.
1977-03-01
linear congruential generators yn*\\* ayn+bmo,iPa- The simplest example of a sequence satisfying (1.1) with *> I is the Fibonacci sequence with p - 2...However, the Fibonacci sequence is not a suitable random number generator because successive triples are very poorly distributed in three...number generator should have small discrepancy. Definition 2.1 can be extended naturally to define discrepancy for sequences of points yn lying in
Collisional activation with random noise in ion trap mass spectrometry.
McLuckey, S A; Goeringer, D E; Glish, G L
1992-07-01
Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly pronated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap.
Collisional activation with random noise in ion trap mass spectrometry
McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.
1992-07-01
Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly protonated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap. 45 refs., 7 figs.
NASA Astrophysics Data System (ADS)
Guo, Feng; Zhu, Cheng-Yin; Cheng, Xiao-Feng; Li, Heng
2016-10-01
Stochastic resonance in a fractional harmonic oscillator with random mass and signal-modulated noise is investigated. Applying linear system theory and the characteristics of the noises, the analysis expression of the mean output-amplitude-gain (OAG) is obtained. It is shown that the OAG varies non-monotonically with the increase of the intensity of the multiplicative dichotomous noise, with the increase of the frequency of the driving force, as well as with the increase of the system frequency. In addition, the OAG is a non-monotonic function of the system friction coefficient, as a function of the viscous damping coefficient, as a function of the fractional exponent.
Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals
Pérez, Isaac Ramos; Bosch-Lluis, Xavi; Camps, Adriano; Alvarez, Nereida Rodriguez; Hernandez, Juan Fernando Marchán; Domènech, Enric Valencia; Vernich, Carlos; de la Rosa, Sonia; Pantoja, Sebastián
2009-01-01
The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN) signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network. PMID:22454576
Noise tailoring for scalable quantum computation via randomized compiling
NASA Astrophysics Data System (ADS)
Wallman, Joel J.; Emerson, Joseph
2016-11-01
Quantum computers are poised to radically outperform their classical counterparts by manipulating coherent quantum systems. A realistic quantum computer will experience errors due to the environment and imperfect control. When these errors are even partially coherent, they present a major obstacle to performing robust computations. Here, we propose a method for introducing independent random single-qubit gates into the logical circuit in such a way that the effective logical circuit remains unchanged. We prove that this randomization tailors the noise into stochastic Pauli errors, which can dramatically reduce error rates while introducing little or no experimental overhead. Moreover, we prove that our technique is robust to the inevitable variation in errors over the randomizing gates and numerically illustrate the dramatic reductions in worst-case error that are achievable. Given such tailored noise, gates with significantly lower fidelity—comparable to fidelities realized in current experiments—are sufficient to achieve fault-tolerant quantum computation. Furthermore, the worst-case error rate of the tailored noise can be directly and efficiently measured through randomized benchmarking protocols, enabling a rigorous certification of the performance of a quantum computer.
Discontinuous transitions in globally coupled potential systems with additive noise
NASA Astrophysics Data System (ADS)
Kürsten, Rüdiger; Behn, Ulrich
2016-12-01
An infinite array of globally coupled overdamped constituents moving in a double-well potential with n th order saturation term under the influence of additive Gaussian white noise is investigated. The system exhibits a continuous phase transition from a symmetric phase to a symmetry-broken phase. The qualitative behavior is independent on n . The critical point is calculated for strong and for weak noise; these limits are also bounds for the critical point. Introducing an additional nonlinearity, such that the potential can have up to three minima, leads to richer behavior. There the parameter space divides into three regions: a region with a symmetric phase, a region with a phase of broken symmetry and a region where both phases coexist. The region of coexistence collapses into one of the others via a discontinuous phase transition, whereas the transition between the symmetric phase and the phase of broken symmetry is continuous. The tricritical point where the three regions intersect can be calculated for strong and for weak noise. These limiting values form tight bounds on the tricritical point. In the region of coexistence simulations of finite systems are performed. One finds that the stationary distribution of finite but large systems differs qualitatively from the one of the infinite system. Hence the limits of stationarity and large system size do not commute.
Equivalence of time and aperture domain additive noise in ultrasound coherence.
Bottenus, Nick B; Trahey, Gregg E
2015-01-01
Ultrasonic echoes backscattered from diffuse media, recorded by an array transducer and appropriately focused, demonstrate coherence predicted by the van Cittert-Zernike theorem. Additive noise signals from off-axis scattering, reverberation, phase aberration, and electronic (thermal) noise can all superimpose incoherent or partially coherent signals onto the recorded echoes, altering the measured coherence. An expression is derived to describe the effect of uncorrelated random channel noise in terms of the noise-to-signal ratio. Equivalent descriptions are made in the aperture dimension to describe uncorrelated magnitude and phase apodizations of the array. Binary apodization is specifically described as an example of magnitude apodization and adjustments are presented to minimize the artifacts caused by finite signal length. The effects of additive noise are explored in short-lag spatial coherence imaging, an image formation technique that integrates the calculated coherence curve of acquired signals up to a small fraction of the array length for each lateral and axial location. A derivation of the expected contrast as a function of noise-to-signal ratio is provided and validation is performed in simulation.
Social Noise: Generating Random Numbers from Twitter Streams
NASA Astrophysics Data System (ADS)
Fernández, Norberto; Quintas, Fernando; Sánchez, Luis; Arias, Jesús
2015-12-01
Due to the multiple applications of random numbers in computer systems (cryptography, online gambling, computer simulation, etc.) it is important to have mechanisms to generate these numbers. True Random Number Generators (TRNGs) are commonly used for this purpose. TRNGs rely on non-deterministic sources to generate randomness. Physical processes (like noise in semiconductors, quantum phenomenon, etc.) play this role in state of the art TRNGs. In this paper, we depart from previous work and explore the possibility of defining social TRNGs using the stream of public messages of the microblogging service Twitter as randomness source. Thus, we define two TRNGs based on Twitter stream information and evaluate them using the National Institute of Standards and Technology (NIST) statistical test suite. The results of the evaluation confirm the feasibility of the proposed approach.
Noise radar using random phase and frequency modulation
NASA Astrophysics Data System (ADS)
Axelsson, Sune R. J.
2004-01-01
Pulse compression radar is used in a great number of radar applications. Excellent range resolution and high ECCM performance can be achieved by wide-band modulated long pulses, which spread out the transmitted energy in frequency and time. By using random noise as waveform, the range ambiguity can be suppressed as well. The same limit in doppler resolution is achieved as for a coherent doppler radar when the time compression of the reference is tuned to that of the target. Mostly, the random signal is transmitted directly from a noise generating HF-source. A sine wave, which is phase or frequency modulated by random noise, is an alternative giving similar performance but higher transmitted mean power when peak-limited transmitters are applied. A narrower modulation noise bandwidth can also be applied to generate the same output bandwidth. For phase modulation, the bandwidth amplifying factor is simply the rms value of the phase modulation, and for a frequency modulating waveform the output rms bandwidth equals the rms value of the frequency modulation. The results also show that the range sidelobes can be highly suppressed compared with the sidelobes of the modulating signal. The mean and variance of the correlation integral are derived in terms of the autocorrelation function of the modulation. Finally, random bi-phase modulation and the effects of low-bit ADC at the correlation processing are analyzed and described. The advantages of low range sidelobes and enhanced range resolution make frequency and phase modulation attractive for a great number of applications.
Listening to the Noise: Random Fluctuations Reveal Gene Network Parameters
NASA Astrophysics Data System (ADS)
Munsky, Brian; Trinh, Brooke; Khammash, Mustafa
2010-03-01
The cellular environment is abuzz with noise originating from the inherent random motion of reacting molecules in the living cell. In this noisy environment, clonal cell populations exhibit cell-to-cell variability that can manifest significant prototypical differences. Noise induced stochastic fluctuations in cellular constituents can be measured and their statistics quantified using flow cytometry, single molecule fluorescence in situ hybridization, time lapse fluorescence microscopy and other single cell and single molecule measurement techniques. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. We use theoretical investigations to establish experimental guidelines for the identification of gene regulatory networks, and we apply these guideline to experimentally identify predictive models for different regulatory mechanisms in bacteria and yeast.
Han, Lim Ming; Haron, Zaiton; Yahya, Khairulzan; Bakar, Suhaimi Abu; Dimon, Mohamad Ngasri
2015-01-01
Strategic noise mapping provides important information for noise impact assessment and noise abatement. However, producing reliable strategic noise mapping in a dynamic, complex working environment is difficult. This study proposes the implementation of the random walk approach as a new stochastic technique to simulate noise mapping and to predict the noise exposure level in a workplace. A stochastic simulation framework and software, namely RW-eNMS, were developed to facilitate the random walk approach in noise mapping prediction. This framework considers the randomness and complexity of machinery operation and noise emission levels. Also, it assesses the impact of noise on the workers and the surrounding environment. For data validation, three case studies were conducted to check the accuracy of the prediction data and to determine the efficiency and effectiveness of this approach. The results showed high accuracy of prediction results together with a majority of absolute differences of less than 2 dBA; also, the predicted noise doses were mostly in the range of measurement. Therefore, the random walk approach was effective in dealing with environmental noises. It could predict strategic noise mapping to facilitate noise monitoring and noise control in the workplaces.
Seismic random noise attenuation via 3D block matching
NASA Astrophysics Data System (ADS)
Amani, Sajjad; Gholami, Ali; Javaheri Niestanak, Alireza
2017-01-01
The lack of signal to noise ratio increases the final errors of seismic interpretation. In the present study, we apply a new non-local transform domain method called "3 Dimensional Block Matching (3DBM)" for seismic random noise attenuation. Basically, 3DBM uses the similarities through the data for retrieving the amplitude of signal in a specific point in the f-x domain, and because of this, it is able to preserve discontinuities in the data such as fractures and faults. 3DBM considers each seismic profile as an image and thus it can be applied to both pre-stack and post-stack seismic data. It uses the block matching clustering method to gather similar blocks contained in 2D data into 3D groups in order to enhance the level of correlation in each 3D array. By applying a 2D transform and 1D transform (instead of a 3D transform) on each array, we can effectively attenuate the noise by shrinkage of the transform coefficients. The subsequent inverse 2D transform and inverse 1D transform yield estimates of all matched blocks. Finally, the random noise attenuated data is computed using the weighted average of all block estimates. We applied 3DBM on both synthetic and real pre-stack and post-stack seismic data and compared it with a Curvelet transform based denoising method which is one of the most powerful methods in this area. The results show that 3DBM method eventuates in higher signal to noise ratio, lower execution time and higher visual quality.
Phenotype accessibility and noise in random threshold gene regulatory networks.
Pinho, Ricardo; Garcia, Victor; Feldman, Marcus W
2014-01-01
Evolution requires phenotypic variation in a population of organisms for selection to function. Gene regulatory processes involved in organismal development affect the phenotypic diversity of organisms. Since only a fraction of all possible phenotypes are predicted to be accessed by the end of development, organisms may evolve strategies to use environmental cues and noise-like fluctuations to produce additional phenotypic diversity, and hence to enhance the speed of adaptation. We used a generic model of organismal development --gene regulatory networks-- to investigate how different levels of noise on gene expression states (i.e. phenotypes) may affect access to new, unique phenotypes, thereby affecting phenotypic diversity. We studied additional strategies that organisms might adopt to attain larger phenotypic diversity: either by augmenting their genome or the number of gene expression states. This was done for different types of gene regulatory networks that allow for distinct levels of regulatory influence on gene expression or are more likely to give rise to stable phenotypes. We found that if gene expression is binary, increasing noise levels generally decreases phenotype accessibility for all network types studied. If more gene expression states are considered, noise can moderately enhance the speed of discovery if three or four gene expression states are allowed, and if there are enough distinct regulatory networks in the population. These results were independent of the network types analyzed, and were robust to different implementations of noise. Hence, for noise to increase the number of accessible phenotypes in gene regulatory networks, very specific conditions need to be satisfied. If the number of distinct regulatory networks involved in organismal development is large enough, and the acquisition of more genes or fine tuning of their expression states proves costly to the organism, noise can be useful in allowing access to more unique phenotypes.
Characterizing Random Telegraph Frequency Noise in a Micromechanical Oscillator
NASA Astrophysics Data System (ADS)
Sun, Fengpei; Zou, Jie; Maizelis, Zakhar; Chan, Ho Bun
2014-03-01
We perform a comprehensive study of the effect of random telegraph frequency noise(RTFN) on a micromechanical torsional oscillator. A sinusoidal driving voltage is applied to one electrode of the oscillator to excite its torsional vibration. Telegraph noise is applied to the other electrode so that the eigenfrequency of the oscillator randomly jumps back and forth between two states. This arrangement resembles a mechanical oscillator dispersively coupled to a classical or quantum two-level system. As the jumping rate of the eigenfrequency is increased, the two peaks in the spectrum of the time-averaged vibration amplitude merge into a single peak, displaying spectral broadening followed by motional narrowing. Furthermore, we analyze the ratios of the moments of the complex vibration amplitude to the powers of the averaged complex amplitude as a function of the driving frequency. If RTFN is absent, the ratios are equal to one; otherwise they deviate from one near resonance and approach to one far off resonance. The shape of the spectra depends strongly on the characteristics of RTFN and this dependence remains valid even in the presence of strong thermal or detector noise. Our results are in good agreement with theoretical predictions.
Theory of optimum radio reception methods in random noise
NASA Astrophysics Data System (ADS)
Gutkin, L. S.
1982-09-01
The theory of optimum methods of reception of signals on the background of random noise, widely used in development of any radioelectronic systems and devices based on reception and transmission of information (radar and radio controlled, radio communications, radio telemetry, radio astronomy, television, and other systems), as well as electroacoustical and wire communications sytems, is presented. Optimum linear and nonlinear filtration, binary and comples signal detection and discrimination, estimation of signal parameters, receiver synthesis for incomplete a priori data, special features of synthesis with respect to certain quality indicators, and other problems are examined.
Additional noise data on the SR-3 propeller
NASA Astrophysics Data System (ADS)
Dittmar, J. H.; Jeracki, R. J.
1981-05-01
The noise generated by supersonic-tip-speed propellers is investigated. An eight bladed propeller was tested in the Lewis 8- by 6-foot wind tunnel with conditions providing data in the subsonic operating region of the propeller. These conditions resulted in a slight reshaping of the curve for blade passing tone as a function of helical tip Mach number as compared with previous results. Directivity curves with an additional transducer position gave an indication of a lobe pattern for this propeller that was not previously observed. The present data at the aft-most position indicate that some reflections, possibly from the test rig support strut, may have affected the data taken previously.
Radio variability and random walk noise properties of four blazars
Park, Jong-Ho; Trippe, Sascha E-mail: trippe@astro.snu.ac.kr
2014-04-10
We present the results of a time series analysis of the long-term radio light curves of four blazars: 3C 279, 3C 345, 3C 446, and BL Lacertae. We exploit the database of the University of Michigan Radio Astronomy Observatory monitoring program which provides densely sampled light curves spanning 32 years in time in three frequency bands located at 4.8, 8, and 14.5 GHz. Our sources show mostly flat or inverted (spectral indices –0.5 ≲ α ≲ 0) spectra, in agreement with optically thick emission. All light curves show strong variability on all timescales. Analyzing the time lags between the light curves from different frequency bands, we find that we can distinguish high-peaking flares and low-peaking flares in accordance with the classification of Valtaoja et al. The periodograms (temporal power spectra) of the observed light curves are consistent with random-walk power-law noise without any indication of (quasi-)periodic variability. The fact that all four sources studied are in agreement with being random-walk noise emitters at radio wavelengths suggests that such behavior is a general property of blazars.
Adaptive box filters for removal of random noise from digital images
Eliason, E.M.; McEwen, A.S.
1990-01-01
We have developed adaptive box-filtering algorithms to (1) remove random bit errors (pixel values with no relation to the image scene) and (2) smooth noisy data (pixels related to the image scene but with an additive or multiplicative component of noise). For both procedures, we use the standard deviation (??) of those pixels within a local box surrounding each pixel, hence they are adaptive filters. This technique effectively reduces speckle in radar images without eliminating fine details. -from Authors
Fuzzy Filtering Method for Color Videos Corrupted by Additive Noise
Ponomaryov, Volodymyr I.; Montenegro-Monroy, Hector; Nino-de-Rivera, Luis
2014-01-01
A novel method for the denoising of color videos corrupted by additive noise is presented in this paper. The proposed technique consists of three principal filtering steps: spatial, spatiotemporal, and spatial postprocessing. In contrast to other state-of-the-art algorithms, during the first spatial step, the eight gradient values in different directions for pixels located in the vicinity of a central pixel as well as the R, G, and B channel correlation between the analogous pixels in different color bands are taken into account. These gradient values give the information about the level of contamination then the designed fuzzy rules are used to preserve the image features (textures, edges, sharpness, chromatic properties, etc.). In the second step, two neighboring video frames are processed together. Possible local motions between neighboring frames are estimated using block matching procedure in eight directions to perform interframe filtering. In the final step, the edges and smoothed regions in a current frame are distinguished for final postprocessing filtering. Numerous simulation results confirm that this novel 3D fuzzy method performs better than other state-of-the-art techniques in terms of objective criteria (PSNR, MAE, NCD, and SSIM) as well as subjective perception via the human vision system in the different color videos. PMID:24688428
Image discrimination models predict detection in fixed but not random noise
NASA Technical Reports Server (NTRS)
Ahumada, A. J. Jr; Beard, B. L.; Watson, A. B. (Principal Investigator)
1997-01-01
By means of a two-interval forced-choice procedure, contrast detection thresholds for an aircraft positioned on a simulated airport runway scene were measured with fixed and random white-noise masks. The term fixed noise refers to a constant, or unchanging, noise pattern for each stimulus presentation. The random noise was either the same or different in the two intervals. Contrary to simple image discrimination model predictions, the same random noise condition produced greater masking than the fixed noise. This suggests that observers seem unable to hold a new noisy image for comparison. Also, performance appeared limited by internal process variability rather than by external noise variability, since similar masking was obtained for both random noise types.
NASA Astrophysics Data System (ADS)
Krubsack, David Allan
1990-01-01
This dissertation presents two algorithms that extract parameters which are important to speech processing in high levels of noise. The first algorithm determines whether a signal containing noise corrupted human speech is voiced or not and estimates the fundamental frequency (pitch) of voiced speech. The second algorithm produces an estimate of the additive noise which is corrupting the speech. Previous research related to the voicing decision and pitch estimation has been concentrated at signal-to -noise ratios (SNRs) above 0 dB. Consequently, speech processing requiring the extraction of these parameters in higher levels of noise could not be performed with much success. The research presented in this dissertation concentrates on SNRs around and below 0 dB. Although the algorithm, based on the autocorrelation function, is designed to work well for high levels of noise, good results for the no noise case have been maintained. The idea of a confidence measure for parameter estimation is introduced. Confidence measures are defined and developed for both the voicing decision and the pitch estimation algorithms. Estimation of noise that is corrupting a speech signal has been motivated by the need to enhance the corrupted speech. Previous research has concentrated on speech which is band limited to about 3500 Hz. Therefore, the estimation of the noise corrupting high frequency speech had not been considered. The noise estimation algorithm presented in this dissertation considers the effects of high frequency speech on the noise estimate in addition to the effects of low frequency speech. A new spectral averaging method is introduced which significantly reduces the corrupting effect of the speech components on the noise estimate for SNRs above 0 dB. The algorithm is tested for stationary white noise, stationary non-white noise, and non-stationary white noise.
Random visual noise impairs object-based attention.
Abrams, Richard A; Law, Mark B
2002-02-01
Object-based visual attention is observed when the benefit of attending to one element in a display extends to other elements that are part of the same perceptual object. Apperceptive agnosia is an object identification deficit in which spatial attention is preserved but object-based attention is impaired. Some debate exists regarding the extent to which the object-based impairment can be attributed to perceptual mechanisms that are specifically involved in grouping and segmentation of a scene, as opposed to early sensory processes. In the present paper we show that random visual noise is sufficient to eliminate the object benefit, a result inconsistent with the view that grouping mechanisms are responsible for the effect. The results have implications for an understanding of apperceptive agnosia, and for an understanding of object-based attention more generally.
Random sex determination: When developmental noise tips the sex balance.
Perrin, Nicolas
2016-12-01
Sex-determining factors are usually assumed to be either genetic or environmental. The present paper aims at drawing attention to the potential contribution of developmental noise, an important but often-neglected component of phenotypic variance. Mutual inhibitions between male and female pathways make sex a bistable equilibrium, such that random fluctuations in the expression of genes at the top of the cascade are sufficient to drive individual development toward one or the other stable state. Evolutionary modeling shows that stochastic sex determinants should resist elimination by genetic or environmental sex determinants under ecologically meaningful settings. On the empirical side, many sex-determination systems traditionally considered as environmental or polygenic actually provide evidence for large components of stochasticity. In reviewing the field, I argue that sex-determination systems should be considered within a three-ends continuum, rather than the classical two-ends continuum.
Noise reduction by continuous addition of subchannel holograms.
Som, S C; Budhiraja, C J
1975-07-01
A new and convenient technique for reducing both speckle and coherent noise in holographic imagery is described with supporting experimental results. Its advantages and disadvantages have been mentioned in the context of other known techniques.
NASA Astrophysics Data System (ADS)
Guo, Yongfeng; Shen, Yajun; Tan, Jianguo
2016-09-01
The phenomenon of stochastic resonance (SR) in a piecewise nonlinear model driven by a periodic signal and correlated noises for the cases of a multiplicative non-Gaussian noise and an additive Gaussian white noise is investigated. Applying the path integral approach, the unified colored noise approximation and the two-state model theory, the analytical expression of the signal-to-noise ratio (SNR) is derived. It is found that conventional stochastic resonance exists in this system. From numerical computations we obtain that: (i) As a function of the non-Gaussian noise intensity, the SNR is increased when the non-Gaussian noise deviation parameter q is increased. (ii) As a function of the Gaussian noise intensity, the SNR is decreased when q is increased. This demonstrates that the effect of the non-Gaussian noise on SNR is different from that of the Gaussian noise in this system. Moreover, we further discuss the effect of the correlation time of the non-Gaussian noise, cross-correlation strength, the amplitude and frequency of the periodic signal on SR.
Suppression of thermal frequency noise in erbium-doped fiber random lasers.
Saxena, Bhavaye; Bao, Xiaoyi; Chen, Liang
2014-02-15
Frequency and intensity noise are characterized for erbium-doped fiber (EDF) random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of such random lasers using the property of random phase modulations from multiple scattering points in ultralong fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. The random laser exhibits a noise level of 6 Hz²/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and nonplanar ring laser oscillators (NPROs) by a factor of 166 and 2, respectively. The frequency noise has a minimum value for an optimum length of the Rayleigh scattering fiber.
NASA Astrophysics Data System (ADS)
Lai, Chieh-Ping; Narayanan, Ram M.
2005-05-01
Recent terrorist activities and law-enforcement situations involving hostage situations underscore the need for effective through-wall imaging. Current building interior imaging systems are based on short-pulse waveforms, which require specially designed antennas to subdue unwanted ringing. In addition, periodically transmitted pulses of energy are easily recognizable by the intelligent adversary who may employ appropriate countermeasures to confound detection. A coherent polarimetric random noise radar architecture is being developed based on UWB technology and software defined radio, which has great promise in its ability to covertly image obscured targets. The main advantages of the random noise radar lie in two aspects: first, random noise waveform has an ideal "thumbtack" ambiguity function, i.e., its down range and cross range resolution can be separately controlled, thus providing unambiguous high resolution imaging at any distance; second, random noise waveform is inherently low probability of intercept (LPI) and low probability of detection (LPD), i.e., it is immune from detection, jamming, and interference. Thus, it is an ideal candidate sensor for covert imaging of obscured regions in hostile environments. The coherency in the system can be exploited to field a fully-polarimetric system that can take advantage of polarization features in target recognition. Moving personnel can also be detected using Doppler processing. Simulation studies are used to analyze backscattered signals from the walls, and humans and other targets behind the walls. Real-time data processing shows human activity behind the wall and human target tracking. The high resolution provides excellent multipath and clutter rejection.
Pulmonary mechanics by spectral analysis of forced random noise.
Michaelson, E D; Grassman, E D; Peters, W R
1975-01-01
The magnitude (Zrs) and phase angle (thetars) of the total respiratory impedance (Zrs), from 3 to 45 Hz, were rapidly obtained by a modification of the forced oscillation method, in which a random noise pressure wave is imposed on the respiratory system at the mouth and compared to the induced random flow using Fourier and spectral analysis. No significant amplitude or phase errors were introduced by the instrumentation. 10 normals, 5 smokers, and 5 patients with chronic obstructive lung disease (COPD) were studied. Measurements of Zrs were corrected for the parallel shunt impedance of the mouth, which was independently measured during a Valsalva maneuver, and from which the mechanical properties of the mouth were derived. There were small differences in Zrs between normals and smokers but both behaved approximately like a second-order system with thetars = 0 degree in the range of 5--9 Hz, and thetars in the range of +40 degrees at 20 Hz and +60 degrees at 40 Hz. In COPD, thetars remained more negative (compared to normals and smokers) at all frequencies and crossed 0 between 15 and 29 Hz. Changes in Zrs, similar in those in COPD, were also observed at low lung volumes in normals. These changes, the effects of a bronchodilator in COPD, and deviations of Zrs from second-order behavior in normals, can best be explained by a two-compartment parallel model, in which time-constant discrepancies between the lung parenchyma and compliant airway keep compliant greater than inertial reactance, resulting in a more negative phase angle as frequency is increased. PMID:1184746
Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms
Antal, Andrea; Herrmann, Christoph S.
2016-01-01
Background. Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS). While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mechanisms of tACS. Method. Here, we review recent interdisciplinary research that has furthered our understanding of how tACS affects brain oscillations and by what means transcranial random noise stimulation (tRNS) that is a special form of tACS can modulate cortical functions. Results. Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings are further supported by neural network simulations and knowledge from physics on entraining physical oscillators in the human brain. As a result, fine-grained models of the human skull and brain allow the prediction of the exact pattern of current flow during tDCS and tACS. Finally, recent studies on human physiology and behavior complete the picture of noninvasive modulation of brain oscillations. Conclusion. In future, the methods may be applicable in therapy of neurological and psychiatric disorders that are due to malfunctioning brain oscillations. PMID:27242932
Practical quantum random number generator based on measuring the shot noise of vacuum states
NASA Astrophysics Data System (ADS)
Shen, Yong; Tian, Liang; Zou, Hongxin
2010-06-01
The shot noise of vacuum states is a kind of quantum noise and is totally random. In this paper a nondeterministic random number generation scheme based on measuring the shot noise of vacuum states is presented and experimentally demonstrated. We use a homodyne detector to measure the shot noise of vacuum states. Considering that the frequency bandwidth of our detector is limited, we derive the optimal sampling rate so that sampling points have the least correlation with each other. We also choose a method to extract random numbers from sampling values, and prove that the influence of classical noise can be avoided with this method so that the detector does not have to be shot-noise limited. The random numbers generated with this scheme have passed ent and diehard tests.
An analysis of noise reduction in variable reluctance motors using pulse position randomization
NASA Astrophysics Data System (ADS)
Smoot, Melissa C.
1994-05-01
The design and implementation of a control system to introduce randomization into the control of a variable reluctance motor (VRM) is presented. The goal is to reduce noise generated by radial vibrations of the stator. Motor phase commutation angles are dithered by 1 or 2 mechanical degrees to investigate the effect of randomization on acoustic noise. VRM commutation points are varied using a uniform probability density function and a 4 state Markov chain among other methods. The theory of VRM and inverter operation and a derivation of the major source of acoustic noise are developed. The experimental results show the effects of randomization. Uniform dithering and Markov chain dithering both tend to spread the noise spectrum, reducing peak noise components. No clear evidence is found to determine which is the optimum randomization scheme. The benefit of commutation angle randomization in reducing VRM loudness as perceived by humans is found to be questionable.
Anomalous random telegraph noise and temporary phenomena in resistive random access memory
NASA Astrophysics Data System (ADS)
Puglisi, Francesco Maria; Larcher, Luca; Padovani, Andrea; Pavan, Paolo
2016-11-01
In this paper we present a comprehensive examination of the characteristics of complex Random Telegraph Noise (RTN) signals in Resistive Random Access Memory (RRAM) devices with TiN/Ti/HfO2/TiN structure. Initially, the anomalous RTN (aRTN) is investigated through careful systematic experiment, dedicated characterization procedures, and physics-based simulations to gain insights into the physics of this phenomenon. The experimentally observed RTN parameters (amplitude of the current fluctuations, capture and emission times) are analyzed in different operating conditions. Anomalous behaviors are characterized and their statistical characteristics are evaluated. Physics-based simulations considering both the Coulomb interactions among different defects in the device and the possible existence of defects with metastable states are exploited to suggest a possible physical origin of aRTN. The same simulation framework is also shown to be able to predict other temporary phenomena related to RTN, such as the temporary change in RTN stochastic properties or the sudden and iterative random appearing and vanishing of RTN fluctuations always exhibiting the same statistical characteristics. Results highlight the central role of the electrostatic interactions among individual defects and the trapped charge in describing RTN and related phenomena.
NASA Astrophysics Data System (ADS)
Shin, Junseob; Huang, Lianjie
2016-04-01
Frequency-space prediction filtering (FXPF), also known as FX deconvolution, is a technique originally developed for random noise attenuation in seismic imaging. FXPF attempts to reduce random noise in seismic data by modeling only real signals that appear as linear or quasilinear events in the aperture domain. In medical ultrasound imaging, channel radio frequency (RF) signals from the main lobe appear as horizontal events after receive delays are applied while acoustic clutter signals from off-axis scatterers and electronic noise do not. Therefore, FXPF is suitable for preserving only the main-lobe signals and attenuating the unwanted contributions from clutter and random noise in medical ultrasound imaging. We adapt FXPF to ultrasound imaging, and evaluate its performance using simulated data sets from a point target and an anechoic cyst. Our simulation results show that using only 5 iterations of FXPF achieves contrast-to-noise ratio (CNR) improvements of 67 % in a simulated noise-free anechoic cyst and 228 % in a simulated anechoic cyst contaminated with random noise of 15 dB signal-to-noise ratio (SNR). Our findings suggest that ultrasound imaging with FXPF attenuates contributions from both acoustic clutter and random noise and therefore, FXPF has great potential to improve ultrasound image contrast for better visualization of important anatomical structures and detection of diseased conditions.
Jin, Lei; Xu, Bo; Yamashita, Shinji
2012-11-19
We theoretically and numerically explain the power saturation and the additional phase noise brought by the fiber optical parametric amplifier (FOPA). An equation to calculate an approximation to the saturated signal output power is presented. We also propose a scheme for alleviating the phase noise brought by the FOPA at the saturated state. In simulation, by controlling the decisive factor dispersion difference term Δk of the FOPA, amplitude-noise and additional phase noise reduction of quadrature phase shift keying (QPSK) based on the saturated FOPA is studied, which can provide promising performance to deal with PSK signals.
Langevin simulation of scalar fields: Additive and multiplicative noises and lattice renormalization
NASA Astrophysics Data System (ADS)
Cassol-Seewald, N. C.; Farias, R. L. S.; Fraga, E. S.; Krein, G.; Ramos, Rudnei O.
2012-08-01
We consider the Langevin lattice dynamics for a spontaneously broken λϕ4 scalar field theory where both additive and multiplicative noise terms are incorporated. The lattice renormalization for the corresponding stochastic Ginzburg-Landau-Langevin and the subtleties related to the multiplicative noise are investigated.
Fluorescence microscopy image noise reduction using a stochastically-connected random field model
Haider, S. A.; Cameron, A.; Siva, P.; Lui, D.; Shafiee, M. J.; Boroomand, A.; Haider, N.; Wong, A.
2016-01-01
Fluorescence microscopy is an essential part of a biologist’s toolkit, allowing assaying of many parameters like subcellular localization of proteins, changes in cytoskeletal dynamics, protein-protein interactions, and the concentration of specific cellular ions. A fundamental challenge with using fluorescence microscopy is the presence of noise. This study introduces a novel approach to reducing noise in fluorescence microscopy images. The noise reduction problem is posed as a Maximum A Posteriori estimation problem, and solved using a novel random field model called stochastically-connected random field (SRF), which combines random graph and field theory. Experimental results using synthetic and real fluorescence microscopy data show the proposed approach achieving strong noise reduction performance when compared to several other noise reduction algorithms, using quantitative metrics. The proposed SRF approach was able to achieve strong performance in terms of signal-to-noise ratio in the synthetic results, high signal to noise ratio and contrast to noise ratio in the real fluorescence microscopy data results, and was able to maintain cell structure and subtle details while reducing background and intra-cellular noise. PMID:26884148
NASA Astrophysics Data System (ADS)
Kim, Jeong Phill; Jeong, Chi Hyun; Kim, Cheol Hoo
2011-06-01
A correlation processing algorithm in the spectral domain is proposed for detecting moving targets with random noise radar. AD converted reference and Rx signals are passed through FFT block, and they are multiplied after the reference signal is complex conjugated. Now inverse FFT yields the sub-correlation results, and range and velocity information can be accurately extracted by an additional FFT processing. In this design procedure, specific considerations have to be made for correlation length, averaging number, and number of sub-correlation data for Doppler processing. The proposed algorithm was verified by Simulink (Mathworks) simulation, and its logic was implemented with Xilinx FPGA device (Vertex5 series) by System Generator block sets (Xilinx) in the Simulink environment. A CW X-band random-FM noise radar prototype with an instantaneous bandwidth of 100 MHz was designed and implemented, and laboratory and field tests were conducted to detect moving targets, and the observed results showed the validity of the proposed algorithm and the operation of implemented FPGA logics.
NASA Astrophysics Data System (ADS)
Qiao, Zijian; Lei, Yaguo; Lin, Jing; Niu, Shantao
2016-11-01
The influence of potential asymmetries on stochastic resonance (SR) subject to both multiplicative and additive noise is studied by using two-state theory, where three types of asymmetries are introduced in double-well potential by varying the depth, the width, and both the depth and the width of the left well alone. The characteristics of SR in the asymmetric cases are different from symmetric ones, where asymmetry has a strong influence on output signal-to-noise ratio (SNR) and optimal noise intensity. Even optimal noise intensity is also associated with the steepness of the potential-barrier wall, which is generally ignored. Moreover, the largest SNR in asymmetric SR is found to be relatively larger than the symmetric one, which also closely depends on noise intensity ratio. In addition, a moderate cross-correlation intensity between two noises is good for improving the output SNR. More interestingly, a double SR phenomenon is observed in certain cases for two correlated noises, whereas it disappears for two independent noises. The above clues are helpful in achieving weak signal detection under heavy background noise.
[Critical of the additive model of the randomized controlled trial].
Boussageon, Rémy; Gueyffier, François; Bejan-Angoulvant, Theodora; Felden-Dominiak, Géraldine
2008-01-01
Randomized, double-blind, placebo-controlled clinical trials are currently the best way to demonstrate the clinical effectiveness of drugs. Its methodology relies on the method of difference (John Stuart Mill), through which the observed difference between two groups (drug vs placebo) can be attributed to the pharmacological effect of the drug being tested. However, this additive model can be questioned in the event of statistical interactions between the pharmacological and the placebo effects. Evidence in different domains has shown that the placebo effect can influence the effect of the active principle. This article evaluates the methodological, clinical and epistemological consequences of this phenomenon. Topics treated include extrapolating results, accounting for heterogeneous results, demonstrating the existence of several factors in the placebo effect, the necessity to take these factors into account for given symptoms or pathologies, as well as the problem of the "specific" effect.
Development and Evaluation of a Multistatic Ultrawideband Random Noise Radar
2010-03-01
48 2. Statistics of the antenna spillover response peak . . . . . . . . . . . . . . 61 3. Monostatic range resolution test matrix...becomes the foundation for presenting the design and experimental method - ology of Chapter 3, upon which a critical analysis can be performed. Ultimately...noise (PRN) radars. While both types are marked with relatively slow early evolutions, the solid state microwave , wideband communications, and digital
A laboratory study of the perceived benefit of additional noise attenuation by houses
NASA Technical Reports Server (NTRS)
Flindell, I. H.
1983-01-01
Two Experiments were conducted to investigate the perceived benefit of additional house attenuation against aircraft flyover noise. First, subjects made annoyance judgments in a simulated living room while an operative window with real and dummy storm windows was manipulated in full view of those subjects. Second, subjects made annoyance judgments in an anechoic audiometric test chamber of frequency shaped noise signals having spectra closely matched to those of the aircraft flyover noises reproduced in the first experiment. These stimuli represented the aircraft flyover noises in levels and spectra but without the situational and visual cues present in the simulated living room. Perceptual constancy theory implies that annoyance tends to remain constant despite reductions in noise level caused by additional attenuation of which the subjects are fully aware. This theory was supported when account was taken for a reported annoyance overestimation for certain spectra and for a simulated condition cue overreaction.
Realistic noise-tolerant randomness amplification using finite number of devices
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Ramanathan, Ravishankar; Grudka, Andrzej; Horodecki, Karol; Horodecki, Michał; Horodecki, Paweł; Szarek, Tomasz; Wojewódka, Hanna
2016-04-01
Randomness is a fundamental concept, with implications from security of modern data systems, to fundamental laws of nature and even the philosophy of science. Randomness is called certified if it describes events that cannot be pre-determined by an external adversary. It is known that weak certified randomness can be amplified to nearly ideal randomness using quantum-mechanical systems. However, so far, it was unclear whether randomness amplification is a realistic task, as the existing proposals either do not tolerate noise or require an unbounded number of different devices. Here we provide an error-tolerant protocol using a finite number of devices for amplifying arbitrary weak randomness into nearly perfect random bits, which are secure against a no-signalling adversary. The correctness of the protocol is assessed by violating a Bell inequality, with the degree of violation determining the noise tolerance threshold. An experimental realization of the protocol is within reach of current technology.
Realistic noise-tolerant randomness amplification using finite number of devices
Brandão, Fernando G. S. L.; Ramanathan, Ravishankar; Grudka, Andrzej; Horodecki, Karol; Horodecki, Michał; Horodecki, Paweł; Szarek, Tomasz; Wojewódka, Hanna
2016-01-01
Randomness is a fundamental concept, with implications from security of modern data systems, to fundamental laws of nature and even the philosophy of science. Randomness is called certified if it describes events that cannot be pre-determined by an external adversary. It is known that weak certified randomness can be amplified to nearly ideal randomness using quantum-mechanical systems. However, so far, it was unclear whether randomness amplification is a realistic task, as the existing proposals either do not tolerate noise or require an unbounded number of different devices. Here we provide an error-tolerant protocol using a finite number of devices for amplifying arbitrary weak randomness into nearly perfect random bits, which are secure against a no-signalling adversary. The correctness of the protocol is assessed by violating a Bell inequality, with the degree of violation determining the noise tolerance threshold. An experimental realization of the protocol is within reach of current technology. PMID:27098302
Spectral models of additive and modulation noise in speech and phonatory excitation signals
NASA Astrophysics Data System (ADS)
Schoentgen, Jean
2003-01-01
The article presents spectral models of additive and modulation noise in speech. The purpose is to learn about the causes of noise in the spectra of normal and disordered voices and to gauge whether the spectral properties of the perturbations of the phonatory excitation signal can be inferred from the spectral properties of the speech signal. The approach to modeling consists of deducing the Fourier series of the perturbed speech, assuming that the Fourier series of the noise and of the clean monocycle-periodic excitation are known. The models explain published data, take into account the effects of supraglottal tremor, demonstrate the modulation distortion owing to vocal tract filtering, establish conditions under which noise cues of different speech signals may be compared, and predict the impossibility of inferring the spectral properties of the frequency modulating noise from the spectral properties of the frequency modulation noise (e.g., phonatory jitter and frequency tremor). The general conclusion is that only phonatory frequency modulation noise is spectrally relevant. Other types of noise in speech are either epiphenomenal, or their spectral effects are masked by the spectral effects of frequency modulation noise.
Additive white Gaussian noise level estimation in SVD domain for images.
Liu, Wei; Lin, Weisi
2013-03-01
Accurate estimation of Gaussian noise level is of fundamental interest in a wide variety of vision and image processing applications as it is critical to the processing techniques that follow. In this paper, a new effective noise level estimation method is proposed on the basis of the study of singular values of noise-corrupted images. Two novel aspects of this paper address the major challenges in noise estimation: 1) the use of the tail of singular values for noise estimation to alleviate the influence of the signal on the data basis for the noise estimation process and 2) the addition of known noise to estimate the content-dependent parameter, so that the proposed scheme is adaptive to visual signals, thereby enabling a wider application scope of the proposed scheme. The analysis and experiment results demonstrate that the proposed algorithm can reliably infer noise levels and show robust behavior over a wide range of visual content and noise conditions, and that is outperforms relevant existing methods.
Lossless Astronomical Image Compression and the Effects of Random Noise
NASA Technical Reports Server (NTRS)
Pence, William
2009-01-01
In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.
UHF Antenna Design for AFIT Random Noise Radar
2012-03-01
waveform limits the options available for antenna system design. The use of a phased array antenna system to achieve a narrow, electrically-scanned...main beam is not available for noise waveform systems, as the array is based on the use of phase shifters between the multiple element feeds. UWB... array theories can rely on the use of variable time delay differences between the elements for beam forming and steering . The AFIT system was
Far-field errors due to random noise in cylindrical near-field measurements
NASA Astrophysics Data System (ADS)
Romeu, Jordi; Jofre, Luis; Cardama, Angel
1992-01-01
A full characterization of the far-field noise obtained from cylindrical near- to far-field transformation, for a white Gaussian, space stationary, near-field noise is derived. A possible source for such noise is the receiver additive noise. The noise characterization is done by obtaining the autocorrelation of the far-field noise, which is shown to be easily computed during the transformation process. Even for this simple case, the far-field noise has complex behavior dependent on the measurement probe. Once the statistical properties of the far-field noise are determined, it is possible to compute upper and lower bounds for the radiation pattern for a given probability. These bounds define a strip within the radiation pattern with the desired probability. This may be used as part of a complete near-field error analysis of a particular cylindrical near-field facility.
Reduction of randomness in seismic noise as a short-term precursor to a volcanic eruption
Glynn, C. C.; Konstantinou, K. I.
2016-01-01
Ambient seismic noise is characterized by randomness incurred by the random position and strength of the noise sources as well as the heterogeneous properties of the medium through which it propagates. Here we use ambient noise data recorded prior to the 1996 Gjálp eruption in Iceland in order to show that a reduction of noise randomness can be a clear short-term precursor to volcanic activity. The eruption was preceded on 29 September 1996 by a Mw ~5.6 earthquake that occurred in the caldera rim of the Bárdarbunga volcano. A significant reduction of randomness started occurring 8 days before the earthquake and 10 days before the onset of the eruption. This reduction was observed even at stations more than 100 km away from the eruption site. Randomness increased to its previous levels 160 minutes after the Bárdarbunga earthquake, during which time aftershocks migrated from the Bárdarbunga caldera to a site near the Gjálp eruption fissure. We attribute this precursory reduction of randomness to the lack of higher frequencies (>1 Hz) in the noise wavefield caused by high absorption losses as hot magma ascended in the upper crust. PMID:27883050
Reduction of randomness in seismic noise as a short-term precursor to a volcanic eruption
NASA Astrophysics Data System (ADS)
Glynn, C. C.; Konstantinou, K. I.
2016-11-01
Ambient seismic noise is characterized by randomness incurred by the random position and strength of the noise sources as well as the heterogeneous properties of the medium through which it propagates. Here we use ambient noise data recorded prior to the 1996 Gjálp eruption in Iceland in order to show that a reduction of noise randomness can be a clear short-term precursor to volcanic activity. The eruption was preceded on 29 September 1996 by a Mw ~5.6 earthquake that occurred in the caldera rim of the Bárdarbunga volcano. A significant reduction of randomness started occurring 8 days before the earthquake and 10 days before the onset of the eruption. This reduction was observed even at stations more than 100 km away from the eruption site. Randomness increased to its previous levels 160 minutes after the Bárdarbunga earthquake, during which time aftershocks migrated from the Bárdarbunga caldera to a site near the Gjálp eruption fissure. We attribute this precursory reduction of randomness to the lack of higher frequencies (>1 Hz) in the noise wavefield caused by high absorption losses as hot magma ascended in the upper crust.
Robustness of quantum-randomness expansion protocols in the presence of noise
NASA Astrophysics Data System (ADS)
Mironowicz, Piotr; Pawłowski, Marcin
2013-09-01
In this paper we investigate properties of several randomness generation protocols in the device-independent framework. Using Bell-type inequalities it is possible to certify that the numbers generated by an untrusted device are indeed random. We present a selection of certificates which guarantee two bits of randomness for each run of the experiment in the noiseless case and require the parties to share a maximally entangled state. To compare them we study their efficiency in the presence of white noise. We find that for different amounts of noise different operators are optimal for certifying most randomness. Therefore, the vendor of the device should use different protocols depending on the amount of noise expected to occur. Another of our results that we find particularly interesting is that using a single Bell operator as a figure of merit is rarely optimal.
Statistical addition method for external noise sources affecting HF-MF-LF systems
NASA Astrophysics Data System (ADS)
Neudegg, David
2001-01-01
The current statistical method for the addition of external component noise sources in the LF, MF, and lower HF band (100 kHz to 3 MHz) produces total median noise levels that may be less than the largest-component median in some cases. Several case studies illustrate this anomaly. Methods used to sum the components rely on their power (decibels) distributions being represented as normal by the statistical parameters. The atmospheric noise component is not correctly represented by its decile values when it is assumed to have a normal distribution, causing anomalies in the noise summation when components are similar in magnitude. A revised component summation method is proposed, and the way it provides a more physically realistic total noise median for LF, MF, and lower HF frequencies is illustrated.
A new class of random processes with application to helicopter noise
NASA Technical Reports Server (NTRS)
Hardin, Jay C.; Miamee, A. G.
1989-01-01
The concept of dividing random processes into classes (e.g., stationary, locally stationary, periodically correlated, and harmonizable) has long been employed. A new class of random processes is introduced which includes many of these processes as well as other interesting processes which fall into none of the above classes. Such random processes are denoted as linearly correlated. This class is shown to include the familiar stationary and periodically correlated processes as well as many other, both harmonizable and non-harmonizable, nonstationary processes. When a process is linearly correlated for all t and harmonizable, its two-dimensional power spectral density S(x)(omega 1, omega 2) is shown to take a particularly simple form, being non-zero only on lines such that omega 1 to omega 2 = + or - r(k) where the r(k's) are (not necessarily equally spaced) roots of a characteristic function. The relationship of such processes to the class of stationary processes is examined. In addition, the application of such processes in the analysis of typical helicopter noise signals is described.
Fast random number generation with spontaneous emission noise of a single-mode semiconductor laser
NASA Astrophysics Data System (ADS)
Zhang, Jianzhong; Zhang, Mingjiang; Liu, Yi; Li, Pu; Yi, Xiaogang; Zhang, Mingtao; Wang, Yuncai
2016-11-01
We experimentally demonstrate a 12.5 Gb s-1 random number generator based on measuring the spontaneous emission noise of a single-mode semiconductor laser. The spontaneous emission of light is quantum mechanical in nature and is an inborn physical entropy source of true randomness. By combining a high-speed analog-to-digital converter and off-line processing, random numbers are extracted from the spontaneous emission with the verified randomness. The generator is simple, robust, and with no need of accurately tuning the comparison threshold. The use of semiconductor lasers makes it particularly compatible with the delivery of random numbers in optical networks.
NASA Astrophysics Data System (ADS)
Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.
2015-02-01
In this paper, the optimal least-squares state estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems with state transition and measurement random parameter matrices and correlated noises. It is assumed that at any sampling time, as a consequence of possible failures during the transmission process, one-step delays with different delay characteristics may occur randomly in the received measurements. The random delay phenomenon is modelled by using a different sequence of Bernoulli random variables in each sensor. The process noise and all the sensor measurement noises are one-step autocorrelated and different sensor noises are one-step cross-correlated. Also, the process noise and each sensor measurement noise are two-step cross-correlated. Based on the proposed model and using an innovation approach, the optimal linear filter is designed by a recursive algorithm which is very simple computationally and suitable for online applications. A numerical simulation is exploited to illustrate the feasibility of the proposed filtering algorithm.
Conditional probability calculations for the nonlinear Schrödinger equation with additive noise.
Terekhov, I S; Vergeles, S S; Turitsyn, S K
2014-12-05
The method for the computation of the conditional probability density function for the nonlinear Schrödinger equation with additive noise is developed. We present in a constructive form the conditional probability density function in the limit of small noise and analytically derive it in a weakly nonlinear case. The general theory results are illustrated using fiber-optic communications as a particular, albeit practically very important, example.
Visual alchemy: stereoscopic adaptation produces kinetic depth from random noise.
Nawrot, M; Blake, R
1993-01-01
Observers perceive incoherent motion and no hint of depth when viewing stochastic motion, in which stimulus elements move in all possible directions. As earlier work has shown, depth can be specified by introducing a brief interocular delay between the presentation of corresponding animation frames of this 'noise' to the left and right eyes. A study is reported in which observers were adapted to a stereoscopic display consisting of coherent planes of motion at different depths. This stereoscopic adaptation caused incoherent depthless motion to take on the qualities of structure and depth, and it could nullify the depth induced by interocular delay. The findings are interpreted within the context of a neural model consisting of units selectively responsive to different directions of motion at different planes of depth.
Huang, Lei
2015-09-30
To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required.
Phase-shifting interferometry corrupted by white and non-white additive noise.
Servin, M; Quiroga, J A; Estrada, J C
2011-05-09
The standard tool to estimate the phase of a sequence of phase-shifted interferograms is the Phase Shifting Algorithm (PSA). The performance of PSAs to a sequence of interferograms corrupted by non-white additive noise has not been reported before. In this paper we use the Frequency Transfer Function (FTF) of a PSA to generalize previous white additive noise analysis to non-white additive noisy interferograms. That is, we find the ensemble average and the variance of the estimated phase in a general PSA when interferograms corrupted by non-white additive noise are available. Moreover, for the special case of additive white-noise, and using the Parseval's theorem, we show (for the first time in the PSA literature) a useful relationship of the PSA's noise robustness; in terms of its FTF spectrum, and in terms of its coefficients. In other words, we find the PSA's estimated phase variance, in the spectral space as well as in the PSA's coefficients space.
Superior signal-to-noise ratio of a new AA1 sequence for random-modulation continuous-wave lidar.
Rybaltowski, Adam; Taflove, Allen
2004-08-01
In an earlier work [Proc. SPIE 4484, 216 (2001)] we proposed a new AA1 modulation sequence for random-modulation continuous-wave lidar. It possesses significantly better signal properties than other pseudorandom codes (the M, A1, and A2 sequences). We derive and compare the signal-to-noise ratio (SNR) of the new AA1 sequence with those of previous modulation sequences. Using a figure of merit proposed for pseudorandom sequences in additive (and generally colored) noise, we show that the SNR of the AA1 sequence in 1/f noise can be as much as 50 times better than that of the commonly used M sequence. This improved SNR should permit as much as a 7:1 increase of the maximum lidar sensing range in baseband-modulation direct-detection infrared lidar with no significant changes to the transmitter and receiver.
Method for removal of random noise in eddy-current testing system
Levy, Arthur J.
1995-01-01
Eddy-current response voltages, generated during inspection of metallic structures for anomalies, are often replete with noise. Therefore, analysis of the inspection data and results is difficult or near impossible, resulting in inconsistent or unreliable evaluation of the structure. This invention processes the eddy-current response voltage, removing the effect of random noise, to allow proper identification of anomalies within and associated with the structure.
A Denoising Scheme for Randomly Clustered Noise Removal in ICCD Sensing Image.
Wang, Fei; Wang, Yibin; Yang, Meng; Zhang, Xuetao; Zheng, Nanning
2017-01-26
An Intensified Charge-Coupled Device (ICCD) image is captured by the ICCD image sensor in extremely low-light conditions. Its noise has two distinctive characteristics. (a) Different from the independent identically distributed (i.i.d.) noise in natural image, the noise in the ICCD sensing image is spatially clustered, which induces unexpected structure information; (b) The pattern of the clustered noise is formed randomly. In this paper, we propose a denoising scheme to remove the randomly clustered noise in the ICCD sensing image. First, we decompose the image into non-overlapped patches and classify them into flat patches and structure patches according to if real structure information is included. Then, two denoising algorithms are designed for them, respectively. For each flat patch, we simulate multiple similar patches for it in pseudo-time domain and remove its noise by averaging all the simulated patches, considering that the structure information induced by the noise varies randomly over time. For each structure patch, we design a structure-preserved sparse coding algorithm to reconstruct the real structure information. It reconstructs each patch by describing it as a weighted summation of its neighboring patches and incorporating the weights into the sparse representation of the current patch. Based on all the reconstructed patches, we generate a reconstructed image. After that, we repeat the whole process by changing relevant parameters, considering that blocking artifacts exist in a single reconstructed image. Finally, we obtain the reconstructed image by merging all the generated images into one. Experiments are conducted on an ICCD sensing image dataset, which verifies its subjective performance in removing the randomly clustered noise and preserving the real structure information in the ICCD sensing image.
A Denoising Scheme for Randomly Clustered Noise Removal in ICCD Sensing Image
Wang, Fei; Wang, Yibin; Yang, Meng; Zhang, Xuetao; Zheng, Nanning
2017-01-01
An Intensified Charge-Coupled Device (ICCD) image is captured by the ICCD image sensor in extremely low-light conditions. Its noise has two distinctive characteristics. (a) Different from the independent identically distributed (i.i.d.) noise in natural image, the noise in the ICCD sensing image is spatially clustered, which induces unexpected structure information; (b) The pattern of the clustered noise is formed randomly. In this paper, we propose a denoising scheme to remove the randomly clustered noise in the ICCD sensing image. First, we decompose the image into non-overlapped patches and classify them into flat patches and structure patches according to if real structure information is included. Then, two denoising algorithms are designed for them, respectively. For each flat patch, we simulate multiple similar patches for it in pseudo-time domain and remove its noise by averaging all the simulated patches, considering that the structure information induced by the noise varies randomly over time. For each structure patch, we design a structure-preserved sparse coding algorithm to reconstruct the real structure information. It reconstructs each patch by describing it as a weighted summation of its neighboring patches and incorporating the weights into the sparse representation of the current patch. Based on all the reconstructed patches, we generate a reconstructed image. After that, we repeat the whole process by changing relevant parameters, considering that blocking artifacts exist in a single reconstructed image. Finally, we obtain the reconstructed image by merging all the generated images into one. Experiments are conducted on an ICCD sensing image dataset, which verifies its subjective performance in removing the randomly clustered noise and preserving the real structure information in the ICCD sensing image. PMID:28134759
Noise reduction of a composite cylinder subjected to random acoustic excitation
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Beyer, T.
1989-01-01
Interior and exterior noise measurements were conducted on a stiffened composite floor-equipped cylinder, with and without an interior trim installed. Noise reduction was obtained for the case of random acoustic excitation in a diffuse field; the frequency range of interest was 100-800-Hz one-third octave bands. The measured data were compared with noise reduction predictions from the Propeller Aircraft Interior Noise (PAIN) program and from a statistical energy analysis. Structural model parameters were not predicted well by the PAIN program for the given input parameters; this resulted in incorrect noise reduction predictions for the lower one-third octave bands where the power flow into the interior of the cylinder was predicted on a mode-per-mode basis.
Covert communications using random noise signals: overall system simulation and modulation analysis
NASA Astrophysics Data System (ADS)
Chuang, Jack; Narayanan, Ram M.
2005-06-01
In military communications, there exist numerous potential threats to message security. Ultra-wideband (UWB) signals provide secure communications because they cannot, in general, be detected using conventional receivers and they can be made relatively immune from jamming. The security of an UWB signal can be further improved by mixing it with random noise. By using a random noise signal, the user can conceal the message signal within the noise waveform and thwart detection by hostile forces. This paper describes a novel spread spectrum technique that can be used for secure and covert communications. The technique is based on the use of heterodyne correlation techniques to inject coherence in a random noise signal. The modulated signal to be transmitted containing the coherent carrier is mixed with a sample of an ultrawideband random noise signal. The frequency range of the ultra-wideband noise signal is appropriately chosen so that the lower sideband of the mixing process falls over the same frequency range. Both the frequency-converted noise-like signal and the original random noise signal are simultaneously transmitted on orthogonally polarized channels through a dual-polarized transmitting antenna. The receiver consists of a similar dual-polarized antenna that simultaneously receives the two orthogonally polarized transmitted signals, amplifies each in a minimum phase limiting amplifier, and mixes these signals in a double sideband up-converter. The upper sideband of the mixing process recovers the modulated signal, which can then be demodulated. The advantage of this technique lies in the relative immunity of the random noise-like un-polarized transmit signal from detection and jamming. Since the transmit signal "appears" totally un-polarized and noise-like, linearly polarized receivers are unable to identify, decode, or otherwise extract useful information from the signal. The system is immune from interference caused by high power linearly polarized signal
Covert communications using random noise signals: effects of atmospheric propagation nulls and rain
NASA Astrophysics Data System (ADS)
Mohan, Karen M.; Narayanan, Ram M.
2005-06-01
In military communications, there exist numerous potential threats to message security. Ultra-wideband (UWB) signals provide secure communications because they cannot, in general, be detected using conventional receivers and they can be made relatively immune from jamming. The security of an UWB signal can be further improved by mixing it with random noise. By using a random noise signal, the user can conceal the message signal within the noise waveform and thwart detection by hostile forces. This paper describes a novel spread spectrum technique that can be used for secure and covert communications. The technique is based on the use of heterodyne correlation techniques to inject coherence in a random noise signal. The modulated signal to be transmitted containing the coherent carrier is mixed with a sample of an ultra-wideband (UWB) random noise signal. The frequency range of the UWB noise signal is appropriately chosen so that the lower sideband of the mixing process falls over the same frequency range. Both the frequency-converted noise-like signal and the original random noise signal are simultaneously transmitted on orthogonally polarized channels through a dual-polarized transmitting antenna. The receiver consists of a similar dual-polarized antenna that simultaneously receives the two orthogonally polarized transmitted signals, amplifies each in a minimum phase limiting amplifier, and mixes these signals in a double sideband upconverter. The upper sideband of the mixing process recovers the modulated signal, which can then be demodulated. The advantage of this technique lies in the relative immunity of the random noise-like unpolarized transmit signal from detection and jamming. Since the transmitted signal "appears" totally unpolarized and noise-like, linearly polarized receivers are unable to identify, decode, or otherwise extract useful information from the signal. The system is immune from interference caused by high power linearly polarized signal
Probability distributions for directed polymers in random media with correlated noise
NASA Astrophysics Data System (ADS)
Chu, Sherry; Kardar, Mehran
2016-07-01
The probability distribution for the free energy of directed polymers in random media (DPRM) with uncorrelated noise in d =1 +1 dimensions satisfies the Tracy-Widom distribution. We inquire if and how this universal distribution is modified in the presence of spatially correlated noise. The width of the distribution scales as the DPRM length to an exponent β , in good (but not full) agreement with previous renormalization group and numerical results. The scaled probability is well described by the Tracy-Widom form for uncorrelated noise, but becomes symmetric with increasing correlation exponent. We thus find a class of distributions that continuously interpolates between Tracy-Widom and Gaussian forms.
A study on the Gaussianity and stationarity of the random noise in the seismic exploration
NASA Astrophysics Data System (ADS)
Wang, Dongmei; Li, Yue; Nie, Pengfei
2014-10-01
Seismic exploration is an important means of the resource exploration. With the increasing of the demand for oil, gas and mineral resources, the resources which are easy to explore are reducing. At the same time, the high signal to noise ratio and the high quality seismic data is required with the continuous improvement of the accuracy of seismic exploration. The characteristics of complex noise in the seismic record are needed to be analyzed in detail in order to suppress the random noise and achieve the preserved amplitude processing as much as possible. The paper researches the Gaussianity and stationarity of the random noise in the seismic exploration of land area in China. The research areas are plain with sandstone structure. First, a theoretical model verifies the effectiveness that the Shapiro-Wilk test method is used in Gaussian statistical research, and the combination of surrogate data and time-frequency analysis tests stationarity. Then, there are 98.54% of the record channels which refuse the assumption of the Gaussian noise, and 25.6% of the record channels which don't meet the stationarity noise analysis by the above method in the research area through the statistical analysis of the seismic noise. Finally, we discuss the causes of non-Gaussianity and quasi-stationarity, and analyze the application of judging the stationarity in the denoising processing.
Kamppeter, T.; Mertens, F.G.; Moro, E.; Sanchez, A.; Bishop, A.R.
1998-09-01
We study how thermal fluctuations affect the dynamics of vortices in the two-dimensional anisotropic Heisenberg model depending on their additive or multiplicative character. Using a collective coordinate theory, we analytically show that multiplicative noise, arising from fluctuations in the local field term of the Landau-Lifshitz equations, and Langevin-like additive noise have the same effect on vortex dynamics (within a very plausible assumption consistent with the collective coordinate approach). This is a highly non-trivial result as multiplicative and additive noises usually modify the dynamics in very different ways. We also carry out numerical simulations of both versions of the model finding that they indeed give rise to very similar vortex dynamics.
How to detect the Granger-causal flow direction in the presence of additive noise?
Vinck, Martin; Huurdeman, Lisanne; Bosman, Conrado A; Fries, Pascal; Battaglia, Francesco P; Pennartz, Cyriel M A; Tiesinga, Paul H
2015-03-01
Granger-causality metrics have become increasingly popular tools to identify directed interactions between brain areas. However, it is known that additive noise can strongly affect Granger-causality metrics, which can lead to spurious conclusions about neuronal interactions. To solve this problem, previous studies have proposed the detection of Granger-causal directionality, i.e. the dominant Granger-causal flow, using either the slope of the coherency (Phase Slope Index; PSI), or by comparing Granger-causality values between original and time-reversed signals (reversed Granger testing). We show that for ensembles of vector autoregressive (VAR) models encompassing bidirectionally coupled sources, these alternative methods do not correctly measure Granger-causal directionality for a substantial fraction of VAR models, even in the absence of noise. We then demonstrate that uncorrelated noise has fundamentally different effects on directed connectivity metrics than linearly mixed noise, where the latter may result as a consequence of electric volume conduction. Uncorrelated noise only weakly affects the detection of Granger-causal directionality, whereas linearly mixed noise causes a large fraction of false positives for standard Granger-causality metrics and PSI, but not for reversed Granger testing. We further show that we can reliably identify cases where linearly mixed noise causes a large fraction of false positives by examining the magnitude of the instantaneous influence coefficient in a structural VAR model. By rejecting cases with strong instantaneous influence, we obtain an improved detection of Granger-causal flow between neuronal sources in the presence of additive noise. These techniques are applicable to real data, which we demonstrate using actual area V1 and area V4 LFP data, recorded from the awake monkey performing a visual attention task.
The Unilateral Mean Luminance Alters Additive Internal Noise in Normal Vision.
Li, Lin; Yu, Yongqiang; Zhou, Yifeng
2015-01-01
Luminance has been found to play a modulating role in the processes of many visual tasks. However, the mechanisms underlying the modulation role of luminance have been little studied, and the conclusions have been controversial. Here, using a dichoptic viewing paradigm by varying the luminance in one eye while measuring the contrast-detection threshold in the other eye, we studied the effect of different unilateral mean luminance values on the detectability of sine wave gratings against backgrounds of various levels of white noise in normal subjects. We found that unilateral luminance altered the additive internal noise within a perceptual template model framework, with low luminance increasing the additive internal noise and high luminance reducing it. This finding helps to reveal how luminance modulates contrast detection and its relative mechanisms.
NB-PLC channel modelling with cyclostationary noise addition & OFDM implementation for smart grid
NASA Astrophysics Data System (ADS)
Thomas, Togis; Gupta, K. K.
2016-03-01
Power line communication (PLC) technology can be a viable solution for the future ubiquitous networks because it provides a cheaper alternative to other wired technology currently being used for communication. In smart grid Power Line Communication (PLC) is used to support communication with low rate on low voltage (LV) distribution network. In this paper, we propose the channel modelling of narrowband (NB) PLC in the frequency range 5 KHz to 500 KHz by using ABCD parameter with cyclostationary noise addition. Behaviour of the channel was studied by the addition of 11KV/230V transformer, by varying load location and load. Bit error rate (BER) Vs signal to noise ratio SNR) was plotted for the proposed model by employing OFDM. Our simulation results based on the proposed channel model show an acceptable performance in terms of bit error rate versus signal to noise ratio, which enables communication required for smart grid applications.
Mass dependence of instabilities of an oscillator with multiplicative and additive noise.
Gitterman, Moshe; Kessler, David A
2013-02-01
We study the instabilities of a harmonic oscillator subject to additive and dichotomous multiplicative noise, focusing on the dependence of the instability threshold on the mass. For multiplicative noise in the damping, the energy instability threshold is crossed as the mass is decreased, as long as the smaller damping is in fact negative. For multiplicative noise in the stiffness, the situation is more complicated and in fact the energy transition is reentrant for intermediate noise strength and damping. For multiplicative noise in the mass, the results depend on the implementation of the noise. One can take the velocity or the momentum to be conserved as the mass is changed. In these cases increasing the mass destabilizes the system. Alternatively, if the change in mass is caused by the accretion and loss of particles to the Brownian particle, these processes are asymmetric with momentum conserved upon accretion and velocity upon loss. In this case, there is no instability, as opposed to the other two implementations. We also present the mass dependence of the instability threshold for the first moment. Finally, we study the distribution of the energy, finding a power-law cutoff at a value that increases with time.
NASA Astrophysics Data System (ADS)
Goudarzi, Alireza; Riahi, Mohammad Ali
2012-12-01
One of the most crucial challenges in seismic data processing is the reduction of the noise in the data or improving the signal-to-noise ratio. In this study, the 1D undecimated discrete wavelet transform (UDWT) has been acquired to attenuate random noise and ground roll. Wavelet domain ground roll analysis (WDGA) is applied to find the ground roll energy in the wavelet domain. The WDGA will be a substitute method for thresholding in seismic data processing. To compare the effectiveness of the WDGA method, we apply the 1D double density discrete wavelet transform (DDDWT) using soft thresholding in the random noise reduction and ground roll attenuation processes. Seismic signals intersect with ground roll in the time and frequency domains. Random noise and ground roll have many undesirable effects on pre-stack seismic data, and result in an inaccurate velocity analysis for NMO correction. In this paper, the UDWT by using the WDGA technique and DDDWT (using the soft thresholding technique) and the regular Fourier based method as f-k transform will be used and compared for seismic denoising.
Random Noise Polarimetry Technique for Covert Detection of Targets Obscured by Foliage
NASA Astrophysics Data System (ADS)
Narayanan, Ram M.; Xu, Xiaojian; Henning, Joseph A.; Kumru, Cihan
2002-07-01
The University of Nebraska has been investigating a novel technique called random noise polarimetry for foliage penetration (FOPEN) imaging applications, under support from the US Air Force Office of Scientific Research (AFOSR). In this final report, we summarize the main activities and results of the research during the past three years (1999-2002). These include: (a) Development of an experimental UHF band ultra wideband (UWB) FOPEN noise radar system; (b) Development of a down range sidelobe suppression; (c) Study of the foliage transmission model and the impact of foliage obscuration; (d) Development of FOPEN SAR imaging model and image formation algorithms; (e) Study of the impact of frequency and aspect angle dependent target signatures on UWB SAR images; (f) Three-dimensional interferometric SAR and ISAR imaging techniques; (g) Development of SAR image enhancement techniques; and (h) Field tests, data acquisition and image processing using the experimental random noise radar system. Suggestions for future work are also presented.
Fault tolerant quantum key distribution protocol with collective random unitary noise
NASA Astrophysics Data System (ADS)
Wang, Xiang-Bin
2005-11-01
We propose an easy implementable prepare-and-measure protocol for robust quantum key distribution with photon polarization. The protocol is fault tolerant against collective random unitary channel noise. The protocol does not need any collective quantum measurement or quantum memory. A security proof and a specific linear optical realization using spontaneous parametric down conversion are given.
On estimating the phase of periodic waveform in additive Gaussian noise, part 2
NASA Astrophysics Data System (ADS)
Rauch, L. L.
1984-11-01
Motivated by advances in signal processing technology that support more complex algorithms, a new look is taken at the problem of estimating the phase and other parameters of a periodic waveform in additive Gaussian noise. The general problem was introduced and the maximum a posteriori probability criterion with signal space interpretation was used to obtain the structures of optimum and some suboptimum phase estimators for known constant frequency and unknown constant phase with an a priori distribution. Optimal algorithms are obtained for some cases where the frequency is a parameterized function of time with the unknown parameters and phase having a joint a priori distribution. In the last section, the intrinsic and extrinsic geometry of hypersurfaces is introduced to provide insight to the estimation problem for the small noise and large noise cases.
Gaussian capacity of the quantum bosonic memory channel with additive correlated Gaussian noise
Schaefer, Joachim; Karpov, Evgueni; Cerf, Nicolas J.
2011-09-15
We present an algorithm for calculation of the Gaussian classical capacity of a quantum bosonic memory channel with additive Gaussian noise. The algorithm, restricted to Gaussian input states, is applicable to all channels with noise correlations obeying certain conditions and works in the full input energy domain, beyond previous treatments of this problem. As an illustration, we study the optimal input states and capacity of a quantum memory channel with Gauss-Markov noise [J. Schaefer, Phys. Rev. A 80, 062313 (2009)]. We evaluate the enhancement of the transmission rate when using these optimal entangled input states by comparison with a product coherent-state encoding and find out that such a simple coherent-state encoding achieves not less than 90% of the capacity.
Matsuoka, A J; Abbas, P J; Rubinstein, J T; Miller, C A
2000-11-01
Experimental results from humans and animals show that electrically evoked compound action potential (EAP) responses to constant-amplitude pulse train stimulation can demonstrate an alternating pattern, due to the combined effects of highly synchronized responses to electrical stimulation and refractory effects (Wilson et al., 1994). One way to improve signal representation is to reduce the level of across-fiber synchrony and hence, the level of the amplitude alternation. To accomplish this goal, we have examined EAP responses in the presence of Gaussian noise added to the pulse train stimulus. Addition of Gaussian noise at a level approximately -30 dB relative to EAP threshold to the pulse trains decreased the amount of alternation, indicating that stochastic resonance may be induced in the auditory nerve. The use of some type of conditioning stimulus such as Gaussian noise may provide a more 'normal' neural response pattern.
Affectively Salient Meaning in Random Noise: A Task Sensitive to Psychosis Liability
Galdos, Mariana; Simons, Claudia; Fernandez-Rivas, Aranzazu; Wichers, Marieke; Peralta, Concepción; Lataster, Tineke; Amer, Guillermo; Myin-Germeys, Inez; Allardyce, Judith; Gonzalez-Torres, Miguel Angel; van Os, Jim
2011-01-01
Stable differences in the tendency to attribute meaning and emotional value to experience may represent an indicator of liability to psychosis. A brief task was developed assessing variation in detecting affectively meaningful speech (speech illusion) in neutral random signals (white noise) and the degree to which this was associated with psychometric and familial vulnerability for psychosis. Thirty patients, 28 of their siblings, and 307 controls participated. The rate of speech illusion was compared between cases and controls. In controls, the association between speech illusion and interview-based positive schizotypy was assessed. The hypothesis of a dose-response increase in rate of speech illusion across increasing levels of familial vulnerability for psychosis (controls, siblings of patients, and patients) was examined. Patients were more likely to display speech illusions than controls (odds ratio [OR] = 4.0, 95% confidence interval [CI] = 1.4–11.7), also after controlling for neurocognitive variables (OR = 3.8, 95% CI = 1.04–14.1). The case-control difference was more accentuated for speech illusion perceived as affectively salient (positively or negatively appraised) than for neutrally appraised speech illusions. Speech illusion in the controls was strongly associated with positive schizotypy but not with negative schizotypy. In addition, the rate of speech illusion increased with increasing level of familial risk for psychotic disorder. The data suggest that the white noise task may be sensitive to psychometric and familial vulnerability for psychosis associated with alterations in top-down processing and/or salience attribution. PMID:20360211
Additive and subtractive scrambling in optional randomized response modeling.
Hussain, Zawar; Al-Sobhi, Mashail M; Al-Zahrani, Bander
2014-01-01
This article considers unbiased estimation of mean, variance and sensitivity level of a sensitive variable via scrambled response modeling. In particular, we focus on estimation of the mean. The idea of using additive and subtractive scrambling has been suggested under a recent scrambled response model. Whether it is estimation of mean, variance or sensitivity level, the proposed scheme of estimation is shown relatively more efficient than that recent model. As far as the estimation of mean is concerned, the proposed estimators perform relatively better than the estimators based on recent additive scrambling models. Relative efficiency comparisons are also made in order to highlight the performance of proposed estimators under suggested scrambling technique.
NASA Astrophysics Data System (ADS)
Yu, Zhang; Xinmiao, Lu; Guangyi, Wang; Yongcai, Hu; Jiangtao, Xu
2016-07-01
The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result, the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated, and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures. Project supported by the National Natural Science Foundation of China (Grant Nos. 61372156 and 61405053) and the Natural Science Foundation of Zhejiang Province of China (Grant No. LZ13F04001).
Yang, Kai; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M.
2010-01-01
Purpose: A simplified linear model approach was proposed to accurately model the response of a flat panel detector used for breast CT (bCT). Methods: Individual detector pixel mean and variance were measured from bCT projection images acquired both in air and with a polyethylene cylinder, with the detector operating in both fixed low gain and dynamic gain mode. Once the coefficients of the linear model are determined, the fractional additive noise can be used as a quantitative metric to evaluate the system’s efficiency in utilizing x-ray photons, including the performance of different gain modes of the detector. Results: Fractional additive noise increases as the object thickness increases or as the radiation dose to the detector decreases. For bCT scan techniques on the UC Davis prototype scanner (80 kVp, 500 views total, 30 frames∕s), in the low gain mode, additive noise contributes 21% of the total pixel noise variance for a 10 cm object and 44% for a 17 cm object. With the dynamic gain mode, additive noise only represents approximately 2.6% of the total pixel noise variance for a 10 cm object and 7.3% for a 17 cm object. Conclusions: The existence of the signal-independent additive noise is the primary cause for a quadratic relationship between bCT noise variance and the inverse of radiation dose at the detector. With the knowledge of the additive noise contribution to experimentally acquired images, system modifications can be made to reduce the impact of additive noise and improve the quantum noise efficiency of the bCT system. PMID:20831059
Yang Kai; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M.
2010-07-15
Purpose: A simplified linear model approach was proposed to accurately model the response of a flat panel detector used for breast CT (bCT). Methods: Individual detector pixel mean and variance were measured from bCT projection images acquired both in air and with a polyethylene cylinder, with the detector operating in both fixed low gain and dynamic gain mode. Once the coefficients of the linear model are determined, the fractional additive noise can be used as a quantitative metric to evaluate the system's efficiency in utilizing x-ray photons, including the performance of different gain modes of the detector. Results: Fractional additive noise increases as the object thickness increases or as the radiation dose to the detector decreases. For bCT scan techniques on the UC Davis prototype scanner (80 kVp, 500 views total, 30 frames/s), in the low gain mode, additive noise contributes 21% of the total pixel noise variance for a 10 cm object and 44% for a 17 cm object. With the dynamic gain mode, additive noise only represents approximately 2.6% of the total pixel noise variance for a 10 cm object and 7.3% for a 17 cm object. Conclusions: The existence of the signal-independent additive noise is the primary cause for a quadratic relationship between bCT noise variance and the inverse of radiation dose at the detector. With the knowledge of the additive noise contribution to experimentally acquired images, system modifications can be made to reduce the impact of additive noise and improve the quantum noise efficiency of the bCT system.
Tracking Random Walk of Individual Domain Walls in Cylindrical Nanomagnets with Resistance Noise
NASA Astrophysics Data System (ADS)
Singh, Amrita; Mukhopadhyay, Soumik; Ghosh, Arindam
2010-08-01
The stochasticity of domain-wall (DW) motion in magnetic nanowires has been probed by measuring slow fluctuations, or noise, in electrical resistance at small magnetic fields. By controlled injection of DWs into isolated cylindrical nanowires of nickel, we have been able to track the motion of the DWs between the electrical leads by discrete steps in the resistance. Closer inspection of the time dependence of noise reveals a diffusive random walk of the DWs with a universal kinetic exponent. Our experiments outline a method with which electrical resistance is able to detect the kinetic state of the DWs inside the nanowires, which can be useful in DW-based memory designs.
1/f Noise decomposition in random telegraph signals using the wavelet transform
NASA Astrophysics Data System (ADS)
Principato, Fabio; Ferrante, Gaetano
2007-07-01
By using the continuous wavelet transform with Haar basis the second-order properties of the wavelet coefficients are derived for the random telegraph signal (RTS) and for the 1/f noise which is obtained by summation of many RTSs. The correlation structure of the Haar wavelet coefficients for these processes is found. For the wavelet spectrum of the 1/f noise some characteristics related to the distribution of the relaxation times of the RTS are derived. A statistical test based on the characterization of the time evolution of the scalogram is developed, which allows to detect non-stationarity in the times τ's which compose the 1/f process and to identify the time scales of the relaxation times where the non-stationarity is localized. The proposed method allows to distinguish noise signals with 1/f power spectral density generated by RTSs, and thus gives informations on the origin of this type of 1/f noise which cannot be obtained using the Fourier transform or other methods based on second-order statistical analysis. The reported treatment is applied to both simulated and experimental signals. The present analysis is based on the McWhorter [ 1/f Noise and germanium surface properties, in: R.H. Kingstone (Ed.), Semiconductor Surface Physics, University of Pennsylvania Press, Philadelphia, PA, 1957, pp. 207-228] model of low frequency electric noise, and the obtained results are expected to prove especially useful for semiconductor devices.
On estimating the phase of a periodic waveform in additive Gaussian noise, part 3
NASA Technical Reports Server (NTRS)
Rauch, L. L.
1991-01-01
Motivated by advances in signal processing technology that support more complex algorithms, researchers have taken a new look at the problem of estimating the phase and other parameters of a nearly periodic waveform in additive Gaussian noise, based on observation during a given time interval. Parts 1 and 2 are very briefly reviewed. In part 3, the actual performances of some of the highly nonlinear estimation algorithms of parts 1 and 2 are evaluated by numerical simulation using Monte Carlo techniques.
Bag, Bidhan Chandra; Hu, Chin-Kun
2007-04-01
In a previous paper [Bag and Hu, Phys. Rev. E 73, 061107 (2006)], we studied the mean lifetime (MLT) for the escape of a Brownian particle through an unstable limit cycle driven by multiplicative colored Gaussian and additive Gaussian white noises and found resonant activation (RA) behavior. In the present paper we switch from Gaussian to non-Gaussian multiplicative colored noise. We find that in the RA phenomenon, the minimum appears at a smaller noise correlation time (tau) for non-Gaussian noises compared to Gaussian noises in the plot of MLT vs tau for a fixed noise variance; the same plot for a given noise strength increases linearly and the increasing rate is smaller for non-Gaussian noises than for the Gaussian noises; the plot of logarithm of inverse of MLT vs inverse of the strength of additive noise is Arrhenius-like for Gaussian colored noise and it becomes similar to the quantum-Kramers rate if the multiplicative noise is non-Gaussian.
Application of the Radon-FCL approach to seismic random noise suppression and signal preservation
NASA Astrophysics Data System (ADS)
Meng, Fanlei; Li, Yue; Liu, Yanping; Tian, Yanan; Wu, Ning
2016-08-01
The fractal conservation law (FCL) is a linear partial differential equation that is modified by an anti-diffusive term of lower order. The analysis indicated that this algorithm could eliminate high frequencies and preserve or amplify low/medium-frequencies. Thus, this method is quite suitable for the simultaneous noise suppression and enhancement or preservation of seismic signals. However, the conventional FCL filters seismic data only along the time direction, thereby ignoring the spatial coherence between neighbouring traces, which leads to the loss of directional information. Therefore, we consider the development of the conventional FCL into the time-space domain and propose a Radon-FCL approach. We applied a Radon transform to implement the FCL method in this article; performing FCL filtering in the Radon domain achieves a higher level of noise attenuation. Using this method, seismic reflection events can be recovered with the sacrifice of fewer frequency components while effectively attenuating more random noise than conventional FCL filtering. Experiments using both synthetic and common shot point data demonstrate the advantages of the Radon-FCL approach versus the conventional FCL method with regard to both random noise attenuation and seismic signal preservation.
Diagnosis and Repair of Random Noise in the SENSOR'S Chris-Proba
NASA Astrophysics Data System (ADS)
Mobasheri, M. R.; Zendehbad, S. A.
2013-09-01
The CHRIS sensor on the PROBA-1 satellite has imaged as push-broom way, 18 meter spatial resolution and 18 bands (1.25-11 nm) spectral resolution from earth since 2001. After 13 years of the life of the sensor because of many reasons including the influence of solar radiation and magnetic fields of Earth and Sun, behaviour of the response function of the detector exit from calibration mode and performance of some CCDs has failed. This has caused some image information in some bands have been deleted or invalid. In some images, some dark streaks or light bands in different locations need to be created to identify and correct. In this paper all type of noise which likely impact on sensor data by CHRIS from record and transmission identified, calculated and formulated and method is presented through modifying. To do this we use the In-fight and On-ground measurements parameters. Otherwise creation of noise in images is divided into horizontal and vertical noise. Due to the random noise is created in different bands and different locations, those images in which noise is observed is used. In this paper, techniques to identify and correct the dark or pale stripe detail of the images are created. Finally, the noisy images were compared before and after the reform and effective algorithms to detect and correct errors were demonstrated.
Effect of Acute Noise Exposure on Salivary Cortisol: A Randomized Controlled Trial.
Pouryaghoub, Gholamreza; Mehrdad, Ramin; Valipouri, Alireza
2016-10-01
Cardiovascular adverse effects are interesting aspects of occupational noise exposure. One possible mechanism of these effects is an alternation in hypothalamic-pituitary-adrenal axis. Our aim was to measure salivary cortisol response to relatively high-intensity noise exposure in a controlled randomized trial study. We exposed 50 male volunteers to 90 dBA noise for 20 minutes and compared their level of salivary cortisol with 50 non-exposed controls. Salivary samples obtained before and after exposure. Before intervention means (SD) salivary cortisol level were 3.24 (0.47)ng/ml and 3.25 (0.41)ng/ml for exposed and non-exposed groups respectively. Mean salivary cortisol level increased to 4.17 ng/mlafter intervention in exposure group. This increment was statistically significant (P=0.00). Mean salivary cortisol level of the non-exposed group had statistically non-significant decrement after this period (0.2 ng/ml). The difference between salivary cortisol level of non-exposed and exposed groups after the intervention was statistically significant. Noise exposure may affect the hypothalamic-pituitary-adrenal axis activity, and this may be one of the mechanisms of noise exposure cardiovascular effects.
NASA Astrophysics Data System (ADS)
Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fai, Lukong Cornelius
2017-02-01
We address the dynamics of quantum correlations, including entanglement and quantum discord of a three-qubit system interacting with a classical pure dephasing random telegraph noise (RTN) in three different physical environmental situations (independent, mixed and common environments). Two initial entangled states of the system are examined, namely the Greenberger-Horne-Zeilinger (GHZ)- and Werner (W)-type states. The classical noise is introduced as a stochastic process affecting the energy splitting of the qubits. With the help of suitable measures of tripartite entanglement (entanglement witnesses and lower bound of concurrence) and quantum discord (global quantum discord and quantum dissension), we show that the evolution of quantum correlations is not only affected by the type of the system-environment interaction but also by the input configuration of the qubits and the memory properties of the environmental noise. Indeed, depending on the memory properties of the environmental noise and the initial state considered, we find that independent, common and mixed environments can play opposite roles in preserving quantum correlations, and that the sudden death and revival phenomena or the survival of quantum correlations may occur. On the other hand, we also show that the W-type state has strong dynamics under this noise than the GHZ-type ones.
Estimating random errors due to shot noise in backscatter lidar observations
NASA Astrophysics Data System (ADS)
Liu, Zhaoyan; Hunt, William; Vaughan, Mark; Hostetler, Chris; McGill, Matthew; Powell, Kathleen; Winker, David; Hu, Yongxiang
2006-06-01
We discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson- distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root mean square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF, uncertainties can be reliably calculated from or for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar and tested using data from the Lidar In-space Technology Experiment.
Estimating random errors due to shot noise in backscatter lidar observations.
Liu, Zhaoyan; Hunt, William; Vaughan, Mark; Hostetler, Chris; McGill, Matthew; Powell, Kathleen; Winker, David; Hu, Yongxiang
2006-06-20
We discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson- distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root mean square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF, uncertainties can be reliably calculated from or for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar and tested using data from the Lidar In-space Technology Experiment.
Spatial Prediction Filtering of Acoustic Clutter and Random Noise in Medical Ultrasound Imaging.
Shin, Junseob; Huang, Lianjie
2017-02-01
One of the major challenges in array-based medical ultrasound imaging is the image quality degradation caused by sidelobes and off-axis clutter, which is an inherent limitation of the conventional delay-and-sum (DAS) beamforming operating on a finite aperture. Ultrasound image quality is further degraded in imaging applications involving strong tissue attenuation and/or low transmit power. In order to effectively suppress acoustic clutter from off-axis targets and random noise in a robust manner, we introduce in this paper a new adaptive filtering technique called frequency-space (F-X) prediction filtering or FXPF, which was first developed in seismic imaging for random noise attenuation. Seismologists developed FXPF based on the fact that linear and quasilinear events or wavefronts in the time-space (T-X) domain are manifested as a superposition of harmonics in the frequency-space (F-X) domain, which can be predicted using an auto-regressive (AR) model. We describe the FXPF technique as a spectral estimation or a direction-of-arrival problem, and explain why adaptation of this technique into medical ultrasound imaging is beneficial. We apply our new technique to simulated and tissue-mimicking phantom data. Our results demonstrate that FXPF achieves CNR improvements of 26% in simulated noise-free anechoic cyst, 109% in simulated anechoic cyst contaminated with random noise of 15 dB SNR, and 93% for experimental anechoic cyst from a custom-made tissue-mimicking phantom. Our findings suggest that FXPF is an effective technique to enhance ultrasound image contrast and has potential to improve the visualization of clinically important anatomical structures and diagnosis of diseased conditions.
Estimating Random Errors Due to Shot Noise in Backscatter Lidar Observations
NASA Technical Reports Server (NTRS)
Liu, Zhaoyan; Hunt, William; Vaughan, Mark A.; Hostetler, Chris A.; McGill, Matthew J.; Powell, Kathy; Winker, David M.; Hu, Yongxiang
2006-01-01
In this paper, we discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson-distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root-mean-square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF uncertainties can be reliably calculated from/for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar and tested using data from the Lidar In-space Technology Experiment (LITE). OCIS Codes:
Barkhausen noise in the Random Field Ising Magnet NdFeB
NASA Astrophysics Data System (ADS)
Xu, Jian; Silevitch, Daniel; Rosenbaum, Thomas
2015-03-01
With the application of a magnetic field transverse to the magnetic easy axis, sintered blocks of the rare-earth ferromagnet Nd2Fe14B form a realization of the Random-Field Ising Model at room temperature. We study domain reversal and avalanche dynamics through an analysis of the Barkhausen noise. Power-law behavior with a cutoff is observed in the avalanche energy spectrum, consistent with theoretical predictions for disordered materials. Two regimes of behavior are found, one at low temperature and high transverse field where the system shows behavior consistent with randomness-dominated dynamics, and a high-temperature, low-transverse-field regime in which thermal fluctuations dominate the dynamics. In the randomness-dominated regime, the critical exponents are consistent with mean-field predictions for heavily disordered system, whereas in the thermal-fluctuation regime, the critical exponents differ substantially from the mean-field predictions.
NASA Astrophysics Data System (ADS)
Morse, Robert P.; Roper, Peter
2000-05-01
Analog electrical stimulation of the cochlear nerve (the nerve of hearing) by a cochlear implant is an effective method of providing functional hearing to profoundly deaf people. Recent physiological and computational experiments have shown that analog cochlear implants are unlikely to convey certain speech cues by the temporal pattern of evoked nerve discharges. However, these experiments have also shown that the optimal addition of noise to cochlear implant signals can enhance the temporal representation of speech cues [R. P. Morse and E. F. Evans, Nature Medicine 2, 928 (1996)]. We present a simple model to explain this enhancement of temporal representation. Our model derives from a rate equation for the mean threshold-crossing rate of an infinite set of parallel discriminators (level-crossing detectors); a system that well describes the time coding of information by a set of nerve fibers. Our results show that the optimal transfer of information occurs when the threshold level of each discriminator is equal to the root-mean-square noise level. The optimal transfer of information by a cochlear implant is therefore expected to occur when the internal root-mean-square noise level of each stimulated fiber is approximately equal to the nerve threshold. When interpreted within the framework of aperiodic stochastic resonance, our results indicate therefore that for an infinite array of discriminators, a tuning of the noise is still necessary for optimal performance. This is in contrast to previous results [Collins, Chow, and Imhoff, Nature 376, 236 (1995); Chialvo, Longtin, and Müller-Gerking, Phys. Rev. E 55, 1798 (1997)] on arrays of FitzHugh-Nagumo neurons.
NASA Astrophysics Data System (ADS)
Jia, Rui-Sheng; Liang, Yong-Quan; Hua, Yu-Cong; Sun, Hong-Mei; Xia, Fang-Fang
2016-10-01
Microseismic signal is inevitably mixed with non-stationary random noise in the process of acquisition, which is difficult to be separated from non-stationary random noise by using the traditional methods of linear filtering and spectrum analysis. Thus a suppressing method of non-stationary random noise is proposed. It firstly conducts the multi-scale decomposition of microseismic signal containing noises based on ensemble empirical mode decomposition (EEMD). Several components of Intrinsic Mode Functions (IMFs) are obtained and they are arranged in descending order according to their frequencies. In order to accurately identify the signals and noises in these IMF components and compare the normal microseismic signals with noises, the quantity of permutation entropy is introduced to describe the characteristics of normal microseismic signal. The threshold value of permutation entropy is used to extract the IMF components conforming to the characteristics of microseismic signal. These IMF components are reconstructed to suppress the noise. Through simulation and the test for the practical microseismic monitoring data, it is indicated that the method has a better treatment effect for non-stationary random noise in microseismic signal.
Systematic method for electrical characterization of random telegraph noise in MOSFETs
NASA Astrophysics Data System (ADS)
Marquez, Carlos; Rodriguez, Noel; Gamiz, Francisco; Ohata, Akiko
2017-02-01
This work introduces a new protocol which aims to facilitate massive on-wafer characterization of Random Telegraph Noise (RTN) in MOS transistors. The methodology combines the noise spectral density scanning by gate bias assisted with a modified Weighted Time Lag Plot algorithm to identify unequivocally the single-trap RTN signals in optimum bias conditions for their electrical characterization. The strength of the method is demonstrated by its application for monitoring the distribution of traps over the transistors of a SOI wafer. The influence of the back-gate bias on the RTN characteristics of the SOI devices with coupled front- and back-interfaces has revealed unusual characteristics compatible with the carrier emission to the gate metal contact.
Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks
Corndorf, Eric; Liang Chuang; Kanter, Gregory S.; Kumar, Prem; Yuen, Horace P.
2005-06-15
We demonstrate high-rate randomized data-encryption through optical fibers using the inherent quantum-measurement noise of coherent states of light. Specifically, we demonstrate 650 Mbit/s data encryption through a 10 Gbit/s data-bearing, in-line amplified 200-km-long line. In our protocol, legitimate users (who share a short secret key) communicate using an M-ry signal set while an attacker (who does not share the secret key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performance criteria for the cryptographic objective of key generation (quantum key-generation), one possible set of performance criteria for the cryptographic objective of data encryption is established and carefully considered.
Super-resolution techniques for velocity estimation using UWB random noise radar signals
NASA Astrophysics Data System (ADS)
Dawood, Muhammad; Quraishi, Nafish; Alejos, Ana V.
2011-06-01
The Doppler spread pertaining to the ultrawideband (UWB) radar signals from moving target is directly proportional to the bandwidth of the transmitted signal and the target velocity. Using typical FFT-based methods, the estimation of true velocities pertaining to two targets moving with relatively close velocities within a radar range bin is problematic. In this paper, we extend the Multiple Signal Classification (MUSIC) algorithm to resolve targets moving velocities closer to each other within a given range bin for UWB random noise radar waveforms. Simulated and experimental results are compared for various target velocities using both narrowband (200MHz) and wideband (1GHz) noise radar signals, clearly establishing the unbiased and unambiguous velocity estimations using the MUSIC algorithm.
NASA Astrophysics Data System (ADS)
Alexander, David B.; Narayanan, Ram M.; Himed, Braham
2016-05-01
The performance of different random array geometries is analyzed and compared. Three phased array geometries are considered: linear arrays with non-uniform randomized spacing between elements, circular arrays with non-uniform element radii, and ad hoc sensor networks with elements located randomly within a circular area. For each of these array geometries, computer simulations modeled the transmission, reflection from an arbitrary target, and reception of signals. The effectiveness of each array's beamforming techniques was measured by taking the peak cross-correlation between the received signal and a time-delayed replica of the original transmitted signal. For each array type, the correlation performance was obtained for transmission and reception of both chirp waveforms and ultra-wideband noise signals. It was found that the non-uniform linear array generally produced the highest correlation between transmitted and reflected signals. The non-uniform circular and ad hoc arrays demonstrated the most consistent performance with respect to noise signal bandwidth. The effect of scan angle was found to have a significant impact on the correlation performance of the linear arrays, where the correlation performance declines as the scan angle moves away from broadside to the array.
Nedelec, Sophie L; Simpson, Stephen D; Morley, Erica L; Nedelec, Brendan; Radford, Andrew N
2015-10-22
Anthropogenic noise impacts behaviour and physiology in many species, but responses could change with repeat exposures. As repeat exposures can vary in regularity, identifying regimes with less impact is important for regulation. We use a 16-day split-brood experiment to compare effects of regular and random acoustic noise (playbacks of recordings of ships), relative to ambient-noise controls, on behaviour, growth and development of larval Atlantic cod (Gadus morhua). Short-term noise caused startle responses in newly hatched fish, irrespective of rearing noise. Two days of both regular and random noise regimes reduced growth, while regular noise led to faster yolk sac use. After 16 days, growth in all three sound treatments converged, although fish exposed to regular noise had lower body width-length ratios. Larvae with lower body width-length ratios were easier to catch in a predator-avoidance experiment. Our results demonstrate that the timing of acoustic disturbances can impact survival-related measures during development. Much current work focuses on sound levels, but future studies should consider the role of noise regularity and its importance for noise management and mitigation measures.
Nedelec, Sophie L.; Simpson, Stephen D.; Morley, Erica L.; Nedelec, Brendan; Radford, Andrew N.
2015-01-01
Anthropogenic noise impacts behaviour and physiology in many species, but responses could change with repeat exposures. As repeat exposures can vary in regularity, identifying regimes with less impact is important for regulation. We use a 16-day split-brood experiment to compare effects of regular and random acoustic noise (playbacks of recordings of ships), relative to ambient-noise controls, on behaviour, growth and development of larval Atlantic cod (Gadus morhua). Short-term noise caused startle responses in newly hatched fish, irrespective of rearing noise. Two days of both regular and random noise regimes reduced growth, while regular noise led to faster yolk sac use. After 16 days, growth in all three sound treatments converged, although fish exposed to regular noise had lower body width–length ratios. Larvae with lower body width–length ratios were easier to catch in a predator-avoidance experiment. Our results demonstrate that the timing of acoustic disturbances can impact survival-related measures during development. Much current work focuses on sound levels, but future studies should consider the role of noise regularity and its importance for noise management and mitigation measures. PMID:26468248
Adaptive box filters for removal of random noise from digital images
NASA Technical Reports Server (NTRS)
Eliason, Eric M.; Mcewen, Alfred S.
1990-01-01
Adaptive box-filtering algorithms to remove random bit errors and to smooth noisy data have been developed. For both procedures, the standard deviation of those pixels within a local box surrounding each pixel is used. A series of two or three filters with decreasing box sizes can be run to clean up extremely noisy images and to remove bit errors near sharp edges. The second filter, for noise smoothing, is similar to the 'sigma filter' of Lee (1983). The technique effectively reduces speckle in radar images without eliminating fine details.
Barkhausen noise in the random field Ising magnet Nd2Fe14B
NASA Astrophysics Data System (ADS)
Xu, J.; Silevitch, D. M.; Dahmen, K. A.; Rosenbaum, T. F.
2015-07-01
With sintered needles aligned and a magnetic field applied transverse to its easy axis, the rare-earth ferromagnet Nd2Fe14B becomes a room-temperature realization of the random field Ising model. The transverse field tunes the pinning potential of the magnetic domains in a continuous fashion. We study the magnetic domain reversal and avalanche dynamics between liquid helium and room temperatures at a series of transverse fields using a Barkhausen noise technique. The avalanche size and energy distributions follow power-law behavior with a cutoff dependent on the pinning strength dialed in by the transverse field, consistent with theoretical predictions for Barkhausen avalanches in disordered materials. A scaling analysis reveals two regimes of behavior: one at low temperature and high transverse field, where the dynamics are governed by the randomness, and the second at high temperature and low transverse field, where thermal fluctuations dominate the dynamics.
2D stochastic-integral models for characterizing random grain noise in titanium alloys
Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Cherry, Matthew; Pilchak, Adam; Knopp, Jeremy S.; Blodgett, Mark P.
2014-02-18
We extend our previous work, in which we applied high-dimensional model representation (HDMR) and analysis of variance (ANOVA) concepts to the characterization of a metallic surface that has undergone a shot-peening treatment to reduce residual stresses, and has, therefore, become a random conductivity field. That example was treated as a onedimensional problem, because those were the only data available. In this study, we develop a more rigorous two-dimensional model for characterizing random, anisotropic grain noise in titanium alloys. Such a model is necessary if we are to accurately capture the 'clumping' of crystallites into long chains that appear during the processing of the metal into a finished product. The mathematical model starts with an application of the Karhunen-Loève (K-L) expansion for the random Euler angles, θ and φ, that characterize the orientation of each crystallite in the sample. The random orientation of each crystallite then defines the stochastic nature of the electrical conductivity tensor of the metal. We study two possible covariances, Gaussian and double-exponential, which are the kernel of the K-L integral equation, and find that the double-exponential appears to satisfy measurements more closely of the two. Results based on data from a Ti-7Al sample will be given, and further applications of HDMR and ANOVA will be discussed.
1 /f α noise and generalized diffusion in random Heisenberg spin systems
NASA Astrophysics Data System (ADS)
Agarwal, Kartiek; Demler, Eugene; Martin, Ivar
2015-11-01
We study the "flux-noise" spectrum of random-bond quantum Heisenberg spin systems using a real-space renormalization group (RSRG) procedure that accounts for both the renormalization of the system Hamiltonian and of a generic probe that measures the noise. For spin chains, we find that the dynamical structure factor Sq(f ) , at finite wave vector q , exhibits a power-law behavior both at high and low frequencies f , with exponents that are connected to one another and to an anomalous dynamical exponent through relations that differ at T =0 and T =∞ . The low-frequency power-law behavior of the structure factor is inherited by any generic probe with a finite bandwidth and is of the form 1 /fα with 0.5 <α <1 . An analytical calculation of the structure factor, assuming a limiting distribution of the RG flow parameters (spin size, length, bond strength) confirms numerical findings. More generally, we demonstrate that this form of the structure factor, at high temperatures, is a manifestation of anomalous diffusion which directly follows from a generalized spin-diffusion propagator. We also argue that 1 /f -noise is intimately connected to many-body-localization at finite temperatures. In two dimensions, the RG procedure is less reliable; however, it becomes convergent for quasi-one-dimensional geometries where we find that one-dimensional 1 /fα behavior is recovered at low frequencies; the latter configurations are likely representative of paramagnetic spin networks that produce 1 /fα noise in SQUIDs.
Agnihotri, Pratik; Bandyopadhyay, Supriyo
2012-05-30
Using ensemble Monte Carlo simulation, we have studied hot carrier spin dynamics and spin noise in a multi-subband GaAs quantum wire in the presence of a randomly varying Rashba spin-orbit interaction. The random variation reduces the carrier ensemble's spin dephasing time due to the D'yakonov-Perel' mechanism, but otherwise makes no qualitative difference to the temporal spin relaxation characteristics. However, it makes a qualitative difference to the spatial spin relaxation characteristics which change from monotonic and smooth to non-monotonic and chaotic because of a complex interplay between carriers in different subbands. As far as spin fluctuation and spin noise are concerned, the random variation has no major effect except that the low-frequency noise power spectral density increases slightly when the magnitude of the Rashba spin-orbit interaction field is varied randomly while holding the direction constant.
NASA Astrophysics Data System (ADS)
Fu, Jack; Khoury, Jehad; Cronin-Golomb, Mark; Woods, Charles L.
1995-01-01
Computer simulations of photorefractive thresholding filters for the reduction of artifact or dust noise demonstrate an increase in signal-to-noise ratio (SNR) of 70% to 95%, respectively, of that provided by the Wiener filter for inputs with a SNR of approximately 3. These simple, nearly optimal filters use a spectral thresholding profile that is proportional to the envelope of the noise spectrum. Alternative nonlinear filters with either 1/ nu or constant thresholding profiles increase the SNR almost as much as the noise-envelope thresholding filter.
Catalan, Ana; Simons, Claudia J. P.; Bustamante, Sonia; Drukker, Marjan; Madrazo, Aranzazu; de Artaza, Maider Gonzalez; Gorostiza, Iñigo; van Os, Jim; Gonzalez-Torres, Miguel A.
2014-01-01
We wished to replicate evidence that an experimental paradigm of speech illusions is associated with psychotic experiences. Fifty-four patients with a first episode of psychosis (FEP) and 150 healthy subjects were examined in an experimental paradigm assessing the presence of speech illusion in neutral white noise. Socio-demographic, cognitive function and family history data were collected. The Positive and Negative Syndrome Scale (PANSS) was administered in the patient group and the Structured Interview for Schizotypy-Revised (SIS-R), and the Community Assessment of Psychic Experiences (CAPE) in the control group. Patients had a much higher rate of speech illusions (33.3% versus 8.7%, ORadjusted: 5.1, 95% CI: 2.3–11.5), which was only partly explained by differences in IQ (ORadjusted: 3.4, 95% CI: 1.4–8.3). Differences were particularly marked for signals in random noise that were perceived as affectively salient (ORadjusted: 9.7, 95% CI: 1.8–53.9). Speech illusion tended to be associated with positive symptoms in patients (ORadjusted: 3.3, 95% CI: 0.9–11.6), particularly affectively salient illusions (ORadjusted: 8.3, 95% CI: 0.7–100.3). In controls, speech illusions were not associated with positive schizotypy (ORadjusted: 1.1, 95% CI: 0.3–3.4) or self-reported psychotic experiences (ORadjusted: 1.4, 95% CI: 0.4–4.6). Experimental paradigms indexing the tendency to detect affectively salient signals in noise may be used to identify liability to psychosis. PMID:25020079
Learning one-dimensional geometric patterns under one-sided random misclassification noise
Goldberg, P.W.; Goldman, S.A.
1994-07-01
Developing the ability to recognize a landmark from a visual image of a robot`s current location is a fundamental problem in robotics. The authors consider the problem of PAC-learning the concept class of geometric patterns where the target geometric pattern is a configuration of k points in the real line. Each instance is a configuration of n points on the real line, where it is labeled according to whether or not it visually resembles the target pattern. They relate the concept class of geometric patterns to the landmark recognition problem and then present a polynomial-time algorithm that PAC-learns the class of one-dimensional geometric patterns when the negative examples are corrupted by a large amount of random misclassification noise.
Structure-oriented singular value decomposition for random noise attenuation of seismic data
NASA Astrophysics Data System (ADS)
Gan, Shuwei; Chen, Yangkang; Zu, Shaohuan; Qu, Shan; Zhong, Wei
2015-04-01
Singular value decomposition (SVD) can be used both globally and locally to remove random noise in order to improve the signal-to-noise ratio (SNR) of seismic data. However, it can only be applied to seismic data with simple structure such that there is only one dip component in each processing window. We introduce a novel denoising approach that utilizes a structure-oriented SVD, and this approach can enhance seismic reflections with continuous slopes. We create a third dimension for a 2D seismic profile by using the plane-wave prediction operator to predict each trace from its neighbour traces and apply SVD along this dimension. The added dimension is equivalent to flattening the seismic reflections within a neighbouring window. The third dimension is then averaged to decrease the dimension. We use two synthetic examples with different complexities and one field data example to demonstrate the performance of the proposed structure-oriented SVD. Compared with global and local SVDs, and f-x deconvolution, the structure-oriented SVD can obtain much clearer reflections and preserve more useful energy.
Addition of visual noise boosts evoked potential-based brain-computer interface
Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili
2014-01-01
Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7–36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs. PMID:24828128
3D filtering technique in presence of additive noise in color videos implemented on DSP
NASA Astrophysics Data System (ADS)
Ponomaryov, Volodymyr I.; Montenegro-Monroy, Hector; Palacios, Alfredo
2014-05-01
A filtering method for color videos contaminated by additive noise is presented. The proposed framework employs three filtering stages: spatial similarity filtering, neighboring frame denoising, and spatial post-processing smoothing. The difference with other state-of- the-art filtering methods, is that this approach, based on fuzzy logic, analyses basic and related gradient values between neighboring pixels into a 7 fi 7 sliding window in the vicinity of a central pixel in each of the RGB channels. Following, the similarity measures between the analogous pixels in the color bands are taken into account during the denoising. Next, two neighboring video frames are analyzed together estimating local motions between the frames using block matching procedure. In the final stage, the edges and smoothed areas are processed differently in a current frame during the post-processing filtering. Numerous simulations results confirm that this 3D fuzzy filter perform better than other state-of-the- art methods, such as: 3D-LLMMSE, WMVCE, RFMDAF, FDARTF G, VBM3D and NLM, in terms of objective criteria (PSNR, MAE, NCD and SSIM) as well as subjective perception via human vision system in the different color videos. An efficiency analysis of the designed and other mentioned filters have been performed on the DSPs TMS320 DM642 and TMS320DM648 by Texas Instruments through MATLAB and Simulink module showing that the novel 3D fuzzy filter can be used in real-time processing applications.
NASA Astrophysics Data System (ADS)
Tomita, Toshihiro; Miyaji, Kousuke
2016-04-01
The dependence of random telegraph noise (RTN) amplitude distribution on the number of traps and trap depth position is investigated using three-dimensional Monte Carlo device simulation including random dopant fluctuation (RDF) in a 30 nm NAND multi level flash memory. The ΔV th tail distribution becomes broad at fixed double traps, indicating that the number of traps greatly affects the worst RTN characteristics. It is also found that for both fixed single and fixed double traps, the ΔV th distribution in the lowest cell threshold voltage (V th) state shows the broadest distribution among all cell V th states. This is because the drain current flows at the channel surface in the lowest cell V th state, while at a high cell V th, it flows at the deeper position owing to the fringing coupling between the control gate (CG) and the channel. In this work, the ΔV th distribution with the number of traps following the Poisson distribution is also considered to cope with the variations in trap number. As a result, it is found that the number of traps is an important factor for understanding RTN characteristics. In addition, considering trap position in the tunnel oxide thickness direction is also an important factor.
Mikami, Takuya; Kanno, Kazutaka; Aoyama, Kota; Uchida, Atsushi; Ikeguchi, Tohru; Harayama, Takahisa; Sunada, Satoshi; Arai, Ken-ichi; Yoshimura, Kazuyuki; Davis, Peter
2012-01-01
We analyze the time for growth of bit entropy when generating nondeterministic bits using a chaotic semiconductor laser model. The mechanism for generating nondeterministic bits is modeled as a 1-bit sampling of the intensity of light output. Microscopic noise results in an ensemble of trajectories whose bit entropy increases with time. The time for the growth of bit entropy, called the memory time, depends on both noise strength and laser dynamics. It is shown that the average memory time decreases logarithmically with increase in noise strength. It is argued that the ratio of change in average memory time with change in logarithm of noise strength can be used to estimate the intrinsic dynamical entropy rate for this method of random bit generation. It is also shown that in this model the entropy rate corresponds to the maximum Lyapunov exponent.
NASA Technical Reports Server (NTRS)
Kalson, S.
1986-01-01
Previous work in the area of choosing channel quantization levels for a additive white Gaussian noise channel composed of one receiver-demodulator is reviewed, and how this applies to the Deep Space Network composed of several receiver-demodulators (space diversity reception) is shown. Viterbi decoding for the resulting quantized channel is discussed.
Detection in fixed and random noise in foveal and parafoveal vision explained by template learning
NASA Technical Reports Server (NTRS)
Beard, B. L.; Ahumada, A. J. Jr; Watson, A. B. (Principal Investigator)
1999-01-01
Foveal and parafoveal contrast detection thresholds for Gabor and checkerboard targets were measured in white noise by means of a two-interval forced-choice paradigm. Two white-noise conditions were used: fixed and twin. In the fixed noise condition a single noise sample was presented in both intervals of all the trials. In the twin noise condition the same noise sample was used in the two intervals of a trial, but a new sample was generated for each trial. Fixed noise conditions usually resulted in lower thresholds than twin noise. Template learning models are presented that attribute this advantage of fixed over twin noise either to fixed memory templates' reducing uncertainty by incorporation of the noise or to the introduction, by the learning process itself, of more variability in the twin noise condition. Quantitative predictions of the template learning process show that it contributes to the accelerating nonlinear increase in performance with signal amplitude at low signal-to-noise ratios.
Burge, Johannes
2017-01-01
Accuracy Maximization Analysis (AMA) is a recently developed Bayesian ideal observer method for task-specific dimensionality reduction. Given a training set of proximal stimuli (e.g. retinal images), a response noise model, and a cost function, AMA returns the filters (i.e. receptive fields) that extract the most useful stimulus features for estimating a user-specified latent variable from those stimuli. Here, we first contribute two technical advances that significantly reduce AMA’s compute time: we derive gradients of cost functions for which two popular estimators are appropriate, and we implement a stochastic gradient descent (AMA-SGD) routine for filter learning. Next, we show how the method can be used to simultaneously probe the impact on neural encoding of natural stimulus variability, the prior over the latent variable, noise power, and the choice of cost function. Then, we examine the geometry of AMA’s unique combination of properties that distinguish it from better-known statistical methods. Using binocular disparity estimation as a concrete test case, we develop insights that have general implications for understanding neural encoding and decoding in a broad class of fundamental sensory-perceptual tasks connected to the energy model. Specifically, we find that non-orthogonal (partially redundant) filters with scaled additive noise tend to outperform orthogonal filters with constant additive noise; non-orthogonal filters and scaled additive noise can interact to sculpt noise-induced stimulus encoding uncertainty to match task-irrelevant stimulus variability. Thus, we show that some properties of neural response thought to be biophysical nuisances can confer coding advantages to neural systems. Finally, we speculate that, if repurposed for the problem of neural systems identification, AMA may be able to overcome a fundamental limitation of standard subunit model estimation. As natural stimuli become more widely used in the study of psychophysical and
A white noise approach to the Feynman integrand for electrons in random media
NASA Astrophysics Data System (ADS)
Grothaus, M.; Riemann, F.; Suryawan, H. P.
2014-01-01
Using the Feynman path integral representation of quantum mechanics it is possible to derive a model of an electron in a random system containing dense and weakly coupled scatterers [see F. Edwards and Y. B. Gulyaev, "The density of states of a highly impure semiconductor," Proc. Phys. Soc. 83, 495-496 (1964)]. The main goal of this paper is to give a mathematically rigorous realization of the corresponding Feynman integrand in dimension one based on the theory of white noise analysis. We refine and apply a Wick formula for the product of a square-integrable function with Donsker's delta functions and use a method of complex scaling. As an essential part of the proof we also establish the existence of the exponential of the self-intersection local times of a one-dimensional Brownian bridge. As a result we obtain a neat formula for the propagator with identical start and end point. Thus, we obtain a well-defined mathematical object which is used to calculate the density of states [see, e.g., F. Edwards and Y. B. Gulyaev, "The density of states of a highly impure semiconductor," Proc. Phys. Soc. 83, 495-496 (1964)].
Ambient awareness: From random noise to digital closeness in online social networks.
Levordashka, Ana; Utz, Sonja
2016-07-01
Ambient awareness refers to the awareness social media users develop of their online network in result of being constantly exposed to social information, such as microblogging updates. Although each individual bit of information can seem like random noise, their incessant reception can amass to a coherent representation of social others. Despite its growing popularity and important implications for social media research, ambient awareness on public social media has not been studied empirically. We provide evidence for the occurrence of ambient awareness and examine key questions related to its content and functions. A diverse sample of participants reported experiencing awareness, both as a general feeling towards their network as a whole, and as knowledge of individual members of the network, whom they had not met in real life. Our results indicate that ambient awareness can develop peripherally, from fragmented information and in the relative absence of extensive one-to-one communication. We report the effects of demographics, media use, and network variables and discuss the implications of ambient awareness for relational and informational processes online.
Ambient awareness: From random noise to digital closeness in online social networks
Levordashka, Ana; Utz, Sonja
2016-01-01
Ambient awareness refers to the awareness social media users develop of their online network in result of being constantly exposed to social information, such as microblogging updates. Although each individual bit of information can seem like random noise, their incessant reception can amass to a coherent representation of social others. Despite its growing popularity and important implications for social media research, ambient awareness on public social media has not been studied empirically. We provide evidence for the occurrence of ambient awareness and examine key questions related to its content and functions. A diverse sample of participants reported experiencing awareness, both as a general feeling towards their network as a whole, and as knowledge of individual members of the network, whom they had not met in real life. Our results indicate that ambient awareness can develop peripherally, from fragmented information and in the relative absence of extensive one-to-one communication. We report the effects of demographics, media use, and network variables and discuss the implications of ambient awareness for relational and informational processes online. PMID:27375343
A white noise approach to the Feynman integrand for electrons in random media
Grothaus, M. Riemann, F.; Suryawan, H. P.
2014-01-15
Using the Feynman path integral representation of quantum mechanics it is possible to derive a model of an electron in a random system containing dense and weakly coupled scatterers [see F. Edwards and Y. B. Gulyaev, “The density of states of a highly impure semiconductor,” Proc. Phys. Soc. 83, 495–496 (1964)]. The main goal of this paper is to give a mathematically rigorous realization of the corresponding Feynman integrand in dimension one based on the theory of white noise analysis. We refine and apply a Wick formula for the product of a square-integrable function with Donsker's delta functions and use a method of complex scaling. As an essential part of the proof we also establish the existence of the exponential of the self-intersection local times of a one-dimensional Brownian bridge. As a result we obtain a neat formula for the propagator with identical start and end point. Thus, we obtain a well-defined mathematical object which is used to calculate the density of states [see, e.g., F. Edwards and Y. B. Gulyaev, “The density of states of a highly impure semiconductor,” Proc. Phys. Soc. 83, 495–496 (1964)].
The effectiveness of correcting codes in reception in the whole in additive normal white noise
NASA Technical Reports Server (NTRS)
Shtarkov, Y. M.
1974-01-01
Some possible criteria for estimating the effectiveness of correcting codes are presented, and the energy effectiveness of correcting codes is studied for symbol-by-symbol reception. Expressions for the energetic effectiveness of binary correcting codes for reception in the whole are produced. Asymptotic energetic effectiveness and finite signal/noise ratio cases are considered.
Investigation of the noise-like structures of the total scattering cross-section of random media.
Tseng, Snow; Taflove, Allen; Maitland, Duncan; Backman, Vadim; Walsh, Joseph
2005-08-08
The pseudospectral time-domain (PSTD) algorithm is implemented to numerically solve Maxwell's equations to obtain the optical properties of millimeter-scale random media consisting of hundreds of micron-scale dielectric scatterers. Our methodology accounts for near-field interactions and coherent interference effects that are not easily modeled using other techniques. In this paper, we show that the total scattering cross-section (TSCS) of a cluster of closely packed scatterers exhibits a high-frequency oscillation structure, similar to noise. Furthermore, the characteristics and origin of such noise-like oscillation structure have been analyzed and determined based on first-principles.
Mino, H
1993-03-01
A method of estimating the parameters of nonstationary ionic channel current fluctuations (NST-ICF's) in the presence of an additive measurement noise is proposed. The case is considered in which the sample records of NST-ICT's corrupted by the measurement noise are available for estimation, where the experiment can be repeated many times to calculate the statistics of noisy NST-ICF's. The conventional second-order regression model expressed in terms of the mean and variance of noisy NST-ICF's is derived theoretically, assuming that NST-ICF's are binomially distributed. Since the coefficients of the regression model are explicitly related to not only the parameters of NST-ICF's but also the measurement noise component, the parameters of NST-ICF's that are of interest can be estimated without interference from the additive measurement noise by identifying the regression coefficients. Furthermore, the accuracy of the parameter estimates is theoretically evaluated using the error-covariance matrix of the regression coefficients. The validity and effectiveness of the proposed method are demonstrated in a Monte Carlo simulation in which a fundamental kinetic scheme of Na+ channels is treated as a specific example.
[Denoising and assessing method of additive noise in the ultraviolet spectrum of SO2 in flue gas].
Zhou, Tao; Sun, Chang-Ku; Liu, Bin; Zhao, Yu-Mei
2009-11-01
The problem of denoising and assessing method of the spectrum of SO2 in flue gas was studied based on DOAS. The denoising procedure of the additive noise in the spectrum was divided into two parts: reducing the additive noise and enhancing the useful signal. When obtaining the absorption feature of measured gas, a multi-resolution preprocessing method of original spectrum was adopted for denoising by DWT (discrete wavelet transform). The signal energy operators in different scales were used to choose the denoising threshold and separate the useful signal from the noise. On the other hand, because there was no sudden change in the spectra of flue gas in time series, the useful signal component was enhanced according to the signal time dependence. And the standard absorption cross section was used to build the ideal absorption spectrum with the measured gas temperature and pressure. This ideal spectrum was used as the desired signal instead of the original spectrum in the assessing method to modify the SNR (signal-noise ratio). There were two different environments to do the proof test-in the lab and at the scene. In the lab, SO2 was measured several times with the system using this method mentioned above. The average deviation was less than 1.5%, while the repeatability was less than 1%. And the short range experiment data were better than the large range. In the scene of a power plant whose concentration of flue gas had a large variation range, the maximum deviation of this method was 2.31% in the 18 groups of contrast data. The experimental results show that the denoising effect of the scene spectrum was better than that of the lab spectrum. This means that this method can improve the SNR of the spectrum effectively, which is seriously polluted by additive noise.
Entropy and long-range memory in random symbolic additive Markov chains
NASA Astrophysics Data System (ADS)
Melnik, S. S.; Usatenko, O. V.
2016-06-01
The goal of this paper is to develop an estimate for the entropy of random symbolic sequences with elements belonging to a finite alphabet. As a plausible model, we use the high-order additive stationary ergodic Markov chain with long-range memory. Supposing that the correlations between random elements of the chain are weak, we express the conditional entropy of the sequence by means of the symbolic pair correlation function. We also examine an algorithm for estimating the conditional entropy of finite symbolic sequences. We show that the entropy contains two contributions, i.e., the correlation and the fluctuation. The obtained analytical results are used for numerical evaluation of the entropy of written English texts and DNA nucleotide sequences. The developed theory opens the way for constructing a more consistent and sophisticated approach to describe the systems with strong short-range and weak long-range memory.
Chen, Chuchu Hong, Jialin Zhang, Liying
2016-02-01
Stochastic Maxwell equations with additive noise are a system of stochastic Hamiltonian partial differential equations intrinsically, possessing the stochastic multi-symplectic conservation law. It is shown that the averaged energy increases linearly with respect to the evolution of time and the flow of stochastic Maxwell equations with additive noise preserves the divergence in the sense of expectation. Moreover, we propose three novel stochastic multi-symplectic methods to discretize stochastic Maxwell equations in order to investigate the preservation of these properties numerically. We make theoretical discussions and comparisons on all of the three methods to observe that all of them preserve the corresponding discrete version of the averaged divergence. Meanwhile, we obtain the corresponding dissipative property of the discrete averaged energy satisfied by each method. Especially, the evolution rates of the averaged energies for all of the three methods are derived which are in accordance with the continuous case. Numerical experiments are performed to verify our theoretical results.
Additive effects of neurofeedback on the treatment of ADHD: A randomized controlled study.
Lee, Eun-Jeong; Jung, Chul-Ho
2017-02-01
Neurofeedback (NF) has been identified as a "possibly efficacious" treatment in current evidence-based reviews; therefore, more research is needed to determine its effects. The current study examined the potential additive effect of NF for children diagnosed with ADHD beginning a medication trial first. Thirty-six children (6-12 years) with a DSM-IV-TR diagnosis of ADHD were randomly assigned to an NF with medication (NF condition) or a medication only condition. Children in the NF group attended 20 twice-weekly sessions. Outcome measures included individual cognitive performance scores (ADS, K-WISC-III), ADHD rating scores completed by their parents (ARS, CRS) and brainwave indices of left and right hemispheres before and after NF treatment. Significant additive treatment effect in any of the symptom variables was found and a reduction of theta waves in both the right and left hemispheres was recorded in NF condition participants. However our randomized controlled study could not demonstrate superior effects of combined NF on intelligent functioning compared to the medication treatment only. This study suggested any possible evidence of positive and additive treatment effects of NF on brainwaves and ADHD symptomatology.
Transcranial random noise stimulation mitigates increased difficulty in an arithmetic learning task.
Popescu, Tudor; Krause, Beatrix; Terhune, Devin B; Twose, Olivia; Page, Thomas; Humphreys, Glyn; Cohen Kadosh, Roi
2016-01-29
Proficiency in arithmetic learning can be achieved by using a multitude of strategies, the most salient of which are procedural learning (applying a certain set of computations) and rote learning (direct retrieval from long-term memory). Here we investigated the effect of transcranial random noise stimulation (tRNS), a non-invasive brain stimulation method previously shown to enhance cognitive training, on both types of learning in a 5-day sham-controlled training study, under two conditions of task difficulty, defined in terms of item repetition. On the basis of previous research implicating the prefrontal and posterior parietal cortex in early and late stages of arithmetic learning, respectively, sham-controlled tRNS was applied to bilateral prefrontal cortex for the first 3 days and to the posterior parietal cortex for the last 2 days of a 5-day training phase. The training involved learning to solve arithmetic problems by applying a calculation algorithm; both trained and untrained problems were used in a brief testing phase at the end of the training phase. Task difficulty was manipulated between subjects by using either a large ("easy" condition) or a small ("difficult" condition) number of repetition of problems during training. Measures of attention and working memory were acquired before and after the training phase. As compared to sham, participants in the tRNS condition displayed faster reaction times and increased learning rate during the training phase; as well as faster reaction times for both trained and untrained (new) problems, which indicated a transfer effect after the end of training. All stimulation effects reached significance only in the "difficult" condition when number of repetition was lower. There were no transfer effects of tRNS on attention or working memory. The results support the view that tRNS can produce specific facilitative effects on numerical cognition--specifically, on arithmetic learning. They also highlight the importance of
Transcranial random noise stimulation mitigates increased difficulty in an arithmetic learning task
Popescu, Tudor; Krause, Beatrix; Terhune, Devin B.; Twose, Olivia; Page, Thomas; Humphreys, Glyn; Cohen Kadosh, Roi
2016-01-01
Proficiency in arithmetic learning can be achieved by using a multitude of strategies, the most salient of which are procedural learning (applying a certain set of computations) and rote learning (direct retrieval from long-term memory). Here we investigated the effect of transcranial random noise stimulation (tRNS), a non-invasive brain stimulation method previously shown to enhance cognitive training, on both types of learning in a 5-day sham-controlled training study, under two conditions of task difficulty, defined in terms of item repetition. On the basis of previous research implicating the prefrontal and posterior parietal cortex in early and late stages of arithmetic learning, respectively, sham-controlled tRNS was applied to bilateral prefrontal cortex for the first 3 days and to the posterior parietal cortex for the last 2 days of a 5-day training phase. The training involved learning to solve arithmetic problems by applying a calculation algorithm; both trained and untrained problems were used in a brief testing phase at the end of the training phase. Task difficulty was manipulated between subjects by using either a large (“easy” condition) or a small (“difficult” condition) number of repetition of problems during training. Measures of attention and working memory were acquired before and after the training phase. As compared to sham, participants in the tRNS condition displayed faster reaction times and increased learning rate during the training phase; as well as faster reaction times for both trained and untrained (new) problems, which indicated a transfer effect after the end of training. All stimulation effects reached significance only in the “difficult” condition when number of repetition was lower. There were no transfer effects of tRNS on attention or working memory. The results support the view that tRNS can produce specific facilitative effects on numerical cognition – specifically, on arithmetic learning. They also highlight
Performance of peaky template matching under additive white Gaussian noise and uniform quantization
NASA Astrophysics Data System (ADS)
Horvath, Matthew S.; Rigling, Brian D.
2015-05-01
Peaky template matching (PTM) is a special case of a general algorithm known as multinomial pattern matching originally developed for automatic target recognition of synthetic aperture radar data. The algorithm is a model- based approach that first quantizes pixel values into Nq = 2 discrete values yielding generative Beta-Bernoulli models as class-conditional templates. Here, we consider the case of classification of target chips in AWGN and develop approximations to image-to-template classification performance as a function of the noise power. We focus specifically on the case of a uniform quantization" scheme, where a fixed number of the largest pixels are quantized high as opposed to using a fixed threshold. This quantization method reduces sensitivity to the scaling of pixel intensities and quantization in general reduces sensitivity to various nuisance parameters difficult to account for a priori. Our performance expressions are verified using forward-looking infrared imagery from the Army Research Laboratory Comanche dataset.
Smolin, John A; Gambetta, Jay M; Smith, Graeme
2012-02-17
We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.
The benefits of noise and nonlinearity: Extracting energy from random vibrations
NASA Astrophysics Data System (ADS)
Gammaitoni, Luca; Neri, Igor; Vocca, Helios
2010-10-01
Nonlinear behavior is the ordinary feature of the vast majority of dynamical systems and noise is commonly present in any finite temperature physical and chemical system. In this article we briefly review the potentially beneficial outcome of the interplay of noise and nonlinearity by addressing the novel field of vibration energy harvesting. The role of nonlinearity in a piezoelectric harvester oscillator dynamics is modeled with nonlinear stochastic differential equation.
An efficient voting algorithm for finding additive biclusters with random background.
Xiao, Jing; Wang, Lusheng; Liu, Xiaowen; Jiang, Tao
2008-12-01
The biclustering problem has been extensively studied in many areas, including e-commerce, data mining, machine learning, pattern recognition, statistics, and, more recently, computational biology. Given an n x m matrix A (n >or= m), the main goal of biclustering is to identify a subset of rows (called objects) and a subset of columns (called properties) such that some objective function that specifies the quality of the found bicluster (formed by the subsets of rows and of columns of A) is optimized. The problem has been proved or conjectured to be NP-hard for various objective functions. In this article, we study a probabilistic model for the implanted additive bicluster problem, where each element in the n x m background matrix is a random integer from [0, L - 1] for some integer L, and a k x k implanted additive bicluster is obtained from an error-free additive bicluster by randomly changing each element to a number in [0, L - 1] with probability theta. We propose an O(n(2)m) time algorithm based on voting to solve the problem. We show that when k >or= Omega(square root of (n log n)), the voting algorithm can correctly find the implanted bicluster with probability at least 1 - (9/n(2)). We also implement our algorithm as a C++ program named VOTE. The implementation incorporates several ideas for estimating the size of an implanted bicluster, adjusting the threshold in voting, dealing with small biclusters, and dealing with overlapping implanted biclusters. Our experimental results on both simulated and real datasets show that VOTE can find biclusters with a high accuracy and speed.
NASA Astrophysics Data System (ADS)
Zhao, Xiangrong; Xu, Wei; Yang, Yongge; Wang, Xiying
2016-06-01
This paper deals with the stochastic responses of a viscoelastic-impact system under additive and multiplicative random excitations. The viscoelastic force is replaced by a combination of stiffness and damping terms. The non-smooth transformation of the state variables is utilized to transform the original system to a new system without the impact term. The stochastic averaging method is applied to yield the stationary probability density functions. The validity of the analytical method is verified by comparing the analytical results with the numerical results. It is invaluable to note that the restitution coefficient, the viscoelastic parameters and the damping coefficients can induce the occurrence of stochastic P-bifurcation. Furthermore, the joint stationary probability density functions with three peaks are explored.
NASA Technical Reports Server (NTRS)
Smalheer, C. V.
1973-01-01
The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.
Bonino, Angela Yarnell; Leibold, Lori J.; Buss, Emily
2013-01-01
A cue indicating when in time to listen can improve adults' tone detection thresholds, particularly for conditions that produce substantial informational masking. The purpose of this study was to determine if 5- to 13-yr-old children likewise benefit from a light cue indicating when in time to listen for a masked pure-tone signal. Each listener was tested in one of two continuous maskers: Broadband noise (low informational masking) or a random-frequency, two-tone masker (high informational masking). Using a single-interval method of constant stimuli, detection thresholds were measured for two temporal conditions: (1) Temporally-defined, with the listening interval defined by a light cue, and (2) temporally-uncertain, with no light cue. Thresholds estimated from psychometric functions fitted to the data indicated that children and adults benefited to the same degree from the visual cue. Across listeners, the average benefit of a defined listening interval was 1.8 dB in the broadband noise and 8.6 dB in the random-frequency, two-tone masker. Thus, the benefit of knowing when in time to listen was more robust for conditions believed to be dominated by informational masking. An unexpected finding of this study was that children's thresholds were comparable to adults' in the random-frequency, two-tone masker. PMID:25669256
NASA Astrophysics Data System (ADS)
Wang, Kang-Kang; Zong, De-Cai; Wang, Ya-Jun; Li, Sheng-Hong
2016-05-01
In this paper, the transition between the stable state of a big density and the extinction state and stochastic resonance (SR) for a time-delayed metapopulation system disturbed by colored cross-correlated noises are investigated. By applying the fast descent method, the small time-delay approximation and McNamara and Wiesenfeld's SR theory, we investigate the impacts of time-delay, the multiplicative, additive noises and colored cross-correlated noise on the SNR and the shift between the two states of the system. Numerical results show that the multiplicative, additive noises and time-delay can all speed up the transition from the stable state to the extinction state, while the correlation noise and its correlation time can slow down the extinction process of the population system. With respect to SNR, the multiplicative noise always weakens the SR effect, while noise correlation time plays a dual role in motivating the SR phenomenon. Meanwhile, time-delay mainly plays a negative role in stimulating the SR phenomenon. Conversely, it could motivate the SR effect to increase the strength of the cross-correlation noise in the SNR-β plot, while the increase of additive noise intensity will firstly excite SR, and then suppress the SR effect.
Huber, Wolfgang; Huber, Toni; Baum, Stephan; Franzen, Michael; Schmidt, Christian; Stadlbauer, Thomas; Beitz, Analena; Schmid, Roland M; Schmid, Sebastian
2016-05-01
In this study, we investigated whether hydration with sodium bicarbonate is superior to hydration with saline in addition to theophylline (both groups) in the prophylaxis of contrast-induced nephropathy (CIN). It was a prospective, randomized, double-blinded study in a university hospital on 2 general intensive care units (63% of investigations) and normal wards.After approval of the local ethics committee and informed consent 152 patients with screening serum creatinine ≥1.1 mg/dL and/or at least 1 additional risk factor for CIN undergoing intravascular contrast media (CM) exposure were randomized to receive a total of 9 mL/kg bicarbonate 154 mmol/L (group B; n = 74) or saline 0.9% (group S; n = 78) hydration within 7 h in addition to intravenous application of 200 mg theophylline. Serum creatinine was determined immediately before, 24 and 48 h after CM exposure. As primary endpoint we investigated the incidence of CIN (increase of serum creatinine ≥0.5 mg/dL and/or ≥25% within 48 h of CM).Both groups were comparable regarding baseline characteristics. Incidence of CIN was significantly less frequent with bicarbonate compared to sodium hydration (1/74 [1.4%] vs 7/78 [9.0%]; P = 0.035). Time course of serum creatinine was more favorable in group B with decreases in serum creatinine after 24 h (-0.084 mg/dL [95% confidence interval: -0.035 to -0.133 mg/dL]; P = 0.008) and 48 h (-0.093 mg/dL (-0.025 to -0.161 mg/dL); P = 0.007) compared to baseline which were not observed in group S.In patients at increased risk of CIN receiving prophylactic theophylline, hydration with sodium bicarbonate reduces contrast-induced renal impairment compared to hydration with saline.
Bénière, Arnaud; Goudail, François; Dolfi, Daniel; Alouini, Mehdi
2009-07-01
Active imaging systems that illuminate a scene with polarized light and acquire two images in two orthogonal polarizations yield information about the intensity contrast and the orthogonal state contrast (OSC) in the scene. Both contrasts are relevant for target detection. However, in real systems, the illumination is often spatially or temporally nonuniform. This creates artificial intensity contrasts that can lead to false alarms. We derive generalized likelihood ratio test (GLRT) detectors, for which intensity information is taken into account or not and determine the relevant expressions of the contrast in these two situations. These results are used to determine in which cases considering intensity information in addition to polarimetric information is relevant or not.
NASA Astrophysics Data System (ADS)
Higashi, Yusuke; Matsuzawa, Kazuya; Ishihara, Takamitsu
2015-04-01
Our developed noise simulator can represent the dynamic behaviors of electron and hole trapping and de-trapping via interactions with both the Si substrate and the poly-Si gate. Simulations reveal that the conventional analytical model using the ratio between the capture and emission time constants yields large errors in the estimates of trap site positions due to interactions with the Si substrate and poly-Si gate especially in thin gate insulator MOSFETs.
Scattering Impulse Response Synthesis Using Random Noise Illumination: Initial Concept Evaluation.
1988-03-01
CONCEPT . 2 C. OVERVIEWV OF THESIS.....................................5 11. TEORY OF NOIS.ESOLRtCE IMP1ULSIE RLS1IONSE MIE--ASURL.NIEN F .7 A...INTRODUCTION A. OVERVIEW The objective of this research is to demonstrate the viability of performing high- resolution impulse response scattering... marketing of this technology. The second advan- taue is related to the use of noise-source illunlination for tactical and strategic radar applications
Analysis of Time to Event Outcomes in Randomized Controlled Trials by Generalized Additive Models
Argyropoulos, Christos; Unruh, Mark L.
2015-01-01
Background Randomized Controlled Trials almost invariably utilize the hazard ratio calculated with a Cox proportional hazard model as a treatment efficacy measure. Despite the widespread adoption of HRs, these provide a limited understanding of the treatment effect and may even provide a biased estimate when the assumption of proportional hazards in the Cox model is not verified by the trial data. Additional treatment effect measures on the survival probability or the time scale may be used to supplement HRs but a framework for the simultaneous generation of these measures is lacking. Methods By splitting follow-up time at the nodes of a Gauss Lobatto numerical quadrature rule, techniques for Poisson Generalized Additive Models (PGAM) can be adopted for flexible hazard modeling. Straightforward simulation post-estimation transforms PGAM estimates for the log hazard into estimates of the survival function. These in turn were used to calculate relative and absolute risks or even differences in restricted mean survival time between treatment arms. We illustrate our approach with extensive simulations and in two trials: IPASS (in which the proportionality of hazards was violated) and HEMO a long duration study conducted under evolving standards of care on a heterogeneous patient population. Findings PGAM can generate estimates of the survival function and the hazard ratio that are essentially identical to those obtained by Kaplan Meier curve analysis and the Cox model. PGAMs can simultaneously provide multiple measures of treatment efficacy after a single data pass. Furthermore, supported unadjusted (overall treatment effect) but also subgroup and adjusted analyses, while incorporating multiple time scales and accounting for non-proportional hazards in survival data. Conclusions By augmenting the HR conventionally reported, PGAMs have the potential to support the inferential goals of multiple stakeholders involved in the evaluation and appraisal of clinical trial
Wang, Lin; Qu, Moying; Chen, Yao; Zhou, Yaxiong; Wan, Zhi
2016-01-01
Objectives We performed a meta-analysis to explore the effects of adding statins to standard treatment on adult patients of pulmonary hypertension (PH). Methods A systematic search up to December, 2015 of Medline, EMBASE, Cochrane Database of Systematic reviews and Cochrane Central Register of Controlled Trials was performed to identify randomized controlled trials with PH patients treated with statins. Results Five studies involving 425 patients were included into this meta-analysis. The results of our analysis showed that the statins can’t significantly increase 6-minute walking distance (6MWD, mean difference [MD] = -0.33 [CI: -18.25 to 17.59]), decrease the BORG dyspnea score (MD = -0.72 [CI: -2.28 to 0.85]), the clinical worsening risk (11% in statins vs. 10.1% in controls, Risk ratio = 1.06 [CI: 0.61, 1.83]), or the systolic pulmonary arterial pressure (SPAP) (MD = -0.72 [CI: -2.28 to 0.85]). Subgroup analysis for PH due to COPD or non-COPD also showed no significance. Conclusions Statins have no additional beneficial effect on standard therapy for PH, but the results from subgroup of PH due to COPD seem intriguing and further study with larger sample size and longer follow-up is suggested. PMID:27992469
Yamashita, Yuichi; Okumura, Tetsu; Okanoya, Kazuo; Tani, Jun
2011-01-01
How the brain learns and generates temporal sequences is a fundamental issue in neuroscience. The production of birdsongs, a process which involves complex learned sequences, provides researchers with an excellent biological model for this topic. The Bengalese finch in particular learns a highly complex song with syntactical structure. The nucleus HVC (HVC), a premotor nucleus within the avian song system, plays a key role in generating the temporal structures of their songs. From lesion studies, the nucleus interfacialis (NIf) projecting to the HVC is considered one of the essential regions that contribute to the complexity of their songs. However, the types of interaction between the HVC and the NIf that can produce complex syntactical songs remain unclear. In order to investigate the function of interactions between the HVC and NIf, we have proposed a neural network model based on previous biological evidence. The HVC is modeled by a recurrent neural network (RNN) that learns to generate temporal patterns of songs. The NIf is modeled as a mechanism that provides auditory feedback to the HVC and generates random noise that feeds into the HVC. The model showed that complex syntactical songs can be replicated by simple interactions between deterministic dynamics of the RNN and random noise. In the current study, the plausibility of the model is tested by the comparison between the changes in the songs of actual birds induced by pharmacological inhibition of the NIf and the changes in the songs produced by the model resulting from modification of parameters representing NIf functions. The efficacy of the model demonstrates that the changes of songs induced by pharmacological inhibition of the NIf can be interpreted as a trade-off between the effects of noise and the effects of feedback on the dynamics of the RNN of the HVC. These facts suggest that the current model provides a convincing hypothesis for the functional role of NIf–HVC interaction. PMID:21559065
Yamashita, Yuichi; Okumura, Tetsu; Okanoya, Kazuo; Tani, Jun
2011-01-01
How the brain learns and generates temporal sequences is a fundamental issue in neuroscience. The production of birdsongs, a process which involves complex learned sequences, provides researchers with an excellent biological model for this topic. The Bengalese finch in particular learns a highly complex song with syntactical structure. The nucleus HVC (HVC), a premotor nucleus within the avian song system, plays a key role in generating the temporal structures of their songs. From lesion studies, the nucleus interfacialis (NIf) projecting to the HVC is considered one of the essential regions that contribute to the complexity of their songs. However, the types of interaction between the HVC and the NIf that can produce complex syntactical songs remain unclear. In order to investigate the function of interactions between the HVC and NIf, we have proposed a neural network model based on previous biological evidence. The HVC is modeled by a recurrent neural network (RNN) that learns to generate temporal patterns of songs. The NIf is modeled as a mechanism that provides auditory feedback to the HVC and generates random noise that feeds into the HVC. The model showed that complex syntactical songs can be replicated by simple interactions between deterministic dynamics of the RNN and random noise. In the current study, the plausibility of the model is tested by the comparison between the changes in the songs of actual birds induced by pharmacological inhibition of the NIf and the changes in the songs produced by the model resulting from modification of parameters representing NIf functions. The efficacy of the model demonstrates that the changes of songs induced by pharmacological inhibition of the NIf can be interpreted as a trade-off between the effects of noise and the effects of feedback on the dynamics of the RNN of the HVC. These facts suggest that the current model provides a convincing hypothesis for the functional role of NIf-HVC interaction.
Kopke, Richard; Slade, Martin D; Jackson, Ronald; Hammill, Tanisha; Fausti, Stephen; Lonsbury-Martin, Brenda; Sanderson, Alicia; Dreisbach, Laura; Rabinowitz, Peter; Torre, Peter; Balough, Ben
2015-05-01
Despite a robust hearing conservation program, military personnel continue to be at high risk for noise induced hearing loss (NIHL). For more than a decade, a number of laboratories have investigated the use of antioxidants as a safe and effective adjunct to hearing conservation programs. Of the antioxidants that have been investigated, N-acetylcysteine (NAC) has consistently reduced permanent NIHL in the laboratory, but its clinical efficacy is still controversial. This study provides a prospective, randomized, double-blinded, placebo-controlled clinical trial investigating the safety profile and the efficacy of NAC to prevent hearing loss in a military population after weapons training. Of the 566 total study subjects, 277 received NAC while 289 were given placebo. The null hypothesis for the rate of STS was not rejected based on the measured results. While no significant differences were found for the primary outcome, rate of threshold shifts, the right ear threshold shift rate difference did approach significance (p = 0.0562). No significant difference was found in the second primary outcome, percentage of subjects experiencing an adverse event between placebo and NAC groups (26.7% and 27.4%, respectively, p = 0.4465). Results for the secondary outcome, STS rate in the trigger hand ear, did show a significant difference (34.98% for placebo-treated, 27.14% for NAC-treated, p-value = 0.0288). Additionally, post-hoc analysis showed significant differences in threshold shift rates when handedness was taken into account. While the secondary outcomes and post-hoc analysis suggest that NAC treatment is superior to the placebo, the present study design failed to confirm this. The lack of significant differences in overall hearing loss between the treatment and placebo groups may be due to a number of factors, including suboptimal dosing, premature post-exposure audiograms, or differences in risk between ears or subjects. Based on secondary outcomes and post hoc
Detection efficiency and noise in a semi-device-independent randomness-extraction protocol
NASA Astrophysics Data System (ADS)
Li, Hong-Wei; Yin, Zhen-Qiang; Pawłowski, Marcin; Guo, Guang-Can; Han, Zheng-Fu
2015-03-01
In this paper, we analyze several critical issues in semi-device-independent quantum information processing protocol. In practical experimental realization, randomness generation in that scenario is possible only if the efficiency of the detectors used is above a certain threshold. Our analysis shows that the critical detection efficiency is √{2/}2 in the symmetric setup, while in the asymmetric setup if one of the bases has perfect critical detection efficiency then the other one can be arbitrarily close to 0. We also analyze the semi-device-independent random-number-generation efficiency based on different averages of guessing probability. To generate more randomness, the proper averaging method should be applied. Its choice depends on the value of a certain dimension witness. More importantly, the general analytical relationship between the maximal average guessing probability and dimension witness is given.
1994-03-01
normalized cross- correlation coefficient ; the modified normalized cross- correlation coefficient , and; the divergence and the Bhattacharyya distance. Noise was...added to the signals to create signal to noise ratios of 0 dB to -20 dB. Results show that as noise levels increase, the modified normalized cross- correlation coefficient spectral measure remains the most robust scheme.
YaDeau, Jacques T.; Paroli, Leonardo; Fields, Kara G.; Kahn, Richard L.; LaSala, Vincent R.; Jules-Elysee, Kethy M.; Kim, David H.; Haskins, Stephen C.; Hedden, Jacob; Goon, Amanda; Roberts, Matthew M.; Levine, David S.
2015-01-01
Background and Objectives Sciatic nerve block provides analgesia after foot and ankle surgery, but block duration may be insufficient. We hypothesized that perineural dexamethasone and buprenorphine would reduce pain scores at 24 hours. Methods Ninety patients received ultrasound-guided sciatic (25 mL 0.25% bupivacaine) and adductor canal (10 mL 0.25% bupivacaine) blockade, with random assignment into 3 groups (30 patients per group): control blocks + intravenous dexamethasone (4 mg) (control); control blocks + intravenous buprenorphine (150 mcg) + intravenous dexamethasone (intravenous buprenorphine); nerve blocks containing buprenorphine + dexamethasone (perineural). Patients received mepivacaine neuraxial anesthesia and postoperative oxycodone / acetaminophen, meloxicam, pregabalin, and ondansetron. Patients and assessors were blinded to group assignment. The primary outcome was pain with movement at 24 hours. Results There was no difference in pain with movement at 24 hours (median score 0). However, the perineural group had longer block duration vs control (45.6 vs 30.0 hr). Perineural patients had lower scores for “worst pain” vs control (median 0 vs 2). Both intravenous buprenorphine and perineural groups were less likely to use opioids on the day after surgery, vs control (28.6%, 28.6%, 60.7%, respectively). Nausea after intravenous buprenorphine (but not perineural buprenorphine) was severe, frequent, and bothersome. Conclusions Pain scores were very low at 24 hours after surgery in the context of multimodal analgesia and were not improved by additives. However, perineural buprenorphine and dexamethasone prolonged block duration, reduced the worst pain experienced, and reduced opioid use. Intravenous buprenorphine caused troubling nausea and vomiting. Future research is needed to confirm and extend these observations. PMID:25974277
NASA Astrophysics Data System (ADS)
Das, Suman; Sadique Uz Zaman, J. K. M.; Ghosh, Ranjan
2016-06-01
In Advanced Encryption Standard (AES), the standard S-Box is conventionally generated by using a particular irreducible polynomial {11B} in GF(28) as the modulus and a particular additive constant polynomial {63} in GF(2), though it can be generated by many other polynomials. In this paper, it has been shown that it is possible to generate secured AES S-Boxes by using some other selected modulus and additive polynomials and also can be generated randomly, using a PRNG like BBS. A comparative study has been made on the randomness of corresponding AES ciphertexts generated, using these S-Boxes, by the NIST Test Suite coded for this paper. It has been found that besides using the standard one, other moduli and additive constants are also able to generate equally or better random ciphertexts; the same is true for random S-Boxes also. As these new types of S-Boxes are user-defined, hence unknown, they are able to prevent linear and differential cryptanalysis. Moreover, they act as additional key-inputs to AES, thus increasing the key-space.
Nonlinear acoustics in a dispersive continuum: Random waves, radiation pressure, and quantum noise
NASA Astrophysics Data System (ADS)
Cabot, M. A.
The nonlinear interaction of sound with sound is studied using dispersive hydrodynamics which derived from a variational principle and the assumption that the internal energy density depends on gradients of the mass density. The attenuation of sound due to nonlinear interaction with a background is calculated and is shown to be sensitive to both the nature of the dispersion and decay bandwidths. The theoretical results are compared to those of low temperature helium experiments. A kinetic equation which described the nonlinear self-inter action of a background is derived. When a Deybe-type cutoff is imposed, a white noise distribution is shown to be a stationary distribution of the kinetic equation. The attenuation and spectrum of decay of a sound wave due to nonlinear interaction with zero point motion is calculated. In one dimension, the dispersive hydrodynamic equations are used to calculate the Langevin and Rayleigh radiation pressures of wave packets and solitary waves.
Communicating the Signal of Climate Change in The Presence of Non-Random Noise
NASA Astrophysics Data System (ADS)
Mann, M. E.
2015-12-01
The late Stephen Schneider spoke eloquently of the double ethical bind that we face: we must strive to communicate effectively but honestly. This is no simple task given the considerable "noise" generated in our public discourse by vested interests instead working to misinform the public. To do so, we must convey what is known in plainspoken jargon-free language, while acknowledging the real uncertainties that exist. Further, we must explain the implications of those uncertainties, which in many cases imply the possibility of greater, not lesser, risk. Finally, we must not be averse to discussing the policy implications of the science, lest we fail to provide our audience with critical information that can help them make informed choices about their own actions as citizens. I will use examples from my current collaboration with Washington Post editorial cartoonist Tom Toles.
NASA Astrophysics Data System (ADS)
Heo, Seung; Cheong, Cheolung; Kim, Taehoon
2015-09-01
In this study, efficient numerical method is proposed for predicting tonal and broadband noises of a centrifugal fan unit. The proposed method is based on Hybrid Computational Aero-Acoustic (H-CAA) techniques combined with Unsteady Fast Random Particle Mesh (U-FRPM) method. The U-FRPM method is developed by extending the FRPM method proposed by Ewert et al. and is utilized to synthesize turbulence flow field from unsteady RANS solutions. The H-CAA technique combined with U-FRPM method is applied to predict broadband as well as tonal noises of a centrifugal fan unit in a household refrigerator. Firstly, unsteady flow field driven by a rotating fan is computed by solving the RANS equations with Computational Fluid Dynamic (CFD) techniques. Main source regions around the rotating fan are identified by examining the computed flow fields. Then, turbulence flow fields in the main source regions are synthesized by applying the U-FRPM method. The acoustic analogy is applied to model acoustic sources in the main source regions. Finally, the centrifugal fan noise is predicted by feeding the modeled acoustic sources into an acoustic solver based on the Boundary Element Method (BEM). The sound spectral levels predicted using the current numerical method show good agreements with the measured spectra at the Blade Pass Frequencies (BPFs) as well as in the high frequency range. On the more, the present method enables quantitative assessment of relative contributions of identified source regions to the sound field by comparing predicted sound pressure spectrum due to modeled sources.
Alm, Per A; Dreimanis, Karolina
2013-01-01
Objectives Electric motor cortex stimulation has been reported to be effective for many cases of neuropathic pain, in the form of epidural stimulation or transcranial direct current stimulation (tDCS). A novel technique is transcranial random noise stimulation (tRNS), which increases the cortical excitability irrespective of the orientation of the current. The aim of this study was to investigate the effect of tRNS on neuropathic pain in a small number of subjects, and in a case study explore the effects of different stimulation parameters and the long-term stability of treatment effects. Methods The study was divided into three phases: (1) a double-blind crossover study, with four subjects; (2) a double-blind extended case study with one responder; and (3) open continued treatment. The motor cortex stimulation consisted of alternating current random noise (100–600 Hz), varying from 0.5 to 10 minutes and from 50 to 1500 μA, at intervals ranging from daily to fortnightly. Results One out of four participants showed a strong positive effect (also compared with direct-current-sham, P = 0.006). Unexpectedly, this effect was shown to occur also for very weak (100 μA, P = 0.048) and brief (0.5 minutes, P = 0.028) stimulation. The effect was largest during the first month, but remained at a highly motivating level for the patient after 6 months. Discussion The study suggests that tRNS may be an effective treatment for some cases of neuropathic pain. An important result was the indication that even low levels of stimulation may have substantial effects. PMID:23837007
Variational solutions and random dynamical systems to SPDEs perturbed by fractional Gaussian noise.
Zeng, Caibin; Yang, Qigui; Cao, Junfei
2014-01-01
This paper deals with the following type of stochastic partial differential equations (SPDEs) perturbed by an infinite dimensional fractional Brownian motion with a suitable volatility coefficient Φ: dX(t) = A(X(t))dt+Φ(t)dB (H) (t), where A is a nonlinear operator satisfying some monotonicity conditions. Using the variational approach, we prove the existence and uniqueness of variational solutions to such system. Moreover, we prove that this variational solution generates a random dynamical system. The main results are applied to a general type of nonlinear SPDEs and the stochastic generalized p-Laplacian equation.
Variational Solutions and Random Dynamical Systems to SPDEs Perturbed by Fractional Gaussian Noise
Zeng, Caibin; Yang, Qigui; Cao, Junfei
2014-01-01
This paper deals with the following type of stochastic partial differential equations (SPDEs) perturbed by an infinite dimensional fractional Brownian motion with a suitable volatility coefficient Φ: dX(t) = A(X(t))dt+Φ(t)dBH(t), where A is a nonlinear operator satisfying some monotonicity conditions. Using the variational approach, we prove the existence and uniqueness of variational solutions to such system. Moreover, we prove that this variational solution generates a random dynamical system. The main results are applied to a general type of nonlinear SPDEs and the stochastic generalized p-Laplacian equation. PMID:24574903
Random noise effects in pulse-mode digital multilayer neural networks.
Kim, Y C; Shanblatt, M A
1995-01-01
A pulse-mode digital multilayer neural network (DMNN) based on stochastic computing techniques is implemented with simple logic gates as basic computing elements. The pulse-mode signal representation and the use of simple logic gates for neural operations lead to a massively parallel yet compact and flexible network architecture, well suited for VLSI implementation. Algebraic neural operations are replaced by stochastic processes using pseudorandom pulse sequences. The distributions of the results from the stochastic processes are approximated using the hypergeometric distribution. Synaptic weights and neuron states are represented as probabilities and estimated as average pulse occurrence rates in corresponding pulse sequences. A statistical model of the noise (error) is developed to estimate the relative accuracy associated with stochastic computing in terms of mean and variance. Computational differences are then explained by comparison to deterministic neural computations. DMNN feedforward architectures are modeled in VHDL using character recognition problems as testbeds. Computational accuracy is analyzed, and the results of the statistical model are compared with the actual simulation results. Experiments show that the calculations performed in the DMNN are more accurate than those anticipated when Bernoulli sequences are assumed, as is common in the literature. Furthermore, the statistical model successfully predicts the accuracy of the operations performed in the DMNN.
Kording, Konrad P.; Hargrove, Levi J.; Sensinger, Jonathon W.
2017-01-01
The objective of this study was to understand how people adapt to errors when using a myoelectric control interface. We compared adaptation across 1) non-amputee subjects using joint angle, joint torque, and myoelectric control interfaces, and 2) amputee subjects using myoelectric control interfaces with residual and intact limbs (five total control interface conditions). We measured trial-by-trial adaptation to self-generated errors and random perturbations during a virtual, single degree-of-freedom task with two levels of feedback uncertainty, and evaluated adaptation by fitting a hierarchical Kalman filter model. We have two main results. First, adaptation to random perturbations was similar across all control interfaces, whereas adaptation to self-generated errors differed. These patterns matched predictions of our model, which was fit to each control interface by changing the process noise parameter that represented system variability. Second, in amputee subjects, we found similar adaptation rates and error levels between residual and intact limbs. These results link prosthesis control to broader areas of motor learning and adaptation and provide a useful model of adaptation with myoelectric control. The model of adaptation will help us understand and solve prosthesis control challenges, such as providing additional sensory feedback. PMID:28301512
Probing Cu doped Ge0.3Se0.7 based resistance switching memory devices with random telegraph noise
NASA Astrophysics Data System (ADS)
Soni, R.; Meuffels, P.; Petraru, A.; Weides, M.; Kügeler, C.; Waser, R.; Kohlstedt, H.
2010-01-01
The ultimate sensitivity of any solid state device is limited by fluctuations. Fluctuations are manifestations of the thermal motion of matter and the discreteness of its structure which are also inherent ingredients during the resistive switching process of resistance random access memory (RRAM) devices. In quest for the role of fluctuations in different memory states and to develop resistive switching based nonvolatile memory devices, here we present our study on random telegraph noise (RTN) resistance fluctuations in Cu doped Ge0.3Se0.7 based RRAM cells. The influence of temperature and electric field on the RTN fluctuations is studied on different resistance states of the memory cells to reveal the dynamics of the underlying fluctuators. Our analysis indicates that the observed fluctuations could arise from thermally activated transpositions of Cu ions inside ionic or redox "double-site traps" triggering fluctuations in the current transport through a filamentary conducting path. Giant RTN fluctuations characterized by relative resistance variations of up to 50% in almost macroscopic samples clearly point to the existence of weak links with small effective cross-sectional areas along the conducting paths. Such large resistance fluctuations can be an important issue for the industrial applications of RRAM devices because they might lead to huge bit-error rates during reading cycles.
NASA Astrophysics Data System (ADS)
Zheng, Yue; Dang, Peipei; Zheng, Chuantao; Ye, Weilin; Wang, Yiding
2016-11-01
A miniature mid-infrared (mid-IR) methane (CH4) sensor system was developed by employing a wide-band wire-source and a semi-ellipsoid multi-pass gas cell. A dual-step differential method instead of the traditional one-step differential method was adopted by this sensor to tune measuring range/zero point and to suppress the additive/multiplicative noise. This method included a first subtraction operation between the two output signals (including a detection signal and a reference signal) from the dual-channel detector and a second subtraction operation on the amplitudes of the first-subtraction signal and the reference signal, followed by a ratio operation between the amplitude of the second-subtraction signal and the reference signal. Detailed experiments were performed to assess the performance of the sensor system. The detection range is 0-50 k ppm, and as the concentration gets larger than 12 k ppm, the relative detection error falls into the range of -3% to +3%. The Allan deviation is about 4.65 ppm with an averaging time of 1 s, and such value can be further improved to 0.45 ppm with an averaging time of 124 s. Due to the cost-effective incandescence wire-source, the small-size ellipsoid multi-pass gas cell and the miniature structure of the sensor, the developed standalone device shows potential applications of CH4 detection under coal-mine environment.
X-ray optics metrology limited by random noise, instrumental drifts, and systematic errors
Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Cambie, Rossana; Celestre, Richard; Conley, Raymond; Goldberg, Kenneth A.; McKinney, Wayne R.; Morrison, Gregory; Takacs, Peter Z.; Voronov, Dmitriy L.; Yuan, Sheng; Padmore, Howard A.
2010-07-09
Continuous, large-scale efforts to improve and develop third- and forth-generation synchrotron radiation light sources for unprecedented high-brightness, low emittance, and coherent x-ray beams demand diffracting and reflecting x-ray optics suitable for micro- and nano-focusing, brightness preservation, and super high resolution. One of the major impediments for development of x-ray optics with the required beamline performance comes from the inadequate present level of optical and at-wavelength metrology and insufficient integration of the metrology into the fabrication process and into beamlines. Based on our experience at the ALS Optical Metrology Laboratory, we review the experimental methods and techniques that allow us to mitigate significant optical metrology problems related to random, systematic, and drift errors with super-high-quality x-ray optics. Measurement errors below 0.2 mu rad have become routine. We present recent results from the ALS of temperature stabilized nano-focusing optics and dedicated at-wavelength metrology. The international effort to develop a next generation Optical Slope Measuring System (OSMS) to address these problems is also discussed. Finally, we analyze the remaining obstacles to further improvement of beamline x-ray optics and dedicated metrology, and highlight the ways we see to overcome the problems.
Fedashchin, Andrij; Cernota, William H.; Gonzalez, Melissa C.; Leach, Benjamin I.; Kwan, Noelle; Wesley, Roy K.; Weber, J. Mark
2015-01-01
A single cycle of strain improvement was performed in Saccharopolyspora erythraea mutB and 15 genotypes influencing erythromycin production were found. Genotypes generated by transposon mutagenesis appeared in the screen at a frequency of ∼3%. Mutations affecting central metabolism and regulatory genes were found, as well as hydrolases, peptidases, glycosyl transferases and unknown genes. Only one mutant retained high erythromycin production when scaled-up from micro-agar plug fermentations to shake flasks. This mutant had a knockout of the cwh1 gene (SACE_1598), encoding a cell-wall-associated hydrolase. The cwh1 knockout produced visible growth and morphological defects on solid medium. This study demonstrated that random transposon mutagenesis uncovers strain improvement-related genes potentially useful for strain engineering. PMID:26468041
Campana, Gianluca; Camilleri, Rebecca; Moret, Beatrice; Ghin, Filippo; Pavan, Andrea
2016-01-01
Transcranial random noise stimulation (tRNS) is a recent neuro-modulation technique whose effects at both behavioural and neural level are still debated. Here we employed the well-known phenomenon of motion after-effect (MAE) in order to investigate the effects of high- vs. low-frequency tRNS on motion adaptation and recovery. Participants were asked to estimate the MAE duration following prolonged adaptation (20 s) to a complex moving pattern, while being stimulated with either sham or tRNS across different blocks. Different groups were administered with either high- or low-frequency tRNS. Stimulation sites were either bilateral human MT complex (hMT+) or frontal areas. The results showed that, whereas no effects on MAE duration were induced by stimulating frontal areas, when applied to the bilateral hMT+, high-frequency tRNS caused a significant decrease in MAE duration whereas low-frequency tRNS caused a significant corresponding increase in MAE duration. These findings indicate that high- and low-frequency tRNS have opposed effects on the adaptation-dependent unbalance between neurons tuned to opposite motion directions, and thus on neuronal excitability. PMID:27934947
Vanneste, Sven; Fregni, Felipe; De Ridder, Dirk
2013-01-01
Tinnitus is the perception of a sound in the absence of an external sound stimulus. This phantom sound has been related to plastic changes and hyperactivity in the auditory cortex. Different neuromodulation techniques such as transcranial magnetic stimulation and transcranial direct current stimulation (tDCS) have been used in an attempt to modify local and distant neuroplasticity as to reduce tinnitus symptoms. Recently, two techniques of pulsed electrical stimulation using weak electrical currents – transcranial alternating current stimulation (tACS) and transcranial random noise stimulation (tRNS) – have also shown significant neuromodulatory effects. In the present study we conducted the first head-to-head comparison of three different transcranial electrical stimulation (tES) techniques, namely tDCS, tACS, and tRNS in 111 tinnitus patients by placing the electrodes overlying the auditory cortex bilaterally. The results demonstrated that tRNS induced the larger transient suppressive effect on the tinnitus loudness and the tinnitus related distress as compared to tDCS and tACS. Both tDCS and tACS induced small and non-significant effects on tinnitus symptoms, supporting the superior effects of tRNS as a method for tinnitus suppression. PMID:24391599
NASA Astrophysics Data System (ADS)
Kohley, Ralf; Barbier, Rémi; Kubik, Bogna; Ferriol, Sylvain; Clemens, Jean-Claude; Ealet, Anne; Secroun, Aurélia; Conversi, Luca; Strada, Paolo
2016-08-01
Euclid is an ESA mission to map the geometry of the dark Universe with a planned launch date in 2020. Euclid is optimised for two primary cosmological probes, weak gravitational lensing and galaxy clustering. They are implemented through two science instruments on-board Euclid, a visible imager (VIS) and a near-infrared spectro-photometer (NISP), which are being developed and built by the Euclid Consortium instrument development teams. The NISP instrument contains a large focal plane assembly of 16 Teledyne HgCdTe H2RG detectors with 2.3μm cut-off wavelength and SIDECAR readout electronics. The performance of the detector systems is critical to the science return of the mission and extended on-ground tests are being performed for characterisation and calibration purposes. Special attention is given also to effects even on the scale of individual pixels, which are difficult to model and calibrate, and to identify any possible impact on science performance. This paper discusses a variety of undesired pixel behaviour including the known effect of random telegraph signal (RTS) noise based on initial on-ground test results from demonstrator model detector systems. Some stability aspects of the RTS pixel populations are addressed as well.
Chaieb, Leila; Antal, Andrea; Paulus, Walter
2015-01-01
Background: Application of transcranial random noise stimulation (tRNS) between 0.1 and 640 Hz of the primary motor cortex (M1) for 10 min induces a persistent excitability increase lasting for at least 60 min. However, the mechanism of tRNS-induced cortical excitability alterations is not yet fully understood. Objective: The main aim of this study was to get first efficacy data with regard to the possible neuronal effect of tRNS. Methods: Single-pulse transcranial magnetic stimulation (TMS) was used to measure levels of cortical excitability before and after combined application of tRNS at an intensity of 1 mA for 10 min stimulation duration and a pharmacological agent (or sham) on eight healthy male participants. Results: The sodium channel blocker carbamazepine showed a tendency toward inhibiting MEPs 5–60 min poststimulation. The GABAA agonist lorazepam suppressed tRNS-induced cortical excitability increases at 0–20 and 60 min time points. The partial NMDA receptor agonist D-cycloserine, the NMDA receptor antagonist dextromethorphan and the D2/D3 receptor agonist ropinirole had no significant effects on the excitability increases seen with tRNS. Conclusions: In contrast to transcranial direct current stimulation (tDCS), aftereffects of tRNS are seem to be not NMDA receptor dependent and can be suppressed by benzodiazepines suggesting that tDCS and tRNS depend upon different mechanisms. PMID:25914617
Very low dose naltrexone addition in opioid detoxification: a randomized, controlled trial.
Mannelli, Paolo; Patkar, Ashwin A; Peindl, Kathi; Gorelick, David A; Wu, Li-Tzy; Gottheil, Edward
2009-04-01
Although current treatments for opioid detoxification are not always effective, medical detoxification remains a required step before long-term interventions. The use of opioid antagonist medications to improve detoxification has produced inconsistent results. Very low dose naltrexone (VLNTX) was recently found to reduce opioid tolerance and dependence in animal and clinical studies. We decided to evaluate safety and efficacy of VLNTX adjunct to methadone in reducing withdrawal during detoxification. In a multi-center, double-blind, randomized study at community treatment programs, where most detoxifications are performed, 174 opioid-dependent subjects received NTX 0.125 mg, 0.250 mg or placebo daily for 6 days, together with methadone in tapering doses. VLNTX-treated individuals reported attenuated withdrawal symptoms [F = 7.24 (2,170); P = 0.001] and reduced craving [F = 3.73 (2,107); P = 0.03]. Treatment effects were more pronounced at discharge and were not accompanied by a significantly higher retention rate. There were no group differences in use of adjuvant medications and no treatment-related adverse events. Further studies should explore the use of VLNTX, combined with full and partial opioid agonist medications, in detoxification and long-term treatment of opioid dependence.
NASA Astrophysics Data System (ADS)
Przybytek, J.; Fink-Finowicki, J.; Puźniak, R.; Shames, A.; Markovich, V.; Mogilyansky, D.; Jung, G.
2017-03-01
Robust random telegraph conductivity fluctuations have been observed in La0.86Ca0.14MnO3 manganite single crystals. At room temperatures, the spectra of conductivity fluctuations are featureless and follow a 1 /f shape in the entire experimental frequency and bias range. Upon lowering the temperature, clear Lorentzian bias-dependent excess noise appears on the 1 /f background and eventually dominates the spectral behavior. In the time domain, fully developed Lorentzian noise appears as pronounced two-level random telegraph noise with a thermally activated switching rate, which does not depend on bias current and applied magnetic field. The telegraph noise is very robust and persists in the exceptionally wide temperature range of more than 50 K. The amplitude of the telegraph noise decreases exponentially with increasing bias current in exactly the same manner as the sample resistance increases with the current, pointing out the dynamic current redistribution between percolation paths dominated by phase-separated clusters with different conductivity as a possible origin of two-level conductivity fluctuations.
Jia, Xin-Hong; Rao, Yun-Jiang; Yuan, Cheng-Xu; Li, Jin; Yan, Xiao-Dong; Wang, Zi-Nan; Zhang, Wei-Li; Wu, Han; Zhu, Ye-Yu; Peng, Fei
2013-10-21
A configuration of hybrid distributed Raman amplification (H-DRA), that is formed by incorporating a random fiber laser (RFL) based 2nd-order pump and a low-noise laser-diode (LD) based 1st-order pump, is proposed in this paper. In comparison to conventional bi-directional 1st-order DRA, the effective noise figure (ENF) is found to be lower by amount of 0 to 4 dB due to the RFL-based 2nd-order pump, depending on the on-off gain, while the low-noise 1st-order Raman pump is used for compensating the worsened signal-to-noise ratio (SNR) in the vicinity towards the far end of the fiber and avoiding the potential nonlinear impact induced by excess injection of pump power and suppressing the pump-signal relative intensity noise (RIN) transfer. As a result, the gain distribution can be optimized along ultra-long fiber link, due to combination of the 2nd-order RFL and low-noise 1st-order pumping, making the transmission distance be extended significantly. We utilized such a configuration to achieve ultra-long-distance distributed sensing based on Brillouin optical time-domain analysis (BOTDA). A repeater-less sensing distance record of up to 154.4 km with 5 m spatial resolution and ~ ± 1.4 °C temperature uncertainty is successfully demonstrated.
Luan, Shen
1995-10-06
This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.
Mammarella, Nicola; Di Domenico, Alberto; Palumbo, Rocco; Fairfield, Beth
2016-11-15
Activation of medial Prefrontal Cortex (mPFC) has been typically found during reality monitoring tasks (i.e., distinguishing between internal self-generated vs external information). No study, however, has yet investigated whether transcranial Random Noise Stimulation (tRNS) over the mPFC leads to a reduction in reality-monitoring misattributions in aging. In particular, stimulating mPFC should increase the number of cognitive operations engaged while encoding and this distinctive information may help older adults to discriminate between internal and external sources better. In addition, given that older adults are more sensitive to positively-charged information compared to younger adults and that mPFC is typically recruited during encoding of positive stimuli with reference to themselves, activation of mPFC should further sustain source retrieval in older adults. In this double-blind, sham-controlled study, we examined whether tRNS over the mPFC of healthy younger and older adults during encoding enhances subsequent reality monitoring for seen versus imagined emotionally-charged words. Our findings show that tRNS enhances reality monitoring for positively-charged imagined words in the older adult group alone, highlighting the role that mPFC plays in their memory for positive information. In line with the control-based account of positivity effects, our results add evidence about the neurocognitive processes involved in reality monitoring when older adults face emotionally-charged events.
Moustafa, Ibrahim M; Diab, Aliaa A
2015-07-01
The aim of this study was to investigate the immediate and long-term effects of a one-year multimodal program, with the addition of upper cervical manipulative therapy, on fibromyalgia management outcomes in addition to three-dimensional (3D) postural measures. This randomized clinical trial with one-year follow-up was completed at the research laboratory of our university. A total of 120 (52 female) patients with fibromyalgia syndrome (FMS) and definite C1-2 joint dysfunction were randomly assigned to the control or an experimental group. Both groups received a multimodal program; additionally, the experimental group received upper cervical manipulative therapy. Primary outcomes were the Fibromyalgia Impact Questionnaire (FIQ), whereas secondary outcomes included Pain Catastrophizing Scale (PCS), algometric score, Pittsburgh Sleep Quality Index (PSQI), Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI), and 3D postural measures. Measures were assessed at three time intervals: baseline, 12 weeks, and 1 year after the 12-week follow-up. The general linear model with repeated measures indicated a significant group × time effect in favor of the experimental group on the measures of 3D postural parameters (P < .0005), FIQ (P < .0005), PCS (P < .0005), algometric score (F = P < .0005), PSQI (P < .0005), BAI (P < .0005), and BDI (P < .0005). The addition of the upper cervical manipulative therapy to a multimodal program is beneficial in treating patients with FMS.
Britten, A J; Crotty, M; Kiremidjian, H; Grundy, A; Adam, E J
2004-04-01
This study validates a method to add spatially correlated statistical noise to an image, applied to transaxial X-ray CT images of the head to simulate exposure reduction by up to 50%. 23 patients undergoing routine head CT had three additional slices acquired for validation purposes, two at the same clinical 420 mAs exposure and one at 300 mAs. Images at the level of the cerebrospinal fluid filled ventricles gave readings of noise from a single image, with subtraction of image pairs to obtain noise readings from non-uniform tissue regions. The spatial correlation of the noise was determined and added to the acquired 420 mAs image to simulate images at 340 mAs, 300 mAs, 260 mAs and 210 mAs. Two radiologists assessed the images, finding little difference between the 300 mAs simulated and acquired images. The presence of periventricular low density lesions (PVLD) was used as an example of the effect of simulated dose reduction on diagnostic accuracy, and visualization of the internal capsule was used as a measure of image quality. Diagnostic accuracy for the diagnosis of PVLD did not fall significantly even down to 210 mAs, though visualization of the internal capsule was poorer at lower exposure. Further work is needed to investigate means of measuring statistical noise without the need for uniform tissue areas, or image pairs. This technique has been shown to allow sufficiently accurate simulation of dose reduction and image quality degradation, even when the statistical noise is spatially correlated.
Tripathy, Srimant P; Shafiullah, Syed N; Cox, Michael J
2012-01-01
Correspondence noise is a major factor limiting direction discrimination performance in random-dot kinematograms. In the current study we investigated the influence of correspondence noise on Dmax, which is the upper limit for the spatial displacement of the dots for which coherent motion is still perceived. Human direction discrimination performance was measured, using 2-frame kinematograms having leftward/rightward motion, over a 200-fold range of dot-densities and a four-fold range of dot displacements. From this data Dmax was estimated for the different dot densities tested. A model was proposed to evaluate the correspondence noise in the stimulus. This model summed the outputs of a set of elementary Reichardt-type local detectors that had receptive fields tiling the stimulus and were tuned to the two directions of motion in the stimulus. A key assumption of the model was that the local detectors would have the radius of their catchment areas scaled with the displacement that they were tuned to detect; the scaling factor k linking the radius to the displacement was the only free parameter in the model and a single value of k was used to fit all of the psychophysical data collected. This minimal, correspondence-noise based model was able to account for 91% of the variability in the human performance across all of the conditions tested. The results highlight the importance of correspondence noise in constraining the largest displacement that can be detected.
Noise contaminated transmittance
Zardecki, A.; McVey, B.D.; Nelson, D.H.
1997-09-01
The authors compare the efficiency of a classifier based on probabilistic neural networks and the general least squares method. Both methods must accommodate noise due to uncertainty in the measured spectrum at each wavelength. The evaluation of both methods is based on a simulated transmittance spectrum, in which the received signal is supplemented by an additive admixture of noise. To obtain a realistic description of the noise model, they generate several hundred laser pulses for each wavelength under consideration. These pulses have a predetermined correlation matrix for different wavelengths; furthermore, they are composed of three components accounting for the randomness of the observed spectrum. The first component is the correlated 1/f noise; the second component is due to uncorrelated 1/f noise; the third one is the uncorrelated white noise. The probabilistic neural network fails to retrieve the species concentration correctly for large noise levels; on the other hand, its predictions being confined to a fixed number of concentration bins, the network produces relatively small variances. To a large extent, the general least square method avoids the false alarms. It reproduces the average concentrations correctly; however, the concentration variances can be large.
Thiyagarajan, Ramkumar; Pal, Pravati; Pal, Gopal Krushna; Subramanian, Senthil Kumar; Trakroo, Madanmohan; Bobby, Zachariah; Das, Ashok Kumar
2015-01-01
High blood pressure (BP) is a known risk factor for cardiovascular disease morbidity. Considering the growing evidence of nonpharmacological interventions in the management of high BP, we designed a randomized, parallel active-controlled study on the effect of yoga and standard lifestyle modification (LSM) on BP and heart rate in individuals with prehypertension (systolic BP 120-139 mm Hg and/or diastolic BP 80-89 mm Hg). Volunteers (20-60 years) of both genders without any known cardiovascular disease were randomized into either LSM group (n = 92) or LSM+yoga group (n = 92). Before the intervention, age, waist circumference, physical activity, BP and fasting plasma glucose and lipids were comparable between the groups. After 12 weeks of intervention, we observed a significant reduction in the BP and heart rate in both the groups. Further, the reduction in systolic BP was significantly more in LSM+yoga group (6 mm Hg) as compared with LSM group (4 mm Hg). In addition, 13 prehypertensives became normotensives in LSM+yoga group and four in LSM group. The results indicate efficacy of nonpharmacological intervention and the additional benefit of yoga to standard LSM. Further research in this field may add to the level of evidence on the benefit of yoga, in the reduction of BP in high BP subjects, in the scientific literature.
Banos, Oresti; Damas, Miguel; Pomares, Hector; Rojas, Ignacio
2012-01-01
The main objective of fusion mechanisms is to increase the individual reliability of the systems through the use of the collectivity knowledge. Moreover, fusion models are also intended to guarantee a certain level of robustness. This is particularly required for problems such as human activity recognition where runtime changes in the sensor setup seriously disturb the reliability of the initial deployed systems. For commonly used recognition systems based on inertial sensors, these changes are primarily characterized as sensor rotations, displacements or faults related to the batteries or calibration. In this work we show the robustness capabilities of a sensor-weighted fusion model when dealing with such disturbances under different circumstances. Using the proposed method, up to 60% outperformance is obtained when a minority of the sensors are artificially rotated or degraded, independent of the level of disturbance (noise) imposed. These robustness capabilities also apply for any number of sensors affected by a low to moderate noise level. The presented fusion mechanism compensates the poor performance that otherwise would be obtained when just a single sensor is considered. PMID:22969386
1979-09-10
1) HORIC’NTAL-,DISCZAND0,M1 ARA AC.-- Final /1 ~3 rpnfl I I\\of 02 ~~fC’’.,c41jiud, anu iso -npt hyper Octsba 078-Spmef J979 card ioid elemeints...8217 16 onniidirectional. f cardioid, or iso -opt hypercardioid c:lenienrts inl verticallx’ directive mind isotropic ambient sea I noise. Assume that the...is30H. NtIIC wavelength splac:iig is reLliircd if’ 11) is 25 Hz,. 3.Co mpared to a single~ directional element ailone,: al array of I16 iso -Opt h\\v
Cook, Andrea J.; Wellman, Robert D.; Cherkin, Daniel C.; Kahn, Janet R.; Sherman, Karen J.
2015-01-01
Background Context This is the first study to systematically evaluate the value of a longer treatment period for massage. We provide a framework of how to conceptualize an optimal dose in this challenging setting of non-pharmacological treatments. Purpose To determine the optimal dose of massage for neck pain. Study Design/Setting Two-phase randomized trial for persons with chronic non-specific neck pain. Primary randomization to one of 5 groups receiving 4 weeks of massage (30 minutes 2×/ or 3×/week or 60 minutes 1×, 2×, or 3×/week). Booster randomization of participants to receive an additional 6 massages, 60 minute 1×/week, or no additional massage. Patient Sample 179 participants from Group Health and the general population of Seattle, WA USA recruited between June 2010 and August 2011. Outcome Measures Primary outcomes self-reported neck-related dysfunction (Neck Disability Index) and pain (0–10 scale) were assessed at baseline, 12, and 26 weeks. Clinically meaningful improvement was defined as >5 point decrease in dysfunction and > 30% decrease in pain from baseline. Methods Clinically meaningful improvement for each primary outcome with both follow-up times was analyzed using adjusted modified Poisson generalized estimating equations. Secondary analyses for the continuous outcomes used linear generalized estimating equations. This study was funded the National Center for Complementary and Alternative Medicine, NIH, USA (R01 AT004411). The funders had no role in the interpretation or reporting of results. Results There were no observed differences by primary treatment group at 12 or 26 weeks. Those receiving booster dose had improvements in both dysfunction and pain at 12 weeks (dysfunction: RR=1.56(1.08–2.25), P=0.018; pain: RR=1.25(0.98–1.61); P=0.077), but those were non-significant at 26 weeks (dysfunction: RR=1.22(0.85–1.74); pain: RR=1.09(0.82–1.43)). Subgroup analysis by primary and booster treatments found the booster dose only
Crutzen, Rik; Kienhuis, Anne S; Talhout, Reinskje; de Vries, Hein
2017-01-01
Background As a legal obligation, the Dutch government publishes online information about tobacco additives to make sure that it is publicly available. Little is known about the influence this website (”tabakinfo”) has on visitors and how the website is evaluated by them. Objective This study assesses how visitors use the website and its effect on their knowledge, risk perception, attitude, and smoking behavior. The study will also assess how the website is evaluated by visitors using a sample of the Dutch general population, including smokers and nonsmokers. Methods A randomized controlled trial was conducted, recruiting participants from an online panel. At baseline, participants (N=672) were asked to fill out an online questionnaire about tobacco additives. Next, participants were randomly allocated to either one of two experimental groups and invited to visit the website providing information about tobacco additives (either with or without a database containing product-specific information) or to a control group that had no access to the website. After 3 months, follow-up measurements took place. Results At follow-up (n=492), no statistically significant differences were found for knowledge, risk perception, attitude, or smoking behavior between the intervention and control groups. Website visits were positively related to younger participants (B=–0.07, 95% CI –0.12 to –0.01; t11=–2.43, P=.02) and having a low risk perception toward tobacco additives (B=–0.32, 95% CI –0.63 to –0.02; t11=–2.07, P=.04). In comparison, having a lower education (B=–0.67, 95% CI –1.14 to –0.17; t11=–2.65, P=.01) was a significant predictor for making less use of the website. Furthermore, the website was evaluated less positively by smokers compared to nonsmokers (t324=–3.55, P<.001), and males compared to females (t324=–2.21, P=.02). Conclusions The website did not change perceptions of tobacco additives or smoking behavior. Further research is
NASA Astrophysics Data System (ADS)
Yang, X. I. A.; Marusic, I.; Meneveau, C.
2016-06-01
Townsend [Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, UK, 1976)] hypothesized that the logarithmic region in high-Reynolds-number wall-bounded flows consists of space-filling, self-similar attached eddies. Invoking this hypothesis, we express streamwise velocity fluctuations in the inertial layer in high-Reynolds-number wall-bounded flows as a hierarchical random additive process (HRAP): uz+=∑i=1Nzai . Here u is the streamwise velocity fluctuation, + indicates normalization in wall units, z is the wall normal distance, and ai's are independently, identically distributed random additives, each of which is associated with an attached eddy in the wall-attached hierarchy. The number of random additives is Nz˜ln(δ /z ) where δ is the boundary layer thickness and ln is natural log. Due to its simplified structure, such a process leads to predictions of the scaling behaviors for various turbulence statistics in the logarithmic layer. Besides reproducing known logarithmic scaling of moments, structure functions, and correlation function [" close="]3/2
NASA Astrophysics Data System (ADS)
Khodja, Mohamed; Belouchrani, Adel; Abed-Meraim, Karim
2012-12-01
This article deals with the application of Spatial Time-Frequency Distribution (STFD) to the direction finding problem using the Multiple Signal Classification (MUSIC)algorithm. A comparative performance analysis is performed for the method under consideration with respect to that using data covariance matrix when the received array signals are subject to calibration errors in a non-stationary environment. An unified analytical expression of the Direction Of Arrival (DOA) error estimation is derived for both methods. Numerical results show the effect of the parameters intervening in the derived expression on the algorithm performance. It is particularly observed that for low Signal to Noise Ratio (SNR) and high Signal to sensor Perturbation Ratio (SPR) the STFD method gives better performance, while for high SNR and for the same SPR both methods give similar performance.
Kastelein, Ronald A; Wensveen, Paul J; Hoek, Lean; Au, Whitlow W L; Terhune, John M; de Jong, Christ A F
2009-09-01
A psychoacoustic behavioral technique was used to determine the critical ratios (CRs) of two harbor porpoises for tonal signals with frequencies between 0.315 and 150 kHz, in random Gaussian white noise. The masked 50% detection hearing thresholds were measured using a "go/no-go" response paradigm and an up-down staircase psychometric method. CRs were determined at one masking noise level for each test frequency and were similar in both animals. For signals between 0.315 and 4 kHz, the CRs were relatively constant at around 18 dB. Between 4 and 150 kHz the CR increased gradually from 18 to 39 dB ( approximately 3.3 dB/octave). Generally harbor porpoises can detect tonal signals in Gaussian white noise slightly better than most odontocetes tested so far. By combining the mean CRs found in the present study with the spectrum level of the background noise levels at sea, the basic audiogram, and the directivity index, the detection threshold levels of harbor porpoises for tonal signals in various sea states can be calculated.
Schoetz, D J; Roberts, P L; Murray, J J; Coller, J A; Veidenheimer, M C
1990-01-01
The efficacy of cefoxitin, a perioperative parenteral antibiotic, combined with mechanical bowel preparation and oral antibiotics to prevent wound infections and other septic complications in patients undergoing elective colorectal operations, was examined in a prospective randomized study. All 197 patients who completed the study received mechanical bowel preparation and oral neomycin/erythromycin base. In addition a perioperative parenteral antibiotic was given in three divided doses to 101 patients. The other 96 patients received no parenteral antibiotics. The overall incidence of intra-abdominal septic complications was 7.3% (7 of 96) in the control group (no cefoxitin) and 5% (5 of 101) in the treatment group (cefoxitin). This difference was not statistically significant. The incidence of abdominal wound infection was 14.6% in the control group and 5% in the treatment group, a statistically significant difference (p = 0.02). The addition of perioperative parenteral cefoxitin greatly reduced the incidence of wound infections in patients undergoing elective colorectal operations who had been prepared with mechanical bowel cleansing and oral antimicrobial agents. PMID:2100983
1983-12-01
Environment 52 34. Comparison of Regression Lines Estimating Scores for the Sustention Intelligibility Feature vs Bit Error Rate for the DOD LPC-10 Vocoder in...both conditions, the feature "sibilation" obtained the highest scores, and the features "graveness" and " sustention " received the poorest scores, but...were under much greater impairment in the noise environment. Details of the variations in scores for sustention are shown in Figure 34, and, for
Koh, Jieun; Jung, Dae Chul; Oh, Young Taik; Yoo, Moon Gyu; Noh, Songmi; Han, Kyung Hwa; Rha, Koon-Ho; Choi, Young Deuk; Hong, Sung Joon
2015-11-01
Our aim was to improve the detection of prostate cancer by evaluating whether contrast-enhanced ultrasound (CEUS) or sonoelastography (SE) is more helpful in guiding targeted biopsy (TB) performed before systematic biopsy (SB). A total of 52 patients suspected of having prostate cancer were prospectively included and randomly assigned to either the CEUS or SE group. Different, independent radiologists performed TB and twelve-core SB. Within each group, cancer detection rates based on core number were compared between SB and TB. We evaluated the effect of TB on core-based cancer detection rates between the CEUS and SE groups. Cancer detection was higher in overall TB cores 16.4% (28/171) than SB cores 11.4% (71/624) in both groups. In the SE group, TB cores revealed higher cancer detection than did SB cores from 4.49% (14/312) to 12.86% (9/70) (p = 0.01). Compared with CEUS, SE may improve detection rates when considering additional TB guidance methods.
NASA Astrophysics Data System (ADS)
Azad, Nasser L.; Mozaffari, Ahmad
2015-12-01
The main scope of the current study is to develop a systematic stochastic model to capture the undesired uncertainty and random noises on the key parameters affecting the catalyst temperature over the coldstart operation of automotive engine systems. In the recent years, a number of articles have been published which aim at the modeling and analysis of automotive engines' behavior during coldstart operations by using regression modeling methods. Regarding highly nonlinear and uncertain nature of the coldstart operation, calibration of the engine system's variables, for instance the catalyst temperature, is deemed to be an intricate task, and it is unlikely to develop an exact physics-based nonlinear model. This encourages automotive engineers to take advantage of knowledge-based modeling tools and regression approaches. However, there exist rare reports which propose an efficient tool for coping with the uncertainty associated with the collected database. Here, the authors introduce a random noise to experimentally derived data and simulate an uncertain database as a representative of the engine system's behavior over coldstart operations. Then, by using a Gaussian process regression machine (GPRM), a reliable model is used for the sake of analysis of the engine's behavior. The simulation results attest the efficacy of GPRM for the considered case study. The research outcomes confirm that it is possible to develop a practical calibration tool which can be reliably used for modeling the catalyst temperature.
Kim, Joo Hyung; Kang, Tae Sung; Yang, Jung Yup; Hong, Jin Pyo
2015-01-01
One long-standing goal in the emerging field of flexible and transparent electronic devices is to meet the demand of key markets, such as enhanced output performance for metal oxide semiconductor thin film transistors (TFTs) prepared by a solution process. While solution-based fabrication techniques are cost-effective and ensure large-area coverage at low temperature, their utilization has the disadvantage of introducing large trap states into TFTs. Such states, the formation of which is induced by intrinsic defects initially produced during preparation, have a significant impact on electrical performance. Therefore, the ability to enhance the electrical characteristics of solution-processed TFTs, along with attaining a firm understanding of their physical nature, remains a key step towards extending their use. In this study, measurements of low-frequency noise and random telegraph signal noise are employed as generic alternative tools to examine the origins of enhanced output performance for solution-processed ZnO TFTs through the control of defect sites by Al evaporation. PMID:26525284
NASA Astrophysics Data System (ADS)
Kim, Joo Hyung; Kang, Tae Sung; Yang, Jung Yup; Hong, Jin Pyo
2015-11-01
One long-standing goal in the emerging field of flexible and transparent electronic devices is to meet the demand of key markets, such as enhanced output performance for metal oxide semiconductor thin film transistors (TFTs) prepared by a solution process. While solution-based fabrication techniques are cost-effective and ensure large-area coverage at low temperature, their utilization has the disadvantage of introducing large trap states into TFTs. Such states, the formation of which is induced by intrinsic defects initially produced during preparation, have a significant impact on electrical performance. Therefore, the ability to enhance the electrical characteristics of solution-processed TFTs, along with attaining a firm understanding of their physical nature, remains a key step towards extending their use. In this study, measurements of low-frequency noise and random telegraph signal noise are employed as generic alternative tools to examine the origins of enhanced output performance for solution-processed ZnO TFTs through the control of defect sites by Al evaporation.
NASA Astrophysics Data System (ADS)
Ranjha, Bilal; Zhou, Zhou; Kavehrad, Mohsen
2014-08-01
We have compared the bit error rate (BER) performance of precoding-based asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) and pulse amplitude modulated discrete multitone (PAM-DMT) optical wireless (OW) systems in additive white Gaussian noise (AWGN) and indoor multipath frequency selective channel. Simulation and analytical results show that precoding schemes such as discrete Fourier transform, discrete cosine transform, and Zadoff-Chu sequences do not affect the performance of the OW systems in the AWGN channel while they do reduce the peak-to-average power ratio (PAPR) of the OFDM output signal. However, in a multipath indoor channel, using zero forcing frequency domain equalization precoding-based systems give better BER performance than their conventional counterparts. With additional clipping to further reduce the PAPR, precoding-based systems also show better BER performance compared to nonprecoded systems when clipped relative to the peak of nonprecoded systems. Therefore, precoding-based ACO-OFDM and PAM-DMT systems offer better BER performance, zero signaling overhead, and low PAPR compared to conventional systems.
A simple method for NMR t1 noise suppression
NASA Astrophysics Data System (ADS)
Mo, Huaping; Harwood, John S.; Yang, Danzhou; Post, Carol Beth
2017-03-01
t1 noise appears as random or semi-random spurious streaks along the indirect t1 (F1) dimension of a 2D or nD NMR spectrum. It can significantly downgrade spectral quality, especially for spectra with strong diagonal signals such as NOESY, because useful and weak cross-peaks can be easily buried under t1 noise. One of the significant contributing factors to t1 noise is unwanted and semi-random F2 signal modulation during t1 acquisition. As such, t1 noise from different acquisitions is unlikely to correlate with each other strongly. In the case of NOESY, co-addition of multiple spectra significantly reduces t1 noise compared with conventional acquisition with the same amount of total acquisition time and resolution.
NASA Astrophysics Data System (ADS)
Osicka, Teresa; Freedman, Matthew T.; Ahmed, Farid
2007-03-01
The goal of this project is to use computer analysis to classify small lung nodules, identified on CT, into likely benign and likely malignant categories. We compared discrete wavelet transforms (DWT) based features and a modification of classical features used and reported by others. To determine the best combination of features for classification, several intensities of white noise were added to the original images to determine the effect of such noise on classification accuracy. Two different approaches were used to determine the effect of noise: in the first method the best features for classification of nodules on the original image were retained as noise was added. In the second approach, we recalculated the results to reselect the best classification features for each particular level of added noise. The CT images are from the National Lung Screening Trial (NLST) of the National Cancer Institute (NCI). For this study, nodules were extracted in window frames of three sizes. Malignant nodules were cytologically or histogically diagnosed, while benign had two-year follow-up. A linear discriminant analysis with Fisher criterion (FLDA) approach was used for feature selection and classification, and decision matrix for matched sample to compare the classification accuracy. The initial features mode revealed sensitivity to both the amount of noise and the size of window frame. The recalculated feature mode proved more robust to noise with no change in terms of classification accuracy. This indicates that the best features for computer classification of lung nodules will differ with noise, and, therefore, with exposure.
Judgments of aircraft noise in a traffic noise background
NASA Technical Reports Server (NTRS)
Powell, C. A.; Rice, C. G.
1975-01-01
An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.
Review of Subcritical Source-Driven Noise Analysis Measurements
Valentine, T.E.
1999-11-01
Subcritical source-driven noise measurements are simultaneous Rossia and randomly pulsed neutron measurements that provide measured quantities that can be related to the subcritical neutron multiplication factor. In fact, subcritical source-driven noise measurements should be performed in lieu of Rossia measurements because of the additional information that is obtained from noise measurements such as the spectral ratio and the coherence functions. The basic understanding of source-driven noise analysis measurements can be developed from a point reactor kinetics model to demonstrate how the measured quantities relate to the subcritical neutron multiplication factor.
Cooperation evolution in random multiplicative environments
NASA Astrophysics Data System (ADS)
Yaari, G.; Solomon, S.
2010-02-01
Most real life systems have a random component: the multitude of endogenous and exogenous factors influencing them result in stochastic fluctuations of the parameters determining their dynamics. These empirical systems are in many cases subject to noise of multiplicative nature. The special properties of multiplicative noise as opposed to additive noise have been noticed for a long while. Even though apparently and formally the difference between free additive vs. multiplicative random walks consists in just a move from normal to log-normal distributions, in practice the implications are much more far reaching. While in an additive context the emergence and survival of cooperation requires special conditions (especially some level of reward, punishment, reciprocity), we find that in the multiplicative random context the emergence of cooperation is much more natural and effective. We study the various implications of this observation and its applications in various contexts.
Kumar N, Suresh; N, Kiran; Sebastian, Don; Gowda RM, Punith
2014-01-01
Background: Patients with fracture femur experience severe pain on movement during positioning for spinal anaesthesia. Fascia Iliaca Compartment Block (FICB) has been used effectively for providing analgesia during positioning of the patient for spinal anaesthesia. Aim: To test the hypothesis that, adding dexamethasone would significantly prolong the duration of Bupivacaine in FICB. Materials and Methods: Sixty patients aged 18 to 80 years posted for ORIF (Open Reduction and Internal Fixation) of fracture femur were included to receive FICB. This was a prospective, randomized, double blind study done at tertiary medical college hospital. Thirty patients received 38ml of 0.25 % bupivacaine with 2ml saline and another 30 patients received 38ml of 0.25 % bupivacaine with 2ml dexamethasone (8mg). Thirty minutes after FICB, patient satisfaction during positioning for spinal anesthesia was recorded. In the post-operative period, duration of analgesia and the total doses of rescue analgesics were recorded in both the groups. Results: Patients who received Bupivacaine with dexamethasone had significant prolongation of analgesia and required fewer doses of rescue analgesics as compared to patients who received Bupivacaine alone for FICB. However, the onset of analgesia, VAS scores and patient satisfaction during positioning for spinal anaesthesia were similar in both groups. Conclusion: Our study shows that adding Dexamethasone (8mg) to Bupivacaine for FICB significantly prolonged the duration of block and decreased the requirement of rescue analgesics as compared to patients who received Bupivacaine alone. FICB is relatively easy and safe to perform. In our study we did not encounter any complication while doing the procedures and also by adding dexamethasone. PMID:25302209
Warschburger, Petra; Kroeller, Katja; Haerting, Johannes; Unverzagt, Susanne; van Egmond-Fröhlich, Andreas
2016-08-01
Although inpatient lifestyle treatment for obese children and adolescents can be highly effective in the short term, long-term results are unconvincing. One possible explanation might be that the treatment takes place far from parents' homes, limiting the possibility to incorporate the parents, who play a major role in establishing and maintaining a healthy lifestyle in childhood and adolescence. The main goal was to develop a brief behaviorally oriented parent training program that enhances 'obesity-specific' parenting skills in order to prevent relapse. We hypothesized that the inclusion of additional parent training would lead to an improved long-term weight course of obese children. Parents of obese children (n = 686; 7-13 years old) either participated in complementary cognitive-behavioral group sessions (n = 336) or received written information only (n = 350) during the inpatient stay. Children of both groups attended multidisciplinary inpatient rehabilitation. BMI-SDS as a primary outcome was evaluated at baseline, post-intervention and at 6- and 12-month follow-up. Intention-to-treat (ITT) as well as per-protocol analyses (PPA) were performed. A significant within-group decrease of 0.24 (95% CI 0.18 to 0.30) BMI-SDS points from the beginning of the inpatient stay through the first year was found, but no group difference at the one-year follow-up (mean difference 0.02; 95% CI -0.04 to 0.07). We also observed an increase in quality of life scores, intake of healthy food and exercise for both groups, without differences between groups (ITT and PPA). Thus, while the inpatient treatment proved highly effective, additional parent training did not lead to better results in long-term weight maintenance or to better psychosocial well-being compared to written psycho-educational material. Further research should focus on subgroups to answer the question of differential treatment effects.
An aircraft noise study in Norway
NASA Technical Reports Server (NTRS)
Gjestland, Truls T.; Liasjo, Kare H.; Bohn, Hans Einar
1990-01-01
An extensive study of aircraft noise is currently being conducted in Oslo, Norway. The traffic at Oslo Airport Fornebu that includes both national and international flights, totals approximately 350 movements per day: 250 of these are regular scheduled flights with intermediate and large size aircraft, the bulk being DC9 and Boeing 737. The total traffic during the summer of 1989 was expected to resemble the maximum level to which the regular traffic will increase before the new airport can be put into operation. The situation therefore represented a possibility to study the noise impact on the communities around Fornebu. A comprehensive social survey was designed, including questions on both aircraft and road traffic noise. A random sample of 1650 respondents in 15 study areas were contacted for an interview. These areas represent different noise levels and different locations relative to the flight paths. The interviews were conducted in a 2 week period just prior to the transfer of charter traffic from Gardemoen to Fornebu. In the same period the aircraft noise was monitored in all 15 areas. In addition the airport is equipped with a permanent flight track and noise monitoring system. The noise situation both in the study period and on an average basis can therefore be accurately described. In August a group of 1800 new respondents were subjected to identical interviews in the same 15 areas, and the noise measurement program was repeated. Results of the study are discussed.
Added, Marco Aurélio Nemitalla; Costa, Leonardo Oliveira Pena; de Freitas, Diego Galace; Fukuda, Thiago Yukio; Monteiro, Renan Lima; Salomão, Evelyn Cassia; de Medeiros, Flávia Cordeiro; Costa, Lucíola da Cunha Menezes
2016-07-01
Study Design Randomized controlled trial. Background Many clinical practice guidelines endorse both manual therapy and exercise as effective treatment options for patients with low back pain. To optimize the effects of the treatments recommended by the guidelines, a new intervention known as Kinesio Taping is being widely used in these patients. Objectives To determine the effectiveness of Kinesio Taping in patients with chronic nonspecific low back pain when added to a physical therapy program consisting of exercise and manual therapy. Methods One hundred forty-eight patients with chronic nonspecific low back pain were randomly allocated to receive 10 (twice weekly) sessions of physical therapy, consisting of exercise and manual therapy, or the same treatment with the addition of Kinesio Taping applied to the lower back. The primary outcomes were pain intensity and disability (5 weeks after randomization) and the secondary outcomes were pain intensity, disability (3 months and 6 months after randomization), global perceived effect, and satisfaction with care (5 weeks after treatment). Data were collected by a blinded assessor. Results No between-group differences were observed in the primary outcomes of pain intensity (mean difference, -0.01 points; 95% confidence interval [CI]: -0.88, 0.85) or disability (mean difference, 1.14 points; 95% CI: -0.85, 3.13) at 5 weeks' follow-up. In addition, no between-group differences were observed for any of the other outcomes evaluated, except for disability 6 months after randomization (mean difference, 2.01 points; 95% CI: 0.03, 4.00) in favor of the control group. Conclusion Patients who received a physical therapy program consisting of exercise and manual therapy did not get additional benefit from the use of Kinesio Taping. Level of Evidence Therapy, level 1b. Prospectively registered May 28, 2013 at www.ClinicalTrials.gov (NCT01866332). J Orthop Sports Phys Ther 2016;46(7):506-513. Epub 6 Jun 2016. doi:10.2519/jospt.2016.6590.
To, Wing Ting; Ost, Jan; Hart, John; De Ridder, Dirk; Vanneste, Sven
2017-01-01
Tinnitus is the perception of a sound in the absence of a corresponding external sound source. Research has suggested that functional abnormalities in tinnitus patients involve auditory as well as non-auditory brain areas. Transcranial electrical stimulation (tES), such as transcranial direct current stimulation (tDCS) to the dorsolateral prefrontal cortex and transcranial random noise stimulation (tRNS) to the auditory cortex, has demonstrated modulation of brain activity to transiently suppress tinnitus symptoms. Targeting two core regions of the tinnitus network by tES might establish a promising strategy to enhance treatment effects. This proof-of-concept study aims to investigate the effect of a multisite tES treatment protocol on tinnitus intensity and distress. A total of 40 tinnitus patients were enrolled in this study and received either bifrontal tDCS or the multisite treatment of bifrontal tDCS before bilateral auditory cortex tRNS. Both groups were treated on eight sessions (two times a week for 4 weeks). Our results show that a multisite treatment protocol resulted in more pronounced effects when compared with the bifrontal tDCS protocol or the waiting list group, suggesting an added value of auditory cortex tRNS to the bifrontal tDCS protocol for tinnitus patients. These findings support the involvement of the auditory as well as non-auditory brain areas in the pathophysiology of tinnitus and demonstrate the idea of the efficacy of network stimulation in the treatment of neurological disorders. This multisite tES treatment protocol proved to be save and feasible for clinical routine in tinnitus patients.
Numerical generation of laser-resonance phase noise for optical communication simulators.
Ó Dúill, Seán P; Anthur, Aravind P; Huynh, Tam N; Naimi, Sepideh T; Nguyen, Lim; Venkitesh, Deepa; Barry, Liam P
2015-04-10
We generate random numerical waveforms that mimic laser phase noise incorporating laser-resonance enhanced phase noise. The phase noise waveforms are employed in system simulators to estimate the resulting bit error rate penalties for differential quadrature phase shift keying signals. The results show that baudrate dependence of the bit error rate performance arises from laser-resonance phase noise. In addition, we show with supporting experimental results that the laser-resonance phase noise on the pumps in four-wave-mixing-based wavelength converters is responsible for large bit error rate floors.
Soriano-Maldonado, Alberto; Klokker, Louise; Bartholdy, Cecilie; Bandak, Elisabeth; Ellegaard, Karen; Bliddal, Henning; Henriksen, Marius
2016-01-01
Objective To assess the effects of one intra-articular corticosteroid injection two weeks prior to an exercise-based intervention program for reducing pain sensitivity in patients with knee osteoarthritis (OA). Design Randomized, masked, parallel, placebo-controlled trial involving 100 participants with clinical and radiographic knee OA that were randomized to one intra-articular injection on the knee with either 1 ml of 40 mg/ml methylprednisolone (corticosteroid) dissolved in 4 ml lidocaine (10 mg/ml) or 1 ml isotonic saline (placebo) mixed with 4 ml lidocaine (10 mg/ml). Two weeks after the injections all participants undertook a 12-week supervised exercise program. Main outcomes were changes from baseline in pressure-pain sensitivity (pressure-pain threshold [PPT] and temporal summation [TS]) assessed using cuff pressure algometry on the calf. These were exploratory outcomes from a randomized controlled trial. Results A total of 100 patients were randomized to receive either corticosteroid (n = 50) or placebo (n = 50); 45 and 44, respectively, completed the trial. Four participants had missing values for PPT and one for TS at baseline; thus modified intention-to-treat populations were analyzed. The mean group difference in changes from baseline at week 14 was 0.6 kPa (95% CI: -1.7 to 2.8; P = 0.626) for PPT and 384 mm×sec (95% CI: -2980 to 3750; P = 0.821) for TS. Conclusions These results suggest that adding intra-articular corticosteroid injection 2 weeks prior to an exercise program does not provide additional benefits compared to placebo in reducing pain sensitivity in patients with knee OA. Trial Registration EU clinical trials (EudraCT): 2012-002607-18 PMID:26871954
The influence of additions of Al and Si on the lattice stability of fcc and hcp Fe-Mn random alloys.
Gebhardt, T; Music, D; Ekholm, M; Abrikosov, I A; Vitos, L; Dick, A; Hickel, T; Neugebauer, J; Schneider, J M
2011-06-22
We have studied the influence of additions of Al and Si on the lattice stability of face-centred-cubic (fcc) versus hexagonal-closed-packed (hcp) Fe-Mn random alloys, considering the influence of magnetism below and above the fcc Néel temperature. Employing two different ab initio approaches with respect to basis sets and treatment of magnetic and chemical disorder, we are able to quantify the predictive power of the ab initio methods. We find that the addition of Al strongly stabilizes the fcc lattice independent of the regarded magnetic states. For Si a much stronger dependence on magnetism is observed. Compared to Al, almost no volume change is observed as Si is added to Fe-Mn, indicating that the electronic contributions are responsible for stabilization/destabilization of the fcc phase.
Zangrillo, Alberto; Musu, Mario; Greco, Teresa; Di Prima, Ambra Licia; Matteazzi, Andrea; Testa, Valentina; Nardelli, Pasquale; Febres, Daniela; Monaco, Fabrizio; Calabrò, Maria Grazia; Ma, Jun; Finco, Gabriele; Landoni, Giovanni
2015-01-01
Introduction Cardioprotective properties of volatile agents and of remote ischemic preconditioning have survival effects in patients undergoing cardiac surgery. We performed a Bayesian network meta-analysis to confirm the beneficial effects of these strategies on survival in cardiac surgery, to evaluate which is the best strategy and if these strategies have additive or competitive effects. Methods Pertinent studies were independently searched in BioMedCentral, MEDLINE/PubMed, Embase, and the Cochrane Central Register (updated November 2013). A Bayesian network meta-analysis was performed. Four groups of patients were compared: total intravenous anesthesia (with or without remote ischemic preconditioning) and an anesthesia plan including volatile agents (with or without remote ischemic preconditioning). Mortality was the main investigated outcome. Results We identified 55 randomized trials published between 1991 and 2013 and including 6,921 patients undergoing cardiac surgery. The use of volatile agents (posterior mean of odds ratio = 0.50, 95% CrI 0.28–0.91) and the combination of volatile agents with remote preconditioning (posterior mean of odds ratio = 0.15, 95% CrI 0.04–0.55) were associated with a reduction in mortality when compared to total intravenous anesthesia. Posterior distribution of the probability of each treatment to be the best one, showed that the association of volatile anesthetic and remote ischemic preconditioning is the best treatment to improve short- and long-term survival after cardiac surgery, suggesting an additive effect of these two strategies. Conclusions In patients undergoing cardiac surgery, the use of volatile anesthetics and the combination of volatile agents with remote preconditioning reduce mortality when compared to TIVA and have additive effects. It is necessary to confirm these results with large, multicenter, randomized, double-blinded trials comparing these different strategies in cardiac and non-cardiac surgery, to
Statistical properties of random dynamical systems with contracting direction
NASA Astrophysics Data System (ADS)
Faranda, Davide; Milhazes Freitas, Jorge; Guiraud, Pierre; Vaienti, Sandro
2016-05-01
We present a mostly numerical investigation on randomly perturbed piecewise contracting maps (PCM) with the goal to study the extreme value limit distribution of observables related to local recurrence. Our analysis will focus on PCM under additive noise, but we will also consider the hyperbolic attractor of the Baker’s map when perturbed with another kind of noise, namely, the randomly applied stochastic perturbation. A comparison of the two kind of noises will be considered with respect to the computation of the extremal index.
NASA Technical Reports Server (NTRS)
Huston, R. J. (Compiler)
1982-01-01
The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.
NASA Astrophysics Data System (ADS)
Bağdatlı, Ali Osman; Donmez, Arif; Eröksüz, Rıza; Bahadır, Güler; Turan, Mustafa; Erdoğan, Nergis
2015-12-01
The aim of this randomized controlled single-blind study is to explore whether addition of mud-pack and hot pool treatments to patient education make a significant difference in short and mild term outcomes of the patients with fibromyalgia. Seventy women with fibromyalgia syndrome were randomly assigned to either balneotherapy with mud-pack and hot pool treatments (35) or control (35) groups. After randomization, five patients from balneotherapy group and five patients from control group were dropped out from the study with different excuses. All patients had 6-h patient education programme about fibromyalgia syndrome and were given a home exercise programme. The patients in balneotherapy group had heated pool treatment at 38 °C for 20 min a day, and mud-pack treatment afterwards on back region at 45 °C. Balneotherapy was applied on weekdays for 2 weeks. All patients continued to take their medical treatment. An investigator who was blinded to the intervention assessed all the patients before and after the treatment, at the first and the third months of follow-up. Outcome measures were FIQ, BDI and both patient's and physician's global assessments. Balneotherapy group was significantly better than control group at after the treatment and at the end of the first month follow-up assessments in terms of patient's and physician's global assessment, total FIQ score, and pain intensity, fatigue, non-refreshed awaking, stiffness, anxiety and depression subscales of FIQ. No significant difference was found between the groups in terms of BDI scores. It is concluded that patient education combined with 2 weeks balneotherapy application has more beneficial effects in patients with fibromyalgia syndrome as compared to patient education alone.
Bağdatlı, Ali Osman; Donmez, Arif; Eröksüz, Rıza; Bahadır, Güler; Turan, Mustafa; Erdoğan, Nergis
2015-12-01
The aim of this randomized controlled single-blind study is to explore whether addition of mud-pack and hot pool treatments to patient education make a significant difference in short and mild term outcomes of the patients with fibromyalgia. Seventy women with fibromyalgia syndrome were randomly assigned to either balneotherapy with mud-pack and hot pool treatments (35) or control (35) groups. After randomization, five patients from balneotherapy group and five patients from control group were dropped out from the study with different excuses. All patients had 6-h patient education programme about fibromyalgia syndrome and were given a home exercise programme. The patients in balneotherapy group had heated pool treatment at 38 °C for 20 min a day, and mud-pack treatment afterwards on back region at 45 °C. Balneotherapy was applied on weekdays for 2 weeks. All patients continued to take their medical treatment. An investigator who was blinded to the intervention assessed all the patients before and after the treatment, at the first and the third months of follow-up. Outcome measures were FIQ, BDI and both patient's and physician's global assessments. Balneotherapy group was significantly better than control group at after the treatment and at the end of the first month follow-up assessments in terms of patient's and physician's global assessment, total FIQ score, and pain intensity, fatigue, non-refreshed awaking, stiffness, anxiety and depression subscales of FIQ. No significant difference was found between the groups in terms of BDI scores. It is concluded that patient education combined with 2 weeks balneotherapy application has more beneficial effects in patients with fibromyalgia syndrome as compared to patient education alone.
Armand, Philippe; Kim, Haesook T; Sainvil, Marie-Michele; Lange, Paulina B; Giardino, Angela A; Bachanova, Veronika; Devine, Steven M; Waller, Edmund K; Jagirdar, Neera; Herrera, Alex F; Cutler, Corey; Ho, Vincent T; Koreth, John; Alyea, Edwin P; McAfee, Steven L; Soiffer, Robert J; Chen, Yi-Bin; Antin, Joseph H
2016-04-01
Inhibition of the mechanistic target of rapamycin (mTOR) pathway has clinical activity in lymphoma. The mTOR inhibitor sirolimus has been used in the prevention and treatment of graft-versus-host disease (GVHD) after allogeneic haematopoietic stem cell transplantation (HSCT). A retrospective study suggested that patients with lymphoma undergoing reduced intensity conditioning (RIC) HSCT who received sirolimus as part of their GVHD prophylaxis regimen had a lower rate of relapse. We therefore performed a multicentre randomized trial comparing tacrolimus, sirolimus and methotrexate to standard regimens in adult patients undergoing RIC HSCT for lymphoma in order to assess the possible benefit of sirolimus on HSCT outcome. 139 patients were randomized. There was no difference overall in 2-year overall survival, progression-free survival, relapse, non-relapse mortality or chronic GVHD. However, the sirolimus-containing arm had a significantly lower incidence of grade II-IV acute GVHD (9% vs. 25%, P = 0·015), which was more marked for unrelated donor grafts. In conclusion, the addition of sirolimus for GVHD prophylaxis in RIC HSCT is associated with no increased overall toxicity and a lower risk of acute GVHD, although it does not improve survival; this regimen is an acceptable option for GVHD prevention in RIC HSCT. This trial is registered at clinicaltrials.gov (NCT00928018).
García-Menor, Emilia; García-Marín, Fátima; Vecino-López, Raquel; Horcajo-Martínez, Gloria; de Ibarrondo Guerrica-Echevarría, María-José; Gómez-González, Pedro; Velasco-Ortega, Syra; Suárez-Almarza, Javier; Nieto-Magro, Concepción
2016-01-01
This randomized, open-label study evaluated the additional benefits of the synbiotic Prodefen® in the clinical management of acute diarrhea of suspected viral origin in children between 6 months and 12 years of age. Study outcomes included the duration of diarrhea, the recovery from diarrhea, and the tolerability and acceptance of the treatment. The proportion of patients without diarrhea over the study period was greater in the synbiotic group than in the control group at all study time points, showing a statistically significant difference on the fifth day (95% vs 79%, p < 0.001). The duration of diarrhea (median and interquartile range) was reduced by 1 day in the synbiotic-treated patients (3 [2-5] vs 4 [3-5], p = 0.377). The tolerability of the treatment regimen, as evaluated by the parents, was significantly better in those receiving the synbiotic than in the control group. Overall, 96% of the parents of children receiving the synbiotic reported being satisfied to very satisfied with the treatment regimen. The results of this study indicate that the addition of the synbiotic Prodefen® is a well-tolerated and well-accepted approach that provides an additional benefit to the standard supportive therapy in the management of acute viral diarrhea in children. PMID:28229091
Häfner, Hans-Martin; Schmid, Ute; Moehrle, Matthias; Strölin, Anke; Breuninger, Helmut
2008-01-01
Vascular effects of local anesthetics are especially important in dermatological surgery. In particular, adequate perfusion must be ensured in order to offset surgical manipulations during surgical interventions at the acra. However, the use of adrenaline additives appears fraught with problems when anesthesia affects the terminal vascular system, particularly during interventions at the fingers, toes, penis, outer ears, and tip of the nose. We studied skin blood flux at the fingerpads via laser Doppler flowmetry over the course of 24 hours in a prospective, double-blind, randomized, placebo-controlled study with 20 vascularly healthy test persons following Oberst's-method anesthetic blocks. In each case, 6 ml ropivacaine (7.5 mg/ml) (A), lidocaine 1% without an additive (B), and lidocaine 1% with an adrenaline additive (1:200,000) (C) was used respectively as a verum. Isotonic saline solution was injected as a placebo (D). Measurements were carried out with the aid of a computer simultaneously at D II and D IV on both hands. Administration of (A) led to increased blood flux (+155.2%); of (B) initially to a decrease of 27%; of (C) to a reduction of 55% which was reversible after 40 minutes and of (D) to no change.(A) resulted in sustained vasodilatation which was still demonstrable after 24 h. (B) had notably less vasodilative effect, although comparison with (D) clearly showed that (B) is indeed vasodilative. (C) resulted in only a passing decrease in perfusion; this was no longer measurable when checked after 6 and 24 h. This transient inadequacy of blood flux also appeared after administration of (D). These tests show that adrenaline additive in local anesthesia does not decrease blood flow more than 55% for a period of 16 min. Following these results an adrenaline additive can be safely used for anesthetic blocks at the acra in healthy persons.
Core Noise - Increasing Importance
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2011-01-01
This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor
Effects of linear trends on estimation of noise in GNSS position time series
NASA Astrophysics Data System (ADS)
Dmitrieva, K.; Segall, P.; Bradley, A. M.
2016-10-01
A thorough understanding of time dependent noise in Global Navigation Satellite System (GNSS) position time series is necessary for computing uncertainties in any signals found in the data. However, estimation of time-correlated noise is a challenging task and is complicated by the difficulty in separating noise from signal, the features of greatest interest in the time series. In this paper we investigate how linear trends affect the estimation of noise in daily GNSS position time series. We use synthetic time series to study the relationship between linear trends and estimates of time-correlated noise for the six most commonly cited noise models. We find that the effects of added linear trends, or conversely de-trending, vary depending on the noise model. The commonly adopted model of random walk (RW), flicker noise (FN), and white noise (WN) is the most severely affected by de-trending, with estimates of low amplitude RW most severely biased. Flicker noise plus white noise is least affected by adding or removing trends. Non-integer power-law noise estimates are also less affected by de-trending, but are very sensitive to the addition of trend when the spectral index is less than one. We derive an analytical relationship between linear trends and the estimated random walk variance for the special case of pure random walk noise. Overall, we find that to ascertain the correct noise model for GNSS position time series and to estimate the correct noise parameters, it is important to have independent constraints on the actual trends in the data.
2010-01-01
Background Low back pain is a highly prevalent and disabling condition worldwide. Clinical guidelines for the management of patients with acute low back pain recommend first-line treatment consisting of advice, reassurance and simple analgesics. Exercise is also commonly prescribed to these patients. The primary aim of this study was to evaluate the short-term effect of adding the McKenzie method to the first-line care of patients with acute low back pain. Methods A multi-centre randomized controlled trial with a 3-month follow-up was conducted between September 2005 and June 2008. Patients seeking care for acute non-specific low back pain from primary care medical practices were screened. Eligible participants were assigned to receive a treatment programme based on the McKenzie method and first-line care (advice, reassurance and time-contingent acetaminophen) or first-line care alone, for 3 weeks. Primary outcome measures included pain (0-10 Numeric Rating Scale) over the first seven days, pain at 1 week, pain at 3 weeks and global perceived effect (-5 to 5 scale) at 3 weeks. Treatment effects were estimated using linear mixed models. Results One hundred and forty-eight participants were randomized into study groups, of whom 138 (93%) completed the last follow-up. The addition of the McKenzie method to first-line care produced statistically significant but small reductions in pain when compared to first-line care alone: mean of -0.4 points (95% confidence interval, -0.8 to -0.1) at 1 week, -0.7 points (95% confidence interval, -1.2 to -0.1) at 3 weeks, and -0.3 points (95% confidence interval, -0.5 to -0.0) over the first 7 days. Patients receiving the McKenzie method did not show additional effects on global perceived effect, disability, function or on the risk of persistent symptoms. These patients sought less additional health care than those receiving only first-line care (P = 0.002). Conclusions When added to the currently recommended first-line care of acute
Hongo, Michio; Miyakoshi, Naohisa; Kasukawa, Yuji; Ishikawa, Yoshinori; Shimada, Yoichi
2015-07-01
Calcitonin has been reported to reduce acute and chronic back pain in osteoporotic patients. The additive effect of calcitonin with a bisphosphonate on chronic back pain remains unclear. The purpose of this study was to evaluate the effect of combining elcatonin (eel calcitonin) with risedronate for patients with chronic back pain. Forty-five postmenopausal women diagnosed as having osteoporosis with chronic back pain persisting for more than 3 months, after excluding women with fresh vertebral fractures within the last 6 months, were randomly allocated to a risedronate group (risedronate alone, n = 22) and a combined group (risedronate and elcatonin, n = 23). The study period was 6 months. Pain was evaluated with a visual analogue scale (VAS) and the Roland-Morris questionnaire (RDQ). Back extensor strength, bone mineral density, and quality of life on the SF-36 and the Japanese osteoporosis quality of life score were also evaluated. Significant improvements were found in the combined group for VAS at final follow-up compared with baseline and 3 months, mental health status on the SF-36, and JOQOL domains for back pain and general health. The JOQOL domain for back pain improved significantly, but no change was found in the VAS or other domains in the risedronate group. Bone mineral density increased significantly in the two groups, but no significant difference was found between the groups. Back extensor strength did not change in both groups. In conclusion, the use of elcatonin in addition to risedronate for more than 3 months reduced chronic back pain. The additional therapy of risedronate with elcatonin may be a useful and practical choice for the treatment of osteoporosis with chronic back pain persisting more than 3 months.
Tuckwell, Henry C; Ditlevsen, Susanne
2016-10-01
We consider a classical space-clamped Hodgkin-Huxley model neuron stimulated by synaptic excitation and inhibition with conductances represented by Ornstein-Uhlenbeck processes. Using numerical solutions of the stochastic model system obtained by an Euler method, it is found that with excitation only, there is a critical value of the steady-state excitatory conductance for repetitive spiking without noise, and for values of the conductance near the critical value, small noise has a powerfully inhibitory effect. For a given level of inhibition, there is also a critical value of the steady-state excitatory conductance for repetitive firing, and it is demonstrated that noise in either the excitatory or inhibitory processes or both can powerfully inhibit spiking. Furthermore, near the critical value, inverse stochastic resonance was observed when noise was present only in the inhibitory input process. The system of deterministic differential equations for the approximate first- and second-order moments of the model is derived. They are solved using Runge-Kutta methods, and the solutions are compared with the results obtained by simulation for various sets of parameters, including some with conductances obtained by experiment on pyramidal cells of rat prefrontal cortex. The mean and variance obtained from simulation are in good agreement when there is spiking induced by strong stimulation and relatively small noise or when the voltage is fluctuating at subthreshold levels. In the occasional spike mode sometimes exhibited by spinal motoneurons and cortical pyramidal cells, the assumptions underlying the moment equation approach are not satisfied. The simulation results show that noisy synaptic input of either an excitatory or inhibitory character or both may lead to the suppression of firing in neurons operating near a critical point and this has possible implications for cortical networks. Although suppression of firing is corroborated for the system of moment equations
NASA Technical Reports Server (NTRS)
Pendley, R. E.
1982-01-01
The problem of airport noise at several airports and air bases is detailed. Community reactions to the noise, steps taken to reduce jet engine noise, and the effect of airport use restrictions and curfews on air transportation are discussed. The adverse effect of changes in allowable operational noise on airport safety and altenative means for reducing noise pollution are considered. Community-airport relations and public relations are discussed.
NASA Technical Reports Server (NTRS)
Strahle, W. C.
1977-01-01
A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.
Kumar, Ashish; Jha, Sanjeev K.; Mittal, Vibhu V.; Sharma, Praveen; Sharma, Barjesh C.; Sarin, Shiv K.
2015-01-01
Background Efficacy of endoscopic sclerotherapy in controlling acute variceal bleeding is significantly improved when vasoactive drug is added. Endoscopic variceal ligation (EVL) is superior to sclerotherapy. Whether efficacy of EVL will also improve with addition of somatostatin is not known. We compared EVL plus somatostatin versus EVL plus placebo in control of acute variceal bleeding. Methods Consecutive cirrhotic patients with acute esophageal variceal bleeding were enrolled. After emergency EVL, patients were randomized to receive either somatostatin (250 mcg/hr) or placebo infusion. Primary endpoint was treatment failure within 5 days. Treatment failure was defined as fresh hematemesis ≥2 h after start of therapy, or a 3 gm drop in Hb, or death. Results 61 patients were enrolled (EVL plus somatostatin group, n = 31 and EVL plus placebo group, n = 30). The baseline characteristics were similar. Within the initial 5-day period, the frequency of treatment failure was similar in both the groups (EVL plus somatostatin group 8/31 [26%] versus EVL plus placebo group 7/30 [23%]; P = 1.000). The mortality was also similar in the two groups (3/31 [10%] vs. 3/30 [10%]; P = 1.000). Baseline HVPG ≥19 mm Hg and active bleeding at index endoscopy were independent predictors of treatment failure. Conclusions Addition of somatostatin infusion to EVL therapy does not offer any advantage in control of acute variceal bleeding or reducing mortality. The reason for this may be its failure to maintain sustained reduction in portal pressure for five days. Active bleeding at index endoscopy and high baseline HVPG should help choose early alternative treatment options. Trial registered with ClincalTrials.gov vide NCT01267669. PMID:26628838
Xiang, Lei; Jiang, Pingping; Zhou, Lin; Sun, Xiaomin; Bi, Jianlu; Cui, Lijuan; Nie, Xiaoli; Luo, Ren; Liu, Yanyan
2016-01-01
Albuminuria is characteristic of early-stage diabetic nephropathy (DN). The conventional treatments with angiotensin receptor blockers (ARB) are unable to prevent the development of albuminuria in normotensive individuals with type 2 diabetes mellitus (T2DM). Purpose. The present study aimed to evaluate the effect of ARB combined with a Chinese formula Qidan Dihuang grain (QDDHG) in improving albuminuria and Traditional Chinese Medicine Symptom (TCMS) scores in normotensive individuals with T2DM. Methods. Eligible patients were randomized to the treatment group and the control group. Results. Compared with baseline (week 0), both treatment and control groups markedly improved the 24-hour albuminuria, total proteinuria (TPU), and urinary albumin to creatinine ratio (A/C) at 4, 8, and 12 weeks. Between treatment and the control group, the levels of albuminuria in the treatment group were significantly lower than in the control group at 8 and 12 weeks (p < 0.05). In addition, treatment group markedly decreased the scores of TCMS after treatment. Conclusion. This trial suggests that QDDHG combined with ARB administration decreases the levels of albuminuria and the scores for TCMS in normotensive individuals with T2DM. PMID:27375762
Faisal, A Aldo; Selen, Luc P J; Wolpert, Daniel M
2008-04-01
Noise--random disturbances of signals--poses a fundamental problem for information processing and affects all aspects of nervous-system function. However, the nature, amount and impact of noise in the nervous system have only recently been addressed in a quantitative manner. Experimental and computational methods have shown that multiple noise sources contribute to cellular and behavioural trial-to-trial variability. We review the sources of noise in the nervous system, from the molecular to the behavioural level, and show how noise contributes to trial-to-trial variability. We highlight how noise affects neuronal networks and the principles the nervous system applies to counter detrimental effects of noise, and briefly discuss noise's potential benefits.
Lahham, Aroub; McDonald, Christine F; Holland, Anne E
2016-01-01
Background Physical inactivity is associated with poor outcomes in COPD, and as a result, interventions to improve physical activity (PA) are a current research focus. However, many trials have been small and inconclusive. Objective The aim of this systematic review and meta-analysis was to study the effects of randomized controlled trials (RCTs) targeting PA in COPD. Methods Databases (Physiotherapy Evidence Database [PEDro], Embase, MEDLINE, CINAHL and the Cochrane Central Register for Controlled Trials) were searched using the following keywords: “COPD”, “intervention” and “physical activity” from inception to May 20, 2016; published RCTs that aimed to increase PA in individuals with COPD were included. The PEDro scale was used to rate study quality. Standardized mean differences (effect sizes, ESs) with 95% confidence intervals (CIs) were determined. Effects of included interventions were also measured according to the minimal important difference (MID) in daily steps for COPD (599 daily steps). Results A total of 37 RCTs with 4,314 participants (mean forced expiratory volume in one second (FEV1) % predicted 50.5 [SD=10.4]) were identified. Interventions including exercise training (ET; n=3 studies, 103 participants) significantly increased PA levels in COPD compared to standard care (ES [95% CI]; 0.84 [0.44–1.25]). The addition of activity counseling to pulmonary rehabilitation (PR; n=4 studies, 140 participants) showed important effects on PA levels compared to PR alone (0.47 [0.02–0.92]), achieving significant increases that exceeded the MID for daily steps in COPD (mean difference [95% CI], 1,452 daily steps [549–2,356]). Reporting of methodological quality was poor in most included RCTs. Conclusion Interventions that included ET and PA counseling during PR were effective strategies to improve PA in COPD. PMID:27994451
Train noise reduction scenarios for compliance with future noise legislation
NASA Astrophysics Data System (ADS)
Leth, S.
2003-10-01
The Technical Specification for Interoperability (TSI) for high-speed trains on the European market includes limits on noise emission. These and other future restrictions on exterior noise of high-speed and intercity trains will require that train manufacturers implement noise control measures early in the design phase. A fundamental problem faced by manufacturers during the design process is determining how much noise reduction is required for each of the various noise sources on the train in order to achieve an optimal balance. To illustrate this process, estimates are presented of the contributions from different sources on existing Bombardier trains, based on measured data, numerical calculations and empirical formulae. In addition, methods of achieving the required noise reductions for different sources are briefly discussed along with targets for future exterior noise emission. Measurement results presented demonstrate the importance of track quality in noise emission. Noise restrictions, including future legislation, must give proper recognition to this important parameter.
Flodin, Lena; Sääf, Maria; Cederholm, Tommy; Al-Ani, Amer N; Ackermann, Paul W; Samnegård, Eva; Dalen, Nils; Hedström, Margareta
2014-01-01
Background After a hip fracture, a catabolic state develops, with increased bone loss during the first year. The aim of this study was to evaluate the effects of postoperative treatment with calcium, vitamin D, and bisphosphonates (alone or together) with nutritional supplementation on total hip and total body bone mineral density (BMD). Methods Seventy-nine patients (56 women), with a mean age of 79 years (range, 61–96 years) and with a recent hip fracture, who were ambulatory before fracture and without severe cognitive impairment, were included. Patients were randomized to treatment with bisphosphonates (risedronate 35 mg weekly) for 12 months (B; n=28), treatment with bisphosphonates along with nutritional supplementation (40 g protein, 600 kcal daily) for the first 6 months (BN; n=26), or to controls (C; n=25). All participants received calcium (1,000 mg) and vitamin D3 (800 IU) daily. Total hip and total body BMD were assessed with dual-energy X-ray absorptiometry at baseline, 6, and 12 months. Marker of bone resorption C-terminal telopeptide of collagen I and 25-hydroxy vitamin D were analyzed in serum. Results Analysis of complete cases (70/79 at 6 months and 67/79 at 12 months) showed an increase in total hip BMD of 0.7% in the BN group, whereas the B and C groups lost 1.1% and 2.4% of BMD, respectively, between baseline and 6 months (P=0.071, between groups). There was no change in total body BMD between baseline and 12 months in the BN group, whereas the B group and C group both lost BMD, with C losing more than B (P=0.009). Intention-to-treat analysis was in concordance with the complete cases analyses. Conclusion Protein-and energy-rich supplementation in addition to calcium, vitamin D, and bisphosphonate therapy had additive effects on total body BMD and total hip BMD among elderly hip fracture patients. PMID:25045257
2013-01-01
Background Non-specific chronic back pain (CBP) is often accompanied by psychological trauma, but treatment for this associated condition is often insufficient. Nevertheless, despite the common co-occurrence of pain and psychological trauma, a specific trauma-focused approach for treating CBP has been neglected to date. Accordingly, eye movement desensitization and reprocessing (EMDR), originally developed as a treatment approach for posttraumatic stress disorders, is a promising approach for treating CBP in patients who have experienced psychological trauma. Thus, the aim of this study is to determine whether a standardized, short-term EMDR intervention added to treatment as usual (TAU) reduces pain intensity in CBP patients with psychological trauma vs. TAU alone. Methods/design The study will recruit 40 non-specific CBP patients who have experienced psychological trauma. After a baseline assessment, the patients will be randomized to either an intervention group (n = 20) or a control group (n = 20). Individuals in the EMDR group will receive ten 90-minute sessions of EMDR fortnightly in addition to TAU. The control group will receive TAU alone. The post-treatment assessments will take place two weeks after the last EMDR session and six months later. The primary outcome will be the change in the intensity of CBP within the last four weeks (numeric rating scale 0–10) from the pre-treatment assessment to the post-treatment assessment two weeks after the completion of treatment. In addition, the patients will undergo a thorough assessment of the change in the experience of pain, disability, trauma-associated distress, mental co-morbidities, resilience, and quality of life to explore distinct treatment effects. To explore the mechanisms of action that are involved, changes in pain perception and pain processing (quantitative sensory testing, conditioned pain modulation) will also be assessed. The statistical analysis of the primary outcome will be performed
NASA Technical Reports Server (NTRS)
Bragdon, C. R.
1982-01-01
Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.
Television noise-reduction device
NASA Technical Reports Server (NTRS)
Stamps, J. C.; Gordon, B. L.
1973-01-01
System greatly improves signal-to-noise ratio with little or no loss in picture resolution. By storage of luminance component, which is summed with chrominance component, system performs mathematical integration of basically-repetitive television signals. Integration of signals over interval of their repetition causes little change in original signals and eliminates random noise.
Genetic noise control via protein oligomerization
Ghim, C; Almaas, E
2008-06-12
Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamical role of protein-protein associations. We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast protein binding-unbinding kinetics, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its intrinsic switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of phenotypically important toggle switches, and nested positive feedback loops in
NASA Astrophysics Data System (ADS)
HEINONEN-GUZEJEV, M.; VUORINEN, H. S.; KAPRIO, J.; HEIKKILÄ, K.; MUSSALO-RAUHAMAA, H.; KOSKENVUO, M.
2000-07-01
Self-report of noise exposure was compared with the information on noise maps while taking into account measures of self-reported annoyance and noise sensitivity. Self-report data were analyzed for 1495 subjects participating in a case-control study of hypertension from the Finnish Twin Cohort who had replied to a questionnaire in 1988. In addition, noise map information was included in analyses of the 218 study subjects living in the Metropolitan Area of Helsinki. The results show that: (1) In the factor analysis based on all subjects self-report of transportation noise exposure formed an own factor independent of the annoyance variables or noise sensitivity. Annoyance items loaded on to two different factors termed nighttime and daytime annoyance. Noise sensitivity did not load to either of the factors of annoyance. For the subsample with noise map information, the results indicated that: (2) Noise sensitivity was independent of noise map information. (3) Subjects with high noise sensitivity reported more transportation noise exposure than subjects with low noise sensitivity and they reported aircraft, railway and road traffic noise exposure outside the environmental noise map areas almost twice as often as non-sensitive subjects. (4) Noise map information and self-report of noise exposure were consistently associated when aircraft noise was considered. Self-report of noise related items may supplement noise map information in noise protection.
Psychoacoustic active noise control with ITU-R 468 noise weighting and its sound quality analysis.
Bao, Hua; Panahi, Issa M S
2010-01-01
Non-uniform frequency response of human hearing system requires conventional active noise control (ANC) system to be modified. Psychoacoustic active noise control (PANC) system based on filtered-E least-mean-square (FELMS) structure aims to improve the noise attenuation performance in terms of hearing perception. ITU-R 468 noise weighting reflects human hearing response to random noise. In this paper we incorporate ITU-R 468 noise weighting into PANC system. Sound quality analysis is conducted for attenuated noise with a predictive pleasantness model which combines four psychoacoustic parameters (loudness, sharpness, roughness and tonality). Simulation on realistic MRI acoustic noise shows improvement of sound quality in the new system.
Noise measurements on the helicopter BK 117 design. Weighted noise levels and influence of airspeed
NASA Astrophysics Data System (ADS)
Splettstoesser, Wolf R.; Anders, Klaus P.; Spiegel, Karl-Heinz
1986-11-01
Noise measurements on the prototype helicopter BK 117 were performed in strict compliance with the proposed international Civil Aviation Organization regulations for noise certification of helicopters. Measurement procedure, noise data acquisition, analysis and reduction as well as applied correction procedures are described. Effective perceived noise levels (EPNL) and other noise descriptors were evaluated and related to the proposed noise limits. Additional level flyover tests with variable airspeed were conducted to investigate the resulting effect on the EPNL and other noise measures.
Noise induced transitions in rugged energy landscapes
NASA Astrophysics Data System (ADS)
Pradas, Marc; Duncan, Andrew; Kalliadasis, Serafim; Pavliotis, Greg
2016-11-01
External or internal random fluctuations are ubiquitous in many physical and technological systems and can play a key role in their dynamics often inducing a wide variety of complex spatiotemporal phenomena, including noise-induced spatial patterns and noise-induced phase transitions. Many of these phenomena can be modelled by noisy multiscale systems characterized by the presence of a wide range of different time- and lengthscales interacting nontrivially with each other. Here we analyse the effects of additive noise on systems that are described in terms of a rugged energy landscape, modelled as a slowly-varying multiscale potential perturbed by periodic multiscale fluctuations. Some examples of this problem include the dynamics of sessile droplets on heterogeneous substrates, crystallization and the evolution of protein folding. We demonstrate that the interplay between noise and the small scale fluctuations in the potential can give rise to a dramatically different bifurcation structure and dynamical behaviour compared to that of the original, unperturbed model. For instance, we observe several nontrivial and largely unexpected dynamic-state transitions controlled by the noise intensity. We characterize these transitions in terms of critical exponents.
Strother, S.C. ); Casey, M.E. ); Hoffman, E.J. . Nuclear Medicine Lab.)
1990-04-01
Sensitivity parameters derived from a plot of a scanner's true coincidence count (TCC) rates as a function of activity in a 20 cm cylindrical phantom have no direct link to image quality. Noise equivalent count (NEC) rate curves, which incorporate the noise effects of subtracting the randoms and scatter count components provide a direct link between image signal-to-noise ratios and the scatter, randoms and trues coincidence count rates. The authors have measured TCC and NEC curves with a standardized 20 cm diameter nylon cylinder for five different PET scanners with several scanner-collimator combinations. In addition, the authors have compared TCC and NEC curves on one scanner with those from an Alderson brain phantom.
Noise characteristics of heterodyne/homodyne frequency-domain measurements
Kupinski, Matthew A.
2012-01-01
Abstract. We theoretically develop and experimentally validate the noise characteristics of heterodyne and/or homodyne measurements that are widely used in frequency-domain diffusive imaging. The mean and covariance of the modulated heterodyne output are derived by adapting the random amplification of a temporal point process. A multinomial selection rule is applied to the result of the temporal noise analysis to additionally model the spatial distribution of intensified photons measured by a charge-coupled device (CCD), which shows that the photon detection efficiency of CCD pixels plays an important role in the noise property of detected photons. The approach of using a multinomial probability law is validated from experimental results. Also, experimentally measured characteristics of means and variances of homodyne outputs are in agreement with the developed theory. The developed noise model can be applied to all photon amplification processes. PMID:22352646
Kao, Tsung-Hsien; Chang, Shoou-Jinn Fang, Yean-Kuen; Huang, Po-Chin; Wu, Chung-Yi; Wu, San-Lein
2014-08-11
In this study, the impact of aluminum ion implantation (Al I/I) on random telegraph noise (RTN) in high-k/metal gate (HK/MG) p-type metal-oxide-semiconductor field-effect-transistors (pMOSFETs) was investigated. The trap parameters of HK/MG pMOSFETs with Al I/I, such as trap energy level, capture time and emission time, activation energies for capture and emission, and trap location in the gate dielectric, were determined. The configuration coordinate diagram was also established. It was observed that the implanted Al could fill defects and form a thin Al{sub 2}O{sub 3} layer and thus increase the tunneling barrier height for holes. It was also observed that the trap position in the Al I/I samples was lower due to the Al I/I-induced dipole at the HfO{sub 2}/SiO{sub 2} interface.
NASA Technical Reports Server (NTRS)
Mixson, John S.; Wilby, John F.
1991-01-01
The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.
Classroom Noise and Teachers' Voice Production
ERIC Educational Resources Information Center
Rantala, Leena M.; Hakala, Suvi; Holmqvist, Sofia; Sala, Eeva
2015-01-01
Purpose: The aim of this study was to research the associations between noise (ambient and activity noise) and objective metrics of teachers' voices in real working environments (i.e., classrooms). Method: Thirty-two female and 8 male teachers from 14 elementary schools were randomly selected for the study. Ambient noise was measured during breaks…
NASA Technical Reports Server (NTRS)
1980-01-01
Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.
Variability in Mechanical Ventilation: What's All the Noise About?
Naik, Bhiken I; Lynch, Carl; Durbin, Charles G
2015-08-01
Controlled mechanical ventilation is characterized by a fixed breathing frequency and tidal volume. Physiological and mathematical models have demonstrated the beneficial effects of varying tidal volume and/or inspiratory pressure during positive-pressure ventilation. The addition of noise (random changes) to a monotonous nonlinear biological system, such as the lung, induces stochastic resonance that contributes to the recruitment of collapsed alveoli and atelectatic lung segments. In this article, we review the mechanism of physiological pulmonary variability, the principles of noise and stochastic resonance, and the emerging understanding that there are beneficial effects of variability during mechanical ventilation.
Auditory white noise reduces age-related fluctuations in balance.
Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R
2016-09-06
Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability.
2011-01-01
Background Myocardial infarction causes irreversible loss of cardiomyocytes and may lead to loss of ventricular function, morbidity and mortality. Infarct size is a major prognostic factor and reduction of infarct size has therefore been an important objective of strategies to improve outcomes. In experimental studies, glucagon-like peptide 1 and exenatide, a long acting glucagon-like peptide 1 receptor agonist, a novel drug introduced for the treatment of type 2 diabetes, reduced infarct size after myocardial infarction by activating pro-survival pathways and by increasing metabolic efficiency. Methods The EXAMI trial is a multi-center, prospective, randomized, placebo controlled trial, designed to evaluate clinical outcome of exenatide infusion on top of standard treatment, in patients with an acute myocardial infarction, successfully treated with primary percutaneous coronary intervention. A total of 108 patients will be randomized to exenatide (5 μg bolus in 30 minutes followed by continuous infusion of 20 μg/24 h for 72 h) or placebo treatment. The primary end point of the study is myocardial infarct size (measured using magnetic resonance imaging with delayed enhancement at 4 months) as a percentage of the area at risk (measured using T2 weighted images at 3-7 days). Discussion If the current study demonstrates cardioprotective effects, exenatide may constitute a novel therapeutic option to reduce infarct size and preserve cardiac function in adjunction to reperfusion therapy in patients with acute myocardial infarction. Trial registration ClinicalTrials.gov: NCT01254123 PMID:22067476
Airframe noise prediction evaluation
NASA Technical Reports Server (NTRS)
Yamamoto, Kingo J.; Donelson, Michael J.; Huang, Shumei C.; Joshi, Mahendra C.
1995-01-01
The objective of this study is to evaluate the accuracy and adequacy of current airframe noise prediction methods using available airframe noise measurements from tests of a narrow body transport (DC-9) and a wide body transport (DC-10) in addition to scale model test data. General features of the airframe noise from these aircraft and models are outlined. The results of the assessment of two airframe prediction methods, Fink's and Munson's methods, against flight test data of these aircraft and scale model wind tunnel test data are presented. These methods were extensively evaluated against measured data from several configurations including clean, slat deployed, landing gear-deployed, flap deployed, and landing configurations of both DC-9 and DC-10. They were also assessed against a limited number of configurations of scale models. The evaluation was conducted in terms of overall sound pressure level (OASPL), tone corrected perceived noise level (PNLT), and one-third-octave band sound pressure level (SPL).
Noise generator for tinnitus treatment based on look-up tables
NASA Astrophysics Data System (ADS)
Uriz, Alejandro J.; Agüero, Pablo; Tulli, Juan C.; Castiñeira Moreira, Jorge; González, Esteban; Hidalgo, Roberto; Casadei, Manuel
2016-04-01
Treatment of tinnitus by means of masking sounds allows to obtain a significant improve of the quality of life of the individual that suffer that condition. In view of that, it is possible to develop noise synthesizers based on random number generators in digital signal processors (DSP), which are used in almost any digital hearing aid devices. DSP architecture have limitations to implement a pseudo random number generator, due to it, the noise statistics can be not as good as expectations. In this paper, a technique to generate additive white gaussian noise (AWGN) or other types of filtered noise using coefficients stored in program memory of the DSP is proposed. Also, an implementation of the technique is carried out on a dsPIC from Microchip®. Objective experiments and experimental measurements are performed to analyze the proposed technique.
Titration of chaos with added noise
Poon, Chi-Sang; Barahona, Mauricio
2001-01-01
Deterministic chaos has been implicated in numerous natural and man-made complex phenomena ranging from quantum to astronomical scales and in disciplines as diverse as meteorology, physiology, ecology, and economics. However, the lack of a definitive test of chaos vs. random noise in experimental time series has led to considerable controversy in many fields. Here we propose a numerical titration procedure as a simple “litmus test” for highly sensitive, specific, and robust detection of chaos in short noisy data without the need for intensive surrogate data testing. We show that the controlled addition of white or colored noise to a signal with a preexisting noise floor results in a titration index that: (i) faithfully tracks the onset of deterministic chaos in all standard bifurcation routes to chaos; and (ii) gives a relative measure of chaos intensity. Such reliable detection and quantification of chaos under severe conditions of relatively low signal-to-noise ratio is of great interest, as it may open potential practical ways of identifying, forecasting, and controlling complex behaviors in a wide variety of physical, biomedical, and socioeconomic systems. PMID:11416195
Black, J A; Sharp, S J; Wareham, N J; Sandbæk, A; Rutten, G E H M; Lauritzen, T; Khunti, K; Davies, M J; Borch-Johnsen, K; Griffin, S J; Simmons, R K
2014-01-01
Aims Little is known about the long-term effects of intensive multifactorial treatment early in the diabetes disease trajectory. In the absence of long-term data on hard outcomes, we described change in 10-year modelled cardiovascular risk in the 5 years following diagnosis, and quantified the impact of intensive treatment on 10-year modelled cardiovascular risk at 5 years. Methods In a pragmatic, cluster-randomized, parallel-group trial in Denmark, the Netherlands and the UK, 3057 people with screen-detected Type 2 diabetes were randomized by general practice to receive (1) routine care of diabetes according to national guidelines (1379 patients) or (2) intensive multifactorial target-driven management (1678 patients). Ten-year modelled cardiovascular disease risk was calculated at baseline and 5 years using the UK Prospective Diabetes Study Risk Engine (version 3β). Results Among 2101 individuals with complete data at follow up (73.4%), 10-year modelled cardiovascular disease risk was 27.3% (sd 13.9) at baseline and 21.3% (sd 13.8) at 5-year follow-up (intensive treatment group difference –6.9, sd 9.0; routine care group difference –5.0, sd 12.2). Modelled 10-year cardiovascular disease risk was lower in the intensive treatment group compared with the routine care group at 5 years, after adjustment for baseline cardiovascular disease risk and clustering (–2.0; 95% CI –3.1 to –0.9). Conclusions Despite increasing age and diabetes duration, there was a decline in modelled cardiovascular disease risk in the 5 years following diagnosis. Compared with routine care, 10-year modelled cardiovascular disease risk was lower in the intensive treatment group at 5 years. Our results suggest that patients benefit from intensive treatment early in the diabetes disease trajectory, where the rate of cardiovascular disease risk progression may be slowed. PMID:24533664
Deo, Saroj Prasad
2016-01-01
Context: Dexamethasone has been frequently used in oral surgical procedure and accepted by oral and maxillofacial surgeon community worldwide. However, this is the first clinical trial that used dexamethasone as adjuvant with lignocaine in dental nerve block (DNB). Aims: The purpose of this double-blind, randomized control trial (RCT) was to compare the effect of dexamethasone with normal saline (NS) in a lignocaine DNB. Settings and Design: This prospective, double-blind, RCT was carried out after obtaining approval from the Institutional Ethical Committee. Subjects and Methods: In forty patients, the present placebo-controlled clinical trial was conducted; allocated randomly into two groups: study group (SG) or control group (CG). The single-dose submucosal dexamethasone or NS injection was administered immediately after 2% lignocaine with epinephrine 1:2,00,000 nerves block during mandibular third molar surgery (TMS). Visual analog scale score, number, and exact time nonsteroidal anti-inflammatory drugs were administered were used to measure postoperative analgesia in 2nd and 7th days. Statistical Analysis Used: All the data were entered into the Spreadsheet (Excel, Microsoft) and Chi-square test, Mann–Whitney U-test, Student's paired and unpaired t-test, and Fisher exact test were used. Results: This study found maximum duration of DNB in SG was 248.88 min and in CG was 175.44 min, whereas minimum duration in SG was 197 min and in CG was 140.78 min. Conclusions: Dexamethasone prolongs the action of lignocaine 2% in DNB for TMS. PMID:28299268
M-Ary Alpha-Stable Noise Modulation in Spread-Spectrum Communication
NASA Astrophysics Data System (ADS)
Cek, Mehmet Emre
2015-04-01
In this paper, a spread-spectrum communication system based on a random carrier is proposed which transmits M-ary information. The random signal is considered as a single realization of a random process taken from prescribed symmetric α-stable (SαS) distribution that carries digital M-ary information to be transmitted. Considering the noise model in the channel as additive white Gaussian noise (AWGN), the transmitter sends the information carrying random signal from non-Gaussian density. Alpha-stable distribution is used to encode the M-ary message. Inspired by the chaos shift keying techniques, the proposed method is called M-ary symmetric alpha-stable differential shift keying (M-ary SαS-DSK). The main purpose of preferring non-Gaussian noise instead of conventional pseudo-noise (PN) sequence is to overcome the drawback of self-repeating noise-like sequences which are detectable due to the periodic behavior of the autocorrelation function of PN sequences. Having infinite second order moment in α-stable random carrier offers secrecy of the information due to the non-constant autocorrelation behavior. The bit error rate (BER) performance of the proposed method is illustrated by Monte Carlo simulations with respect to various characteristic exponent values and different data length.
Noise and mental performance: personality attributes and noise sensitivity.
Belojevic, G; Jakovljevic, B; Slepcevic, V
2003-01-01
The contradictory and confusing results in noise research on humans may partly be due to individual differences between the subjects participating in different studies. This review is based on a twelve year research on the role of neuroticism, extroversion and subjective noise sensitivity during mental work in noisy environment. Neurotic persons might show enhanced "arousability" i.e. their arousal level increases more in stress. Additional unfavorable factors for neurotics are worrying and anxiety, which might prevent them coping successfully with noise, or some other stressors during mental performance. In numerous experiments introverts have showed higher sensitivity to noise during mental performance compared to extroverts, while extroverts often cope with a boring task even by requesting short periods of noise during performance. Correlation analyses have regularly revealed a highly significant negative relation between extroversion and noise annoyance during mental processing. Numerous studies have shown that people with high noise sensitivity may be prevented from achieving the same work results as other people in noisy environment, thus leading to psychosomatic, neurotic or other difficulties. Positive relation between noise annoyance and subjective noise sensitivity might be very strong. Our results have shown, after matching with the results of other relevant studies, that more stable personality, with extroversive tendencies and with a relatively lower subjective noise sensitivity measured with standard questionnaires, may be expected to better adapt to noise during mental performance, compared to people with opposite personality traits.
Noise Analysis on Graphene Devices via Scanning Noise Microscopy
NASA Astrophysics Data System (ADS)
Cho, Duckhyung; Sung, Moon Gyu; Lee, Hyungwoo; Heo, Kwang; Byun, Kyung-Eun; Kim, Taekyeong; Seo, David H.; Seo, Sunae; Hong, Seunghun
2013-03-01
Until now, the studies about low-frequency noises in electronic devices have mostly relied on the scaling behaviour analysis of current noise measured from multiple devices with different resistance values. However, the fabrication of such multiple devices for noise analysis is a labor-intensive and time-consuming work. Herein, we developed the scanning noise microscopy (SNM) method for nanoscale noise analysis of electronic devices, which allowed us to measure the scaling behaviour of electrical current noises in a graphene-strip-based device. In this method, a conductive atomic force microscopy probe made a direct contact on the graphene strip channel in the device to measure the noise spectra through it. The SNM method enabled the investigation of the noise scaling behaviour using only a single device. In addition, the nanoscale noise map was obtained, which allowed us to study the effect of structural defects on the noise characteristics of the graphene strip channel. Our method should be a powerful strategy for nanoscale noise analysis and play a significant role in basic research on nanoscale devices.
Numerical simulation of nonlinear dynamical systems driven by commutative noise
Carbonell, F. Biscay, R.J.; Jimenez, J.C.; Cruz, H. de la
2007-10-01
The local linearization (LL) approach has become an effective technique for the numerical integration of ordinary, random and stochastic differential equations. One of the reasons for this success is that the LL method achieves a convenient trade-off between numerical stability and computational cost. Besides, the LL method reproduces well the dynamics of nonlinear equations for which other classical methods fail. However, in the stochastic case, most of the reported works has been focused in Stochastic Differential Equations (SDE) driven by additive noise. This limits the applicability of the LL method since there is a number of interesting dynamics observed in equations with multiplicative noise. On the other hand, recent results show that commutative noise SDEs can be transformed into a random differential equation (RDE) by means of a random diffeomorfism (conjugacy). This paper takes advantages of such conjugacy property and the LL approach for defining a LL scheme for SDEs driven by commutative noise. The performance of the proposed method is illustrated by means of numerical simulations.
High level white noise generator
Borkowski, Casimer J.; Blalock, Theron V.
1979-01-01
A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.
Lutenbacher, Melanie; Gabbe, Patricia Temple; Karp, Sharon M; Dietrich, Mary S; Narrigan, Deborah; Carpenter, Lavenia; Walsh, William
2014-07-01
Women with a history of a prior preterm birth (PTB) have a high probability of a recurrent preterm birth. Some risk factors and health behaviors that contribute to PTB may be amenable to intervention. Home visitation is a promising method to deliver evidence based interventions. We evaluated a system of care designed to reduce preterm births and hospital length of stay in a sample of pregnant women with a history of a PTB. Single site randomized clinical trial. Eligibility: >18 years with prior live birth ≥20-<37 weeks gestation; <24 weeks gestation at enrollment; spoke and read English; received care at regional medical center. All participants (N = 211) received standard prenatal care. Intervention participants (N = 109) also received home visits by certified nurse-midwives guided by protocols for specific risk factors (e.g., depressive symptoms, abuse, smoking). Data was collected via multiple methods and sources including intervention fidelity assessments. Average age 27.8 years; mean gestational age at enrollment was 15 weeks. Racial breakdown mirrored local demographics. Most had a partner, high school education, and 62% had Medicaid. No statistically significant group differences were found in gestational age at birth. Intervention participants had a shorter intrapartum length of stay. Enhanced prenatal care by nurse-midwife home visits may limit some risk factors and shorten intrapartum length of stay for women with a prior PTB. This study contributes to knowledge about evidence-based home visit interventions directed at risk factors associated with PTB.
The Airframe Noise Reduction Challenge
NASA Technical Reports Server (NTRS)
Lockhard, David P.; Lilley, Geoffrey M.
2004-01-01
The NASA goal of reducing external aircraft noise by 10 dB in the near-term presents the acoustics community with an enormous challenge. This report identifies technologies with the greatest potential to reduce airframe noise. Acoustic and aerodynamic effects will be discussed, along with the likelihood of industry accepting and implementing the different technologies. We investigate the lower bound, defined as noise generated by an aircraft modified with a virtual retrofit capable of eliminating all noise associated with the high lift system and landing gear. However, the airframe noise of an aircraft in this 'clean' configuration would only be about 8 dB quieter on approach than current civil transports. To achieve the NASA goal of 10 dB noise reduction will require that additional noise sources be addressed. Research shows that energy in the turbulent boundary layer of a wing is scattered as it crosses trailing edge. Noise generated by scattering is the dominant noise mechanism on an aircraft flying in the clean configuration. Eliminating scattering would require changes to much of the aircraft, and practical reduction devices have yet to receive serious attention. Evidence suggests that to meet NASA goals in civil aviation noise reduction, we need to employ emerging technologies and improve landing procedures; modified landing patterns and zoning restrictions could help alleviate aircraft noise in communities close to airports.
Aging transition by random errors
Sun, Zhongkui; Ma, Ning; Xu, Wei
2017-01-01
In this paper, the effects of random errors on the oscillating behaviors have been studied theoretically and numerically in a prototypical coupled nonlinear oscillator. Two kinds of noises have been employed respectively to represent the measurement errors accompanied with the parameter specifying the distance from a Hopf bifurcation in the Stuart-Landau model. It has been demonstrated that when the random errors are uniform random noise, the change of the noise intensity can effectively increase the robustness of the system. While the random errors are normal random noise, the increasing of variance can also enhance the robustness of the system under certain conditions that the probability of aging transition occurs reaches a certain threshold. The opposite conclusion is obtained when the probability is less than the threshold. These findings provide an alternative candidate to control the critical value of aging transition in coupled oscillator system, which is composed of the active oscillators and inactive oscillators in practice. PMID:28198430
Aging transition by random errors
NASA Astrophysics Data System (ADS)
Sun, Zhongkui; Ma, Ning; Xu, Wei
2017-02-01
In this paper, the effects of random errors on the oscillating behaviors have been studied theoretically and numerically in a prototypical coupled nonlinear oscillator. Two kinds of noises have been employed respectively to represent the measurement errors accompanied with the parameter specifying the distance from a Hopf bifurcation in the Stuart-Landau model. It has been demonstrated that when the random errors are uniform random noise, the change of the noise intensity can effectively increase the robustness of the system. While the random errors are normal random noise, the increasing of variance can also enhance the robustness of the system under certain conditions that the probability of aging transition occurs reaches a certain threshold. The opposite conclusion is obtained when the probability is less than the threshold. These findings provide an alternative candidate to control the critical value of aging transition in coupled oscillator system, which is composed of the active oscillators and inactive oscillators in practice.
Romu, Thobias; Dahlqvist-Leinhard, Olof; Borga, Magnus; Leandersson, Per; Nystrom, Fredrik H.
2016-01-01
Background Fruit has since long been advocated as a healthy source of many nutrients, however, the high content of sugars in fruit might be a concern. Objectives To study effects of an increased fruit intake compared with similar amount of extra calories from nuts in humans. Methods Thirty healthy non-obese participants were randomized to either supplement the diet with fruits or nuts, each at +7 kcal/kg bodyweight/day for two months. Major endpoints were change of hepatic fat content (HFC, by magnetic resonance imaging, MRI), basal metabolic rate (BMR, with indirect calorimetry) and cardiovascular risk markers. Results Weight gain was numerically similar in both groups although only statistically significant in the group randomized to nuts (fruit: from 22.15±1.61 kg/m2 to 22.30±1.7 kg/m2, p = 0.24 nuts: from 22.54±2.26 kg/m2 to 22.73±2.28 kg/m2, p = 0.045). On the other hand BMR increased in the nut group only (p = 0.028). Only the nut group reported a net increase of calories (from 2519±721 kcal/day to 2763±595 kcal/day, p = 0.035) according to 3-day food registrations. Despite an almost three-fold reported increased fructose-intake in the fruit group (from 9.1±6.0 gram/day to 25.6±9.6 gram/day, p<0.0001, nuts: from 12.4±5.7 gram/day to 6.5±5.3 gram/day, p = 0.007) there was no change of HFC. The numerical increase in fasting insulin was statistical significant only in the fruit group (from 7.73±3.1 pmol/l to 8.81±2.9 pmol/l, p = 0.018, nuts: from 7.29±2.9 pmol/l to 8.62±3.0 pmol/l, p = 0.14). Levels of vitamin C increased in both groups while α-tocopherol/cholesterol-ratio increased only in the fruit group. Conclusions Although BMR increased in the nut-group only this was not linked with differences in weight gain between groups which potentially could be explained by the lack of reported net caloric increase in the fruit group. In healthy non-obese individuals an increased fruit intake seems safe from cardiovascular risk perspective, including
Paulin, Fernanda Viana; Zagatto, Alessandro Moura; Chiappa, Gaspar R; Müller, Paulo de Tarso
2017-01-01
Vitamin B12 is essential in the homocysteine, mitochondrial, muscle and hematopoietic metabolisms, and its effects on exercise tolerance and kinetics adjustments of oxygen consumption (V'O2p) in rest-to-exercise transition in COPD patients are unknown. This randomized, double-blind, controlled study aimed to verify a possible interaction between vitamin B12 supplementation and these outcomes. After recruiting 69 patients, 35 subjects with moderate-to-severe COPD were eligible and 32 patients concluded the study, divided into four groups (n = 8 for each group): 1. rehabilitation group; 2. rehabilitation plus B12 group; 3. B12 group; and 4. placebo group. The primary endpoint was cycle ergometry endurance before and after 8 weeks and the secondary endpoints were oxygen uptake kinetics parameters (time constant). The prevalence of vitamin B12 deficiency was high (34.4%) and there was a statistically significant interaction (p < 0.05), favoring a global effect of supplementation on exercise tolerance in the supplemented groups compared to the non-supplemented groups, even after adjusting for confounding variables (p < 0.05). The same was not found for the kinetics adjustment variables (τV'O2p and MRTV'O2p, p > 0.05 for both). Supplementation with vitamin B12 appears to lead to discrete positive effects on exercise tolerance in groups of subjects with more advanced COPD and further studies are needed to establish indications for long-term supplementation.
Higaki, Jitsuo; Komuro, Issei; Shiki, Kosuke; Lee, Ganghyuck; Taniguchi, Atsushi; Ikeda, Hiroshi; Kuroki, Daisuke; Nishimura, Seiichiro; Ogihara, Toshio
2017-01-01
The efficacy and safety of telmisartan 80 mg/amlodipine 5 mg plus hydrochlorothiazide 12.5 mg (T80/A5/H12.5) was examined for its ability to treat hypertension in Japanese patients whose hypertension is uncontrolled with telmisartan 80 mg/amlodipine 5 mg (T80/A5). Patients aged ⩾20 years who had essential hypertension despite taking two or three antihypertensive drugs entered a 6-week run-in period on T80/A5. Patients whose hypertension remained uncontrolled were randomly assigned to either the T80/A5/H12.5 group (n=149) or the T80/A5 group (n=160), once daily for 8 weeks. After 8 weeks, patients in the T80/A5/H12.5 group showed a significantly greater adjusted mean reduction in both seated diastolic blood pressure and seated systolic blood pressure than those in the T80/A5 group. Furthermore, more patients achieved a diastolic/systolic blood pressure of <90/140 mm Hg in the T80/A5/H12.5 group compared with the T80/A5 group. The most common adverse events were nasopharyngitis, elevated blood uric acid levels and hyperuricemia, and the latter two events were more frequent in the T80/A5/H12.5 group than in the T80/A5 group. Overall, T80/A5/H12.5 administered for 8 weeks significantly reduced systolic and diastolic blood pressure and was well tolerated by patients with hypertension uncontrolled with T80/A5. PMID:27761000
Noise and randomlike behavior of perceptrons: Theory and applicationto protein structure prediction
NASA Astrophysics Data System (ADS)
Compiani, M.; Fariselli, P.; Casadio, R.
1997-06-01
In the first part of this paper we study the performance of a single-layer perceptron that is expected to classify patterns into classes in the case where the mapping to be learned is corrupted by noise. Extending previous results concerning the statistical behavior of perceptrons, we distinguish two mutually exclusive kinds of noise (I noise and R noise) and study their effect on the statistical information that can be drawn from the output. In the presence of I noise, the learning stage results in the convergence of the output to the probabilities that the input occurs in each class. R noise, on the contrary, perturbs the learning of probabilities to the extent that the performance of the perceptron deteriorates and the network becomes equivalent to a random predictor. We derive an analytical expression for the efficiency of classification of inputs affected by strong R noise. We argue that, from the standpoint of the efficiency score, the network is equivalent to a device performing biased random flights in the space of the weights, which are ruled by the statistical information stored by the network during the learning stage. The second part of the paper is devoted to the application of our model to the prediction of protein secondary structures where one has to deal with the effects of R noise. Our results are shown to be consistent with data drawn from experiments and simulations of the folding process. In particular, the existence of coding and noncoding traits of the protein is properly rationalized in terms of R-noise intensity. In addition, our model provides a justification of the seeming existence of a relationship between the prediction efficiency and the amount of R noise in the sequence-to-structure mapping. Finally, we define an entropylike parameter that is useful as a measure of R noise.
Effects of linear trends on estimation of noise in GNSS position time-series
NASA Astrophysics Data System (ADS)
Dmitrieva, K.; Segall, P.; Bradley, A. M.
2017-01-01
A thorough understanding of time-dependent noise in Global Navigation Satellite System (GNSS) position time-series is necessary for computing uncertainties in any signals found in the data. However, estimation of time-correlated noise is a challenging task and is complicated by the difficulty in separating noise from signal, the features of greatest interest in the time-series. In this paper, we investigate how linear trends affect the estimation of noise in daily GNSS position time-series. We use synthetic time-series to study the relationship between linear trends and estimates of time-correlated noise for the six most commonly cited noise models. We find that the effects of added linear trends, or conversely de-trending, vary depending on the noise model. The commonly adopted model of random walk (RW), flicker noise (FN) and white noise (WN) is the most severely affected by de-trending, with estimates of low-amplitude RW most severely biased. FN plus WN is least affected by adding or removing trends. Non-integer power-law noise estimates are also less affected by de-trending, but are very sensitive to the addition of trend when the spectral index is less than one. We derive an analytical relationship between linear trends and the estimated RW variance for the special case of pure RW noise. Overall, we find that to ascertain the correct noise model for GNSS position time-series and to estimate the correct noise parameters, it is important to have independent constraints on the actual trends in the data.
Effects of linear trends on estimation of noise in GNSS position time-series
Dmitrieva, K.; Segall, P.; Bradley, A. M.
2016-10-20
A thorough understanding of time-dependent noise in Global Navigation Satellite System (GNSS) position time-series is necessary for computing uncertainties in any signals found in the data. However, estimation of time-correlated noise is a challenging task and is complicated by the difficulty in separating noise from signal, the features of greatest interest in the time-series. In this study, we investigate how linear trends affect the estimation of noise in daily GNSS position time-series. We use synthetic time-series to study the relationship between linear trends and estimates of time-correlated noise for the six most commonly cited noise models. We find that themore » effects of added linear trends, or conversely de-trending, vary depending on the noise model. The commonly adopted model of random walk (RW), flicker noise (FN) and white noise (WN) is the most severely affected by de-trending, with estimates of low-amplitude RW most severely biased. FN plus WN is least affected by adding or removing trends. Non-integer power-law noise estimates are also less affected by de-trending, but are very sensitive to the addition of trend when the spectral index is less than one. We derive an analytical relationship between linear trends and the estimated RW variance for the special case of pure RW noise. Finally, overall, we find that to ascertain the correct noise model for GNSS position time-series and to estimate the correct noise parameters, it is important to have independent constraints on the actual trends in the data.« less
Effects of linear trends on estimation of noise in GNSS position time-series
Dmitrieva, K.; Segall, P.; Bradley, A. M.
2016-10-20
A thorough understanding of time-dependent noise in Global Navigation Satellite System (GNSS) position time-series is necessary for computing uncertainties in any signals found in the data. However, estimation of time-correlated noise is a challenging task and is complicated by the difficulty in separating noise from signal, the features of greatest interest in the time-series. In this study, we investigate how linear trends affect the estimation of noise in daily GNSS position time-series. We use synthetic time-series to study the relationship between linear trends and estimates of time-correlated noise for the six most commonly cited noise models. We find that the effects of added linear trends, or conversely de-trending, vary depending on the noise model. The commonly adopted model of random walk (RW), flicker noise (FN) and white noise (WN) is the most severely affected by de-trending, with estimates of low-amplitude RW most severely biased. FN plus WN is least affected by adding or removing trends. Non-integer power-law noise estimates are also less affected by de-trending, but are very sensitive to the addition of trend when the spectral index is less than one. We derive an analytical relationship between linear trends and the estimated RW variance for the special case of pure RW noise. Finally, overall, we find that to ascertain the correct noise model for GNSS position time-series and to estimate the correct noise parameters, it is important to have independent constraints on the actual trends in the data.
Generation of short and long range temporal correlated noise
Romero, A.H.; Sancho, J.M.
1999-11-20
The authors present the implementation of an algorithm to generate Gaussian random noises with prescribed time correlations that can be either long or short ranged. Examples of Langevin dynamics with short and long range noises are presented and discussed.
Izadpanahi, Mohammad-Hossein; Majidi, Seyed Mahmood; Khorrami, Mohammad-Hatef; Mohammadi-Sichani, Mehrdad
2017-01-01
Background. The objective of this study was to evaluate the efficacy of adding single doses of ceftriaxone and amikacin to a ciprofloxacin plus metronidazole regimen on the reduction of infectious complications following transrectal ultrasound-guided prostate biopsy (TRUS Bx). Materials and Methods. Four hundred and fifty patients who were candidates for TRUS Bx were divided into two groups of 225 each. The control group received ciprofloxacin 500 mg orally every 12 hours together with metronidazole 500 mg orally every 8 hours from the day prior to the procedure until the fifth postoperative day. In the second group, single doses of ceftriaxone 1 g by intravenous infusion and amikacin 5 mg/kg intramuscularly were administered 30–60 minutes before TRUS Bx in addition to the oral antimicrobials described for group 1. The incidence of infection was compared between the groups. Results. The incidence of infectious complications in the intervention group was significantly lower than that in the control group (4.6% versus 0.9%, p = 0.017). Conclusion. The addition of single doses of intramuscular amikacin and intravenously infused ceftriaxone to our prophylactic regimen of ciprofloxacin plus metronidazole resulted in a statistically significant reduction of infectious complications following TRUS Bx. PMID:28167960
2014-01-01
Background Bipolar disorder (BD) and borderline personality disorder (BPD) both are severe and chronic psychiatric disorders. Both disorders have overlapping symptoms, and current research shows that the presence of a BPD has an adverse effect on the course of BD. The limited research available shows an unfavorable illness course, a worse prognosis and response to medication, longer treatment duration, more frequent psychiatric admissions, higher drop-out, increased risk of substance abuse, increased risk of suicide, and more impairment of social and occupational functioning. However, there is no research available on the effect of specific psychotherapeutic treatment for this patients. Methods/Design This paper presents the protocol of a RCT to investigate the presence of borderline personality features in patients treated for BD (study part 1) and the effectiveness of STEPPS (Systems Training for Emotional Predictability and Problem Solving) added to treatment as usual (TAU) for BD compared to TAU in patients with BD and comorbid borderline personality features (study part 2). STEPPS is a validated and effective intervention for BPD. The study population consists of patients treated for BD at specialized outpatient clinics for BD in the Netherlands. At first the prevalence of comorbid borderline personality features in outpatients with BD is investigated. Inclusion criteria for study part 2 is defined as having three or more of the DSM-IV-TR diagnostic criteria of BPD, including impulsivity and anger bursts. Primary outcomes will be the frequency and severity of manic and depressive recurrences as well as severity, course and burden of borderline personality features. Secondary outcomes will be quality of life, utilizing mental healthcare and psychopathologic symptoms not primarily related to BD or BPD. Assessment will be at baseline, at the end of the intervention, and at 12 and 18 months follow-up. Discussion This will be the first randomized controlled trial
Non-propulsive aerodynamic noise
NASA Astrophysics Data System (ADS)
Willshire, William L., Jr.; Tracy, Maureen B.
1992-04-01
In the first part of the paper, the contribution of airframe noise to total aircraft noise on approach is assessed for a large current technology transport and for the same airframe powered with bypass ratio 10 engines with an additional 5 dB noise suppression applied to the fan and turbine noise sources. The airframe noise of the envisioned advanced subsonic transport is 2 EPNdB less than the largest contributor to the total aircraft noise, the fan inlet. The noise impact of the airframe noise, as measured by noise contour area, is 1/4 that of fan noise. Further fan noise reduction efforts should not view airframe noise as an absolute noise floor. In the second part of the paper, the results from one recent cavity noise wind tunnel experiment is reported. A cavity of dimensions 11.25 in. (28.58 cm) long, 2.5 in. (6.35 cm) wide, and variable depth was tested in the Mach number range of .20 through .90. Reynolds number varied from 5 to 100 million per foot (16 to 328 million per meter). The 1/d ratio was varied from 4.4 to 20.0. The model was tested at yaw angles from 0 to 15 degrees. In general, the deeper the cavity, the greater the amplitude of the acoustic tones. Reynolds number appeared to have little effect on acoustic tone amplitudes. Tone amplitude and bandwidth changed with Mach number. The effect of yaw on acoustic tones varied with Reynolds number, Mach number, 1/h, and mode number. At Mach number 0.90, increased yaw shifted the tone frequencies of the higher modal frequencies to lower frequencies. As cavity depth decreased, the effect of yaw decreased.
Stepping molecular motor amid Lévy white noise
NASA Astrophysics Data System (ADS)
Lisowski, Bartosz; Valenti, Davide; Spagnolo, Bernardo; Bier, Martin; Gudowska-Nowak, Ewa
2015-04-01
We consider a model of a stepping molecular motor consisting of two connected heads. Directional motion of the stepper takes place along a one-dimensional track. Each head is subject to a periodic potential without spatial reflection symmetry. When the potential for one head is switched on, it is switched off for the other head. Additionally, the system is subject to the influence of symmetric, white Lévy noise that mimics the action of external random forcing. The stepper exhibits motion with a preferred direction which is examined by analyzing the median of the displacement of a midpoint between the positions of the two heads. We study the modified dynamics of the stepper by numerical simulations. We find flux reversals as noise parameters are changed. Speed and direction appear to very sensitively depend on characteristics of the noise.
Noise, synchrony, and correlations at the edge of chaos
NASA Astrophysics Data System (ADS)
Pluchino, Alessandro; Rapisarda, Andrea; Tsallis, Constantino
2013-02-01
We study the effect of a weak random additive noise in a linear chain of N locally coupled logistic maps at the edge of chaos. Maps tend to synchronize for a strong enough coupling, but if a weak noise is added, very intermittent fluctuations in the returns time series are observed. This intermittency tends to disappear when noise is increased. Considering the probability distribution functions (pdfs) of the returns, we observe the emergence of fat tails which can be satisfactorily reproduced by q-Gaussians’ curves typical of nonextensive statistical mechanics. The interoccurrence times of these extreme events are also studied in detail. Similarities with the recent analysis of financial data are also discussed.
Phase Noise in Photonic Phased-Array Antenna Systems
NASA Technical Reports Server (NTRS)
Logan, Ronald T., Jr.; Maleki, Lute
1998-01-01
The total noise of a phased-array antenna system employing a photonic feed network is analyzed using a model for the individual component noise including both additive and multiplicative equivalent noise generators.
Kardar-Parisi-Zhang Equation and Large Deviations for Random Walks in Weak Random Environments
NASA Astrophysics Data System (ADS)
Corwin, Ivan; Gu, Yu
2017-01-01
We consider the transition probabilities for random walks in 1+1 dimensional space-time random environments (RWRE). For critically tuned weak disorder we prove a sharp large deviation result: after appropriate rescaling, the transition probabilities for the RWRE evaluated in the large deviation regime, converge to the solution to the stochastic heat equation (SHE) with multiplicative noise (the logarithm of which is the KPZ equation). We apply this to the exactly solvable Beta RWRE and additionally present a formal derivation of the convergence of certain moment formulas for that model to those for the SHE.
NASA Technical Reports Server (NTRS)
Misoda, J.; Magliozzi, B.
1973-01-01
The development is described of improved, low noise level fan and pump concepts for the space shuttle. In addition, a set of noise design criteria for small fans and pumps was derived. The concepts and criteria were created by obtaining Apollo hardware test data to correlate and modify existing noise estimating procedures. A set of space shuttle selection criteria was used to determine preliminary fan and pump concepts. These concepts were tested and modified to obtain noise sources and characteristics which yield the design criteria and quiet, efficient space shuttle fan and pump concepts.
Weng, Shenhong; Tang, Jihua; Wang, Gaohua; Wang, Xiaoping; Wang, Hui
2007-01-01
Background: Bipolar disorder (BD) is a common, recurrent, and often life-long major psychiatric condition characterized by manic, depressive, and mixed episodes. Without treatment, there is substantial risk for morbidity and mortality, making BD a considerable public health problem. Objective: The purpose of this study was to compare the relative effectiveness and tolerability of Acanthopanax senficosus (A senficosus)—an herb that is derived from eleutherosides and polysaccharides found in the plant's root— versus fluoxetine added to lithium in the treatment of BD in adolescents. Methods: This was a double-blind, 6-week study. The patients were randomized into 2 treatment groups—A senticosus plus lithium (A senticosus group) and fluoxetine plus lithium (fluoxetine group). The patients underwent a baseline assessment using the 17-Item Hamilton Depression Rating Scale (HAMD-17) and the Young Mania Rating Scale (YMRS) during the screening period. Patients were scheduled for clinical visits at the end of weeks 1, 2, 4, and 6. At the end of the 6-week treatment period, each patient's condition was rated as follows: response (indicating an improvement of ≥50% in the HAMD-17 score from baseline); remission (a HAMD-17 score of ⪯7); and switching to mania (a YMRS score >16, and meeting the criteria of the Diagnostic and Statistical Manual of Mental Disorders [Fourth Edition, Text Revision] for a manic episode). At each visit (with the exception of the enrollment visit), the patients were queried as to whether they experienced any health problems since the previous visit, a Treatment Emergent Symptom Scale assessment was completed, and the serum lithium concentration was analyzed. The patients were instructed to report adverse events (AEs) at any time during the study. AEs were also observed by the investigator(s) at clinical visits. Results: Seventy-nine Chinese adolescents were initially enrolled into the study. However, 76 adolescents were assessed for inclusion
Advanced Study for Active Noise Control in Aircraft (ASANCA)
NASA Technical Reports Server (NTRS)
Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent
1992-01-01
Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.
Mathematical Analysis of Random Noise - and Appendixes
1952-01-01
Phys. No. 36 (1937), Chap. IV. Also "Introduction to Mathematical Probability," by J. V. Uspensky , McGraw-HIill (1937), pages 240, 264, and 271-278. 1 9...This case is discussed by J. V. Uspensky , "Introduction to Mathematical Problabil- ity", McGraw-Hill ’(1937) Chap. XV. 50 Apparently there are
Tsimring, Lev S.
2014-01-01
Noise permeates biology on all levels, from the most basic molecular, sub-cellular processes to the dynamics of tissues, organs, organisms, and populations. The functional roles of noise in biological processes can vary greatly. Along with standard, entropy-increasing effects of producing random mutations, diversifying phenotypes in isogenic populations, limiting information capacity of signaling relays, it occasionally plays more surprising constructive roles by accelerating the pace of evolution, providing selective advantage in dynamic environments, enhancing intracellular transport of biomolecules and increasing information capacity of signaling pathways. This short review covers the recent progress in understanding mechanisms and effects of fluctuations in biological systems of different scales and the basic approaches to their mathematical modeling. PMID:24444693
Robust local search for spacecraft operations using adaptive noise
NASA Technical Reports Server (NTRS)
Fukunaga, Alex S.; Rabideau, Gregg; Chien, Steve
2004-01-01
Randomization is a standard technique for improving the performance of local search algorithms for constraint satisfaction. However, it is well-known that local search algorithms are constraints satisfaction. However, it is well-known that local search algorithms are to the noise values selected. We investigate the use of an adaptive noise mechanism in an iterative repair-based planner/scheduler for spacecraft operations. Preliminary results indicate that adaptive noise makes the use of randomized repair moves safe and robust; that is, using adaptive noise makes it possible to consistently achieve, performance comparable with the best tuned noise setting without the need for manually tuning the noise parameter.
Lagae, Ares; Lefebvre, Sylvain; Dutré, Philip
2011-08-01
We have recently proposed a new procedural noise function, Gabor noise, which offers a combination of properties not found in the existing noise functions. In this paper, we present three significant improvements to Gabor noise: 1) an isotropic kernel for Gabor noise, which speeds up isotropic Gabor noise with a factor of roughly two, 2) an error analysis of Gabor noise, which relates the kernel truncation radius to the relative error of the noise, and 3) spatially varying Gabor noise, which enables spatial variation of all noise parameters. These improvements make Gabor noise an even more attractive alternative for the existing noise functions.
Summing up the noise in gene networks.
Paulsson, Johan
2004-01-29
Random fluctuations in genetic networks are inevitable as chemical reactions are probabilistic and many genes, RNAs and proteins are present in low numbers per cell. Such 'noise' affects all life processes and has recently been measured using green fluorescent protein (GFP). Two studies show that negative feedback suppresses noise, and three others identify the sources of noise in gene expression. Here I critically analyse these studies and present a simple equation that unifies and extends both the mathematical and biological perspectives.
Investigation of Noises in GPS Time Series: Case Study on Epn Weekly Solutions
NASA Astrophysics Data System (ADS)
Klos, Anna; Bogusz, Janusz; Figurski, Mariusz; Kosek, Wieslaw; Gruszczynski, Maciej
2014-05-01
factor of 2 or 3. The assumption of white plus flicker plus random-walk noise (which is considered to be the effect of badly monumented stations) resulted in the random-walk amplitudes at the level of single millimetres for some of the stations, while for the majority of them no random-walk was detected, due to the fact that flicker noise prevails in GPS time series. The removal of CME caused the decrease in flicker noise amplitudes leading at the same time to greater random-walk amplitudes. The assumed combination of white plus power-law noise showed that the spectral indices for the best fitted noise model are unevenly distributed around -1 what also indicates the flicker noise existence in EPN weekly time series. The poster will present all of the assumed noise model combinations with the comparison of noise amplitudes before and after spatial filtering. Additionally, we will discuss over the latitude and longitude noise dependencies for the area of Europe to indicate any similarities between noise amplitudes and the location of stations. Finally, we will focus on the velocities with their uncertainties that were determined from EPN weekly solutions and show how the wrong assumption of noise model changes both of them.
THE HOPF BIFURCATION WITH BOUNDED NOISE
Botts, Ryan T.; Homburg, Ale Jan; Young, Todd R.
2012-01-01
We study Hopf-Andronov bifurcations in a class of random differential equations (RDEs) with bounded noise. We observe that when an ordinary differential equation that undergoes a Hopf bifurcation is subjected to bounded noise then the bifurcation that occurs involves a discontinuous change in the Minimal Forward Invariant set. PMID:24748762
Snieder, Roel; Wapenaar, Kees
2010-09-15
Recent developments in seismology, ultrasonics, and underwater acoustics have led to a radical change in the way scientists think about ambient noise--the diffuse waves generated by pressure fluctuations in the atmosphere, the scattering of water waves in the ocean, and any number of other sources that pervade our world. Because diffuse waves consist of the superposition of waves propagating in all directions, they appear to be chaotic and random. That appearance notwithstanding, diffuse waves carry information about the medium through which they propagate.
Community noise sources and noise control issues
NASA Technical Reports Server (NTRS)
Nihart, Gene L.
1992-01-01
The topics covered include the following: community noise sources and noise control issues; noise components for turbine bypass turbojet engine (TBE) turbojet; engine cycle selection and noise; nozzle development schedule; NACA nozzle design; NACA nozzle test results; nearly fully mixed (NFM) nozzle design; noise versus aspiration rate; peak noise test results; nozzle test in the Low Speed Aeroacoustic Facility (LSAF); and Schlieren pictures of NACA nozzle.
Extreme value statistics for dynamical systems with noise
NASA Astrophysics Data System (ADS)
Faranda, Davide; Milhazes Freitas, Jorge; Lucarini, Valerio; Turchetti, Giorgio; Vaienti, Sandro
2013-09-01
We study the distribution of maxima (extreme value statistics) for sequences of observables computed along orbits generated by random transformations. The underlying, deterministic, dynamical system can be regular or chaotic. In the former case, we show that, by perturbing rational or irrational rotations with additive noise, an extreme value law appears, regardless of the intensity of the noise, while unperturbed rotations do not admit such limiting distributions. In the case of deterministic chaotic dynamics, we will consider observables specially designed to study the recurrence properties in the neighbourhood of periodic points. Hence, the exponential limiting law for the distribution of maxima is modified by the presence of the extremal index, a positive parameter not larger than one, whose inverse gives the average size of the clusters of extreme events. The theory predicts that such a parameter is unitary when the system is perturbed randomly. We perform sophisticated numerical tests to assess how strong the impact of noise level is when finite time series are considered. We find agreement with the asymptotic theoretical results but also non-trivial behaviour in the finite range. In particular, our results suggest that, in many applications where finite datasets can be produced or analysed, one must be careful in assuming that the smoothing nature of noise prevails over the underlying deterministic dynamics.
Suggested noise criteria for plumbing systems
NASA Astrophysics Data System (ADS)
Lilly, Jerry
2005-09-01
The issue of noise that is generated by plumbing systems has been addressed in several articles and texts in the acoustic literature, but most of this information deals with a description of the various noise generation mechanisms and recommended methods of controlling noise from plumbing fixtures and piping. As with any noise source that has the potential for generating annoyance, the question of how much noise is too much noise eventually arises. Chapter 47 of the 2003 ASHRAE Applications Handbook contains newly published guidelines for plumbing noise criteria as it impacts building occupants. This paper discusses the ASHRAE guidelines, and it also suggests additional noise criteria for other plumbing-related sources of noise in multitenant buildings.
Catlin, F.I.
1986-03-01
Hearing loss affects 30 million people in the United States; of these, 21 million are over the age of 65 years. This disorder may have several causes: heredity, noise, aging, and disease. Hearing loss from noise has been recognized for centuries but was generally ignored until some time after the Industrial Revolution. Hearing loss from occupational exposure to hazardous noise was identified as a compensable disability by the United States courts in 1948 to 1959. Development of noisy jet engines and supersonic aircraft created additional claims for personal and property damage in the 1950s and 1960s. These conditions led to legislation for noise control in the form of the Occupational Safety and Health Act of 1970 and the Noise Control Act of 1972. Protection of the noise-exposed employee was also an objective of the Hearing Conservation Act of 1971. Subsequent studies have confirmed the benefits of periodic hearing tests for workers exposed to hazardous noise and of otologic evaluation as part of the hearing conservation process. Research studies in laboratory animals, using scanning electron microscopical techniques, have demonstrated that damage to the inner ear and organ of hearing can occur even though subjective (conditioned) response to sound stimuli remains unaffected. Some investigators have employed an epidemiologic approach to identify risk factors and to develop profiles to susceptibility to noise-induced hearing loss. The need for joint involvement of workers and employers in the reduction and control of occupational noise hazards is evident. 19 references.
Digital whitening of band-limited white noise in the presence of colored noise
NASA Astrophysics Data System (ADS)
Gupta, A. K.; Penafiel, M.
1986-06-01
Four all zero whitening filters, one-sided and two-sided Wiener and linear prediction filters, are compared on the basis of reduction of input noise power, when the sum of a band-limited white noise and the colored noise is the input to a unity gain whitening filter. The colored noise is assumed to be one of the three types: equally spaced, equal power multiple tones, a periodic pulsetrain of random strength, and a random process having a first-order Butterworth spectrum.
Semiconductor Laser Low Frequency Noise Characterization
NASA Technical Reports Server (NTRS)
Maleki, Lute; Logan, Ronald T.
1996-01-01
This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.
Quantifying the Effects of Noise on Diffuse Interface Models: Cahn-Hilliard-Cook equations
NASA Astrophysics Data System (ADS)
Pfeifer, Spencer; Ganapathysubramanian, Baskar
2015-03-01
We present an investigation into the dynamics of phase separation through numerical simulations of the Cahn-Hilliard-Cook (CHC) equation. This model is an extension of the well-known Cahn- Hilliard equation, perturbed by an additive white noise. Studies have shown that random fluctuations are critical for proper resolution of physical phenomena. This is especially true for phase critical systems. We explore the transient behavior of the solution space for varying levels of noise. This is enabled by our massively scalable finite element-based numerical framework. We briefly examine the interplay between noise level and discretization (spatial and temporal) in obtaining statistically consistent solutions. We show that the added noise accelerates progress towards phase separation, but retards dynamics throughout subsequent coarsening. We identify a scaling exponent relating morphology metrics with the level of noise. We observe a very clear scaling effect of finite domain size, which is observed to be offset by increasing levels of noise. Domain scaling reveals a clear microstructural asymmetry at various stages of the evolution for lower noise levels. In contrast, higher noise levels tend to produce more uniform morphologies.
NASA Astrophysics Data System (ADS)
Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fai, Lukong Cornelius; Fouokeng, Georges Collince
2017-04-01
We address the entanglement dynamics of a three-qubit system interacting with a classical fluctuating environment described either by a Gaussian or non-Gaussian noise in three different configurations namely: common, independent and mixed environments. Specifically, we focus on the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise (RTN). The qubits are prepared in a state composed of a Greenberger-Horne-Zeilinger (GHZ) and a W state. With the help of the tripartite negativity, we show that the entanglement evolution is not only affected by the type of system-environment coupling but also by the kind and the memory properties of the considered noise. We also compared the dynamics induced by the two kinds of noise and we find that even if both noises have a Lorentzian spectrum, the effects of the OU noise cannot be in a simple way deduced from those of the RTN and vice-versa. In addition, we show that the entanglement can be indefinitely preserved when the qubits are coupled to the environmental noise in a common environment (CE). Finally, the presence or absence of peculiar phenomena such as entanglement revivals (ER) and entanglement sudden death (ESD) is observed.
Fagard, Catherine; Grondin, Carine; Descamps, Diane; Yazdanpanah, Yazdan; Charpentier, Charlotte; Colin de Verdiere, Nathalie; Tabuteau, Sophie; Raffi, François; Cabie, André; Chene, Geneviève; Yeni, Patrick
2013-01-01
We studied whether addition of enfuvirtide (ENF) to a background combination antiretroviral therapy (cART) would improve the CD4 cell count response at week 24 in naive patients with advanced HIV disease. ANRS 130 Apollo is a randomized study, conducted in naive HIV-1-infected patients, either asymptomatic with CD4 counts of <100/mm3 or stage B/C disease with CD4 counts of <200/mm3. Patients received tenofovir-emtricitabine with lopinavir-ritonavir (LPV/r) or efavirenz and were randomized to receive ENF for 24 weeks (ENF arm) or not (control arm). The primary endpoint was the proportion of patients with CD4 counts of ≥200/mm3 at week 24. A total of 195 patients were randomized: 73% had stage C disease, 78% were male, the mean age was 44 years, the median CD4 count was 30/mm3, and the median HIV-1 RNA load was 5.4 log10 copies/ml. Eighty-one percent of patients received LPV/r. One patient was lost to follow-up, and eight discontinued the study (four in each arm). The proportions of patients with CD4 counts of ≥200/mm3 at week 24 were 34% and 38% in the ENF and control arms, respectively (P = 0.53). The proportions of patients with HIV-1 RNA loads of <50 copies/ml were 74% and 58% at week 24 in the ENF and control arms, respectively (P < 0.02), and the proportion reached 79% in both arms at week 48. Twenty (20%) and 12 patients (13%) in the ENF and control arms, respectively, experienced at least one AIDS event during follow-up (P = 0.17). Although inducing a more rapid virological response, addition of ENF to a standard cART does not improve the immunological outcome in naive HIV-infected patients with severe immunosuppression. PMID:23165467
Joly, Véronique; Fagard, Catherine; Grondin, Carine; Descamps, Diane; Yazdanpanah, Yazdan; Charpentier, Charlotte; Colin de Verdiere, Nathalie; Tabuteau, Sophie; Raffi, François; Cabie, André; Chene, Geneviève; Yeni, Patrick
2013-02-01
We studied whether addition of enfuvirtide (ENF) to a background combination antiretroviral therapy (cART) would improve the CD4 cell count response at week 24 in naive patients with advanced HIV disease. ANRS 130 Apollo is a randomized study, conducted in naive HIV-1-infected patients, either asymptomatic with CD4 counts of <100/mm(3) or stage B/C disease with CD4 counts of <200/mm(3). Patients received tenofovir-emtricitabine with lopinavir-ritonavir (LPV/r) or efavirenz and were randomized to receive ENF for 24 weeks (ENF arm) or not (control arm). The primary endpoint was the proportion of patients with CD4 counts of ≥ 200/mm(3) at week 24. A total of 195 patients were randomized: 73% had stage C disease, 78% were male, the mean age was 44 years, the median CD4 count was 30/mm(3), and the median HIV-1 RNA load was 5.4 log(10) copies/ml. Eighty-one percent of patients received LPV/r. One patient was lost to follow-up, and eight discontinued the study (four in each arm). The proportions of patients with CD4 counts of ≥ 200/mm(3) at week 24 were 34% and 38% in the ENF and control arms, respectively (P = 0.53). The proportions of patients with HIV-1 RNA loads of <50 copies/ml were 74% and 58% at week 24 in the ENF and control arms, respectively (P < 0.02), and the proportion reached 79% in both arms at week 48. Twenty (20%) and 12 patients (13%) in the ENF and control arms, respectively, experienced at least one AIDS event during follow-up (P = 0.17). Although inducing a more rapid virological response, addition of ENF to a standard cART does not improve the immunological outcome in naive HIV-infected patients with severe immunosuppression.
Rule, Simon; Smith, Paul; Johnson, Peter W.M.; Bolam, Simon; Follows, George; Gambell, Joanne; Hillmen, Peter; Jack, Andrew; Johnson, Stephen; Kirkwood, Amy A; Kruger, Anton; Pocock, Christopher; Seymour, John F.; Toncheva, Milena; Walewski, Jan; Linch, David
2016-01-01
Mantle cell lymphoma is an incurable and generally aggressive lymphoma that is more common in elderly patients. Whilst a number of different chemotherapeutic regimens are active in this disease, there is no established gold standard therapy. Rituximab has been used widely to good effect in B-cell malignancies but there is no evidence that it improves outcomes when added to chemotherapy in this disease. We performed a randomized, open-label, multicenter study looking at the addition of rituximab to the standard chemotherapy regimen of fludarabine and cyclophosphamide in patients with newly diagnosed mantle cell lymphoma. A total of 370 patients were randomized. With a median follow up of six years, rituximab improved the median progression-free survival from 14.9 to 29.8 months (P<0.001) and overall survival from 37.0 to 44.5 months (P=0.005). This equates to absolute differences of 9.0% and 22.1% for overall and progression-free survival, respectively, at two years. Overall response rates were similar, but complete response rates were significantly higher in the rituximab arm: 52.7% vs. 39.9% (P=0.014). There was no clinically significant additional toxicity observed with the addition of rituximab. Overall, approximately 18% of patients died of non-lymphomatous causes, most commonly infections. The addition of rituximab to fludarabine and cyclophosphamide chemotherapy significantly improves outcomes in patients with mantle cell lymphoma. However, these regimens have significant late toxicity and should be used with caution. This trial has been registered (ISRCTN81133184 and clinicaltrials.gov:00641095) and is supported by the UK National Cancer Research Network. PMID:26611473
Rule, Simon; Smith, Paul; Johnson, Peter W M; Bolam, Simon; Follows, George; Gambell, Joanne; Hillmen, Peter; Jack, Andrew; Johnson, Stephen; Kirkwood, Amy A; Kruger, Anton; Pocock, Christopher; Seymour, John F; Toncheva, Milena; Walewski, Jan; Linch, David
2016-02-01
Mantle cell lymphoma is an incurable and generally aggressive lymphoma that is more common in elderly patients. Whilst a number of different chemotherapeutic regimens are active in this disease, there is no established gold standard therapy. Rituximab has been used widely to good effect in B-cell malignancies but there is no evidence that it improves outcomes when added to chemotherapy in this disease. We performed a randomized, open-label, multicenter study looking at the addition of rituximab to the standard chemotherapy regimen of fludarabine and cyclophosphamide in patients with newly diagnosed mantle cell lymphoma. A total of 370 patients were randomized. With a median follow up of six years, rituximab improved the median progression-free survival from 14.9 to 29.8 months (P<0.001) and overall survival from 37.0 to 44.5 months (P=0.005). This equates to absolute differences of 9.0% and 22.1% for overall and progression-free survival, respectively, at two years. Overall response rates were similar, but complete response rates were significantly higher in the rituximab arm: 52.7% vs. 39.9% (P=0.014). There was no clinically significant additional toxicity observed with the addition of rituximab. Overall, approximately 18% of patients died of non-lymphomatous causes, most commonly infections. The addition of rituximab to fludarabine and cyclophosphamide chemotherapy significantly improves outcomes in patients with mantle cell lymphoma. However, these regimens have significant late toxicity and should be used with caution. This trial has been registered (ISRCTN81133184 and clinicaltrials.gov:00641095) and is supported by the UK National Cancer Research Network.
Milligan, Donald W; Wheatley, Keith; Littlewood, Timothy; Craig, Jenny I O; Burnett, Alan K
2006-06-15
The optimum chemotherapy schedule for reinduction of patients with high-risk acute myeloid leukemia (relapsed, resistant/refractory, or adverse genetic disease) is uncertain. The MRC AML (Medical Research Council Acute Myeloid Leukemia) Working Group designed a trial comparing fludarabine and high-dose cytosine (FLA) with standard chemotherapy comprising cytosine arabinoside, daunorubicin, and etoposide (ADE). Patients were also randomly assigned to receive filgrastim (G-CSF) from day 0 until neutrophil count was greater than 0.5 x 10(9)/L (or for a maximum of 28 days) and all-trans retinoic acid (ATRA) for 90 days. Between 1998 and 2003, 405 patients were entered: 250 were randomly assigned between FLA and ADE; 356 to G-CSF versus no G-CSF; 362 to ATRA versus no ATRA. The complete remission rate was 61% with 4-year disease-free survival of 29%. There were no significant differences in the CR rate, deaths in CR, relapse rate, or DFS between ADE and FLA, although survival at 4 years was worse with FLA (16% versus 27%, P = .05). Neither the addition of ATRA nor G-CSF demonstrated any differences in the CR rate, relapse rate, DFS, or overall survival between the groups. In conclusion these findings indicate that FLA may be inferior to standard chemotherapy in high-risk AML and that the outcome is not improved with the addition of either G-CSF or ATRA.
Control of Environmental Noise
ERIC Educational Resources Information Center
Jensen, Paul
1973-01-01
Discusses the physical properties, sources, physiological effects, and legislation pertaining to noise, especially noise characteristics in the community. Indicates that noise reduction steps can be taken more intelligently after determination of the true noise sources and paths. (CC)
NASA Astrophysics Data System (ADS)
Wang, Chao-Jie; Long, Fei; Zhang, Pei; Nie, Lin-Ru
2017-04-01
Stochastic resonance (SR) and noise enhanced stability (NES) in a bistable system driven by an additive harmonic noise and a multiplicative harmonic noise is investigated. Through numerical simulation, we obtained the power spectrum by the Fourier transformation on time series. The results indicate that (i) for certain values of the parameters of additive harmonic noise Γ, Ω and the noise intensity D, the SR phenomenon occurs. It means we can control the SR phenomenon by modulating the parameters of harmonic noise; (ii) the NES phenomenon occurs at certain values of the parameters of multiplicative harmonic noise Γ, Ω and the multiplicative noise intensity Q. Most important, the NES phenomenon can also be controlled by modulating the parameters of harmonic noise.
Noise pollution resources compendium
NASA Technical Reports Server (NTRS)
1973-01-01
Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.
NASA Technical Reports Server (NTRS)
1983-01-01
SMART, Sound Modification and Regulated Temperature compound, is a liquid plastic mixture with exceptional energy and sound absorbing qualities. It is derived from a very elastic plastic which was an effective noise abatement material in the Apollo Guidance System. Discovered by a NASA employee, it is marketed by Environmental Health Systems, Inc. (EHS). The product has been successfully employed by a diaper company with noisy dryers and a sugar company with noisy blowers. The company also manufactures an audiometric test booth and acoustical office partitions.
Interim prediction method for low frequency core engine noise
NASA Technical Reports Server (NTRS)
Huff, R. G.; Clark, B. J.; Dorsch, R. G.
1974-01-01
A literature survey on low-frequency core engine noise is presented. Possible sources of low frequency internally generated noise in core engines are discussed with emphasis on combustion and component scrubbing noise. An interim method is recommended for predicting low frequency core engine noise that is dominant when jet velocities are low. Suggestions are made for future research on low frequency core engine noise that will aid in improving the prediction method and help define possible additional internal noise sources.
NASA Astrophysics Data System (ADS)
Siu-Siu, Guo; Qingxuan, Shi
2017-03-01
In this paper, single-degree-of-freedom (SDOF) systems combined to Gaussian white noise and Gaussian/non-Gaussian colored noise excitations are investigated. By expressing colored noise excitation as a second-order filtered white noise process and introducing colored noise as an additional state variable, the equation of motion for SDOF system under colored noise is then transferred artificially to multi-degree-of-freedom (MDOF) system under white noise excitations with four-coupled first-order differential equations. As a consequence, corresponding Fokker-Planck-Kolmogorov (FPK) equation governing the joint probabilistic density function (PDF) of state variables increases to 4-dimension (4-D). Solution procedure and computer programme become much more sophisticated. The exponential-polynomial closure (EPC) method, widely applied for cases of SDOF systems under white noise excitations, is developed and improved for cases of systems under colored noise excitations and for solving the complex 4-D FPK equation. On the other hand, Monte Carlo simulation (MCS) method is performed to test the approximate EPC solutions. Two examples associated with Gaussian and non-Gaussian colored noise excitations are considered. Corresponding band-limited power spectral densities (PSDs) for colored noise excitations are separately given. Numerical studies show that the developed EPC method provides relatively accurate estimates of the stationary probabilistic solutions, especially the ones in the tail regions of the PDFs. Moreover, statistical parameter of mean-up crossing rate (MCR) is taken into account, which is important for reliability and failure analysis. Hopefully, our present work could provide insights into the investigation of structures under random loadings.
Frequency domain analysis of errors in cross-correlations of ambient seismic noise
NASA Astrophysics Data System (ADS)
Liu, Xin; Ben-Zion, Yehuda; Zigone, Dimitri
2016-12-01
We analyse random errors (variances) in cross-correlations of ambient seismic noise in the frequency domain, which differ from previous time domain methods. Extending previous theoretical results on ensemble averaged cross-spectrum, we estimate confidence interval of stacked cross-spectrum of finite amount of data at each frequency using non-overlapping windows with fixed length. The extended theory also connects amplitude and phase variances with the variance of each complex spectrum value. Analysis of synthetic stationary ambient noise is used to estimate the confidence interval of stacked cross-spectrum obtained with different length of noise data corresponding to different number of evenly spaced windows of the same duration. This method allows estimating Signal/Noise Ratio (SNR) of noise cross-correlation in the frequency domain, without specifying filter bandwidth or signal/noise windows that are needed for time domain SNR estimations. Based on synthetic ambient noise data, we also compare the probability distributions, causal part amplitude and SNR of stacked cross-spectrum function using one-bit normalization or pre-whitening with those obtained without these pre-processing steps. Natural continuous noise records contain both ambient noise and small earthquakes that are inseparable from the noise with the existing pre-processing steps. Using probability distributions of random cross-spectrum values based on the theoretical results provides an effective way to exclude such small earthquakes, and additional data segments (outliers) contaminated by signals of different statistics (e.g. rain, cultural noise), from continuous noise waveforms. This technique is applied to constrain values and uncertainties of amplitude and phase velocity of stacked noise cross-spectrum at different frequencies, using data from southern California at both regional scale (˜35 km) and dense linear array (˜20 m) across the plate-boundary faults. A block bootstrap resampling method
Estimating the coherence of noise
NASA Astrophysics Data System (ADS)
Wallman, Joel
To harness the advantages of quantum information processing, quantum systems have to be controlled to within some maximum threshold error. Certifying whether the error is below the threshold is possible by performing full quantum process tomography, however, quantum process tomography is inefficient in the number of qubits and is sensitive to state-preparation and measurement errors (SPAM). Randomized benchmarking has been developed as an efficient method for estimating the average infidelity of noise to the identity. However, the worst-case error, as quantified by the diamond distance from the identity, can be more relevant to determining whether an experimental implementation is at the threshold for fault-tolerant quantum computation. The best possible bound on the worst-case error (without further assumptions on the noise) scales as the square root of the infidelity and can be orders of magnitude greater than the reported average error. We define a new quantification of the coherence of a general noise channel, the unitarity, and show that it can be estimated using an efficient protocol that is robust to SPAM. Furthermore, we also show how the unitarity can be used with the infidelity obtained from randomized benchmarking to obtain improved estimates of the diamond distance and to efficiently determine whether experimental noise is close to stochastic Pauli noise.
Suprathreshold auditory processing deficits in noise: Effects of hearing loss and age.
Kortlang, Steffen; Mauermann, Manfred; Ewert, Stephan D
2016-01-01
People with sensorineural hearing loss generally suffer from a reduced ability to understand speech in complex acoustic listening situations, particularly when background noise is present. In addition to the loss of audibility, a mixture of suprathreshold processing deficits is possibly involved, like altered basilar membrane compression and related changes, as well as a reduced ability of temporal coding. A series of 6 monaural psychoacoustic experiments at 0.5, 2, and 6 kHz was conducted with 18 subjects, divided equally into groups of young normal-hearing, older normal-hearing and older hearing-impaired listeners, aiming at disentangling the effects of age and hearing loss on psychoacoustic performance in noise. Random frequency modulation detection thresholds (RFMDTs) with a low-rate modulator in wide-band noise, and discrimination of a phase-jittered Schroeder-phase from a random-phase harmonic tone complex are suggested to characterize the individual ability of temporal processing. The outcome was compared to thresholds of pure tones and narrow-band noise, loudness growth functions, auditory filter bandwidths, and tone-in-noise detection thresholds. At 500 Hz, results suggest a contribution of temporal fine structure (TFS) to pure-tone detection thresholds. Significant correlation with auditory thresholds and filter bandwidths indicated an impact of frequency selectivity on TFS usability in wide-band noise. When controlling for the effect of threshold sensitivity, the listener's age significantly correlated with tone-in-noise detection and RFMDTs in noise at 500 Hz, showing that older listeners were particularly affected by background noise at low carrier frequencies.
NASA Astrophysics Data System (ADS)
Mazer, Susan
2005-09-01
The argument is made that design does not stop when the fixed architectural and acoustical components are in place. Spaces live and breathe with the people who reside in them. Research and examples are presented that show that noise, auditory clutter, thrives on itself in hospitals. Application of the Lombard reflex studies fit into the hospital setting, but do not offer solutions as to how one might reduce the impact. In addition, the basis for looking at the noise component as a physical as well cultural dynamic will be addressed. Whether the result of the wrong conversation in the wrong place or the right conversation in an unfortunate place, talk mixed with sounds of technology is shown to cause its own symptoms. From heightened anxiety and stress to medical errors, staff burnout, or HIPAA violations, the case is made that noise is pandemic in hospitals and demands financial and operational investment. An explanation of how to reduce noise by design of the dynamic environment - equipment, technology, staff protocols is also provided.
Passive Noise Filtering by Cellular Compartmentalization.
Stoeger, Thomas; Battich, Nico; Pelkmans, Lucas
2016-03-10
Chemical reactions contain an inherent element of randomness, which presents itself as noise that interferes with cellular processes and communication. Here we discuss the ability of the spatial partitioning of molecular systems to filter and, thus, remove noise, while preserving regulated and predictable differences between single living cells. In contrast to active noise filtering by network motifs, cellular compartmentalization is highly effective and easily scales to numerous systems without requiring a substantial usage of cellular energy. We will use passive noise filtering by the eukaryotic cell nucleus as an example of how this increases predictability of transcriptional output, with possible implications for the evolution of complex multicellularity.
Sources of noise in magneto-optical readout
NASA Technical Reports Server (NTRS)
Mansuripur, M.
1991-01-01
The various sources of noise which are often encountered in magneto-optical readout systems are analyzed. Although the focus is on magneto-optics, most sources of noise are common among the various optical recording systems and one can easily adapt the results to other media and systems. A description of the magneto-optical readout system under consideration is given, and the standard methods and the relevant terminology of signal and noise measurement are described. The characteristics of thermal noise, which originates in the electronic circuitry of the readout system, are described. The most fundamental of all sources of noise, the shot noise, is considered, and a detailed account of its statistical properties is given. Shot noise, which is due to random fluctuations in photon arrival times, is an ever-present noise in optical detection. Since the performance of magneto-optical recording devices in use today is approaching the limit imposed by the shot noise, it is important that the reader have a good grasp of this particular source of noise. A model for the laser noise is described, and measurement results which yield numerical values for the strength of the laser power fluctuations are presented. Spatial variations of the disk reflectivity and random depolarization phenomena also contribute to the overall level of noise in readout; these and related issues are treated. Numerical simulation results describing some of the more frequently encountered sources of noise which accompany the recorded waveform itself, namely, jitter noise and signal-amplitude fluctuation noise are presented.
The Effect of Noise and Display Orientation on Cognitive Performance.
1983-09-01
letters among which digits were interspersed. The task was to add up the series of digits . When a series of such sums had been completed, the noise...different abilities (reaction time, rate control, and time sharing). The effect of random 85 dB white noise on performance depended on the type of task and...continuous 95 dB white noise, 95 dB patterned noise, and random intermittent noise. An analysis of the above conflict, that is, the facili- tative effect
Active Control of Fan Noise in Ducts Using Magnetic Bearings
2007-11-02
of magnetic bearings. An axial flow fan creates tonal noise related to its rotational rate. Additional noise exists due to harmonics of this frequency...magnetic bearings. An axial flow fan creates tonal noise related to its rotational rate. Additional noise exists due to harmonics of this frequency as well...systems typically have fans that will move air from the heating or cooling system to any desired space. Fan noise is characterized first by tonal
Modeling phase noise in multifunction subassemblies.
Driscoll, Michael
2012-03-01
Obtaining requisite phase noise performance in hardware containing multifunction circuitry requires accurate modeling of the phase noise characteristics of each signal path component, including both absolute (oscillator) and residual (non-oscillator) circuit contributors. This includes prediction of both static and vibration-induced phase noise. The model (usually in spreadsheet form) is refined as critical components are received and evaluated. Additive (KTBF) phase noise data can be reasonably estimated, based on device drive level and noise figure. However, accurate determination of component near-carrier (multiplicative) and vibration-induced noise usually must be determined via measurement. The model should also include the effects of noise introduced by IC voltage regulators and properly discriminate between common versus independent signal path residual noise contributors. The modeling can be easily implemented using a spreadsheet.
Construction noise decreases reproductive efficiency in mice.
Rasmussen, Skye; Glickman, Gary; Norinsky, Rada; Quimby, Fred W; Tolwani, Ravi J
2009-07-01
Excessive noise is well known to impair rodent health. To better understand the effect of construction noise and to establish effective noise limits during a planned expansion of our vivarium, we analyzed the effects of construction noise on mouse gestation and neonatal growth. Our hypothesis was that high levels of construction noise would reduce the number of live births and retard neonatal growth. Female Swiss Webster mice were individually implanted with 15 B6CBAF1/J embryos and then exposed to 70- and 90-dBA concrete saw cutting noise samples at defined time points during gestation. In addition, groups of mice with litters were exposed to noise at 70, 80, or 90 dBA for 1 h daily during the first week after parturition. Litter size, birth weight, incidence of stillborn pups, and rate of neonatal weight gain were analyzed. Noise decreased reproductive efficiency by decreasing live birth rates and increasing the number of stillborn pups.
Zaidel, Adam; Goin-Kochel, Robin P; Angelaki, Dora E
2015-05-19
Perceptual processing in autism spectrum disorder (ASD) is marked by superior low-level task performance and inferior complex-task performance. This observation has led to theories of defective integration in ASD of local parts into a global percept. Despite mixed experimental results, this notion maintains widespread influence and has also motivated recent theories of defective multisensory integration in ASD. Impaired ASD performance in tasks involving classic random dot visual motion stimuli, corrupted by noise as a means to manipulate task difficulty, is frequently interpreted to support this notion of global integration deficits. By manipulating task difficulty independently of visual stimulus noise, here we test the hypothesis that heightened sensitivity to noise, rather than integration deficits, may characterize ASD. We found that although perception of visual motion through a cloud of dots was unimpaired without noise, the addition of stimulus noise significantly affected adolescents with ASD, more than controls. Strikingly, individuals with ASD demonstrated intact multisensory (visual-vestibular) integration, even in the presence of noise. Additionally, when vestibular motion was paired with pure visual noise, individuals with ASD demonstrated a different strategy than controls, marked by reduced flexibility. This result could be simulated by using attenuated (less reliable) and inflexible (not experience-dependent) Bayesian priors in ASD. These findings question widespread theories of impaired global and multisensory integration in ASD. Rather, they implicate increased sensitivity to sensory noise and less use of prior knowledge in ASD, suggesting increased reliance on incoming sensory information.
NASA Astrophysics Data System (ADS)
Gong, Yue-Feng; Song, Zhi-Tang; Ling, Yun; Liu, Yan; Feng, Song-Lin
2009-11-01
A three-dimensional finite element model for phase change random access memory (PCRAM) is established for comprehensive electrical and thermal analysis during SET operation. The SET behaviours of the heater addition structure (HS) and the ring-type contact in bottom electrode (RIB) structure are compared with each other. There are two ways to reduce the RESET current, applying a high resistivity interfacial layer and building a new device structure. The simulation results indicate that the variation of SET current with different power reduction ways is little. This study takes the RESET and SET operation current into consideration, showing that the RIB structure PCRAM cell is suitable for future devices with high heat efficiency and high-density, due to its high heat efficiency in RESET operation.
Sáez, Carlos; Martí-Bonmatí, Luis; Alberich-Bayarri, Angel; Robles, Montserrat; García-Gómez, Juan M
2014-02-01
The results of a randomized pilot study and qualitative evaluation of the clinical decision support system Curiam BT are reported. We evaluated the system's feasibility and potential value as a radiological information procedure complementary to magnetic resonance (MR) imaging to assist novice radiologists in diagnosing brain tumours using MR spectroscopy (1.5 and 3.0T). Fifty-five cases were analysed at three hospitals according to four non-exclusive diagnostic questions. Our results show that Curiam BT improved the diagnostic accuracy in all the four questions. Additionally, we discuss the findings of the users' feedback about the system, and the further work to optimize it for real environments and to conduct a large clinical trial.
NASA Technical Reports Server (NTRS)
Pope, L. D.; Rennison, D. C.; Wilby, E. G.
1980-01-01
The basic theoretical work required to understand sound transmission into an enclosed space (that is, one closed by the transmitting structure) is developed for random pressure fields and for harmonic (tonal) excitation. The analysis is used to predict the noise reducton of unpressurized unstiffened cylinder, and also the interior response of the cylinder given a tonal (plane wave) excitation. Predictions and measurements are compared and the transmission is analyzed. In addition, results for tonal (harmonic) mechanical excitation are considered.
Seismic arrival enhancement through the use of noise whitening
NASA Astrophysics Data System (ADS)
Birnie, Claire; Chambers, Kit; Angus, Doug
2017-01-01
A constant feature in seismic data, noise is particularly troublesome for passive seismic monitoring where noise commonly masks microseismic events. We propose a statistics-driven noise suppression technique that whitens the noise through the calculation and removal of the noise's covariance. Noise whitening is shown to reduce the noise energy by a factor of 3.5 resulting in microseismic events being observed and imaged at lower signal to noise ratios than originally possible - whilst having negligible effect on the seismic wavelet. The procedure is shown to be highly resistant to most changes in the noise properties and has the flexibility of being used as a stand-alone technique or as a first step before standard random noise attenuation methods.
Mapping Urban Environmental Noise Using Smartphones
Zuo, Jinbo; Xia, Hao; Liu, Shuo; Qiao, Yanyou
2016-01-01
Noise mapping is an effective method of visualizing and accessing noise pollution. In this paper, a noise-mapping method based on smartphones to effectively and easily measure environmental noise is proposed. By using this method, a noise map of an entire area can be created using limited measurement data. To achieve the measurement with certain precision, a set of methods was designed to calibrate the smartphones. Measuring noise with mobile phones is different from the traditional static observations. The users may be moving at any time. Therefore, a method of attaching an additional microphone with a windscreen is proposed to reduce the wind effect. However, covering an entire area is impossible. Therefore, an interpolation method is needed to achieve full coverage of the area. To reduce the influence of spatial heterogeneity and improve the precision of noise mapping, a region-based noise-mapping method is proposed in this paper, which is based on the distribution of noise in different region types tagged by volunteers, to interpolate and combine them to create a noise map. To validate the effect of the method, a comparison of the interpolation results was made to analyse our method and the ordinary Kriging method. The result shows that our method is more accurate in reflecting the local distribution of noise and has better interpolation precision. We believe that the proposed noise-mapping method is a feasible and low-cost noise-mapping solution. PMID:27754359
Okokon, Enembe Oku; Turunen, Anu W.; Ung-Lanki, Sari; Vartiainen, Anna-Kaisa; Tiittanen, Pekka; Lanki, Timo
2015-01-01
Exposure to road-traffic noise commonly engenders annoyance, the extent of which is determined by factors not fully understood. Our aim was to estimate the prevalence and determinants of road-traffic noise annoyance and noise sensitivity in the Finnish adult population, while comparing the perceptions of road-traffic noise to exhausts as environmental health problems. Using a questionnaire that yielded responses from 1112 randomly selected adult Finnish respondents, we estimated road-traffic noise- and exhausts-related perceived exposures, health-risk perceptions, and self-reported annoyance on five-point scales, while noise sensitivity estimates were based on four questions. Determinants of noise annoyance and sensitivity were investigated using multivariate binary logistic regression and linear regression models, respectively. High or extreme noise annoyance was reported by 17% of respondents. Noise sensitivity scores approximated a Gaussian distribution. Road-traffic noise and exhausts were, respectively, considered high or extreme population-health risks by 22% and 27% of respondents. Knowledge of health risks from traffic noise, OR: 2.04 (1.09–3.82) and noise sensitivity, OR: 1.07 (1.00–1.14) were positively associated with annoyance. Knowledge of health risks (p < 0.045) and positive environmental attitudes (p < 000) were associated with higher noise sensitivity. Age and sex were associated with annoyance and sensitivity only in bivariate models. A considerable proportion of Finnish adults are highly annoyed by road-traffic noise, and perceive it to be a significant health risk, almost comparable to traffic exhausts. There is no distinct noise-sensitive population subgroup. Knowledge of health risks of road-traffic noise, and attitudinal variables are associated with noise annoyance and sensitivity. PMID:26016432
Okokon, Enembe Oku; Turunen, Anu W; Ung-Lanki, Sari; Vartiainen, Anna-Kaisa; Tiittanen, Pekka; Lanki, Timo
2015-05-26
Exposure to road-traffic noise commonly engenders annoyance, the extent of which is determined by factors not fully understood. Our aim was to estimate the prevalence and determinants of road-traffic noise annoyance and noise sensitivity in the Finnish adult population, while comparing the perceptions of road-traffic noise to exhausts as environmental health problems. Using a questionnaire that yielded responses from 1112 randomly selected adult Finnish respondents, we estimated road-traffic noise- and exhausts-related perceived exposures, health-risk perceptions, and self-reported annoyance on five-point scales, while noise sensitivity estimates were based on four questions. Determinants of noise annoyance and sensitivity were investigated using multivariate binary logistic regression and linear regression models, respectively. High or extreme noise annoyance was reported by 17% of respondents. Noise sensitivity scores approximated a Gaussian distribution. Road-traffic noise and exhausts were, respectively, considered high or extreme population-health risks by 22% and 27% of respondents. Knowledge of health risks from traffic noise, OR: 2.04 (1.09-3.82) and noise sensitivity, OR: 1.07 (1.00-1.14) were positively associated with annoyance. Knowledge of health risks (p<0.045) and positive environmental attitudes (p<000) were associated with higher noise sensitivity. Age and sex were associated with annoyance and sensitivity only in bivariate models. A considerable proportion of Finnish adults are highly annoyed by road-traffic noise, and perceive it to be a significant health risk, almost comparable to traffic exhausts. There is no distinct noise-sensitive population subgroup. Knowledge of health risks of road-traffic noise, and attitudinal variables are associated with noise annoyance and sensitivity.
Airframe noise: A design and operating problem
NASA Technical Reports Server (NTRS)
Hardin, J. C.
1976-01-01
A critical assessment of the state of the art in airframe noise is presented. Full-scale data on the intensity, spectra, and directivity of this noise source are evaluated in light of the comprehensive theory developed by Ffowcs Williams and Hawkings. Vibration of panels on the aircraft is identified as a possible additional source of airframe noise. The present understanding and methods for prediction of other component sources - airfoils, struts, and cavities - are discussed. Operating problems associated with airframe noise as well as potential design methods for airframe noise reduction are identified.
Adaptive correction procedure for TVL1 image deblurring under impulse noise
NASA Astrophysics Data System (ADS)
Bai, Minru; Zhang, Xiongjun; Shao, Qianqian
2016-08-01
For the problem of image restoration of observed images corrupted by blur and impulse noise, the widely used TVL1 model may deviate from both the data-acquisition model and the prior model, especially for high noise levels. In order to seek a solution of high recovery quality beyond the reach of the TVL1 model, we propose an adaptive correction procedure for TVL1 image deblurring under impulse noise. Then, a proximal alternating direction method of multipliers (ADMM) is presented to solve the corrected TVL1 model and its convergence is also established under very mild conditions. It is verified by numerical experiments that our proposed approach outperforms the TVL1 model in terms of signal-to-noise ratio (SNR) values and visual quality, especially for high noise levels: it can handle salt-and-pepper noise as high as 90% and random-valued noise as high as 70%. In addition, a comparison with a state-of-the-art method, the two-phase method, demonstrates the superiority of the proposed approach.
NASA Astrophysics Data System (ADS)
Fidell, Sandy
The primary effects of community noise on residential populations are speech interference, sleep disturbance, and annoyance. This chapter focuses on transportation noise in general and on aircraft noise in particular because aircraft noise is one of the most prominent community noise sources, because airport/community controversies are often the most contentious and widespread, and because industrial and other specialized formsofcommunitynoise generally posemorelocalized problems.
NASA Technical Reports Server (NTRS)
Hubbard, Harvey H. (Editor)
1993-01-01
In the conference over 100 papers were presented in eight sessions: (1) Emission: Noise Sources; (2) Physical Phenomena; (3) Noise ControlElements; (4) Vibration and Shock: Generation, Transmission, Isolation, and Reduction; (5) Immission: Physical Aspects of Environmental Noise; (6) Immission: Effects of Noise; (7) Analysis; and (8) Requirements. In addition, the distinguished lecture series included presentations on the High Speed Civil Transport and on research from the United Kingdom on aircraft noise effects.
Noise in gene expression: origins, consequences, and control.
Raser, Jonathan M; O'Shea, Erin K
2005-09-23
Genetically identical cells and organisms exhibit remarkable diversity even when they have identical histories of environmental exposure. Noise, or variation, in the process of gene expression may contribute to this phenotypic variability. Recent studies suggest that this noise has multiple sources, including the stochastic or inherently random nature of the biochemical reactions of gene expression. In this review, we summarize noise terminology and comment on recent investigations into the sources, consequences, and control of noise in gene expression.
Interaction of tamoxifen and noise-induced damage to the cochlea.
Pillai, Jagan A; Siegel, Jonathan H
2011-12-01
Tamoxifen has been used extensively in the treatment of breast cancer and other neoplasms. In addition to its well-known action on estrogen receptors it is also known to acutely block chloride channels that participate in cell volume regulation. Tamoxifen's role in preventing cochlear outer hair cell (OHC) swelling in vitro suggested that OHC swelling noted following noise exposure could potentially be a therapeutic target for tamoxifen in its role as a chloride channel blocker to help prevent noise-induced hearing loss. To investigate this possibility, the effects of exposure to tamoxifen on physiologic measures of cochlear function in the presence and absence of subsequent noise exposure were studied. Male Mongolian gerbils (2-4 months old) were randomly assigned to different groups. Tamoxifen at ∼10 mg/kg was administered to one of the groups. Five hours later they were exposed to a one-third octave band of noise centered at 8 kHz in a sound-isolation chamber for 30 min at 108 dB SPL. Compound action potential (CAP) thresholds and distortion product otoacoustic emission (DPOAE) levels were measured 30-35 days following noise exposure. Tamoxifen administration did not produce any changes in CAP thresholds and DPOAE levels when administered by itself in the absence of noise. Tamoxifen causes a significant increase in CAP thresholds from 8 to 15 kHz following noise exposure compared to CAP thresholds in animals exposed to noise alone. No significant differences were seen in the DPOAE levels in the f(2) = 8-15 kHz frequency range where maximum noise-induced increases in CAP thresholds were seen. Contrary to our original expectation, it is concluded that tamoxifen potentiates the degree of damage to the cochlea resulting from noise exposure.
Pluta, Agnieszka; Robak, Tadeusz; Wrzesien-Kus, Agata; Katarzyna Budziszewska, Bozena; Sulek, Kazimierz; Wawrzyniak, Ewa; Czemerska, Magdalena; Zwolinska, Malgorzata; Golos, Aleksandra; Holowiecka-Goral, Aleksandra; Kyrcz-Krzemien, Slawomira; Piszcz, Jaroslaw; Kloczko, Janusz; Mordak-Domagala, Monika; Lange, Andrzej; Razny, Małgorzata; Madry, Krzysztof; Wiktor-Jedrzejczak, Wieslaw; Grosicki, Sebastian; Butrym, Aleksandra; Kuliczkowski, Kazimierz; Warzocha, Krzysztof; Holowiecki, Jerzy; Giebel, Sebastian; Szydlo, Richard; Wierzbowska, Agnieszka
2017-04-01
Intensive induction chemotherapy using anthracycline and cytarabine backbone is considered the most effective upfront therapy in physically fit older patients with acute myeloid leukemia (AML). However, outcomes of the standard induction in elderly AML are inferior to those observed in younger patients, and they are still unsatisfactory. As addition of cladribine to the standard induction therapy is known to improve outcome in younger AML patients. The present randomized phase II study compares efficacy and toxicity of the DAC (daunorubicin plus cytarabine plus cladribine) regimen with the standard DA (daunorubicin plus cytarabine) regimen in the newly diagnosed AML patients over 60 years of age. A total of 171 patients were enrolled in the study (DA, 86; DAC, 85). A trend toward higher complete remission (CR) was observed in the DAC arm compared to the DA arm (44% vs. 34%; P = .19), which did not lead to improved median overall survival, which in the case of the DAC group was 8.6 months compared to in 9.1 months in the DA group (P = .64). However, DAC appeared to be superior in the group of patients aged 60-65 (CR rate: DAC 51% vs. DA 29%; P = .02). What is more, a subgroup of patients, with good and intermediate karyotypes, benefited from addition of cladribine also in terms of overall survival (P = .02). No differences in hematological and nonhematological toxicity between the DA and DAC regimens were observed.
Parate, LH; Manjrekar, SP; Anandaswamy, TC; Manjunath, B
2015-01-01
Background: Opioids have synergistic action with local anesthetics which may alter characteristics of epidural block. Giving opioids to mother before delivery of baby is still fully not accepted with some fearing risk of neonatal depression. Aims: Our primary aim was to evaluate the analgesic effect of addition of 50 μg fentanyl to epidural 0.5% bupivacaine in patients undergoing elective caesarean section using visual analog scale. The secondary aim was to assess onset of analgesia, volume of drug required to achieve T6 level, grade and duration of motor block and Apgar score. Materials and Methods: In this prospective, randomized, double blind, placebo controlled study 64 patients scheduled for elective caesarean section under epidural anesthesia were randomly divided into two groups of 32 each. The fentanyl group received 1ml of 50 μg fentanyl and the saline group received 1ml of normal saline mixed with 10ml of 0.5% bupivacaine for epidural anesthesia. VAS score, time to achieve T6 level, dose of bupivacaine, intraoperative analgesic consumption and duration of analgesia, grade and duration of motor block and any adverse maternal and neonatal effects were noted. Statistical Analysis: Data was analyzed using Students t test, chi-square test and Mann-Whitney U-test. The values of P < 0.05 were considered statistically significant. Results: Fentanyl improved the VAS score significantly (1.6 ± 1.32) compared to the saline group (3.77 ± 1.0, P < 0.0001). It also reduced the intraoperaitve analgesic supplementation compared to the saline group. (P = 0.031). The postoperative duration of analgesia was prolonged in the fentanyl group (275.80 ± 13.61 min) compared to the saline group (191.47 ± 12.16 min, P < 0.0001). The other characteristics of epidural block were unaltered. Conclusion: Addition of 50 μg fentanyl to epidural 0.5% bupivacaine significantly reduces the VAS score. It also reduces intra-operative analgesia supplementation and prolongs the duration
Detecting spatial and temporal dot patterns in noise
NASA Astrophysics Data System (ADS)
Drum, Bruce
1991-06-01
The visual system can be thought of as an image processor that first reduces the dynamic retinal image to a temporal succession of noisy but redundant arrays of retinal ganglion cell signals and then reconstructs from these signals a stable representation of the external world. The process by which this reconstruction takes place is still poorly understood. An obvious requirement, however, is the capability to reject the noise in the individual neural signals. I am investigating the visual system's noise rejection capabilities by determining how much noise must be added to dot patterns to reduce them to detection threshold. The stimuli are patches of nonrandom dots surrounded by dynamic random dots of the same mean luminance and contrast. The non randomness, or coherence, of the stimulus patterns is controlled by randomizing a known percentage of stimulus dots in each frame of the dynamic display. The stimulus patterns can be limited to either spatial or temporal information. In addition to coherence, the size, duration and retinal location of the stimulus can be varied, as well as the temporal frequency, dot size, contrast and mean luminance of the entire display. Coherence thresholds are generally elevated by any operation that reduced the number of ganglion cells responding to the stimulus, either by reducing the stimulus area or duration or by limiting the response to a subset of ganglion cells (e.g., the receptive field overlap or response redundancy factor can be reduced by preferentially stimulating only one functional ganglion cell type, or by testing glaucoma patients with partially destroyed ganglion cell layers). The visual system thus appears to reduce noise effects by integrating neural responses that are correlated in either space or time.
Random dynamics of the Morris-Lecar neural model.
Tateno, Takashi; Pakdaman, Khashayar
2004-09-01
Determining the response characteristics of neurons to fluctuating noise-like inputs similar to realistic stimuli is essential for understanding neuronal coding. This study addresses this issue by providing a random dynamical system analysis of the Morris-Lecar neural model driven by a white Gaussian noise current. Depending on parameter selections, the deterministic Morris-Lecar model can be considered as a canonical prototype for widely encountered classes of neuronal membranes, referred to as class I and class II membranes. In both the transitions from excitable to oscillating regimes are associated with different bifurcation scenarios. This work examines how random perturbations affect these two bifurcation scenarios. It is first numerically shown that the Morris-Lecar model driven by white Gaussian noise current tends to have a unique stationary distribution in the phase space. Numerical evaluations also reveal quantitative and qualitative changes in this distribution in the vicinity of the bifurcations of the deterministic system. However, these changes notwithstanding, our numerical simulations show that the Lyapunov exponents of the system remain negative in these parameter regions, indicating that no dynamical stochastic bifurcations take place. Moreover, our numerical simulations confirm that, regardless of the asymptotic dynamics of the deterministic system, the random Morris-Lecar model stabilizes at a unique stationary stochastic process. In terms of random dynamical system theory, our analysis shows that additive noise destroys the above-mentioned bifurcation sequences that characterize class I and class II regimes in the Morris-Lecar model. The interpretation of this result in terms of neuronal coding is that, despite the differences in the deterministic dynamics of class I and class II membranes, their responses to noise-like stimuli present a reliable feature.
G-CSF attenuates noise-induced hearing loss.
Shi, Ze-tao; Lin, Ying; Wang, Jie; Wu, Jin; Wang, Ren-feng; Chen, Fu-quan; Mi, Wen-juan; Qiu, Jian-hua
2014-03-06
In this study, we investigated the effects of granulocyte colony-stimulating factor (G-CSF) for the treatment of noise-induced hearing loss (NIHL) in a guinea pig model. Forty guinea pigs were randomly divided into four groups: control, noise (white noise, 3 h/d for 2 days at 115 dB), noise+G-CSF (350 μg/kg/d for 5 days), and noise+saline. Auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) were used to determine the hearing threshold and outer hair cell function, respectively, in each group. Cochlear morphology was examined to evaluate hair cell injury induced by intense noise exposure. Fourteen days after noise exposure, the noise+G-CSF group had a lower ABR value than the noise group (P<0.05) or the noise+saline group (P<0.01). At most frequencies, the DPOAE value of the noise+G-CSF group showed a significant rise (P<0.05) compared to the noise group or the noise+saline group. Neither the ABR value nor the DPOAE value differed between the noise group and the noise+saline group. The morphology of the phalloidin-stained organ of Corti was consistent with the functional measurements. In conclusion, G-CSF can preserve hearing in an experimental model of NIHL in guinea pigs, by preserving hair cells after intense noise exposure.
NASA Astrophysics Data System (ADS)
Groeneweg, John F.; Sofrin, Thomas G.; Rice, Edward J.; Gliebe, Phillip R.
1991-08-01
Summarized here are key advances in experimental techniques and theoretical applications which point the way to a broad understanding and control of turbomachinery noise. On the experimental side, the development of effective inflow control techniques makes it possible to conduct, in ground based facilities, definitive experiments in internally controlled blade row interactions. Results can now be valid indicators of flight behavior and can provide a firm base for comparison with analytical results. Inflow control coupled with detailed diagnostic tools such as blade pressure measurements can be used to uncover the more subtle mechanisms such as rotor strut interaction, which can set tone levels for some engine configurations. Initial mappings of rotor wake-vortex flow fields have provided a data base for a first generation semiempirical flow disturbance model. Laser velocimetry offers a nonintrusive method for validating and improving the model. Digital data systems and signal processing algorithms are bringing mode measurement closer to a working tool that can be frequently applied to a real machine such as a turbofan engine. On the analytical side, models of most of the links in the chain from turbomachine blade source to far field observation point have been formulated. Three dimensional lifting surface theory for blade rows, including source noncompactness and cascade effects, blade row transmission models incorporating mode and frequency scattering, and modal radiation calculations, including hybrid numerical-analytical approaches, are tools which await further application.
NASA Technical Reports Server (NTRS)
Groeneweg, John F.; Sofrin, Thomas G.; Rice, Edward J.; Gliebe, Phillip R.
1991-01-01
Summarized here are key advances in experimental techniques and theoretical applications which point the way to a broad understanding and control of turbomachinery noise. On the experimental side, the development of effective inflow control techniques makes it possible to conduct, in ground based facilities, definitive experiments in internally controlled blade row interactions. Results can now be valid indicators of flight behavior and can provide a firm base for comparison with analytical results. Inflow control coupled with detailed diagnostic tools such as blade pressure measurements can be used to uncover the more subtle mechanisms such as rotor strut interaction, which can set tone levels for some engine configurations. Initial mappings of rotor wake-vortex flow fields have provided a data base for a first generation semiempirical flow disturbance model. Laser velocimetry offers a nonintrusive method for validating and improving the model. Digital data systems and signal processing algorithms are bringing mode measurement closer to a working tool that can be frequently applied to a real machine such as a turbofan engine. On the analytical side, models of most of the links in the chain from turbomachine blade source to far field observation point have been formulated. Three dimensional lifting surface theory for blade rows, including source noncompactness and cascade effects, blade row transmission models incorporating mode and frequency scattering, and modal radiation calculations, including hybrid numerical-analytical approaches, are tools which await further application.
NASA Astrophysics Data System (ADS)
Tapiero, Charles S.; Vallois, Pierre
2016-11-01
The premise of this paper is that a fractional probability distribution is based on fractional operators and the fractional (Hurst) index used that alters the classical setting of random variables. For example, a random variable defined by its density function might not have a fractional density function defined in its conventional sense. Practically, it implies that a distribution's granularity defined by a fractional kernel may have properties that differ due to the fractional index used and the fractional calculus applied to define it. The purpose of this paper is to consider an application of fractional calculus to define the fractional density function of a random variable. In addition, we provide and prove a number of results, defining the functional forms of these distributions as well as their existence. In particular, we define fractional probability distributions for increasing and decreasing functions that are right continuous. Examples are used to motivate the usefulness of a statistical approach to fractional calculus and its application to economic and financial problems. In conclusion, this paper is a preliminary attempt to construct statistical fractional models. Due to the breadth and the extent of such problems, this paper may be considered as an initial attempt to do so.
Acoustic noise during functional magnetic resonance imaging.
Ravicz, M E; Melcher, J R; Kiang, N Y
2000-10-01
Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 microPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager's permanent magnet and the room air-handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions.
1981-03-01
The predominant sources of nonlinearity in the FET, relevant to oscillator analysis, are the transconductance gm and the source-gate capacitance C sg...two general categories of noise mechanisms in an FET: intrinsic sources, i.e., noise associated with the FET operation itself, and extrinsic noise...very high drain voltages, also produces white noise. Noise produced by para- sitic resistance, one of the extrinsic noise sources, is also flat. These
Human hearing enhanced by noise.
Zeng, F G; Fu, Q J; Morse, R
2000-06-30
Noise was traditionally regarded as a nuisance, which should be minimized if possible. However, recent research has shown that addition of an appropriate amount of noise can actually improve signal detection in a nonlinear system, an effect called stochastic resonance. While stochastic resonance has been described in a variety of physical and biological systems, its functional significance in human sensory systems remains mostly unexplored. Here we report psychophysical data showing that signal detection and discrimination can be enhanced by noise in human subjects whose hearing is evoked by either normal acoustic stimulation or electric stimulation of the auditory nerve or the brainstem. Our results suggest that noise is an integral part of the normal sensory process and should be added to auditory prostheses.
NASA Technical Reports Server (NTRS)
Hodge, D. C.; Garinther, G. R.
1973-01-01
Noise and blast environments are described, providing a definition of units and techniques of noise measurement and giving representative booster-launch and spacecraft noise data. The effects of noise on hearing sensitivity and performance are reviewed, and community response to noise exposure is discussed. Physiological, or nonauditory, effects of noise exposure are also treated, as are design criteria and methods for minimizing the noise effects of hearing sensitivity and communications. The low level sound detection and speech reception are included, along with subjective and behavioral responses to noise.
Review of Subcritical Source-Driven Noise Analysis Measurements
Valentine, T.E.
1999-11-24
Subcritical source-driven noise measurements are simultaneous Rossi-{alpha} and randomly pulsed neutron measurements that provide measured quantities that can be related to the subcritical neutron multiplication factor. In fact, subcritical source-driven noise measurements should be performed in lieu of Rossi-{alpha} measurements because of the additional information that is obtained from noise measurements such as the spectral ratio and the coherence functions. The basic understanding of source-driven noise analysis measurements can be developed from a point reactor kinetics model to demonstrate how the measured quantities relate to the subcritical neutron multiplication factor. More elaborate models can also be developed using a generalized stochastic model. These measurements can be simulated using Monte Carlo codes to determine the subcritical neutron multiplication factor or to determine the sensitivity of calculations to nuclear cross section data. The interpretation of the measurement using a Monte Carlo method is based on a perturbation model for the relationship between the spectral ratio and the subcritical neutron multiplication factor. The subcritical source-driven noise measurement has advantages over other subcritical measurement methods in that reference measurements at delayed critical are not required for interpreting the measurements. Therefore, benchmark or in-situ subcritical measurements can be performed outside a critical experiment facility. Furthermore, a certain ratio of frequency spectra has been shown to be independent of detection efficiency thereby making the measurement more robust and unaffected by drifts or changes in instrumentation during the measurement. Criteria have been defined for application of this measurement method for benchmarks and in-situ subcritical measurements. An extension of the source-driven subcritical noise measurement has also been discussed that eliminates the few technical challenges for in-situ applications.
Noise Prevents Infinite Stretching of the Passive Field in a Stochastic Vector Advection Equation
NASA Astrophysics Data System (ADS)
Flandoli, Franco; Maurelli, Mario; Neklyudov, Mikhail
2014-09-01
A linear stochastic vector advection equation is considered; the equation may model a passive magnetic field in a random fluid. When the driving velocity field is rough but deterministic, in particular just Hölder continuous and bounded, one can construct examples of infinite stretching of the passive field, arising from smooth initial conditions. The purpose of the paper is to prove that infinite stretching is prevented if the driving velocity field contains in addition a white noise component.
Mitigation of structureborne noise nuisance
NASA Astrophysics Data System (ADS)
Ko, Wing P.
2005-09-01
This paper presents a noise complaint case which was solved by me a few years ago in Hong Kong. A newlywed couple in the residential unit complained to the Government that the noise emitted from the pump room directly beneath their unit was very annoying, especially in the night-time period. The owner of the building was then required by the Government to mitigate the noise to the night-time statutory noise requirement within 30 days, otherwise he would be prosecuted. Ideally, the structureborne noise from the pump room could be effectively mitigated by installation of floating slab and vibration isolators under the pumps. Also, the water tanks and water pipes were required to be isolated from the walls and floor. However, this work was impossible to be completed within 30 days to stop the prosecution. Water supply to the above residents would be seriously interrupted during the construction period. As the only noise parameter of the statutory requirement was 30 minute A-weighted Leq, the most effective and practical way in this exigent situation was to reduce the pump operation time within any 30 minute period to decrease the Leq values. In addition, the water pipes and pumps were also required to be isolated from the walls and floor with resilient materials to break the vibration channels. These noise mitigation measures were successfully applied to the pump room before the end of the 30 days. Finally, the noise levels inside the complainant's unit were found to meet the statutory requirement. The noise complaint case was then closed by the Government.
NASA Technical Reports Server (NTRS)
Kenny, Patrick
2004-01-01
at the AAPL to measure Nozzle Acoustic Test Rig (NATR) background noise levels. Six condenser microphones were placed in strategic locations around the dome and the inlet tunnel to measure different noise sources. From the control room the jet was monitored with the help of video cameras and other sensors. The data points were recorded, reduced, and plotted, and will be used to plan future modifications to the NATR. The primary goal to create data reduction test programs and provide verification was completed. As a result of the internship, I learned C/C++, UNIX/LINUX, Excel, and acoustic data processing methods. I also recorded data at the AAPL, then processed and plotted it. These data would be useful to compare against existing data. In addition, I adjusted software to work on the Mac OSX platform. And I used the available training resources.
Influence of noise on a magnetically sensitive atom interferometer
NASA Astrophysics Data System (ADS)
Desavage, Sara A.; Srinivasan, Arvind; Davis, Jon P.; Zimmermann, Matthias; Efremov, Maxim; Rasel, Ernst; Schleich, Wolfgang; Welch, George R.; Mimih, Jihane; Narducci, Frank A.
2016-05-01
The inherent sensitivity of atom interferometer sensors has been well established and much progress has been made in the development of atom interferometer gravimeters, gravity gradiometers and gyroscopes e.g.. These interferometers use the ``clock'' transition which is magnetically insensitive. When considering interferometers with magnetically sensitive transitions operating in unshielded environments additional noise sources must be considered. The frequency content of the noise from these sources can vary dramatically, depending on the environment. In this talk, we will discuss these various noise sources and their impact on the performance of magnetically sensitive interferometers. Specifically, we identify three ways by which noise can be introduced into the system and their effect: fluctuating detuning, leading to a randomness of the interference pattern; fluctuating Rabi frequency, leading to pulse errors; non-uniformity of the magnetic field across the atom cloud, which can, under certain circumstances lead to a complete washing out of the interference pattern. Implications for our current experiments will be discussed. Sponsored by the Office of Naval Research.
Time-Frequency, Bi-Frequency Detection Analysis of Noise Technology Radar
2006-09-01
modulation, a hybrid of both, and noise radar [8]. An example of a frequency modulation LPI waveform is the FMCW radar . The processing gain (or time...Receiver Periodic Ambiguity Results .................................. 26 D. RANDOM SIGNAL RADAR – NOISE FMCW .................................... 29 1...32 5. Receiver Periodic Ambiguity Results .................................. 34 E. RANDOM SIGNAL RADAR – SINE PLUS NOISE FMCW
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
2010-01-01
Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise. Copyright 2011 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.
Miles, Jeffrey Hilton
2011-05-01
Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise.
Noise enhances information transfer in hierarchical networks.
Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A
2013-01-01
We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.
Noise enhances information transfer in hierarchical networks
Czaplicka, Agnieszka; Holyst, Janusz A.; Sloot, Peter M. A.
2013-01-01
We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor. PMID:23390574
Noise minimization via deep submicron system-on-chip integration in megapixel CMOS imaging sensors
NASA Astrophysics Data System (ADS)
Kozlowski, L. J.
2006-03-01
Infrared sensor designers have long maximized S/N ratio by employing pixel-based amplification in conjunction with supplemental noise suppression. Instead, we suppress photodiode noise using novel SoC implementation with simple three transistor pixel; supporting SoC components include a feedback amplifier having elements distributed amongst the pixel and column buffer, a tapered reset clock waveform, and reset timing generator. The tapered reset method does not swell pixel area, compel processing of the correlated reset and signal values, or require additional memory. Integrated in a 2.1 M pixel imager developed for generating high definition television, random noise is ˜8e-at video rates to 225 MHz. Random noise of ˜30e-would otherwise he predicted for the 5 μm 5 μm pixels having 5.5 fF detector capacitance with negligible image lag. Minimum sensor S/N ratio is 52 dB with 1920 by 1080 progressive readout at 60 Hz, 72 Hz and 90 Hz. Fixed pattern noise is <2 DN via on-chip signal processing.
Noise minimization via deep submicron system-on-chip integration in megapixel CMOS imaging sensors
NASA Astrophysics Data System (ADS)
Kozlowski, Lester J.
2005-09-01
Infrared sensor designers have long maximized S/N ratio by employing pixel-based amplification in conjunction with supplemental noise suppression. Instead, we suppress photodiode noise using novel SoC implementation with simple three transistor pixel; supporting SoC components include a feedback amplifier having elements distributed amongst the pixel and column buffer, a tapered reset clock waveform, and reset timing generator. The tapered reset method does not swell pixel area, compel processing of the correlated reset and signal values, or require additional memory. Integrated in a 2.1M pixel imager developed for generating high definition television, random noise is ~8e- at video rates to 225MHz. Random noise of ~30e- would otherwise be predicted for the 5μm by 5μm pixels having 5.5fF detector capacitance with negligible image lag. Minimum sensor S/N ratio is 52dB with 1920 by 1080 progressive readout at 60Hz, 72Hz and 90Hz. Fixed pattern noise is <2 DN via on-chip signal processing.
Progress Toward N+1 Noise Goal
NASA Technical Reports Server (NTRS)
Envia, Edmane
2008-01-01
A review of the progress made towards achieving the Subsonic Fixed Wing project's noise goal for the next generation single aisle aircraft is presented. The review includes the technology path selected for achieving the goal as well as highlights from several in-house and partnership test programs that have contributed to this effort. In addition, a detailed, self-consistent, analysis of the aircraft system noise for a conceptual next generation single aisle aircraft is also presented. The results indicate that with the current suite of noise reduction technologies incorporated into the conceptual aircraft a cumulative noise reduction margin of 26 EPNdB could be expected. This falls 6 dB short of the N+1 goal, which is 32 EPNdB below Stage 4 noise standard. Potential additional noise reduction technologies to help achieve the goal are briefly discussed.
Spencer, Michael
1974-01-01
Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857
Sculier, J-P; Lafitte, J-J; Paesmans, M; Thiriaux, J; Alexopoulos, C G; Baumöhl, J; Schmerber, J; Koumakis, G; Florin, M C; Zacharias, C; Berghmans, T; Mommen, P; Ninane, V; Klastersky, J
2000-01-01
A phase III randomized trial was conducted in patients with metastatic NSCLC, to determine if, in association with mitomycin (6 mg m–2) and ifosfamide (3 g m–2), the combination of moderate dosages of cisplatin (60 mg m–2) and carboplatin (200 mg m–2) – CarboMIP regimen – improved survival in comparison with cisplatin (50 mg m–2) alone – MIP regimen. A total of 305 patients with no prior chemotherapy were randomized, including 297 patients assessable for survival (147 in the MIP arm and 150 in the CarboMIP arm) and 268 patients assessable for response to chemotherapy. All but eight (with malignant pleural effusion) had stage IV disease. There was a 27% (95% CI, 19–34) objective response (OR) rate to MIP (25% of the eligible patients) and a 33% (95% CI, 24–41) OR rate to CarboMIP (29% of the eligible patients). This difference was not statistically significant (P = 0.34). Duration of response was not significantly different between both arms. There was also no difference (P = 0.67) in survival: median survival times were 28 weeks (95% Cl, 24–32) for MIP and 32 weeks (95% Cl, 26–35) for CarboMIP, with respectively 1-year survival rates of 24% and 23% and 2-year survival rates of 5% and 2%. The main toxicities consisted in emesis, alopecia, leucopenia and thrombocytopenia, that were, except alopecia, significantly more severe in the CarboMIP arm. Our trial failed to demonstrate a significant improvement in response or survival when patients with metastatic NSCLC were treated, in addition to ifosfamide and mitomycin, by combination of moderate dosages of cisplatin and carboplatin instead of moderate dosage of cisplatin alone. The results support the use of a moderate dose (50 mg m–2) of cisplatin in combination with ifosfamide and mitomycin for the chemotherapy of this disease. © 2000 Cancer Research Campaign PMID:11027424
Noise, Health, and Architecture.
ERIC Educational Resources Information Center
Beranek, Leo L.
There is reasonable agreement that hearing impairment is related to noise exposure. This hearing loss due to noise is considered a serious health injury, but there is still difficulty in delineating the importance of noise related to people's general non-auditory well-being and health. Beside hearing loss, noise inhibits satisfactory speech…
Influence of the seismic noise characteristics on noise correlations
NASA Astrophysics Data System (ADS)
Krüger, F.; Pedersen, H. A.
2005-12-01
Cross-correlating seismic noise to obtain the Green function between two seismic sensors is a promising new technique for crustal tomography. We use data from 38 temporary broadband sensors in Finland to study how the nature of the seismic noise influences noise correlations. The study area is particularly well adapted for this study as the lateral variations of surface wave velocities are very small. We apply a processing technique which makes it possible to extract broadband signals between 2s and 35s period without applying any signal clipping. The extracted Green's functions are symmetrical at low and high-frequencies, but are strongly direction dependent around the two microseismic peaks (at approximately 15s and 8s). For these periods the signal amplitude varies by a factor of 90 between different azimuths. The maximum amplitudes are obtained for east-west profiles for the first microseismic peak and for east-west and north-south profiles for the second microseismic peak. The phase velocities when defined are however correct for all azimuths when all the traces in a given direction are used for slant stack. The group velocities calculated on individual traces do on the contrary vary strongly with azimuth, with a 1/cos dependence. We also apply f-k analysis on data from the NORSAR (Norway) and Gräfenberg (Germany) arrays as well as a small-aperture array in Finland to constrain the arrival directions of the coherent part of the noise. The microseismic noise generation is located west of the array for the first microseismic peak and west and north of the array for the second microseismic peak, in excellent agreement with the noise correlations. The f-k analysis also confirms that the noise generators are more randomly distributed for the long period (25s-50s) and short period (2s-4s) part of the noise. We conclude that in some frequency bands the noise in the study area is dominated by plane energy wavefronts, with strong phase perturbations. The profile
Noise-Enhanced Human Balance Control
NASA Astrophysics Data System (ADS)
Priplata, Attila; Niemi, James; Salen, Martin; Harry, Jason; Lipsitz, Lewis A.; Collins, J. J.
2002-11-01
Noise can enhance the detection and transmission of weak signals in certain nonlinear systems, via a mechanism known as stochastic resonance. Here we show that input noise can be used to improve motor control in humans. Specifically, we show that the postural sway of both young and elderly individuals during quiet standing can be significantly reduced by applying subsensory mechanical noise to the feet. We further demonstrate with input noise a trend towards the reduction of postural sway in elderly subjects to the level of young subjects. These results suggest that noise-based devices, such as randomly vibrating shoe inserts, may enable people to overcome functional difficulties due to age-related sensory loss.
Noise level and MPEG-2 encoder statistics
NASA Astrophysics Data System (ADS)
Lee, Jungwoo
1997-01-01
Most software in the movie and broadcasting industries are still in analog film or tape format, which typically contains random noise that originated from film, CCD camera, and tape recording. The performance of the MPEG-2 encoder may be significantly degraded by the noise. It is also affected by the scene type that includes spatial and temporal activity. The statistical property of noise originating from camera and tape player is analyzed and the models for the two types of noise are developed. The relationship between the noise, the scene type, and encoder statistics of a number of MPEG-2 parameters such as motion vector magnitude, prediction error, and quant scale are discussed. This analysis is intended to be a tool for designing robust MPEG encoding algorithms such as preprocessing and rate control.
Rotorcraft noise: Status and recent developments
NASA Technical Reports Server (NTRS)
George, Albert R.; Sim, Ben WEL-C.; Polak, David R.
1993-01-01
This paper briefly reviews rotorcraft noise mechanisms and their approximate importance for different types of rotorcraft in different flight regimes. Discrete noise is due to periodic flow disturbances and includes impulsive noise produced by phenomena which occur during a limited segment of a blade's rotation. Broadband noise results when rotors interact with random disturbances, such as turbulence, which can originate in a variety of sources. The status of analysis techniques for these mechanisms are reviewed. Also, some recent progress is presented on the understanding and analysis of tilt rotor aircraft noise due to: (1) recirculation and blockage effects of the rotor flow in hover; and (2) blade-vortex interactions in forward and descending flight.
Active Noise Control for Dishwasher noise
NASA Astrophysics Data System (ADS)
Lee, Nokhaeng; Park, Youngjin
2016-09-01
The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.
Vibrations and structureborne noise in space station
NASA Technical Reports Server (NTRS)
Vaicaitis, R.
1985-01-01
Theoretical models were developed capable of predicting structural response and noise transmission to random point mechanical loads. Fiber reinforced composite and aluminum materials were considered. Cylindrical shells and circular plates were taken as typical representatives of structural components for space station habitability modules. Analytical formulations include double wall and single wall constructions. Pressurized and unpressurized models were considered. Parametric studies were conducted to determine the effect on structural response and noise transmission due to fiber orientation, point load location, damping in the core and the main load carrying structure, pressurization, interior acoustic absorption, etc. These analytical models could serve as preliminary tools for assessing noise related problems, for space station applications.
Horizontal visibility graphs: exact results for random time series.
Luque, B; Lacasa, L; Ballesteros, F; Luque, J
2009-10-01
The visibility algorithm has been recently introduced as a mapping between time series and complex networks. This procedure allows us to apply methods of complex network theory for characterizing time series. In this work we present the horizontal visibility algorithm, a geometrically simpler and analytically solvable version of our former algorithm, focusing on the mapping of random series (series of independent identically distributed random variables). After presenting some properties of the algorithm, we present exact results on the topological properties of graphs associated with random series, namely, the degree distribution, the clustering coefficient, and the mean path length. We show that the horizontal visibility algorithm stands as a simple method to discriminate randomness in time series since any random series maps to a graph with an exponential degree distribution of the shape P(k)=(1/3)(2/3)(k-2), independent of the probability distribution from which the series was generated. Accordingly, visibility graphs with other P(k) are related to nonrandom series. Numerical simulations confirm the accuracy of the theorems for finite series. In a second part, we show that the method is able to distinguish chaotic series from independent and identically distributed (i.i.d.) theory, studying the following situations: (i) noise-free low-dimensional chaotic series, (ii) low-dimensional noisy chaotic series, even in the presence of large amounts of noise, and (iii) high-dimensional chaotic series (coupled map lattice), without needs for additional techniques such as surrogate data or noise reduction methods. Finally, heuristic arguments are given to explain the topological properties of chaotic series, and several sequences that are conjectured to be random are analyzed.
Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa
2015-01-01
In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.
Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa
2015-01-01
In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%. PMID:26351656
Concurrent Codes: A Holographic-Type Encoding Robust against Noise and Loss
Benton, David M.
2016-01-01
Concurrent coding is an encoding scheme with ‘holographic’ type properties that are shown here to be robust against a significant amount of noise and signal loss. This single encoding scheme is able to correct for random errors and burst errors simultaneously, but does not rely on cyclic codes. A simple and practical scheme has been tested that displays perfect decoding when the signal to noise ratio is of order -18dB. The same scheme also displays perfect reconstruction when a contiguous block of 40% of the transmission is missing. In addition this scheme is 50% more efficient in terms of transmitted power requirements than equivalent cyclic codes. A simple model is presented that describes the process of decoding and can determine the computational load that would be expected, as well as describing the critical levels of noise and missing data at which false messages begin to be generated. PMID:26930601
Concurrent Codes: A Holographic-Type Encoding Robust against Noise and Loss.
Benton, David M
2016-01-01
Concurrent coding is an encoding scheme with 'holographic' type properties that are shown here to be robust against a significant amount of noise and signal loss. This single encoding scheme is able to correct for random errors and burst errors simultaneously, but does not rely on cyclic codes. A simple and practical scheme has been tested that displays perfect decoding when the signal to noise ratio is of order -18dB. The same scheme also displays perfect reconstruction when a contiguous block of 40% of the transmission is missing. In addition this scheme is 50% more efficient in terms of transmitted power requirements than equivalent cyclic codes. A simple model is presented that describes the process of decoding and can determine the computational load that would be expected, as well as describing the critical levels of noise and missing data at which false messages begin to be generated.
Low Frequency Noise Contamination in Fan Model Testing
NASA Technical Reports Server (NTRS)
Brown, Clifford A.; Schifer, Nicholas A.
2008-01-01
Aircraft engine noise research and development depends on the ability to study and predict the noise created by each engine component in isolation. The presence of a downstream pylon for a model fan test, however, may result in noise contamination through pylon interactions with the free stream and model exhaust airflows. Additionally, there is the problem of separating the fan and jet noise components generated by the model fan. A methodology was therefore developed to improve the data quality for the 9 15 Low Speed Wind Tunnel (LSWT) at the NASA Glenn Research Center that identifies three noise sources: fan noise, jet noise, and rig noise. The jet noise and rig noise were then measured by mounting a scale model of the 9 15 LSWT model fan installation in a jet rig to simulate everything except the rotating machinery and in duct components of fan noise. The data showed that the spectra measured in the LSWT has a strong rig noise component at frequencies as high as 3 kHz depending on the fan and airflow fan exit velocity. The jet noise was determined to be significantly lower than the rig noise (i.e., noise generated by flow interaction with the downstream support pylon). A mathematical model for the rig noise was then developed using a multi-dimensional least squares fit to the rig noise data. This allows the rig noise to be subtracted or removed, depending on the amplitude of the rig noise relative to the fan noise, at any given frequency, observer angle, or nozzle pressure ratio. The impact of isolating the fan noise with this method on spectra, overall power level (OAPWL), and Effective Perceived Noise Level (EPNL) is studied.
Noise limitations in optical linear algebra processors.
Batsell, S G; Jong, T L; Walkup, J F; Krile, T F
1990-05-10
A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.
Signaling Noise Enhances Chemotactic Drift of E. coli
NASA Astrophysics Data System (ADS)
Flores, Marlo; Shimizu, Thomas S.; ten Wolde, Pieter Rein; Tostevin, Filipe
2012-10-01
Noise in the transduction of chemotactic stimuli to the flagellar motor of E. coli will affect the random run-and-tumble motion of the cell and the ability to perform chemotaxis. Here we use numerical simulations to show that an intermediate level of noise in the slow methylation dynamics enhances drift while not compromising localization near concentration peaks. A minimal model shows how such an optimal noise level arises from the interplay of noise and the dependence of the motor response on the network output. Our results suggest that cells can exploit noise to improve chemotactic performance.
Helicopter internal noise control: Three case histories
NASA Technical Reports Server (NTRS)
Edwards, B. D.; Cox, C. R.
1978-01-01
Case histories are described in which measurable improvements in the cabin noise environments of the Bell 214B, 206B, and 222 were realized. These case histories trace the noise control efforts followed in each vehicle. Among the design approaches considered, the addition of a fluid pulsation damper in a hydraulic system and the installation of elastomeric engine mounts are highlighted. It is concluded that substantial weight savings result when the major interior noise sources are controlled by design, both in altering the noise producing mechanism and interrupting the sound transmission paths.
Using entanglement against noise in quantum metrology.
Demkowicz-Dobrzański, Rafal; Maccone, Lorenzo
2014-12-19
We analyze the role of entanglement among probes and with external ancillas in quantum metrology. In the absence of noise, it is known that unentangled sequential strategies can achieve the same Heisenberg scaling of entangled strategies and that external ancillas are useless. This changes in the presence of noise; here we prove that entangled strategies can have higher precision than unentangled ones and that the addition of passive external ancillas can also increase the precision. We analyze some specific noise models and use the results to conjecture a general hierarchy for quantum metrology strategies in the presence of noise.
Pirrera, Sandra; De Valck, Elke; Cluydts, Raymond
2014-12-01
The aim of this field study is to gain more insight into the way nocturnal road traffic noise impacts the sleep of inhabitants living in noisy regions, by taking into account several modifying variables. Participants were tested during five consecutive nights in their homes and comparisons between effective indoor and outdoor noise levels (LAeq, LAmax, number of noise events), sleep (actigraphy and sleep logs) and aspects of well-being (questionnaires) were made. Also, we investigated into what extent nocturnal noise exposure - objectively measured as well as perceived - directly relates to sleep outcomes and how the bedroom location influenced our measurements. We found that subjects living and sleeping in noisy regions correctly perceive their environment in terms of noise exposure and reported an overall discomfort due to traffic noise. In the evaluation of the objective noise levels, the inside noise levels did not follow the outside noise levels, though the different noise patterns could be described as characteristic for a noise and quiet environment. The impact on sleep, however, was only modest and we did not find any influence of noise intrusion on mood or pre-sleep arousal levels. Concerning the subjectively reported noise disturbances during the night, a clear relationship between noise and sleep outcomes could be established; with sleep onset latencies and judged sleep quality being particularly affected. The importance of inside and outside noise assessment as well as the use of multiple noise indicators in a home environment is further described. Additional emphasis is put on the determination of quiet control regions and the bedroom location, as this can alter noise levels and sleep outcomes. Also, including subjective noise evaluations during the night might not only provide crucial information on how participants experience the noise, but also allows for a more qualitative interpretation of the actual noise situation.
On Acoustic Source Specification for Rotor-Stator Interaction Noise Prediction
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Envia, Edmane; Burley, Caesy L.
2010-01-01
This paper describes the use of measured source data to assess the effects of acoustic source specification on rotor-stator interaction noise predictions. Specifically, the acoustic propagation and radiation portions of a recently developed coupled computational approach are used to predict tonal rotor-stator interaction noise from a benchmark configuration. In addition to the use of full measured data, randomization of source mode relative phases is also considered for specification of the acoustic source within the computational approach. Comparisons with sideline noise measurements are performed to investigate the effects of various source descriptions on both inlet and exhaust predictions. The inclusion of additional modal source content is shown to have a much greater influence on the inlet results. Reasonable agreement between predicted and measured levels is achieved for the inlet, as well as the exhaust when shear layer effects are taken into account. For the number of trials considered, phase randomized predictions follow statistical distributions similar to those found in previous statistical source investigations. The shape of the predicted directivity pattern relative to measurements also improved with phase randomization, having predicted levels generally within one standard deviation of the measured levels.
NASA Astrophysics Data System (ADS)
Newman, J. S.; Beattie, K. R.
1985-03-01
This report summarizes the effects of aviation noise in many areas, ranging from human annoyance to impact on real estate values. It also synthesizes the findings of literature on several topics. Included in the literature were many original studies carried out under FAA and other Federal funding over the past two decades. Efforts have been made to present the critical findings and conclusions of pertinent research, providing, when possible, a bottom line conclusion, criterion or perspective. Issues related to aviation noise are highlighted, and current policy is presented. Specific topic addressed include: annoyance; Hearing and hearing loss; noise metrics; human response to noise; speech interference; sleep interference; non-auditory health effects of noise; effects of noise on wild and domesticated animals; low frequency acoustical energy; impulsive noise; time of day weightings; noise contours; land use compatibility; and real estate values. This document is designed for a variety of users, from the individual completely unfamiliar with aviation noise to experts in the field.
NASA Astrophysics Data System (ADS)
Wu, Qing
Millions of people across the world are suffering from noise induced hearing loss (NIHL), especially under working conditions of either continuous Gaussian or non-Gaussian noise that might affect human's hearing function. Impulse noise is a typical non-Gaussian noise exposure in military and industry, and generates severe hearing loss problem. This study mainly focuses on characterization of impulse noise using digital signal analysis method and prediction of the auditory hazard of impulse noise induced hearing loss by the Auditory Hazard Assessment Algorithm for Humans (AHAAH) modeling. A digital noise exposure system has been developed to produce impulse noises with peak sound pressure level (SPL) up to 160 dB. The characterization of impulse noise generated by the system has been investigated and analyzed in both time and frequency domains. Furthermore, the effects of key parameters of impulse noise on auditory risk unit (ARU) are investigated using both simulated and experimental measured impulse noise signals in the AHAAH model. The results showed that the ARUs increased monotonically with the peak pressure (both P+ and P-) increasing. With increasing of the time duration, the ARUs increased first and then decreased, and the peak of ARUs appeared at about t = 0.2 ms (for both t+ and t-). In addition, the auditory hazard of experimental measured impulse noises signals demonstrated a monotonically increasing relationship between ARUs and system voltages.
Shot noise in radiobiological systems.
Datesman, A
2016-11-01
As a model for human tissue, this report considers the rate of free radical generation in a dilute solution of water in which a beta-emitting radionuclide is uniformly dispersed. Each decay dissipates a discrete quantity of energy, creating a large number of free radicals in a short time within a small volume determined by the beta particle range. Representing the instantaneous dissipated power as a train of randomly-spaced pulses, the time-averaged dissipated power p¯ and rate of free radical generation g¯ are derived. The analogous result in the theory of electrical circuits is known as the shot noise theorem. The reference dose of X-rays Dref producing an identical rate of free radical generation and level of oxidative stress is shown a) to increase with the square root of the absorbed dose, D, and b) to be far larger than D. This finding may have important consequences for public health in cases where the level of shot noise exceeds some noise floor corresponding to equilibrium biological processes. An estimate of this noise floor is made using the example of potassium-40, a beta-emitting radioisotope universally present in living tissue.
UHB Engine Fan Broadband Noise Reduction Study
NASA Technical Reports Server (NTRS)
Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani
1995-01-01
A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.
1/f noise in graphene nanopores
NASA Astrophysics Data System (ADS)
Heerema, S. J.; Schneider, G. F.; Rozemuller, M.; Vicarelli, L.; Zandbergen, H. W.; Dekker, C.
2015-02-01
Graphene nanopores are receiving great attention due to their atomically thin membranes and intrinsic electrical properties that appear greatly beneficial for biosensing and DNA sequencing. Here, we present an extensive study of the low-frequency 1/f noise in the ionic current through graphene nanopores and compare it to noise levels in silicon nitride pore currents. We find that the 1/f noise magnitude is very high for graphene nanopores: typically two orders of magnitude higher than for silicon nitride pores. This is a drawback as it significantly lowers the signal-to-noise ratio in DNA translocation experiments. We evaluate possible explanations for these exceptionally high noise levels in graphene pores. From examining the noise for pores of different diameters and at various salt concentrations, we find that in contrast to silicon nitride pores, the 1/f noise in graphene pores does not follow Hooge’s relation. In addition, from studying the dependence on the buffer pH, we show that the increased noise cannot be explained by charge fluctuations of chemical groups on the pore rim. Finally, we compare single and bilayer graphene to few-layer and multi-layer graphene and boron nitride (h-BN), and we find that the noise reduces with layer thickness for both materials, which suggests that mechanical fluctuations may be the underlying cause of the high 1/f noise levels in monolayer graphene nanopore devices.
Landing approach airframe noise measurements and analysis
NASA Technical Reports Server (NTRS)
Lasagna, P. L.; Mackall, K. G.; Burcham, F. W., Jr.; Putnam, T. W.
1980-01-01
Flyover measurements of the airframe noise produced by the AeroCommander, JetStar, CV-990, and B-747 airplanes are presented for various landing approach configurations. Empirical and semiempirical techniques are presented to correlate the measured airframe noise with airplane design and aerodynamic parameters. Airframe noise for the jet-powered airplanes in the clean configuration (flaps and gear retracted) was found to be adequately represented by a function of airplane weight and the fifth power of airspeed. Results show the airframe noise for all four aircraft in the landing configuration (flaps extended and gear down) also varied with the fifth power of airspeed, but this noise level could not be represented by the addition of a constant to the equation for clean-configuration airframe noise.
Annoyance of helicopter impulsive noise
NASA Technical Reports Server (NTRS)
Dambra, F.; Damongeot, A.
1978-01-01
Psychoacoustic studies of helicopter impulsive noise were conducted in order to qualify additional annoyance due to this feature and to develop physical impulsiveness descriptors to develop impulsivity correction methods. The currently proposed descriptors and methods of impulsiveness correction are compared using a multilinear regression analysis technique. It is shown that the presently recommended descriptor and correction method provides the best correlation with the subjective evaluations of real helicopter impulsive noises. The equipment necessary for data processing in order to apply the correction method is discussed.
... or natural. Natural food additives include: Herbs or spices to add flavor to foods Vinegar for pickling ... Certain colors improve the appearance of foods. Many spices, as well as natural and man-made flavors, ...
Noise simulation system for determining imaging conditions in digital radiography
NASA Astrophysics Data System (ADS)
Tanaka, R.; Ichikawa, K.; Matsubara, K.; Kawashima, H.
2012-03-01
Reduction of exposure dose and improvement in image quality can be expected to result from advances in the performance of imaging detectors. We propose a computerized method for determining optimized imaging conditions by use of simulated images. This study was performed to develop a prototype system for image noise and to ensure consistency between the resulting images and actual images. An RQA5 X-ray spectrum was used for determination of input-output characteristics of a flat-panel detector (FPD). The number of incident quantum to the detector per pixel (counts/pixel) was calculated according to the pixel size of the detector and the quantum number in RQA5 determined in IEC6220-1. The relationship among tube current-time product (mAs), exposure dose (C/kg) at the detector surface, the number of incident quanta (counts/pixel), and pixel values measured on the images was addressed, and a conversion function was then created. The images obtained by the FPD was converted into a map of incident quantum numbers and input into random-value generator to simulate image noise. In addition, graphic user interface was developed to observe images with changing image noise and exposure dose levels, which have trade-off relationship. Simulation images provided at different noise levels were compared with actual images obtained by the FPD system. The results indicated that image noise was simulated properly both in objective and subjective evaluation. The present system could allow us to determine necessary dose from image quality and also to estimate image quality from any exposure dose.
[Subjective sensitivity to noise].
Belojević, G
1991-01-01
It is likely that individual variations in subjectively estimated noise sensitivity influence different social and psychophysiological reactions of people exposed to noise. Subjective noise sensitivity might be a relatively stable personal characteristic. A correlation have been found between high sensitiveness to noise and some medical symptoms (sleep disturbance, nervousness, depression), and worse work performance in noisy environments. An introvert person with neurotic symptoms is more frequently found in people highly sensitive to noise. Testing for subjective sensitivity to noise might be helpful in professional selection and orientation for noisy work-places as well as in housing advising.
Wiest-Daesslé, Nicolas; Prima, Sylvain; Coupé, Pierrick; Morrissey, Sean Patrick; Barillot, Christian
2008-01-01
Diffusion-Weighted MRI (DW-MRI) is subject to random noise yielding measures that are different from their real values, and thus biasing the subsequently estimated tensors. The Non-Local Means (NLMeans) filter has recently been proposed to denoise MRI with high signal-to-noise ratio (SNR). This filter has been shown to allow the best restoration of image intensities for the estimation of diffusion tensors (DT) compared to state-of-the-art methods. However, for DW-MR images with high b-values (and thus low SNR), the noise, which is strictly Rician-distributed, can no longer be approximated as additive white Gaussian, as implicitly assumed in the classical formulation of the NLMeans. High b-values are typically used in high angular resolution diffusion imaging (HARDI) or q-space imaging (QSI), for which an optimal restoration is critical. In this paper, we propose to adapt the NLMeans filter to Rician noise corrupted data. Validation is performed on synthetic data and on real data for both conventional MR images and DT images. Our adaptation outperforms the original NLMeans filter in terms of peak-signal-to-noise ratio (PSNR) for DW-MRI.
Noise performance of frequency modulation Kelvin force microscopy.
Diesinger, Heinrich; Deresmes, Dominique; Mélin, Thierry
2014-01-02
Noise performance of a phase-locked loop (PLL) based frequency modulation Kelvin force microscope (FM-KFM) is assessed. Noise propagation is modeled step by step throughout the setup using both exact closed loop noise gains and an approximation known as "noise gain" from operational amplifier (OpAmp) design that offers the advantage of decoupling the noise performance study from considerations of stability and ideal loop response. The bandwidth can be chosen depending on how much noise is acceptable and it is shown that stability is not an issue up to a limit that will be discussed. With thermal and detector noise as the only sources, both approaches yield PLL frequency noise expressions equal to the theoretical value for self-oscillating circuits and in agreement with measurement, demonstrating that the PLL components neither modify nor contribute noise. Kelvin output noise is then investigated by modeling the surrounding bias feedback loop. A design rule is proposed that allows choosing the AC modulation frequency for optimized sharing of the PLL bandwidth between Kelvin and topography loops. A crossover criterion determines as a function of bandwidth, temperature and probe parameters whether thermal or detector noise is the dominating noise source. Probe merit factors for both cases are then established, suggesting how to tackle noise performance by probe design. Typical merit factors of common probe types are compared. This comprehensive study is an encouraging step toward a more integral performance assessment and a remedy against focusing on single aspects and optimizing around randomly chosen key values.
Estimating the signal-to-noise ratio of AVIRIS data
NASA Technical Reports Server (NTRS)
Curran, Paul J.; Dungan, Jennifer L.
1988-01-01
To make the best use of narrowband airborne visible/infrared imaging spectrometer (AVIRIS) data, an investigator needs to know the ratio of signal to random variability or noise (signal-to-noise ratio or SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption; random noise comprises sensor noise and intrapixel variability (i.e., variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate while dark current and image methods deflate the SNR. A new procedure is proposed called the geostatistical method. It is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semi-variogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors.
Tang Shaojie; Tang Xiangyang
2012-09-15
Purposes: The suppression of noise in x-ray computed tomography (CT) imaging is of clinical relevance for diagnostic image quality and the potential for radiation dose saving. Toward this purpose, statistical noise reduction methods in either the image or projection domain have been proposed, which employ a multiscale decomposition to enhance the performance of noise suppression while maintaining image sharpness. Recognizing the advantages of noise suppression in the projection domain, the authors propose a projection domain multiscale penalized weighted least squares (PWLS) method, in which the angular sampling rate is explicitly taken into consideration to account for the possible variation of interview sampling rate in advanced clinical or preclinical applications. Methods: The projection domain multiscale PWLS method is derived by converting an isotropic diffusion partial differential equation in the image domain into the projection domain, wherein a multiscale decomposition is carried out. With adoption of the Markov random field or soft thresholding objective function, the projection domain multiscale PWLS method deals with noise at each scale. To compensate for the degradation in image sharpness caused by the projection domain multiscale PWLS method, an edge enhancement is carried out following the noise reduction. The performance of the proposed method is experimentally evaluated and verified using the projection data simulated by computer and acquired by a CT scanner. Results: The preliminary results show that the proposed projection domain multiscale PWLS method outperforms the projection domain single-scale PWLS method and the image domain multiscale anisotropic diffusion method in noise reduction. In addition, the proposed method can preserve image sharpness very well while the occurrence of 'salt-and-pepper' noise and mosaic artifacts can be avoided. Conclusions: Since the interview sampling rate is taken into account in the projection domain
Tang, Shaojie; Tang, Xiangyang
2012-01-01
Purposes: The suppression of noise in x-ray computed tomography (CT) imaging is of clinical relevance for diagnostic image quality and the potential for radiation dose saving. Toward this purpose, statistical noise reduction methods in either the image or projection domain have been proposed, which employ a multiscale decomposition to enhance the performance of noise suppression while maintaining image sharpness. Recognizing the advantages of noise suppression in the projection domain, the authors propose a projection domain multiscale penalized weighted least squares (PWLS) method, in which the angular sampling rate is explicitly taken into consideration to account for the possible variation of interview sampling rate in advanced clinical or preclinical applications. Methods: The projection domain multiscale PWLS method is derived by converting an isotropic diffusion partial differential equation in the image domain into the projection domain, wherein a multiscale decomposition is carried out. With adoption of the Markov random field or soft thresholding objective function, the projection domain multiscale PWLS method deals with noise at each scale. To compensate for the degradation in image sharpness caused by the projection domain multiscale PWLS method, an edge enhancement is carried out following the noise reduction. The performance of the proposed method is experimentally evaluated and verified using the projection data simulated by computer and acquired by a CT scanner. Results: The preliminary results show that the proposed projection domain multiscale PWLS method outperforms the projection domain single-scale PWLS method and the image domain multiscale anisotropic diffusion method in noise reduction. In addition, the proposed method can preserve image sharpness very well while the occurrence of “salt-and-pepper” noise and mosaic artifacts can be avoided. Conclusions: Since the interview sampling rate is taken into account in the projection domain
Supersonic jet shock noise reduction
NASA Technical Reports Server (NTRS)
Stone, J. R.
1984-01-01
Shock-cell noise is identified to be a potentially significant problem for advanced supersonic aircraft at takeoff. Therefore NASA conducted fundamental studies of the phenomena involved and model-scale experiments aimed at developing means of noise reduction. The results of a series of studies conducted to determine means by which supersonic jet shock noise can be reduced to acceptable levels for advanced supersonic cruise aircraft are reviewed. Theoretical studies were conducted on the shock associated noise of supersonic jets from convergent-divergent (C-D) nozzles. Laboratory studies were conducted on the influence of narrowband shock screech on broadband noise and on means of screech reduction. The usefulness of C-D nozzle passages was investigated at model scale for single-stream and dual-stream nozzles. The effect of off-design pressure ratio was determined under static and simulated flight conditions for jet temperatures up to 960 K. Annular and coannular flow passages with center plugs and multi-element suppressor nozzles were evaluated, and the effect of plug tip geometry was established. In addition to the far-field acoustic data, mean and turbulent velocity distributions were measured with a laser velocimeter, and shadowgraph images of the flow field were obtained.
Propagation of Environmental Noise
ERIC Educational Resources Information Center
Lyon, R. H.
1973-01-01
Solutions for environmental noise pollution lie in systematic study of many basic processes such as reflection, scattering, and spreading. Noise propagation processes should be identified in different situations and assessed for their relative importance. (PS)
NASA Astrophysics Data System (ADS)
Hallas, Tony
There are two distinct kinds of noise - structural and color. Each requires a specific method of attack to minimize. The great challenge is to reduce the noise without reducing the faint and delicate detail in the image. My most-used and favorite noise suppression is found in Photoshop CS 5 Camera Raw. If I cannot get the desired results with the first choice, I will use Noise Ninja, which has certain advantages in some situations that we will cover.
Approximation of stochastic equilibria for dynamic systems with colored noise
Bashkirtseva, Irina
2015-03-10
We consider nonlinear dynamic systems forced by colored noise. Using first approximation systems, we study dynamics of deviations of stochastic solutions from stable deterministic equilibria. Equations for the stationary second moments of deviations of random states are derived. An application of the elaborated theory to Van der Pol system driven by colored noise is given. A dependence of the dispersion on the time correlation of the colored noise is studied.
Efficiency of harvesting energy from colored noise by linear oscillators
NASA Astrophysics Data System (ADS)
Méndez, Vicenç; Campos, Daniel; Horsthemke, Werner
2013-08-01
We investigate the performance of a linear electromechanical oscillator as an energy harvester of finite-bandwidth random vibrations. We derive exact analytical expressions for the net electrical power and the efficiency of the conversion of the power supplied by the noise into electrical power for arbitrary colored noise. We apply our results to the important case of exponentially correlated noise and discuss the tuning of parameters to achieve good performance of the device.
Effects of street traffic noise in the night
NASA Technical Reports Server (NTRS)
Wehrli, B.; Nemecek, J.; Turrian, V.; Hoffman, R.; Wanner, H.
1980-01-01
The relationship between automobile traffic noise and the degree of disturbance experience experienced at night was explored through a random sample survey of 1600 individuals in rural and urban areas. The data obtained were used to establish threshold values.
Random attractor of non-autonomous stochastic Boussinesq lattice system
Zhao, Min Zhou, Shengfan
2015-09-15
In this paper, we first consider the existence of tempered random attractor for second-order non-autonomous stochastic lattice dynamical system of nonlinear Boussinesq equations effected by time-dependent coupled coefficients and deterministic forces and multiplicative white noise. Then, we establish the upper semicontinuity of random attractors as the intensity of noise approaches zero.
Poliakov, A V; Powers, R K; Sawczuk, A; Binder, M D
1996-01-01
1. We studied the responses of rat hypoglossal motoneurones to excitatory current transients (ECTs) using a brainstem slice preparation. Steady, repetitive discharge at rates of 12-25 impulses s-1 was elicited from the motoneurones by injecting long (40 s) steps of constant current. Poisson trains of the ECTs were superimposed on these steps. The effects of additional synaptic noise was simulated by adding a zero-mean random process to the stimuli. 2. We measured the effects of the ECTs on motoneurone discharge probability by compiling peristimulus time histograms (PSTHs) between the times of occurrence of the ECTs and the motoneurone spikes. The ECTs produced modulation of motoneurone discharge similar to that produced by excitatory postsynaptic currents. 3. The addition of noise altered the pattern of the motoneurone response to the current transients: both the amplitude and the area of the PSTH peaks decreased as the power of the superimposed noise was increased. Noise tended to reduce the efficacy of the ECTs, particularly when the motoneurones were firing at lower frequencies. Although noise also increased the firing frequency of the motoneurones slightly, the effects of noise on ECT efficacy did not simply result from noise-induced changes in mean firing rate. 4. A modified version of the experimental protocol was performed in lumbar motoneurones of intact, pentobarbitone-anaesthetized cats. These recordings yielded results similar to those obtained in rat hypoglossal motoneurones in vitro. 5. Our results suggest that the presence of concurrent synaptic inputs reduces the efficacy of any one input. The implications of this change in efficacy and the possible underlying mechanisms are discussed. PMID:8866358
Rate statistics for radio noise from lightning
NASA Technical Reports Server (NTRS)
Levine, D. M.; Meneghini, R.; Tretter, S. A.
1980-01-01
Radio frequency noise from lightning was measured at several frequencies in the HF - VHF range at the Kennedy Space Center, Florida. The data were examined to determine flashing rate statistics during periods of strong activity from nearby storms. It was found that the time between flashes is modeled reasonably well by a random variable with a lognormal distribution.
NASA Technical Reports Server (NTRS)
Pearsons, K. S.; Bennett, R. L.
1974-01-01
The handbook was compiled to provide information in a concise form, describing the multitude of noise rating schemes. It is hoped that by describing the noise rating methods in a single volume the user will have better access to the definitions, application and calculation procedures of the current noise rating methods.
NASA Astrophysics Data System (ADS)
Vipperman, Jeffrey S.; Bauer, Eric R.
2002-05-01
It is estimated that 70%-90% of miners have enough noise induced hearing loss (NIHL) to be classified as a disability (NIOSH, Publication No. 76-172, 1976; Franks, NIOSH Internal Report, 1996). In response, NIOSH is conducting a cross-sectional survey of the mining industry in order to determine the sources of mining noise and offer recommendations on how to mitigate high noise levels, and bring mining operations into compliance with the recent mining noise regulation: 30CFR, Part 62. This paper will outline the results from noise surveys of eight draglines which operate in above-ground coal mining operations. The data recorded include noise dosimetry in conjunction with time-at-task studies and 1/3-octave sound level (Leq, Lmin, and Lmax) measurements. The 1/3-octave band readings were used to create noise contour maps which allowed the spatial and frequency information of the noise to be considered. Comparison of Lmin and Lmax levels offer insight into the variability of the noise levels inside the dragline. The potential for administrative controls is limited due to consistently high noise levels throughout the deck. Implementation of engineering controls is also hindered by the size and number of the noise sources and the frequency content of the noise.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Searle, N.
1976-01-01
An extensive series of noise measurements, for a variety of geometric and operational parameters, was made on models of upper surface blowing (USB) powered lift systems. The data obtained were analyzed and the effects and trends of parametric variation defined. The behavior and nature of USB noise and the design of USB systems with low noise characteristics is examined.
Noise, Diffusion, and Hyperuniformity
NASA Astrophysics Data System (ADS)
Hexner, Daniel; Levine, Dov
2017-01-01
We consider driven many-particle models which have a phase transition between an active and an absorbing phase. Like previously studied models, we have particle conservation, but here we introduce an additional symmetry—when two particles interact, we give them stochastic kicks which conserve the center of mass. We find that the density fluctuations in the active phase decay in the fastest manner possible for a disordered isotropic system, and we present arguments that the large scale fluctuations are determined by a competition between a noise term which generates fluctuations, and a deterministic term which reduces them. Our results may be relevant to shear experiments and may further the understanding of hyperuniformity which occurs at the critical point.
Rudolf Keller
2004-08-10
In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.
Harrup, Mason K; Rollins, Harry W
2013-11-26
An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.
Demonstration of Johnson noise thermometry with all-superconducting quantum voltage noise source
Yamada, Takahiro Urano, Chiharu; Maezawa, Masaaki
2016-01-25
We present a Johnson noise thermometry (JNT) system based on an integrated quantum voltage noise source (IQVNS) that has been fully implemented using superconducting circuit technology. To enable precise measurement of Boltzmann's constant, an IQVNS chip was designed to produce intrinsically calculable pseudo-white noise to calibrate the JNT system. On-chip real-time generation of pseudo-random codes via simple circuits produced pseudo-voltage noise with a harmonic tone interval of less than 1 Hz, which was one order of magnitude finer than the harmonic tone interval of conventional quantum voltage noise sources. We estimated a value for Boltzmann's constant experimentally by performing JNT measurements at the temperature of the triple point of water using the IQVNS chip.
Classical noise, quantum noise and secure communication
NASA Astrophysics Data System (ADS)
Tannous, C.; Langlois, J.
2016-01-01
Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems.
Vortex noise from nonrotating cylinders and airfoils
NASA Technical Reports Server (NTRS)
Schlinker, R. H.; Amiet, R. K.; Fink, M. R.
1976-01-01
An experimental study of vortex-shedding noise was conducted in an acoustic research tunnel over a Reynolds-number range applicable to full-scale helicopter tail-rotor blades. Two-dimensional tapered-chord nonrotating models were tested to simulate the effect of spanwise frequency variation on the vortex-shedding mechanism. Both a tapered circular cylinder and tapered airfoils were investigated. The results were compared with data for constant-diameter cylinder and constant-chord airfoil models also tested during this study. Far-field noise, surface pressure fluctuations, and spanwise correlation lengths were measured for each configuration. Vortex-shedding noise for tapered cylinders and airfoils was found to contain many narrowband-random peaks which occurred within a range of frequencies corresponding to a predictable Strouhal number referenced to the maximum and minimum chord. The noise was observed to depend on surface roughness and Reynolds number.
Noise exposures in US coal mines
Seiler, J.P.; Valoski, M.P.; Crivaro, M.A.
1994-05-01
Mine Safety and Health Administration (MSHA) inspectors conduct full-shift environmental noise surveys to determine the occupational noise levels to which coal miners are exposed. These noise surveys are performed to determine compliance with the noise standard promulgated under the Federal Mine Safety and Health Act of 1977. Data from over 60,000 full-shift noise surveys conducted from fiscal year 1986 through 1992 were entered into a computer data base to facilitate analysis. This paper presents the mean and standard deviation of over 60,000 full-shift noise dose measurements for various underground and surface coal mining occupations. Additionally, it compares and contrasts the levels with historical noise exposure measurements for selected coal mining occupations that were published in the 1970`s. The findings were that the percentage of miners surveyed that were subjected to noise exposures above 100%, neglecting personal hearing protectors, were 26.5% and 21.6% for surface and underground mining, respectively. Generally, the trend is that the noise exposures for selected occupations have decreased since the 1970`s.
The Negative Affect Hypothesis of Noise Sensitivity
Shepherd, Daniel; Heinonen-Guzejev, Marja; Heikkilä, Kauko; Dirks, Kim N.; Hautus, Michael J.; Welch, David; McBride, David
2015-01-01
Some studies indicate that noise sensitivity is explained by negative affect, a dispositional tendency to negatively evaluate situations and the self. Individuals high in such traits may report a greater sensitivity to other sensory stimuli, such as smell, bright light and pain. However, research investigating the relationship between noise sensitivity and sensitivity to stimuli associated with other sensory modalities has not always supported the notion of a common underlying trait, such as negative affect, driving them. Additionally, other explanations of noise sensitivity based on cognitive processes have existed in the clinical literature for over 50 years. Here, we report on secondary analyses of pre-existing laboratory (n = 74) and epidemiological (n = 1005) data focusing on the relationship between noise sensitivity to and annoyance with a variety of olfactory-related stimuli. In the first study a correlational design examined the relationships between noise sensitivity, noise annoyance, and perceptual ratings of 16 odors. The second study sought differences between mean noise and air pollution annoyance scores across noise sensitivity categories. Results from both analyses failed to support the notion that, by itself, negative affectivity explains sensitivity to noise. PMID:25993104
Hybrid Analysis of Engine Core Noise
NASA Astrophysics Data System (ADS)
O'Brien, Jeffrey; Kim, Jeonglae; Ihme, Matthias
2015-11-01
Core noise, or the noise generated within an aircraft engine, is becoming an increasing concern for the aviation industry as other noise sources are progressively reduced. The prediction of core noise generation and propagation is especially challenging for computationalists since it involves extensive multiphysics including chemical reaction and moving blades in addition to the aerothermochemical effects of heated jets. In this work, a representative engine flow path is constructed using experimentally verified geometries to simulate the physics of core noise. A combustor, single-stage turbine, nozzle and jet are modeled in separate calculations using appropriate high fidelity techniques including LES, actuator disk theory and Ffowcs-Williams Hawkings surfaces. A one way coupling procedure is developed for passing fluctuations downstream through the flowpath. This method effectively isolates the core noise from other acoustic sources, enables straightforward study of the interaction between core noise and jet exhaust, and allows for simple distinction between direct and indirect noise. The impact of core noise on the farfield jet acoustics is studied extensively and the relative efficiency of different disturbance types and shapes is examined in detail.
NASA Astrophysics Data System (ADS)
Pu, Xueke; Guo, Boling
In this paper, we consider the ergodicity of invariant measures for the stochastic Ginzburg-Landau equation with degenerate random forcing. First, we show the existence and pathwise uniqueness of strong solutions with H-initial data, and then the existence of an invariant measure for the Feller semigroup by the Krylov-Bogoliubov method. Then in the case of degenerate additive noise, using the notion of asymptotically strong Feller property, we prove the uniqueness of invariant measures for the transition semigroup.
[Cardiovascular effects of noise].
Vacheron, A
1992-03-01
The circulatory response to noise is dominated by a peripheral blood vessels vasoconstriction, of greater magnitude when asleep than awake. Noise of lower frequency seems more able to produce this response. With repetition of the noise, adaptation and tolerance to it quickly appears. Meanwhile prolonged high level noise exposition induces an increasing prevalence of arterial hypertension among industrial workers. This increase is also clearly found in residential communities living near airports. Long-term exposure to noise is a dangerous nuisance, that can lead to an increase in arterial blood pressure and favour coronary artery disease development.
NASA Astrophysics Data System (ADS)
Sgarbozza, M.; Depitre, A.
1992-04-01
A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.
Optical Johnson noise thermometry
NASA Technical Reports Server (NTRS)
Shepard, R. L.; Blalock, T. V.; Maxey, L. C.; Roberts, M. J.; Simpson, M. L.
1989-01-01
A concept is being explored that an optical analog of the electrical Johnson noise may be used to measure temperature independently of emissivity. The concept is that a laser beam may be modulated on reflection from a hot surface by interaction of the laser photons with the thermally agitated conduction electrons or the lattice phonons, thereby adding noise to the reflected laser beam. If the reflectance noise can be detected and quantified in a background of other noise in the optical and signal processing systems, the reflectance noise may provide a noncontact measurement of the absolute surface temperature and may be independent of the surface's emissivity.
NASA Astrophysics Data System (ADS)
Pospieszalski, M. W.
2010-10-01
The simple noise models of field effect and bipolar transistors reviewed in this article are quite useful in engineering practice, as illustrated by measured and modeled results. The exact and approximate expressions for the noise parameters of FETs and bipolar transistors reveal certain common noise properties and some general noise properties of both devices. The usefulness of these expressions in interpreting the dependence of measured noise parameters on frequency, bias, and temperature and, consequently, in checking of consistency of measured data has been demonstrated.
Musical noise reduction using an adaptive filter
NASA Astrophysics Data System (ADS)
Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya
2003-10-01
This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2011-01-01
This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.
Fast measurement of temporal noise of digital camera's photosensors
NASA Astrophysics Data System (ADS)
Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.; Starikov, Sergey N.
2015-10-01
Currently photo- and videocameras are widespread parts of both scientific experimental setups and consumer applications. They are used in optics, radiophysics, astrophotography, chemistry, and other various fields of science and technology such as control systems and video-surveillance monitoring. One of the main information limitations of photoand videocameras are noises of photosensor pixels. Camera's photosensor noise can be divided into random and pattern components. Temporal noise includes random noise component while spatial noise includes pattern noise component. Spatial part usually several times lower in magnitude than temporal. At first approximation spatial noises might be neglected. Earlier we proposed modification of the automatic segmentation of non-uniform targets (ASNT) method for measurement of temporal noise of photo- and videocameras. Only two frames are sufficient for noise measurement with the modified method. In result, proposed ASNT modification should allow fast and accurate measurement of temporal noise. In this paper, we estimated light and dark temporal noises of four cameras of different types using the modified ASNT method with only several frames. These cameras are: consumer photocamera Canon EOS 400D (CMOS, 10.1 MP, 12 bit ADC), scientific camera MegaPlus II ES11000 (CCD, 10.7 MP, 12 bit ADC), industrial camera PixeLink PLB781F (CMOS, 6.6 MP, 10 bit ADC) and video-surveillance camera Watec LCL-902C (CCD, 0.47 MP, external 8 bit ADC). Experimental dependencies of temporal noise on signal value are in good agreement with fitted curves based on a Poisson distribution excluding areas near saturation. We measured elapsed time for processing of shots used for temporal noise estimation. The results demonstrate the possibility of fast obtaining of dependency of camera full temporal noise on signal value with the proposed ASNT modification.
Costello, Fintan; Watts, Paul
2016-01-01
A standard assumption in much of current psychology is that people do not reason about probability using the rules of probability theory but instead use various heuristics or "rules of thumb," which can produce systematic reasoning biases. In Costello and Watts (2014), we showed that a number of these biases can be explained by a model where people reason according to probability theory but are subject to random noise. More importantly, that model also predicted agreement with probability theory for certain expressions that cancel the effects of random noise: Experimental results strongly confirmed this prediction, showing that probabilistic reasoning is simultaneously systematically biased and "surprisingly rational." In their commentaries on that paper, both Crupi and Tentori (2016) and Nilsson, Juslin, and Winman (2016) point to various experimental results that, they suggest, our model cannot explain. In this reply, we show that our probability theory plus noise model can in fact explain every one of the results identified by these authors. This gives a degree of additional support to the view that people's probability judgments embody the rational rules of probability theory and that biases in those judgments can be explained as simply effects of random noise.
NASA Astrophysics Data System (ADS)
Bashkirtseva, Irina; Ryazanova, Tatyana; Ryashko, Lev
2015-10-01
We study a stochastic dynamics of systems with hard excitement of auto-oscillations possessing a bistability mode with coexistence of the stable equilibrium and limit cycle. A principal difference in the results of the impact of additive and parametric random disturbances is shown. For the stochastic van der Pol oscillator with increasing parametric noise, qualitative transformations of the probability density function form "crater"-"peak +crater "-"peak" are demonstrated by numerical simulation. An analytical investigation of such P bifurcations is carried out for the stochastic Hopf-like model with hard excitement of self-oscillations. A detailed parametric description of the response of this model on the additive and multiplicative noise and corresponding stochastic bifurcations are presented and discussed.
Generalized phase-shifting algorithms: error analysis and minimization of noise propagation.
Ayubi, Gastón A; Perciante, César D; Di Martino, J Matías; Flores, Jorge L; Ferrari, José A
2016-02-20
Phase shifting is a technique for phase retrieval that requires a series of intensity measurements with certain phase steps. The purpose of the present work is threefold: first we present a new method for generating general phase-shifting algorithms with arbitrarily spaced phase steps. Second, we study the conditions for which the phase-retrieval error due to phase-shift miscalibration can be minimized. Third, we study the phase extraction from interferograms with additive random noise, and deduce the conditions to be satisfied for minimizing the phase-retrieval error. Algorithms with unevenly spaced phase steps are discussed under linear phase-shift errors and additive Gaussian noise, and simulations are presented.
All-optical relative intensity noise suppression method for the high precision fiber optic gyroscope
NASA Astrophysics Data System (ADS)
Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Zhang, Yuhui
2016-10-01
The relative intensity noise (RIN) is a main factor that limits the detection accuracy of the high precision fiber optic gyroscope (FOG). The RIN spectrum is determined by the normalized autocorrelation of the optical spectrum of the broadband source and is intrinsically different from other fundamental noises. In this paper, we propose an all-optical technique to suppress the RIN. With the power addition of the optical waves from the signal optical path and the reference optical path, the RIN is effectively eliminated at the eigen frequency of the FOG, which is also the demodulation window for the rotation rate signal. Compared with the traditional optical configuration of the FOG, there is only one additional optical component. Experimental results show that, with this method, we can achieve a nearly 3-fold improvement in the angular random walk coefficient. The improved optical configuration for RIN suppression is simple to realize and suitable for engineering application.
NASA Astrophysics Data System (ADS)
Li, Min; Huang, Xiaokai; Jin, Jing; Chen, Yunxia; Kang, Rui
Noise failure, particularly due to random walk error (RWE) degradation behavior, is one of the critical failure modes for fiber-optic gyroscopes (FOGs) in space applications. In this paper, firstly, the analytical model of RWE is presented and the affected parameters are listed according to the gamma irradiation damage mechanism. In addition, the influence of temperature is also included. The deterioration of affected parameters is determined through a 60Co radiation experiment on optic and optoelectronic components. Based on the parameters’ deterioration range and assumed distribution properties, their importance to the noise failure is calculated through the Sobol method, a global sensitivity analysis method. In the computation steps, the Latin Hyper Sampling (LHS) based Monte-Carlo numerical simulation technique is adopted. It is determined from calculation results that the detected light power (DLP) is the noise failure characteristic which is the most sensitive parameter in the space environment. Finally, another 60Co radiation experiment with the same conditions is performed on a superluminescent diode (SLD) FOG. The original noise degradation behavior is compared to the simulated RWE, calculated according to DLP, and the result shows that they follow trend almost identical. This supports the conclusion that DLP is the most sensitive noise failure characteristic for SLD-based FOGs.
A Direct Method for Calculating Instrument Noise Levels in Side-by-Side Seismometer Evaluations
Holcomb, L. Gary
1989-01-01
INTRODUCTION The subject of determining the inherent system noise levels present in modem broadband closed loop seismic sensors has been an evolving topic ever since closed loop systems became available. Closed loop systems are unique in that the system noise can not be determined via a blocked mass test as in older conventional open loop seismic sensors. Instead, most investigators have resorted to performing measurements on two or more systems operating in close proximity to one another and to analyzing the outputs of these systems with respect to one another to ascertain their relative noise levels. The analysis of side-by-side relative performance is inherently dependent on the accuracy of the mathematical modeling of the test configuration. This report presents a direct approach to extracting the system noise levels of two linear systems with a common coherent input signal. The mathematical solution to the problem is incredibly simple; however the practical application of the method encounters some difficulties. Examples of expected accuracies are presented as derived by simulating real systems performance using computer generated random noise. In addition, examples of the performance of the method when applied to real experimental test data are shown.
NASA Astrophysics Data System (ADS)
Dong, Guangming; Chen, Jin
2012-11-01
Rolling element bearings are frequently used in rotary machinery, but they are also fragile mechanical parts. Hence, exact condition monitoring and fault diagnosis for them plays an important role in ensuring machinery's reliable running. Timely diagnosis of early bearing faults is desirable, but the early fault signatures are easily submerged in noise. In this paper, Wigner-Ville spectrum based on cyclic spectral density (CSWVS for a brief notation) is studied, which is able to represent the cyclostationary signals while reducing the masking effect of additive stationary noise. Both simulations and experiments show that CSWVS is a noise resistant time frequency analysis technique for extracting bearing fault patterns, when bearing signals are under influences of random noise and gear vibrations. The 3-D feature of the CSWVS is proved useful in extracting bearing fault pattern from gearbox vibration signals, where bearing signals are affected by gear meshing vibration and noise. Besides, CSWVS utilizes the second order cyclostationary property of the vibration signals produced by bearing distributed fault, and clearly extracts its fault features, which cannot be extracted by envelope analysis. To quantitatively describe the extent of bearing fault, Renyi information encoded in the time frequency diagram of CSWVS is studied. It is shown to be a more sensitive index to reflect bearing performance degradation, compared with the spectral entropy (SE), squared envelope spectrum entropy (SESE) and Renyi informations for WVD, PWVD, especially when SNR is low.
NASA Technical Reports Server (NTRS)
Henderson, Brenda
2008-01-01
A presentation outlining current jet noise work at NASA was given at the NAVAIR Noise Workshop. Jet noise tasks in the Supersonics project of the Fundamental Aeronautics program were highlighted. The presentation gave an overview of developing jet noise reduction technologies and noise prediction capabilities. Advanced flow and noise diagnostic tools were also presented.
Noise and nonlinearities in digital magnetic recording systems
NASA Astrophysics Data System (ADS)
Xing, Xinzhi
1998-11-01
Various types of noise and nonlinearities in digital magnetic recording systems are investigated in this dissertation. Measurement techniques and analyzing methods are developed to understand each phenomenon. The nonlinearities due to the replay process using MR sensors are studied in Chapter 4. The nonlinearities are determined by comparing the measured signal with that obtained from a linear analysis. A characterization method of transition noise is developed in Chapter 5. Approximating transition noise by several leading 'modes' allows the noise parameters to be determined experimentally. Chapter 6 covers the investigation of disk substrate texture induced noise. The noise mechanism and characteristics are systematically studied. An analytical noise correlation function that directly relates the noise with the fluctuations of the textured disk surface is also developed in this chapter. An error rate model including colored and nonstationary noise is developed to further understand the impact of noise on system performance in Chapter 7. Noise with different characteristics is shown to influence the system performance differently. In addition, the influence of texture noise is examined in term of each noise parameter based upon the noise model developed in Chapter 6. Finally, in Chapter 8, the effect of finite write field rise time on recording performance is studied. Recording performance predicted by a simplified analytical model is compared with the measurements. It is shown that a slow flux rise time causes a degraded field gradient during writing, which results in a broader written transition, a larger NLTS, and noisier transition boundaries.
Visibility of wavelet quantization noise
NASA Technical Reports Server (NTRS)
Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.
1997-01-01
The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
Feature-Preserving Noise Removal.
Youssef, Khalid; Jarenwattananon, Nanette N; Bouchard, Louis-S
2015-09-01
Conventional image restoration algorithms use transform-domain filters, which separate the noise from the sparse signal among the transform components or apply spatial smoothing filters in real space whose design relies on prior assumptions about the noise statistics. These filters also reduce the information content of the image by suppressing spatial frequencies or by recognizing only a limited set of shapes. Here we show that denoising can be efficiently done using a nonlinear filter, which operates along patch neighborhoods and multiple copies of the original image. The use of patches enables the algorithm to account for spatial correlations in the random field whereas the multiple copies are used to recognize the noise statistics. The nonlinear filter, which is implemented by a hierarchical multistage system of multilayer perceptrons, outperforms state-of-the-art denoising algorithms such as those based on collaborative filtering and total variation. Compared to conventional denoising algorithms, our filter can restore images without blurring them, making it attractive for use in medical imaging where the preservation of anatomical details is critical.
How Synchronization Protects from Noise
Tabareau, Nicolas; Slotine, Jean-Jacques; Pham, Quang-Cuong
2010-01-01
The functional role of synchronization has attracted much interest and debate: in particular, synchronization may allow distant sites in the brain to communicate and cooperate with each other, and therefore may play a role in temporal binding, in attention or in sensory-motor integration mechanisms. In this article, we study another role for synchronization: the so-called “collective enhancement of precision”. We argue, in a full nonlinear dynamical context, that synchronization may help protect interconnected neurons from the influence of random perturbations—intrinsic neuronal noise—which affect all neurons in the nervous system. More precisely, our main contribution is a mathematical proof that, under specific, quantified conditions, the impact of noise on individual interconnected systems and on their spatial mean can essentially be cancelled through synchronization. This property then allows reliable computations to be carried out even in the presence of significant noise (as experimentally found e.g., in retinal ganglion cells in primates). This in turn is key to obtaining meaningful downstream signals, whether in terms of precisely-timed interaction (temporal coding), population coding, or frequency coding. Similar concepts may be applicable to questions of noise and variability in systems biology. PMID:20090826
Visibility of Wavelet Quantization Noise
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John; Null, Cynthia H. (Technical Monitor)
1995-01-01
The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp)-L , where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We describe a mathematical model to predict DWT noise detection thresholds as a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
NASA Astrophysics Data System (ADS)
Coakley, Kevin J.; Qu, Jifeng
2017-04-01
In the electronic measurement of the Boltzmann constant based on Johnson noise thermometry, the ratio of the power spectral densities of thermal noise across a resistor at the triple point of water, and pseudo-random noise synthetically generated by a quantum-accurate voltage-noise source is constant to within 1 part in a billion for frequencies up to 1 GHz. Given knowledge of this ratio, and the values of other parameters that are known or measured, one can determine the Boltzmann constant. Due, in part, to mismatch between transmission lines, the experimental ratio spectrum varies with frequency. We model this spectrum as an even polynomial function of frequency where the constant term in the polynomial determines the Boltzmann constant. When determining this constant (offset) from experimental data, the assumed complexity of the ratio spectrum model and the maximum frequency analyzed (fitting bandwidth) dramatically affects results. Here, we select the complexity of the model by cross-validation—a data-driven statistical learning method. For each of many fitting bandwidths, we determine the component of uncertainty of the offset term that accounts for random and systematic effects associated with imperfect knowledge of model complexity. We select the fitting bandwidth that minimizes this uncertainty. In the most recent measurement of the Boltzmann constant, results were determined, in part, by application of an earlier version of the method described here. Here, we extend the earlier analysis by considering a broader range of fitting bandwidths and quantify an additional component of uncertainty that accounts for imperfect performance of our fitting bandwidth selection method. For idealized simulated data with additive noise similar to experimental data, our method correctly selects the true complexity of the ratio spectrum model for all cases considered. A new analysis of data from the recent experiment yields evidence for a temporal trend in the offset
Noise-induced sensitization of human brain
NASA Astrophysics Data System (ADS)
Yamamoto, Yoshiharu; Hidaka, Ichiro; Nozaki, Daichi; Iso-o, Noriko; Soma, Rika; Kwak, Shin
2002-11-01
In the past decade, it has been recognized that noise can enhance the response of nonlinear systems to weak signals, via a mechanism known as stochastic resonance (SR). Particularly, the concept of SR has generated considerable interest in sensory biology, because it has been shown in several experimental studies that noise can assist neural systems in detecting weak signals which could not be detected in its absence. Recently, we have shown a similar type of noise-induced sensitization of human brain; externally added noise to the brain stem baroreflex centers sensitized their responses in maintaining adequate blood perfusion to the brain itself. Furthermore, the addition of noise has also shown to be useful in compensating for dysfunctions of the baroreflex centers in certain neurological diseases. It is concluded that the statistical physics concept of SR could be useful in sensitizing human brain in health and disease.
Statistical assessment of night vision goggle noise
NASA Astrophysics Data System (ADS)
Wales, Jesse G.; Marasco, Peter L.
2006-05-01
New advancements in charged-coupled device (CCD) technology allow for further investigation into the spatial nature of night vision goggle (NVG) noise distributions. This is significant because it is common practice in new NVG technology to combine image intensifiers with CCDs for night vision imaging. In this study, images of NVG noise are recorded by a CCD camera while varying input radiance and using multiple goggle types. Noise distributions characterized using histograms of these images are analyzed and fitted with curves. Using the changes in the distribution and relating distribution changes (coefficient changes) to input radiance and goggle performance provides a very accurate noise characterization. This study finds that a Weibull distribution seems more appropriate than a Poisson distribution, producing higher correlation coefficient fits. In addition, the paper suggests possible ways the noise models developed here can impact advancements in NVG image enhancement using this new technology.
NASA Astrophysics Data System (ADS)
Stinson, Michael R.
2003-10-01
Our world continues to be a noisy place and the challenge to ``increase and diffuse knowledge of noise propagation, passive and active noise control, and the effects of noise'' remains. In the last several years, noise in the classroom has emerged as one of the hotter topics: Considerable progress has been made in the underpinning research, the formulation of recommendations, and the process of educating society on the social and personal impact of inadequate acoustical conditions in classrooms. The establishment of the ANSI S12.60-2002 standard for classroom acoustics was a milestone event. Noise in cities and the understanding of our soundscapes are subjects of ongoing significance. The development of standards and regulations is a continuing process, with urban community noise regulations, aviation noise, and the preservation of natural quiet in national parks being of current concern. New methods to reduce noise are under development and include passive and active methods of noise control, techniques for modeling the performance of noise barriers, and approaches for designing product sound quality.
Knauss, D.
2002-01-01
The EC has published a Green Paper on noise policy in the EU and has issued a directive on the assessment and reduction of environmental noise. This directive will make noise mapping mandatory for cities with at least 250.000 inhabitants. Due to the development in computer technology it is possible to calculate noise maps for large urban areas using the available data on buildings, ground profile, road and rail traffic. Examples for noise mapping are Birmingham (GB), Linz (A) and various German cities. Based on noise maps and empirical data on the correlation between annoyance and noise levels annoyance maps for different sources (rail, road, aircraft) can be calculated. Under the assumption that the annoyance for the different sources are only weakly correlated, a combined annoyance map can be calculated. In a second step using the distribution of the population the actual number of annoyed people can be evaluated. This analysis can be used, for example, to identify noise hot spots and to assess the impact of major traffic projects - roads, airports- on the noise situation as well as the impact on the population. Furthermore, the combined annoyance maps can be used to investigate on health effects and to check whether or not empirical correlations between annoyance and noise levels are sufficiently correct.
Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.
2016-01-01
The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.
Local noise sensitivity: Insight into the noise effect on chaotic dynamics
NASA Astrophysics Data System (ADS)
Sviridova, Nina; Nakamura, Kazuyuki
2016-12-01
Noise contamination in experimental data with underlying chaotic dynamics is one of the significant problems limiting the application of many nonlinear time series analysis methods. Although numerous studies have been devoted to the investigation of different aspects of noise—nonlinear dynamics interactions, the effects produced by noise on chaotic dynamics are not fully understood. This study sought to analyze the local effects produced by noise on chaotic dynamics with a smooth attractor. Local Wayland test translation errors were calculated for noise-induced Lorenz and Rössler chaotic models, and for experimental green light photoplethysmogram data. Results demonstrated that under noise induction, local regions on the chaotic attractor with high values of local translation error can be observed. This phenomenon was defined as the local noise sensitivity. It was found that for both models, local noise-sensitive regions were located close to the system's equilibrium points. Additionally, it was found that the reconstructed dynamics represent well the local noise sensitivity of the original dynamics. The concept of local noise sensitivity is expected to contribute to various applied studies, as it reveals regions of chaotic attractors that are sensitive to the presence of noise.
NASA Technical Reports Server (NTRS)
Yoerkie, Charles A.; Gintoli, P. J.; Ingraham, S. T.; Moore, J. A.
1986-01-01
The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed.
Kamada, Keigo; Ito, Yosuke; Ichihara, Sunao; Mizutani, Natsuhiko; Kobayashi, Tetsuo
2015-03-09
In the field of biomagnetic measurement, optically-pumped atomic magnetometers (OPAMs) have attracted significant attention. With the improvement of signal response and the reduction of sensor noise, the sensitivity of OPAMs is limited mainly by environmental magnetic noise. To reduce this magnetic noise, we developed the optical gradiometer, in which the differential output of two distinct measurement areas inside a glass cell was obtained directly via the magneto-optical rotation of one probe beam. When operating in appropriate conditions, the sensitivity was improved by the differential measurement of the optical gradiometer. In addition, measurements of the pseudo-magnetic noise and signal showed the improvement of the signal-to-noise ratio. These results demonstrate the feasibility of our optical gradiometer as an efficient method for reducing the magnetic noise.
NASA Astrophysics Data System (ADS)
Hubbard, Harvey H.
In the conference over 100 papers were presented in eight sessions: (1) Emission: Noise Sources; (2) Physical Phenomena; (3) Noise ControlElements; (4) Vibration and Shock: Generation, Transmission, Isolation, and Reduction; (5) Immission: Physical Aspects of Environmental Noise; (6) Immission: Effects of Noise; (7) Analysis; and (8) Requirements. In addition, the distinguished lecture series included presentations on the High Speed Civil Transport and on research from the United Kingdom on aircraft noise effects. For individual titles, see A95-90089 through A95-90141.
Coherent diffractive imaging using randomly coded masks
Seaberg, Matthew H.; D'Aspremont, Alexandre; Turner, Joshua J.
2015-12-07
We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. The experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-ray synchrotron and even free electron laser experiments.
Aasvang, Gunn Marit; Moum, Torbjorn; Engdahl, Bo
2008-07-01
The objective of the present survey was to study self-reported sleep disturbances due to railway noise with respect to nighttime equivalent noise level (L(p,A,eq,night)) and maximum noise level (L(p,A,max)). A sample of 1349 people in and around Oslo in Norway exposed to railway noise was studied in a cross-sectional survey to obtain data on sleep disturbances, sleep problems due to noise, and personal characteristics including noise sensitivity. Individual noise exposure levels were determined outside of the bedroom facade, the most-exposed facade, and inside the respondents' bedrooms. The exposure-response relationships were analyzed by using logistic regression models, controlling for possible modifying factors including the number of noise events (train pass-by frequency). L(p,A,eq,night) and L(p,A,max) were significantly correlated, and the proportion of reported noise-induced sleep problems increased as both L(p,A,eq,night) and L(p,A,max) increased. Noise sensitivity, type of bedroom window, and pass-by frequency were significant factors affecting noise-induced sleep disturbances, in addition to the noise exposure level. Because about half of the study population did not use a bedroom at the most-exposed side of the house, the exposure-response curve obtained by using noise levels for the most-exposed facade underestimated noise-induced sleep disturbance for those who actually have their bedroom at the most-exposed facade.
NASA Astrophysics Data System (ADS)
Zhou, Bingchang; McDonnell, Mark D.
2015-02-01
The problem of optimising the threshold levels in multilevel threshold system subject to multiplicative Gaussian and uniform noise is considered. Similar to previous results for additive noise, we find a bifurcation phenomenon in the optimal threshold values, as the noise intensity changes. This occurs when the number of threshold units is greater than one. We also study the optimal thresholds for combined additive and multiplicative Gaussian noise, and find that all threshold levels need to be identical to optimise the system when the additive noise intensity is a constant. However, this identical value is not equal to the signal mean, unlike the case of additive noise. When the multiplicative noise intensity is instead held constant, the optimal threshold levels are not all identical for small additive noise intensity but are all equal to zero for large additive noise intensity. The model and our results are potentially relevant for sensor network design and understanding neurobiological sensory neurons such as in the peripheral auditory system.
Noise in two-color electronic distance meter measurements revisited
Langbein, J.
2004-01-01
Frequent, high-precision geodetic data have temporally correlated errors. Temporal correlations directly affect both the estimate of rate and its standard error; the rate of deformation is a key product from geodetic measurements made in tectonically active areas. Various models of temporally correlated errors are developed and these provide relations between the power spectral density and the data covariance matrix. These relations are applied to two-color electronic distance meter (EDM) measurements made frequently in California over the past 15-20 years. Previous analysis indicated that these data have significant random walk error. Analysis using the noise models developed here indicates that the random walk model is valid for about 30% of the data. A second 30% of the data can be better modeled with power law noise with a spectral index between 1 and 2, while another 30% of the data can be modeled with a combination of band-pass-filtered plus random walk noise. The remaining 10% of the data can be best modeled as a combination of band-pass-filtered plus power law noise. This band-pass-filtered noise is a product of an annual cycle that leaks into adjacent frequency bands. For time spans of more than 1 year these more complex noise models indicate that the precision in rate estimates is better than that inferred by just the simpler, random walk model of noise.
Signal-to-Noise Ratio Analysis of a Phase-Sensitive Voltmeter for Electrical Impedance Tomography.
Murphy, Ethan K; Takhti, Mohammad; Skinner, Joseph; Halter, Ryan J; Odame, Kofi
2017-04-01
In this paper, thorough analysis along with mathematical derivations of the matched filter for a voltmeter used in electrical impedance tomography systems are presented. The effect of the random noise in the system prior to the matched filter, generated by other components, are considered. Employing the presented equations allow system/circuit designers to find the maximum tolerable noise prior to the matched filter that leads to the target signal-to-noise ratio (SNR) of the voltmeter, without having to over-design internal components. A practical model was developed that should fall within 2 dB and 5 dB of the median SNR measurements of signal amplitude and phase, respectively. In order to validate our claims, simulation and experimental measurements have been performed with an analog-to-digital converter (ADC) followed by a digital matched filter, while the noise of the whole system was modeled as the input referred at the ADC input. The input signal was contaminated by a known value of additive white Gaussian noise (AWGN) noise, and the noise level was swept from 3% to 75% of the least significant bit (LSB) of the ADC. Differences between experimental and both simulated and analytical SNR values were less than 0.59 and 0.35 dB for RMS values ≥ 20% of an LSB and less than 1.45 and 2.58 dB for RMS values < 20% of an LSB for the amplitude and phase, respectively. Overall, this study provides a practical model for circuit designers in EIT, and a more accurate error analysis that was previously missing in EIT literature.
NASA Astrophysics Data System (ADS)
Smith, M. J.
The history of aircraft noise control development is traced with an eye to forecasting the future. Noise control became imperative with the advent of the first generation of commercial jet aircraft, which were extremely loud. The steady increases in the size of turbofans have nearly matched the progress in noise reduction capabilities in recent years. Only 5 dB of reduction in fleet noise has been achieved since early standards were met. Current engine design is concentrated on increasing fuel efficiency rather than lowering noise emissions. Further difficulties exist because of continued flights with older aircraft. Gains in noise reduction have been made mainly by decreasing exhaust velocities from 600-700 m/sec to 300-400 m/sec. New techniques being explored comprise mixing the core and bypass flows, interaction tone control, reduction of broadband sources, development of acoustic liner technology and alterations in the number of fan blades and stage spacing.
NASA Technical Reports Server (NTRS)
1982-01-01
A demonstration conducted last winter at the Tip Top Poultry Plant intended to show poultry plant managers from all over the U.S. potential solutions to the problem of plant noise. Plastic covers used over sound absorbing materials need to meet cleanability requirements, high- pressure water cleaning and other harsh maintenance procedures peculiar to the poultry processing industry. For the demonstration, Fiber Flex, Inc. manufactured and donated 750 noise panels; Owens-Corning Fiberglas Corporation donated the fiberglas cores; and the cover material was purchased from Howe and Bainbridge. The Engineering Experiment Station (EES) conducted before and after noise surveys and is evaluating the effect of noise reduction on turnover and productivity in the demonstration plant. EES plans to conduct a noise abatement workshop and update a handbook to help poultry processors with noise problems. EES study and demonstration may be applicable to other food processing plants where similar sanitary constraints exist.
The effects of noise vocoding on speech quality perception.
Anderson, Melinda C; Arehart, Kathryn H; Kates, James M
2014-03-01
Speech perception depends on access to spectral and temporal acoustic cues. Temporal cues include slowly varying amplitude changes (i.e. temporal envelope, TE) and quickly varying amplitude changes associated with the center frequency of the auditory filter (i.e. temporal fine structure, TFS). This study quantifies the effects of TFS randomization through noise vocoding on the perception of speech quality by parametrically varying the amount of original TFS available above 1500Hz. The two research aims were: 1) to establish the role of TFS in quality perception, and 2) to determine if the role of TFS in quality perception differs between subjects with normal hearing and subjects with sensorineural hearing loss. Ratings were obtained from 20 subjects (10 with normal hearing and 10 with hearing loss) using an 11-point quality scale. Stimuli were processed in three different ways: 1) A 32-channel noise-excited vocoder with random envelope fluctuations in the noise carrier, 2) a 32-channel noise-excited vocoder with the noise-carrier envelope smoothed, and 3) removal of high-frequency bands. Stimuli were presented in quiet and in babble noise at 18dB and 12dB signal-to-noise ratios. TFS randomization had a measurable detrimental effect on quality ratings for speech in quiet and a smaller effect for speech in background babble. Subjects with normal hearing and subjects with sensorineural hearing loss provided similar quality ratings for noise-vocoded speech.
Estimation and Control for Linear Systems with Additive Cauchy Noise
2013-12-17
In this class, α = 0.5, 1, 2 yield the Lévy, Cauchy and Gaussian distributions , respectively. For α ∈ (0, 2), all the densities have infinite...are in the form of the Cauchy distribution . Although the conditional expectation of the cost function can be determined from the conditional pdf in...inputs are assumed to be independent with know Cauchy pdf. Specifically, wk is assumed to be Cauchy distributed with a zero median and a scaling parameter
Absolute negative mobility induced by white Poissonian noise
NASA Astrophysics Data System (ADS)
Spiechowicz, J.; Łuczka, J.; Hänggi, P.
2013-02-01
We study the transport properties of inertial Brownian particles which move in a symmetric periodic potential and are subjected to both a symmetric, unbiased time-periodic external force and a biased Poissonian white shot noise (of non-zero average F) which is composed of a random sequence of δ-shaped pulses with random amplitudes. Upon varying the parameters of the white shot noise, one can conveniently manipulate the transport direction and the overall nonlinear response behavior. We find that within tailored parameter regimes the response is opposite to the applied average bias F of such white shot noise. This particular transport characteristic thus mimics that of a nonlinear absolute negative mobility (ANM) regime. Moreover, such white shot noise driven ANM is robust with respect to the statistics of the shot noise spikes. Our findings can be checked and corroborated experimentally by the use of a setup that consists of a single resistively and capacitively shunted Josephson junction device.
NASA Astrophysics Data System (ADS)
Alexandrov, Dmitri V.; Bashkirtseva, Irina A.; Ryashko, Lev B.
2015-11-01
Motivated by important paleoclimate applications we study a three dimensional model of the Quaternary climatic variations in the presence of stochastic forcing. It is shown that the deterministic system exhibits a limit cycle and two stable system equilibria. We demonstrate that the closer paleoclimate system to its bifurcation points (lying either in its monostable or bistable zone) the smaller noise generates small or large amplitude stochastic oscillations, respectively. In the bistable zone with two stable equilibria, noise induces a complex multimodal stochastic regime with intermittency of small and large amplitude stochastic fluctuations. In the monostable zone, the small amplitude stochastic oscillations localized in the vicinity of unstable equilibrium appear along with the large amplitude oscillations near the stable limit cycle. For the analysis of these noise-induced effects, we develop the stochastic sensitivity technique and use the Mahalanobis metric in the three-dimensional case. To approximate the distribution of random trajectories in Poincare sections, we use a method of confidence ellipses. A spatial configuration of these ellipses is defined by the stochastic sensitivity and noise intensity. The glaciation/deglaciation transitions going between two polar Earth's states with the warm and cold climate become easier and quicker with increasing the noise intensity. Our stochastic analysis demonstrates a near 100 ky saw-tooth type climate self fluctuations known from paleoclimate records. In addition, the enhancement of noise intensity blurs the sharp climate cycles and reduces the glaciation-deglaciation periods of the Earth's paleoclimate.
1985-03-01
demonstrated little tolerance of aircraft noise and have shown few signs of adapting to it. Since no well-established guidelines concerning noise and animals ...vary from almost no reaction to virtually no tolerance of the sound. The question of how adaptable animals are remains largely unanswered. Both wild...report include"the-folowing:- Annoyance, --Effects of Noise on Wild and Domesticated Animal Hearing and Hearing Loss) Low .Fequency Pcoustical oEhergy
NASA Astrophysics Data System (ADS)
Langford, B.; Acton, W.; Ammann, C.; Valach, A.; Nemitz, E.
2015-03-01
All eddy-covariance flux measurements are associated with random uncertainties which are a combination of sampling error due to natural variability in turbulence and sensor noise. The former is the principal error for systems where the signal-to-noise ratio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or H2O. Where signal is limited, which is often the case for measurements of other trace gases and aerosols, instrument uncertainties dominate. We are here applying a consistent approach based on auto- and cross-covariance functions to quantifying the total random flux error and the random error due to instrument noise separately. As with previous approaches, the random error quantification assumes that the time-lag between wind and concentration measurement is known. However, if combined with commonly used automated methods that identify the individual time-lag by looking for the maximum in the cross-covariance function of the two entities, analyser noise additionally leads to a systematic bias in the fluxes. Combining datasets from several analysers and using simulations we show that the method of time-lag determination becomes increasingly important as the magnitude of the instrument error approaches that of the sampling error. The flux bias can be particularly significant for disjunct data, whereas using a prescribed time-lag eliminates these effects (provided the time-lag does not fluctuate unduly over time). We also demonstrate that when sampling at higher elevations, where low frequency turbulence dominates and covariance peaks are broader, both the probability and magnitude of bias are magnified. We show that the statistical significance of noisy flux data can be increased (limit of detection can be decreased) by appropriate averaging of individual fluxes, but only if systematic biases are avoided by using a prescribed time-lag. Finally, we make recommendations for the analysis and reporting of data with low signal-to-noise
NASA Astrophysics Data System (ADS)
Langford, B.; Acton, W.; Ammann, C.; Valach, A.; Nemitz, E.
2015-10-01
All eddy-covariance flux measurements are associated with random uncertainties which are a combination of sampling error due to natural variability in turbulence and sensor noise. The former is the principal error for systems where the signal-to-noise ratio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or H2O. Where signal is limited, which is often the case for measurements of other trace gases and aerosols, instrument uncertainties dominate. Here, we are applying a consistent approach based on auto- and cross-covariance functions to quantify the total random flux error and the random error due to instrument noise separately. As with previous approaches, the random error quantification assumes that the time lag between wind and concentration measurement is known. However, if combined with commonly used automated methods that identify the individual time lag by looking for the maximum in the cross-covariance function of the two entities, analyser noise additionally leads to a systematic bias in the fluxes. Combining data sets from several analysers and using simulations, we show that the method of time-lag determination becomes increasingly important as the magnitude of the instrument error approaches that of the sampling error. The flux bias can be particularly significant for disjunct data, whereas using a prescribed time lag eliminates these effects (provided the time lag does not fluctuate unduly over time). We also demonstrate that when sampling at higher elevations, where low frequency turbulence dominates and covariance peaks are broader, both the probability and magnitude of bias are magnified. We show that the statistical significance of noisy flux data can be increased (limit of detection can be decreased) by appropriate averaging of individual fluxes, but only if systematic biases are avoided by using a prescribed time lag. Finally, we make recommendations for the analysis and reporting of data with low signal-to-noise
Beyond Benford's Law: Distinguishing Noise from Chaos
Li, Qinglei; Fu, Zuntao; Yuan, Naiming
2015-01-01
Determinism and randomness are two inherent aspects of all physical processes. Time series from chaotic systems share several features identical with those generated from stochastic processes, which makes them almost undistinguishable. In this paper, a new method based on Benford's law is designed in order to distinguish noise from chaos by only information from the first digit of considered series. By applying this method to discrete data, we confirm that chaotic data indeed can be distinguished from noise data, quantitatively and clearly. PMID:26030809
Landing gear noise attenuation
NASA Technical Reports Server (NTRS)
Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)
2011-01-01
A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.
Structureborne noise in aircraft
NASA Technical Reports Server (NTRS)
Clevenson, S. A.; Metcalf, V. L.
1987-01-01
The amount of noise reaching an aircraft's interior by structureborne paths, when high levels of other noises are present, involves the measurement of transfer functions between vibrating levels on the wing and interior noise. The magnitude of the structureborne noise transfer function is established by exciting the aircraft with an electrodynamic shaker; a second transfer function is measured using the same sensor locations with the aircraft engines operating. Attention is given to the case of a twin-turboprop OV-10A aircraft; the resulting transfer function values at the discrete frequencies corresponding to the propeller blade passage frequency and its first four harmonics are tabulated and illustrated.
Karabasov, S A
2010-08-13
Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.
Generation of indirect combustion noise by compositional inhomogeneities
NASA Astrophysics Data System (ADS)
Magri, Luca; O'Brien, Jeff; Ihme, Matthias
2016-11-01
The generation of indirect combustion noise in nozzles and turbine stages is commonly attributed to temperature inhomogeneities and vorticity fluctuations. Here, compositional inhomogeneities in a multi-component gas mixture are shown to produce indirect noise both theoretically and numerically. The chemical potential function is introduced as an additional acoustic source mechanism. The contribution of the compositional noise is compared to the entropy noise and direct noise by considering subsonic, supersonic and shocked nozzles downstream of the combustor exit. It is shown that the compositional noise is dependent on the local mixture composition and can exceed entropy noise for fuel-lean conditions and supersonic/shocked nozzle flows. This suggests that compositional indirect combustion noise may require consideration with the implementation of advanced combustion concepts in gas turbines, including low-emissions combustors, high-power-density engine cores, or compact burners.
An analytical formulation for phase noise in MEMS oscillators.
Agrawal, Deepak; Seshia, Ashwin
2014-12-01
In recent years, there has been much interest in the design of low-noise MEMS oscillators. This paper presents a new analytical formulation for noise in a MEMS oscillator encompassing essential resonator and amplifier nonlinearities. The analytical expression for oscillator noise is derived by solving a second-order nonlinear stochastic differential equation. This approach is applied to noise modeling of an electrostatically addressed MEMS resonator-based square-wave oscillator in which the resonator and oscillator circuit nonlinearities are integrated into a single modeling framework. By considering the resulting amplitude and phase relations, we derive additional noise terms resulting from resonator nonlinearities. The phase diffusion of an oscillator is studied and the phase diffusion coefficient is proposed as a metric for noise optimization. The proposed nonlinear phase noise model provides analytical insight into the underlying physics and a pathway toward the design optimization for low-noise MEMS oscillators.
A LOW NOISE RF SOURCE FOR RHIC.
HAYES,T.
2004-07-05
The Relativistic Heavy Ion Collider (RHIC) requires a low noise rf source to ensure that beam lifetime during a store is not limited by the rf system. The beam is particularly sensitive to noise from power line harmonics. Additionally, the rf source must be flexible enough to handle the frequency jump required for rebucketing (transferring bunches from the acceleration to the storage rf systems). This paper will describe the design of a Direct Digital Synthesizer (DDS) based system that provides both the noise performance and the flexibility required.
Noise sources in laser radar systems.
Letalick, D; Renhorn, I; Steinvall, O; Shapiro, J H
1989-07-01
To understand the fundamental limit of performance with a given laser radar system, the phase noise of a testbed laser radar has been investigated. Apart from the phase noise in the transmitter laser and the local oscillator laser, additional phase noise was introduced by vibrations caused by fans in power supplies and cooling systems. The stability of the mechanical structure of the platform was also found to be of great importance. Furthermore, a model for the signal variations from diffuse targets has been developed. This model takes into account the stray light, the speckle decorrelation, and Doppler shift due to moving targets.
A White Noise Theory of Infinite Dimensional Calculus
1989-10-01
a general theory; however it is his hope that this attempt would be the very first step towards the study of Gaussian random fields using variational ... calculus . Contents: White noise; Generalized functionals; Rotation group and harmonic analysis; Applications to Physics; Gaussian random fields. Keywords: Statistic processes.
Kepler, Christopher K
2017-04-01
An understanding of randomization is important both for study design and to assist medical professionals in evaluating the medical literature. Simple randomization can be done through a variety of techniques, but carries a risk of unequal distribution of subjects into treatment groups. Block randomization can be used to overcome this limitation by ensuring that small subgroups are distributed evenly between treatment groups. Finally, techniques can be used to evenly distribute subjects between treatment groups while accounting for confounding variables, so as to not skew results when there is a high index of suspicion that a particular variable will influence outcome.
Readily implemented enhanced sinusoid detection in noise
Lindsay, K.V.
1992-03-05
Significant efforts have been devoted, spanning many years, to the problem of sinusoid detection in noise. Many of these efforts have produced superb, yet complex, algorithms which may be difficult to use for a wide segment of the Digital Signal Processing (DSP) community. This paper presents a simple, easily implemented and high effective method which solves this problem. This method severely degrades non-sinusoidal noise while leaving the embedded sinusoid(s) relatively undisturbed. The algorithm, simply put, exploits the difference between the net effect of integration and differentiation of sinusoids versus the effect of these operations on random noise and other signal sequences. The cross-correlation of sine wave with its differentiated (and/or integrated) self is quite high. Conversely, the cross-reduction of a noise sequence with its differentiated (and/or integrated) self is much lower. Therefore, it is reasonable to assume that for sequences consisting of a sinusoid in noise, significant signal-to-noise-ratios (SNRs) in the correlation results are achievable using a combination of differentiation (and/or integration) and cross-correlation operations on such sequences. This technique has been applied to actual Doppler radar data, as well as to synthesized data, with excellent improvement in signal detection capability. 4 refs.
Noise levels associated with urban land use.
King, Gavin; Roland-Mieszkowski, Marek; Jason, Timothy; Rainham, Daniel G
2012-12-01
Recent trends towards the intensification of urban development to increase urban densities and avoid sprawl should be accompanied by research into the potential for related health impacts from environmental exposure. The objective of the current study was to examine the effect of the built environment and land use on levels of environmental noise. Two different study areas were selected using a combination of small area census geography, land use information, air photography, and ground-truthing. The first study area represented residential land use and consisted of two- to three-story single-family homes. The second study area was characteristic of mixed-use urban planning with apartment buildings as well as commercial and institutional development. Study areas were subdivided into six grids, and a location was randomly selected within each grid for noise monitoring. Each location was sampled four times over a 24-h day, resulting in a total of 24 samples for each of the two areas. Results showed significant variability in noise within study areas and significantly higher levels of environmental noise in the mixed-use area. Both study areas exceeded recommended noise limits when evaluated against World Health Organization guidelines and yielded average noise events values in the moderate to serious annoyance range with the potential to obscure normal conversation and cause sleep disturbance.
Study on edge extracting in noise image
NASA Astrophysics Data System (ADS)
Feng, Gui; Lin, Qiwei; Fu, QingQing
2008-03-01
In order to reduce the influence of noise on edge extracting and improve the precision of edge localization on the image, after analyzed the principle, strong points and short points of some traditional edge detecting methods, an effective algorithm for edge extracting in noise image was proposed in this paper. Adopting thought of traditional multi-directional and multistage combinational filtering, an image detail-preserving adaptive filter is designed to remove noise, and then extract the edge in the image. On the basis of the classical Sobel operator, we introduced an algorithm with resisting noise, good real-time and locating accurate edge. The algorithm can distinguish real edge from noise in terms of the theory of successive and smooth edge and random noise. The algorithm was accomplished under visual C++ 6.0 environment and tested by several standard images. The experimental result prove that the presented method is feasible and effective when the salt-pepper pollution of image is smaller than 15%, furthermore the method can extract edges with high location precision and good continuity accurately and effectively, at the same time, it has high processing speed.
Nakamura, Kazuhiko; Ihara, Eikichi; Akiho, Hirotada; Akahoshi, Kazuya; Harada, Naohiko; Ochiai, Toshiaki; Nakamura, Norimoto; Ogino, Haruei; Iwasa, Tsutomu; Aso, Akira; Iboshi, Yoichiro; Takayanagi, Ryoichi
2016-01-01
Background/Aims The ability of endoscopic submucosal dissection (ESD) to resect large early gastric cancers (EGCs) results in the need to treat large artificial gastric ulcers. This study assessed whether the combination therapy of rebamipide plus a proton pump inhibitor (PPI) offered benefits over PPI monotherapy. Methods In this prospective, randomized, multicenter, open-label, and comparative study, patients who had undergone ESD for EGC or gastric adenoma were randomized into groups receiving either rabeprazole monotherapy (10 mg/day, n=64) or a combination of rabeprazole plus rebamipide (300 mg/day, n=66). The Scar stage (S stage) ratio after treatment was compared, and factors independently associated with ulcer healing were identified by using multivariate analyses. Results The S stage rates at 4 and 8 weeks were similar in the two groups, even in the subgroups of patients with large amounts of tissue resected and regardless of CYP2C19 genotype. Independent factors for ulcer healing were circumferential location of the tumor and resected tissue size; the type of treatment did not affect ulcer healing. Conclusions Combination therapy with rebamipide and PPI had limited benefits compared with PPI monotherapy in the treatment of post-ESD gastric ulcer (UMIN Clinical Trials Registry, UMIN000007435). PMID:27282261
Assessment of Traffic Noise on Highway Passing from Urban Agglomeration
NASA Astrophysics Data System (ADS)
Vijay, Ritesh; Kori, Chandan; Kumar, Manoj; Chakrabarti, T.; Gupta, Rajesh
2014-09-01
Assessment of traffic noise pollution in developing countries is complex due to heterogeneity in traffic conditions like traffic volume, road width, honking, etc. To analyze the impact of such variables, a research study was carried out on a national highway passing from an urban agglomeration. Traffic volume and noise levels (L10, Lmin, Lmax, Leq and L90) were measured during morning and evening peak hours. Contribution of noise by individual vehicle was estimated using passenger car noise unit. Extent of noise pollution and impact of noisy vehicles were estimated using noise pollution level and traffic noise index, respectively. Noise levels were observed to be above the prescribed Indian and International standards. As per audio spectrum analysis of traffic noise, honking contributed an additional 3-4 dB(A) noise. Based on data analysis, a positive relationship was observed between noise levels and honking while negative correlation was observed between noise levels and road width. The study suggests that proper monitoring and analysis of traffic data is required for better planning of noise abatement measures.
Sounds and Noises. A Position Paper on Noise Pollution.
ERIC Educational Resources Information Center
Chapman, Thomas L.
This position paper focuses on noise pollution and the problems and solutions associated with this form of pollution. The paper is divided into the following five sections: Noise and the Ear, Noise Measurement, III Effects of Noise, Acoustics and Action, and Programs and Activities. The first section identifies noise and sound, the beginnings of…
Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction
NASA Astrophysics Data System (ADS)
Ma, Xiongfeng; Xu, Feihu; Xu, He; Tan, Xiaoqing; Qi, Bing; Lo, Hoi-Kwong
2013-06-01
Quantum random-number generators (QRNGs) can offer a means to generate information-theoretically provable random numbers, in principle. In practice, unfortunately, the quantum randomness is inevitably mixed with classical randomness due to classical noises. To distill this quantum randomness, one needs to quantify the randomness of the source and apply a randomness extractor. Here, we propose a generic framework for evaluating quantum randomness of real-life QRNGs by min-entropy, and apply it to two different existing quantum random-number systems in the literature. Moreover, we provide a guideline of QRNG data postprocessing for which we implement two information-theoretically provable randomness extractors: Toeplitz-hashing extractor and Trevisan's extractor.
Mankin, Romi; Rekker, Astrid
2016-12-01
The output interspike interval statistics of a stochastic perfect integrate-and-fire neuron model driven by an additive exogenous periodic stimulus is considered. The effect of temporally correlated random activity of synaptic inputs is modeled by an additive symmetric dichotomous noise. Using a first-passage-time formulation, exact expressions for the output interspike interval density and for the serial correlation coefficient are derived in the nonsteady regime, and their dependence on input parameters (e.g., the noise correlation time and amplitude as well as the frequency of an input current) is analyzed. It is shown that an interplay of a periodic forcing and colored noise can cause a variety of nonequilibrium cooperation effects, such as sign reversals of the interspike interval correlations versus noise-switching rate as well as versus the frequency of periodic forcing, a power-law-like decay of oscillations of the serial correlation coefficients in the long-lag limit, amplification of the output signal modulation in the instantaneous firing rate of the neural response, etc. The features of spike statistics in the limits of slow and fast noises are also discussed.
Response to a periodic stimulus in a perfect integrate-and-fire neuron model driven by colored noise
NASA Astrophysics Data System (ADS)
Mankin, Romi; Rekker, Astrid
2016-12-01
The output interspike interval statistics of a stochastic perfect integrate-and-fire neuron model driven by an additive exogenous periodic stimulus is considered. The effect of temporally correlated random activity of synaptic inputs is modeled by an additive symmetric dichotomous noise. Using a first-passage-time formulation, exact expressions for the output interspike interval density and for the serial correlation coefficient are derived in the nonsteady regime, and their dependence on input parameters (e.g., the noise correlation time and amplitude as well as the frequency of an input current) is analyzed. It is shown that an interplay of a periodic forcing and colored noise can cause a variety of nonequilibrium cooperation effects, such as sign reversals of the interspike interval correlations versus noise-switching rate as well as versus the frequency of periodic forcing, a power-law-like decay of oscillations of the serial correlation coefficients in the long-lag limit, amplification of the output signal modulation in the instantaneous firing rate of the neural response, etc. The features of spike statistics in the limits of slow and fast noises are also discussed.
NASA Astrophysics Data System (ADS)
ajansen; kwhitefoot; panteltje1; edprochak; sudhakar, the
2014-07-01
In reply to the physicsworld.com news story “How to make a quantum random-number generator from a mobile phone” (16 May, http://ow.ly/xFiYc, see also p5), which describes a way of delivering random numbers by counting the number of photons that impinge on each of the individual pixels in the camera of a Nokia N9 smartphone.
NASA Astrophysics Data System (ADS)
Liu, Chengyin; Xu, Chunchuan; Teng, Jun
2016-09-01
The Random Decrement Technique (RDT), based on decentralized computing approaches implemented in wireless sensor networks (WSNs), has shown advantages for modal parameter and data aggregation identification. However, previous studies of RDT-based approaches from ambient vibration data are based on the assumption of a broad-band stochastic process input excitation. The process normally is modeled by filtered white or white noise. In addition, the choice of the triggering condition in RDT is closely related to data communication. In this project, research has been conducted to study the nonstationary white noise excitations as the input to verify the random decrement technique. A local extremum triggering condition is chosen and implemented for the purpose of minimum data communication in a RDT-based distributed computing strategy. Numerical simulation results show that the proposed technique is capable of minimizing the amount of data transmitted over the network with accuracy in modal parameters identification.
Preliminary noise survey and data report of Saudi Arabian data
Mellors, R.
1997-08-01
From November 1995 to March 1996 a total of 9 broadband temporary stations were deployed across Saudi Arabian shield. These stations consisted of STS-2 seismometers recorded continuously at 40 sps on RefTek dataloggers. All installations were at bedrock sites. Using data sections selected randomly during the deployment, noise studies showed that most stations were exceptionally quiet with noise level near the USGS low noise model for frequencies higher than 0.1 Hz. At lower frequencies, the horizontal components showed increased noise levels, possibly due to instrumental characteristics. High-frequency (greater than 1 Hz) noise varied as much as 10 db between day and night for some stations (RAYN, TAIF) while more isolated stations (HALM) were constant. Seasonal noise levels also varied, with April to June being the quietest months. Slight changes in peak microseism frequency also occurred seasonally.
Chaotic analysis of electrochemical noise measured on stainless steel
Legat, A.; Dolecek, V.
1995-06-01
Corrosion reactions spontaneously generate fluctuations of the corrosion potential and corrosion current, known as electrochemical noise. In certain cases good correlation between electrochemical noise and corrosion rates and types can be achieved by means of spectral analysis. However, due to the chaotic nature of corrosion processes, a special kind of mathematical treatment may be needed. In this paper, the correlation dimension and the maximum Lyapunov exponent of electrochemical noise measured on stainless steel have been examined in order to characterize the mechanism of this noise. The relationship between the different types of corrosion and the chaotic characteristics of electrochemical noise have been also established. It has been shown that the general corrosion rate has no influence on the fractal dimensions of the noise. It is concluded that localized corrosion is generated by a deterministic chaotic process, whereas uniform corrosion is a random process.
ERIC Educational Resources Information Center
Crumpton, Michael A.
2005-01-01
Noise in a community college library can be part of the nature of the environment. It can also become a huge distraction for those who see the library as their sanctuary for quiet study and review of resources. This article describes the steps that should be taken by library staff in order to be proactive about noise and the library environment,…
Speech communications in noise
NASA Technical Reports Server (NTRS)
1984-01-01
The physical characteristics of speech, the methods of speech masking measurement, and the effects of noise on speech communication are investigated. Topics include the speech signal and intelligibility, the effects of noise on intelligibility, the articulation index, and various devices for evaluating speech systems.
Speech communications in noise
NASA Astrophysics Data System (ADS)
1984-07-01
The physical characteristics of speech, the methods of speech masking measurement, and the effects of noise on speech communication are investigated. Topics include the speech signal and intelligibility, the effects of noise on intelligibility, the articulation index, and various devices for evaluating speech systems.
Noise Pollution, Teachers' Edition.
ERIC Educational Resources Information Center
O'Donnell, Patrick A.; Lavaroni, Charles W.
One of three in a series about pollution, this teacher's guide for a unit on noise pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of noise pollution and involves students in processes of…
NASA Technical Reports Server (NTRS)
Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.
1991-01-01
The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.