Sample records for additives gasoline benzene

  1. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  2. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  3. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  4. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  5. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  6. Is benzene exposure from gasoline carcinogenic?

    PubMed

    Jamall, Ijaz S; Willhite, Calvin C

    2008-02-01

    This article questions the basis for benzene as the carcinogenic surrogate in deriving health risk-based 'clean-up levels' for gasoline-impacted soil and groundwater at leaking underground storage tank properties. The epidemiological evidence suggests that acute myelogenous leukemia (AML) associated with chronic occupational benzene exposure can be best described by sigmoid dose-response relationships. A review of the molecular toxicology and kinetics of benzene points to the existence of threshold mechanisms in the induction of leukemia. The toxicological and epidemiological literature on chronic exposure to unleaded gasoline indicates that the benzene exposures required to induce a measurable carcinogenic response are substantially greater than exposures likely to be encountered from exposure to gasoline at contaminated properties. Thus, assuming that theoretical cancer risks associated with exposure to benzene from gasoline reflect actual health risks associated with such environmental exposures to gasoline and using these theoretical cancer risks and cancer potency factors for benzene to dictate soil and groundwater clean up of gasoline are not scientifically defensible.

  7. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  8. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  9. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  10. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  11. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  12. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  13. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  14. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  15. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  16. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  17. 40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...

  18. 40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...

  19. 40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...

  20. 40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...

  1. 40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...

  2. 40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...

  3. 40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...

  4. 40 CFR 80.1356 - What are the attest engagement requirements for gasoline benzene compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for gasoline benzene compliance? 80.1356 Section 80.1356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Attest Engagements § 80.1356 What are the attest engagement requirements for gasoline benzene...

  5. 40 CFR 80.1356 - What are the attest engagement requirements for gasoline benzene compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for gasoline benzene compliance? 80.1356 Section 80.1356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Attest Engagements § 80.1356 What are the attest engagement requirements for gasoline benzene...

  6. 40 CFR 80.1356 - What are the attest engagement requirements for gasoline benzene compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for gasoline benzene compliance? 80.1356 Section 80.1356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Attest Engagements § 80.1356 What are the attest engagement requirements for gasoline benzene...

  7. 40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...

  8. 40 CFR 80.1356 - What are the attest engagement requirements for gasoline benzene compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for gasoline benzene compliance? 80.1356 Section 80.1356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Attest Engagements § 80.1356 What are the attest engagement requirements for gasoline benzene...

  9. 40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...

  10. 40 CFR 80.1356 - What are the attest engagement requirements for gasoline benzene compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for gasoline benzene compliance? 80.1356 Section 80.1356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Attest Engagements § 80.1356 What are the attest engagement requirements for gasoline benzene...

  11. 40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...

  12. 40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...

  13. 40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...

  14. 40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...

  15. 40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...

  16. 40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...

  17. 40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...

  18. 40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...

  19. 40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...

  20. 40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...

  1. 40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...

  2. 40 CFR 80.1235 - What gasoline is subject to the benzene requirements of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What gasoline is subject to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1235 What gasoline is subject to the benzene requirements of...

  3. Mobil-Badger technologies for benzene reduction in gasoline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goelzer, A.R.; Ram, S.; Hernandez, A.

    1993-01-01

    Many refiners will need to reduce the barrels per day of benzene entering the motor gasoline pool. Mobil and Badger have developed and now jointly license three potential refinery alternatives to conventional benzene hydrosaturation to achieve this: Mobil Benzene Reduction, Ethylbenzene and Cumene. The Mobil Benzene Reduction Process (MBR) uses dilute olefins in FCC offgas to extensively alkylate dilute benzene as found in light reformate, light FCC gasoline, or cyclic C[sub 6] naphtha. MBR raises octanes and lowers C[sub 5]+ olefins. MBR does not involve costly hydrogen addition. The refinery-based Mobil/Badger Ethylbenzene Process reacts chemical-grade benzene extracted from light reformatemore » with dilute ethylene found in treated FCC offgas to make high-purity ethylbenzene. EB is the principal feedstock for the production of styrene. The Mobil/Badger Cumene Process alkylates FCC-derived dilute propylene and extracted benzene to selectively yield isopropyl benzene (cumene). Cumene is the principal feedstock for the production of phenol. All three processes use Mobil developed catalysts.« less

  4. Refiners have several options for reducing gasoline benzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goelzer, A.R.; Hernandez-Robinson, A.; Ram, S.

    1993-09-13

    Although the linkage between gasoline benzene content and evaporative, running, and tailpipe emission is not yet defined, the U.S. 1990 Clean Air Act Amendments mandate a benzene content of less than 1.0 vol% in reformulated gasolines. Likewise, the California Air Resources Board plans to restrict benzene to less than about 0.8 vol %. Mobil Research and Development Corp. and Badger Co. Inc. have developed several alternatives for reducing benzene levels in gasoline. Where benzene extraction is viable and maximum catalytic reformer hydrogen is needed, the companies' cumene and ethylbenzene processes are desirable. Mobil's benzene reduction process can be an alternativemore » to benzene hydrosaturation. All of these processes utilize low-value offgas from the fluid catalytic cracking (FCC) unit.« less

  5. 40 CFR 80.1240 - How is a refinery's or importer's compliance with the gasoline benzene requirements of this...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliance with the gasoline benzene requirements of this subpart determined? 80.1240 Section 80.1240... FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1240 How is a refinery's or importer's compliance with the gasoline benzene requirements of this subpart determined? (a) A refinery's...

  6. 40 CFR 80.1240 - How is a refinery's or importer's compliance with the gasoline benzene requirements of this...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance with the gasoline benzene requirements of this subpart determined? 80.1240 Section 80.1240... FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1240 How is a refinery's or importer's compliance with the gasoline benzene requirements of this subpart determined? (a) A refinery's...

  7. 40 CFR 80.1240 - How is a refinery's or importer's compliance with the gasoline benzene requirements of this...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance with the gasoline benzene requirements of this subpart determined? 80.1240 Section 80.1240... FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1240 How is a refinery's or importer's compliance with the gasoline benzene requirements of this subpart determined? (a) A refinery's...

  8. 40 CFR 80.1240 - How is a refinery's or importer's compliance with the gasoline benzene requirements of this...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compliance with the gasoline benzene requirements of this subpart determined? 80.1240 Section 80.1240... FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1240 How is a refinery's or importer's compliance with the gasoline benzene requirements of this subpart determined? (a) A refinery's...

  9. 40 CFR 80.1240 - How is a refinery's or importer's compliance with the gasoline benzene requirements of this...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance with the gasoline benzene requirements of this subpart determined? 80.1240 Section 80.1240... FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1240 How is a refinery's or importer's compliance with the gasoline benzene requirements of this subpart determined? (a) A refinery's...

  10. 40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...

  11. 40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...

  12. 40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...

  13. 40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...

  14. 40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...

  15. 40 CFR 80.1352 - What are the pre-compliance reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for the gasoline benzene program? 80.1352 Section 80.1352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... requirements for the gasoline benzene program? (a) Except as provided in paragraph (c) of this section, a...

  16. 40 CFR 80.1352 - What are the pre-compliance reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for the gasoline benzene program? 80.1352 Section 80.1352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... requirements for the gasoline benzene program? (a) Except as provided in paragraph (c) of this section, a...

  17. 40 CFR 80.1334 - What are the requirements for early compliance with the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compliance with the gasoline benzene program? 80.1334 Section 80.1334 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship Provisions § 80.1334 What are the requirements for early compliance with the gasoline...

  18. 40 CFR 80.1352 - What are the pre-compliance reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for the gasoline benzene program? 80.1352 Section 80.1352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... requirements for the gasoline benzene program? (a) Except as provided in paragraph (c) of this section, a...

  19. 40 CFR 80.1352 - What are the pre-compliance reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for the gasoline benzene program? 80.1352 Section 80.1352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... requirements for the gasoline benzene program? (a) Except as provided in paragraph (c) of this section, a...

  20. 40 CFR 80.1334 - What are the requirements for early compliance with the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance with the gasoline benzene program? 80.1334 Section 80.1334 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship Provisions § 80.1334 What are the requirements for early compliance with the gasoline...

  1. 40 CFR 80.1334 - What are the requirements for early compliance with the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance with the gasoline benzene program? 80.1334 Section 80.1334 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship Provisions § 80.1334 What are the requirements for early compliance with the gasoline...

  2. 40 CFR 80.1334 - What are the requirements for early compliance with the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliance with the gasoline benzene program? 80.1334 Section 80.1334 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship Provisions § 80.1334 What are the requirements for early compliance with the gasoline...

  3. 40 CFR 80.1334 - What are the requirements for early compliance with the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance with the gasoline benzene program? 80.1334 Section 80.1334 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship Provisions § 80.1334 What are the requirements for early compliance with the gasoline...

  4. Genotoxic effects of occupational exposure to benzene in gasoline station workers

    PubMed Central

    SALEM, Eman; EL-GARAWANI, Islam; ALLAM, Heba; EL-AAL, Bahiga Abd; HEGAZY, Mofrih

    2017-01-01

    Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability. PMID:29070767

  5. Genotoxic effects of occupational exposure to benzene in gasoline station workers.

    PubMed

    Salem, Eman; El-Garawani, Islam; Allam, Heba; El-Aal, Bahiga Abd; Hegazy, Mofrih

    2018-04-07

    Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability.

  6. 40 CFR 80.1338 - What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... as a small refiner for the gasoline benzene requirements of this subpart? 80.1338 Section 80.1338... FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner Provisions § 80.1338 What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of this subpart? (a) A small...

  7. 40 CFR 80.1338 - What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as a small refiner for the gasoline benzene requirements of this subpart? 80.1338 Section 80.1338... FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner Provisions § 80.1338 What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of this subpart? (a) A small...

  8. 40 CFR 80.1338 - What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... as a small refiner for the gasoline benzene requirements of this subpart? 80.1338 Section 80.1338... FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner Provisions § 80.1338 What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of this subpart? (a) A small...

  9. 40 CFR 80.1338 - What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... as a small refiner for the gasoline benzene requirements of this subpart? 80.1338 Section 80.1338... FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner Provisions § 80.1338 What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of this subpart? (a) A small...

  10. 40 CFR 80.1338 - What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as a small refiner for the gasoline benzene requirements of this subpart? 80.1338 Section 80.1338... FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner Provisions § 80.1338 What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of this subpart? (a) A small...

  11. Benzene Exposures and Risk Potential for Vehicle Mechanics from Gasoline and Petroleum-Derived Products.

    PubMed

    Williams, Pamela R D; Mani, Ashutosh

    2015-01-01

    Benzene exposures among vehicle mechanics in the United States and abroad were characterized using available data from published and unpublished studies. In the United States, the time-weighted-average (TWA) airborne concentration of benzene for vehicle mechanics averaged 0.01-0.05 ppm since at least the late 1970s, with maximal TWA concentrations ranging from 0.03 to 0.38 ppm. Benzene exposures were notably lower in the summer than winter and in the Southwest compared to other geographic regions, but significantly higher during known gasoline-related tasks such as draining a gas tank or changing a fuel pump or fuel filter. Measured airborne concentrations of benzene were also generally greater for vehicle mechanics in other countries, likely due to the higher benzene content of gasoline and other factors. Short-term airborne concentrations of benzene frequently exceeded 1 ppm during gasoline-related tasks, but remained below 0.2 ppm for tasks involving other petroleum-derived products such as carburetor and brake cleaner or parts washer solvent. Application of a two-zone mathematical model using reasonable input values from the literature yielded predicted task-based benzene concentrations during gasoline and aerosol spray cleaner scenarios similar to those measured for vehicle mechanics during these types of tasks. When evaluated using appropriate biomarkers, dermal exposures were found to contribute little to total benzene exposures for this occupational group. Available data suggest that vehicle mechanics have not experienced significant exposures to benzene in the workplace, except perhaps during short-duration gasoline-related tasks, and full-shift benzene exposures have remained well below current and contemporaneous occupational exposure limits. These findings are consistent with epidemiology studies of vehicle mechanics, which have not demonstrated an increased risk of benzene-induced health effects in this cohort of workers. Data and information presented

  12. Biomonitoring of gasoline station attendants exposed to benzene: Effect of gender.

    PubMed

    Moro, Angela M; Brucker, Natália; Charão, Mariele F; Baierle, Marília; Sauer, Elisa; Goethel, Gabriela; Barth, Anelise; Nascimento, Sabrina N; Gauer, Bruna; Durgante, Juliano; Amaral, Beatriz S; Neto, Francisco R A; Gioda, Adriana; Garcia, Solange C

    2017-01-01

    Women are employed in increasing numbers as gasoline station attendants, a work category with risk of exposure to benzene. We have assessed the effect of gender on biomarkers of occupational benzene exposure. Gasoline station attendants (20 men and 20 women) and 40 control individuals (20 men and 20 women) with no history of occupational benzene exposure were evaluated. Benzene exposure was monitoring by environmental and biological measurements. Urinary trans,trans-muconic acid levels, well-known genetic and hematological alterations linked to benzene exposure, and non-cancer effects on the immune, hepatic, and renal systems were investigated. Our results suggest a potential effect of gender on some effects of occupational benzene exposure, particularly the hematological parameters and trans,trans-muconic acid levels. Despite limitations of our study, our findings provide important considerations about occupational exposure of women to benzene and may contribute to the development of occupational protection standards. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Acute toxicity of gasoline and some additives.

    PubMed Central

    Reese, E; Kimbrough, R D

    1993-01-01

    The acute toxicity of gasoline; its components benzene, toluene, and xylene; and the additives ethanol, methanol, and methyl tertiary butyl ether are reviewed. All of these chemicals are only moderately to mildly toxic at acute doses. Because of their volatility, these compounds are not extensively absorbed dermally unless the exposed skin is occluded. Absorption through the lungs and the gastrointestinal tract is quite efficient. After ingestion, the principal danger for a number of these chemicals, particularly gasoline, is aspiration pneumonia, which occurs mainly in children. It is currently not clear whether aspiration pneumonia would still be a problem if gasoline were diluted with ethanol or methanol. During the normal use of gasoline or mixtures of gasoline and the other solvents as a fuel, exposures would be much lower than the doses that have resulted in poisoning. No acute toxic health effects would occur during the normal course of using automotive fuels. PMID:8020435

  14. GASOLINE-CONTAMINATED GROUND WATER AS A SOURCE OF RESIDENTIAL BENZENE EXPOSURE: A CASE STUDY

    EPA Science Inventory

    In a private residence using gasoline-contaminated water (approximately 300 ug/l benzene), a series of experiments were performed to assess the potential benzene exposures that may occur in the shower stall, bathroom, master bedroom, and living room as a result of a single 20-min...

  15. Too easily lead? Health effects of gasoline additives.

    PubMed Central

    Menkes, D B; Fawcett, J P

    1997-01-01

    Octane-enhancing constituents of gasoline pose a number of health hazards. This paper considers the relative risks of metallic (lead, manganese), aromatic (e.g., benzene), and oxygenated additives in both industrialized and developing countries. Technological advances, particularly in industrialized countries, have allowed the progressive removal of lead from gasoline and the increased control of exhaust emissions. The developing world, by contrast, has relatively lax environmental standards and faces serious public health problems from vehicle exhaust and the rapid increase in automobile use. Financial obstacles to the modernization of refineries and vehicle fleets compound this problem and the developing world continues to import large quantities of lead additives and other hazardous materials. Progress in decreasing environmental health problems depends both on the adoption of international public health standards as well as efforts to decrease dependence on the private automobile for urban transport. Images Figure 1. Figure 2. PMID:9171982

  16. 40 CFR 80.1236 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline? 80.1236 Section 80.1236 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1236 What requirements apply to California gasoline? (a) Definition. For purposes of this subpart...

  17. 40 CFR 80.1236 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline? 80.1236 Section 80.1236 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1236 What requirements apply to California gasoline? (a) Definition. For purposes of this subpart...

  18. 40 CFR 80.1236 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline? 80.1236 Section 80.1236 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1236 What requirements apply to California gasoline? (a) Definition. For purposes of this subpart...

  19. 40 CFR 80.1236 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline? 80.1236 Section 80.1236 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1236 What requirements apply to California gasoline? (a) Definition. For purposes of this subpart...

  20. 40 CFR 80.1236 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline? 80.1236 Section 80.1236 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1236 What requirements apply to California gasoline? (a) Definition. For purposes of this subpart...

  1. Coast Guard exposure to gasoline, MTBE, and benzene vapors during inspection of tank barges.

    PubMed

    Davenport, A C; Glynn, T J; Rhambarose, H

    2000-01-01

    A field study was conducted June through August 1996 in an attempt to quantify short-term exposure levels to Coast Guard personnel performing routine inspection activities aboard commercial tank barges carrying gasoline. Transfer and fleeting operations were monitored in the ports of Pittsburgh, Pa., Huntington, W.Va., Baton Rouge, La., and Galveston, Tex. A total of 43 personal and 68 area samples were analyzed for benzene and total hydrocarbons as gasoline ("gasoline"). Results can be summarized as follows: Personal exposure to benzene gave 15-min time-weighted-average (TWA) results ranging from <0.10 to 0.50 ppm. Area benzene levels ranged from <0.04 to 170 ppm. Personal monitoring for gasoline revealed a range of <2.0 to 590 mg/m3 with a GM of 23 mg/m3. Area sample results for gasoline ranged from 1.7 to 90,000 mg/m3. Twelve personal samples were collected for methyl-tert butyl ether (MTBE). Only two of these were above the limit of detection and had 15-min time-weighted averages of 22 ppm and 1.3 ppm. Eighteen MTBE area samples ranged in value from <3.0 to 38 ppm. Although none of the personal samples met or exceeded proposed or established short-term exposure standards, many of the area sampling results indicated that a significant risk of acute exposure exists in the vicinity of valves, pressure lines, and connections. This includes anticipated sources such as pressure vent valves as well as unexpected sources resulting from structural deficiencies onboard the vessels. These results further emphasize the value of safe work practices and proper vessel maintenance in controlling exposure to harmful chemicals.

  2. 40 CFR 80.1352 - What are the pre-compliance reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Benzene concentration. An estimate of the average gasoline benzene concentration corresponding to the time... engineering and permitting, Procurement and Construction, and Commissioning and startup. (7) Basic information regarding the selected technology pathway for compliance (e.g., precursor re-routing or other technologies...

  3. Comparative effects of MTBE and ethanol additions into gasoline on exhaust emissions

    NASA Astrophysics Data System (ADS)

    Song, Chong-Lin; Zhang, Wen-Mei; Pei, Yi-Qiang; Fan, Guo-Liang; Xu, Guan-Peng

    The effects of the additives of ethanol (EA) and methyl tert-butyl ether (MTBE) in various blend ratios into the gasoline fuel on the exhaust emissions and the catalytic conversion efficiencies were investigated in an EFI gasoline engine. The regulated exhaust emissions (CO, THC and NO X) and the unregulated exhaust emissions (benzene, formaldehyde, acetaldehyde, unburned EA and MTBE) before and after the three-way catalytic converter were measured. The experimental results showed that EA brought about generally lower regulated engine-out emissions than MTBE did. But, the comparison of the unregulated engine-out emissions between both additives was different. Concretely, the effect of EA on benzene emission was worse than that of MTBE on the whole, which was a contrast with formaldehyde emission. The difference in the acetaldehyde comparison depended much on the engine operating conditions, especially the engine speed. Both EA and MTBE were identified in the engine exhaust gases only when they were added to the fuel, and their volume fraction increased with blend ratios. The catalytic conversion efficiencies of the regulated emissions for the EA blends were in general lower than those for MTBE blends, especially at the low and high engine speeds. There was little difference in the catalytic conversion efficiencies for both benzene and formaldehyde, while distinct difference for acetaldehyde.

  4. Evaporative Gasoline Emissions and Asthma Symptoms

    PubMed Central

    Gordian, Mary Ellen; Stewart, Alistair W; Morris, Stephen S

    2010-01-01

    Attached garages are known to be associated with indoor air volatile organic compounds (VOCs). This study looked at indoor exposure to VOCs presumably from evaporative emissions of gasoline. Alaskan gasoline contains 5% benzene making benzene a marker for gasoline exposure. A survey of randomly chosen houses with attached garages was done in Anchorage Alaska to determine the exposure and assess respiratory health. Householders were asked to complete a health survey for each person and a household survey. They monitored indoor air in their primary living space for benzene, toluene, ethylbenzene and xylenes for one week using passive organic vapor monitoring badges. Benzene levels in homes ranged from undetectable to 58 parts per billion. The median benzene level in 509 homes tested was 2.96 ppb. Elevated benzene levels in the home were strongly associated with small engines and gasoline stored in the garage. High concentrations of benzene in gasoline increase indoor air levels of benzene in residences with attached garages exposing people to benzene at levels above ATSDR’s minimal risk level. Residents reported more severe symptoms of asthma in the homes with high gasoline exposure (16%) where benzene levels exceeded the 9 ppb. PMID:20948946

  5. Fate of MTBE relative to benzene in a gasoline-contaminated aquifer (1993-98):

    USGS Publications Warehouse

    Landmeyer, James E.; Chapelle, Francis H.; Bradley, Paul M.; Pankow, James F.; Church, Clinton D.; Tratnyek, Paul G.

    1998-01-01

    Methyl tert-butyl ether (MTBE) and benzene have been measured since 1993 in a shallow, sandy aquifer contaminated by a mid-1980s release of gasoline containing fuel oxygenates. In wells downgradient of the release area, MTBK was detected before benzene, reflecting a chromatographic-like separation of these compounds in the direction of ground water flow. Higher concentrations of MTBE and benzene were measured in the deeper sampling ports of multilevel sampling wells located near the release area, and also up to 10 feet (3 m) below the water table surface in nested wells located farther from the release area. This distribution of higher concentrations at depth is caused by recharge events that deflect originally horizontal ground water flowlines. In the laboratory, microcosms containing aquifer material incubated with uniformly labeled 14C-MTBE under aerobic and anaerobic. Fe(III)-reducing conditions indicated a low but measurable biodegradation potential (<3%14C-MTBW as 14CO2) after a seven-month incubation period, Tert-butyl alcohol (TBA), a proposed microbial-MTBE transformation intermediate, was detected in MTBE-contaminated wells, but TBA was also measured in unsaturated release area sediments. This suggests that TBA may have been present in the original fuel spilled and does not necessarily reflect microbial degradation of MTBE. Combined, these data suggest that milligram per liter to microgram per liter decreases in MTBE concentrations relative to benzene are caused by the natural attenuation processes of dilution and dispersion with less-contaminated ground water in the direction of flow rather than biodegradation at this point source gasoline release site.

  6. Gasoline Composition Regulations Affecting LUST Sites

    EPA Science Inventory

    Passage of the Clean Air Act Amendments in 1990 imposed requirements on gasoline composition in the United States. Impacts to ground water are affected by the provisions that required oxygenated additives and limited benzene concentration. Reformulated and oxygenated gasoline w...

  7. Early hematological and immunological alterations in gasoline station attendants exposed to benzene.

    PubMed

    Moro, Angela M; Brucker, Natália; Charão, Mariele F; Sauer, Elisa; Freitas, Fernando; Durgante, Juliano; Bubols, Guilherme; Campanharo, Sarah; Linden, Rafael; Souza, Ana P; Bonorino, Cristina; Moresco, Rafael; Pilger, Diogo; Gioda, Adriana; Farsky, Sandra; Duschl, Albert; Garcia, Solange C

    2015-02-01

    Elucidation of effective biomarkers may provide tools for the early detection of biological alterations caused by benzene exposure and may contribute to the reduction of occupational diseases. This study aimed to assess early alterations on hematological and immunological systems of workers exposed to benzene. Sixty gasoline station attendants (GSA group) and 28 control subjects were evaluated. Environmental and biological monitoring of benzene exposure was performed in blood and urine. The potential effect biomarkers evaluated were δ-aminolevulinate dehydratase (ALA-D) activity, CD80 and CD86 expression in lymphocytes and monocytes, and serum interleukin-8 (IL-8). The influence of confounding factors and toluene co-exposure were considered. Although exposures were below ACGIH (American Conference of Governmental Industrial Hygienists) limits, reduced ALA-D activity, decreased CD80 and CD86 expression in monocytes and increased IL-8 levels were found in the GSA group compared to the control subjects. Furthermore, according to multiple linear regression analysis, benzene exposure was associated to a decrease in CD80 and CD86 expression in monocytes. These findings suggest, for the first time, a potential effect of benzene exposure on ALA-D activity, CD80 and CD86 expression, IL-8 levels, which could be suggested as potential markers for the early detection of benzene-induced alterations. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  9. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  10. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  11. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  12. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  13. Ultrafast gas chromatography method with direct injection for the quantitative determination of benzene, toluene, ethylbenzene, and xylenes in commercial gasoline.

    PubMed

    Miranda, Nahieh Toscano; Sequinel, Rodrigo; Hatanaka, Rafael Rodrigues; de Oliveira, José Eduardo; Flumignan, Danilo Luiz

    2017-04-01

    Benzene, toluene, ethylbenzene, and xylenes are some of the most hazardous constituents found in commercial gasoline samples; therefore, these components must be monitored to avoid toxicological problems. We propose a new routine method of ultrafast gas chromatography coupled to flame ionization detection for the direct determination of benzene, toluene, ethylbenzene, and xylenes in commercial gasoline. This method is based on external standard calibration to quantify each compound, including the validation step of the study of linearity, detection and quantification limits, precision, and accuracy. The time of analysis was less than 3.2 min, with quantitative statements regarding the separation and quantification of all compounds in commercial gasoline samples. Ultrafast gas chromatography is a promising alternative method to official analytical techniques. Government laboratories could consider using this method for quality control. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  15. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  16. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  17. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  18. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  19. A quantitative method for estimating dermal benzene absorption from benzene-containing hydrocarbon liquids.

    PubMed

    Petty, Stephen E; Nicas, Mark; Boiarski, Anthony A

    2011-01-01

    This study examines a method for estimating the dermal absorption of benzene contained in hydrocarbon liquids that contact the skin. This method applies to crude oil, gasoline, organic solvents, penetrants, and oils. The flux of benzene through occluded skin as a function of the percent vol/vol benzene in the liquid is derived by fitting a curve to experimental data; the function is supralinear at benzene concentrations < or = 5% vol/vol. When a liquid other than pure benzene is on nonoccluded skin, benzene may preferentially evaporate from the liquid, which thereby decreases the benzene flux. We present a time-averaging method here for estimating the reduced dermal flux during evaporation. Example calculations are presented for benzene at 2% vol/vol in gasoline, and for benzene at 0.1% vol/vol in a less volatile liquid. We also discuss other factors affecting dermal absorption.

  20. 7 CFR 3201.103 - Gasoline fuel additives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Gasoline fuel additives. 3201.103 Section 3201.103... Designated Items § 3201.103 Gasoline fuel additives. (a) Definition. Chemical agents added to gasoline to increase octane levels, improve lubricity, and provide engine cleaning properties to gasoline-fired engines...

  1. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  2. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  3. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  4. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  5. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  6. Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades

    NASA Astrophysics Data System (ADS)

    Heeb, Norbert V.; Forss, Anna-Maria; Saxer, Christian J.; Wilhelm, Patrick

    The US urban driving cycle (FTP-75) is widely used to estimate both the emissions under hot engine conditions as well as those associated with the cold start. Applying fast analysis techniques such as chemical ionization mass spectrometry (CI-MS) the warm-up behavior of individual vehicles can be monitored at a time resolution of 1 s. CI-MS has been used to investigate the emissions of methane, benzene and the alkyl benzene class of compounds. The amount of the emissions at cold start influence was deduced from the time-resolved emission data of four gasoline-driven vehicle classes representing the vehicle technology of the last two decades. Overall, the emissions of five EURO-0, 20 EURO-1, 18 EURO-2 and so far of six EURO-3 passenger cars were recorded. The test vehicles were selected from the currently operating Swiss car fleet based on the car sales statistics. The average methane, benzene and alkyl benzene cold start emissions are reported using both, the traditional bag method as well as the regression model. At room temperature a clear reduction of 94%, 81% and 85% was found for the methane, benzene and alkyl benzene cold start emissions from EURO-0 to EURO-3 technology, respectively.

  7. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  8. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  9. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  10. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  11. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  12. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  13. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  14. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  15. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  16. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  17. 40 CFR 80.1348 - What gasoline sample retention requirements apply to refiners and importers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What gasoline sample retention... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Sampling, Testing and Retention Requirements § 80.1348 What gasoline sample retention requirements...

  18. 40 CFR 80.1348 - What gasoline sample retention requirements apply to refiners and importers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What gasoline sample retention... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Sampling, Testing and Retention Requirements § 80.1348 What gasoline sample retention requirements...

  19. 40 CFR 80.1348 - What gasoline sample retention requirements apply to refiners and importers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline sample retention... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Sampling, Testing and Retention Requirements § 80.1348 What gasoline sample retention requirements...

  20. 40 CFR 80.1348 - What gasoline sample retention requirements apply to refiners and importers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What gasoline sample retention... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Sampling, Testing and Retention Requirements § 80.1348 What gasoline sample retention requirements...

  1. 40 CFR 80.1348 - What gasoline sample retention requirements apply to refiners and importers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What gasoline sample retention... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Sampling, Testing and Retention Requirements § 80.1348 What gasoline sample retention requirements...

  2. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  3. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  4. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  5. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  6. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  7. Customer exposure to MTBE, TAME, C6 alkyl methyl ethers, and benzene during gasoline refueling.

    PubMed

    Vainiotalo, S; Peltonen, Y; Ruonakangas, A; Pfäffli, P

    1999-02-01

    We studied customer exposure during refueling by collecting air samples from customers' breathing zone. The measurements were carried out during 4 days in summer 1996 at two Finnish self-service gasoline stations with "stage I" vapor recovery systems. The 95-RON (research octane number) gasoline contained approximately 2.7% methyl tert-butyl ether (MTBE), approximately 8.5% tert-amyl methyl ether (TAME), approximately 3.2% C6 alkyl methyl ethers (C6 AMEs), and 0.75% benzene. The individual exposure concentrations showed a wide log-normal distribution, with low exposures being the most frequent. In over 90% of the samples, the concentration of MTBE was higher (range <0.02-51 mg/m3) than that of TAME. The MTBE values were well below the short-term (15 min) threshold limits set for occupational exposure (250-360 mg/m3). At station A, the geometric mean concentrations in individual samples were 3.9 mg/m3 MTBE and 2. 2 mg/m3 TAME. The corresponding values at station B were 2.4 and 1.7 mg/m3, respectively. The average refueling (sampling) time was 63 sec at station A and 74 sec at station B. No statistically significant difference was observed in customer exposures between the two service stations. The overall geometric means (n = 167) for an adjusted 1-min refueling time were 3.3 mg/m3 MTBE and 1.9 mg/m3 TAME. Each day an integrated breathing zone sample was also collected, corresponding to an arithmetic mean of 20-21 refuelings. The overall arithmetic mean concentrations in the integrated samples (n = 8) were 0.90 mg/m3 for benzene and 0.56 mg/m3 for C6 AMEs calculated as a group. Mean MTBE concentrations in ambient air (a stationary point in the middle of the pump island) were 0.16 mg/m3 for station A and 0.07 mg/m3 for station B. The mean ambient concentrations of TAME, C6 AMEs, and benzene were 0.031 mg/m3, approximately 0.005 mg/m3, and approximately 0.01 mg/m3, respectively, at both stations. The mean wind speed was 1.4 m/sec and mean air temperature was 21

  8. 40 CFR 80.1349 - Alternative sampling and testing requirements for importers who import gasoline into the United...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for importers who import gasoline into the United States by truck. 80.1349 Section 80.1349... FUELS AND FUEL ADDITIVES Gasoline Benzene Sampling, Testing and Retention Requirements § 80.1349 Alternative sampling and testing requirements for importers who import gasoline into the United States by...

  9. Environmental and occupational exposure to benzene in Thailand.

    PubMed

    Navasumrit, Panida; Chanvaivit, Sirirat; Intarasunanont, Pornpat; Arayasiri, Manaswee; Lauhareungpanya, Narumon; Parnlob, Varaporn; Settachan, Daam; Ruchirawat, Mathuros

    2005-05-30

    Exposure to benzene in air is a concern in Thailand, particularly since it was observed that the incidence of blood-related cancers, such as leukemia and lymphoma, has increased in the past few decades. In Bangkok, the mean atmospheric levels of benzene on main roads and in schools were 33.71 and 8.25 ppb, respectively, while in gasoline service stations and petrochemical factories the mean ambient levels were 64.78 and 66.24 ppb, respectively. Cloth vendors (22.61 ppb) and grilled-meat vendors (28.19 ppb) working on the roadsides were exposed to significantly higher levels of benzene than the control group (12.95 ppb; p<0.05). Bangkok school children (5.50 ppb) were exposed to significantly higher levels of benzene than provincial school children (2.54 ppb; p<0.01). Factory workers (73.55 ppb) and gasoline service attendants (121.67 ppb) were exposed to significantly higher levels of benzene than control workers (4.77 ppb; p<0.001). In accordance with the increased benzene exposures, levels of urinary trans,trans-muconic acid (MA) were significantly increased in all benzene-exposed groups. In school children, the levels of MA were relatively high, taking into account the much lower level of exposure. Blood benzene levels were also significantly increased in Bangkok school children (77.97 ppt; p<0.01), gasoline service attendants (641.84 ppt; p<0.05) and factory workers (572.61 ppt; p<0.001), when compared with the respective controls. DNA damage, determined as DNA strand breaks, was found to be elevated in gasoline service attendants, petrochemical factory workers, and Bangkok school children (p<0.001). The cytogenetic challenge assay, which measures DNA repair capacity, showed varying levels of significant increases in the numbers of dicentrics and deletions in gasoline service attendants, petrochemical factory workers and Bangkok school children, indicating a decrease in DNA repair capacity in these subjects.

  10. 40 CFR 80.1336 - What if a refiner or importer cannot produce gasoline conforming to the requirements of this...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... produce gasoline conforming to the requirements of this subpart? 80.1336 Section 80.1336 Protection of... ADDITIVES Gasoline Benzene Hardship Provisions § 80.1336 What if a refiner or importer cannot produce gasoline conforming to the requirements of this subpart? In extreme, unusual, and unforeseen circumstances...

  11. 40 CFR 80.1336 - What if a refiner or importer cannot produce gasoline conforming to the requirements of this...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... produce gasoline conforming to the requirements of this subpart? 80.1336 Section 80.1336 Protection of... ADDITIVES Gasoline Benzene Hardship Provisions § 80.1336 What if a refiner or importer cannot produce gasoline conforming to the requirements of this subpart? In extreme, unusual, and unforeseen circumstances...

  12. 40 CFR 80.1336 - What if a refiner or importer cannot produce gasoline conforming to the requirements of this...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... produce gasoline conforming to the requirements of this subpart? 80.1336 Section 80.1336 Protection of... ADDITIVES Gasoline Benzene Hardship Provisions § 80.1336 What if a refiner or importer cannot produce gasoline conforming to the requirements of this subpart? In extreme, unusual, and unforeseen circumstances...

  13. 40 CFR 80.1336 - What if a refiner or importer cannot produce gasoline conforming to the requirements of this...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... produce gasoline conforming to the requirements of this subpart? 80.1336 Section 80.1336 Protection of... ADDITIVES Gasoline Benzene Hardship Provisions § 80.1336 What if a refiner or importer cannot produce gasoline conforming to the requirements of this subpart? In extreme, unusual, and unforeseen circumstances...

  14. 40 CFR 80.1336 - What if a refiner or importer cannot produce gasoline conforming to the requirements of this...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... produce gasoline conforming to the requirements of this subpart? 80.1336 Section 80.1336 Protection of... ADDITIVES Gasoline Benzene Hardship Provisions § 80.1336 What if a refiner or importer cannot produce gasoline conforming to the requirements of this subpart? In extreme, unusual, and unforeseen circumstances...

  15. Outdoor and indoor benzene evaluation by GC-FID and GC-MS/MS.

    PubMed

    Sousa, José A; Domingues, Valentina F; Rosas, Mónica S; Ribeiro, Susana O; Alvim-Ferraz, Conceiçao M; Delerue-Matos, Cristina F

    2011-01-01

    The evaluation of benzene in different environments such as indoor (with and without tobacco smoke), a city area, countryside, gas stations and near exhaust pipes from cars running on different types of fuels was performed. The samples were analyzed using gas chromatography (GC) with flame ionization detection (FID) and tandem mass spectrometric detection (MS/MS) (to confirm the identification of benzene in the air samples). Operating conditions for the GC-MS analysis were optimized as well as the sampling and sample preparation. The results obtained in this work indicate that i) the type of fuel directly influences the benzene concentration in the air. Gasoline with additives provided the highest amount of benzene followed by unleaded gasoline and diesel; ii) the benzene concentration in the gas station was always higher than the advisable limit established by law (5 μg m⁻³) and during the unloading of gasoline the achieved concentration was 8371 μg m⁻³; iii) the data from the countryside (Taliscas) and the urban city (Matosinhos) were below 5 μg m⁻³ except 5 days after a fire on a petroleum refinery plant located near the city; iv) it was proven that in coffee shops where smoking is allowed the benzene concentration is higher (6 μg m⁻³) than in coffee shops where this is forbidden (4 μg m⁻³). This method may also be helpful for environmental analytical chemists who use GC-MS/MS for the confirmation or/and quantification of benzene.

  16. Customer exposure to MTBE, TAME, C6 alkyl methyl ethers, and benzene during gasoline refueling.

    PubMed Central

    Vainiotalo, S; Peltonen, Y; Ruonakangas, A; Pfäffli, P

    1999-01-01

    We studied customer exposure during refueling by collecting air samples from customers' breathing zone. The measurements were carried out during 4 days in summer 1996 at two Finnish self-service gasoline stations with "stage I" vapor recovery systems. The 95-RON (research octane number) gasoline contained approximately 2.7% methyl tert-butyl ether (MTBE), approximately 8.5% tert-amyl methyl ether (TAME), approximately 3.2% C6 alkyl methyl ethers (C6 AMEs), and 0.75% benzene. The individual exposure concentrations showed a wide log-normal distribution, with low exposures being the most frequent. In over 90% of the samples, the concentration of MTBE was higher (range <0.02-51 mg/m3) than that of TAME. The MTBE values were well below the short-term (15 min) threshold limits set for occupational exposure (250-360 mg/m3). At station A, the geometric mean concentrations in individual samples were 3.9 mg/m3 MTBE and 2. 2 mg/m3 TAME. The corresponding values at station B were 2.4 and 1.7 mg/m3, respectively. The average refueling (sampling) time was 63 sec at station A and 74 sec at station B. No statistically significant difference was observed in customer exposures between the two service stations. The overall geometric means (n = 167) for an adjusted 1-min refueling time were 3.3 mg/m3 MTBE and 1.9 mg/m3 TAME. Each day an integrated breathing zone sample was also collected, corresponding to an arithmetic mean of 20-21 refuelings. The overall arithmetic mean concentrations in the integrated samples (n = 8) were 0.90 mg/m3 for benzene and 0.56 mg/m3 for C6 AMEs calculated as a group. Mean MTBE concentrations in ambient air (a stationary point in the middle of the pump island) were 0.16 mg/m3 for station A and 0.07 mg/m3 for station B. The mean ambient concentrations of TAME, C6 AMEs, and benzene were 0.031 mg/m3, approximately 0.005 mg/m3, and approximately 0.01 mg/m3, respectively, at both stations. The mean wind speed was 1.4 m/sec and mean air temperature was 21

  17. Evaluation of environmental levels of aromatic hydrocarbons in gasoline service stations by gas chromatography.

    PubMed

    Periago, J F; Zambudio, A; Prado, C

    1997-08-22

    The volume of gasoline sold in refuelling operations and the ambient temperature, can increase significantly the environmental levels of aromatic hydrocarbon vapours and subsequently, the occupational risk of gasoline service station attendants, specially in the case of benzene. We have evaluated the occupational exposure to aromatic hydrocarbons by means of personal-breathing-zone samples of gasoline vapours in a service station attendant population. This evaluation was carried out using diffusive samplers, in two periods at quite different temperatures (March and July). A significant relationship between the volume of gasoline sold during the shift and the ambient concentration of benzene, toluene, and xylenes was found for each worker sampled. Furthermore a significant difference was found between the time-weighted average concentration of aromatic compounds measured in March, with ambient temperatures of 14-15 degrees C and July, with temperatures of 28-30 degrees C. In addition, 20% of the population sampled in the last period were exposed to a time-weighted average concentration of benzene above the proposed Threshold Limit Value of 960 micrograms/m(3) of the American Conference of Governmental Industrial Hygienists (ACGIH).

  18. 40 CFR 80.1613 - Standards and other requirements for gasoline additive manufacturers and blenders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline additive manufacturers and blenders. 80.1613 Section 80.1613 Protection of Environment... Gasoline Sulfur § 80.1613 Standards and other requirements for gasoline additive manufacturers and blenders. Gasoline additive manufacturers and blenders must meet the following requirements: (a) Gasoline additive...

  19. DECISION-MAKING, SCIENCE AND GASOLINE ADDITIVES

    EPA Science Inventory


    Methyl-tert butyl ether (MTBE) has been used as a gasoline additive to serve two major purposes. The first use was as an octane-enhancer to replace organic lead, beginning in 1979. The second use, which began about 1992, was as an oxygenated additive to meet requirements ...

  20. The EPA National Fuels Surveillance Network. I. Trace constituents in gasoline and commercial gasoline fuel additives.

    PubMed Central

    Jungers, R H; Lee, R E; von Lehmden, D J

    1975-01-01

    A National Fuels Surveillance Network has been established to collect gasoline and other fuels through the 10 regional offices of the Environmental Protection Agency. Physical, chemical, and trace element analytical determinations are made on the collected fuel samples to detect components which may present an air pollution hazard or poison exhaust catalytic control devices. A summary of trace elemental constituents in over 50 gasoline samples and 18 commercially marketed consumer purchased gasoline additives is presented. Quantities of Mn, Ni, Cr, Zn, Cu, Fe, Sb, B, Mg, Pb, and S were found in most regular and premium gasoline. Environmental implications of trace constituents in gasoline are discussed. PMID:1157783

  1. Investigation of gasoline distributions within petrol stations: spatial and seasonal concentrations, sources, mitigation measures, and occupationally exposed symptoms.

    PubMed

    Sairat, Theerapong; Homwuttiwong, Sahalaph; Homwutthiwong, Kritsana; Ongwandee, Maneerat

    2015-09-01

    We measured levels of VOCs and determined the distributions of benzene concentrations over the area of two petrol stations in all three seasons. Using the concentrations and sampling positions, we created isoconcentration contour maps. The average concentrations ranged 18-1288 μg m(-3) for benzene and 12-81 μg m(-3) for toluene. The contour maps indicate that high-level contours of benzene were found not only at the fuel dispenser areas but also at the storage tank refilling points, open drainage areas where gasoline-polluted wastewater was flowing, and the auto service center located within the station area. An assessment of the benzene to toluene ratio contour plots implicates that airborne benzene and toluene near the fuel dispenser area were attributed to gasoline evaporation although one of the studied stations may be influenced by other VOC sources besides gasoline evaporation. Additionally, during the routine refilling of the underground fuel storage tanks by a tank truck, the ambient levels of benzene and toluene increased tremendously. The implementation of source control by replacing old dispensers with new fuel dispensers that have an efficient cutoff feature and increased delivery speed can reduce spatial benzene concentrations by 77%. Furthermore, a questionnaire survey among 63 service attendants in ten stations revealed that headache was the most reported health complaint with a response rate of 32%, followed by fatigue with 20%. These prominent symptoms could be related to an exposure to high benzene concentrations.

  2. EFFECT OF ETHANOL ON THE NATURAL FERMENTATION OF BENZENE IN GROUNDWATER

    EPA Science Inventory

    Ethanol is commonly used as a fuel oxygenate in California and in the mid continent area around the Great Lakes. The presence of ethanol in a gasoline spill has raised concerns about the effects of the additive on the natural biodegradation of fuel hydrocarbons, including benzen...

  3. Benzene exposure: An overview of monitoring methods and their findings

    PubMed Central

    Weisel, Clifford P.

    2014-01-01

    Benzene has been measured throughout the environment and is commonly emitted in several industrial and transportation settings leading to widespread environmental and occupational exposures. Inhalation is the most common exposure route but benzene rapidly penetrates the skin and can contaminant water and food resulting in dermal and ingestion exposures. While less toxic solvents have been substituted for benzene, it still is a component of petroleum products, including gasoline, and is a trace impurity in industrial products resulting in continued sub to low ppm occupational exposures, though higher exposures exist in small, uncontrolled workshops in developing countries. Emissions from gasoline/petrochemical industry are its main sources to the ambient air, but a person’s total inhalation exposure can be elevated from emissions from cigarettes, consumer products and gasoline powered engines/tools stored in garages attached to homes. Air samples are collected in canisters or on adsorbent with subsequent quantification by gas chromatography. Ambient air concentrations vary from sub-ppb range, low ppb, and tens of ppb in rural/suburban, urban, and source impacted areas, respectively. Short-term environmental exposures of ppm occur during vehicle fueling. Indoor air concentrations of tens of ppb occur in microenvironments containing indoor sources. Occupational and environmental exposures have declined where regulations limit benzene in gasoline (<1%) and cigarette smoking has been banned from public and work places. Similar controls should be implemented worldwide to reduce benzene exposure. Biomarkers of benzene used to estimate exposure and risk include: benzene in breath, blood and urine; its urinary metabolites: phenol, t,t-muconic acid (t,tMA) and S-phenylmercapturic acid (sPMA); and blood protein adducts. The biomarker studies suggest benzene environmental exposures are in the sub to low ppb range though non-benzene sources for urinary metabolites

  4. ENVIRONMENTAL LIFE CYCLE ASSESSMENT OF GASOLINE ALTERNATIVES: MTBE AND ETHANOL ADDITIVES

    EPA Science Inventory

    Currently, the U.S. is considering options for additives to reformulated gasoline. To inform this debate the U.S. EPA's Office of Research and Development is conducting a screening life cycle assessment (LCA) of three gasoline alternatives. These alternatives include gasoline w...

  5. Sorption and phase distribution of ethanol and butanol blended gasoline vapours in the vadose zone after release.

    PubMed

    Ugwoha, Ejikeme; Andresen, John M

    2014-03-01

    The sorption and phase distribution of 20% ethanol and butanol blended gasoline (E20 and B20) vapours have been examined in soils with varying soil organic matter (SOM) and water contents via laboratory microcosm experiments. The presence of 20% alcohol reduced the sorption of gasoline compounds by soil as well as the mass distribution of the compounds to soil solids. This effect was greater for ethanol than butanol. Compared with the sorption coefficient (Kd) of unblended gasoline compounds, the Kd of E20 gasoline compounds decreased by 54% for pentane, 54% for methylcyclopentane (MCP) and 63% for benzene, while the Kd of B20 gasoline compounds decreased by 39% for pentane, 38% for MCP and 49% for benzene. The retardation factor (R) of E20 gasoline compounds decreased by 53% for pentane, 53% for MCP and 48% for benzene, while the R of B20 gasoline compounds decreased by 39% for pentane, 37% for MCP and 38% for benzene. For all SOM and water contents tested, the Kd and R of all gasoline compounds were in the order of unblended gasoline > B20 > E20, indicating that the use of high ethanol volume in gasoline to combat climate change could put the groundwater at greater risk of contamination. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  6. Ether oxygenate additives in gasoline reduce toxicity of exhausts.

    PubMed

    Westphal, G A; Krahl, J; Brüning, T; Hallier, E; Bünger, J

    2010-02-09

    Fuel additives can improve combustion and knock resistance of gasoline engines. Common additives in commercial fuels are "short-chain, oxygen containing hydrocarbons" such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE). Since these additives change the combustion characteristics, this may as well influence toxic effects of the resulting emissions. Therefore we compared toxicity and BTEX emissions of gasoline engine exhaust regarding addition of MTBE or ETBE. Non-reformulated gasoline served as basic fuel. This fuel was supplemented with 10%, 20%, 25% and 30% ETBE or 15% MTBE. The fuels were combusted in a gasoline engine at idling, part load and rated power. Condensates and particulate matter (PM) were collected and PM samples extracted with dichloromethane. Cytotoxic effects were investigated in murine fibroblasts (L929) using the neutral red uptake assay and mutagenicity using the bacterial reverse mutation assay. BTEX emissions were analyzed by gas chromatography. PM-extracts showed mutagenicity with and without metabolic activation. Mutagenicity was reduced by the addition of MTBE and ETBE, 10% ETBE being most effective. The condensates produced no significant mutagenic response. The cytotoxicity of the condensates from ETBE- and MTBE-reformulated fuels was reduced as well. The BTEX content in the exhaust was lowered by the addition of MTBE and ETBE. This effect was significantly related to the ETBE content at rated power and part load. Addition of MTBE and ETBE to fuels can improve combustion and leads to decreased toxicity and BTEX content of the exhaust. Reduction of mutagenicity in the PM-extracts is most probably caused by a lower content of polycyclic aromatic hydrocarbons. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  7. EFFECT OF ETHANOL ON THE NATURAL FERMENTATION OF BENZENE IN GROUNDWATER (ABSTRACT ONLY)

    EPA Science Inventory

    Ethanol is commonly used as a fuel oxygenate in California and in the mid continent area around the Great Lakes. The presence of ethanol in a gasoline spill has raised concerns about the effects of the additive on the natural biodegradation of fuel hydrocarbons, including benzen...

  8. Gasoline Composition in 2008

    EPA Science Inventory

    Gasoline composition in the U.S is determined by factors related to crude oil source, refinery capacity, geography and regulatory factors. Major regulation derived from the Clean Air Act and its amendments determines the benzene and former oxygenate requirements for reformulated...

  9. Ferreting Out the Identity of Gasoline Additives

    EPA Science Inventory

    Chemical dispersing agents for oil spills, hydraulic fracturing fluids for natural-gas production, and chemicals serving as gasoline additives share a common characteristic—for the most part, they are proprietary compounds. In the name of competitive advantage, companies carefull...

  10. Steinmaus and Smith Respond to "Proximity to Gasoline Stations and Childhood Leukemia".

    PubMed

    Steinmaus, Craig; Smith, Martyn T

    2017-01-01

    Benzene is an established cause of adult leukemia, but its role in childhood leukemia is less clear. In a recent meta-analysis, we identified associations of childhood leukemia with occupational and household product benzene exposure and traffic-related pollution. Residential proximity to gasoline stations or automobile repair facilities may be another source of benzene, and in 3 studies assessing these sources, we identified a summary relative risk of 1.59 (95% confidence interval: 0.70, 3.62). Although not statistically significant, this summary relative risk was of a magnitude similar to that of our other positive findings. In this issue of the Journal (Am J Epidemiol 2017;185(1):5-7), Dr. Infante suggested that meta-analyses of studies on childhood leukemia and proximity to gasoline stations should involve some criteria that differ from those we used. These suggested criteria involved combining leukemia subtypes, excluding automobile repair facilities, and using nonleukemia cancers as control subjects. We redid our meta-analysis using these new criteria and obtained a summary relative risk of 2.42 (95% confidence interval: 1.51, 3.89). Overall, although this result should be interpreted in light of the relatively small sample size (3 studies) and its post-hoc nature, it provides additional new evidence for associations of childhood leukemia with both residential proximity to gasoline stations and exposure to benzene. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. SPECIES COMPARISON OF HEPATIC AND PULMONARY METABOLISM OF BENZENE. (R826191)

    EPA Science Inventory

    Abstract

    Benzene is an occupational hazard and environmental toxicant found in cigarette smoke, gasoline, and the chemical industry. The major health concern associated with benzene exposure is leukemia. Studies using microsomal preparations from human, mouse, rabbit, ...

  12. U.S. GASOLINE COMPOSITION STUDY

    EPA Science Inventory

    This presentation presents results from a 2004/2005 study of U.S. gasoline composition. Differences in composition are driven by regulation, octane requirements, refining methods, and performance needs. Major differences in composition were traced to a few compounds: benzene, MTB...

  13. Improving the environmental and performance characteristics of vehicles by introducing the surfactant additive into gasoline.

    PubMed

    Magaril, Elena; Magaril, Romen

    2016-09-01

    The operation of modern vehicles requires the introduction of package of fuel additives to ensure the required level of operating characteristics, some of which cannot be achieved by current oil refining methods. The use of additives allows flexibility of impact on the properties of the fuel at minimal cost, increasing the efficiency and environmental safety of vehicles. Among the wide assortment of additives available on the world market, many are surfactants. It has been shown that the introduction of some surfactants into gasoline concurrently reduces losses from gasoline evaporation, improves the mixture formation during injection of gasoline into the engine and improves detergent and anticorrosive properties. The surfactant gasoline additive that provides significant improvement in the quality of gasoline used and environmental and operating characteristics of vehicles has been developed and thoroughly investigated. The results of studies confirming the efficiency of the gasoline additive application are herein presented.

  14. Residential Proximity to Gasoline Stations and Risk of Childhood Leukemia.

    PubMed

    Infante, Peter F

    2017-01-01

    Significant elevations in the risk of childhood leukemia have been associated with environmental exposure to gasoline; aromatic hydrocarbons from refinery pollution, petroleum waste sites, and mobile sources (automobile exhaust); paints, paint products, and thinners; and secondary cigarette smoke in the home. These higher risks have also been associated with parental exposure to benzene, gasoline, motor vehicle-related jobs, painting, and rubber solvents. These exposures and jobs have 1 common chemical exposure-benzene, a recognized cause of acute leukemia in adults-and raise the question of whether children represent a subpopulation in which a higher risk of leukemia is associated with very low level exposure to environmental benzene. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Glutathione S-Transferase Gene Polymorphisms: Modulator of Genetic Damage in Gasoline Pump Workers.

    PubMed

    Priya, Kanu; Yadav, Anita; Kumar, Neeraj; Gulati, Sachin; Aggarwal, Neeraj; Gupta, Ranjan

    2015-01-01

    This study investigated genetic damage in gasoline pump workers using the cytokinesis blocked micronucleus (CBMN) assay. Blood and urine samples were collected from 50 gasoline pump workers and 50 control participants matched with respect to age and other confounding factors except for exposure to benzene through gasoline vapors. To determine the benzene exposure, phenol was analyzed in urinary samples of exposed and control participants. Urinary mean phenol level was found to be significantly high (P < 0.05) in exposed workers. The CBMN frequency was found to be significantly higher in gasoline pump workers (6.70 ± 1.78) when compared to control individuals (2.20 ± 0.63; P < 0.05). We also investigated influence of polymorphisms of GSTM1, GSTT1, and GSTP1 genes on CBMN frequency. The individuals having GSTM1 and GSTT1 null genotypes had significantly higher frequency of CBMN (P < 0.05). Our study indicates that chronic and long-term exposure of gasoline vapors can increase genotoxic risk in gasoline pump workers. © The Author(s) 2015.

  16. 76 FR 65382 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline AGENCY: Environmental... gasoline. This final rule will provide flexibility to the regulated community by allowing an additional... Method for Olefins in Gasoline III. Statutory and Executive Order Reviews A. Executive Order 12866...

  17. Urinary excretion of unmetabolized benzene as an indicator of benzene exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghittori, S.; Fiorentino, M.L.; Maestri, L.

    1993-03-01

    Benzene concentrations in urine samples (Cu, ng/L) from 110 workers exposed to benzene in chemical plants and gasoline pumps were determined by injecting urine supernate into a gas chromatograph. The urine was saturated with anhydrous N2SO4 to facilitate the passage of benzene in the air over the urine. The solvent was stripped from the urine surface and concentrated on an adsorbent substrate (Carbotrap tube) by means of a suction pump (flow rate 150 ml/m). Wash-up of the head space was achieved by simultaneous intake of filtered air through charcoal. Benzene was thermically desorbed and injected in a column (thermal tubemore » disorder, Supelco; 370 degrees C thermal flash; borosilicate capillary glass column SPB-1, 60 m length, 0.75 mm ID, 1 microns film thickness; GC Dani 8580-FID). Benzene concentrations in the urine from 40 non-exposed subjects (20 smokers > 20 cigarette/d and 20 nonsmokers) were also determined [median value of 790 ng/L (10.17 nmol/L) and 131 ng/L (1.70 nmol/L), respectively]. The 8-h time-weighted exposure intensity (Cl, micrograms/m3) of individual workers was monitored by means of charcoal tubes. The median value for exposure to benzene was 736 micrograms/m3 (9.42 mumol/m3) [geometric standard deviation (GSD) = 2.99; range 64 micrograms/m3 (0.82 mumol/m3) to 13,387 micrograms/m3 (171.30 mumol/m3)]. The following linear correlation was found between benzene concentrations in urine (Cu, ng/L) and benzene concentrations in the breathing zone (Cl, micrograms/m3): log(Cu) = 0.645 x log(Cl) + 1.399 r = .559, n = 110, p < .0001 With exclusion of workers who smoked from the study, the correlation between air benzene concentration and benzene measured in urine was: log(Cu) = 0.872 x log(Cl) + 0.6 r = .763, n = 63, p < .0001 The study results indicate that the urinary level of benzene is an indicator of occupational exposure to benzene.« less

  18. IRIS TOXICOLOGICAL REVIEW OF BENZENE (NONCANCER EFFECTS)

    EPA Science Inventory

    Benzene, also known as benzol, is widely used as an industrial solvent, as an intermediate in chemical syntheses, and as a component of gasoline; hence, the potential for human exposure is great. The emphasis of this document is a discussion of the noncancer adverse healt...

  19. 40 CFR 80.8 - Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Sampling methods for gasoline, diesel... Provisions § 80.8 Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels. The sampling methods specified in this section shall be used to collect samples of gasoline, diesel fuel...

  20. An evidence-based analysis of epidemiologic associations between lymphatic and hematopoietic cancers and occupational exposure to gasoline.

    PubMed

    Keenan, J J; Gaffney, S; Gross, S A; Ronk, C J; Paustenbach, D J; Galbraith, D; Kerger, B D

    2013-10-01

    The presence of benzene in motor gasoline has been a health concern for potential increased risk of acute myelogenous leukemia and perhaps other lymphatic/hematopoietic cancers for approximately 40 years. Because of the widespread and increasing use of gasoline by consumers and the high exposure potential of occupational cohorts, a thorough understanding of this issue is important. The current study utilizes an evidence-based approach to examine whether or not the available epidemiologic studies demonstrate a strong and consistent association between occupational exposure to gasoline and lymphatic/hematopoietic cancers. Among 67 epidemiologic studies initially identified, 54 were ranked according to specific criteria relating to the relevance and robustness of each study for answering the research question. The 30 highest-ranked studies were sorted into three tiers of evidence and were analyzed for strength, specificity, consistency, temporality, dose-response trends and coherence. Meta statistics were also calculated for each general and specific lymphatic/hematopoietic cancer category with adequate data. The evidence-based analysis did not confirm any strong and consistent association between occupational exposure to gasoline and lymphatic/hematopoietic cancers based on the epidemiologic studies available to date. These epidemiologic findings, combined with the evidence showing relatively low occupational benzene vapor exposures associated with gasoline formulations during the last three decades, suggest that current motor gasoline formulations are not associated with increased lymphatic/hematopoietic cancer risks related to benzene.

  1. Comparative study of regulated and unregulated air pollutant emissions before and after conversion of automobiles from gasoline power to liquefied petroleum gas/gasoline dual-fuel retrofits.

    PubMed

    Yang, Hsi-Hsien; Chien, Shu-Mei; Cheng, Man-Ting; Peng, Chiung-Yu

    2007-12-15

    Liquefied petroleum gas (LPG) is increasingly being examined as an alternative to gasoline use in automobiles as interest grows in reducing air pollutant emissions. In this study, emissions of regulated (CO, THC, NO(x)) and unregulated air pollutants, including CO2, particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and BTEX (acronym for benzene, toluene, ethylbenzene, xylene), were measured before and after conversion of nine gasoline-powered automobiles to LPG/ gasoline dual-fuel retrofits. The tests were conducted on a standard chassis dynamometer in accordance with the United States Environmental Protection Agency FTP-75 test procedure, with the exception that all tests were conducted under hot-start driving conditions. The influences of LPG on air pollutant emission levels and carcinogenic potency were investigated and compared with gasoline. The results showed average emission factors of 0.14 g/km, 0.33 mg/km, 0.09 g/km, 0.44 g/km, and 197 g/km for CO, THC, NO(x), PM, and CO2, respectively, for LPG/ gasoline dual-fuel retrofits. Paired-sample t-test results indicated that the emissions of CO (p = 0.03), THC (p = 0.04), and CO2 (p = 4.6 x 10(-8)) were significantly reduced with the retrofit in comparison with gasoline-powered automobiles. The reduction percentages were 71%, 89%, and 14% for CO, THC, and CO2, respectively. The average total PAH emission factor for LPG was 217 microg/km, which is significantly lower than gasoline (863 microg/km; p = 0.05). The PAH corresponding carcinogenicities (BaP(eq)) were calculated via toxic equivalencies based on benzo(a)pyrene (BaP). Paired-sample t-test results fortotal BaP(eq) emissions showed no significant difference between gasoline (30.0 microg/km) and LPG (24.8 microg/km) at a confidence level of 95%. The discrepancy between PAH and BaP(eq) emissions resulted from the higher emission percentages of high molecular weight PAHs for LPG, which might be from lubricant oil. The average emission factors of

  2. REDUCTIONS IN HUMAN BENZENE EXPOSURE IN THE CALIFORNIA SOUTH COAST AIR BASIN. (R827352C004)

    EPA Science Inventory

    Benzene typically contributes a significant fraction of the human cancer risk associated with exposure to urban air pollutants. In recent years, concentrations of benzene in ambient air have declined in many urban areas due to the use of reformulated gasolines, lower vehicle e...

  3. Molecular biomarkers of oxidative stress and role of dietary factors in gasoline station attendants.

    PubMed

    Costa, Chiara; Ozcagli, Eren; Gangemi, Silvia; Schembri, Federico; Giambò, Federica; Androutsopoulos, Vasilis; Tsatsakis, Aristidis; Fenga, Concettina

    2016-04-01

    Exposure to benzene promotes oxidative stress through the production of ROS, which can damage biological structures with the formation of new metabolites which can be used as markers of oxidant/antioxidant imbalance. This study aims to assess modifications in circulating levels of advanced oxidation protein products (AOPP), advanced glycation end-products (AGE) and serum reactive oxygen metabolites (ROMs) in a group of gasoline station attendants exposed to low-dose benzene and to evaluate the influence of antioxidant food intake on these biomarkers of oxidative stress. The diet adopted by the population examined consisted of compounds belonging to the classes of terpenoids, stilbenes and flavonoids, notably resveratrol, lycopene and apigenin. Ninety one gasoline station attendants occupationally exposed to benzene and 63 unexposed male office workers were recruited for this study. Urinary trans, trans-muconic acid (t,t-MA) concentration, determined to assess individual exposure level, resulted significantly higher in exposed workers. In subjects exposed to benzene, we observed a significant increase (p < 0.001) in ROMs and AOPP levels, which were also negatively correlated with fruit and vegetables consumption. By contrast, AGE did not show a significant increase and consequently any relation with antioxidant food intake. Only ROMs, representing a global biomarker of oxidative status, resulted correlated to t,t-MA levels (p < 0.01), probably due to low-dose exposure. Increase of ROS induced by reactive benzene metabolites may promote specific biochemical pathways with a major production of AOPP, which seem to represent a more sensitive biochemical marker of oxidative stress in workers exposed to benzene compared to AGE. Furthermore, this is the first study demonstrating ROMs increment in subject exposed to benzene. These biomarkers may be useful for screening purposes in gasoline station workers and other subjects exposed to low-dose benzene. Moreover, a diet rich

  4. Species comparison of hepatic and pulmonary metabolism of benzene.

    PubMed

    Powley, M W; Carlson, G P

    1999-12-06

    Benzene is an occupational hazard and environmental toxicant found in cigarette smoke, gasoline, and the chemical industry. The major health concern associated with benzene exposure is leukemia. Studies using microsomal preparations from human, mouse, rabbit, and rat to determine species differences in the metabolism of benzene to phenol, hydroquinone and catechol, indicate that the rat is most similar, both quantitatively and qualitatively, to the human in pulmonary microsomal metabolism of benzene. With hepatic microsomes, rat is most similar to human in metabolite formation at the two lower concentrations examined (24 and 200 microM), while at the two higher concentrations (700 and 1000 microM) mouse is most similar in phenol formation. In all species, the enzyme system responsible for benzene metabolism approached saturation in hepatic microsomes but not in pulmonary microsomes. In pulmonary microsomes from mouse, rat, and human, phenol appeared to competitively inhibit benzene metabolism resulting in a greater proportion of phenol being converted to hydroquinone when the benzene concentration increased. The opposite effect was seen in hepatic microsomes. These findings support the hypothesis that the lung plays an important role in benzene metabolism, and therefore, toxicity.

  5. 40 CFR 80.1235 - What gasoline is subject to the benzene requirements of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Oxygenate added to finished gasoline, RBOB, or CBOB downstream of the refinery that produced the gasoline or import facility where the gasoline was imported. (3) Butane added to finished gasoline, RBOB, CBOB... boats that are used only in sanctioned racing events, provided that — (i) Product transfer documents...

  6. 40 CFR 80.1235 - What gasoline is subject to the benzene requirements of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Oxygenate added to finished gasoline, RBOB, or CBOB downstream of the refinery that produced the gasoline or import facility where the gasoline was imported. (3) Butane added to finished gasoline, RBOB, CBOB... boats that are used only in sanctioned racing events, provided that — (i) Product transfer documents...

  7. 40 CFR 80.1235 - What gasoline is subject to the benzene requirements of this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Oxygenate added to finished gasoline, RBOB, or CBOB downstream of the refinery that produced the gasoline or import facility where the gasoline was imported. (3) Butane added to finished gasoline, RBOB, CBOB... boats that are used only in sanctioned racing events, provided that — (i) Product transfer documents...

  8. Review of the carcinogenic potential of gasoline.

    PubMed Central

    Raabe, G K

    1993-01-01

    This review examines the animal, human, and mechanistic studies that precede the new studies reported in this volume. Wholly vaporized unleaded gasoline was found to produce a dose-dependent increase in renal carcinoma in male rats and an excess above background incidence of hepatocellular tumors in female mice in the high-dose group. Mechanistic studies suggest that gasoline is not mutagenic and that the probable mechanism for the male rat renal tumors involves a rat-specific protein, alpha 2u-globulin, whose binding with highly branched aliphatic compounds results in renal tubule cell death and, in turn, a proliferative sequence that increases renal tubule tumors. Human evidence generated predominantly from studies of refinery workers does not support a kidney or liver cancer risk in humans. The current epidemiologic database is inadequate to access leukemia risk from low-level benzene exposure from gasoline. Studies of gasoline-exposed workers that incorporate quantitative exposure information are needed. PMID:8020448

  9. Effect of alcohol addition on shock-initiated formation of soot from benzene

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael; Yuan, Tony

    1988-01-01

    Soot formation in benzene-methanol and benzene-ethanol argon-diluted mixtures was studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. The experiments were performed at temperatures 1580-2250 K, pressures 2.0-3.0 bar, and total carbon atom concentrations (2.0-2.7) x 10 to the 17th atoms/cu cm. The results obtained indicate that the addition of alcohol suppresses the formation of soot from benzene at all temperatures, and that the reduction in soot yields is increased with the amount of alcohol added. The analysis of the results indicates that the suppression effect is probably due to the oxidation of soot and soot precursors by OH and the removal of hydrogen atoms by alcohol and water molecules.

  10. [Myelofibrosis in a benzene-exposed cleaning worker].

    PubMed

    Bausà, Roser; Navarro, Lydia; Cortès-Franch, Imma

    Long-term exposure to benzene has been associated with several blood malignancies, including aplastic anemia, myeloproliferative neoplasms, and different leukemias. We present a case of primary myelofibrosis in a 59-year-old woman who worked as a cleaner at a car dealership and automobile mechanic shop. For 25 years, she used gasoline as a degreaser and solvent to clean engine parts, floors and work desks on a daily basis. She was referred by her primary care provider to the Occupational Health Unit of Barcelona to assess whether her illness was work-related. Review of her job history and working conditions revealed chronic exposure to benzene in the absence of adequate preventive measures. An association between benzene exposure and myeloproliferative disease was established, suspicious for an occupational disease. Copyright belongs to the Societat Catalana de Salut Laboral.

  11. Rapid intrinsic biodegradation of benzene, toluene, and xylenes at the boundary of a gasoline-contaminated plume under natural attenuation.

    PubMed

    Takahata, Yoh; Kasai, Yuki; Hoaki, Toshihiro; Watanabe, Kazuya

    2006-12-01

    A groundwater plume contaminated with gasoline constituents [mainly benzene, toluene, and xylenes (BTX)] had been treated by pumping and aeration for approximately 10 years, and the treatment strategy was recently changed to monitored natural attenuation (MNA). To gain information on the feasibility of using MNA to control the spread of BTX, chemical and microbiological parameters in groundwater samples obtained inside and outside the contaminated plume were measured over the course of 73 weeks. The depletion of electron acceptors (i.e., dissolved oxygen, nitrate, and sulfate) and increase of soluble iron were observed in the contaminated zone. Laboratory incubation tests revealed that groundwater obtained immediately outside the contaminated zone (the boundary zone) exhibited much higher potential for BTX degradation than those in the contaminated zone and in uncontaminated background zones. The boundary zone was a former contaminated area where BTX were no longer detected. Denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified bacterial 16S rRNA gene fragments revealed that DGGE profiles for groundwater samples obtained from the contaminated zone were clustered together and distinct from those from uncontaminated zones. In addition, unique bacterial rRNA types were observed in the boundary zone. These results indicate that the boundary zone in the contaminant plumes served as a natural barrier for preventing the BTX contamination from spreading out.

  12. Mechanistic considerations in benzene physiological model development.

    PubMed

    Medinsky, M A; Kenyon, E M; Seaton, M J; Schlosser, P M

    1996-12-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) may be necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Because benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol, and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus the potential exists for competition among various enzymes for phenol. Zonal localization of phase I and phase II enzymes in various regions of the liver acinus also impacts this competition. Biologically based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  13. EFFECT OF ETHANOL ON THE NATURAL ANAEROBIC BIODEGRADATION OF BENZENE

    EPA Science Inventory

    Ethanol is commonly used as a fuel oxygenate. A concern has been raised that the presence of ethanol from a spill of gasoline may inhibit the natural biodegradation of fuel hydrocarbons, including benzene. Ethanol is miscible in water, and ethanol is readily metabolized by micr...

  14. Neurotoxic effects of gasoline and gasoline constituents.

    PubMed Central

    Burbacher, T M

    1993-01-01

    This overview was developed as part of a symposium on noncancer end points of gasoline and key gasoline components. The specific components included are methyl tertiary butyl ether, ethyl tertiary butyl ether, tertiary amyl methyl ether, butadiene, benzene, xylene, toluene, methyl alcohol, and ethyl alcohol. The overview focuses on neurotoxic effects related to chronic low-level exposures. A few general conclusions and recommendations can be made based on the results of the studies to date. a) All the compounds reviewed are neuroactive and, as such, should be examined for their neurotoxicity. b) For most of the compounds, there is a substantial margin of safety between the current permissible exposure levels and levels that would be expected to cause overt signs of neurotoxicity in humans. This is not the case for xylene, toluene, and methanol, however, where neurologic effects are observed at or below the current Threshold Limit Value. c) For most of the compounds, the relationship between chronic low-level exposure and subtle neurotoxic effects has not been studied. Studies therefore should focus on examining the dose-response relationship between chronic low-level exposure and subtle changes in central nervous system function. PMID:8020437

  15. Dissolution of multi-component LNAPL gasolines: The effects of weathering and composition

    NASA Astrophysics Data System (ADS)

    Lekmine, Greg; Bastow, Trevor P.; Johnston, Colin D.; Davis, Greg B.

    2014-05-01

    The composition of light non-aqueous phase liquid (LNAPL) gasoline and other petroleum products changes profoundly over their life once released into aquifers. However limited attention has been given to how such changes affect key parameters such as the activity coefficients which control partitioning of components of petroleum fuel into groundwater and are used to predict long-term risk from fuel releases. Laboratory experiments were conducted on a range of fresh, weathered and synthetic gasoline mixtures designed to mimic the expected changes in composition in an aquifer. Weathered gasoline created under controlled evaporation and water washing, and naturally weathered gasoline, were investigated. Equilibrium concentrations in water and molar fractions in the gasoline mixtures were compared with equilibrium concentrations predicted by Raoult's law assuming ideal behaviour of the solutions. The experiments carried out allowed the relative sensitivity of the activity coefficients of key risk drivers such as benzene, toluene, ethylbenzene and xylene (BTEX) compounds to be quantified with respect to the presence of other types of compounds and where the source LNAPL had undergone different types of weathering. Results differed for the mixtures examined but in some cases higher than predicted dissolved equilibrium concentrations showed non-ideal behaviour for toluene, benzene and xylenes. Comparison of the activity coefficients showed that the naturally weathered gasoline and a 50% evaporated unleaded gasoline present a similar range of values varying between 1.0 and 1.2, suggesting close to ideal partitioning between the LNAPL and water. The fresh and water-washed gasoline had higher values for the activity coefficient, from 1.2 to 1.4, indicating non-ideal partitioning. Results from synthetic mixtures demonstrated that these differences could be due to the different molar fractions of the nC5 and nC6 aliphatic hydrocarbons acting on the molecular interactions

  16. Persulfate injection into a gasoline source zone

    NASA Astrophysics Data System (ADS)

    Sra, Kanwartej S.; Thomson, Neil R.; Barker, Jim F.

    2013-07-01

    One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O82 -, SO42 -, Na+, dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for > 10 months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in M indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M increased by > 100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone.

  17. Effect of organometallic fuel additives on nanoparticle emissions from a gasoline passenger car.

    PubMed

    Gidney, Jeremy T; Twigg, Martyn V; Kittelson, David B

    2010-04-01

    Particle size measurements were performed on the exhaust of a car operating on a chassis dynamometer fueled with standard gasoline and gasoline containing low levels of Pb, Fe, and Mn organometallic additives. When additives were present there was a distinct nucleation mode consisting primarily of sub-10 nm nanoparticles. At equal molar dosing Mn and Fe gave similar nanoparticle concentrations at the tailpipe, whereas Pb gave a considerably lower concentration. A catalytic stripper was used to remove the organic component of these particles and revealed that they were mainly solid and, because of their association with inorganic additives, presumably inorganic. Solid nucleation mode nanoparticles of similar size and concentration to those observed here from a gasoline engine with Mn and Fe additives have also been observed from modern heavy-duty diesel engines without aftertreatment at idle, but these solid particles are a small fraction of the primarily volatile nucleation mode particles emitted. The solid nucleation mode particles emitted by the diesel engines are likely derived from metal compounds in the lubrication oil, although carbonaceous particles cannot be ruled out. Significantly, most of these solid nanoparticles emitted by both engine types fall below the 23 nm cutoff of the PMP number regulation.

  18. Evaluation of fuel additives for reduction of material imcompatibilities in methanol-gasoline blends

    NASA Technical Reports Server (NTRS)

    Rodriguez, C. F.; Barbee, J. G.; Knutson, W. K.; Cuellar, J. P., Jr.

    1983-01-01

    Screening tests determined the efficacy of six commercially available additives as modifiers of methanol's corrosivity toward metals and its weakening of tensile properties of nonmetals in automotive fuel systems. From the screening phase, three additives which seemed to protect some of the metals were tested in higher concentrations and binary combinations in search of optimal application conditions. Results indicate that two of the additives have protective properties and combining them increases the protection of the metals corroded by methanol-gasoline blends. Half of the metals in the tests were not corroded. Testing at recommended concentrations and then at higher concentrations and in combinations shows that the additives would have no protective or harmful effects on the nonmetals. Two additives emerged as candidates for application to the protection of metals in automotive methanol-gasoline fuel systems. The additives tested were assigned letter codes to protect their proprietary nature.

  19. Evaluation of biomass production in unleaded gasoline and BTEX-fed batch reactors.

    PubMed

    Acuna-Askar, K; Englande, A J; Ramirez-Medrano, A; Coronado-Guardiola, J E; Chavez-Gomez, B

    2003-01-01

    BTEX removal under aerobic conditions by unleaded gasoline acclimated biomass and BTEX acclimated biomass, and the effect of surfactant on BTEX biodegradation were evaluated. The effect of BTEX concentration as the sole source of carbon for biomass acclimation and the effect of yeast extract on cell growth in unleaded gasoline-fed reactors were also evaluated. For the unleaded gasoline acclimated biomass, benzene was shown the most recalcitrant among all BTEX, followed by o-xylene and toluene with 16-23%, 35-41% and 57-69% biodegradation, respectively. Ethylbenzene was consistently the fastest BTEX chemical removed with 99% biodegradation for the four bioreactor acclimated biomasses tested. For the 1,200 ppm BTEX acclimated biomass, benzene showed the highest removal efficiency (99%) among the four biomass environmental conditions tested, along with 99% toluene and 99% ethylbenzene biodegradation. O-xylene showed 92-94% removal. In all bioassays tested Tergitol NP-10 was fully removed, and did not have a substantial effect on BTEX biodegradation at the end of a 10-day evaluation.

  20. IRIS Toxicological Review of Benzene (Noncancer Effects) (1998 External Review Draft)

    EPA Science Inventory

    Benzene is a widely used as an industrial solvent, an intermediate in chemical synthesis of commercial products, and a component of gasoline. The potential for human exposure via inhalation, dermal, and oral routes is great under environmental and occupational situations. The U.S...

  1. KINETICS OF ETHANOL BIODEGRADATION UNDER METHANOGENIC CONDITIONS IN GASOLINE SPILLS

    EPA Science Inventory

    Ethanol is commonly used as a fuel oxygenate. A concern has been raised that biodegradation of ethanol from a spill of gasoline may inhibit the natural biodegradation of fuel hydrocarbons, including benzene. Ethanol is miscible in water, and ethanol is readily metabolized by mi...

  2. 78 FR 23927 - Forms and Procedures for Submitting Attest Engagements Under Various Subparts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... gasoline, anti-dumping, gasoline sulfur, benzene content, and the renewable fuel standard. DATES: The... the reformulated gasoline, anti-dumping, gasoline sulfur, and benzene programs, and the renewable fuel...; Confidential business information; Diesel fuel; Fuel additives; Gasoline; Imports; Motor vehicle pollution...

  3. 40 CFR 80.1235 - What gasoline is subject to the benzene requirements of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... blendstock or finished gasoline to produce gasoline. (2) Oxygenate added to PCG downstream of the refinery... downstream of the refinery or importer that produced or imported PCG adds oxygenate to such product, it shall... credit generation under this subpart. (3) Butane added to finished gasoline, RBOB, CBOB downstream of the...

  4. Exposure to MTBE, TAME and aromatic hydrocarbons during gasoline pump maintenance, repair and inspection.

    PubMed

    Vainiotalo, Sinikka; Kuusimäki, Leea; Pekari, Kaija

    2006-09-01

    The exposure of gasoline pump repairers and inspectors to gasoline was studied at service stations and repair shops in Finland in April-June 2004. The average air temperature ranged from 7 degrees C to 16 degrees C and wind speed from 2.5 to 7 m/s. The gasoline blends contained mixtures of methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME), the total content of oxygenates being 11-12%. The content of benzene was <1%. Breathing zone air was collected during the work task using passive monitors. The mean sampling period was 4.5 h. The mean TWA-8 h concentrations for MTBE, TAME, hexane, benzene, toluene, ethylbenzene and xylene were 4.5, 1.3, 0.55, 0.23, 2.2, 0.26 and 1.1 mg/m3, respectively. None of the individual benzene concentrations exceeded the binding limit value for benzene (3.25 mg/m3). The sum concentration of MTBE and TAME in urine was between 8.9 and 530 nmol/l in individual post-shift samples. The individual sum concentrations of the metabolites tert-butyl alcohol and tert-amyl alcohol collected the following morning after the exposure ranged from 81 to 916 nmol/l. All individual results were below corresponding biological action levels. Exposure to aromatic hydrocarbons was estimated from post-shift urine samples, with benzene showing the highest concentration (range 4.4 and 35 nmol/l in non-smokers). The exposure levels were similar to those measured in previous studies during unloading of tanker lorries and railway wagons. The results indicated a slightly higher exposure for inspectors, who calibrated fuel pump gauges at the service stations, than for pump repairers. No significant skin exposure occurred during the study.

  5. Ethanol effects on the fate and transport of gasoline constituents in the UK.

    PubMed

    Firth, Simon; Hildenbrand, Beate; Morgan, Phil

    2014-07-01

    In the UK, use of ethanol in fuel as a fuel oxygenate/fuel supplement is currently limited but could rise in an effort to meet the requirements of the European "Biofuels" Directive. This Energy Institute study focussed on the risk that accidental releases of ethanol blended gasoline (EBG) (i.e. gasoline containing 10% or less of ethanol) could pose to UK groundwater resources. Ethanol is miscible and highly biodegradable. As a result it tends to be strongly attenuated in the unsaturated zone and in groundwater and so does not, in itself, pose a significant risk to groundwater resources. However, it may lead to increased persistence of other gasoline constituents, particularly through alteration of geochemical conditions as a result of intensive biodegradation activity. A semi-probabilistic modelling exercise was undertaken to better understand the risks that use of EBG could pose to UK groundwater resources. Site investigation information from over 500 filling stations was used in combination with GIS data to predict the proportion of potable water supply wells that could potentially be impacted by benzene and MtBE, and estimate the length of benzene and MtBE plumes with and without the use of ethanol in gasoline. The results show that the use of EBG is likely to have a negligible effect on MtBE plumes. Some increase in benzene plume length is predicted, most notably in fissured aquifers, but increases in plume length of greater than 30% are predicted to be rare. A corresponding slight increase in risk to licensed potable water supply wells from benzene was predicted with the use of EBG but the percentage of wells at risk was still predicted to be small (0.13%), and in the context of the conservatism within the modelling, it was concluded that widespread use of EBG is unlikely to cause an increased risk to UK water resources. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effect of Hydrologic and Geochemical Conditions on Oxygen-Enhanced Bioremediation in a Gasoline-Contaminated Aquifer

    USGS Publications Warehouse

    Landmeyer, J.E.; Bradley, P.M.

    2003-01-01

    The effect of pre-existing factors, e.g., hydrologic, geochemical, and microbiological properties, on the results of oxygen addition to a reformulated gasoline-contaminated groundwater system was studied. Oxygen addition with an oxygen-release compound (a proprietary form of magnesium peroxide produced different results with respect to dissolved oxygen (DO) generation and contaminant decrease in the two locations. Oxygen-release compound injected at the former UST source area did not significantly change measured concentrations of DO, benzene, toluene, or MTBE. Conversely, oxygen-release compound injected 200 m downgradient of the former UST source area rapidly increased DO levels, and benzene, toluene, and MTBE concentrations decreased substantially. The different results could be related to differences in hydrologic and geochemical conditions that characterized the two locations prior to oxygen addition. The lack of recharge to ground water in the paved UST source area led to a much larger geochemical sink for DO compared to ground water in the unpaved area.

  7. Persulfate injection into a gasoline source zone.

    PubMed

    Sra, Kanwartej S; Thomson, Neil R; Barker, Jim F

    2013-07-01

    One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O8(2-), SO4(2-), Na(+), dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for >10months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in [Formula: see text] indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M˙DIC increased by >100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. State of the science on the carcinogenicity of gasoline with particular reference to cohort mortality study results.

    PubMed Central

    Infante, P F

    1993-01-01

    As a result of the content of benzene in various streams of refinery products, including gasoline, it is not surprising that over the years studies and case reports have linked gasoline exposure to lymphopoietic cancers (LPC), particularly leukemia and multiple myeloma (MM). Of three recently conducted studies of gasoline-exposed workers, one shows strong associations with leukemia and MM, a second suggests some association with leukemia and did not analyze data for MM, and the third study is not possible to evaluate because of a major problem with study design. Other diseases of particular interest in relation to gasoline exposure are kidney cancer, malignant melanoma, and heart disease. One study suggests an association with kidney cancer, but the second study did not. There appears to be no association between employment in refineries or gasoline exposure and heart disease. However, evaluation of risk of kidney cancer and heart disease is somewhat difficult because investigators did not control for cigarette smoking, even though it is related to these diseases. This is of particular concern when studying gasoline-exposed workers, who because of the explosive nature of gasoline probably smoke less than the general population used for comparison of mortality. Some studies of refinery workers and gasoline-exposed workers in particular show an excess risk of death from malignant melanoma. Whether this latter association is the result of benzene/gasoline exposure, sunlight exposure, or a combination of the two cannot be determined with the data currently available.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8020433

  9. Environmental and biological monitoring of occupational exposure to organic micropollutants in gasoline.

    PubMed

    Senzolo, C; Frignani, S; Pavoni, B

    2001-07-01

    An exposure risk assessment of workers in a refinery production unit was undertaken. Gasoline and its main components were investigated through environmental and biological monitoring. Measured variables were environmental benzene, toluene, pentane and hexane; benzene and toluene in blood and urine; tt-MA (metabolite of benzene) in urine. Multivariate statistical analysis of the data showed that worker's exposure to the above substances fell within the limits specified by organisations such as ACGIH. Also, biological values complied with reference values (RV) for non-occupationally-exposed population. Different values of biological variables were determined by separating smokers from non-smokers: smokers had hematic and urinary benzene values significantly higher than non-smokers. During a 3-yr sampling, it was possible to identify a significant decrease of benzene in the workplace air and of hematic benzene for non-smokers. The most exposed department, one in which tank-lorries were loaded, needs further investigation and extended monitoring.

  10. Benzene exposure and risk of non-Hodgkin lymphoma.

    PubMed

    Smith, Martyn T; Jones, Rachael M; Smith, Allan H

    2007-03-01

    Exposure to benzene, an important industrial chemical and component of gasoline, is a widely recognized cause of leukemia, but its association with non-Hodgkin lymphoma (NHL) is less clear. To clarify this issue, we undertook a systematic review of all case-control and cohort studies that identified probable occupational exposures to benzene and NHL morbidity or mortality. We identified 43 case-control studies of NHL outcomes that recognized persons with probable occupational exposure to benzene. Forty of these 43 (93%) studies show some elevation of NHL risk, with 23 of 43 (53%) studies finding statistically significant associations between NHL risk and probable benzene exposure. We also identified 26 studies of petroleum refinery workers reporting morbidity or mortality for lymphomas and all neoplasms and found that in 23 (88%), the rate of lymphoma morbidity or mortality was higher than that for all neoplasms. A substantial healthy-worker effect was evident in many of the studies and a comprehensive reevaluation of these studies with appropriate adjustments should be undertaken. Numerous studies have also reported associations between benzene exposure and the induction of lymphomas in mice. Further, because benzene is similar to alkylating drugs and radiation in producing leukemia, it is plausible that it might also produce lymphoma as they do and by similar mechanisms. Potential mechanisms include immunotoxicity and the induction of double-strand breaks with subsequent chromosome damage resulting in translocations and deletions. We conclude that, overall, the evidence supports an association between occupational benzene exposure and NHL.

  11. Review of new evidence regarding the relationship of gasoline exposure to kidney cancer and leukemia.

    PubMed Central

    Enterline, P E

    1993-01-01

    Four new or updated epidemiologic studies were presented at a meeting on the health effects of gasoline exposure held in Miami, Florida, November 5-8, 1991. A focus of these studies was whether there is a relationship between gasoline exposure and kidney cancer and leukemia. For gasoline distribution workers, who have a relatively high exposure, there was some evidence for a kidney cancer relationship in three studies but none in the fourth. There was evidence for an acute myelocytic leukemia relationship in three studies. The fourth study dealt only with kidney cancer. It is possible that the benzene content of gasoline was responsible for the leukemia findings. It is uncertain whether gasoline exposure is a cause of kidney cancer. PMID:8020432

  12. Benzene: a case study in parent chemical and metabolite interactions.

    PubMed

    Medinsky, M A; Kenyon, E M; Schlosser, P M

    1995-12-28

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia and pancytopenia, and acute myelogenous leukemia. A combination of metabolites (hydroquinone and phenol for example) is apparently necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Since benzene and its hydroxylated metabolites (phenol, hydroquinone and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus, the potential exists for competition among various enzymes for phenol. However, zonal localization of Phase I and Phase II enzymes in various regions of the liver acinus regulates this competition. Biologically-based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  13. FOOTPRINT: A Screening Model for Estimating the Area of a Plume Produced From Gasoline Containing Ethanol

    EPA Pesticide Factsheets

    FOOTPRINT is a screening model used to estimate the length and surface area of benzene, toluene, ethylbenzene, and xylene (BTEX) plumes in groundwater, produced from a gasoline spill that contains ethanol.

  14. Benzene contamination at a metal plating facility

    NASA Astrophysics Data System (ADS)

    Memon, B. A.; Burston, M. R.

    2005-08-01

    A metal plating facility in central Kentucky was required to complete a RCRA Facility Investigation to address a number of Solid Waste Management Units at the site. Twenty monitoring wells were installed at the facility. Ground water from the wells was sampled for total and dissolved metals, polychlorinated biphenyls, acid extractable compounds, base neutral compounds, and volatile organic compounds. Unexpectedly, relatively large concentrations of benzene, up to 120 μg/l, were detected in samples from some of the wells, including wells that should have been hydraulically upgradient from the facility. As a result of the detection of benzene, the facility completed an investigation to identify the source. A nearby facility had completed a gasoline underground storage tank (UST) closure at about the time of the installation of the 20 wells. Reportedly the UST had small holes when removed. Three potential pathways of migration (a ditch, sanitary sewer, and a sink hole) from the nearby facility to the metal-plating facility and residual soils with very large concentrations of benzene, toluene, ethylbenzene, and xylenes have been identified.

  15. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...

  16. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...

  17. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...

  18. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...

  19. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...

  20. 75 FR 26165 - Regulation of Fuels and Fuel Additives: Alternative Affirmative Defense Requirements for Ultra...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...EPA is issuing a proposed rule to amend the diesel sulfur regulations to allow refiners, importers, distributors, and retailers of highway diesel fuel the option to use an alternative affirmative defense if the Agency finds highway diesel fuel samples above the specified sulfur standard at retail facilities. This rule also proposes to amend the gasoline benzene regulations to allow disqualified small refiners the same opportunity to generate gasoline benzene credits as that afforded to non-small refiners.

  1. Exposure to regular gasoline and ethanol oxyfuel during refueling in Alaska.

    PubMed Central

    Backer, L C; Egeland, G M; Ashley, D L; Lawryk, N J; Weisel, C P; White, M C; Bundy, T; Shortt, E; Middaugh, J P

    1997-01-01

    Although most people are thought to receive their highest acute exposures to gasoline while refueling, relatively little is actually known about personal, nonoccupational exposures to gasoline during refueling activities. This study was designed to measure exposures associated with the use of an oxygenated fuel under cold conditions in Fairbanks, Alaska. We compared concentrations of gasoline components in the blood and in the personal breathing zone (PBZ) of people who pumped regular unleaded gasoline (referred to as regular gasoline) with concentrations in the blood of those who pumped an oxygenated fuel that was 10% ethanol (E-10). A subset of participants in a wintertime engine performance study provided blood samples before and after pumping gasoline (30 using regular gasoline and 30 using E-10). The biological and environmental samples were analyzed for selected aromatic volatile organic compounds (VOCs) found in gasoline (benzene, ethylbenzene, toluene, m-/p-xylene, and o-xylene); the biological samples were also analyzed for three chemicals not found in gasoline (1,4-dichlorobenzene, chloroform, and styrene). People in our study had significantly higher levels of gasoline components in their blood after pumping gasoline than they had before pumping gasoline. The changes in VOC levels in blood were similar whether the individuals pumped regular gasoline or the E-10 blend. The analysis of PBZ samples indicated that there were also measurable levels of gasoline components in the air during refueling. The VOC levels in PBZ air were similar for the two groups. In this study, we demonstrate that people are briefly exposed to low (ppm and sub-ppm) levels of known carcinogens and other potentially toxic compounds while pumping gasoline, regardless of the type of gasoline used. Images Figure 1. Figure 2. Figure 3. PMID:9347900

  2. 40 CFR 80.1652 - Reporting requirements for gasoline refiners, gasoline importers, oxygenate producers, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Reporting requirements for gasoline refiners, gasoline importers, oxygenate producers, and oxygenate importers. 80.1652 Section 80.1652... FUELS AND FUEL ADDITIVES Gasoline Sulfur § 80.1652 Reporting requirements for gasoline refiners...

  3. 40 CFR 80.1344 - What provisions are available to a non-small refiner that acquires one or more of a small refiner...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner Provisions § 80.1344 What provisions are... a small refiner approved under § 80.1340, the small refiner provisions of the gasoline benzene...

  4. 40 CFR 80.1344 - What provisions are available to a non-small refiner that acquires one or more of a small refiner...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner Provisions § 80.1344 What provisions are... a small refiner approved under § 80.1340, the small refiner provisions of the gasoline benzene...

  5. 40 CFR 80.1344 - What provisions are available to a non-small refiner that acquires one or more of a small refiner...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner Provisions § 80.1344 What provisions are... a small refiner approved under § 80.1340, the small refiner provisions of the gasoline benzene...

  6. 40 CFR 80.1359 - What evidence may be used to determine compliance with the prohibitions and requirements of this...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80... subpart and liability for violations of this subpart? (a) Compliance with the benzene standards of this subpart shall be determined based on the benzene concentration of the gasoline, measured using the...

  7. 40 CFR 80.1359 - What evidence may be used to determine compliance with the prohibitions and requirements of this...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80... subpart and liability for violations of this subpart? (a) Compliance with the benzene standards of this subpart shall be determined based on the benzene concentration of the gasoline, measured using the...

  8. 40 CFR 80.1359 - What evidence may be used to determine compliance with the prohibitions and requirements of this...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80... subpart and liability for violations of this subpart? (a) Compliance with the benzene standards of this subpart shall be determined based on the benzene concentration of the gasoline, measured using the...

  9. Major sources of benzene exposure.

    PubMed Central

    Wallace, L A

    1989-01-01

    Data from EPA's TEAM Study allow us to identify the major sources of exposure to benzene for much of the U.S. population. These sources turn out to be quite different from what had previously been considered the important sources. The most important source of exposure for 50 million smokers is the mainstream smoke from their cigarettes, which accounts for about half of the total population burden of exposure to benzene. Another 20% of nationwide exposure is contributed by various personal activities, such as driving and using attached garages. (Emissions from consumer products, building materials, paints, and adhesives may also be important, although data are largely lacking.) The traditional sources of atmospheric emissions (auto exhaust and industrial emissions) account for only about 20% of total exposure. Environmental tobacco smoke is an important source, accounting for about 5% of total nationwide exposure. A number of sources sometimes considered important, such as petroleum refining operations, petrochemical manufacturing, oil storage tanks, urban-industrial areas, service stations, certain foods, groundwater contamination, and underground gasoline leaks, appear to be unimportant on a nationwide basis. PMID:2477239

  10. Low-dose occupational exposure to benzene and signal transduction pathways involved in the regulation of cellular response to oxidative stress.

    PubMed

    Fenga, Concettina; Gangemi, Silvia; Giambò, Federica; Tsitsimpikou, Christina; Golokhvast, Kirill; Tsatsakis, Aristidis; Costa, Chiara

    2016-02-15

    Benzene metabolism seems to modulate NF-κB, p38-MAPK (mitogen-activated protein kinase) and signal transducer and activator of transcription 3 (STAT3) signalling pathways via the production of reactive oxygen species. This study aims to evaluate the effects of low-dose, long-term exposure on NF-κB, STAT3, p38-MAPK and stress-activated protein kinase/Jun amino-terminal kinase (SAPK/JNK) signal transduction pathways in peripheral blood mononuclear cells in gasoline station attendants. The influence of consumption of vegetables and fruits on these pathways has also been evaluated. A total of 91 men, employed in gasoline stations located in eastern Sicily, were enrolled for this study and compared with a control group of 63 male office workers with no history of exposure to benzene. The exposure was assessed by measuring urinary trans,trans-muconic acid (t,t-MA) concentration. Quantitative analyses were performed for proteins NF-κB p65, phospho-NF-κB p65, phospho-IκB-α, phospho-SAPK/JNK, phospho-p38 MAPK and phospho-STAT3 using an immunoenzymatic assay. The results of this study indicate significantly higher t,t-MA levels in gasoline station attendants. With regard to NF-κB, phospho-IκB-α and phospho-STAT3 proteins, statistically significant differences were observed in workers exposed to benzene. However, no differences were observed in SAPK/JNK and p38-MAPK activation. These changes were positively correlated with t,t-MA levels, but only phospho-NF-κB p65 was associated with the intake of food rich in antioxidant active principles. Chronic exposure to low-dose benzene can modulate signal transduction pathways activated by oxidative stress and involved in cell proliferation and apoptosis. This could represent a possible mechanism of carcinogenic action of chronic benzene exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. MONITORED NATURAL ATTENUATION OF TERTIARY BUTYL ALCOHOL (TBA) IN GROUND WATER AT GASOLINE SPILL SITES

    EPA Science Inventory

    The state agencies that implement the Underground Storage Tank program rely heavily on Monitored Natural Attenuation (MNA) to clean up contaminants such as benzene and methyl tertiary butyl ether (MTBE) at gasoline spill sites. This is possible because the contaminants are biolo...

  12. THE INFLUENCE OF THE GASOLINE OXYGENATE ETHANOL ON AEROBIC AND ANAEROBIC BTX BIODEGRADATION. (R823420)

    EPA Science Inventory

    Ethanol is frequently found along with benzene, toluene, and xylenes (BTX) in groundwater contaminated with gasoline. Yet, little is known about its effect on bioremediation of the toxic BTX contaminants. Aquifer microcosms were used to investigate the effect of ethanol on microb...

  13. Identifying the usage patterns of methyl tert-butyl ether (MTBE) and other oxygenates in gasoline using gasoline surveys

    USGS Publications Warehouse

    Moran, M.J.; Clawges, R.M.; Zogorski, J.S.

    2000-01-01

    Data on the volumes of oxygenates and other compounds in gasoline are available from several sources collectively referred as gasoline surveys. The gasoline surveys provide the most definitive knowledge of which oxygenate, if any, and what volumes of that oxygenate are being used in various areas of the country. This information is important in water-quality assessments for relating the detection of MTBE in water to patterns of usage of MTBE in gasoline. General information on three surveys that have been conducted by the National Institute for Petroleum and Energy Research, the Motor Vehicle Manufacturers Association, and the EPA was presented. The samples were tested for physical properties and constituents including octane number, specific gravity, and volumes of olefins, aromatics, benzene, alcohols, and various ether oxygenates. The data in each survey had its own utility based on the type of assessment that is undertaken. Quality Assessment (NAWQA) Program. Using NAWQA data, the percent occurrence of MTBE in ground water in metropolitan areas that use substantial amounts of MTBE (> 5% by vol) was ??? 21%, compared to ??? 2% in areas that do not use substantial amounts of MTBE (< 5% by vol). When several other factors are considered in a logistic regression model including MTBE usage in RFG or OXY gasoline areas (??? 3% by vol) as a factor, a 4-6 fold increase in the detection frequency of MTBE in ground water was found when compared to areas that do not use MTBE or use it only for octane enhancement (< 3% by vol).

  14. Controlled field study on the use of nitrate and oxygen for bioremediation of a gasoline source zone

    USGS Publications Warehouse

    Barbaro, J.R.; Barker, J.F.

    2000-01-01

    Controlled releases of unleaded gasoline were utilized to evaluate the biotransformation of the soluble aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene isomers, trimethylbenzene isomers, and naphthalene) within a source zone using nitrate and oxygen as electron acceptors. Experiments were conducted within two 2 m ?? 2 m ?? 3.5 m deep sheet-piling cells. In each treatment cell, a gasoline-contaminated zone was created below the water table. Groundwater amended with electron acceptors was then flushed continuously through the cells for 174 day. Electron-acceptor utilization and hydrocarbon-metabolite formation were noted in both cells, indicating that some microbial activity had been induced in response to flushing. Relative to the cell residence time, nitrate utilization was slow and aromatic-hydrocarbon mass losses in response to microaerophilic dissolved oxygen addition were not obvious under these in situ conditions. There was relatively little biotransformation of the aromatic hydrocarbons over the 2-m flow path monitored in this experiment. A large denitrifying population capable of aromatic hydrocarbon biotransformation failed to develop within the gasoline source zone over a 14-mo period of nitrate exposure.

  15. CONTROLLED FIELD STUDY ON THE USE OF NITRATE AND OXYGEN FOR BIOREMEDIATION OF A GASOLINE SOURCE ZONE

    EPA Science Inventory

    Controlled releases of unleaded gasoline were used to evaluate the biotransformation of the soluble aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene isomers, trimethylbenzene isomers, and naphthalene) within a source zone using nitrate and oxygen as electron accepto...

  16. SCREENING LIFE CYCLE ASSESSMENT OF GASOLINE ADDITIVES

    EPA Science Inventory

    The EPA's ORD is conducting a screening of Life Cycle Assessment (LCA) of selected automotive fuel (i.e., gasoline) systems. Although no specific guidelines exist on how to conduct such a streamlined approach, the basic idea is to use a mix of qualitative and quantitative generi...

  17. 40 CFR 80.1339 - Who is not eligible for the provisions for small refiners?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner... section, the refiner may not generate gasoline benzene credits under § 80.1275(b)(3) for any of its...

  18. 40 CFR 80.1339 - Who is not eligible for the provisions for small refiners?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner... section, the refiner may not generate gasoline benzene credits under § 80.1275(b)(3) for any of its...

  19. 40 CFR 80.1339 - Who is not eligible for the provisions for small refiners?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner... section, the refiner may not generate gasoline benzene credits under § 80.1275(b)(3) for any of its...

  20. Velocity-dependent emission factors of benzene, toluene and C 2-benzenes of a passenger car equipped with and without a regulated 3-way catalyst

    NASA Astrophysics Data System (ADS)

    Heeb, Norbert V.; Forss, Anna-Maria; Bach, Christian; Mattrel, Peter

    Time-resolved chemical ionization mass spectrometry (CI-MS) has been used to investigate the velocity-dependent emission factors for benzene, toluene, the C 2-benzenes (xylenes and ethyl benzene) and nitrogen monoxide of a gasoline-driven passenger car (1.4 l, model year 1995) driven with or without catalytic exhaust gas treatment. A set of seven different driving cycles - including the European Driving Cycle (EDC), the US Urban (FTP 75) and the Highway driving cycles - with a total driving time of 12,000 s have been studied. From the obtained emission data, two sets of 15,300 and 17,200 data points which represent transient driving in the velocity range of 0-150 km h -1 and in an acceleration window of -2-3 m s -2 were explored to gain velocity-dependent emission factors. The passenger car, equipped with a regulated rhodium-platinum based three-way catalyst, showed optimal conversion efficiency (>95%) for benzene in the velocity range of 60-120 km h -1. The conversion of benzene was reduced (<80%) when driving below 50 km h -1 and the BTXE emissions significantly increased when driven at higher speed and engine load (>130 km h -1). Whereas the conversion efficiency for the class of C 2-benzenes was reduced to 10%, no net conversion could be found for toluene and benzene when driven above 130 km h -1. In contrast, the benzene and toluene emissions exceeded those of the untreated exhaust gas in the velocity range of 130-150 km h -1 by 50-92% and by 10-34%, respectively. Thus, benzene and toluene were formed across the examined three-way catalyst if the engine is operated for an extended time in a fuel-rich mode (lambda<1).

  1. 40 CFR 80.1335 - Can a refiner seek relief from the requirements of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship... comply with the gasoline benzene standards at § 80.1230(a) or (b) by the applicable date(s); and (2) It... will be in place for engineering and construction of benzene reduction technology, a plan for applying...

  2. 40 CFR 80.1335 - Can a refiner seek relief from the requirements of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship... comply with the gasoline benzene standards at § 80.1230(a) or (b) by the applicable date(s); and (2) It... will be in place for engineering and construction of benzene reduction technology, a plan for applying...

  3. 40 CFR 80.1335 - Can a refiner seek relief from the requirements of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship... comply with the gasoline benzene standards at § 80.1230(a) or (b) by the applicable date(s); and (2) It... will be in place for engineering and construction of benzene reduction technology, a plan for applying...

  4. Self-collected breath sampling for monitoring low-level benzene exposures among automobile mechanics.

    PubMed

    Egeghy, Peter P; Nylander-French, Leena; Gwin, Kristin K; Hertz-Picciotto, Irva; Rappaport, Stephen M

    2002-07-01

    Automobile mechanics are exposed to benzene through their contact with gasoline vapor and engine exhaust. This study investigated the benzene uptake associated with these exposures. We first evaluated the reliability of self-collected breath samples among a subset of subjects and found good agreement between these samples and those collected under expert supervision (intraclass correlation coefficient 0.79, n = 69). We then used self-monitoring together with a longitudinal sampling design (with up to three measurements per worker) to measure benzene in air and benzene in end-exhaled breath among 81 workers from 12 automobile repair garages in North Carolina. A statistically significant difference (P < 0.0001, Mann-Whitney rank sum test) was observed between non-smokers and smokers for post-exposure benzene concentration in breath (median values of 18.9 and 39.1 micro g/m(3), respectively). Comparing pre- and post-exposure breath concentrations within these two groups, the difference was significant among non-smokers (P < 0.0001) but not significant among smokers (P > 0.05). Mixed effects regression analysis using backwards elimination yielded five significant predictors of benzene concentration in breath, namely benzene exposure (P < 0.0001), pre-exposure benzene concentration in breath (P = 0.021), smoking status (P < 0.0001), fuel system work (P = 0.0043) and carburetor cleaner use (P < 0.0001). The between-person variance component comprised only 28% of the total variance in benzene levels in breath, indicating that differences among individuals related to physiological and metabolic characteristics had little influence on benzene uptake among these workers.

  5. Renewable Gasoline, Solvents, and Fuel Additives from 2,3-Butanediol.

    PubMed

    Harvey, Benjamin G; Merriman, Walter W; Quintana, Roxanne L

    2016-07-21

    2,3-Butanediol (2,3-BD) is a renewable alcohol that can be prepared in high yield from biomass sugars. 2,3-BD was selectively dehydrated in a solvent-free process to a complex mixture of 2-ethyl-2,4,5-trimethyl-1,3-dioxolanes and 4,5-dimethyl-2isopropyl dioxolanes with the heterogeneous acid catalyst Amberlyst-15. The purified dioxolane mixture exhibited an anti-knock index of 90.5, comparable to high octane gasoline, and a volumetric net heat of combustion 34 % higher than ethanol. The solubility of the dioxolane mixture in water was only 0.8 g per 100 mL, nearly an order of magnitude lower than the common gasoline oxygenate methyl tert-butyl ether. The dioxolane mixture has potential applications as a sustainable gasoline blending component, diesel oxygenate, and industrial solvent. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 40 CFR 80.1654 - California gasoline requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false California gasoline requirements. 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur § 80.1654 California gasoline requirements. (a) California gasoline exemption. California gasoline that complies with all the requirements of...

  7. Property Analysis of Ethanol--Natural Gasoline--BOB Blends to Make Flex Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alleman, Teresa L.; Yanowitz, Janet

    Ten natural gasolines were analyzed for a wide range of properties, including Reid vapor pressure (RVP), benzene, sulfur, distillation, stability, metals, and aromatic content, to determine their quality. Benzene and sulfur content were sufficiently low in all but one of the samples that they could be blended without further upgrading. Four of these samples were selected to blend with blendstock for oxygenate blending (BOB) and ethanol to produce E51, E70, and E83 blends, targeting 7.8 and 9.0-psi finished fuels. The volume of each component in the blend was estimated using the Reddy model, with the assumption that the BOB andmore » natural gasoline blend linearly and behave as a single component in the model calculations. Results show that the Reddy model adequately predicts the RVP of the finished blend for E51 and E70, but significantly underpredicts the RVP of E83 blends by nearly 2 psi. It is hypothesized that the underprediction is a function of the very low aromatic content of the E83 blends, even compared to the E51 and E70 blends.« less

  8. Beyond the benzene dimer: an investigation of the additivity of pi-pi interactions.

    PubMed

    Tauer, Tony P; Sherrill, C David

    2005-11-24

    The benzene dimer is the simplest prototype of pi-pi interactions and has been used to understand the fundamental physics of these interactions as they are observed in more complex systems. In biological systems, however, aromatic rings are rarely found in isolated pairs; thus, it is important to understand whether aromatic pairs remain a good model of pi-pi interactions in clusters. In this study, ab initio methods are used to compute the binding energies of several benzene trimers and tetramers, most of them in 1D stacked configurations. The two-body terms change only slightly relative to the dimer, and except for the cyclic trimer, the three- and four-body terms are negligible. This indicates that aromatic clusters do not feature any large nonadditive effects in their binding energies, and polarization effects in benzene clusters do not greatly change the binding that would be anticipated from unperturbed benzene-benzene interactions, at least for the 1D stacked systems considered. Three-body effects are larger for the cyclic trimer, but for all systems considered, the computed binding energies are within 10% of what would be estimated from benzene dimer energies at the same geometries.

  9. 40 CFR 79.32 - Motor vehicle gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Motor vehicle gasoline. 79.32 Section...) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.32 Motor vehicle gasoline. (a) The following fuels commonly or commercially known or sold as motor vehicle gasoline are hereby...

  10. 40 CFR 79.32 - Motor vehicle gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Motor vehicle gasoline. 79.32 Section...) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.32 Motor vehicle gasoline. (a) The following fuels commonly or commercially known or sold as motor vehicle gasoline are hereby...

  11. 40 CFR 79.32 - Motor vehicle gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Motor vehicle gasoline. 79.32 Section...) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.32 Motor vehicle gasoline. (a) The following fuels commonly or commercially known or sold as motor vehicle gasoline are hereby...

  12. 40 CFR 79.32 - Motor vehicle gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Motor vehicle gasoline. 79.32 Section...) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.32 Motor vehicle gasoline. (a) The following fuels commonly or commercially known or sold as motor vehicle gasoline are hereby...

  13. The toxicity of selected gasoline components to glucose methanogenesis by aquifer microorganisms

    USGS Publications Warehouse

    Mormile, Melanie R.; Suflita, Joseph M.

    1996-01-01

    Six model hydrocarbons, representing various classes of chemicals found in gasoline, and methyl ethyl ketone, were assayed for their inhibitory effect on glucose methanogenesis in slurries prepared from aquifer sediments and ground water. Biogas (CH4and CO2) production was monitored with an automated pressure transducer system. Benzene, 1-methyl naphthalene, and methyltert-butyl ether (MTBE) were found to have no inhibitory influence on biogas production rates at concentrations up to 71·7 mg/L. Similarly, octane, cyclohexane, indan, and methyl ethyl ketone (MEK) were found to have only marginal negative effects on the rate of biogas production in aquifer slurries, at concentrations ranging from 51·7 to 72·1 mg/L. Thus, gasoline components had low apparent toxicities to microorganisms responsible for glucose methanogenesis in aquifier slurries. As the concentrations of the assayed hydrocarbons are about 100 times those typically reported after an aquifer has been contaminated with gasoline, it is unlikely that individual hydrocarbons will substantially impact anaerobic metabolic processes.

  14. Establishment of a Methanogenic Benzene-Degrading Culture and its Implication in Bioremediation

    NASA Astrophysics Data System (ADS)

    Qiao, W.; Luo, F.; Bawa, N.; Guo, S.; Ye, S.; Edwards, E.

    2017-12-01

    Benzene is a known human carcinogen and it is a common pollutant in groundwater, mainly resulting from petrochemical industry. Anaerobic degradation of benzene has significant advantages over aerobic processes for in situ bioremediation. In this study, new methanogenic and sulfate-reducing benzene degrading cultures have been enriched. Microbial community composition was characterized with two other previously established benzene-degrading cultures, and their potential use in bioaugmentation is investigated. In this study, a lab microcosm study was conducted anaerobically with contaminated soil and groundwater from a former chemical plant. Benzene degradation was observed in the presence of co-contaminants and electron donor. Through repetitive amendment of benzene, two enrichment cultures have been developed under sulfate and methanogenic conditions. Results from DNA amplicon sequencing and qPCR analysis revealed that an organism similar to previously described benzene-degrading Deltaproteobacterium has been enriched. The microbial community of this culture was compared with other two methanogenic benzene-degrading enrichment cultures that were derived from an oil refinery and a decommissioned gasoline station, and have been maintained for decades. Deltaproteobacterium ORM2-like microbes were dominate in all enrichment cultures, which brought to light benzene-degrading microbes, ORM2 were enriched under different geological conditions distributed around the world. The relative abundance of methanogens was much lower compared to previously established cultures, although substantial amount of methane was produced. The peripheral organisms also vary. To investigate effectiveness of using ORM2-dominant enrichment cultures in bioremediation, microcosm studies were set up using contaminated materials, and a ORM2-dominating methanogenic benzene-degrading culture was used for bioaugmentation. Results revealed that benzene degradation was speeded up under methanogenic or

  15. Critical issues in benzene toxicity and metabolism: the effect of interactions with other organic chemicals on risk assessment.

    PubMed

    Medinsky, M A; Schlosser, P M; Bond, J A

    1994-11-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene are well documented and include aplastic anemia and pancytopenia. Some individuals exposed repeatedly to cytotoxic concentrations of benzene develop acute myeloblastic anemia. It has been hypothesized that metabolism of benzene is required for its toxicity, although administration of no single benzene metabolite duplicates the toxicity of benzene. Several investigators have demonstrated that a combination of metabolites (hydroquinone and phenol, for example) is necessary to duplicate the hematotoxic effect of benzene. Enzymes implicated in the metabolic activation of benzene and its metabolites include the cytochrome P450 monooxygenases and myeloperoxidase. Since benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. Other organic molecules that are substrates for cytochrome P450 can inhibit the metabolism of benzene. For example, toluene has been shown to inhibit the oxidation of benzene in a noncompetitive manner. Enzyme inducers, such as ethanol, can alter the target tissue dosimetry of benzene metabolites by inducing enzymes responsible for oxidation reactions involved in benzene metabolism. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes, such as enzymatic oxidation, and deactivation processes, like conjugation and excretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Extension of the Reformulated Gasoline Program to Maine’s Southern Counties Additional Resources

    EPA Pesticide Factsheets

    Supporting documents on EPA's decision about extending the Clean Air Act prohibition against the sale of conventional gasoline in reformulated gasoline areas to the southern Maine counties of York, Cumberland,Sagadahoc

  17. Benzene and its methyl-derivatives: derivation of maximum exposure levels in automobiles.

    PubMed

    Schupp, Thomas; Bolt, Hermann M; Jaeckh, Rudolf; Hengstler, Jan G

    2006-01-05

    Automobile drivers are exposed to several organic hydrocarbons. Concentrations measured in passenger compartments have been reported to range between 13 and 560 microg/m(3) for benzene, 33-258 microg/m(3) for toluene, 20-250 microg/m(3) for xylene (mixed isomers) and 3-23 microg/m(3) for trimethylbenzene (mixed isomers). These aromatic hydrocarbons are emitted from gasoline and from materials inside a car. In the present study we evaluated, whether these exposures pose a potential risk to the health of drivers. Therefore, we derived maximum exposure levels inside cars for chronic (ELIA(chronic)) and short-term (STELIA) exposure. The lowest ELIA's(chronic) for benzene, toluene, xylene and trimethylbenzene were 0.083, 1.2, 8.8 and 0.31 mg/m(3), respectively. The respective STELIA's were 16, 30, 29 and 25 mg/m(3). Obviously concentrations of toluene, xylene and trimethylbenzene inside cars do not exceed their individual STELIA's. In contrast, benzene seems to be problematic, since concentrations inside cars amount up to 0.56 mg/m(3), which exceeds the ELIA(chronic) derived for benzene. This should not be underestimated, since benzene is a genotoxic carcinogen that probably acts by non-threshold mechanisms. In conclusion, concentrations of toluene, xylene and trimethylbenzene usually observed inside cars are unlikely to pose a risk to the health of drivers. A systematic toxicological evaluation of the risk associated with benzene exposure in cars seems to be necessary.

  18. Calculated volatilization rates of fuel oxygenate compounds and other gasoline-related compounds from rivers and streams

    USGS Publications Warehouse

    Pankow, J.F.; Rathbun, R.E.; Zogorski, J.S.

    1996-01-01

    Large amounts of the 'fuel-oxygenate' compound methyl-tert-butyl ether (MTBE) are currently being used in gasoline to reduce carbon monoxide and ozone in urban air and to boost fuel octane. Because MTBE can be transported to surface waters in various ways, established theory was used to calculate half-lives for MTBE volatilizing from flowing surface waters. Similar calculations were made for benzene as a representative of the 'BTEX' group of compounds (benzene, toluene, ethyl benzene, and the xylenes), and for tert-butyl alcohol (TBA). The calculations were made as a function of the mean flow velocity u (m/day), the mean flow depth h (m), the ambient temperature, and the wind speed. In deep, slow-moving flows, MTBE volatilizes at rates which are similar to those for the BTEX compounds. In shallow, fast-moving flows, MTBE volatilizes more slowly than benzene, though in such flows both MTBE and benzene volatilize quickly enough that these differences may often not have much practical significance. TBA was found to be essentially nonvolatile from water.

  19. Reduction of benzene and naphthalene mass transfer from crude oils by aging-induced interfacial films.

    PubMed

    Ghoshal, Subhasis; Pasion, Catherine; Alshafie, Mohammed

    2004-04-01

    Semi-rigid films or skins form at the interface of crude oil and water as a result of the accumulation of asphaltene and resin fractions when the water-immiscible crude oil is contacted with water for a period of time or "aged". The time varying patterns of area-independent mass transfer coefficients of two compounds, benzene and naphthalene, for dissolution from crude oil and gasoline were determined. Aqueous concentrations of the compounds were measured in the eluent from flow-through reactors, where a nondispersed oil phase and constant oil-water interfacial area were maintained. For Brent Blend crude oil and for gasoline amended with asphaltenes and resins, a rapid decrease in both benzene and naphthalene mass transfer coefficients over the first few days of aging was observed. The mass transfer coefficients of the two target solutes were reduced by up to 80% over 35 d although the equilibrium partition coefficients were unchanged. Aging of gasoline, which has negligible amounts of asphaltene and resin, did not result in a change in the solute mass transfer coefficients. The study demonstrates that formation of crude oil-water interfacial films comprised of asphaltenes and resins contribute to time-dependent decreases in rates of release of environmentally relevant solutes from crude oils and may contribute to the persistence of such solutes at crude oil-contaminated sites. It is estimated that the interfacial film has an extremely low film mass transfer coefficient in the range of 10(-6) cm/min.

  20. 76 FR 5319 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline AGENCY: Environmental... proposing to allow refiners and laboratories to use an alternative test method for olefin content in... test method for compliance measurement while maintaining environmental benefits achieved from our fuels...

  1. [The significance of enviromental and biological monitoring in workers employed in service stations after the elimitation of tetraethyl lead from gasoline].

    PubMed

    Ghittori, S; Ferrari, M; Maestri, L; Negri, S; Zadra, P; Gremita, C; Imbriani, M

    2005-01-01

    The chemical risk in service stations may be due to toxic compounds present in fuel (particularly benzene and additives) and to the emission of exhausts and fine particulate from vehicles. Owing to the elimination of lead (Pb) from fuel and to the necessity of lowering CO emission, several oxygenated additives have been added to fuel, in particular methyl-tert-butyl-ether (MTBE), whose toxic properties are at present under investigation. The introduction of reformulated gasoline (RFG) and the use of catalytic converters (with possible release of platinum (Pt) in the environment) may have modified the risks for workers employed in service stations. The paper shows data collected from 26 subjects (divided into three specific tasks, namely: fuel dispenser, "self-service" attendant and controller, and cashier) to estimate the actual chemical risk and to compare it with the previous data taken from literature. For this purpose, besides performing the usual medical surveillance, we measured the environmental concentrations of benzene, MTBE and formaldehyde, the urinary levels of benzene metabolites S-phenylmercapturic acid (S-PMA) and t,t-muconic acid (MA) and of unmodified MTBE, and the blood concentrations of Pb and Pt for each subject. Mean values of these compounds were, respectively: 38.81 microg/m3; 174.04 microg/m3; 10.38 microg/m3; 2.36 microg/g creatinine; 96.57 microg/g creatinine; 1.41 microg/L; 7.00 microg/100 mL; 0.0738 ng/ml. The above values were much lower than the corresponding limit values reported by ACGIH and DFG. In particular, after the introduction of vapour recycle systems and the widespread use of "self-service" systems, airborne benzene concentration dropped from 300/400 microg/m3 to lower than 100 microg/m3, without noticeable increasing of exposure to formaldehyde. The disappearing of Pb from gasoline leads to a progressive lowering of its blood levels, while the possible risks due to the very low amounts of Pt released from catalytic

  2. Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline blends.

    PubMed

    Li, Lan; Ge, Yunshan; Wang, Mingda; Peng, Zihang; Song, Yanan; Zhang, Liwei; Yuan, Wanli

    2015-01-01

    The emission characteristics of motorcycles using gasoline and E10 (90% gasoline and 10% ethanol by volume) were investigated in this article. Exhaust and evaporative emissions of three motorcycles were investigated on the chassis dynamometer over the Urban Driving Cycle (UDC) and in the Sealed Housing for Evaporative Determination (SHED) including regulated and unregulated emissions. The regulated emissions were detected by an exhaust gas analyzer directly. The unregulated emissions including carbonyls and volatile organic compounds (VOCs) were sampled through battery-operated air pumps using tubes coated with 2,4-dinitrophenylhydrazine (DNPH) and Tenax TA, respectively. The experimental results showed that the emission factors of total hydrocarbons (THC) and carbon monoxide (CO) from E10 fueling motorcycles decreased by 26%-45% and 63%-73%, while the emission factor of NOx increased by 36%-54% compared with those from gasoline fueling motorcycles. For unregulated emissions, the emission amount of VOCs from motorcycles fueled with E10 decreased by 18%-31% while total carbonyls were 2.6-4.5 times higher than those for gasoline. For evaporative emissions of THC and VOCs, for gasoline or E10, the diurnal breathing loss (DBL) was higher than hot soak loss (HSL). Using E10 as a fuel does not make much difference in the amount of evaporative THC, while resulted in a slightly growth of 14%-17% for evaporative BETX (benzene, toluene, ethylbenzene, xylene). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Benzene

    Cancer.gov

    Learn about benzene, a component of crude oil and other substances. Exposure to benzene may increase the risk of leukemia and other blood disorders. Among smokers, 90 percent of benzene exposure comes from smoking. Benzene may also be found in glues, adhesives, and paint or cleaning products.

  4. Traffic-Related Air Pollution and the Onset of Myocardial Infarction: Disclosing Benzene as a Trigger? A Small-Area Case-Crossover Study

    PubMed Central

    Bard, Denis; Kihal, Wahida; Schillinger, Charles; Fermanian, Christophe; Ségala, Claire; Glorion, Sophie; Arveiler, Dominique; Weber, Christiane

    2014-01-01

    Background and Objectives Exposure to traffic is an established risk factor for the triggering of myocardial infarction (MI). Particulate matter, mainly emitted by diesel vehicles, appears to be the most important stressor. However, the possible influence of benzene from gasoline-fueled cars has not been explored so far. Methods and Results We conducted a case-crossover study from 2,134 MI cases recorded by the local Coronary Heart Disease Registry (2000–2007) in the Strasbourg Metropolitan Area (France). Available individual data were age, gender, previous history of ischemic heart disease and address of residence at the time of the event. Nitrogen dioxide, particles of median aerodynamic diameter <10 µm (PM10), ozone, carbon monoxide and benzene air concentrations were modeled on an hourly basis at the census block level over the study period using the deterministic ADMS-Urban air dispersion model. Model input data were emissions inventories, background pollution measurements, and meteorological data. We have found a positive, statistically significant association between concentrations of benzene and the onset of MI: per cent increase in risk for a 1 µg/m3 increase in benzene concentration in the previous 0, 0–1 and 1 day was 10.4 (95% confidence interval 3–18.2), 10.7 (2.7–19.2) and 7.2 (0.3–14.5), respectively. The associations between the other pollutants and outcome were much lower and in accordance with the literature. Conclusion We have observed that benzene in ambient air is strongly associated with the triggering of MI. This novel finding needs confirmation. If so, this would mean that not only diesel vehicles, the main particulate matter emitters, but also gasoline-fueled cars –main benzene emitters–, should be taken into account for public health action. PMID:24932584

  5. Traffic-related air pollution and the onset of myocardial infarction: disclosing benzene as a trigger? A small-area case-crossover study.

    PubMed

    Bard, Denis; Kihal, Wahida; Schillinger, Charles; Fermanian, Christophe; Ségala, Claire; Glorion, Sophie; Arveiler, Dominique; Weber, Christiane

    2014-01-01

    Exposure to traffic is an established risk factor for the triggering of myocardial infarction (MI). Particulate matter, mainly emitted by diesel vehicles, appears to be the most important stressor. However, the possible influence of benzene from gasoline-fueled cars has not been explored so far. We conducted a case-crossover study from 2,134 MI cases recorded by the local Coronary Heart Disease Registry (2000-2007) in the Strasbourg Metropolitan Area (France). Available individual data were age, gender, previous history of ischemic heart disease and address of residence at the time of the event. Nitrogen dioxide, particles of median aerodynamic diameter <10 µm (PM10), ozone, carbon monoxide and benzene air concentrations were modeled on an hourly basis at the census block level over the study period using the deterministic ADMS-Urban air dispersion model. Model input data were emissions inventories, background pollution measurements, and meteorological data. We have found a positive, statistically significant association between concentrations of benzene and the onset of MI: per cent increase in risk for a 1 µg/m3 increase in benzene concentration in the previous 0, 0-1 and 1 day was 10.4 (95% confidence interval 3-18.2), 10.7 (2.7-19.2) and 7.2 (0.3-14.5), respectively. The associations between the other pollutants and outcome were much lower and in accordance with the literature. We have observed that benzene in ambient air is strongly associated with the triggering of MI. This novel finding needs confirmation. If so, this would mean that not only diesel vehicles, the main particulate matter emitters, but also gasoline-fueled cars--main benzene emitters-, should be taken into account for public health action.

  6. A review of phase separation issues in aviation gasoline fuel and motor gasoline fuels in aviation

    NASA Astrophysics Data System (ADS)

    Thanikasalam, K.; Rahmat, M.; Fahmi, A. G. Mohammad; Zulkifli, A. M.; Shawal, N. Noor; Ilanchelvi, K.; Ananth, M.; Elayarasan, R.

    2018-05-01

    In an attempt to bring in sustainable energy resources into the current combustibles mix, recent European legislations make obligatory the addition of biogenic fuels into traditional fossil gasoline. The preferred biogenic fuel, for economic reasons, is predominantly ethanol. Even though likened to fossil gasoline constituents, ethanol has a dissimilar chemical formulation that may lead to a potentially hazardous physicochemical phenomenon, particularly in the presence of water. Owing to increased financially driven propensity to utilize motor vehicle gasoline as aviation gasoline fuel, this may result in potentially hazardous situations, specifically in running smaller or compact General Aviation aircraft. The potential risks posed by ethanol admixtures in aircraft are phase separation and carburettor icing. Gasoline mixed with ethanol is also prone to an increased vulnerability to vapor lock that happens when fuel turns into vapor in the fuel pumps due to high temperatures and lessened ambient pressure at high altitudes. This article provides a literature review on phase separation issues in aviation gasoline fuel and motor gasoline fuels in aviation.

  7. Determination of Benzene, Toluene, and Xylene by means of an ion mobility spectrometer device using photoionization

    NASA Technical Reports Server (NTRS)

    Leonhardt, J. W.; Bensch, H.; Berger, D.; Nolting, M.; Baumbach, J. I.

    1995-01-01

    The continuous monitoring of changes on the quality of ambient air is a field of advantage of ion mobility spectrometry. Benzene, Toluene, and Xylene are substances of special interest because of their toxicity. We present an optimized drift tube for ion mobility spectrometers, which uses photo-ionization tubes to produce the ions to be analyzed. The actual version of this drift tube has a length of 45 mm, an electric field strength established within the drift tube of about 180 V/cm and a shutter-opening-time of 400 mus. With the hydrogen tube used for ionisation a mean flux of 10(exp 12) photons/sq cm s was established for the experiments described. We discuss the results of investigations on Benzene, Toluene, and Xylene in normal used gasoline SUPER. The detection limits obtained with the ion mobility spectrometer developed in co-operation are in the range of 10 ppbv in this case. Normally, charge transfer from Benzene ions to Toluene takes place. Nevertheless the simultaneous determination in mixtures is possible by a data evaluation procedure developed for this case. The interferences found between Xylene and others are rather weak. The ion mobility spectra of different concentrations of gasoline SUPER are attached as an example for the resolution and the detection limit of the instrument developed. Resolution and sensitivity of the system are well demonstrated. A hand-held portable device produced just now is to be tested for special environmental analytical problems in some industrial and scientific laboratories in Germany.

  8. Biodegradation of commercial gasoline (24% ethanol added) in liquid medium by microorganisms isolated from a landfarming site.

    PubMed

    Oliveira, Núbia M; Bento, Fátima M; Camargo, Flávio A O; Knorst, Aline Jéssica; Dos Santos, Anai Loreiro; Pizzolato, Tania M; Peralba, Maria do Carmo R

    2011-01-01

    Isolation of soil microorganisms from a landfarming site with a 19-year history of petrochemical residues disposal was carried out. After isolation, the bacteria behavior in mineral medium with 1% commercial gasoline (24% ethanol) was evaluated. Parameters employed for microorganism evaluation and selection of those with the greatest degradation potential were: microbial growth; biosurfactant generation and compound reduction in commercial gasoline. Starting from bacteria that presented the best degradation results, consortiums formed by 4 distinct microorganisms were formed. A microbial growth in the presence of commercial gasoline was observed and, for most of the bacteria, degradations of compounds such as benzene, toluene and xylenes (BTX) as well as biosurfactant production was observed. Ethanol was partially degraded by the bacterial isolates although the data does not allow affirming that it was degraded preferentially to the aromatic hydrocarbons investigated. The analyzed consortiums present an efficiency of 95% to 98% for most of the commercial gasoline compounds and a preferential attack to ethanol under the essay condition was not observed within 72 h.

  9. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    PubMed

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  10. 40 CFR 80.375 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline? 80.375 Section 80.375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Exemptions § 80.375 What requirements apply to California gasoline? (a) Definition. For purposes of this subpart California gasoline...

  11. 40 CFR 80.845 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline? 80.845 Section 80.845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.845 What requirements apply to California gasoline? (a) Definition. For purposes of this...

  12. 40 CFR 80.375 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline? 80.375 Section 80.375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Exemptions § 80.375 What requirements apply to California gasoline? (a) Definition. For purposes of this subpart California gasoline...

  13. 40 CFR 80.845 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline? 80.845 Section 80.845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.845 What requirements apply to California gasoline? (a) Definition. For purposes of this...

  14. 40 CFR 80.375 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline? 80.375 Section 80.375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Exemptions § 80.375 What requirements apply to California gasoline? (a) Definition. For purposes of this subpart California gasoline...

  15. 40 CFR 80.845 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline? 80.845 Section 80.845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.845 What requirements apply to California gasoline? (a) Definition. For purposes of this...

  16. 40 CFR 80.375 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline? 80.375 Section 80.375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Exemptions § 80.375 What requirements apply to California gasoline? (a) Definition. For purposes of this subpart California gasoline...

  17. 40 CFR 80.375 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline? 80.375 Section 80.375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Exemptions § 80.375 What requirements apply to California gasoline? (a) Definition. For purposes of this subpart California gasoline...

  18. 40 CFR 80.845 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline? 80.845 Section 80.845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.845 What requirements apply to California gasoline? (a) Definition. For purposes of this...

  19. 40 CFR 80.845 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline? 80.845 Section 80.845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.845 What requirements apply to California gasoline? (a) Definition. For purposes of this...

  20. Limited recovery of soil microbial activity after transient exposure to gasoline vapors.

    PubMed

    Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K

    2016-09-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Anaerobic Benzene Oxidation by Geobacter Species

    PubMed Central

    Bain, Timothy S.; Nevin, Kelly P.; Barlett, Melissa A.; Lovley, Derek R.

    2012-01-01

    The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 109 and 8.4 × 109 cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 109 cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated. PMID:23001648

  2. Leukemia and Benzene

    PubMed Central

    Snyder, Robert

    2012-01-01

    Excessive exposure to benzene has been known for more than a century to damage the bone marrow resulting in decreases in the numbers of circulating blood cells, and ultimately, aplastic anemia. Of more recent vintage has been the appreciation that an alternative outcome of benzene exposure has been the development of one or more types of leukemia. While many investigators agree that the array of toxic metabolites, generated in the liver or in the bone marrow, can lead to traumatic bone marrow injury, the more subtle mechanisms leading to leukemia have yet to be critically dissected. This problem appears to have more general interest because of the recognition that so-called “second cancer” that results from prior treatment with alkylating agents to yield tumor remissions, often results in a type of leukemia reminiscent of benzene-induced leukemia. Furthermore, there is a growing literature attempting to characterize the fine structure of the marrow and the identification of so called “niches” that house a variety of stem cells and other types of cells. Some of these “niches” may harbor cells capable of initiating leukemias. The control of stem cell differentiation and proliferation via both inter- and intra-cellular signaling will ultimately determine the fate of these transformed stem cells. The ability of these cells to avoid checkpoints that would prevent them from contributing to the leukemogenic response is an additional area for study. Much of the study of benzene-induced bone marrow damage has concentrated on determining which of the benzene metabolites lead to leukemogenesis. The emphasis now should be directed to understanding how benzene metabolites alter bone marrow cell biology. PMID:23066403

  3. Exposure to benzene, toluene, xylenes and total hydrocarbons among snowmobile drivers in Sweden.

    PubMed

    Eriksson, Kåre; Tjärner, Dan; Marqvardsen, Inger; Järvholm, Bengt

    2003-03-01

    The exposure to benzene, toluene, xylenes and total hydrocarbons among 25 individuals exposed to exhaust from a snowmobile equipped with a two-stroke engine has been evaluated. Sampling was performed by pumped and diffusive sampling in parallel. There was a relatively bad agreement between the two air-sampling methods. The bad agreement can in part be explained by back diffusion of the substances from the samplers, a high face velocity, and deposition of droplets of unburned gasoline onto or in the vicinity of the samplers. The levels of benzene ranged from not detectable (< or =0.01 mgm(-3)) to 2.5 mgm(-3). For toluene, xylenes and total hydrocarbons the exposure was 0.10-12.0, < or =0.05-13.0 and 0.90-273 mgm(-3) respectively. The result from two measurements on individuals travelling on an open sleigh at the rear of the vehicle indicated higher levels of benzene, 0.7-0.8 mgm(-3). Children are often riding as a passenger on a sledge and may thus have a higher exposure than their parents. This study indicates that spare time driving a snowmobile may cause a considerable exposure to benzene. Using a four-stroke engine equipped with a catalyst could reduce the exposure. To reduce the exposure for the passenger on a sleigh an extension of the exhaust pipe may be effective.

  4. 40 CFR 80.46 - Measurement of reformulated gasoline fuel parameters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Measurement of reformulated gasoline... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.46 Measurement of reformulated gasoline fuel parameters. (a) Sulfur. Sulfur content of gasoline and butane must...

  5. 40 CFR 80.46 - Measurement of reformulated gasoline fuel parameters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Measurement of reformulated gasoline... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.46 Measurement of reformulated gasoline fuel parameters. (a) Sulfur. Sulfur content of gasoline and butane must...

  6. 40 CFR 80.46 - Measurement of reformulated gasoline fuel parameters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Measurement of reformulated gasoline... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.46 Measurement of reformulated gasoline fuel parameters. (a) Sulfur. Sulfur content of gasoline and butane must...

  7. Particle-bound benzene from diesel engine exhaust.

    PubMed

    Muzyka, V; Veimer, S; Shmidt, N

    1998-12-01

    The large surface area of the carbon core of diesel exhaust particles may contribute to the adsorption or condensation of such volatile carcinogenic organic compounds as benzene. The attention of this study focused on determining the distribution of benzene between the gas and particulate phases in the breathing zone of bus garage workers. Benzene and suspended particulate matter were evaluated jointly in the air of a municipal bus garage. Personal passive monitors were used for benzene sampling in the breathing zone of the workers. Active samplers were used for sampling diesel exhaust particles and the benzene associated with them. The benzene levels were measured by gas chromatography. Diesel engine exhaust from buses was the main source of air pollution caused by benzene and particles in this study. The concentration of benzene in the gas and particulate phases showed a wide range of variation, depending on the distance of the workplace from the operating diesel engine. Benzene present in the breathing zone of the workers was distributed between the gas and particulate phases. The amounts of benzene associated with particles were significantly lower in summer than in winter. The particulate matter of diesel exhaust contains benzene in amounts comparable to the concentrations of carcinogenic polycyclic aromatic hydrocarbons (PAH) and the usually found nitro-PAH. The concentration of benzene in the gas phase and in the suspended particulate matter of air can serve as an additional indicator of exposure to diesel exhaust and its carcinogenicity.

  8. 26 CFR 48.4081-4 - Gasoline; special rules for gasoline blendstocks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Gasoline; special rules for gasoline blendstocks..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4081-4 Gasoline; special rules for gasoline blendstocks... gasoline blendstocks. Generally, under prescribed conditions, tax is not imposed on gasoline blendstocks...

  9. 26 CFR 48.4081-4 - Gasoline; special rules for gasoline blendstocks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Gasoline; special rules for gasoline..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4081-4 Gasoline; special rules for gasoline blendstocks... gasoline blendstocks. Generally, under prescribed conditions, tax is not imposed on gasoline blendstocks...

  10. 26 CFR 48.4081-4 - Gasoline; special rules for gasoline blendstocks.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Gasoline; special rules for gasoline..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4081-4 Gasoline; special rules for gasoline blendstocks... gasoline blendstocks. Generally, under prescribed conditions, tax is not imposed on gasoline blendstocks...

  11. 26 CFR 48.4081-4 - Gasoline; special rules for gasoline blendstocks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Gasoline; special rules for gasoline..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4081-4 Gasoline; special rules for gasoline blendstocks... gasoline blendstocks. Generally, under prescribed conditions, tax is not imposed on gasoline blendstocks...

  12. 40 CFR 80.66 - Calculation of reformulated gasoline properties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Calculation of reformulated gasoline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.66 Calculation of reformulated gasoline properties. (a) All volume measurements required by these regulations shall be...

  13. 40 CFR 80.66 - Calculation of reformulated gasoline properties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Calculation of reformulated gasoline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.66 Calculation of reformulated gasoline properties. (a) All volume measurements required by these regulations shall be...

  14. 40 CFR 80.66 - Calculation of reformulated gasoline properties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Calculation of reformulated gasoline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.66 Calculation of reformulated gasoline properties. (a) All volume measurements required by these regulations shall be...

  15. 40 CFR 80.66 - Calculation of reformulated gasoline properties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of reformulated gasoline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.66 Calculation of reformulated gasoline properties. (a) All volume measurements required by these regulations shall be...

  16. 40 CFR 80.66 - Calculation of reformulated gasoline properties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Calculation of reformulated gasoline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.66 Calculation of reformulated gasoline properties. (a) All volume measurements required by these regulations shall be...

  17. Results from service tests on AI-91 gasoline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turovskii, F.V.; Bakaleinik, A.M.; Belyaev, A.A.

    1988-01-01

    Research was conducted to establish whether the operational reliability of engines will be affected by the use of a gasoline with an octane number two points lower than that of commercial AI-93 leaded gasoline with knock resistance in acceleration that is better than that of the AI-93 by approximately the same amount. Extended road tests were run in VAZ-2106 and Moskvich-2140 automobiles using gasoline with a research octane number of 91, containing an antiknock additive based on tetramethyl lead, and AI-93. The experimental AI-91 and the commercial AI-93 gasolines were prepared from the same base blend. Average specific fuel consumptionsmore » were identical for automobiles using AI-93 and AI-91 with the tetramethyl lead additive. For automobiles using AI-91 with the additive and with ethyl bromide as a lead scavenger the fuel consumption was 2% lower.« less

  18. 40 CFR 80.81 - Enforcement exemptions for California gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline. 80.81 Section 80.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.81 Enforcement exemptions for California gasoline. (a)(1) The requirements of subparts D, E, F, and J of this part are...

  19. 40 CFR 80.81 - Enforcement exemptions for California gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline. 80.81 Section 80.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.81 Enforcement exemptions for California gasoline. (a)(1) The requirements of subparts D, E, F, and J of this part are...

  20. 40 CFR 80.81 - Enforcement exemptions for California gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline. 80.81 Section 80.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.81 Enforcement exemptions for California gasoline. (a)(1) The requirements of subparts D, E, F, and J of this part are...

  1. 40 CFR 80.81 - Enforcement exemptions for California gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline. 80.81 Section 80.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.81 Enforcement exemptions for California gasoline. (a)(1) The requirements of subparts D, E, F, and J of this part are...

  2. 40 CFR 80.81 - Enforcement exemptions for California gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline. 80.81 Section 80.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.81 Enforcement exemptions for California gasoline. (a)(1) The requirements of subparts D, E, F, and J of this part are...

  3. Effects of gasoline aromatic content on emissions of volatile organic compounds and aldehydes from a four-stroke motorcycle.

    PubMed

    Yao, Yung-Chen; Tsai, Jiun-Horng

    2013-01-01

    A new four-stroke carburettor motorcycle engine without any engine adjustments was used to study the impact of fuel aromatic content on the exhaust emissions of organic air pollutants (volatile organic compounds and carbonyls). Three levels of aromatic content, i.e. 15, 25, and 50% (vol.) aromatics mixed with gasoline were tested. The emissions of aromatic fuel were compared with those of commercial unleaded gasoline. The results indicated that the A 15 (15 vol% aromatics in gasoline) fuel exhibited the greatest total organic emission improvement among these three aromatic fuels as compared with commercial gasoline, reaching 59%. The highest emission factors of alkanes, alkenes, and carbonyl groups appeared in the reference fuel (RF) among all of the test fuels. A 15 showed the highest emission reduction in alkanes (73%), aromatics (36%), and carbonyls (28%), as compared to those of the RF. The highest emission reduction ofalkenes was observed when using A25 as fuel. A reduction in fuel aromatic content from 50 to 25 and 15 vol% in gasoline decreased benzene and toluene emissions, but increased the aldehyde emissions. In general, the results showed that the highest emission reductions for the most of measured organic pollutants appeared when using A 15 as the fuel.

  4. Permeation of gasoline, diesel, bioethanol (E85), and biodiesel (B20) fuels through six glove materials.

    PubMed

    Chin, Jo-Yu; Batterman, Stuart A

    2010-07-01

    Biofuels and conventional fuels differ in terms of their evaporation rates, permeation rates, and exhaust emissions, which can alter exposures of workers, especially those in the fuel refining and distribution industries. This study investigated the permeation of biofuels (bioethanol 85%, biodiesel 20%) and conventional petroleum fuels (gasoline and diesel) through gloves used in occupational settings (neoprene, nitrile, and Viton) and laboratories (latex, nitrile, and vinyl), as well as a standard reference material (neoprene sheet). Permeation rates and breakthrough times were measured using the American Society for Testing and Materials F739-99 protocol, and fuel and permeant compositions were measured by gas chromatography/mass spectrometry. In addition, we estimated exposures for three occupational scenarios and recommend chemical protective clothing suitable for use with motor fuels. Permeation rates and breakthrough times depended on the fuel-glove combination. Gasoline had the highest permeation rate among the four fuels. Bioethanol (85%) had breakthrough times that were two to three times longer than gasoline through neoprene, nitrile Sol-Vex, and the standard reference materials. Breakthrough times for biodiesel (20%) were slightly shorter than for diesel for the latex, vinyl, nitrile examination, and the standard neoprene materials. The composition of permeants differed from neat fuels, e.g., permeants were significantly enriched in the lighter aromatics including benzene. Viton was the best choice among the tested materials for the four fuels tested. Among the scenarios, fuel truck drivers had the highest uptake via inhalation based on the personal measurements available in the literature, and gasoline station attendants had highest uptake via dermal exposure if gloves were not worn. Appropriate selection and use of gloves can protect workers from dermal exposures; however, current recommendations from the National Institute for Occupational Safety and

  5. 40 CFR 80.1350 - What records must be kept?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Recordkeeping and Reporting Requirements... include the following information, as applicable: (i) Its compliance benzene value per § 80.1240, and the calculations used to obtain that value. (ii) Its benzene baseline value, per § 80.1280, if the refinery or...

  6. 40 CFR 80.1340 - How does a refiner obtain approval as a small refiner?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner... for small refiner status must be sent to: Attn: MSAT2 Benzene, Mail Stop 6406J, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460. For commercial delivery: MSAT2 Benzene...

  7. 40 CFR 80.1350 - What records must be kept?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Recordkeeping and Reporting Requirements... include the following information, as applicable: (i) Its compliance benzene value per § 80.1240, and the calculations used to obtain that value. (ii) Its benzene baseline value, per § 80.1280, if the refinery or...

  8. 40 CFR 80.1340 - How does a refiner obtain approval as a small refiner?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner... for small refiner status must be sent to: Attn: MSAT2 Benzene, Mail Stop 6406J, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460. For commercial delivery: MSAT2 Benzene...

  9. 40 CFR 80.1340 - How does a refiner obtain approval as a small refiner?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner... for small refiner status must be sent to: Attn: MSAT2 Benzene, Mail Stop 6406J, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460. For commercial delivery: MSAT2 Benzene...

  10. 40 CFR 80.1350 - What records must be kept?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Recordkeeping and Reporting Requirements... include the following information, as applicable: (i) Its compliance benzene value per § 80.1240, and the calculations used to obtain that value. (ii) Its benzene baseline value, per § 80.1280, if the refinery or...

  11. Metabolic Polymorphisms and Clinical Findings Related to Benzene Poisoning Detected in Exposed Brazilian Gas-Station Workers

    PubMed Central

    Mitri, Simone; Fonseca, Antônio Sérgio Almeida; Otero, Ubirani Barros; Tabalipa, Marianne Medeiros; Moreira, Josino Costa; Sarcinelli, Paula de Novaes

    2015-01-01

    Benzene is a ubiquitous environmental pollutant and an important industrial chemical present in both gasoline and motor vehicle emissions. Occupational human exposure to benzene occurs in the petrochemical and petroleum refining industries as well as in gas-station workers, where it can lead to benzene poisoning (BP), but the mechanisms of BP are not completely understood. In Brazil, a significant number of gas-station service workers are employed. The aim of the present study was to evaluate alterations related to BP and metabolic polymorphisms in gas-station service workers exposed to benzene in the city of Rio de Janeiro, Brazil. Occupational exposure was based on clinical findings related to BP, and metabolic polymorphisms in 114 Brazilian gas-station attendants. These workers were divided into No Clinical Findings (NCF) and Clinical Findings (CF) groups. Neutrophil and Mean Corpuscular Volume (MCV) showed a significant difference between the two study groups, and neutrophil has the greatest impact on the alterations suggestive of BP. The clinical findings revealed higher frequencies of symptoms in the CF group, although not all members presented statistical significance. The frequencies of alleles related to risk were higher in the CF group for GSTM1, GSTT1, CYP2E1 7632T > A, but lower for NQO1 and CYP2E1 1053C > T genotypes. Moreover, an association was found between GSTM1 null and alterations related to BP, but we did not observe any effects of other polymorphisms. Variations in benzene metabolizing genes may modify benzene toxicity and should be taken into consideration during risk assessment evaluations. PMID:26197327

  12. Metabolic Polymorphisms and Clinical Findings Related to Benzene Poisoning Detected in Exposed Brazilian Gas-Station Workers.

    PubMed

    Mitri, Simone; Fonseca, Antônio Sérgio Almeida; Otero, Ubirani Barros; Tabalipa, Marianne Medeiros; Moreira, Josino Costa; Sarcinelli, Paula de Novaes

    2015-07-21

    Benzene is a ubiquitous environmental pollutant and an important industrial chemical present in both gasoline and motor vehicle emissions. Occupational human exposure to benzene occurs in the petrochemical and petroleum refining industries as well as in gas-station workers, where it can lead to benzene poisoning (BP), but the mechanisms of BP are not completely understood. In Brazil, a significant number of gas-station service workers are employed. The aim of the present study was to evaluate alterations related to BP and metabolic polymorphisms in gas-station service workers exposed to benzene in the city of Rio de Janeiro, Brazil. Occupational exposure was based on clinical findings related to BP, and metabolic polymorphisms in 114 Brazilian gas-station attendants. These workers were divided into No Clinical Findings (NCF) and Clinical Findings (CF) groups. Neutrophil and Mean Corpuscular Volume (MCV) showed a significant difference between the two study groups, and neutrophil has the greatest impact on the alterations suggestive of BP. The clinical findings revealed higher frequencies of symptoms in the CF group, although not all members presented statistical significance. The frequencies of alleles related to risk were higher in the CF group for GSTM1, GSTT1, CYP2E1 7632T > A, but lower for NQO1 and CYP2E1 1053C > T genotypes. Moreover, an association was found between GSTM1 null and alterations related to BP, but we did not observe any effects of other polymorphisms. Variations in benzene metabolizing genes may modify benzene toxicity and should be taken into consideration during risk assessment evaluations.

  13. Cytokine Network Involvement in Subjects Exposed to Benzene

    PubMed Central

    Gangemi, Sebastiano

    2014-01-01

    Benzene represents an ubiquitous pollutant both in the workplace and in the general environment. Health risk and stress posed by benzene have long been a concern because of the carcinogenic effects of the compound which was classified as a Group 1 carcinogen to humans and animals. There is a close correlation between leukemia, especially acute myeloid leukemia, and benzene exposure. In addition, exposure to benzene can cause harmful effects on immunological, neurological, and reproductive systems. Benzene can directly damage hematopoietic progenitor cells, which in turn could lead to apoptosis or may decrease responsiveness to cytokines and cellular adhesion molecules. Alternatively, benzene toxicity to stromal cells or mature blood cells could disrupt the regulation of hematopoiesis, including hematopoietic commitment, maturation, or mobilization, through the network of cytokines, chemokines, and adhesion molecules. Today there is mounting evidence that benzene may alter the gene expression, production, or processing of several cytokines in vitro and in vivo. The purpose of this review was to systematically analyze the published cases of cytokine effects on human benzene exposure, particularly hematotoxicity, and atopy, and on lungs. PMID:25202711

  14. Neurological and cognitive impairment associated with leaded gasoline encephalopathy.

    PubMed

    Cairney, Sheree; Maruff, Paul; Burns, Chris B; Currie, Jon; Currie, Bart J

    2004-02-07

    A toxic encephalopathy (or 'lead encephalopathy') may arise from leaded gasoline abuse that is characterised by tremor, hallucinations, nystagmus, ataxia, seizures and death. This syndrome requires emergency and intensive hospital treatment. We compared neurological and cognitive function between chronic gasoline abusers with (n=15) and without (n=15) a history of leaded gasoline encephalopathy, and with controls who had never abused gasoline (n=15). Both groups of chronic gasoline abusers had abused gasoline for the same length of time and compared to controls, showed equivalently elevated blood lead levels and cognitive abnormalities in the areas of visuo-spatial attention, recognition memory and paired associate learning. However, where gasoline abusers with no history of leaded gasoline encephalopathy showed only mild movement abnormalities, gasoline abusers with a history of leaded gasoline encephalopathy showed severe neurological impairment that manifest as higher rates of gait ataxia, abnormal rapid finger tapping, finger to nose movements, dysdiadochokinesia and heel to knee movements, increased deep tendon reflexes and presence of a palmomental reflex. While neurological and cognitive functions are disrupted by chronic gasoline abuse, leaded gasoline encephalopathy is associated with additional and long-lasting damage to cortical and cerebellar functions.

  15. 40 CFR 80.78 - Controls and prohibitions on reformulated gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reformulated gasoline. 80.78 Section 80.78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.78 Controls and prohibitions on reformulated gasoline. (a) Prohibited activities. (1) No person may manufacture...

  16. 40 CFR 80.78 - Controls and prohibitions on reformulated gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reformulated gasoline. 80.78 Section 80.78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.78 Controls and prohibitions on reformulated gasoline. (a) Prohibited activities. (1) No person may manufacture...

  17. 40 CFR 80.78 - Controls and prohibitions on reformulated gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reformulated gasoline. 80.78 Section 80.78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.78 Controls and prohibitions on reformulated gasoline. (a) Prohibited activities. (1) No person may manufacture...

  18. 40 CFR 80.78 - Controls and prohibitions on reformulated gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reformulated gasoline. 80.78 Section 80.78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.78 Controls and prohibitions on reformulated gasoline. (a) Prohibited activities. (1) No person may manufacture...

  19. 40 CFR 80.78 - Controls and prohibitions on reformulated gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reformulated gasoline. 80.78 Section 80.78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.78 Controls and prohibitions on reformulated gasoline. (a) Prohibited activities. (1) No person may manufacture...

  20. 75 FR 26121 - Regulation of Fuels and Fuel Additives: Alternative Affirmative Defense Requirements for Ultra...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...EPA is issuing a direct final rule to amend the diesel sulfur regulations to allow refiners, importers, distributors, and retailers of highway diesel fuel the option to use an alternative affirmative defense if the Agency finds highway diesel fuel samples above the specified sulfur standard at retail facilities. This alternative defense consists of a comprehensive program of quality assurance sampling and testing that would cover all participating companies that produce and/or distribute highway diesel fuel if certain other conditions are met. The sampling and testing program would be carried out by an independent surveyor. The program would be conducted pursuant to a survey plan approved by EPA that is designed to achieve the same objectives as the current regulatory quality assurance requirement. This rule also amends the gasoline benzene regulations to allow disqualified small refiners the same opportunity to generate gasoline benzene credits as that afforded to non-small refiners.

  1. Benzene selectivity in competitive arene hydrogenation: effects of single-site catalyst···acidic oxide surface binding geometry.

    PubMed

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P; Bhattacharyya, Alak; Motta, Alessandro; Gallagher, James R; Zhang, Guanghui; Miller, Jeffrey T; Kobayashi, Takeshi; Pruski, Marek; Delferro, Massimiliano; Marks, Tobin J

    2015-06-03

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO2 (ZrS), sulfated Al2O3 (AlS), and ZrO2-WO3 (ZrW). Under mild conditions (25 °C, 1 atm H2), the supported Cp*ZrMe3, Cp*ZrBz3, and Cp*ZrPh3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS ≫ AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures, and selectivities for benzene hydrogenation vary with catalyst as ZrBz3(+)/ZrS(-), 83% > Cp*ZrMe2(+)/ZrS(-), 80% > Cp*ZrBz2(+)/ZrS(-), 67% > Cp*ZrPh2(+)/ZrS(-), 57%. For Cp*ZrBz2(+)/ZrS(-), which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe3 and Cp*ZrBz3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz2(+)/AlS(-) vs Cp*ZrMe2(+)/AlS(-). The combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the "cationic" metal center-anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.

  2. Fatal acute poisoning from massive inhalation of gasoline vapors: case report and comparison with similar cases.

    PubMed

    Papi, Luigi; Chericoni, Silvio; Bresci, Francesco; Giusiani, Mario

    2013-03-01

    We describe a case of an acute lethal poisoning with hydrocarbons resulting from massive accidental inhalation of gasoline vapors. The victim, a 50-year-old man was found unconscious inside a control room for the transport of unleaded fuel. Complete autopsy was performed and showed evidence of congestion and edema of the lungs. Toxicological investigation was therefore fundamental to confirm exposure to fumes of gasoline. Both venous and arterial blood showed high values of volatiles in particular for benzene (39.0 and 30.4 μg/mL, respectively), toluene (23.7 and 20.4 μg/mL), and xylene isomers (29.8 and 19.3 μg/mL). The relatively low values found in the lungs are consistent with the fact that the subject, during the rescue, underwent orotracheal intubation followed by resuscitation techniques, while the low concentrations for all substances found in urine and kidneys could point to a death that occurred in a very short time after first contact with the fumes of gasoline. © 2012 American Academy of Forensic Sciences.

  3. Environmental implications on the oxygenation of gasoline with ethanol in the metropolitan area of Mexico City.

    PubMed

    Schifter, I; Vera, M; Díaz, L; Guzmán, E; Ramos, F; López-Salinas, E

    2001-05-15

    Motor vehicle emission tests were performed on 12 in-use light duty vehicles, made up of the most representative emission control technologies in Mexico City: no catalyst, oxidative catalyst, and three way catalyst. Exhaust regulated (CO, NOx, and hydrocarbons) and toxic (benzene, formaldehyde, acetaldehyde, and 1,3-butadiene) emissions were evaluated for MTBE (5 vol %)- and ethanol (3, 6, and 10 vol %)-gasoline blends. The most significant overall emissions variations derived from the use of 6 vol % ethanol (relative to a 5% MTBE base gasoline) were 16% decrease in CO, 28% reduction in formaldehyde, and 80% increase in acetaldehyde emissions. A 26% reduction in CO emissions from the oldest fleet (< MY 1991, without catalytic converter), which represents about 44% of the in-use light duty vehicles in Mexico city, can be attained when using 6 vol% ethanol-gasoline, without significant variation in hydrocarbons and NOx emissions, when compared with a 5% vol MTBE-gasoline. On the basis of the emissions results, an estimation of the change in the motor vehicle emissions of the metropolitan area of Mexico city was calculated for the year 2010 if ethanol were to be used instead of MTBE, and the outcome was a considerable decrease in all regulated and toxic emissions, despite the growing motor vehicle population.

  4. 76 FR 9013 - Agency Information Collection Activities; Proposed Collection; Comment Request; Detergent Gasoline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... Activities; Proposed Collection; Comment Request; Detergent Gasoline AGENCY: Environmental Protection Agency... this action are those who (1) Manufacture gasoline, post-refinery component, or detergent additives, (2) blend detergent additives into gasoline or post-refinery component, or (3) transport or receive a...

  5. Benzene formation in electronic cigarettes.

    PubMed

    Pankow, James F; Kim, Kilsun; McWhirter, Kevin J; Luo, Wentai; Escobedo, Jorge O; Strongin, Robert M; Duell, Anna K; Peyton, David H

    2017-01-01

    The heating of the fluids used in electronic cigarettes ("e-cigarettes") used to create "vaping" aerosols is capable of causing a wide range of degradation reaction products. We investigated formation of benzene (an important human carcinogen) from e-cigarette fluids containing propylene glycol (PG), glycerol (GL), benzoic acid, the flavor chemical benzaldehyde, and nicotine. Three e-cigarette devices were used: the JUULTM "pod" system (provides no user accessible settings other than flavor cartridge choice), and two refill tank systems that allowed a range of user accessible power settings. Benzene in the e-cigarette aerosols was determined by gas chromatography/mass spectrometry. Benzene formation was ND (not detected) in the JUUL system. In the two tank systems benzene was found to form from propylene glycol (PG) and glycerol (GL), and from the additives benzoic acid and benzaldehyde, especially at high power settings. With 50:50 PG+GL, for tank device 1 at 6W and 13W, the formed benzene concentrations were 1.9 and 750 μg/m3. For tank device 2, at 6W and 25W, the formed concentrations were ND and 1.8 μg/m3. With benzoic acid and benzaldehyde at ~10 mg/mL, for tank device 1, values at 13W were as high as 5000 μg/m3. For tank device 2 at 25W, all values were ≤~100 μg/m3. These values may be compared with what can be expected in a conventional (tobacco) cigarette, namely 200,000 μg/m3. Thus, the risks from benzene will be lower from e-cigarettes than from conventional cigarettes. However, ambient benzene air concentrations in the U.S. have typically been 1 μg/m3, so that benzene has been named the largest single known cancer-risk air toxic in the U.S. For non-smokers, chronically repeated exposure to benzene from e-cigarettes at levels such as 100 or higher μg/m3 will not be of negligible risk.

  6. Substrate Interactions during the Biodegradation of Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) Hydrocarbons by the Fungus Cladophialophora sp. Strain T1

    PubMed Central

    Prenafeta-Boldú, F. X.; Vervoort, J.; Grotenhuis, J. T. C.; van Groenestijn, J. W.

    2002-01-01

    The soil fungus Cladophialophora sp. strain T1 (= ATCC MYA-2335) was capable of growth on a model water-soluble fraction of gasoline that contained all six BTEX components (benzene, toluene, ethylbenzene, and the xylene isomers). Benzene was not metabolized, but the alkylated benzenes (toluene, ethylbenzene, and xylenes) were degraded by a combination of assimilation and cometabolism. Toluene and ethylbenzene were used as sources of carbon and energy, whereas the xylenes were cometabolized to different extents. o-Xylene and m-xylene were converted to phthalates as end metabolites; p-xylene was not degraded in complex BTEX mixtures but, in combination with toluene, appeared to be mineralized. The metabolic profiles and the inhibitory nature of the substrate interactions indicated that toluene, ethylbenzene, and xylene were degraded at the side chain by the same monooxygenase enzyme. Our findings suggest that soil fungi could contribute significantly to bioremediation of BTEX pollution. PMID:12039717

  7. The Effect of Ethanol Addition to Gasoline on Low- and Intermediate-Temperature Heat Release under Boosted Conditions in Kinetically Controlled Engines

    NASA Astrophysics Data System (ADS)

    Vuilleumier, David Malcolm

    The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines

  8. Review of quantitative surveys of the length and stability of MTBE, TBA, and benzene plumes in groundwater at UST sites.

    PubMed

    Connor, John A; Kamath, Roopa; Walker, Kenneth L; McHugh, Thomas E

    2015-01-01

    Quantitative information regarding the length and stability condition of groundwater plumes of benzene, methyl tert-butyl ether (MTBE), and tert-butyl alcohol (TBA) has been compiled from thousands of underground storage tank (UST) sites in the United States where gasoline fuel releases have occurred. This paper presents a review and summary of 13 published scientific surveys, of which 10 address benzene and/or MTBE plumes only, and 3 address benzene, MTBE, and TBA plumes. These data show the observed lengths of benzene and MTBE plumes to be relatively consistent among various regions and hydrogeologic settings, with median lengths at a delineation limit of 10 µg/L falling into relatively narrow ranges from 101 to 185 feet for benzene and 110 to 178 feet for MTBE. The observed statistical distributions of MTBE and benzene plumes show the two plume types to be of comparable lengths, with 90th percentile MTBE plume lengths moderately exceeding benzene plume lengths by 16% at a 10-µg/L delineation limit (400 feet vs. 345 feet) and 25% at a 5-µg/L delineation limit (530 feet vs. 425 feet). Stability analyses for benzene and MTBE plumes found 94 and 93% of these plumes, respectively, to be in a nonexpanding condition, and over 91% of individual monitoring wells to exhibit nonincreasing concentration trends. Three published studies addressing TBA found TBA plumes to be of comparable length to MTBE and benzene plumes, with 86% of wells in one study showing nonincreasing concentration trends. © 2014 GSI Environmental Inc. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  9. 40 CFR 80.220 - What are the downstream standards for GPA gasoline?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GPA gasoline? 80.220 Section 80.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Geographic Phase-in Program § 80.220 What are the downstream standards for GPA gasoline? (a) GPA gasoline. (1) During...

  10. 40 CFR 80.220 - What are the downstream standards for GPA gasoline?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GPA gasoline? 80.220 Section 80.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Geographic Phase-in Program § 80.220 What are the downstream standards for GPA gasoline? (a) GPA gasoline. (1) During...

  11. 40 CFR 80.220 - What are the downstream standards for GPA gasoline?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GPA gasoline? 80.220 Section 80.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Geographic Phase-in Program § 80.220 What are the downstream standards for GPA gasoline? (a) GPA gasoline. (1) During...

  12. 40 CFR 80.220 - What are the downstream standards for GPA gasoline?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GPA gasoline? 80.220 Section 80.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Geographic Phase-in Program § 80.220 What are the downstream standards for GPA gasoline? (a) GPA gasoline. (1) During...

  13. 40 CFR 80.220 - What are the downstream standards for GPA gasoline?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GPA gasoline? 80.220 Section 80.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Geographic Phase-in Program § 80.220 What are the downstream standards for GPA gasoline? (a) GPA gasoline. (1) During...

  14. 40 CFR 80.1343 - What hardship relief provisions are available only to small refiners?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Small... annual average benzene standard at § 80.1230(a). (b) In the case of a small refiner approved under § 80.1340 for which compliance with the maximum average benzene requirement at § 80.1230(b) is not feasible...

  15. 40 CFR 80.1343 - What hardship relief provisions are available only to small refiners?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Small... annual average benzene standard at § 80.1230(a). (b) In the case of a small refiner approved under § 80.1340 for which compliance with the maximum average benzene requirement at § 80.1230(b) is not feasible...

  16. 40 CFR 80.1343 - What hardship relief provisions are available only to small refiners?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Small... annual average benzene standard at § 80.1230(a). (b) In the case of a small refiner approved under § 80.1340 for which compliance with the maximum average benzene requirement at § 80.1230(b) is not feasible...

  17. Short-term inhalation toxicity of methanol, gasoline, and methanol/gasoline in the rat.

    PubMed

    Poon, R; Chu, I; Bjarnason, S; Vincent, R; Potvin, M; Miller, R B; Valli, V E

    1995-01-01

    Four- to five-week-old male and female Sprague Dawley rats were exposed to vapors of methanol (2500 ppm), gasoline (3200 ppm), and methanol/gasoline (2500/3200 ppm, 570/3200 ppm) six hours per day, five days per week for four weeks. Control animals were exposed to filtered room air only. Depression in body weight gain and reduced food consumption were observed in male rats, and increased relative liver weight was detected in rats of both sexes exposed to gasoline or methanol/gasoline mixtures. Rats of both sexes exposed to methanol/gasoline mixtures had increased relative kidney weight and females exposed to gasoline and methanol/gasoline mixtures had increased kidney weight. Decreased serum glucose and cholesterol were detected in male rats exposed to gasoline and methanol/gasoline mixtures. Decreased hemoglobin was observed in females inhaling vapors of gasoline and methanol/gasoline at 570/3200 ppm. Urine from rats inhaling gasoline or methanol/gasoline mixtures had up to a fourfold increase in hippuric acid, a biomarker of exposure to the toluene constituent of gasoline, and up to a sixfold elevation in ascorbic acid, a noninvasive biomarker of hepatic response. Hepatic mixed-function oxidase (aniline hydroxylase, aminopyrine N-demethylase and ethoxyresorufin O-deethylase) activities and UDP-glucuronosyltransferase activity were elevated in rats exposed to gasoline and methanol/gasoline mixtures. Histopathological changes were confined to very mild changes in the nasal passages and in the uterus, where decreased incidence or absence of mucosal and myometrial eosinophilia was observed in females inhaling gasoline and methanol/gasoline at 570/3200 ppm. It was concluded that gasoline was largely responsible for the adverse effects, the most significant of which included depression in weight gain in the males, increased liver weight and hepatic microsomal enzyme activities in both sexes, and suppression of uterine eosinophilia. No apparent interactive effects

  18. 40 CFR 80.240 - What are the small refiner gasoline sulfur standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What are the small refiner gasoline... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.240 What are the small refiner gasoline sulfur standards? (a) The gasoline sulfur standards...

  19. 40 CFR 80.240 - What are the small refiner gasoline sulfur standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the small refiner gasoline... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.240 What are the small refiner gasoline sulfur standards? (a) The gasoline sulfur standards...

  20. 40 CFR 80.240 - What are the small refiner gasoline sulfur standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What are the small refiner gasoline... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.240 What are the small refiner gasoline sulfur standards? (a) The gasoline sulfur standards...

  1. 40 CFR 80.240 - What are the small refiner gasoline sulfur standards?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What are the small refiner gasoline... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.240 What are the small refiner gasoline sulfur standards? (a) The gasoline sulfur standards...

  2. 40 CFR 80.240 - What are the small refiner gasoline sulfur standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What are the small refiner gasoline... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.240 What are the small refiner gasoline sulfur standards? (a) The gasoline sulfur standards...

  3. MEASUREMENT OF EXHALED BREATH AND VENOUS BLOOD TO DEVELOP A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURE TO METHYL TERTIARY-BUTYL ETHER AND THE PRODUCTION OF THE BIOMARKER TERTIARY-BUTYL ALCOHOL

    EPA Science Inventory

    Methyl tertiary-butyl ether (MTBE) is a common fuel additive used to increase the availability of oxygen in gasoline to reduce winter-time carbon monoxide emissions from automobiles. Also, MTBE boosts gasoline "octane" rating and, as such, allows reduction of benzene...

  4. 75 FR 74044 - Agency Information Collection Activities; Proposed Collection; Comment Request; Gasoline Volatility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ...; Gasoline Volatility AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: In compliance... entities: Entities potentially affected by this action are those who produce or import gasoline containing... Additives: Gasoline Volatility, Reporting Requirements for Parties Which Produce of Import Gasoline...

  5. The influence of different light quality and benzene on gene expression and benzene degradation of Chlorophytum comosum.

    PubMed

    Setsungnern, Arnon; Treesubsuntorn, Chairat; Thiravetyan, Paitip

    2017-11-01

    Benzene, a carcinogenic compound, has been reported as a major indoor air pollutant. Chlorophytum comosum (C. comosum) was reported to be the highest efficient benzene removal plant among other screened plants. Our previous studies found that plants under light conditions could remove gaseous benzene higher than under dark conditions. Therefore, C. comosum exposure to airborne benzene was studied under different light quality at the same light intensity. C. comosum could remove 500 ppm gaseous benzene with the highest efficiency of 68.77% under Blue:Red = 1:1 LED treatments and the lowest one appeared 57.41% under white fluorescent treatment within 8 days. After benzene was uptaken by C. comosum, benzene was oxidized to be phenol in the plant cells by cytochrome P450 monooxygenase system. Then, phenol was catalyzed to be catechol that was confirmed by the up-regulation of phenol 2-monooxygenase (PMO) gene expression. After that, catechol was changed to cic, cis-muconic acid. Interestingly, cis,cis-muconic acid production was found in the plant tissues higher than phenol and catechol. The result confirmed that NADPH-cytochrome P450 reductase (CPR), cytochrome b5 (cyt b5), phenol 2-monooxygenase (PMO) and cytochrome P450 90B1 (CYP90B1) in plant cells were involved in benzene degradation or detoxification. In addition, phenol, catechol, and cis,cis-muconic acid production were found under the Blue-Red LED light conditions higher than under white fluorescent light conditions due to under LED light conditions gave higher NADPH contents. Hence, C. comosum under the Blue-Red LED light conditions had a high potential to remove benzene in a contaminated site. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Modelling of flame propagation in the gasoline fuelled Wankel rotary engine with hydrogen additives

    NASA Astrophysics Data System (ADS)

    Fedyanov, E. A.; Zakharov, E. A.; Prikhodkov, K. V.; Levin, Y. V.

    2017-02-01

    Recently, hydrogen has been considered as an alternative fuel for a vehicles power unit. The Wankel engine is the most suitable to be adapted to hydrogen feeding. A hydrogen additive helps to decrease incompleteness of combustion in the volumes near the apex of the rotor. Results of theoretical researches of the hydrogen additives influence on the flame propagation in the combustion chamber of the Wankel rotary engine are presented. The theoretical research shows that the blend of 70% gasoline with 30% hydrogen could accomplish combustion near the T-apex in the stoichiometric mixture and in lean one. Maps of the flame front location versus the angle of rotor rotation and hydrogen fraction are obtained. Relations of a minimum required amount of hydrogen addition versus the engine speed are shown on the engine modes close to the average city driving cycle. The amount of hydrogen addition that could be injected by the nozzle with different flow sections is calculated in order to analyze the capacity of the feed system.

  7. The toxicity of benzene and its metabolism and molecular pathology in human risk assessment.

    PubMed Central

    Yardley-Jones, A; Anderson, D; Parke, D V

    1991-01-01

    Benzene, a common industrial chemical and a component of gasoline, is radiomimetic and exposure may lead progressively to aplastic anaemia, leukaemia, and multiple myeloma. Although benzene has been shown to cause many types of genetic damage, it has consistently been classified as a non-mutagen in the Ames test, possibly because of the inadequacy of the S9 microsomal activation system. The metabolism of benzene is complex, yielding glucuronide and sulphate conjugates of phenol, quinol, and catechol, L-phenylmercapturic acid, and muconaldehyde and trans, trans-muconic acid by ring scission. Quinol is oxidised to p-benzoquinone, which binds to vital cellular components or undergoes redox cycling to generate oxygen radicals; muconaldehyde, like p-benzoquinone, is toxic through depletion of intracellular glutathione. Exposure to benzene may also induce the microsomal mixed function oxidase, cytochrome P450 IIE1, which is probably responsible for the oxygenation of benzene, but also has a propensity to generate oxygen radicals. The radiomimetic nature of benzene and its ability to induce different sites of neoplasia indicate that formation of oxygen radicals is a major cause of benzene toxicity, which involves multiple mechanisms including synergism between arylating and glutathione-depleting reactive metabolites and oxygen radicals. The occupational exposure limit in the United Kingdom (MEL) and the United States (PEL) was 10 ppm based on the association of benzene exposure with aplastic anaemia, but recently was lowered to 5 ppm and 1 ppm respectively, reflecting a concern for the risk of neoplasia. The American Conference of Governmental Industrial Hygienists (ACGIH) has even more recently recommended that, as benzene is considered an A1 carcinogen, the threshold limit value (TLV) should be decreased to 0.1 ppm. Only one study in man, based on nine cases of benzene associated fatal neoplasia, has been considered suitable for risk assessment. Recent re-evaluation of

  8. 40 CFR 80.219 - Designation and downstream requirements for GPA gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for GPA gasoline. 80.219 Section 80.219 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Geographic Phase-in Program § 80.219 Designation and downstream requirements for GPA gasoline. The requirements and...

  9. 40 CFR 80.219 - Designation and downstream requirements for GPA gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for GPA gasoline. 80.219 Section 80.219 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Geographic Phase-in Program § 80.219 Designation and downstream requirements for GPA gasoline. The requirements and...

  10. 40 CFR 80.219 - Designation and downstream requirements for GPA gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for GPA gasoline. 80.219 Section 80.219 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Geographic Phase-in Program § 80.219 Designation and downstream requirements for GPA gasoline. The requirements and...

  11. 40 CFR 80.1631 - Gasoline, RBOB, and CBOB sample retention requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Gasoline, RBOB, and CBOB sample... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur § 80.1631 Gasoline, RBOB, and CBOB sample retention requirements. (a) Sample retention requirements. Beginning...

  12. 40 CFR 80.219 - Designation and downstream requirements for GPA gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for GPA gasoline. 80.219 Section 80.219 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Geographic Phase-in Program § 80.219 Designation and downstream requirements for GPA gasoline. The requirements and...

  13. 40 CFR 80.219 - Designation and downstream requirements for GPA gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for GPA gasoline. 80.219 Section 80.219 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Geographic Phase-in Program § 80.219 Designation and downstream requirements for GPA gasoline. The requirements and...

  14. Global gasoline prices: The need to raise gasoline taxes

    NASA Astrophysics Data System (ADS)

    Lin Lawell, C.-Y. Cynthia

    2017-01-01

    Gasoline taxes are considered to be a cost-effective policy instrument for reducing carbon emissions. A study finds that while gasoline taxes rose in 83 countries between 2003 and 2015, the global mean fell by 13.3% due to a shift in consumption towards countries that maintain gasoline subsidies or that have low taxes.

  15. Effect of benzene and ethylbenzene on the transcription of methyl-tert-butyl ether degradation genes of Methylibium petroleiphilum PM1.

    PubMed

    Joshi, Geetika; Schmidt, Radomir; Scow, Kate M; Denison, Michael S; Hristova, Krassimira R

    2016-09-01

    Methyl-tert-butyl ether (MTBE) and its degradation by-product, tert-butyl alcohol (TBA), are widespread contaminants detected frequently in groundwater in California. Since MTBE was used as a fuel oxygenate for almost two decades, leaking underground fuel storage tanks are an important source of contamination. Gasoline components such as BTEX (benzene, toluene, ethylbenzene and xylenes) are often present in mixtures with MTBE and TBA. Investigations of interactions between BTEX and MTBE degradation have not yielded consistent trends, and the molecular mechanisms of BTEX compounds' impact on MTBE degradation are not well understood. We investigated trends in transcription of biodegradation genes in the MTBE-degrading bacterium, Methylibium petroleiphilum PM1 upon exposure to MTBE, TBA, ethylbenzene and benzene as individual compounds or in mixtures. We designed real-time quantitative PCR assays to target functional genes of strain PM1 and provide evidence for induction of genes mdpA (MTBE monooxygenase), mdpJ (TBA hydroxylase) and bmoA (benzene monooxygenase) in response to MTBE, TBA and benzene, respectively. Delayed induction of mdpA and mdpJ transcription occurred with mixtures of benzene and MTBE or TBA, respectively. bmoA transcription was similar in the presence of MTBE or TBA with benzene as in their absence. Our results also indicate that ethylbenzene, previously proposed as an inhibitor of MTBE degradation in some bacteria, inhibits transcription of mdpA, mdpJ and bmoAgenes in strain PM1.

  16. Effect of benzene and ethylbenzene on the transcription of methyl-tert-butyl ether degradation genes of Methylibium petroleiphilum PM1

    PubMed Central

    Joshi, Geetika; Schmidt, Radomir; Scow, Kate M.; Denison, Michael S.; Hristova, Krassimira R.

    2016-01-01

    Methyl-tert-butyl ether (MTBE) and its degradation by-product, tert-butyl alcohol (TBA), are widespread contaminants detected frequently in groundwater in California. Since MTBE was used as a fuel oxygenate for almost two decades, leaking underground fuel storage tanks are an important source of contamination. Gasoline components such as BTEX (benzene, toluene, ethylbenzene and xylenes) are often present in mixtures with MTBE and TBA. Investigations of interactions between BTEX and MTBE degradation have not yielded consistent trends, and the molecular mechanisms of BTEX compounds’ impact on MTBE degradation are not well understood. We investigated trends in transcription of biodegradation genes in the MTBE-degrading bacterium, Methylibium petroleiphilum PM1 upon exposure to MTBE, TBA, ethylbenzene and benzene as individual compounds or in mixtures. We designed real-time quantitative PCR assays to target functional genes of strain PM1 and provide evidence for induction of genes mdpA (MTBE monooxygenase), mdpJ (TBA hydroxylase) and bmoA (benzene monooxygenase) in response to MTBE, TBA and benzene, respectively. Delayed induction of mdpA and mdpJ transcription occurred with mixtures of benzene and MTBE or TBA, respectively. bmoA transcription was similar in the presence of MTBE or TBA with benzene as in their absence. Our results also indicate that ethylbenzene, previously proposed as an inhibitor of MTBE degradation in some bacteria, inhibits transcription of mdpA, mdpJ and bmoAgenes in strain PM1. PMID:27450417

  17. 40 CFR 80.1603 - Gasoline sulfur standards for refiners and importers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Gasoline sulfur standards for refiners... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur § 80.1603 Gasoline sulfur standards for refiners and importers. (a) Sulfur standards—(1) Annual average standard. (i...

  18. Gasoline toxicology: overview of regulatory and product stewardship programs.

    PubMed

    Swick, Derek; Jaques, Andrew; Walker, J C; Estreicher, Herb

    2014-11-01

    Significant efforts have been made to characterize the toxicological properties of gasoline. There have been both mandatory and voluntary toxicology testing programs to generate hazard characterization data for gasoline, the refinery process streams used to blend gasoline, and individual chemical constituents found in gasoline. The Clean Air Act (CAA) (Clean Air Act, 2012: § 7401, et seq.) is the primary tool for the U.S. Environmental Protection Agency (EPA) to regulate gasoline and this supplement presents the results of the Section 211(b) Alternative Tier 2 studies required for CAA Fuel and Fuel Additive registration. Gasoline blending streams have also been evaluated by EPA under the voluntary High Production Volume (HPV) Challenge Program through which the petroleum industry provide data on over 80 refinery streams used in gasoline. Product stewardship efforts by companies and associations such as the American Petroleum Institute (API), Conservation of Clean Air and Water Europe (CONCAWE), and the Petroleum Product Stewardship Council (PPSC) have contributed a significant amount of hazard characterization data on gasoline and related substances. The hazard of gasoline and anticipated exposure to gasoline vapor has been well characterized for risk assessment purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Biofiltration of gasoline and ethanol-amended gasoline vapors.

    PubMed

    Soares, Marlene; Woiciechowski, Adenise L; Kozliak, Evguenii I; Paca, Jan; Soccol, Carlos R

    2012-01-01

    Assuming the projected increase in use of ethanol as a biofuel, the current study was conducted to compare the biofiltration efficiencies for plain and 25% ethanol-containing gasoline. Two biofilters were operated in a downflow mode for 7 months, one of them being compost-based whereas the other using a synthetic packing material, granulated tire rubber, inoculated with gasoline-degrading microorganisms. Inlet concentrations measured as total hydrocarbon (TH) ranged from 1.9 to 5.8 g m(-3) at a constant empty bed retention time of 6.84 min. Contrary to the expectations based on microbiological considerations, ethanol-amended gasoline was more readily biodegraded than plain hydrocarbons, with the respective steady state elimination capacities of 26-43 and 14-18 gTH m(-3) h(-1) for the compost biofilter. The efficiency of both biofilters significantly declined upon the application of higher loads of plain gasoline, yet immediately recovering when switched back to ethanol-blended gasoline. The unexpected effect of ethanol in promoting gasoline biodegradation was explained by increasing hydrocarbon partitioning into the aqueous phase, with mass transfer being rate limiting for the bulk of components. The tire rubber biofilter, after a long acclimation, surpassed the compost biofilter in performance, presumably due to the 'buffering' effect of this packing material increasing the accessibility of gasoline hydrocarbons to the biofilm. With improved substrate mass transfer, biodegradable hydrocarbons were removed in the tire rubber biofilter's first reactor stage, with most of the remaining poorly degradable smaller-size hydrocarbons being degraded in the second stage.

  20. Benzene selectivity in competitive arene hydrogenation: Effects of single-site catalyst···acidic oxide surface binding geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P.

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO 2 (ZrS), sulfated Al 2O 3 (AlS), and ZrO 2–WO 3 (ZrW). Under mild conditions (25 °C, 1 atm H 2), the supported Cp*ZrMe 3, Cp*ZrBz 3, and Cp*ZrPh 3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS >> AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures,more » and selectivities for benzene hydrogenation vary with catalyst as ZrBz 3 +/ZrS –, 83% > Cp*ZrMe 2 +/ZrS –, 80% > Cp*ZrBz 2 +/ZrS –, 67% > Cp*ZrPh 2 +/ZrS –, 57%. For Cp*ZrBz 2+/ZrS –, which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe 3 and Cp*ZrBz 3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz 2 +/AlS – vs Cp*ZrMe 2 +/AlS –. Furthermore, the combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the “cationic” metal center–anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.« less

  1. Benzene selectivity in competitive arene hydrogenation: Effects of single-site catalyst···acidic oxide surface binding geometry

    DOE PAGES

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P.; ...

    2015-04-17

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO 2 (ZrS), sulfated Al 2O 3 (AlS), and ZrO 2–WO 3 (ZrW). Under mild conditions (25 °C, 1 atm H 2), the supported Cp*ZrMe 3, Cp*ZrBz 3, and Cp*ZrPh 3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS >> AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures,more » and selectivities for benzene hydrogenation vary with catalyst as ZrBz 3 +/ZrS –, 83% > Cp*ZrMe 2 +/ZrS –, 80% > Cp*ZrBz 2 +/ZrS –, 67% > Cp*ZrPh 2 +/ZrS –, 57%. For Cp*ZrBz 2+/ZrS –, which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe 3 and Cp*ZrBz 3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz 2 +/AlS – vs Cp*ZrMe 2 +/AlS –. Furthermore, the combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the “cationic” metal center–anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.« less

  2. Characterization of the pharmacokinetics of gasoline using PBPK modeling with a complex mixtures chemical lumping approach.

    PubMed

    Dennison, James E; Andersen, Melvin E; Yang, Raymond S H

    2003-09-01

    Gasoline consists of a few toxicologically significant components and a large number of other hydrocarbons in a complex mixture. By using an integrated, physiologically based pharmacokinetic (PBPK) modeling and lumping approach, we have developed a method for characterizing the pharmacokinetics (PKs) of gasoline in rats. The PBPK model tracks selected target components (benzene, toluene, ethylbenzene, o-xylene [BTEX], and n-hexane) and a lumped chemical group representing all nontarget components, with competitive metabolic inhibition between all target compounds and the lumped chemical. PK data was acquired by performing gas uptake PK studies with male F344 rats in a closed chamber. Chamber air samples were analyzed every 10-20 min by gas chromatography/flame ionization detection and all nontarget chemicals were co-integrated. A four-compartment PBPK model with metabolic interactions was constructed using the BTEX, n-hexane, and lumped chemical data. Target chemical kinetic parameters were refined by studies with either the single chemical alone or with all five chemicals together. o-Xylene, at high concentrations, decreased alveolar ventilation, consistent with respiratory irritation. A six-chemical interaction model with the lumped chemical group was used to estimate lumped chemical partitioning and metabolic parameters for a winter blend of gasoline with methyl t-butyl ether and a summer blend without any oxygenate. Computer simulation results from this model matched well with experimental data from single chemical, five-chemical mixture, and the two blends of gasoline. The PBPK model analysis indicated that metabolism of individual components was inhibited up to 27% during the 6-h gas uptake experiments of gasoline exposures.

  3. Identification of human cell responses to benzene and benzene metabolites.

    PubMed

    Gillis, Bruce; Gavin, Igor M; Arbieva, Zarema; King, Stephen T; Jayaraman, Sundararajan; Prabhakar, Bellur S

    2007-09-01

    Benzene is a common air pollutant and confirmed carcinogen, especially in reference to the hematopoietic system. In the present study we analyzed cytokine/chemokine production by, and gene expression induction in, human peripheral blood mononuclear cells upon their exposure to the benzene metabolites catechol, hydroquinone, 1,2,4-benzenetriol, and p-benzoquinone. Protein profiling showed that benzene metabolites can stimulate the production of chemokines, the proinflammatory cytokines TNF-alpha and IL-6, and the Th2 cytokines IL-4 and IL-5. Activated cells showed concurrent suppression of anti-inflammatory cytokine IL-10 expression. We also identified changes in global gene expression patterns in response to benzene metabolite challenges by using high-density oligonucleotide microarrays. Treatment with 1,2,4-benzenetriol resulted in the suppression of genes related to the regulation of protein expression and a concomitant activation of genes that encode heat shock proteins and cytochrome P450 family members. Protein and gene expression profiling identified unique human cellular responses upon exposure to benzene and benzene metabolites.

  4. Percutaneous penetration of benzene and benzene contained in solvents used in the rubber industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maibach, H.I.; Anjo, D.M.

    1981-09-01

    Penetration of benzene through the skin of the rhesus monkey was determined using /sup 14/C-benzene, and quantitating the labelled metabolites in urine. The modes of application and amounts of benzene that penetrated the skin (indicated in parentheses) are as follows: (1) a single, direct cutaneous application of liquid benzene (0.172 +/- 0.139%); (2) a single application of benzene-containing (0.36%) solvent (0.0805 +/- 0.0306%); (3) multiple washes with full-strength benzene (0.848 +/- 0.0806%); (4) multiple washes with the benzene-containing (0.35%) solvent (0.431 +/- 0.258%); (5) removal of the stratum corneum followed by application of full-strength benzene (0.09 +/- 0.627%); and (6)more » application of benzene to the palmar surface (0.651 +/- 0.482%). Until more complete human data becomes available, benzene penetration in the monkey may be used to estimate penetration in man, both for industrial hygiene purposes and general toxicological use.« less

  5. Alkali-ion microsolvation with benzene molecules.

    PubMed

    Marques, J M C; Llanio-Trujillo, J L; Albertí, M; Aguilar, A; Pirani, F

    2012-05-24

    The target of this investigation is to characterize by a recently developed methodology, the main features of the first solvation shells of alkaline ions in nonpolar environments due to aromatic rings, which is of crucial relevance to understand the selectivity of several biochemical phenomena. We employ an evolutionary algorithm to obtain putative global minima of clusters formed with alkali-ions (M(+)) solvated with n benzene (Bz) molecules, i.e., M(+)-(Bz)(n). The global intermolecular interaction has been decomposed in Bz-Bz and in M(+)-Bz contributions, using a potential model based on different decompositions of the molecular polarizability of benzene. Specifically, we have studied the microsolvation of Na(+), K(+), and Cs(+) with benzene molecules. Microsolvation clusters up to n = 21 benzene molecules are involved in this work and the achieved global minimum structures are reported and discussed in detail. We observe that the number of benzene molecules allocated in the first solvation shell increases with the size of the cation, showing three molecules for Na(+) and four for both K(+) and Cs(+). The structure of this solvation shell keeps approximately unchanged as more benzene molecules are added to the cluster, which is independent of the ion. Particularly stable structures, so-called "magic numbers", arise for various nuclearities of the three alkali-ions. Strong "magic numbers" appear at n = 2, 3, and 4 for Na(+), K(+), and Cs(+), respectively. In addition, another set of weaker "magic numbers" (three per alkali-ion) are reported for larger nuclearities.

  6. Gasoline sniffing multifocal neuropathy.

    PubMed

    Burns, T M; Shneker, B F; Juel, V C

    2001-11-01

    The polyneuropathy caused by chronic gasoline inhalation is reported to be a gradually progressive, symmetric, sensorimotor polyneuropathy. We report unleaded gasoline sniffing by a female 14 years of age that precipitated peripheral neuropathy. In contrast with the previously reported presentation of peripheral neuropathy in gasoline inhalation, our patient developed multiple mononeuropathies superimposed on a background of sensorimotor polyneuropathy. The patient illustrates that gasoline sniffing neuropathy may present with acute multiple mononeuropathies resembling mononeuritis multiplex, possibly related to increased peripheral nerve susceptibility to pressure in the setting of neurotoxic components of gasoline. The presence of tetraethyl lead, which is no longer present in modern gasoline mixtures, is apparently not a necessary factor in the development of gasoline sniffer's neuropathy.

  7. 40 CFR 80.211 - What are the requirements for treating imported gasoline as blendstock?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... imported gasoline as blendstock? 80.211 Section 80.211 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.211 What are the requirements for treating imported gasoline as blendstock...

  8. 40 CFR 80.211 - What are the requirements for treating imported gasoline as blendstock?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... imported gasoline as blendstock? 80.211 Section 80.211 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.211 What are the requirements for treating imported gasoline as blendstock...

  9. 40 CFR 80.211 - What are the requirements for treating imported gasoline as blendstock?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... imported gasoline as blendstock? 80.211 Section 80.211 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.211 What are the requirements for treating imported gasoline as blendstock...

  10. 40 CFR 80.211 - What are the requirements for treating imported gasoline as blendstock?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... imported gasoline as blendstock? 80.211 Section 80.211 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.211 What are the requirements for treating imported gasoline as blendstock...

  11. 40 CFR 80.211 - What are the requirements for treating imported gasoline as blendstock?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... imported gasoline as blendstock? 80.211 Section 80.211 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.211 What are the requirements for treating imported gasoline as blendstock...

  12. Impact of higher alcohols blended in gasoline on light-duty vehicle exhaust emissions.

    PubMed

    Ratcliff, Matthew A; Luecke, Jon; Williams, Aaron; Christensen, Earl; Yanowitz, Janet; Reek, Aaron; McCormick, Robert L

    2013-12-03

    Certification gasoline was splash blended with alcohols to produce four blends: ethanol (16 vol%), n-butanol (17 vol%), i-butanol (21 vol%), and an i-butanol (12 vol%)/ethanol (7 vol%) mixture; these fuels were tested in a 2009 Honda Odyssey (a Tier 2 Bin 5 vehicle) over triplicate LA92 cycles. Emissions of oxides of nitrogen, carbon monoxide, non-methane organic gases (NMOG), unburned alcohols, carbonyls, and C1-C8 hydrocarbons (particularly 1,3-butadiene and benzene) were determined. Large, statistically significant fuel effects on regulated emissions were a 29% reduction in CO from E16 and a 60% increase in formaldehyde emissions from i-butanol, compared to certification gasoline. Ethanol produced the highest unburned alcohol emissions of 1.38 mg/mile ethanol, while butanols produced much lower unburned alcohol emissions (0.17 mg/mile n-butanol, and 0.30 mg/mile i-butanol); these reductions were offset by higher emissions of carbonyls. Formaldehyde, acetaldehyde, and butyraldehyde were the most significant carbonyls from the n-butanol blend, while formaldehyde, acetone, and 2-methylpropanal were the most significant from the i-butanol blend. The 12% i-butanol/7% ethanol blend was designed to produce no increase in gasoline vapor pressure. This fuel's exhaust emissions contained the lowest total oxygenates among the alcohol blends and the lowest NMOG of all fuels tested.

  13. 40 CFR 79.32 - Motor vehicle gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specifically for him concerning the following items: (1) Mechanisms of action of each additive he reports; (2) Reactions between such additives and motor vehicle gasoline; (3) Identification and measurement of the...

  14. 40 CFR 80.195 - What are the gasoline sulfur standards for refiners and importers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What are the gasoline sulfur standards... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.195 What are the gasoline sulfur standards for refiners and importers? (a)(1...

  15. 40 CFR 80.195 - What are the gasoline sulfur standards for refiners and importers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What are the gasoline sulfur standards... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.195 What are the gasoline sulfur standards for refiners and importers? (a)(1...

  16. 40 CFR 80.195 - What are the gasoline sulfur standards for refiners and importers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the gasoline sulfur standards... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.195 What are the gasoline sulfur standards for refiners and importers? (a)(1...

  17. 40 CFR 80.195 - What are the gasoline sulfur standards for refiners and importers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What are the gasoline sulfur standards... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.195 What are the gasoline sulfur standards for refiners and importers? (a)(1...

  18. 40 CFR 80.195 - What are the gasoline sulfur standards for refiners and importers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What are the gasoline sulfur standards... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.195 What are the gasoline sulfur standards for refiners and importers? (a)(1...

  19. Benzene oxidation coupled to sulfate reduction

    USGS Publications Warehouse

    Lovley, D.R.; Coates, J.D.; Woodward, J.C.; Phillips, E.J.P.

    1995-01-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to I ??M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [14C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as 14CO2. Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of 14CO2 from [14C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [14C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O2, with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.

  20. Anaerobic Benzene Degradation in Petroleum-Contaminated Aquifer Sediments after Inoculation with a Benzene-Oxidizing Enrichment

    PubMed Central

    Weiner, Jonathan M.; Lovley, Derek R.

    1998-01-01

    Sediments from the sulfate-reduction zone of a petroleum-contaminated aquifer, in which benzene persisted, were inoculated with a benzene-oxidizing, sulfate-reducing enrichment from aquatic sediments. Benzene was degraded, with apparent growth of the benzene-degrading population over time. These results suggest that the lack of benzene degradation in the sulfate-reduction zones of some aquifers may result from the failure of the appropriate benzene-degrading sulfate reducers to colonize the aquifers rather than from environmental conditions that are adverse for anaerobic benzene degradation. PMID:9464422

  1. Gasoline poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002806.htm Gasoline poisoning To use the sharing features on this ... This article discusses the harmful effects from swallowing gasoline or breathing in its fumes. This article is ...

  2. Modelling the average velocity of propagation of the flame front in a gasoline engine with hydrogen additives

    NASA Astrophysics Data System (ADS)

    Smolenskaya, N. M.; Smolenskii, V. V.

    2018-01-01

    The paper presents models for calculating the average velocity of propagation of the flame front, obtained from the results of experimental studies. Experimental studies were carried out on a single-cylinder gasoline engine UIT-85 with hydrogen additives up to 6% of the mass of fuel. The article shows the influence of hydrogen addition on the average velocity propagation of the flame front in the main combustion phase. The dependences of the turbulent propagation velocity of the flame front in the second combustion phase on the composition of the mixture and operating modes. The article shows the influence of the normal combustion rate on the average flame propagation velocity in the third combustion phase.

  3. Butanol/Gasoline Test Plan

    DTIC Science & Technology

    2012-03-01

    Differences between gasoline fuel and biobutanol fuel including the effects of temperature  Safety-related and health issues including safety...where engine-operating parameters such as fuel consumption , performance, and emissions are monitored under controlled conditions, with the addition...7 3.3 Power and Fuel Consumption

  4. Phase Partitioning from Theanol Blend Gasolines

    EPA Science Inventory

    In recent years, the use of ethanol and other alcohols as motor fuel additives has increased. Additionally, ethanol production has expanded due to the potential use of ethanol as a primary fuel source. Historical patterns of gasoline composition show strong dependency on regulato...

  5. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What gasoline is subject to the sulfur... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.200 What gasoline is subject to the sulfur standards and requirements? For the purpose of...

  6. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What gasoline is subject to the sulfur... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.200 What gasoline is subject to the sulfur standards and requirements? For the purpose of...

  7. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What gasoline is subject to the sulfur... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.200 What gasoline is subject to the sulfur standards and requirements? For the purpose of...

  8. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What gasoline is subject to the sulfur... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.200 What gasoline is subject to the sulfur standards and requirements? For the purpose of...

  9. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline is subject to the sulfur... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.200 What gasoline is subject to the sulfur standards and requirements? For the purpose of...

  10. Reformulated Gasoline

    EPA Pesticide Factsheets

    Reformulated gasoline (RFG) is gasoline blended to burn cleaner and reduce smog-forming and toxic pollutants in the air we breathe. The Clean Air Act requires that RFG be used to reduce harmful emissions of ozone.

  11. Bioethanol/gasoline blends for fuelling conventional and hybrid scooter. Regulated and unregulated exhaust emissions

    NASA Astrophysics Data System (ADS)

    Costagliola, Maria Antonietta; Prati, Maria Vittoria; Murena, Fabio

    2016-05-01

    The aim of this experimental activity was to evaluate the influence of ethanol fuel on the pollutant emissions measured at the exhaust of a conventional and a hybrid scooter. Both scooters are 4-stroke, 125 cm3 of engine capacity and Euro 3 compliant. They were tested on chassis dynamometer for measuring gaseous emissions of CO, HC, NOx, CO2 and some toxic micro organic pollutants, such as benzene, 1,3-butadiene, formaldehyde and acetaldehyde. The fuel consumption was estimated throughout a carbon balance on the exhaust species. Moreover, total particles number with diameter between 20 nm up to 1 μm was measured. Worldwide and European test cycles were carried out with both scooters fuelled with gasoline and ethanol/gasoline blends (10/90, 20/80 and 30/70% vol). According to the experimental results relative to both scooter technologies, the addiction of ethanol in gasoline reduces CO and particles number emissions. The combustion of conventional scooter becomes unstable when a percentage of 30%v of bioethanol is fed; as consequence a strong increasing of hydrocarbon is monitored, including carcinogenic species. The negative effects of ethanol fuel are related to the increasing of fuel consumption due to the less carbon content for volume unit and to the increasing of formaldehyde and acetaldehyde due to the higher oxygen availability. Almost 70% of Ozone Formation Potential is covered by alkenes and aromatics.

  12. Alternative Test Method for Olefins in Gasoline

    EPA Pesticide Factsheets

    This action proposes to allow for an additional alternative test method for olefins in gasoline, ASTM D6550-05. The allowance of this additional alternative test method will provide more flexibility to the regulated industry.

  13. Dehydrogenation of benzene on Pt(111) surface

    NASA Astrophysics Data System (ADS)

    Gao, W.; Zheng, W. T.; Jiang, Q.

    2008-10-01

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  14. Dehydrogenation of benzene on Pt(111) surface.

    PubMed

    Gao, W; Zheng, W T; Jiang, Q

    2008-10-28

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  15. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...

  16. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...

  17. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...

  18. 40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall: (a...

  19. 40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall: (a...

  20. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...

  1. 40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall: (a...

  2. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...

  3. 40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall: (a...

  4. 40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall: (a...

  5. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who produces...

  6. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who produces...

  7. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who produces...

  8. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who produces...

  9. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who produces...

  10. Single-molecule conductance through multiple π-π-stacked benzene rings determined with direct electrode-to-benzene ring connections.

    PubMed

    Schneebeli, Severin T; Kamenetska, Maria; Cheng, Zhanling; Skouta, Rachid; Friesner, Richard A; Venkataraman, Latha; Breslow, Ronald

    2011-02-23

    Understanding electron transport across π-π-stacked systems will help to answer fundamental questions about biochemical redox processes and benefit the design of new materials and molecular devices. Herein we employed the STM break-junction technique to measure the single-molecule conductance of multiple π-π-stacked aromatic rings. We studied electron transport through up to four stacked benzene rings held together in an eclipsed fashion via a paracyclophane scaffold. We found that the strained hydrocarbons studied herein couple directly to gold electrodes during the measurements; hence, we did not require any heteroatom binding groups as electrical contacts. Density functional theory-based calculations suggest that the gold atoms of the electrodes bind to two neighboring carbon atoms of the outermost cyclophane benzene rings in η(2) fashion. Our measurements show an exponential decay of the conductance with an increasing number of stacked benzene rings, indicating a nonresonant tunneling mechanism. Furthermore, STM tip-substrate displacement data provide additional evidence that the electrodes bind to the outermost benzene rings of the π-π-stacked molecular wires.

  11. 40 CFR 80.1640 - Standards and requirements that apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG). 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur § 80.1640 Standards and requirements that apply to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG...

  12. BENZENE OXIDE PROTEIN ADDUCTS AS BIOMARKERS OF BENZENE EXPOSURE

    EPA Science Inventory

    Benzene is known to be hematotoxic and carcinogenic in animals and humans. While metabolism is required for toxicity, the identity of the ultimate carcinogen(s) remains unknown. Benzene oxide (BO) is the first and most abundant of the metabolites, but very little is known about...

  13. Induced cytotoxic damage by exposure to gasoline vapors: a study in Sinaloa, Mexico.

    PubMed

    Martinez-Valenzuela, Carmen; Soto, Fernanda Balderrama; Waliszewski, Stefan M; Meza, Enrique; Arroyo, Sandra Gómez; Martínez, Luis Daniel Ortega; Meraz, Eliakym Arambula; Caba, Mario

    2017-01-01

    Gasoline is a blend of organic compounds used in internal combustion engines. Gasoline-station attendants are exposed to gasoline vapors, which pose a potentially mutagenic risk. According to the International Agency for Research on Cancer, exposure to gasoline and engine exhaust is possibly carcinogenic to humans. We determined the frequency of micronucleus and other nuclear abnormalities, such as pyknotic nuclei, chromatin condensation, cells with nuclear buds, karyolytic cells, karyorrhexis, and binucleated cells in buccal mucosal smears of 60 gasoline-station attendants and 60 unexposed controls. In addition, we explored if factors such as smoking habits, alcohol consumption, and worked years exert an additional synergistic cytotoxic effect. There were statistically significant higher frequencies (p < 0.05) of nuclear abnormalities among exposed attendants compared to the controls. No statistical significant (p > 0.05) additional effect of lifestyle habits such as smoking and alcohol consumption or worked years on the cytotoxicity was observed. The results showed that from the beginning exposure to gasoline vapors increased the frequency of nuclear abnormalities in buccal epithelial cells. Our results provide valuable information on cytotoxic damage for an early pre-symptomatic diagnosis.

  14. Anaerobic benzene degradation by bacteria

    PubMed Central

    Vogt, Carsten; Kleinsteuber, Sabine; Richnow, Hans‐Hermann

    2011-01-01

    Summary Benzene is a widespread and toxic contaminant. The fate of benzene in contaminated aquifers seems to be primarily controlled by the abundance of oxygen: benzene is aerobically degraded at high rates by ubiquitous microorganisms, and the oxygen‐dependent pathways for its breakdown were elucidated more than 50 years ago. In contrast, benzene was thought to be persistent under anoxic conditions until 25 years ago. Nevertheless, within the last 15 years, several benzene‐degrading cultures have been enriched under varying electron acceptor conditions in laboratories around the world, and organisms involved in anaerobic benzene degradation have been identified, indicating that anaerobic benzene degradation is a relevant environmental process. However, only a few benzene degraders have been isolated in pure culture so far, and they all use nitrate as an electron acceptor. In some highly enriched strictly anaerobic cultures, benzene has been described to be mineralized cooperatively by two or more different organisms. Despite great efforts, the biochemical mechanism by which the aromatic ring of benzene is activated in the absence of oxygen is still not fully elucidated; methylation, hydroxylation and carboxylation are discussed as likely reactions. This review summarizes the current knowledge about the ‘key players’ of anaerobic benzene degradation under different electron acceptor conditions and the possible pathway(s) of anaerobic benzene degradation. PMID:21450012

  15. Characterization of solid-phase microextraction and gas chromatography for the analysis of gasoline tracers in different microenvironments.

    PubMed

    Ceballos, Diana; Zielinska, Barbara; Fujita, Eric; Sagebiel, John

    2007-03-01

    Gasoline tracers were collected on solid-phase microextraction (SPME) fibers and analyzed by capillary gas chromatography with photoionization detector (GC/PID). This was part of a larger study to quantify personal exposure to motor vehicle gasoline evaporative and combustive emissions in high-end exposure microenvironments (MEs). The SPME fiber selected for this application was a 75-microm carboxen/polydimethylsiloxane. Sequential 10-min samples were collected for measurement of benzene, toluene, ethylbenzene, and ortho-, meta-, and para-xylene in different MEs in Atlanta, GA, in summer 2002 and Reno, NV, in spring 2003. Field calibrations were performed with certified gas standards in 1-L Tedlar bags for varying concentrations and exposure times. SPME detection limits were approximately 0.2 ppbv with a precision of 3-17% and accuracy of 30%. A dynamic system was designed for temperature and relative humidity calibrations, with corrections for the effects of these variables performed when necessary. SPME data compared satisfactorily with integrated canister samples, continuous PID, and field portable mass spectrometer data.

  16. Thermodynamics properties and combustion performance investigation of higher chain alcohol-RON 92 gasoline system

    NASA Astrophysics Data System (ADS)

    Oktavian, Rama; Darmawan, Rhezaldian Eka; Diarahmawati, Ayu; Kartiko, Intan Dyah; Rachmawati, Rizqi Tri

    2017-03-01

    The increasing consumption of fossil fuel in Indonesia is not followed by the rising on domestic oil production. This will lead to the depletion of fossil fuel reserves that will affect the availability of energy resources. Biofuel is considered as the critical solution to solve this problem in Indonesia. In recent years, alcohol produced from biomass has been used as an oxygenated compound in gasoline to increase the octane number and reduce pollutants resulting from motor vehicle exhaust emissions. However, the use of alcohol as an additive compounds is still limited to ethanol. In fact, the use of higher-chain alcohol such as 1-butanol offers more benefits over ethanol due to its higher calorific value. 1-butanol also has good characteristics for gasoline mixture such as less corrosive than ethanol, more resistant to water contamination, its low vapor pressure which leads to more safety application. This work investigated the effect of 1-butanol addition on the thermodynamic properties of gasoline-ethanol blend, in the form of density values, isobaric expansion coefficient, and the calorific value. The addition of 1-butanol up to 15% weight (80% RON 92-5% ethanol-15% 1-butanol) gives higher density to alcohol-gasoline blend up to 2% compared with pure RON 92 gasoline. Moreover, this addition produces the calorific value of gasoline blend of 11,313 cal/gr compared to pure RON 92 gasoline with the calorific value of 12,117 cal/gram. This blend can reduce the RON 92 gasoline consumption up to 15% from calorific value perspective.

  17. Development of multiple chemical sensitivities in laborers after acute gasoline fume exposure in an underground tunneling operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidoff, A.L.; Keyl, P.M.; Meggs, W.

    1998-05-01

    In this article, investigators report on the presence and nature of chemical sensitivities and other indices of illness in a cohort of workers excavating a new subway tunnel located under a former gasoline station. The workers were exposed to gasoline fumes for up to approximately 2 mo when they inadvertently dug into soil contaminated by gasoline. The cohort was unique in several ways: (a) contact with gasoline was made by the workers at a time when no one had complained of multiple chemical sensitivities syndrome; (b) all were males of low socioeconomic status; (c) the exposure was well documented; (d)more » the cohort could be considered naive because, at the time of the study, the men were not members of support groups and were not being seen by clinical ecologists, and they were not labeled, either by self or others, as having multiple chemical sensitivities syndrome or any related diagnosis; and (e) at the time of interview, all workers contacted appeared to be either gainfully employed or laid off temporarily and seeking gainful employment. The authors explored the health status of the workers at two different times: (1) soon after the tunnel was closed as a result of high, measured benzene-exposure levels and (2) 10--13 mo after the tunnel was closed. The workers were chronically overexposed to gasoline fumes, after which approximately one-fourth of their random sample of relatively naive, low-socio-economic-status male laborers--although neither disabled nor generally litigious--reported the new onset of chemical hypersensitivities and other characteristics that fit conservative criteria for multiple chemical sensitivities syndrome.« less

  18. Modification of Baselines for Gasoline Produced or Imported for Use in Hawaii, Alaska, and U.S. Territories Additional Resources

    EPA Pesticide Factsheets

    This documents for modifications to fuel regulations to allow refiners and importers of conventional gasoline used in Hawaii, Alaska and U.S. Territories to petition EPA to change the way in which they calculate emissions from such gasoline.

  19. Evaluation of gasoline-denatured ethanol as a carbon source for denitrification.

    PubMed

    Kazasi, Anna; Boardman, Gregory D; Bott, Charles B

    2013-06-01

    In this study concerning denitrification, the performance of three carbon sources, methanol (MeOH), ethanol (EtOH) and gasoline-denatured ethanol (dEtOH), was compared and evaluated on the basis of treatment efficiency, inhibition potential and cost. The gasoline denaturant considered here contained mostly aliphatic compounds and little of the components that typically boost the octane rating, such as benzene, toluene, ethylbenzene and xylenes. Results were obtained using three lab-scale SBRs operated at SRT of 12.0 +/- 0.9 days. After biomass was acclimated, denitrification rates with dEtOH were similar to those of EtOH (201 +/- 50 and 197 +/- 28 NO3-N/g MLVSS x d, respectively), and higher than those of MeOH (165 +/- 49 mg NO3-N/g MLVSS x d). The denaturant did not affect biomass production, nitrification or denitrification. Effluent soluble COD concentrations were always less than the analytical detection limit. Although the cost of dEtOH ($2.00/kg nitrate removed) was somewhat higher than that of methanol ($1.63/kg nitrate removed), the use of dEtOH is very promising and utilities will have to decide if it is worth paying a little extra to take advantage of its benefits.

  20. A Crew Exposure Study. Phase II. Volume 2. At Sea. Part A.

    DTIC Science & Technology

    1985-04-01

    volume Subchapter D commodities such as crude oil and gasolines that are transported on dedicated tankers. In addition, a wide range of ship...hazard. The results of this study show that significant overexposures are occurring to S both Subchapter 0 and D (e.g. gasoline ) cargos. The data indi...8217..% I W-9,. Vw.S GLOSSARY OF CHRIS CODE ABBREVIATIONS FOR VOYAGE CHEMICALS Common Name Abbreviation Benzene BNZ Gasoline GAT

  1. Occupational exposure to gasoline and the risk of non-Hodgkin lymphoma: a review and meta-analysis of the literature.

    PubMed

    Kane, Eleanor V; Newton, Rob

    2010-10-01

    Gasoline comprises over 500 chemicals, including the known or suspected carcinogens benzene, 1,3-butadiene, ethylbenzene and methyl tert-butyl ether (MTBE). To assess whether work in the production, distribution and use of gasoline is associated with non-Hodgkin lymphoma (NHL), we reviewed the published literature on this topic. English-language peer-reviewed articles were identified by keyword searches of bibliographic databases. Twenty-two cohorts and thirteen case-control studies examined the risk of NHL among persons employed in the downstream petroleum industry. No positive associations were found with the exception of one study. The pooled risk estimate from a random-effects meta-analysis was 1.02 (95% confidence interval (CI) 0.94-1.12). Although there were no estimates available, exposure is likely to have varied by occupation, location and time period; there was no evidence however that risk estimates varied by any of these factors. NHL is a heterogeneous disease, yet no data were reported for NHL subtypes. In summary, there is no suggestion across an extensive literature that exposure to gasoline at the levels workers' experience in an occupational setting increases the risk of NHL. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. MEASUREMENT OF BENZENE OXIDE IN THE BLOOD OF RATS FOLLOWING ADMINISTRATION OF BENZENE

    EPA Science Inventory

    Although it is generally assumed that metabolism of benzene proceeds through an initial step involving oxidation to benzene oxide (BO) by CYP450 in the liver, the production of BO has never been unambiguously confirmed in animals dosed with benzene. Furthermore, prevailing hypo...

  3. Gasoline Marketing: Premium Gasoline Overbuying May Be Occurring, but Extent Unknown.

    DTIC Science & Technology

    1991-02-01

    Atlantic Richfield Company (ARCO) Mobil Oil Company Shell Oil Company Sun Refining and Marketing Company Consumer Groups American Automobile Association...Chairman: Consumers have the option of purchasing several different grades of unleaded gasoline-regular, mid-grade, and premium-which are classi...determine: (1) whether consumers were buying premium gasoline that they may not need, (2) whether the I .higher retail price of premium gasoline includes

  4. 40 CFR 80.1035 - What are the attest engagement requirements for gasoline toxics compliance applicable to refiners...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for gasoline toxics compliance applicable to refiners and importers? 80.1035 Section 80.1035... FUELS AND FUEL ADDITIVES Gasoline Toxics Attest Engagements § 80.1035 What are the attest engagement requirements for gasoline toxics compliance applicable to refiners and importers? In addition to the...

  5. 40 CFR 80.415 - What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for gasoline sulfur compliance applicable to refiners and importers? 80.415 Section 80.415... FUELS AND FUEL ADDITIVES Gasoline Sulfur Attest Engagements § 80.415 What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners and importers? In addition to the...

  6. 40 CFR 80.415 - What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for gasoline sulfur compliance applicable to refiners and importers? 80.415 Section 80.415... FUELS AND FUEL ADDITIVES Gasoline Sulfur Attest Engagements § 80.415 What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners and importers? In addition to the...

  7. 40 CFR 80.1035 - What are the attest engagement requirements for gasoline toxics compliance applicable to refiners...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for gasoline toxics compliance applicable to refiners and importers? 80.1035 Section 80.1035... FUELS AND FUEL ADDITIVES Gasoline Toxics Attest Engagements § 80.1035 What are the attest engagement requirements for gasoline toxics compliance applicable to refiners and importers? In addition to the...

  8. 40 CFR 80.415 - What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for gasoline sulfur compliance applicable to refiners and importers? 80.415 Section 80.415... FUELS AND FUEL ADDITIVES Gasoline Sulfur Attest Engagements § 80.415 What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners and importers? In addition to the...

  9. 40 CFR 80.415 - What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for gasoline sulfur compliance applicable to refiners and importers? 80.415 Section 80.415... FUELS AND FUEL ADDITIVES Gasoline Sulfur Attest Engagements § 80.415 What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners and importers? In addition to the...

  10. 40 CFR 80.415 - What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for gasoline sulfur compliance applicable to refiners and importers? 80.415 Section 80.415... FUELS AND FUEL ADDITIVES Gasoline Sulfur Attest Engagements § 80.415 What are the attest engagement requirements for gasoline sulfur compliance applicable to refiners and importers? In addition to the...

  11. 40 CFR 80.1035 - What are the attest engagement requirements for gasoline toxics compliance applicable to refiners...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for gasoline toxics compliance applicable to refiners and importers? 80.1035 Section 80.1035... FUELS AND FUEL ADDITIVES Gasoline Toxics Attest Engagements § 80.1035 What are the attest engagement requirements for gasoline toxics compliance applicable to refiners and importers? In addition to the...

  12. 40 CFR 80.1035 - What are the attest engagement requirements for gasoline toxics compliance applicable to refiners...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for gasoline toxics compliance applicable to refiners and importers? 80.1035 Section 80.1035... FUELS AND FUEL ADDITIVES Gasoline Toxics Attest Engagements § 80.1035 What are the attest engagement requirements for gasoline toxics compliance applicable to refiners and importers? In addition to the...

  13. 40 CFR 80.1035 - What are the attest engagement requirements for gasoline toxics compliance applicable to refiners...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for gasoline toxics compliance applicable to refiners and importers? 80.1035 Section 80.1035... FUELS AND FUEL ADDITIVES Gasoline Toxics Attest Engagements § 80.1035 What are the attest engagement requirements for gasoline toxics compliance applicable to refiners and importers? In addition to the...

  14. Sub-Doppler Electronic Spectrum of the BENZENE-D2 Complex

    NASA Astrophysics Data System (ADS)

    Hayashi, Masato; Ohshima, Yasuhiro

    2014-06-01

    Excitation spectrum of the benzene-D2 van der Waals (vdW) complex in the vicinity of the S1 ← S0 601 vibronic transition of the monomer was recorded by utilizing mass-selective two-color resonance-enhanced two-photon ionization. Extensive adiabatic cooling with the rotational temperature of ěrb|<| 0.5 K was conducted by the high-pressure pulsed expansion, and sub-Doppler resolution yielding the line width of 250 MHz was realized in a collimated molecular beam by employing Fourier-transform-limited ultraviolet pulses for the excitation. In contrast to our previous study on the benzene-H2 complex, weaker binding ortho nuclear-spin isomer, correlating to the j = 0 state of a freely rotating D2, was observed in addition to the stronger binding para isomer (with j = 1), by using a gas sample of normal D2. Three and two vibronic bands involving vdW-mode excitation were observed for the para and ortho isomers, respectively. By comparing the present results with those of the benzene-H2 complex, we made unambiguous assignments on the vdW modes involved in each observed band, and obtained complete sets of vibrational frequencies of all the three vdW modes for the both H2 and D2 isotopomers in the S1 61 manifold. One of the vdW frequency correlates to the splitting between the m = 0 and ± 1 sublevels in the j = 1 state of a freely rotating H2/D2 molecule, and the potential barrier for the hindered internal rotation has been evaluated to be ca. 60 cm-1 from the values. Ratio of the vdW frequencies between the H2 and D2 species deviate significantly from the value for the harmonic vibration (i.e., √{2} ≈ 1.4), indicating substantial anharmonic character of the vdW modes in the complex. M. Hayashi and Y. Ohshima, Chem. Phys. 419, 131-137 (2013). M. Hayashi and Y. Ohshima, J. Phys. Chem. A 117, 9819-9830 (2013).

  15. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...

  16. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...

  17. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...

  18. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...

  19. 40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable for...

  20. 40 CFR 80.335 - What gasoline sample retention requirements apply to refiners and importers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What gasoline sample retention... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention Requirements for Refiners and Importers § 80.335 What gasoline sample...

  1. 40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable for...

  2. 40 CFR 80.335 - What gasoline sample retention requirements apply to refiners and importers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline sample retention... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention Requirements for Refiners and Importers § 80.335 What gasoline sample...

  3. 40 CFR 80.335 - What gasoline sample retention requirements apply to refiners and importers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What gasoline sample retention... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention Requirements for Refiners and Importers § 80.335 What gasoline sample...

  4. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...

  5. 40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable for...

  6. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...

  7. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...

  8. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...

  9. 40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable for...

  10. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...

  11. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...

  12. 40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable for...

  13. 40 CFR 80.335 - What gasoline sample retention requirements apply to refiners and importers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What gasoline sample retention... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention Requirements for Refiners and Importers § 80.335 What gasoline sample...

  14. 40 CFR 80.335 - What gasoline sample retention requirements apply to refiners and importers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What gasoline sample retention... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention Requirements for Refiners and Importers § 80.335 What gasoline sample...

  15. Benzene and cyclohexane separation using 1-butyl-3-methylimidazolium thiocyanate

    NASA Astrophysics Data System (ADS)

    Gonfa, Girma; Ismail, Marhaina; Bustam, Mohamad Azmi

    2017-09-01

    Cyclohexane is mainly produced by catalytic hydrogenation of benzene. Removal of unreacted benzene from the product stream is very important in this process. However, due to their close boiling points and azeotrope formation, it is very difficult to separate cyclohexane and benzene by conventional distillation. Currently, special separation processes such as processes extractive distillation is commercially used for this separation. However, this extractive distillation suffers from process complexity and higher energy consumption due to their low extractive selectivity of molecular entrainers used. The aim of the present work is to investigate the applicability of ionic liquids as entrainer in extractive distillation of benzene and cyclohexane mixture. In this study, we investigated 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) ionic liquid for separation of benzene and cyclohexane by measuring the Vapor Liquid Equilibrium data of the two components in the presence of the ionic liquid. As green and potential environmentally friendly solvents, ionic liquids have attracted increasing attention as alternative conventional entrainers in extractive distillation. Isothermal Vapor Liquid Equilibrium for the benzene + cyclohexane + [BMIM][SCN] ternary system was obtained at 353.15 K using a Head Space Gas Chromatography. The addition of [BMIM][SCN] breaks the benzene-cyclohexane azeotrope and increased the relative volatility cyclohexane to benzene in the mixture. The effect of [BMIM][SCN] on the relative volatility cyclohexane to benzene was studied at various benzene and cyclohexane compositions and solvent to feed ratios. The performance of [BMIM][SCN] was compared with typical conventional solvents, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The results show that the relative volatility of cyclohexane to benzene in the presence of [BMIM][SCN] is higher compared that of DMSO and DMF.

  16. 40 CFR 80.1604 - Gasoline sulfur standards and requirements for parties downstream of refiners and importers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Gasoline sulfur standards and... ADDITIVES Gasoline Sulfur § 80.1604 Gasoline sulfur standards and requirements for parties downstream of refiners and importers. (a) The sulfur standard for gasoline at any downstream location shall be determined...

  17. Facts about Benzene

    MedlinePlus

    ... Disposal of Contaminated Clothing .” If you think your water supply may have benzene in it, drink bottled water until you are sure your water supply is safe. If someone has swallowed benzene, do ...

  18. A Classroom Demonstration of Water-Induced Phase Separation of Alcohol-Gasoline Biofuel Blends

    ERIC Educational Resources Information Center

    Mueller, Sherry A.; Anderson, James E.; Wallington, Timothy J.

    2009-01-01

    A significant issue associated with ethanol-gasoline blends is the phase separation that occurs with the addition of small volumes of water, producing an ethanol-deficient gasoline layer and an ethanol-rich aqueous layer. The gasoline layer may have a lower-than-desired octane rating due to the decrease in ethanol content, resulting in engine…

  19. 40 CFR 80.1656 - Exemptions for gasoline used for research, development, or testing purposes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Exemptions for gasoline used for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur § 80.1656 Exemptions for gasoline used for research, development, or testing purposes. (a) Written...

  20. 40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What gasoline is subject to the toxics... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.820 What gasoline is subject to the toxics performance...

  1. 40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What gasoline is subject to the toxics... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.820 What gasoline is subject to the toxics performance...

  2. 40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What gasoline is subject to the toxics... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.820 What gasoline is subject to the toxics performance...

  3. Gasoline risk management: a compendium of regulations, standards, and industry practices.

    PubMed

    Swick, Derek; Jaques, Andrew; Walker, J C; Estreicher, Herb

    2014-11-01

    This paper is part of a special series of publications regarding gasoline toxicology testing and gasoline risk management; this article covers regulations, standards, and industry practices concerning gasoline risk management. Gasoline is one of the highest volume liquid fuel products produced globally. In the U.S., gasoline production in 2013 was the highest on record (API, 2013). Regulations such as those pursuant to the Clean Air Act (CAA) (Clean Air Act, 2012: § 7401, et seq.) and many others provide the U.S. federal government with extensive authority to regulate gasoline composition, manufacture, storage, transportation and distribution practices, worker and consumer exposure, product labeling, and emissions from engines and other sources designed to operate on this fuel. The entire gasoline lifecycle-from manufacture, through distribution, to end-use-is subject to detailed, complex, and overlapping regulatory schemes intended to protect human health, welfare, and the environment. In addition to these legal requirements, industry has implemented a broad array of voluntary standards and best management practices to ensure that risks from gasoline manufacturing, distribution, and use are minimized. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  5. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  6. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  7. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  8. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  9. 40 CFR 80.1503 - What are the product transfer document requirements for gasoline-ethanol blends, gasolines, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for gasoline-ethanol blends, gasolines, and conventional blendstocks for oxygenate blending... Gasoline-Ethanol Blends § 80.1503 What are the product transfer document requirements for gasoline-ethanol blends, gasolines, and conventional blendstocks for oxygenate blending subject to this subpart? (a...

  10. 40 CFR 80.1503 - What are the product transfer document requirements for gasoline-ethanol blends, gasolines, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for gasoline-ethanol blends, gasolines, and conventional blendstocks for oxygenate blending... Gasoline-Ethanol Blends § 80.1503 What are the product transfer document requirements for gasoline-ethanol blends, gasolines, and conventional blendstocks for oxygenate blending subject to this subpart? (a...

  11. 40 CFR 80.1503 - What are the product transfer document requirements for gasoline-ethanol blends, gasolines, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for gasoline-ethanol blends, gasolines, and conventional blendstocks for oxygenate blending... Gasoline-Ethanol Blends § 80.1503 What are the product transfer document requirements for gasoline-ethanol blends, gasolines, and conventional blendstocks for oxygenate blending subject to this subpart? (a...

  12. Economic and environmental benefits of higher-octane gasoline.

    PubMed

    Speth, Raymond L; Chow, Eric W; Malina, Robert; Barrett, Steven R H; Heywood, John B; Green, William H

    2014-06-17

    We quantify the economic and environmental benefits of designing U.S. light-duty vehicles (LDVs) to attain higher fuel economy by utilizing higher octane (98 RON) gasoline. We use engine simulations, a review of experimental data, and drive cycle simulations to estimate the reduction in fuel consumption associated with using higher-RON gasoline in individual vehicles. Lifecycle CO2 emissions and economic impacts for the U.S. LDV fleet are estimated based on a linear-programming refinery model, a historically calibrated fleet model, and a well-to-wheels emissions analysis. We find that greater use of high-RON gasoline in appropriately tuned vehicles could reduce annual gasoline consumption in the U.S. by 3.0-4.4%. Accounting for the increase in refinery emissions from production of additional high-RON gasoline, net CO2 emissions are reduced by 19-35 Mt/y in 2040 (2.5-4.7% of total direct LDV CO2 emissions). For the strategies studied, the annual direct economic benefit is estimated to be $0.4-6.4 billion in 2040, and the annual net societal benefit including the social cost of carbon is estimated to be $1.7-8.8 billion in 2040. Adoption of a RON standard in the U.S. in place of the current antiknock index (AKI) may enable refineries to produce larger quantities of high-RON gasoline.

  13. Effect of Ethanol and Ethanol Biodegradation Products on Prospects for Natural Anaerobic Biodegradation of Benzene at Gasoline Spill Sites

    EPA Science Inventory

    There has been an increasing use of biofuels (ethanol in particular) in the fuel supply nationwide, and an increase in the number of stations that sell gasoline that contains more than 10% ethanol. The U.S. EPA needs to understand the fate of these materials if they are released ...

  14. Biomarkers of susceptibility following benzene exposure: influence of genetic polymorphisms on benzene metabolism and health effects.

    PubMed

    Carbonari, Damiano; Chiarella, Pieranna; Mansi, Antonella; Pigini, Daniela; Iavicoli, Sergio; Tranfo, Giovanna

    2016-01-01

    Benzene is a ubiquitous occupational and environmental pollutant. Improved industrial hygiene allowed airborne concentrations close to the environmental context (1-1000 µg/m(3)). Conversely, new limits for benzene levels in urban air were set (5 µg/m(3)). The biomonitoring of exposure to such low benzene concentrations are performed measuring specific and sensitive biomarkers such as S-phenylmercapturic acid, trans, trans-muconic acid and urinary benzene: many studies referred high variability in the levels of these biomarkers, suggesting the involvement of polymorphic metabolic genes in the individual susceptibility to benzene toxicity. We reviewed the influence of metabolic polymorphisms on the biomarkers levels of benzene exposure and effect, in order to understand the real impact of benzene exposure on subjects with increased susceptibility.

  15. Formation of muconaldehyde, an open-ring metabolite of benzene, in mouse liver microsomes: an additional pathway for toxic metabolites.

    PubMed Central

    Latriano, L; Goldstein, B D; Witz, G

    1986-01-01

    It has been proposed that a ring-opened form may be responsible for the toxicity of benzene. The present studies demonstrate that incubation of [14C]benzene with liver microsomes (obtained from male CD-1 mice treated with benzene) in the presence of NADPH results in the formation of a ring-opened product. Evidence for the identity of this product was obtained by derivatizing with 2-thiobarbituric acid (TBA), which resulted in the formation of an adduct with a 490-nm absorbance maximum. This maximum is identical to that observed after authentic trans,trans-muconaldehyde has reacted with TBA. Separation of muconaldehyde, both with and without trapping with TBA, from other benzene metabolites in the incubation mixture was accomplished by HPLC. The radioactivity profile of fractions collected during HPLC analysis contained peaks that eluted with muconaldehyde and the muconaldehyde-TBA adduct. The structure of the ring-opened product was confirmed by mass spectrometry, studies in which the HPLC peak from the microsomal incubation mixture that eluted at the retention time of authentic muconaldehyde was collected and derivatized with 2,4-dinitrophenylhydrazine. The high-resolution mass spectrum of this sample contained an ion with an m/z of 291.0729, corresponding to muconaldehyde mono-dinitrophenylhydrazone. These results indicate that benzene is metabolized in vitro to a ring-opened product identified as muconaldehyde. PMID:3464956

  16. Evaporation characteristics of ETBE-blended gasoline.

    PubMed

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-04-28

    To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. 40 CFR 80.255 - Compliance plans and demonstration of commitment to produce low sulfur gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... commitment to produce low sulfur gasoline. 80.255 Section 80.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur... gasoline. The requirements of this section apply to any refiner approved for small refiner standards who...

  18. 40 CFR 80.255 - Compliance plans and demonstration of commitment to produce low sulfur gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... commitment to produce low sulfur gasoline. 80.255 Section 80.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur... gasoline. The requirements of this section apply to any refiner approved for small refiner standards who...

  19. 40 CFR 80.255 - Compliance plans and demonstration of commitment to produce low sulfur gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... commitment to produce low sulfur gasoline. 80.255 Section 80.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur... gasoline. The requirements of this section apply to any refiner approved for small refiner standards who...

  20. 40 CFR 80.255 - Compliance plans and demonstration of commitment to produce low sulfur gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... commitment to produce low sulfur gasoline. 80.255 Section 80.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur... gasoline. The requirements of this section apply to any refiner approved for small refiner standards who...

  1. 40 CFR 80.255 - Compliance plans and demonstration of commitment to produce low sulfur gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... commitment to produce low sulfur gasoline. 80.255 Section 80.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur... gasoline. The requirements of this section apply to any refiner approved for small refiner standards who...

  2. Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.

    PubMed

    Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian

    2016-04-01

    Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice.

  3. Law and regulation of benzene.

    PubMed Central

    Feitshans, I L

    1989-01-01

    OSHA has created final benzene regulations after extensive rulemakings on two occasions, 1978 and 1987. These standards have been the subject of extensive litigation for nearly 20 years. This article examines in detail the conceptual underpinnings of the Benzene Case, (which was decided by the U.S. Supreme Court in 1980) in light of U.S. administrative law precedents that have set limits upon administrative discretion under the test for "substantial evidence" and the "hard look doctrine." This article also addresses recent developments in the wake of the Benzene Case and their implications for benzene regulations following the "significant risk" doctrine in that case. This article briefly describes other national, regional, and international laws governing the use of benzene. This article concludes that the revisions of the benzene regulation and subsequent rulemaking provide substantial evidence of scientific underpinnings for regulatory action and that laws from other nations reflect an international consensus that occupational exposure to benzene is a proper subject of regulation. Such regulations and policies are therefore likely to withstand scrutiny and remain enforceable as widely accepted norms. PMID:2792048

  4. 40 CFR 80.1641 - Alternative sulfur standards and requirements that apply to importers who transport gasoline by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements that apply to importers who transport gasoline by truck. 80.1641 Section 80.1641 Protection of... ADDITIVES Gasoline Sulfur § 80.1641 Alternative sulfur standards and requirements that apply to importers who transport gasoline by truck. Importers who import gasoline into the United States by truck may...

  5. Benzene patterns in different urban environments and a prediction model for benzene rates based on NOx values

    NASA Astrophysics Data System (ADS)

    Paz, Shlomit; Goldstein, Pavel; Kordova-Biezuner, Levana; Adler, Lea

    2017-04-01

    Exposure to benzene has been associated with multiple severe impacts on health. This notwithstanding, at most monitoring stations, benzene is not monitored on a regular basis. The aims of the study were to compare benzene rates in different urban environments (region with heavy traffic and industrial region), to analyse the relationship between benzene and meteorological parameters in a Mediterranean climate type, to estimate the linkages between benzene and NOx and to suggest a prediction model for benzene rates based on NOx levels in order contribute to a better estimation of benzene. Data were used from two different monitoring stations, located on the eastern Mediterranean coast: 1) a traffic monitoring station in Tel Aviv, Israel (TLV) located in an urban region with heavy traffic; 2) a general air quality monitoring station in Haifa Bay (HIB), located in Israel's main industrial region. At each station, hourly, daily, monthly, seasonal, and annual data of benzene, NOx, mean temperature, relative humidity, inversion level, and temperature gradient were analysed over three years: 2008, 2009, and 2010. A prediction model for benzene rates based on NOx levels (which are monitored regularly) was developed to contribute to a better estimation of benzene. The severity of benzene pollution was found to be considerably higher at the traffic monitoring station (TLV) than at the general air quality station (HIB), despite the location of the latter in an industrial area. Hourly, daily, monthly, seasonal, and annual patterns have been shown to coincide with anthropogenic activities (traffic), the day of the week, and atmospheric conditions. A strong correlation between NOx and benzene allowed the development of a prediction model for benzene rates, based on NOx, the day of the week, and the month. The model succeeded in predicting the benzene values throughout the year (except for September). The severity of benzene pollution was found to be considerably higher at the

  6. Dermal exposure assessment to benzene and toluene using charcoal cloth pads.

    PubMed

    van Wendel de Joode, Berna; Tielemans, Erik; Vermeulen, Roel; Wegh, Hillion; Kromhout, Hans

    2005-01-01

    Charcoal cloth pads have been used to assess volatile chemicals on the skin in a laboratory setting; however, they have not yet been applied to measure dermal exposure in occupational settings. This study aimed at evaluating whether charcoal pads can be used to assess dermal exposure to benzene and toluene in workers of a petrochemical plant. Inhalation and dermal exposure levels to benzene and toluene were assessed for workers of a petrochemical plant performing different jobs. Benzene uptake was assessed by determining S-phenylmercapturic acid in workers' urine samples. Dermal exposure levels on the charcoal pads were adjusted for ambient air levels of benzene and toluene by subtracting the amount of benzene or toluene measured in personal air from the amount of benzene or toluene measured on the charcoal pad. In general, measured external and internal exposure levels were low. The estimated contribution of the dermal route to internal benzene exposure levels was less than 0.06% for all jobs. Toluene personal air concentrations and benzene and toluene dermal exposure levels differed statistically significantly between job titles. For benzene, differences between jobs were larger for adjusted dermal exposures (maximum 17-fold, P = 0.02) than for inhalation exposures (maximum two-fold, P = 0.08). Also for toluene, although less clear, differences between jobs were larger for adjusted dermal exposures (maximum 23-fold, P = 0.01) as compared to inhalation exposures (maximum 10-fold, P = 0.01). Charcoal pads appeared to measure dermal exposures to benzene and toluene in addition to ambient air levels. Future studies applying charcoal cloth pads for the dermal exposure assessment at workplaces with higher dermal exposure to organic solvents may provide more insight into the biological relevance of dermal exposure levels measured by charcoal cloth pads. In addition, the design of the dermal sampler might be improved by configuring a dermal sampler, where part of the

  7. Process for the preparation of ethyl benzene

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1995-12-19

    Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50 C to 300 C, using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered. 2 figs.

  8. Process for the preparation of ethyl benzene

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1995-01-01

    Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50.degree. C. to 300.degree. C., using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered.

  9. Health assessment of gasoline and fuel oxygenate vapors: generation and characterization of test materials.

    PubMed

    Henley, Michael; Letinski, Daniel J; Carr, John; Caro, Mario L; Daughtrey, Wayne; White, Russell

    2014-11-01

    In compliance with the Clean Air Act regulations for fuel and fuel additive registration, the petroleum industry, additive manufacturers, and oxygenate manufacturers have conducted comparative toxicology testing on evaporative emissions of gasoline alone and gasoline containing fuel oxygenates. To mimic real world exposures, a generation method was developed that produced test material similar in composition to the re-fueling vapor from an automotive fuel tank at near maximum in-use temperatures. Gasoline vapor was generated by a single-step distillation from a 1000-gallon glass-lined kettle wherein approximately 15-23% of the starting material was slowly vaporized, separated, condensed and recovered as test article. This fraction was termed vapor condensate (VC) and was prepared for each of the seven test materials, namely: baseline gasoline alone (BGVC), or gasoline plus an ether (G/MTBE, G/ETBE, G/TAME, or G/DIPE), or gasoline plus an alcohol (G/EtOH or G/TBA). The VC test articles were used for the inhalation toxicology studies described in the accompanying series of papers in this journal. These studies included evaluations of subchronic toxicity, neurotoxicity, immunotoxicity, genotoxicity, reproductive and developmental toxicity. Results of these studies will be used for comparative risk assessments of gasoline and gasoline/oxygenate blends by the US Environmental Protection Agency. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Exposure to volatile organic compounds in an ethanol and gasoline service station.

    PubMed

    de Oliveira, K M P G; Martins, E M; Arbilla, G; Gatti, L V

    2007-08-01

    The present study was conducted to determine the VOCs concentrations in a service station located in a residential and commercial area in the city of Rio de Janeiro. This is, to our knowledge, the first published determination in Brazil, where both ethanol and ethanol-blended gasoline are used. Electro polished, stainless steel, evacuated canisters were used for sampling. The analysis was performed by gaschromatography with flame ionization detection (CG-FID) and by gas chromatography-mass spectrometry (CG-MS). A total of 80 and 56 compounds were determined in samples collected at the service station and control location, respectively. The most abundant compounds at the service station were in order of decreasing concentration (units: microg m(-3)): 2-methylbutane (1,715.7), 2-methylbut-1-ene (1,043.2), isobutene (758.8), 2-methylprop-1-ene (703.7), 2-methylpentane (492.1), pentadi-1,3-ene (189.7), toluene (157.0), benzene (144.5), but-2-ene (126.3) and m,p-xylene (123.2). A mean concentration of 144.5 microg m(-3) was determined for benzene, this value is about ten times the concentration determined in the control location in this work and about 70 times the value determined in other locations of Rio de Janeiro using charcoal cartridges for the sampling. The mean benzene/toluene ratios are 0.92 and 0.31 in the service station and control location, respectively. Since in Brazil service station workers are employed to fill customer's cars (self-service is not commonly used) the possible risk of cancer of these workers should be evaluated in a future study.

  11. Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas.

    PubMed

    Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-09-03

    An innovative plasma reactor, which generates hybrid surface/packed-bed discharge (HSPBD) plasmas, was employed for the degradation of benzene. The HSPBD reactor was found to display remarkably better benzene degradation, mineralization, and energy performance than surface or packed-bed discharge reactors alone. The degradation efficiency, CO2 selectivity, and energy yield in the HSPBD reactor were 21%, 11%, and 3.9 g kWh-1 higher, respectively, than in a surface discharge reactor and 30%, 21%, and 5.5 g kWh-1 higher, respectively, than in a packed-bed discharge reactor operated at 280 J L-1. Particularly, the benzene degradation in the HSPBD reactor exhibited an unambiguous synergistic enhancement rather than a simple additive effect using the surface discharge and packed-bed discharge reactors. Moreover, in the HSPBD reactor, the formation of byproducts, such as NO2, was suppressed, while O3 was promoted. The use of N2 as the carrier gas was found to be effective for benzene degradation because of the fast reaction rate of N2(A3∑u+) with benzene, and oxygen species derived from the dissociation of O2 were found to be significant in the mineralization process. Thus, the addition of O2 to N2 allows for efficient degradation of benzene, and the optimized amount of O2 was determined to be 3%.

  12. Occurrence of the gasoline oxygenate MTBE and BTEX compounds in urban stormwater in the United States, 1991-95

    USGS Publications Warehouse

    Delzer, Gregory C.; Zogorski, John S.; Lopes, T.J.; Bosshart, R.L.

    1996-01-01

    Methyl tert-butyl ether (MTBE) is a gasoline oxygenate. Oxygenates such as MTBE, when added to gasoline, increase the gasoline's oxygen level and decrease vehicular carbon monoxide emissions and ozone levels in the atmosphere. MTBE disperses rapidly in water, was the second most frequently detected volatile organic compound (VOC) in a study of shallow urban ground water, and is less biodegradable than common gasoline compounds, such as benzene, toluene, ethylbenzene, and total xylene (BTEX). Urban stormwater is a possible source of MTBE found in shallow ground water. The U.S. Geological Survey (USGS) sampled stormwater in 16 cities and metropolitan areas that are required to obtain permits to discharge stormwater from their municipal storm-sewer system into surface water. Concentrations of 62 VOCs, including MTBE and BTEX compounds, were measured in 592 stormwater samples collected in these cities and metropolitan areas from 1991 through 1995. Concentration data for MTBE and BTEX compounds in stormwater were compiled and analyzed, and the findings are summarized in this report. This effort was part of an interagency assessment of the scientific basis and effectiveness of the Nation's oxygenated fuel program and was coordinated by the Office of Science and Technology Policy, Executive Office of the President. MTBE was the seventh most frequently detected VOC in urban stormwater, following toluene, total xylene, chloroform, total trimethylbenzene, tetrachloroethene, and naphthalene. MTBE was detected in 6.9 percentmg (41 of 592) of stormwater samples collected. When detected, concentrations of MTBE ranged from 0.2 to 8.7 micrograms per liter (ug/L), with a median of 1.5 ug/L. All detections of MTBE were less than the lower limit of the U.S. Environmental Protection Agency (EPA) draft lifetime health advisory (20 ug/L) for drinking water. Eighty- three percent of all detections of MTBE in stormwater were in samples collected during the October through March season of

  13. Gasoline immersion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, L.A.; Cruse, C.W.

    1981-01-01

    Chemical burns and pulmonary complications are the most common problems encountered in the patient immersed in gasoline. Our patient demonstrated a 46-percent total-body-surface area, partial-thickness chemical burn. Although he did not develop bronchitis or pneumonitis, he did display persistent atelectasis, laryngeal edema, and subsequent upper airway obstruction. This had not previously been reported in gasoline inhalation injuries. Hydrocarbon hepatitis secondary to the vascular endothelial damage is apparently a reversible lesion with no reported long-term sequelae. Gasoline immersion injuries may be a series multisystem injury and require the burn surgeon to take a multisystem approach to its diagnosis and treatment.

  14. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must have octane values that represent commercially available fuels for the...

  15. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must have octane values that represent commercially available fuels for the...

  16. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must have octane values that represent commercially available fuels for the...

  17. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) This section specifies test fuel properties for gasoline with ethanol (low-level blend only) and...

  18. Cultivating microbial dark matter in benzene-degrading methanogenic consortia.

    PubMed

    Luo, Fei; Devine, Cheryl E; Edwards, Elizabeth A

    2016-09-01

    The microbes responsible for anaerobic benzene biodegradation remain poorly characterized. In this study, we identified and quantified microbial populations in a series of 16 distinct methanogenic, benzene-degrading enrichment cultures using a combination of traditional 16S rRNA clone libraries (four cultures), pyrotag 16S rRNA amplicon sequencing (11 cultures), metagenome sequencing (1 culture) and quantitative polymerase chain reaction (qPCR; 12 cultures). An operational taxonomic unit (OTU) from the Deltaproteobacteria designated ORM2 that is only 84% to 86% similar to Syntrophus or Desulfobacterium spp. was consistently identified in all enrichment cultures, and typically comprised more than half of the bacterial sequences. In addition to ORM2, a sequence belonging to Parcubacteria (candidate division OD1) identified from the metagenome data was the only other OTU common to all the cultures surveyed. Culture transfers (1% and 0.1%) were made in the presence and absence of benzene, and the abundance of ORM2, OD1 and other OTUs was tracked over 415 days using qPCR. ORM2 sequence abundance increased only when benzene was present, while the abundance of OD1 and other OTUs increased even in the absence of benzene. Deltaproteobacterium ORM2 is unequivocally the benzene-metabolizing population. This study also hints at laboratory cultivation conditions for a member of the widely distributed yet uncultivated Parcubacteria (OD1). © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. 40 CFR 80.1343 - What hardship relief provisions are available only to small refiners?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Small... to the first compliance period for that refiner for up to two years. (2) No delay in accordance with...

  20. 46 CFR Appendix C to Subpart C to... - Medical Surveillance Guidelines for Benzene

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... produce primary irritation due to repeated or prolonged contact with the skin. High concentrations are... Direct skin contact with benzene may cause erythema. Repeated or prolonged contact may result in drying, scaling dermatitis or development of secondary skin infections. In addition, benzene is absorbed through...

  1. Effect of isobutanol on toluene biodegradation in nitrate amended, sulfate amended and methanogenic enrichment microcosms.

    PubMed

    Jayamani, Indumathy; Cupples, Alison M

    2013-09-01

    Isobutanol is an alternate fuel additive that is being considered because of economic and lower emission benefits. However, future gasoline spills could result in co-contamination of isobutanol with gasoline components such as benzene, toluene, ethyl-benzene and xylene. Hence, isobutanol could affect the degradability of gasoline components thereby having an effect on contaminant plume length and half-life. In this study, the effect of isobutanol on the biodegradation of a model gasoline component (toluene) was examined in laboratory microcosms. For this, toluene and isobutanol were added to six different toluene degrading laboratory microcosms under sulfate amended, nitrate amended or methanogenic conditions. While toluene biodegradation was not greatly affected in the presence of isobutanol in five out of the six different experimental sets, toluene degradation was completely inhibited in one set of microcosms. This inhibition occurred in sulfate amended microcosms constructed with inocula from wastewater treatment plant activated sludge. Our data suggest that toluene degrading consortia are affected differently by isobutanol addition. These results indicate that, if co-contamination occurs, in some cases the in situ half-life of toluene could be significantly extended.

  2. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Benzene. 21.97 Section 21... TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  3. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Benzene. 21.97 Section 21... TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  4. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Benzene. 21.97 Section 21... TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  5. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Benzene. 21.97 Section 21... TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  6. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Benzene. 21.97 Section 21... TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  7. 40 CFR 80.46 - Measurement of reformulated gasoline and conventional gasoline fuel parameters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... D7039-13, Standard Test Method for Sulfur in Gasoline, Diesel Fuel, Jet Fuel, Kerosine, Biodiesel, Biodiesel Blends, and Gasoline-Ethanol Blends by Monochromatic Wavelength Dispersive X-ray Fluorescence...

  8. Adsorption equilibrium and dynamics of gasoline vapors onto polymeric adsorbents.

    PubMed

    Jia, Lijuan; Yu, Weihua; Long, Chao; Li, Aimin

    2014-03-01

    The emission of gasoline vapors is becoming a significant environmental problem especially for the population-dense area and also results in a significant economic loss. In this study, adsorption equilibrium and dynamics of gasoline vapors onto macroporous and hypercrosslinked polymeric resins at 308 K were investigated and compared with commercial activated carbon (NucharWV-A 1100). The results showed that the equilibrium and breakthrough adsorption capacities of virgin macroporous and hypercrosslinked polymeric resins were lower than virgin-activated carbon. Compared with origin adsorbents, however, the breakthrough adsorption capacities of the regenerated activated carbon for gasoline vapors decreased by 58.5 % and 61.3 % when the initial concentration of gasoline vapors were 700 and 1,400 mg/L, while those of macroporous and hypercrosslinked resins decreased by 17.4 % and 17.5 %, and 46.5 % and 45.5 %, respectively. Due to the specific bimodal property in the region of micropore (0.5-2.0 nm) and meso-macropore (30-70 nm), the regenerated hypercrosslinked polymeric resin exhibited the comparable breakthrough adsorption capacities with the regenerated activated carbon at the initial concentration of 700 mg/L, and even higher when the initial concentration of gasoline vapors was 1,400 mg/L. In addition, 90 % of relative humidity had ignorable effect on the adsorption of gasoline vapors on hypercrosslinked polymeric resin. Taken together, it is expected that hypercrosslinked polymeric adsorbent would be a promising adsorbent for the removal of gasoline vapors from gas streams.

  9. Metatranscriptome of an Anaerobic Benzene-Degrading, Nitrate-Reducing Enrichment Culture Reveals Involvement of Carboxylation in Benzene Ring Activation

    PubMed Central

    Luo, Fei; Gitiafroz, Roya; Devine, Cheryl E.; Gong, Yunchen; Hug, Laura A.; Raskin, Lutgarde

    2014-01-01

    The enzymes involved in the initial steps of anaerobic benzene catabolism are not known. To try to elucidate this critical step, a metatranscriptomic analysis was conducted to compare the genes transcribed during the metabolism of benzene and benzoate by an anaerobic benzene-degrading, nitrate-reducing enrichment culture. RNA was extracted from the mixed culture and sequenced without prior mRNA enrichment, allowing simultaneous examination of the active community composition and the differential gene expression between the two treatments. Ribosomal and mRNA sequences attributed to a member of the family Peptococcaceae from the order Clostridiales were essentially only detected in the benzene-amended culture samples, implicating this group in the initial catabolism of benzene. Genes similar to each of two subunits of a proposed benzene-carboxylating enzyme were transcribed when the culture was amended with benzene. Anaerobic benzoate degradation genes from strict anaerobes were transcribed only when the culture was amended with benzene. Genes for other benzoate catabolic enzymes and for nitrate respiration were transcribed in both samples, with those attributed to an Azoarcus species being most abundant. These findings indicate that the mineralization of benzene starts with its activation by a strict anaerobe belonging to the Peptococcaceae, involving a carboxylation step to form benzoate. These data confirm the previously hypothesized syntrophic association between a benzene-degrading Peptococcaceae strain and a benzoate-degrading denitrifying Azoarcus strain for the complete catabolism of benzene with nitrate as the terminal electron acceptor. PMID:24795366

  10. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90 °F...

  11. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90 °F...

  12. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90 °F...

  13. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90 °F...

  14. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90 °F...

  15. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats.

    PubMed

    Kinawy, Amal A

    2009-11-24

    This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in the cerebral cortex, and monoamine neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied. The present results revealed that gasoline inhalation induced significant fluctuations in the levels of the monoamine neurotransmitters in the studied brain regions. This was concomitant with a decrease in Na+, K+-ATPase activity and total protein content. Moreover, the group exposed to the unleaded gasoline exhibited an increase in lipid peroxidation and a decrease in AChE and superoxide dismutase activities. These physiological impairments were accompanied with a higher tendency towards aggressive behaviour as a consequence to gasoline inhalation. It is concluded from the present work that chronic exposure to either the leaded or the unleaded gasoline vapours impaired the levels of monoamine neurotransmitters and other biochemical parameters in different brain areas and modulated several behavioural aspects related to aggression in rats.

  16. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats

    PubMed Central

    2009-01-01

    Background This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in the cerebral cortex, and monoamine neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied. Results The present results revealed that gasoline inhalation induced significant fluctuations in the levels of the monoamine neurotransmitters in the studied brain regions. This was concomitant with a decrease in Na+, K+-ATPase activity and total protein content. Moreover, the group exposed to the unleaded gasoline exhibited an increase in lipid peroxidation and a decrease in AChE and superoxide dismutase activities. These physiological impairments were accompanied with a higher tendency towards aggressive behaviour as a consequence to gasoline inhalation. Conclusion It is concluded from the present work that chronic exposure to either the leaded or the unleaded gasoline vapours impaired the levels of monoamine neurotransmitters and other biochemical parameters in different brain areas and modulated several behavioural aspects related to aggression in rats. PMID:19930677

  17. 40 CFR 80.350 - What alternative sulfur standards and requirements apply to importers who transport gasoline by...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements apply to importers who transport gasoline by truck? 80.350 Section 80.350 Protection of... ADDITIVES Gasoline Sulfur Sampling, Testing and Retention Requirements for Refiners and Importers § 80.350 What alternative sulfur standards and requirements apply to importers who transport gasoline by truck...

  18. 40 CFR 80.350 - What alternative sulfur standards and requirements apply to importers who transport gasoline by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements apply to importers who transport gasoline by truck? 80.350 Section 80.350 Protection of... ADDITIVES Gasoline Sulfur Sampling, Testing and Retention Requirements for Refiners and Importers § 80.350 What alternative sulfur standards and requirements apply to importers who transport gasoline by truck...

  19. 40 CFR 80.350 - What alternative sulfur standards and requirements apply to importers who transport gasoline by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements apply to importers who transport gasoline by truck? 80.350 Section 80.350 Protection of... ADDITIVES Gasoline Sulfur Sampling, Testing and Retention Requirements for Refiners and Importers § 80.350 What alternative sulfur standards and requirements apply to importers who transport gasoline by truck...

  20. 40 CFR 80.350 - What alternative sulfur standards and requirements apply to importers who transport gasoline by...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements apply to importers who transport gasoline by truck? 80.350 Section 80.350 Protection of... ADDITIVES Gasoline Sulfur Sampling, Testing and Retention Requirements for Refiners and Importers § 80.350 What alternative sulfur standards and requirements apply to importers who transport gasoline by truck...