Sample records for address basic science

  1. A model for integrating clinical care and basic science research, and pitfalls of performing complex research projects for addressing a clinical challenge.

    PubMed

    Steck, R; Epari, D R; Schuetz, M A

    2010-07-01

    The collaboration of clinicians with basic science researchers is crucial for addressing clinically relevant research questions. In order to initiate such mutually beneficial relationships, we propose a model where early career clinicians spend a designated time embedded in established basic science research groups, in order to pursue a postgraduate qualification. During this time, clinicians become integral members of the research team, fostering long term relationships and opening up opportunities for continuing collaboration. However, for these collaborations to be successful there are pitfalls to be avoided. Limited time and funding can lead to attempts to answer clinical challenges with highly complex research projects characterised by a large number of "clinical" factors being introduced in the hope that the research outcomes will be more clinically relevant. As a result, the complexity of such studies and variability of its outcomes may lead to difficulties in drawing scientifically justified and clinically useful conclusions. Consequently, we stress that it is the basic science researcher and the clinician's obligation to be mindful of the limitations and challenges of such multi-factorial research projects. A systematic step-by-step approach to address clinical research questions with limited, but highly targeted and well defined research projects provides the solid foundation which may lead to the development of a longer term research program for addressing more challenging clinical problems. Ultimately, we believe that it is such models, encouraging the vital collaboration between clinicians and researchers for the work on targeted, well defined research projects, which will result in answers to the important clinical challenges of today. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Basic science right, not basic science lite: medical education at a crossroad.

    PubMed

    Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott

    2009-11-01

    This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.

  3. PROJECT SUCCESS: Marine Science. (Introductory Packet, Basic Marine Science Laboratory Techniques, Oceanographic Instruments, Individual Projects, Bibliography).

    ERIC Educational Resources Information Center

    Demaray, Bryan

    Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…

  4. Speaking of food: connecting basic and applied plant science.

    PubMed

    Gross, Briana L; Kellogg, Elizabeth A; Miller, Allison J

    2014-10-01

    The Food and Agriculture Organization (FAO) predicts that food production must rise 70% over the next 40 years to meet the demands of a growing population that is expected to reach nine billion by the year 2050. Many facets of basic plant science promoted by the Botanical Society of America are important for agriculture; however, more explicit connections are needed to bridge the gap between basic and applied plant research. This special issue, Speaking of Food: Connecting Basic and Applied Plant Science, was conceived to showcase productive overlaps of basic and applied research to address the challenges posed by feeding billions of people and to stimulate more research, fresh connections, and new paradigms. Contributions to this special issue thus illustrate some interactive areas of study in plant science-historical and modern plant-human interaction, crop and weed origins and evolution, and the effects of natural and artificial selection on crops and their wild relatives. These papers provide examples of how research integrating the basic and applied aspects of plant science benefits the pursuit of knowledge and the translation of that knowledge into actions toward sustainable production of crops and conservation of diversity in a changing climate. © 2014 Botanical Society of America, Inc.

  5. [Basic science and applied science].

    PubMed

    Pérez-Tamayo, R

    2001-01-01

    A lecture was presented by the author at the Democratic Opinion Forum on Health Teaching and Research, organized by Mexico's National Health Institutes Coordinating Office, at National Cardiology Institute "Ignacio Chavez", where he presented a critical review of the conventional classification of basic and applied science, as well as his personal view on health science teaching and research. According to the author, "well-conducted science" is that "generating reality-checked knowledge" and "mis-conducted science" is that "unproductive or producing 'just lies' and 'non-fundable'. To support his views, the author reviews utilitarian and pejorative definitions of science, as well as those of committed and pure science, useful and useless science, and practical and esoterical science, as synonyms of applied and basic science. He also asserts that, in Mexico, "this classification has been used in the past to justify federal funding cutbacks to basic science, allegedly because it is not targeted at solving 'national problems' or because it was not relevant to priorities set in a given six-year political administration period". Regarding health education and research, the author asserts that the current academic programs are inefficient and ineffective; his proposal to tackle these problems is to carry out a solid scientific study, conducted by a multidisciplinary team of experts, "to design the scientific researcher curricula from recruitment of intelligent young people to retirement or death". Performance assessment of researchers would not be restricted to publication of papers, since "the quality of scientific work and contribution to the development of science is not reflected by the number of published papers". The English version of this paper is available at: http://www.insp.mx/salud/index.html

  6. Basic Science Training Program.

    ERIC Educational Resources Information Center

    Brummel, Clete

    These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…

  7. In defense of basic science funding: today's scientific discovery is tomorrow's medical advance.

    PubMed

    Tessier-Lavigne, Marc

    2013-06-01

    In this address, I will discuss the importance of basic science in tackling our health problems. I will also describe how the funding cuts are damaging our economic competitiveness and turning our young people away from science.

  8. BRIDGES: Evolution of basic and applied linkages in benthic science

    USGS Publications Warehouse

    Aumen, Nicholas G.; Gurtz, Martin E.; Barbour, Michael T.; Moerke, Ashley

    2010-01-01

    Growing awareness of environmental degradation resulted in stricter environmental regulations and laws for aquatic ecosystems. These regulations were followed by an increase in applied research and monitoring beginning in the early 1970s. The number of applied scientists who were members of the North American Benthological Society grew at a commensurate rate. The editors of J-NABS recognized that, despite these increases, submitted manuscripts mostly addressed basic science. In response, the BRIDGES section of J-NABS was created in 1994 to provide a forum for linking basic ecological principles to applied science problems and issues. We examined the emergence of applied science topics in J-NABS and its predecessor, Freshwater Invertebrate Biology, from their beginning in 1982 to 2009. We classified papers among 11 categories that included a basic/applied science linkage. In the 1980s, applied papers were predominantly on effects of eutrophication/pollution and landuse changes. When BRIDGES was established in 1994, papers were solicited by editors and BRIDGES sections usually included >1 paper on a common theme to express complementary or alternate viewpoints. Forty-two papers appeared in BRIDGES between 1994 and 2009, but the number per issue declined after 2001. The total number of applied science papers in J-NABS has increased since ∼1994. Citation analysis of BRIDGES papers illustrates how information is being cited, but applied papers often are used in ways that might not lead to citations. BRIDGES transitioned to a new format in September 2009 to address new types of complex, multifaceted linkages. All new BRIDGES articles will be open access, and authors will be encouraged to produce lay-language fact sheets and to post them on the web.

  9. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI

  10. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  11. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  12. 77 FR 5246 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...

  13. 76 FR 48147 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY... that the Basic Energy Sciences Advisory Committee will be renewed for a two-year period beginning July...

  14. Undergraduate basic science preparation for dental school.

    PubMed

    Humphrey, Sue P; Mathews, Robert E; Kaplan, Alan L; Beeman, Cynthia S

    2002-11-01

    In the Institute of Medicines report Dental Education at the Crossroads, it was suggested that dental schools across the country move toward integrated basic science education for dental and medical students in their curricula. To do so, dental school admission requirements and recommendations must be closely reviewed to ensure that students are adequately prepared for this coursework. The purpose of our study was twofold: 1) to identify student dentists' perceptions of their predental preparation as it relates to course content, and 2) to track student dentists' undergraduate basic science course preparation and relate that to DAT performance, basic science course performance in dental school, and Part I and Part II National Board performance. In the first part of the research, a total of ninety student dentists (forty-five from each class) from the entering classes of 1996 and 1997 were asked to respond to a survey. The survey instrument was distributed to each class of students after each completed the largest basic science class given in their second-year curriculum. The survey investigated the area of undergraduate major, a checklist of courses completed in their undergraduate preparation, the relevance of the undergraduate classes to the block basic science courses, and the strength of requiring or recommending the listed undergraduate courses as a part of admission to dental school. Results of the survey, using frequency analysis, indicate that students felt that the following classes should be required, not recommended, for admission to dental school: Microbiology 70 percent, Biochemistry 54.4 percent, Immunology 57.78 percent, Anatomy 50 percent, Physiology 58.89 percent, and Cell Biology 50 percent. The second part of the research involved anonymously tracking undergraduate basic science preparation of the same students with DAT scores, the grade received in a representative large basic science course, and Part I and Part II National Board performance

  15. Tendon basic science: Development, repair, regeneration, and healing.

    PubMed

    Andarawis-Puri, Nelly; Flatow, Evan L; Soslowsky, Louis J

    2015-06-01

    Tendinopathy and tendon rupture are common and disabling musculoskeletal conditions. Despite the prevalence of these injuries, a limited number of investigators are conducting fundamental, basic science studies focused on understanding processes governing tendinopathies and tendon healing. Development of effective therapeutics is hindered by the lack of fundamental guiding data on the biology of tendon development, signal transduction, mechanotransduction, and basic mechanisms underlying tendon pathogenesis and healing. To propel much needed progress, the New Frontiers in Tendon Research Conference, co-sponsored by NIAMS/NIH, the Orthopaedic Research Society, and the Icahn School of Medicine at Mount Sinai, was held to promote exchange of ideas between tendon researchers and basic science experts from outside the tendon field. Discussed research areas that are underdeveloped and represent major hurdles to the progress of the field will be presented in this review. To address some of these outstanding questions, conference discussions and breakout sessions focused on six topic areas (Cell Biology and Mechanics, Functional Extracellular Matrix, Development, Mechano-biology, Scarless Healing, and Mechanisms of Injury and Repair), which are reviewed in this special issue and briefly presented in this review. Review articles in this special issue summarize the progress in the field and identify essential new research directions. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Characteristics of physicians engaged in basic science: a questionnaire survey of physicians in basic science departments of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2012-09-01

    The number of physicians engaged in basic science and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study aimed to determine the characteristics of physicians who are engaged in basic science in efforts to recruit talent. A questionnaire was distributed to all 30 physicians in the basic science departments of Juntendo University School of Medicine. Question items inquired about sex, years since graduation, years between graduation and time entering basic science, clinical experience, recommending the career to medical students, expected obstacles to students entering basic science, efforts to inspire students in research, increased number of lectures and practical training sessions on research, and career choice satisfaction. Correlations between the variables were examined using χ(2) tests. Overall, 26 physicians, including 7 female physicians, returned the questionnaire (response rate 86.7%). Most physicians were satisfied with their career choice. Medical students were deemed not to choose basic science as their future career, because they aimed to become clinicians and because they were concerned about salary. Women physicians in basic science departments were younger than men. Women physicians also considered themselves to make more efforts in inspiring medical students to be interested in research. Moreover, physicians who became basic scientists earlier in their career wanted more research-related lectures in medical education. Improving physicians' salaries in basic science is important to securing talent. In addition, basic science may be a good career path for women physicians to follow.

  17. Basic sciences agonize in Turkey!

    NASA Astrophysics Data System (ADS)

    Akdemir, Fatma; Araz, Asli; Akman, Ferdi; Durak, Rıdvan

    2016-04-01

    In this study, changes from past to present in the departments of physics, chemistry, biology and mathematics, which are considered as the basic sciences in Turkey, are shown. The importance of basic science for the country emphasized and the status of our country was discussed with a critical perspective. The number of academic staff, the number of students, opened quotas according to years for these four departments at universities were calculated and analysis of the resulting changes were made. In examined graphics changes to these four departments were similar. Especially a significant change was observed in the physics department. Lack of jobs employing young people who have graduated from basic science is also an issue that must be discussed. There are also qualitative results of this study that we have discussed as quantitative. Psychological problems caused by unemployment have become a disease among young people. This study was focused on more quantitative results. We have tried to explain the causes of obtained results and propose solutions.

  18. Basic science conferences in residency training: a national survey.

    PubMed

    Cruz, P D; Charley, M R; Bergstresser, P R

    1987-02-01

    Basic science teaching is an important component of dermatology residency training, and the basic science conference is the major tool utilized by departments of dermatology for its implementation. To characterize the role of basic science conferences in dermatology training, a national survey of chief residents was conducted. Although the survey confirmed that a high value is placed on basic science conferences, a surprising finding was a significant level of dissatisfaction among chief residents, particularly those from university-based programs. Results of the survey have been used to redefine our own objectives in basic science teaching and to propose elements of methodology and curriculum.

  19. 78 FR 6088 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine, Office of Basic Energy Sciences, U.S. Department of Energy; SC-22...

  20. The Future of Basic Science in Academic Surgery

    PubMed Central

    Keswani, Sundeep G.; Moles, Chad M.; Morowitz, Michael; Zeh, Herbert; Kuo, John S.; Levine, Matthew H.; Cheng, Lily S.; Hackam, David J.; Ahuja, Nita; Goldstein, Allan M.

    2017-01-01

    Objective The aim of this study was to examine the challenges confronting surgeons performing basic science research in today’s academic surgery environment. Summary of Background Data Multiple studies have identified challenges confronting surgeon-scientists and impacting their ability to be successful. Although these threats have been known for decades, the downward trend in the number of successful surgeon-scientists continues. Clinical demands, funding challenges, and other factors play important roles, but a rigorous analysis of academic surgeons and their experiences regarding these issues has not previously been performed. Methods An online survey was distributed to 2504 members of the Association for Academic Surgery and Society of University Surgeons to determine factors impacting success. Survey results were subjected to statistical analyses. We also reviewed publicly available data regarding funding from the National Institutes of Health (NIH). Results NIH data revealed a 27% decline in the proportion of NIH funding to surgical departments relative to total NIH funding from 2007 to 2014. A total of 1033 (41%) members responded to our survey, making this the largest survey of academic surgeons to date. Surgeons most often cited the following factors as major impediments to pursuing basic investigation: pressure to be clinically productive, excessive administrative responsibilities, difficulty obtaining extramural funding, and desire for work-life balance. Surprisingly, a majority (68%) did not believe surgeons can be successful basic scientists in today’s environment, including departmental leadership. Conclusions We have identified important barriers that confront academic surgeons pursuing basic research and a perception that success in basic science may no longer be achievable. These barriers need to be addressed to ensure the continued development of future surgeon-scientists. PMID:27643928

  1. How do scientists respond to anomalies? Different strategies used in basic and applied science.

    PubMed

    Trickett, Susan Bell; Trafton, J Gregory; Schunn, Christian D

    2009-10-01

    We conducted two in vivo studies to explore how scientists respond to anomalies. Based on prior research, we identify three candidate strategies: mental simulation, mental manipulation of an image, and comparison between images. In Study 1, we compared experts in basic and applied domains (physics and meteorology). We found that the basic scientists used mental simulation to resolve an anomaly, whereas applied science practitioners mentally manipulated the image. In Study 2, we compared novice and expert meteorologists. We found that unlike experts, novices used comparison to address anomalies. We discuss the nature of expertise in the two kinds of science, the relationship between the type of science and the task performed, and the relationship of the strategies investigated to scientific creativity. Copyright © 2009 Cognitive Science Society, Inc.

  2. Basic Sciences Fertilizing Clinical Microbiology and Infection Management

    PubMed Central

    2017-01-01

    Abstract Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of “practice deconstruction” might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. PMID:28859345

  3. 75 FR 6369 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown Building...

  4. The relevance of basic sciences in undergraduate medical education.

    PubMed

    Lynch, C; Grant, T; McLoughlin, P; Last, J

    2016-02-01

    Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.

  5. 78 FR 38696 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown...

  6. 76 FR 41234 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  7. 77 FR 41395 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  8. 75 FR 41838 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat...

  9. 76 FR 8358 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  10. The use of simulation in teaching the basic sciences.

    PubMed

    Eason, Martin P

    2013-12-01

    To assess the current use of simulation in medical education, specifically, the teaching of the basic sciences to accomplish the goal of improved integration. Simulation is increasingly being used by the institutions to teach the basic sciences. Preliminary data suggest that it is an effective tool with increased retention and learner satisfaction. Medical education is undergoing tremendous change. One of the directions of that change is increasing integration of the basic and clinical sciences to improve the efficiency and quality of medical education, and ultimately to improve the patient care. Integration is thought to improve the understanding of basic science conceptual knowledge and to better prepare the learners for clinical practice. Simulation because of its unique effects on learning is currently being successfully used by many institutions as a means to produce that integration through its use in the teaching of the basic sciences. Preliminary data indicate that simulation is an effective tool for basic science education and garners high learner satisfaction.

  11. Back to the basic sciences: an innovative approach to teaching senior medical students how best to integrate basic science and clinical medicine.

    PubMed

    Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L

    2008-07-01

    Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.

  12. Contexts, concepts and cognition: principles for the transfer of basic science knowledge.

    PubMed

    Kulasegaram, Kulamakan M; Chaudhary, Zarah; Woods, Nicole; Dore, Kelly; Neville, Alan; Norman, Geoffrey

    2017-02-01

    Transfer of basic science aids novices in the development of clinical reasoning. The literature suggests that although transfer is often difficult for novices, it can be optimised by two complementary strategies: (i) focusing learners on conceptual knowledge of basic science or (ii) exposing learners to multiple contexts in which the basic science concepts may apply. The relative efficacy of each strategy as well as the mechanisms that facilitate transfer are unknown. In two sequential experiments, we compared both strategies and explored mechanistic changes in how learners address new transfer problems. Experiment 1 was a 2 × 3 design in which participants were randomised to learn three physiology concepts with or without emphasis on the conceptual structure of basic science via illustrative analogies and by means of one, two or three contexts during practice (operationalised as organ systems). Transfer of these concepts to explain pathologies in familiar organ systems (near transfer) and unfamiliar organ systems (far transfer) was evaluated during immediate and delayed testing. Experiment 2 examined whether exposure to conceptual analogies and multiple contexts changed how learners classified new problems. Experiment 1 showed that increasing context variation significantly improved far transfer performance but there was no difference between two and three contexts during practice. Similarly, the increased conceptual analogies led to higher performance for far transfer. Both interventions had independent but additive effects on overall performance. Experiment 2 showed that such analogies and context variation caused learners to shift to using structural characteristics to classify new problems even when there was superficial similarity to previous examples. Understanding problems based on conceptual structural characteristics is necessary for successful transfer. Transfer of basic science can be optimised by using multiple strategies that collectively emphasise

  13. 78 FR 47677 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant to Section 14(a)(2)(A) of the Federal... hereby given that the Basic Energy Sciences Advisory Committee's (BESAC) charter will be renewed for a...

  14. Basic Sciences Fertilizing Clinical Microbiology and Infection Management.

    PubMed

    Baquero, Fernando

    2017-08-15

    Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of "practice deconstruction" might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  15. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    PubMed

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (p<0.05). The results of this study support the critical role of integrating biomedical knowledge in diagnostic radiology and shows that teaching basic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  16. Basic Science Living Skills for Today's World. Teacher's Edition.

    ERIC Educational Resources Information Center

    Zellers (Robert W.) Educational Services, Johnstown, PA.

    This document is a teacher's edition of a basic skills curriculum in science for adult basic education (ABE) students. The course consists of 25 lessons on basic science concepts, designed to give students a good understanding of the biological and physical sciences. Suggested activities and experiments that the student can do are also included.…

  17. Clinical Competencies and the Basic Sciences: An Online Case Tutorial Paradigm for Delivery of Integrated Clinical and Basic Science Content

    ERIC Educational Resources Information Center

    DiLullo, Camille; Morris, Harry J.; Kriebel, Richard M.

    2009-01-01

    Understanding the relevance of basic science knowledge in the determination of patient assessment, diagnosis, and treatment is critical to good medical practice. One method often used to direct students in the fundamental process of integrating basic science and clinical information is problem-based learning (PBL). The faculty facilitated small…

  18. Contributions of Basic Sciences to Science of Education. Studies in Educational Administration.

    ERIC Educational Resources Information Center

    Lall, Bernard M.

    The science of education has been influenced by the basic sciences to the extent that educational research now has been able to modernize its approach by accepting and using the basic scientific methodology and experimental techniques. Using primarily the same steps of scientific investigations, education today holds a place of much greater esteem…

  19. Integration and timing of basic and clinical sciences education.

    PubMed

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational

  20. Basic Science Research and the Protection of Human Research Participants

    NASA Astrophysics Data System (ADS)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in

  1. Basic Principles of Animal Science. Reprinted.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee.

    The reference book is designed to fulfill the need for organized subject matter dealing with basic principles of animal science to be incorporated into the high school agriculture curriculum. The material presented is scientific knowledge basic to livestock production. Five units contain specific information on the following topics: anatomy and…

  2. Horizontal integration of the basic sciences in the chiropractic curriculum.

    PubMed

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  3. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    PubMed Central

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  4. Space sciences - Keynote address

    NASA Technical Reports Server (NTRS)

    Alexander, Joseph K.

    1990-01-01

    The present status and projected future developments of the NASA Space Science and Applications Program are addressed. Emphasis is given to biochemistry experiments that are planned for the Space Station. Projects for the late 1990s which will study the sun, the earth's magnetosphere, and the geosphere are briefly discussed.

  5. A Hybrid Model of Mathematics Support for Science Students Emphasizing Basic Skills and Discipline Relevance

    ERIC Educational Resources Information Center

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-01-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support…

  6. Basic science in a predoctoral family practice curriculum.

    PubMed

    Davies, T C; Barnett, B L

    1978-02-01

    A course in applied basic science was designed with topic material organized according to anatomic body regions. Details of the diagnostic method were explained early in the course, and clinical procedures for data gathering and problem analyzing were followed while the significance of basic science knowledge in dealing with clinical situations was described. A collection of 35mm slides constituted the focal point of the course. The authors conducted the course together and an atmosphere of intellectual honesty was developed through open discussion between faculty and students. Student curiosity was respected and rewarded. Summaries of the discussions were prepared retrospectively by the faculty instructors for review gy the students. This experience proved that family physicians can demonstrate effectively the relevance of basic science to clinical medicine.

  7. Exploring Attractiveness of the Basic Sciences for Female Physicians.

    PubMed

    Yamazaki, Yuka; Fukushima, Shinji; Kozono, Yuki; Uka, Takanori; Marui, Eiji

    2018-01-01

    In Japan, traditional gender roles of women, especially the role of motherhood, may cause early career resignations in female physicians and a shortage of female researchers. Besides this gender issue, a general physician shortage is affecting basic science fields. Our previous study suggested that female physicians could be good candidates for the basic sciences because such work offers good work-life balance. However, the attractiveness for female physicians of working in the basic sciences, including work-life balance, is not known. In a 2012 nationwide cross-sectional questionnaire survey, female physicians holding tenured positions in the basic sciences at Japan's medical schools were asked an open-ended question about positive aspects of basic sciences that clinical medicine lacks, and we analyzed 58 respondents' comments. Qualitative analysis using the Kawakita Jiro method revealed four positive aspects: research attractiveness, priority on research productivity, a healthy work-life balance, and exemption from clinical duties. The most consistent positive aspect was research attractiveness, which was heightened by medical knowledge and clinical experience. The other aspects were double-edged swords; for example, while the priority on research productivity resulted in less gender segregation, it sometimes created tough competition, and while exemption from clinical duties contributed to a healthy work-life balance, it sometimes lowered motivation as a physician and provided unstable income. Overall, if female physicians lack an intrinsic interest in research and seek good work-life balance, they may drop out of research fields. Respecting and cultivating students' research interest is critical to alleviating the physician shortage in the basic sciences.

  8. Trends in Basic Sciences Education in Dental Schools, 1999-2016.

    PubMed

    Lantz, Marilyn S; Shuler, Charles F

    2017-08-01

    The purpose of this study was to examine data published over the past two decades to identify trends in the basic sciences curriculum in dental education, provide an analysis of those trends, and compare them with trends in the basic sciences curriculum in medical education. Data published from the American Dental Association (ADA) Surveys of Dental Education, American Dental Education Association (ADEA) Surveys of Dental School Seniors, and two additional surveys were examined. In large part, survey data collected focused on the structure, content, and instructional strategies used in dental education: what was taught and how. Great variability was noted in the total clock hours of instruction and the clock hours of basic sciences instruction reported by dental schools. Moreover, the participation of medical schools in the basic sciences education of dental students appears to have decreased dramatically over the past decade. Although modest progress has been made in implementing some of the curriculum changes recommended in the 1995 Institute of Medicine report such as integrated basic and clinical sciences curricula, adoption of active learning methods, and closer engagement with medical and other health professions education programs, educational effectiveness studies needed to generate data to support evidence-based approaches to curriculum reform are lacking. Overall, trends in the basic sciences curriculum in medical education were similar to those for dental education. Potential drivers of curriculum change were identified, as was recent work in other fields that should encourage reconsideration of dentistry's approach to basic sciences education. This article was written as part of the project "Advancing Dental Education in the 21st Century."

  9. Clinical Correlations as a Tool in Basic Science Medical Education

    PubMed Central

    Klement, Brenda J.; Paulsen, Douglas F.; Wineski, Lawrence E.

    2016-01-01

    Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1) Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2) Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3) Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4) Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5) Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills. PMID:29349328

  10. Translating orthopaedic basic science into clinical relevance.

    PubMed

    Madry, Henning

    2014-12-01

    In orthopaedic and trauma surgery, the rapid evolution of biomedical research has fundamentally changed the perception of the musculoskeletal system. Here, the rigor of basic science and the art of musculoskeletal surgery have come together to create a new discipline -experimental orthopaedics- that holds great promise for the causative cure of many orthopaedic conditions. The Journal of Experimental Orthopaedics intends to bridge the gap between orthopaedic basic science and clinical relevance, to allow for a fruitful clinical translation of excellent and important investigations in the field of the entire musculoskeletal system.

  11. Basic Energy Sciences FY 2011 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  12. Basic Energy Sciences FY 2012 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  13. Basic Energy Sciences FY 2014 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  14. The New Millennium and an Education That Captures the Basic Spirit of Science.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…

  15. Radiological Dispersion Devices and Basic Radiation Science

    ERIC Educational Resources Information Center

    Bevelacqua, Joseph John

    2010-01-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…

  16. The Museum of Science and Industry Basic List of Children's Science Books, 1986.

    ERIC Educational Resources Information Center

    Richter, Bernice, Comp.; Wenzel, Duane, Comp.

    This first supplement to the Museum of Science and Industry Basic List of Children's Science Books contains books received for the museum's 13th annual children's science book fair. Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; environment/conservation;…

  17. A hybrid model of mathematics support for science students emphasizing basic skills and discipline relevance

    NASA Astrophysics Data System (ADS)

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-09-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support centre. The programme was delivered through first-year science and statistics subjects with large enrolments and focused on basic mathematical skills relevant to each science discipline. The programme offered a new approach to the traditional mathematical support centre or class. It was designed through close collaboration between science subject coordinators and the project leader, a mathematician, and includes resources relevant to science and mathematics questions written in context. Evaluation of the programme showed it improved the confidence of the participating students who found it helpful and relevant. The programme was delivered through three learning modes to allow students to select activities most suitable for them, which was appreciated by students. Mathematics skills appeared to increase following completion of the programme and student participation in the programme correlated positively and highly with academic grades in their relevant science subjects. This programme offers an alternative model for mathematics support tailored to science disciplines.

  18. 75 FR 65363 - Basic Behavioral and Social Science Opportunity Network (OppNet)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... public meeting to promote and publicize the Basic Behavioral and Social Science Opportunity Network (Opp... . Background: The Basic Behavioral and Social Science Opportunity Network (OppNet) is a trans-NIH initiative to expand the agency's funding of basic behavioral and social sciences research (b-BSSR). OppNet prioritizes...

  19. The Effect of Home Related Science Activities on Students' Performance in Basic Science

    ERIC Educational Resources Information Center

    Obomanu, B. J.; Akporehwe, J. N.

    2012-01-01

    Our study investigated the effect of utilizing home related science activities on student's performance in some basic science concepts. The concepts considered were heart energy, ecology and mixtures. The sample consisted of two hundred and forty (240) basic junior secondary two (BJSS11) students drawn from a population of five thousand and…

  20. Integration of Basic and Clinical Science in the Psychiatry Clerkship.

    PubMed

    Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W

    2017-06-01

    Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.

  1. Basic Curriculum Guide--Science. Grades K-6.

    ERIC Educational Resources Information Center

    Starr, John W., 3rd., Ed.

    GRADES OR AGES: K-6. SUBJECT MATTER: Science. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is in two parts--the background, philosophy, and instructional principles of science teaching, including a resource unit model, and the development by grade level of the various basic scientific concepts. The guide also includes information of…

  2. The Museum of Science and Industry Basic List of Children's Science Books, 1987.

    ERIC Educational Resources Information Center

    Richter, Bernice, Comp.; Wenzel, Duane, Comp.

    Presented is the second annual supplement to the Museum of Science and Industry Basic List of Children's Science Books 1973-1984. In this supplement, children's science books are listed under the headings of animals, astronomy, aviation and space, biography, earth sciences, encyclopedias and reference books, environment and conservation, fiction,…

  3. Training of physicians for the twenty-first century: role of the basic sciences.

    PubMed

    Grande, Joseph P

    2009-09-01

    Rapid changes in the healthcare environment and public dissatisfaction with the cost and quality of medical care have prompted a critical analysis of how physicians are trained in the United States. Accrediting agencies have catalyzed a transformation from a process based to a competency-based curriculum, both at the undergraduate and the graduate levels. The objective of this overview is to determine how these changes are likely to alter the role of basic science in medical education. Policy statements related to basic science education from the National Board of Medical Examiners (NBME), the Accreditation Council for Graduate Medical Education (ACGME), American Board of Medical Specialties (ABMS), and the Federation of State Medical Boards (FSMB) were reviewed and assessed for common themes. Three primary roles for the basic sciences in medical education are proposed: (1) basic science to support the development of clinical reasoning skills; (2) basic science to support a critical analysis of medical and surgical interventions ("evidence-based medicine"); and (3) basic and translational science to support analysis of processes to improve healthcare ("science of healthcare delivery"). With these roles in mind, several methods to incorporate basic sciences into the curriculum are suggested.

  4. Analysis of the basic science section of the orthopaedic in-training examination.

    PubMed

    Sheibani-Rad, Shahin; Arnoczky, Steven Paul; Walter, Norman E

    2012-08-01

    Since 1963, the Orthopaedic In-Training Examination (OITE) has been administered to orthopedic residents to assess residents' knowledge and measure the quality of teaching within individual programs. The OITE currently consists of 275 questions divided among 12 domains. This study analyzed all OITE basic science questions between 2006 and 2010. The following data were recorded: number of questions, question taxonomy, category of question, type of imaging modality, and recommended journal and book references. Between 2006 and 2010, the basic science section constituted 12.2% of the OITE. The assessment of taxonomy classification showed that recall-type questions were the most common, at 81.4%. Imaging modalities typically involved questions on radiographs and constituted 6.2% of the OITE basic science section. The majority of questions were basic science questions (eg, genetics, cell replication, and bone metabolism), with an average of 26.4 questions per year. The Journal of Bone & Joint Surgery (American Volume) and the American Academy of Orthopaedic Surgeons' Orthopaedic Basic Science were the most commonly and consistently cited journal and review book, respectively. This study provides the first review of the question content and recommended references of the OITE basic science section. This information will provide orthopedic trainees, orthopedic residency programs, and the American Academy of Orthopaedic Surgeons Evaluation Committee valuable information related to improving residents' knowledge and performance and optimizing basic science educational curricula. Copyright 2012, SLACK Incorporated.

  5. Radiological Dispersion Devices and Basic Radiation Science

    NASA Astrophysics Data System (ADS)

    Bevelacqua, Joseph John

    2010-05-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous manner. One reason for limited student interest is the failure to link the discussion to topics of current interest. The author has found that presenting this material with a link to radiological dispersion devices (RDDs), or dirty bombs, and their associated health effects provides added motivation for students. The events of Sept. 11, 2001, and periodic media focus on RDDs heighten student interest from both a scientific curiosity as well as a personal protection perspective. This article presents a framework for a more interesting discussion of the basics of radiation science and their associated health effects. The presentation can be integrated with existing radioactivity lectures or added as a supplementary or enrichment activity.

  6. Connecting Science and Society: Basic Research in the Service of Social Objectives

    NASA Astrophysics Data System (ADS)

    Sonnert, Gerhard

    2007-03-01

    A flawed dichotomy of basic versus applied science (or of ``curiosity-driven'' vs. ``mission-oriented'' science) pervades today's thinking about science policy. This talk argues for the addition of a third mode of scientific research, called Jeffersonian science. Whereas basic science, as traditionally understood, is a quest for the unknown regardless of societal needs, and applied science is known science applied to known needs, Jeffersonian science is the quest for the unknown in the service of a known social need. It is research in an identified area of basic scientific ignorance that lies at the heart of a social problem. The talk discusses the conceptual foundations and then provides some case examples of Jeffersonian-type science initiatives, such as the Lewis and Clark Expedition, initiated by Thomas Jefferson (which led us to call this mode of research Jeffersonian), research conducted under the auspices of the National Institutes of Health, and a science policy project by President Jimmy Carter and his Science Adviser, Frank Press, in the late 1970s. Because the concept of Jeffersonian science explicitly ties basic research to the social good, one of the potential benefits of adding a Jeffersonian dimension to our thinking about science is that it might make science careers more attractive to women and underrepresented minorities.

  7. Reinventing Biostatistics Education for Basic Scientists

    PubMed Central

    Weissgerber, Tracey L.; Garovic, Vesna D.; Milin-Lazovic, Jelena S.; Winham, Stacey J.; Obradovic, Zoran; Trzeciakowski, Jerome P.; Milic, Natasa M.

    2016-01-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students’ fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists. PMID:27058055

  8. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  9. Opportunities for Computational Discovery in Basic Energy Sciences

    NASA Astrophysics Data System (ADS)

    Pederson, Mark

    2011-03-01

    An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~

  10. Optometry Basic Science Curricula: Current Status.

    ERIC Educational Resources Information Center

    Berman, Morris S.

    1991-01-01

    A national survey of optometry schools (n=10) concerning the status of basic biological science instruction provides insight into manpower, curriculum, learning resources, and budgetary support currently available. Results indicate that major changes must occur and that a national effort will be needed to support them. (Author/MSE)

  11. Exploring cognitive integration of basic science and its effect on diagnostic reasoning in novices.

    PubMed

    Lisk, Kristina; Agur, Anne M R; Woods, Nicole N

    2016-06-01

    Integration of basic and clinical science knowledge is increasingly being recognized as important for practice in the health professions. The concept of 'cognitive integration' places emphasis on the value of basic science in providing critical connections to clinical signs and symptoms while accounting for the fact that clinicians may not spontaneously articulate their use of basic science knowledge in clinical reasoning. In this study we used a diagnostic justification test to explore the impact of integrated basic science instruction on novices' diagnostic reasoning process. Participants were allocated to an integrated basic science or clinical science training group. The integrated basic science group was taught the clinical features along with the underlying causal mechanisms of four musculoskeletal pathologies while the clinical science group was taught only the clinical features. Participants completed a diagnostic accuracy test immediately after initial learning, and one week later a diagnostic accuracy and justification test. The results showed that novices who learned the integrated causal mechanisms had superior diagnostic accuracy and better understanding of the relative importance of key clinical features. These findings further our understanding of cognitive integration by providing evidence of the specific changes in clinical reasoning when basic and clinical sciences are integrated during learning.

  12. A critical narrative review of transfer of basic science knowledge in health professions education.

    PubMed

    Castillo, Jean-Marie; Park, Yoon Soo; Harris, Ilene; Cheung, Jeffrey J H; Sood, Lonika; Clark, Maureen D; Kulasegaram, Kulamakan; Brydges, Ryan; Norman, Geoffrey; Woods, Nicole

    2018-06-01

    'Transfer' is the application of a previously learned concept to solve a new problem in another context. Transfer is essential for basic science education because, to be valuable, basic science knowledge must be transferred to clinical problem solving. Therefore, better understanding of interventions that enhance the transfer of basic science knowledge to clinical reasoning is essential. This review systematically identifies interventions described in the health professions education (HPE) literature that document the transfer of basic science knowledge to clinical reasoning, and considers teaching and assessment strategies. A systematic search of the literature was conducted. Articles related to basic science teaching at the undergraduate level in HPE were analysed using a 'transfer out'/'transfer in' conceptual framework. 'Transfer out' refers to the application of knowledge developed in one learning situation to the solving of a new problem. 'Transfer in' refers to the use of previously acquired knowledge to learn from new problems or learning situations. Of 9803 articles initially identified, 627 studies were retrieved for full text evaluation; 15 were included in the literature review. A total of 93% explored 'transfer out' to clinical reasoning and 7% (one article) explored 'transfer in'. Measures of 'transfer out' fostered by basic science knowledge included diagnostic accuracy over time and in new clinical cases. Basic science knowledge supported learning - 'transfer in' - of new related content and ultimately the 'transfer out' to diagnostic reasoning. Successful teaching strategies included the making of connections between basic and clinical sciences, the use of commonsense analogies, and the study of multiple clinical problems in multiple contexts. Performance on recall tests did not reflect the transfer of basic science knowledge to clinical reasoning. Transfer of basic science knowledge to clinical reasoning is an essential component of HPE that

  13. Storytelling in Earth sciences: The eight basic plots

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2012-11-01

    Reporting results and promoting ideas in science in general, and Earth science in particular, is treated here as storytelling. Just as in literature and drama, storytelling in Earth science is characterized by a small number of basic plots. Though the list is not exhaustive, and acknowledging that multiple or hybrid plots and subplots are possible in a single piece, eight standard plots are identified, and examples provided: cause-and-effect, genesis, emergence, destruction, metamorphosis, convergence, divergence, and oscillation. The plots of Earth science stories are not those of literary traditions, nor those of persuasion or moral philosophy, and deserve separate consideration. Earth science plots do not conform those of storytelling more generally, implying that Earth scientists may have fundamentally different motivations than other storytellers, and that the basic plots of Earth Science derive from the characteristics and behaviors of Earth systems. In some cases preference or affinity to different plots results in fundamentally different interpretations and conclusions of the same evidence. In other situations exploration of additional plots could help resolve scientific controversies. Thus explicit acknowledgement of plots can yield direct scientific benefits. Consideration of plots and storytelling devices may also assist in the interpretation of published work, and can help scientists improve their own storytelling.

  14. Information-seeking behavior of basic science researchers: implications for library services.

    PubMed

    Haines, Laura L; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A

    2010-01-01

    This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository.

  15. Making evolutionary biology a basic science for medicine

    PubMed Central

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  16. Integration of Basic and Clinical Sciences: Faculty Perspectives at a U.S. Dental School.

    PubMed

    van der Hoeven, Dharini; van der Hoeven, Ransome; Zhu, Liang; Busaidy, Kamal; Quock, Ryan L

    2018-04-01

    Although dental education has traditionally been organized into basic sciences education (first and second years) and clinical education (third and fourth years), there has been growing interest in ways to better integrate the two to more effectively educate students and prepare them for practice. Since 2012, The University of Texas School of Dentistry at Houston (UTSD) has made it a priority to improve integration of basic and clinical sciences, with a focus to this point on integrating the basic sciences. The aim of this study was to determine the perspectives of basic and clinical science faculty members regarding basic and clinical sciences integration and the degree of integration currently occurring. In October 2016, all 227 faculty members (15 basic scientists and 212 clinicians) were invited to participate in an online survey. Of the 212 clinicians, 84 completed the clinician educator survey (response rate 40%). All 15 basic scientists completed the basic science educator survey (response rate 100%). The majority of basic and clinical respondents affirmed the value of integration (93.3%, 97.6%, respectively) and reported regular integration in their teaching (80%, 86.9%). There were no significant differences between basic scientists and clinicians on perceived importance (p=0.457) and comfort with integration (p=0.240), but the basic scientists were more likely to integrate (p=0.039) and collaborate (p=0.021) than the clinicians. There were no significant differences between generalist and specialist clinicians on importance (p=0.474) and degree (p=0.972) of integration in teaching and intent to collaborate (p=0.864), but the specialists reported feeling more comfortable presenting basic science information (p=0.033). Protected faculty time for collaborative efforts and a repository of integrated basic science and clinical examples for use in teaching and faculty development were recommended to improve integration. Although questions might be raised about

  17. Progress in the Utilization of High-Fidelity Simulation in Basic Science Education

    ERIC Educational Resources Information Center

    Helyer, Richard; Dickens, Peter

    2016-01-01

    High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.

  18. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice.

    ERIC Educational Resources Information Center

    Kabat, Hugh F.; And Others

    1982-01-01

    A panel of pharmacy faculty ranked a broad inventory of basic pharmaceutical science topics in terms of their applicability to clinical pharmacy practice. The panel concluded that basic pharmaceutical sciences are essentially applications of foundation areas in biological, physical, and social sciences. (Author/MLW)

  19. [Platforms are needed for innovative basic research in ophthalmology].

    PubMed

    Wang, Yi-qiang

    2012-07-01

    Basic research poses the cornerstone of technical innovation in all lines including medical sciences. Currently, there are shortages of professional scientists as well as technical supporting teams and facilities in the field of basic research of ophthalmology and visual science in China. Evaluation system and personnel policies are not supportive for innovative but high-risk-of-failure research projects. Discussion of reasons and possible solutions are given here to address these problems, aiming at promoting buildup of platforms hosting novel and important basic research in eye science in this country.

  20. Information-seeking behavior of basic science researchers: implications for library services

    PubMed Central

    Haines, Laura L.; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A.

    2010-01-01

    Objectives: This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. Methods: A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. Results: The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Conclusions: Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository. PMID:20098658

  1. Preparing medical students for future learning using basic science instruction.

    PubMed

    Mylopoulos, Maria; Woods, Nicole

    2014-07-01

    The construct of 'preparation for future learning' (PFL) is understood as the ability to learn new information from available resources, relate new learning to past experiences and demonstrate innovation and flexibility in problem solving. Preparation for future learning has been proposed as a key competence of adaptive expertise. There is a need for educators to ensure that opportunities are provided for students to develop PFL ability and that assessments accurately measure the development of this form of competence. The objective of this research was to compare the relative impacts of basic science instruction and clinically focused instruction on performance on a PFL assessment (PFLA). This study employed a 'double transfer' design. Fifty-one pre-clerkship students were randomly assigned to either basic science instruction or clinically focused instruction to learn four categories of disease. After completing an initial assessment on the learned material, all participants received clinically focused instruction for four novel diseases and completed a PFLA. The data from the initial assessment and the PFLA were submitted to independent-sample t-tests. Mean ± standard deviation [SD] scores on the diagnostic cases in the initial assessment were similar for participants in the basic science (0.65 ± 0.11) and clinical learning (0.62 ± 0.11) conditions. The difference was not significant (t[42] = 0.90, p = 0.37, d = 0.27). Analysis of the diagnostic cases on the PFLA revealed significantly higher mean ± SD scores for participants in the basic science learning condition (0.72 ± 0.14) compared with those in the clinical learning condition (0.63 ± 0.15) (t[42] = 2.02, p = 0.05, d = 0.62). Our results show that the inclusion of basic science instruction enhanced the learning of novel related content. We discuss this finding within the broader context of research on basic science instruction, development of adaptive expertise and assessment

  2. Japanese medical students' interest in basic sciences: a questionnaire survey of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2013-02-01

    The number of physicians engaged in basic sciences and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study investigated medical students' interest in basic sciences in efforts to recruit talent. A questionnaire distributed to 501 medical students in years 2 to 6 of Juntendo University School of Medicine inquired about sex, grade, interest in basic sciences, interest in research, career path as a basic science physician, faculties' efforts to encourage students to conduct research, increases in the number of lectures, and practical training sessions on research. Associations between interest in basic sciences and other variables were examined using χ(2) tests. From among the 269 medical students (171 female) who returned the questionnaire (response rate 53.7%), 24.5% of respondents were interested in basic sciences and half of them considered basic sciences as their future career. Obstacles to this career were their original aim to become a clinician and concerns about salary. Medical students who were likely to be interested in basic sciences were fifth- and sixth-year students, were interested in research, considered basic sciences as their future career, considered faculties were making efforts to encourage medical students to conduct research, and wanted more research-related lectures. Improving physicians' salaries in basic sciences is important for securing talent. Moreover, offering continuous opportunities for medical students to experience research and encouraging advanced-year students during and after bedside learning to engage in basic sciences are important for recruiting talent.

  3. Addressing Equity within Science Education Courses: Sharing Approaches and Ideas.

    ERIC Educational Resources Information Center

    Wieseman, Katherine C.; Bryan, Lynn; Hammrich, Penny; Lynch, Sharon; McGinnis, Randy; Pyle, Eric

    A discussion session provided opportunities for individuals involved in science teacher education to exchange approaches and ideas on how equity issues in science teaching and learning are being addressed in science teacher education courses. Evaluative questions included: (1) What conceptions of equity in science education underpin individual…

  4. Basic science research in urology training.

    PubMed

    Eberli, D; Atala, A

    2009-04-01

    The role of basic science exposure during urology training is a timely topic that is relevant to urologic health and to the training of new physician scientists. Today, researchers are needed for the advancement of this specialty, and involvement in basic research will foster understanding of basic scientific concepts and the development of critical thinking skills, which will, in turn, improve clinical performance. If research education is not included in urology training, future urologists may not be as likely to contribute to scientific discoveries.Currently, only a minority of urologists in training are currently exposed to significant research experience. In addition, the number of physician-scientists in urology has been decreasing over the last two decades, as fewer physicians are willing to undertake a career in academics and perform basic research. However, to ensure that the field of urology is driving forward and bringing novel techniques to patients, it is clear that more research-trained urologists are needed. In this article we will analyse the current status of basic research in urology training and discuss the importance of and obstacles to successful addition of research into the medical training curricula. Further, we will highlight different opportunities for trainees to obtain significant research exposure in urology.

  5. A brief simulation intervention increasing basic science and clinical knowledge.

    PubMed

    Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David

    2016-01-01

    The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l=515) and the intervention group received lecture plus a simulation exercise (n l+s=1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.

  6. The Reorganization of Basic Science Departments in U.S. Medical Schools, 1980-1999.

    ERIC Educational Resources Information Center

    Mallon, William T.; Biebuyck, Julien F.; Jones, Robert F.

    2003-01-01

    Constructed a longitudinal database to examine how basic science departments have been reorganized at U.S. medical schools. Found that there were fewer basic science departments in the traditional disciplines of anatomy, biochemistry, microbiology, pharmacology, and physiology in 1999 than in 1980. But as biomedical science has developed in an…

  7. United Nations/European Space Agency Workshops on Basic Space Science

    NASA Technical Reports Server (NTRS)

    Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.

    1995-01-01

    In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica andColombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.

  8. A Simulation for Teaching the Basic and Clinical Science of Fluid Therapy

    ERIC Educational Resources Information Center

    Rawson, Richard E.; Dispensa, Marilyn E.; Goldstein, Richard E.; Nicholson, Kimberley W.; Vidal, Noni Korf

    2009-01-01

    The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical…

  9. Basic Science and Public Policy: Informed Regulation for Nicotine and Tobacco Products.

    PubMed

    Fowler, Christie D; Gipson, Cassandra D; Kleykamp, Bethea A; Rupprecht, Laura E; Harrell, Paul T; Rees, Vaughan W; Gould, Thomas J; Oliver, Jason; Bagdas, Deniz; Damaj, M Imad; Schmidt, Heath D; Duncan, Alexander; De Biasi, Mariella

    2018-06-07

    Scientific discoveries over the past few decades have provided significant insight into the abuse liability and negative health consequences associated with tobacco and nicotine-containing products. While many of these advances have led to the development of policies and laws that regulate access to and formulations of these products, further research is critical to guide future regulatory efforts, especially as novel nicotine-containing products are introduced and selectively marketed to vulnerable populations. In this narrative review, we provide an overview of the scientific findings that have impacted regulatory policy and discuss considerations for further translation of science into policy decisions. We propose that open, bidirectional communication between scientists and policy makers is essential to develop transformative preventive- and intervention-focused policies and programs to reduce appeal, abuse liability, and toxicity of the products. Through these types of interactions, collaborative efforts to inform and modify policy have the potential to significantly decrease the use of tobacco and alternative nicotine products and thus enhance health outcomes for individuals. This work addresses current topics in the nicotine and tobacco research field to emphasize the importance of basic science research and provide examples of how it can be utilized to inform public policy. In addition to relaying current thoughts on the topic from experts in the field, the article encourages continued efforts and communication between basic scientists and policy officials.

  10. Editorial Commentary: A Model for Shoulder Rotator Cuff Repair and for Basic Science Investigations.

    PubMed

    Brand, Jefferson C

    2018-04-01

    "Breaking the fourth wall" is a theater convention where the narrator or character speaks directly to the audience. As an Assistant Editor-in-Chief, as I comment on a recent basic science study investigating rotator cuff repair, I break the fourth wall and articulate areas of basic science research excellence that align with the vision that we hold for our journal. Inclusion of a powerful video strengthens the submission. We prefer to publish clinical videos in our companion journal, Arthroscopy Techniques, and encourage basic science video submissions to Arthroscopy. Basic science research requires step-by-tedious-step analogous to climbing a mountain. Establishment of a murine rotator cuff repair model was rigorous and research intensive, biomechanically, radiographically, histologically, and genetically documented, a huge step toward the bone-to-tendon healing research summit. This research results in a model for both rotator cuff repair and the pinnacle of quality, basic science research. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. Scaling up to address data science challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, Joanne R.

    Statistics and Data Science provide a variety of perspectives and technical approaches for exploring and understanding Big Data. Partnerships between scientists from different fields such as statistics, machine learning, computer science, and applied mathematics can lead to innovative approaches for addressing problems involving increasingly large amounts of data in a rigorous and effective manner that takes advantage of advances in computing. Here, this article will explore various challenges in Data Science and will highlight statistical approaches that can facilitate analysis of large-scale data including sampling and data reduction methods, techniques for effective analysis and visualization of large-scale simulations, and algorithmsmore » and procedures for efficient processing.« less

  12. Scaling up to address data science challenges

    DOE PAGES

    Wendelberger, Joanne R.

    2017-04-27

    Statistics and Data Science provide a variety of perspectives and technical approaches for exploring and understanding Big Data. Partnerships between scientists from different fields such as statistics, machine learning, computer science, and applied mathematics can lead to innovative approaches for addressing problems involving increasingly large amounts of data in a rigorous and effective manner that takes advantage of advances in computing. Here, this article will explore various challenges in Data Science and will highlight statistical approaches that can facilitate analysis of large-scale data including sampling and data reduction methods, techniques for effective analysis and visualization of large-scale simulations, and algorithmsmore » and procedures for efficient processing.« less

  13. Fundamentals of neurogastroenterology: basic science.

    PubMed

    Grundy, David; Al-Chaer, Elie D; Aziz, Qasim; Collins, Stephen M; Ke, Meiyun; Taché, Yvette; Wood, Jackie D

    2006-04-01

    The focus of neurogastroenterology in Rome II was the enteric nervous system (ENS). To avoid duplication with Rome II, only advances in ENS neurobiology after Rome II are reviewed together with stronger emphasis on interactions of the brain, spinal cord, and the gut in terms of relevance for abdominal pain and disordered gastrointestinal function. A committee with expertise in selective aspects of neurogastroenterology was invited to evaluate the literature and provide a consensus overview of the Fundamentals of Neurogastroenterology textbook as they relate to functional gastrointestinal disorders (FGIDs). This review is an abbreviated version of a fuller account that appears in the forthcoming book, Rome III. This report reviews current basic science understanding of visceral sensation and its modulation by inflammation and stress and advances in the neurophysiology of the ENS. Many of the concepts are derived from animal studies in which the physiologic mechanisms underlying visceral sensitivity and neural control of motility, secretion, and blood flow are examined. Impact of inflammation and stress in experimental models relative to FGIDs is reviewed as is human brain imaging, which provides a means for translating basic science to understanding FGID symptoms. Investigative evidence and emerging concepts implicate dysfunction in the nervous system as a significant factor underlying patient symptoms in FGIDs. Continued focus on neurogastroenterologic factors that underlie the development of symptoms will lead to mechanistic understanding that is expected to directly benefit the large contingent of patients and care-givers who deal with FGIDs.

  14. A brief simulation intervention increasing basic science and clinical knowledge.

    PubMed

    Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David

    2016-01-01

    Background The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l =515) and the intervention group received lecture plus a simulation exercise (n l+s =1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Discussion Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.

  15. Integration of Basic Sciences in Health's Courses

    ERIC Educational Resources Information Center

    Azzalis, L. A.; Giavarotti, L.; Sato, S. N.; Barros, N. M. T.; Junqueira, V. B. C.; Fonseca, F. L. A.

    2012-01-01

    Concepts from disciplines such as Biochemistry, Genetics, Cellular and Molecular Biology are essential to the understanding and treatment of an elevated number of illnesses, but often they are studied separately, with no integration between them. This article proposes a model for basic sciences integration based on problem-based learning (PBL) and…

  16. Teaching Toxicology as a Basic Medical Science

    ERIC Educational Resources Information Center

    Gralla, Edward J.

    1976-01-01

    A 4-year effort at Yale University School of Medicine to teach toxicology as an elective basic science from the standpoint of organ-specific toxic effects is described. The objective of the successful multidisciplinary program is to prepare physicians to understand, recognize, and manage adverse effects from drugs and other environmental…

  17. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs.

    NASA Astrophysics Data System (ADS)

    Cowles, S.; Collier, R.; Torres, M. K.

    2004-12-01

    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing

  18. Preparing Science Teachers to Address Contentious and Sensitive Science Topics

    ERIC Educational Resources Information Center

    Ado, Gustave

    2015-01-01

    Purpose: Despite high HIV prevalence rates in Ivory Coast, the formal K-12 curriculum was not developed to address HIV/AIDS information completely for many African students. The purpose of this study was to identify factors that influenced Ivorian teachers' teaching of the HIV/AIDS curriculum in middle school science curricula in nine middle…

  19. Basic Pharmaceutical Sciences Examination as a Predictor of Student Performance during Clinical Training.

    ERIC Educational Resources Information Center

    Fassett, William E.; Campbell, William H.

    1984-01-01

    A comparison of Basic Pharmaceutical Sciences Examination (BPSE) results with student performance evaluations in core clerkships, institutional and community externships, didactic and clinical courses, and related basic science coursework revealed the BPSE does not predict student performance during clinical instruction. (MSE)

  20. Physician perceptions of the role and value of basic science knowledge in daily clinical practice.

    PubMed

    Fischer, Jennifer A; Muller-Weeks, Susan

    2012-01-01

    The role of basic science education in a clinical setting remains unclear. Research to understand how academic clinicians perceive and use this part of their education can aid curricular development. To assess physician's attitudes toward the value of science knowledge in their clinical practice. Academic physicians from three medical schools completed a questionnaire about the utility of basic science education in core clinical tasks and in practice-based learning and improvement. A total of 109 clinical faculty returned the survey. Overall, 89% of the respondents indicated that basic science education is valuable to their clinical practice. When asked about the utility of basic science information in relation to direct patient care, greater than 50% of the doctors felt they use this when diagnosing and communicating with patients. This rose to greater than 60% when asked about choosing treatment options for their patients. Individuals also responded that basic science knowledge is valuable when developing evidence-based best practices. Specifically, 89% felt that they draw upon this information when training students/residents and 84% use this information when reading journal articles. This study shows that basic science education is perceived by responding academic physicians to be important to their clinical work.

  1. Comparison of Basic Science Knowledge Between DO and MD Students.

    PubMed

    Davis, Glenn E; Gayer, Gregory G

    2017-02-01

    With the coming single accreditation system for graduate medical education, medical educators may wonder whether knowledge in basic sciences is equivalent for osteopathic and allopathic medical students. To examine whether medical students' basic science knowledge is the same among osteopathic and allopathic medical students. A dataset of the Touro University College of Osteopathic Medicine-CA student records from the classes of 2013, 2014, and 2015 and the national cohort of National Board of Medical Examiners Comprehensive Basic Science Examination (NBME-CBSE) parameters for MD students were used. Models of the Comprehensive Osteopathic Medical Licensing Examination-USA (COMLEX-USA) Level 1 scores were fit using linear and logistic regression. The models included variables used in both osteopathic and allopathic medical professions to predict COMLEX-USA outcomes, such as Medical College Admission Test biology scores, preclinical grade point average, number of undergraduate science units, and scores on the NBME-CBSE. Regression statistics were studied to compare the effectiveness of models that included or excluded NBME-CBSE scores at predicting COMLEX-USA Level 1 scores. Variance inflation factor was used to investigate multicollinearity. Receiver operating characteristic curves were used to show the effectiveness of NBME-CBSE scores at predicting COMLEX-USA Level 1 pass/fail outcomes. A t test at 99% level was used to compare mean NBME-CBSE scores with the national cohort. A total of 390 student records were analyzed. Scores on the NBME-CBSE were found to be an effective predictor of COMLEX-USA Level 1 scores (P<.001). The pass/fail outcome on COMLEX-USA Level 1 was also well predicted by NBME-CBSE scores (P<.001). No significant difference was found in performance on the NBME-CBSE between osteopathic and allopathic medical students (P=.322). As an examination constructed to assess the basic science knowledge of allopathic medical students, the NBME-CBSE is

  2. Cognition before curriculum: rethinking the integration of basic science and clinical learning.

    PubMed

    Kulasegaram, Kulamakan Mahan; Martimianakis, Maria Athina; Mylopoulos, Maria; Whitehead, Cynthia R; Woods, Nicole N

    2013-10-01

    Integrating basic science and clinical concepts in the undergraduate medical curriculum is an important challenge for medical education. The health professions education literature includes a variety of educational strategies for integrating basic science and clinical concepts at multiple levels of the curriculum. To date, assessment of this literature has been limited. In this critical narrative review, the authors analyzed literature published in the last 30 years (1982-2012) using a previously published integration framework. They included studies that documented approaches to integration at the level of programs, courses, or teaching sessions and that aimed to improve learning outcomes. The authors evaluated these studies for evidence of successful integration and to identify factors that contribute to integration. Several strategies at the program and course level are well described but poorly evaluated. Multiple factors contribute to successful learning, so identifying how interventions at these levels result in successful integration is difficult. Evidence from session-level interventions and experimental studies suggests that integration can be achieved if learning interventions attempt to link basic and clinical science in a causal relationship. These interventions attend to how learners connect different domains of knowledge and suggest that successful integration requires learners to build cognitive associations between basic and clinical science. One way of understanding the integration of basic and clinical science is as a cognitive activity occurring within learners. This perspective suggests that learner-centered, content-focused, and session-level-oriented strategies can achieve cognitive integration.

  3. The Future of Basic Science in Academic Surgery: Identifying Barriers to Success for Surgeon-scientists.

    PubMed

    Keswani, Sundeep G; Moles, Chad M; Morowitz, Michael; Zeh, Herbert; Kuo, John S; Levine, Matthew H; Cheng, Lily S; Hackam, David J; Ahuja, Nita; Goldstein, Allan M

    2017-06-01

    The aim of this study was to examine the challenges confronting surgeons performing basic science research in today's academic surgery environment. Multiple studies have identified challenges confronting surgeon-scientists and impacting their ability to be successful. Although these threats have been known for decades, the downward trend in the number of successful surgeon-scientists continues. Clinical demands, funding challenges, and other factors play important roles, but a rigorous analysis of academic surgeons and their experiences regarding these issues has not previously been performed. An online survey was distributed to 2504 members of the Association for Academic Surgery and Society of University Surgeons to determine factors impacting success. Survey results were subjected to statistical analyses. We also reviewed publicly available data regarding funding from the National Institutes of Health (NIH). NIH data revealed a 27% decline in the proportion of NIH funding to surgical departments relative to total NIH funding from 2007 to 2014. A total of 1033 (41%) members responded to our survey, making this the largest survey of academic surgeons to date. Surgeons most often cited the following factors as major impediments to pursuing basic investigation: pressure to be clinically productive, excessive administrative responsibilities, difficulty obtaining extramural funding, and desire for work-life balance. Surprisingly, a majority (68%) did not believe surgeons can be successful basic scientists in today's environment, including departmental leadership. We have identified important barriers that confront academic surgeons pursuing basic research and a perception that success in basic science may no longer be achievable. These barriers need to be addressed to ensure the continued development of future surgeon-scientists.

  4. Student Perceptions of Using Games to Address Science Literacy

    NASA Astrophysics Data System (ADS)

    Keller, Cara M.

    The purpose of this qualitative evaluative case study was to gain insight into how students perceived the efficacy of using games to address their science literacy concerns. Scientists in the United States are concerned with the lack of science literacy. The No Child Left Behind Act of 2001 requires proficiency in reading, mathematics, language arts, and science by the completion of the 2013--2014 school year. The high school participating in this study received substandard test scores on both the 2009 state graduation test and the science portion of the ACT test. The research question included understanding how students perceive the use of games in addressing their science literacy needs. The data from the student journals, field notes, and transcribed class discussions were analyzed using a 6 step method that included coding the data into main themes. The triangulated data were used to both gain insight into student perspective and inform game development. Constructivist theories formed the conceptual framework of the study. The findings of the study suggested that games may prove a valuable tool in science literacy attainment. The study indicated that games were perceived by the students to be effective tools in meeting their learning needs. Implications for positive social change included providing students, educators, and administrators with game resources that can be used to meet the science learning needs of struggling students, thereby improving science scores on high stakes tests.

  5. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    2006-08-01

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/ European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contribute to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops. Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  6. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space UNISPACE III and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space UNCOPUOS annual UN European Space Agency workshops on basic space science have been held around the world since 1991 These workshops contribute to the development of astrophysics and space science particularly in developing nations Following a process of prioritization the workshops identified the following elements as particularly important for international cooperation in the field i operation of astronomical telescope facilities implementing TRIPOD ii virtual observatories iii astrophysical data systems iv concurrent design capabilities for the development of international space missions and v theoretical astrophysics such as applications of nonextensive statistical mechanics Beginning in 2005 the workshops focus on preparations for the International Heliophysical Year 2007 IHY2007 The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost ground-based world-wide instrument arrays as lead by the IHY secretariat Further information Wamsteker W Albrecht R and Haubold H J Developing Basic Space Science World-Wide A Decade of UN ESA Workshops Kluwer Academic Publishers Dordrecht 2004 http ihy2007 org http www oosa unvienna org SAP bss ihy2007 index html http www cbpf br GrupPesq StatisticalPhys biblio htm

  7. Teaching Basic Probability in Undergraduate Statistics or Management Science Courses

    ERIC Educational Resources Information Center

    Naidu, Jaideep T.; Sanford, John F.

    2017-01-01

    Standard textbooks in core Statistics and Management Science classes present various examples to introduce basic probability concepts to undergraduate business students. These include tossing of a coin, throwing a die, and examples of that nature. While these are good examples to introduce basic probability, we use improvised versions of Russian…

  8. Teaching population health as a basic science at Harvard Medical School.

    PubMed

    Finkelstein, Jonathan A; McMahon, Graham T; Peters, Antoinette; Cadigan, Rebecca; Biddinger, Paul; Simon, Steven R

    2008-04-01

    In 2006-2007, Harvard Medical School implemented a new, required course for first-year medical and dental students entitled Clinical Epidemiology and Population Health. Conceived of as a "basic science" course, its primary goal is to allow students to develop an understanding of caring for individuals and promoting the health of populations as a continuum of strategies, all requiring the engagement of physicians. In the course's first iteration, topical content accessible to first-year students was selected to exemplify physicians' roles in addressing current threats to population health. Methodological areas included domains of clinical epidemiology, decision sciences, population-level prevention and health promotion, physicians' roles in the public health system, and population-level surveillance and intervention strategies. Large-group settings were selectively used to frame the relevance of each topic, and conceptual learning of statistical and epidemiologic methods occurred in conference groups of 24 students. Finally, tutorials of eight students and one or two faculty were used for critical reading of published studies, review of problem sets, and group discussion of population health issues. To help students appreciate the structure and function of the public health system and physicians' role in public health emergencies, the course included a role-playing exercise simulating response to an influenza pandemic. The first iteration of the course was well received, and assessment of students suggested mastery of basic skills. Preclinical courses represent a progressive step in developing a workforce of physicians who embrace their responsibility to improve the health of the population as a whole, as well as the health of the patient in front of them.

  9. Cause and Effect: Testing a Mechanism and Method for the Cognitive Integration of Basic Science.

    PubMed

    Kulasegaram, Kulamakan; Manzone, Julian C; Ku, Cheryl; Skye, Aimee; Wadey, Veronica; Woods, Nicole N

    2015-11-01

    Methods of integrating basic science with clinical knowledge are still debated in medical training. One possibility is increasing the spatial and temporal proximity of clinical content to basic science. An alternative model argues that teaching must purposefully expose relationships between the domains. The authors compared different methods of integrating basic science: causal explanations linking basic science to clinical features, presenting both domains separately but in proximity, and simply presenting clinical features First-year undergraduate health professions students were randomized to four conditions: (1) science-causal explanations (SC), (2) basic science before clinical concepts (BC), (3) clinical concepts before basic science (CB), and (4) clinical features list only (FL). Based on assigned conditions, participants were given explanations for four disorders in neurology or rheumatology followed by a memory quiz and diagnostic test consisting of 12 cases which were repeated after one week. Ninety-four participants completed the study. No difference was found on memory test performance, but on the diagnostic test, a condition by time interaction was found (F[3,88] = 3.05, P < .03, ηp = 0.10). Although all groups had similar immediate performance, the SC group had a minimal decrease in performance on delayed testing; the CB and FL groups had the greatest decreases. These results suggest that creating proximity between basic science and clinical concepts may not guarantee cognitive integration. Although cause-and-effect explanations may not be possible for all domains, making explicit and specific connections between domains will likely facilitate the benefits of integration for learners.

  10. Welding As Science: Applying Basic Engineering Principles to the Discipline

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    2010-01-01

    This Technical Memorandum provides sample problems illustrating ways in which basic engineering science has been applied to the discipline of welding. Perhaps inferences may be drawn regarding optimal approaches to particular welding problems, as well as for the optimal education for welding engineers. Perhaps also some readers may be attracted to the science(s) of welding and may make worthwhile contributions to the discipline.

  11. Learning Science, Learning about Science, Doing Science: Different Goals Demand Different Learning Methods

    ERIC Educational Resources Information Center

    Hodson, Derek

    2014-01-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that…

  12. Basic science research and education: a priority for training and capacity building in developing countries.

    PubMed

    Deckelbaum, Richard J; Ntambi, James M; Wolgemuth, Debra J

    2011-09-01

    This article provides evidence that basic science research and education should be key priorities for global health training, capacity building, and practice. Currently, there are tremendous gaps between strong science education and research in developed countries (the North) as compared to developing countries (the South). In addition, science research and education appear as low priorities in many developing countries. The need to stress basic science research beyond the typical investment of infectious disease basic service and research laboratories in developing areas is significant in terms of the benefits, not only to education, but also for economic strengthening and development of human resources. There are some indications that appreciation of basic science research education and training is increasing, but this still needs to be applied more rigorously and strengthened systematically in developing countries. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide andmore » the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the

  14. BASIC ELECTRICITY. SCIENCE IN ACTION SERIES, NUMBER 14.

    ERIC Educational Resources Information Center

    CASSEL, RICHARD

    THIS TEACHING GUIDE, INVOLVING ACTIVITIES FOR DEVELOPING AN UNDERSTANDING OF BASIC ELECTRICITY, EMPHASIZES STUDENT INVESTIGATIONS RATHER THAN FACTS, AND IS BASED ON THE PREMISE THAT THE MAJOR GOAL IN SCIENCE TEACHING IS THE DEVELOPMENT OF THE INVESTIGATIVE ATTITUDE IN THE STUDENT. ACTIVITIES SUGGESTED INVOLVE SIMPLE DEMONSTRATIONS AND EXPERIMENTS…

  15. Is basic science disappearing from medicine? The decline of biomedical research in the medical literature.

    PubMed

    Steinberg, Benjamin E; Goldenberg, Neil M; Fairn, Gregory D; Kuebler, Wolfgang M; Slutsky, Arthur S; Lee, Warren L

    2016-02-01

    Explosive growth in our understanding of genomics and molecular biology have fueled calls for the pursuit of personalized medicine, the notion of harnessing biologic variability to provide patient-specific care. This vision will necessitate a deep understanding of the underlying pathophysiology in each patient. Medical journals play a pivotal role in the education of trainees and clinicians, yet we suspected that the amount of basic science in the top medical journals has been in decline. We conducted an automated search strategy in PubMed to identify basic science articles and calculated the proportion of articles dealing with basic science in the highest impact journals for 8 different medical specialties from 1994 to 2013. We observed a steep decline (40-60%) in such articles over time in almost all of the journals examined. This rapid decline in basic science from medical journals is likely to affect practitioners' understanding of and interest in the basic mechanisms of disease and therapy. In this Life Sciences Forum, we discuss why this decline may be occurring and what it means for the future of science and medicine. © FASEB.

  16. malERA: An updated research agenda for basic science and enabling technologies in malaria elimination and eradication

    PubMed Central

    2017-01-01

    Basic science holds enormous power for revealing the biological mechanisms of disease and, in turn, paving the way toward new, effective interventions. Recognizing this power, the 2011 Research Agenda for Malaria Eradication included key priorities in fundamental research that, if attained, could help accelerate progress toward disease elimination and eradication. The Malaria Eradication Research Agenda (malERA) Consultative Panel on Basic Science and Enabling Technologies reviewed the progress, continuing challenges, and major opportunities for future research. The recommendations come from a literature of published and unpublished materials and the deliberations of the malERA Refresh Consultative Panel. These areas span multiple aspects of the Plasmodium life cycle in both the human host and the Anopheles vector and include critical, unanswered questions about parasite transmission, human infection in the liver, asexual-stage biology, and malaria persistence. We believe an integrated approach encompassing human immunology, parasitology, and entomology, and harnessing new and emerging biomedical technologies offers the best path toward addressing these questions and, ultimately, lowering the worldwide burden of malaria. PMID:29190277

  17. Japanese representation in leading general medicine and basic science journals: a comparison of two decades.

    PubMed

    Fukui, Tsuguya; Takahashi, Osamu; Rahman, Mahbubur

    2013-11-01

    During 1991-2000, Japan contribution to the top general medicine journals was very small although the contribution to the top basic science journals was sizeable. However, it has not been examined whether the contribution to the top general medicine and basic science journals has changed during the last decade (2001-2010). The objective of this study was to compare Japan representation in high-impact general medicine and basic science journals between the years 1991-2000 and 2001-2010. We used PubMed database to examine the frequency of articles originated from Japan and published in 7 high-impact general medicine and 6 high-impact basic science journals. Several Boolean operators were used to connect name of the journal, year of publication and corresponding authors' affiliation in Japan. Compared to the 1991-2000 decade, Japan contribution to the top general medicine journals did not increase over the 2001-2010 period (0.66% vs. 0.74%, P = 0.255). However, compared to the same period, its contribution to the top basic science journals increased during 2001-2010 (2.51% vs. 3.60%, P < 0.001). Japan representation in basic science journals showed an upward trend over the 1991-2000 period (P < 0.001) but remained flat during 2001-2010 (P = 0.177). In contrast, the trend of Japan representation in general medicine journals remained flat both during 1991-2000 (P = 0.273) and 2001-2010 (P = 0.073). Overall, Japan contribution to the top general medicine journals has remained small and unchanged over the last two decades. However, top basic science journals had higher Japan representation during 2001-2010 compared to 1991-2000.

  18. Interprofessional education and the basic sciences: Rationale and outcomes.

    PubMed

    Thistlethwaite, Jill E

    2015-01-01

    Interprofessional education (IPE) aims to improve patient outcomes and the quality of care. Interprofessional learning outcomes and interprofessional competencies are now included in many countries' health and social care professions' accreditation standards. While IPE may take place at any time in health professions curricula it tends to focus on professionalism and clinical topics rather than basic science activities. However generic interprofessional competencies could be included in basic science courses that are offered to at least two different professional groups. In developing interprofessional activities at the preclinical level, it is important to define explicit interprofessional learning outcomes plus the content and process of the learning. Interprofessional education must involve interactive learning processes and integration of theory and practice. This paper provides examples of IPE in anatomy and makes recommendations for course development and evaluation. © 2015 American Association of Anatomists.

  19. Teaching basic science to optimize transfer.

    PubMed

    Norman, Geoff

    2009-09-01

    Basic science teachers share the concern that much of what they teach is soon forgotten. Although some evidence suggests that relatively little basic science is forgotten, it may not appear so, as students commonly have difficulty using these concepts to solve or explain clinical problems: This phenomenon, using a concept learned in one context to solve a problem in a different context, is known to cognitive psychologists as transfer. The psychology literature shows that transfer is difficult; typically, even though students may know a concept, fewer than 30% will be able to use it to solve new problems. However a number of strategies to improve transfer can be adopted at the time of initial teaching of the concept, in the use of exemplars to illustrate the concept, and in practice with additional problems. In this article, we review the literature in psychology to identify practical strategies to improve transfer. Critical review of psychology literature to identify factors that enhance or impede transfer. There are a number of strategies available to teachers to facilitate transfer. These include active problem-solving at the time of initial learning, imbedding the concept in a problem context, using everyday analogies, and critically, practice with multiple dissimilar problems. Further, mixed practice, where problems illustrating different concepts are mixed together, and distributed practice, spread out over time, can result in significant and large gains. Transfer is difficult, but specific teaching strategies can enhance this skill by factors of two or three.

  20. Basic Science Considerations in Primary Total Hip Replacement Arthroplasty

    PubMed Central

    Mirza, Saqeb B; Dunlop, Douglas G; Panesar, Sukhmeet S; Naqvi, Syed G; Gangoo, Shafat; Salih, Saif

    2010-01-01

    Total Hip Replacement is one of the most common operations performed in the developed world today. An increasingly ageing population means that the numbers of people undergoing this operation is set to rise. There are a numerous number of prosthesis on the market and it is often difficult to choose between them. It is therefore necessary to have a good understanding of the basic scientific principles in Total Hip Replacement and the evidence base underpinning them. This paper reviews the relevant anatomical and biomechanical principles in THA. It goes on to elaborate on the structural properties of materials used in modern implants and looks at the evidence base for different types of fixation including cemented and uncemented components. Modern bearing surfaces are discussed in addition to the scientific basis of various surface engineering modifications in THA prostheses. The basic science considerations in component alignment and abductor tension are also discussed. A brief discussion on modular and custom designs of THR is also included. This article reviews basic science concepts and the rationale underpinning the use of the femoral and acetabular component in total hip replacement. PMID:20582240

  1. Basic Science for a Secure Energy Future

    NASA Astrophysics Data System (ADS)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  2. The Relationship between Immediate Relevant Basic Science Knowledge and Clinical Knowledge: Physiology Knowledge and Transthoracic Echocardiography Image Interpretation

    ERIC Educational Resources Information Center

    Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit

    2012-01-01

    Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent…

  3. Strengthening Faculty Recruitment for Health Professions Training in Basic Sciences in Zambia

    PubMed Central

    Simuyemba, Moses; Talib, Zohray; Michelo, Charles; Mutale, Wilbroad; Zulu, Joseph; Andrews, Ben; Katubulushi, Max; Njelesani, Evariste; Bowa, Kasonde; Maimbolwa, Margaret; Mudenda, John; Mulla, Yakub

    2014-01-01

    Zambia is facing a crisis in its human resources for health (HRH), with deficits in the number and skill mix of health workers. The University of Zambia School of Medicine (UNZA SOM) was the only medical school in the country for decades, but recently it was joined by three new medical schools—two private and one public. In addition to expanding medical education, the government has also approved several allied health programs, including pharmacy, physiotherapy, biomedical sciences, and environmental health. This expansion has been constrained by insufficient numbers of faculty. Through a grant from the Medical Education Partnership Initiative (MEPI), UNZA SOM has been investing in ways to address faculty recruitment, training, and retention. The MEPI-funded strategy involves directly sponsoring a cohort of faculty at UNZA SOM during the five-year grant, as well as establishing more than a dozen new master’s programs, with the goal that all sponsored faculty are locally trained and retained. Because the issue of limited basic science faculty plagues medical schools throughout Sub-Saharan Africa, this strategy of using seed funding to build sustainable local capacity to recruit, train, and retain faculty could be a model for the region. PMID:25072591

  4. Strengthening faculty recruitment for health professions training in basic sciences in Zambia.

    PubMed

    Simuyemba, Moses; Talib, Zohray; Michelo, Charles; Mutale, Wilbroad; Zulu, Joseph; Andrews, Ben; Nzala, Selestine; Katubulushi, Max; Njelesani, Evariste; Bowa, Kasonde; Maimbolwa, Margaret; Mudenda, John; Mulla, Yakub

    2014-08-01

    Zambia is facing a crisis in its human resources for health, with deficits in the number and skill mix of health workers. The University of Zambia School of Medicine (UNZA SOM) was the only medical school in the country for decades, but recently it was joined by three new medical schools--two private and one public. In addition to expanding medical education, the government has also approved several allied health programs, including pharmacy, physiotherapy, biomedical sciences, and environmental health. This expansion has been constrained by insufficient numbers of faculty. Through a grant from the Medical Education Partnership Initiative (MEPI), UNZA SOM has been investing in ways to address faculty recruitment, training, and retention. The MEPI-funded strategy involves directly sponsoring a cohort of faculty at UNZA SOM during the five-year grant, as well as establishing more than a dozen new master's programs, with the goal that all sponsored faculty are locally trained and retained. Because the issue of limited basic science faculty plagues medical schools throughout Sub-Saharan Africa, this strategy of using seed funding to build sustainable local capacity to recruit, train, and retain faculty could be a model for the region.

  5. Improving Learning in Science and Basic Skills among Diverse Student Populations.

    ERIC Educational Resources Information Center

    Sutman, Francis X.; Guzman, Ana

    This monograph is a rich resource of information designed to strengthen science and basic skills teaching, and improve learning for limited English proficient (LEP) minority student populations. It proposes the use of hands-on science investigations as the driving force for mathematics and English language development. The materials included in…

  6. A simulation for teaching the basic and clinical science of fluid therapy.

    PubMed

    Rawson, Richard E; Dispensa, Marilyn E; Goldstein, Richard E; Nicholson, Kimberley W; Vidal, Noni Korf

    2009-09-01

    The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical cases that, by nature, are diverse, change over time, and respond in unique ways to therapeutic interventions. We developed a dynamic model using STELLA software that simulates normal and abnormal fluid and electrolyte balance in the dog. Students interact, not with the underlying model, but with a user interface that provides sufficient data (skin turgor, chemistry panel, etc.) for the clinical assessment of patients and an opportunity for treatment. Students administer fluids and supplements, and the model responds in "real time," requiring regular reassessment and, potentially, adaptation of the treatment strategy. The level of success is determined by clinical outcome, including improvement, deterioration, or death. We expected that the simulated cases could be used to teach both the clinical and basic science of fluid therapy. The simulation provides exposure to a realistic clinical environment, and students tend to focus on this aspect of the simulation while, for the most part, ignoring an exploration of the underlying physiological basis for patient responses. We discuss how the instructor's expertise can provide sufficient support, feedback, and scaffolding so that students can extract maximum understanding of the basic science in the context of assessing and treating at the clinical level.

  7. There was less self-critique among basic than in clinical science articles in three rheumatology journals.

    PubMed

    Yazici, Hasan; Gogus, Feride; Esen, Fehim; Yazici, Yusuf

    2014-06-01

    There is concern that self-critique with authors acknowledging limitations of their work is not given due importance in scientific articles. We had the impression that this was more true for articles in basic compared with clinical science. We thus surveyed for the presence of self-critique in the discussion sections of the original articles in three rheumatology journals with attention to differences between the basic and the clinical science articles. The discussion sections of the original articles in January, May, and September 2012 issues of Annals of the Rheumatic Diseases, Arthritis and Rheumatism, and Rheumatology (Oxford) were surveyed (n = 223) after classifying each article as mainly related to clinical or basic science. The discussion sections were electronically scanned by two observers for the presence of the root word "limit" or its derivatives who also read each discussion section for the presence of any limitations otherwise voiced. A limitation discussion in any form was present in only 19 (20.2%) or 29 (30.1%) of 94 basic science vs. 95 (73.6%) or 107 (82.3%) of 129 clinical science articles (P < 0.0001 for either observer). Self-critique, especially lacking in basic science articles, should be given due attention. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Limitations on diversity in basic science departments.

    PubMed

    Leboy, Phoebe S; Madden, Janice F

    2012-08-01

    It has been over 30 years since the beginning of efforts to improve diversity in academia. We can identify four major stages: (1) early and continuing efforts to diversify the pipeline by increasing numbers of women and minorities getting advanced degrees, particularly in science, technology, engineering, and math (STEM); (2) requiring academic institutions to develop their own "affirmative action plans" for hiring and promotion; (3) introducing mentoring programs and coping strategies to help women and minorities deal with faculty practices from an earlier era; (4) asking academic institutions to rethink their practices and policies with an eye toward enabling more faculty diversity, a process known as institutional transformation. The thesis of this article is that research-intensive basic science departments of highly ranked U.S. medical schools are stuck at stage 3, resulting in a less diverse tenured and tenure-track faculty than seen in well-funded science departments of major universities. A review of Web-based records of research-intensive departments in universities with both medical school and nonmedical school departments indicates that the proportion of women and Black faculty in science departments of medical schools is lower than the proportion in similarly research-intensive university science departments. Expectations for faculty productivity in research-intensive medical school departments versus university-based departments may lead to these differences in faculty diversity.

  9. Science and the Nonscience Major: Addressing the Fear Factor in the Chemical Arena Using Forensic Science

    ERIC Educational Resources Information Center

    Labianca, Dominick A.

    2007-01-01

    This article describes an approach to minimizing the "fear factor" in a chemistry course for the nonscience major, and also addresses relevant applications to other science courses, including biology, geology, and physics. The approach emphasizes forensic science and affords students the opportunity to hone their analytical skills in an…

  10. Development and Validation of the Life Sciences Assessment: A Measure of Preschool Children's Conceptions of Basic Life Sciences

    ERIC Educational Resources Information Center

    Maherally, Uzma Nooreen

    2014-01-01

    The purpose of this study was to develop and validate a science assessment tool termed the Life Sciences Assessment (LSA) in order to assess preschool children's conceptions of basic life sciences. The hypothesis was that the four sub-constructs, each of which can be measured through a series of questions on the LSA, will make a significant…

  11. White Paper on Nuclear Data Needs and Capabilities for Basic Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batchelder, J.; Kawano, T.; Kelley, J.

    Reliable nuclear structure and reaction data represent the fundamental building blocks of nuclear physics and astrophysics research, and are also of importance in many applications. There is a continuous demand for high-quality updates of the main nuclear physics databases via the prompt compilation and evaluation of the latest experimental and theoretical results. The nuclear physics research community benefits greatly from comprehensive, systematic and up-to-date reviews of the experimentally determined nuclear properties and observables, as well as from the ability to rapidly access these data in user-friendly forms. Such credible databases also act as a bridge between science, technology, and societymore » by making the results of basic nuclear physics research available to a broad audience of users, and hence expand the societal utilization of nuclear science. Compilation and evaluation of nuclear data has deep roots in the history of nuclear science research, as outlined in Appendix 1. They have an enormous impact on many areas of science and applications, as illustrated in Figure 2 for the Evaluated Nuclear Structure Data File (ENSDF) database. The present workshop concentrated on the needs of the basic nuclear science community for data and capabilities. The main role of this community is to generate and use data in order to understand the basic nuclear forces and interactions that are responsible for the existence and the properties of all nuclides and, as a consequence, to gain knowledge about the origins, evolution and structure of the universe. Thus, the experiments designed to measure a wealth of nuclear properties towards these fundamental scientific goals are typically performed from within this community.« less

  12. Dental sciences related articles data published in a Basic Medical Sciences Journal from Iran.

    PubMed

    Shamim, Thorakkal

    2018-04-01

    This data aimed to audit the dental sciences related articles published in Iranian Journal of Basic Medical Sciences (IJBMS) from 2007 to 2015 over a 9 year period performed using web-based search. The data were analyzed for topic of dental sciences, type of article, international collaborations, source of funding, number of authors and authorship trends. Out of the total 18 data related to dental sciences, original articles (12), review articles (4) and short communications (2) contribute the major share. Regarding the relationship with dental sciences, the maximum number of data were related to oral pathology and microbiology (16) followed by oral medicine and radiology (7) and periodontics (7). Among the data related to dental sciences, oral cancer (3) and gingival and periodontal diseases (3) followed by dental plaque and caries (2) and orthodontic tooth movement (2) form the major attraction of the contributors. The largest numbers of data related to dental sciences were received from Mashhad University of Medical Sciences, Mashhad (4) and Tehran University of Medical Sciences,Tehran (2).The present data were compared with previous bibliometric studies done related to dental sciences (Shamim et al., 2017a, 2017b).

  13. Bench to bedside: integrating advances in basic science into daily clinical practice.

    PubMed

    McGoldrick, Rory B; Hui, Kenneth; Chang, James

    2014-08-01

    This article focuses on the initial steps of commercial development of a patentable scientific discovery from an academic center through to marketing a clinical product. The basics of partnering with a technology transfer office (TTO) and the complex process of patenting are addressed, followed by a discussion on marketing and licensing the patent to a company in addition to starting a company. Finally, the authors address the basic principles of obtaining clearance from the Food and Drugs Administration, production in a good manufacturing practice (GMP) facility, and bringing the product to clinical trial. Published by Elsevier Inc.

  14. Addressing Issues for Land Change Science

    NASA Astrophysics Data System (ADS)

    Braimoh, Ademola; Huang, He Qing

    2009-09-01

    Workshop on Vulnerability and Resilience of Land Systems in Asia; Beijing, China, 15-17 June 2009; There is a growing international community of scholars who work within the interdisciplinary field of land change science, a scientific domain that seeks to understand the dynamics of the land system as a coupled human-environment system. A coupled human-environment system is one in which the social and biophysical subsystems are intertwined so that the system's condition and responses to external forcing are based on the synergy of the two subsystems. Research on land system vulnerability, defined as a function of exposure and sensitivity to natural and anthropogenic perturbations, such as climate variability and sudden changes in macroeconomic conditions and the ability to cope with the impacts of those perturbations, is a fundamental component of land change science. To address issues related to land system vulnerability, the Global Land Project (GLP; http://www.glp-beijing.org.cn/index.php and http://www.glp.hokudai.ac.jp) brought together an interdisciplinary group of researchers with backgrounds ranging from environmental to social sciences. Participants came from both developed and developing countries. The workshop sought to (1) improve knowledge of the causal processes that affect a system's vulnerability and capacity to cope with different perturbations and (2) identify factors that hinder the integration of vulnerability assessment into policies and decision making.

  15. Teachers' Involvement in Implementing the Basic Science and Technology Curriculum of the Nine-Year Basic Education

    ERIC Educational Resources Information Center

    Odili, John Nwanibeze; Ebisine, Sele Sylvester; Ajuar, Helen Nwakaife

    2011-01-01

    The study investigated teachers' involvement in implementing the basic science and technology curriculum in primary schools in WSLGA (Warri South Local Government Area) of Delta State. It sought to identify the availability of the document in primary schools and teachers' knowledge of the objectives and activities specified in the curriculum.…

  16. Paired basic science and clinical problem-based learning faculty teaching side by side: do students evaluate them differently?

    PubMed

    Stevenson, Frazier T; Bowe, Connie M; Gandour-Edwards, Regina; Kumari, Vijaya G

    2005-02-01

    Many studies have evaluated the desirability of expert versus non-expert facilitators in problem-based learning (PBL), but performance differences between basic science and clinical facilitators has been less studied. In a PBL course at our university, pairs of faculty facilitators (1 clinician, 1 basic scientist) were assigned to student groups to maximise integration of basic science with clinical science. This study set out to establish whether students evaluate basic science and clinical faculty members differently when they teach side by side. Online questionnaires were used to survey 188 students about their faculty facilitators immediately after they completed each of 3 serial PBL cases. Overall satisfaction was measured using a scale of 1-7 and yes/no responses were gathered from closed questions describing faculty performance. results: Year 1 students rated basic science and clinical facilitators the same, but Year 2 students rated the clinicians higher overall. Year 1 students rated basic scientists higher in their ability to understand the limits of their own knowledge. Year 2 students rated the clinicians higher in several content expertise-linked areas: preparedness, promotion of in-depth understanding, and ability to focus the group, and down-rated the basic scientists for demonstrating overspecialised knowledge. Students' overall ratings of individual faculty best correlated with the qualities of stimulation, focus and preparedness, but not with overspecialisation, excessive interjection of the faculty member's own opinions, and encouragement of psychosocial issue discussion. When taught by paired basic science and clinical PBL facilitators, students in Year 1 rated basic science and clinical PBL faculty equally, while Year 2 students rated clinicians more highly overall. The Year 2 difference may be explained by perceived differences in content expertise.

  17. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    NASA Astrophysics Data System (ADS)

    Rusli, Aloysius

    2016-08-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The

  18. Examining the effect of self-explanation on cognitive integration of basic and clinical sciences in novices.

    PubMed

    Lisk, Kristina; Agur, Anne M R; Woods, Nicole N

    2017-12-01

    Several studies have shown that cognitive integration of basic and clinical sciences supports diagnostic reasoning in novices; however, there has been limited exploration of the ways in which educators can translate this model of mental activity into sound instructional strategies. The use of self-explanation during learning has the potential to promote and support the development of integrated knowledge by encouraging novices to elaborate on the causal relationship between clinical features and basic science mechanisms. To explore the effect of this strategy, we compared diagnostic efficacy of teaching students (n = 71) the clinical features of four musculoskeletal pathologies using either (1) integrated causal basic science descriptions (BaSci group); (2) integrated causal basic science descriptions combined with self-explanation prompts (SE group); (3) basic science mechanisms segregated from the clinical features (SG group). All participants completed a diagnostic accuracy test immediately after learning and 1-week later. The results showed that the BaSci group performed significantly better compared to the SE (p = 0.019) and SG groups (p = 0.004); however, no difference was observed between the SE and SG groups (p = 0.91). We hypothesize that the structure of the self-explanation task may not have supported the development of a holistic conceptual understanding of each disease. These findings suggest that integration strategies need to be carefully structured and applied in ways that support the holistic story created by integrated basic science instruction in order to foster conceptual coherence and to capitalize on the benefits of cognition integration.

  19. PRP Treatment Efficacy for Tendinopathy: A Review of Basic Science Studies

    PubMed Central

    2016-01-01

    Platelet-Rich Plasma (PRP) has been widely used in orthopaedic surgery and sport medicine to treat tendon injuries. However, the efficacy of PRP treatment for tendinopathy is controversial. This paper focuses on reviewing the basic science studies on PRP performed under well-controlled conditions. Both in vitro and in vivo studies describe PRP's anabolic and anti-inflammatory effects on tendons. While some clinical trials support these findings, others refute them. In this review, we discuss the effectiveness of PRP to treat tendon injuries with evidence presented in basic science studies and the potential reasons for the controversial results in clinical trials. Finally, we comment on the approaches that may be required to improve the efficacy of PRP treatment for tendinopathy. PMID:27610386

  20. Very long-term retention of basic science knowledge in doctors after graduation.

    PubMed

    Custers, Eugène J F M; Ten Cate, Olle T J

    2011-04-01

    Despite frequent complaints that biomedical knowledge is quickly forgotten after it has been learned, few investigations of actual long-term retention of basic science knowledge have been conducted in the medical domain. Our aim was to illuminate the long-term retention of basic science knowledge, particularly of unrehearsed knowledge. Using a cross-sectional study design, medical students and doctors in the Netherlands were tested for retention of basic science knowledge. Relationships between retention interval and proportion of correct answers on a knowledge test were investigated. The popular notion that most of basic science knowledge is forgotten shortly after graduation is not supported by our findings. With respect to the full test scores, which reflect a composite of unrehearsed and rehearsed knowledge, performance decreased from approximately 40% correct answers for students still in medical school, to 25-30% correct answers for doctors after many years of practice. When rehearsal during the retention interval is controlled for, it appears that little knowledge is lost for 1.5-2 years after it was last used; from then on, retention is best described by a negatively accelerated (logarithmic) forgetting curve. After ≥ 25 years, retention levels were in the range of 15-20%. Conclusions about the forgetting of unrehearsed knowledge in this study are in line with findings reported in other domains: it proceeds in accordance with the Ebbinghaus curve for meaningful material, except that in our findings the 'downward' part appears to start later than in most other studies. The limitations of the study are discussed and possible ramifications for medical education are proposed. © Blackwell Publishing Ltd 2011.

  1. The articulation of integration of clinical and basic sciences in concept maps: differences between experienced and resident groups.

    PubMed

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-08-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic science concepts and these basic science concepts are expected to be used for the organization of the maps. These hypotheses are derived from studies about knowledge development of individuals. However, integrated curricula require a high degree of cooperation between clinicians and basic scientists. This study examined whether there are consistent variations regarding the articulation of integration when groups of experienced clinicians and basic scientists and groups of residents and basic scientists-in-training construct concept maps. Seven groups of three clinicians and basic scientists on experienced level and seven such groups on resident level constructed concept maps illuminating clinical problems. They were guided by instructions that focused them on articulation of integration. The concept maps were analysed by features that described integration. Descriptive statistics showed consistent variations between the two expertise levels. The concept maps of the resident groups exceeded those of the experienced groups in articulated integration. First, they used significantly more links between clinical and basic science concepts. Second, these links connected basic science concepts with a greater variety of clinical concepts than the experienced groups. Third, although residents did not use significantly more basic science concepts, they used them significantly more frequent to organize the clinical concepts. The conclusion was drawn that not all hypotheses could be confirmed and that the resident concept maps were more elaborate than expected. This article discusses the implications for the role that residents and

  2. Cleft Palate-Craniofacial Journal 50th anniversary editorial board commentary: anatomy, basic sciences, and genetics--then and now.

    PubMed

    Mooney, Mark P; Cooper, Gregory M; Marazita, Mary L

    2014-05-01

    To celebrate the 50th year of the Cleft Palate-Craniofacial Journal we look back to where we started in 1964 and where we are now, and we speculate about directions for the future in a "Then and Now" editorial series. This editorial examines changing trends and perspectives in anatomical, basic science, and genetic studies published in this 50-year interval. In volume 1 there were 45 total papers, seven (16%) of which were peer-reviewed basic science and genetic articles published: four in anatomy, three in craniofacial biology, and none in genetics. In contrast, in volume 50, of 113 articles there were 47 (42%) peer-reviewed basic science and genetic articles published: 30 in anatomy, five in craniofacial biology, and 12 in genetics. Topical analysis of published manuscripts then and now reveal that similar topics in anatomy and craniofacial biology are still being researched today (e.g., phenotypic variability, optimal timing of surgery, presurgical orthopedics, bone grafting); whereas, most of the more recent papers use advanced technology to address old questions. In contrast, genetic publications have clearly increased in frequency during the last 50 years, which parallels advances in the field during this time. However, all of us have noticed that the more "cutting-edge" papers in these areas are not being submitted for publication to the journal, but instead to discipline-specific journals. Concerted efforts are therefore indicated to attract and publish these cutting-edge papers in order to keep the Cleft Palate-Craniofacial Journal in the forefront of orofacial cleft and craniofacial anomaly research and to provide a valuable service to American Cleft Palate-Craniofacial Association members.

  3. Integrating basic science in academic cardiology training: two international perspectives on a common challenge.

    PubMed

    Bode, Michael F; Hilgendorf, Ingo

    2018-06-09

    Political bodies and professional societies acknowledge that translational research benefits from researchers trained in both, clinical medicine and basic science. Yet, few physicians undergoing clinical training in cardiology seek this dual career (Milewicz et al. J Clin Invest 125:3742-3747, 2015). The reasons are likely manifold, but with cardiology having become increasingly interventional and facing economic pressure, how much attention, credit, and encouragement is given to physicians interested in basic cardiovascular science? Having studied and worked in hospitals and laboratories, in both Germany and the USA, we aim to compare in this article how basic science education is currently integrated into cardiology training at German and US university hospitals, from medical school to more advanced career stages. By doing so, we hope to provide some outside perspectives to young physicians and decision makers alike, that may inspire changes to curricula in the respective countries and around the world.

  4. Cystic fibrosis: Beyond the airways. Report on the meeting of the basic science working group in Loutraki, Greece.

    PubMed

    Amaral, Margarida D; Boj, Sylvia F; Shaw, James; Leipziger, Jens; Beekman, Jeffrey M

    2018-06-01

    The European Cystic Fibrosis Society (ECFS) Basic Science Working Group (BSWG) organized a session on the topic "Cystic Fibrosis: Beyond the Airways", within the 15th ECFS Basic Science Conference which gathered around 200 researchers working in the basic science of CF. The session was organized and chaired by Margarida Amaral (BioISI, University of Lisboa, Portugal) and Jeffrey Beekman (University Medical Centre Utrecht, Netherlands) as Chair and Vice-Chair of the BSWG and its purpose was to bring attention of participants of the ECFS Basic Science Conference to "more forgotten" organs in CF disease. In this report we attempt to review and integrate the ideas that emerged at the session. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  5. Addressing the Public About Science and Religion

    NASA Astrophysics Data System (ADS)

    Peshkin, Murray

    2010-03-01

    Attacks on the integrity of science teaching in our public schools have recently become increasingly threatening. Geology and Darwinian evolution are the primary targets and cosmology is at risk. Up to now, the Supreme Court has excluded teachings based on religion from public schools for constitutional, not scientific, reasons. But now the incumbent Supreme Court seem less committed to strict separation of church and state than were their predecessors, and federal courts are beginning to judge the science itself. In this situation, we need to create a climate of public opinion favorable to the protection of good science by explaining the issues both to students and to others. I have been trying to do that by addressing audiences such as church groups, other community groups, and high school and college classes. I do not seek to convert committed anti-evolutionists. I am trying to inform the reasonable majority who do not really know what science is and does, or what a theory is and how we know when it's right, or why we tell them that all knowledge is provisional but still insist that we are teaching the right science. Many have been advised by their religious teachers that there is no conflict between science and their religious beliefs but do not see how that can be. I try to explain how they are disjoint discussions. I also discuss the likely consequences for our country if we degrade the teaching of science in the public schools. My audiences have generally been receptive. Here I will relate some lessons I have learned from my experience with such talks. Without doubt, the most important lesson is that most Americans have religious beliefs that are important to them and are willing to consider what I say only because they know I respect their beliefs. This work was partially supported by the U.S. Dept. of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  6. Beyond Evolution: Addressing Broad Interactions Between Science and Religion in Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-03-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion interactions so that they may better assist pre- and in-service science teachers with addressing topics such as the age and origins of the universe and biological evolution in an appropriate manner. We first introduce some foundational scholarship into the historical interactions between science and religion as well as current efforts to maintain healthy dialogue between perspectives that are frequently characterized as innately in conflict with or mutually exclusive of one another. Given that biological evolution is the dominant science-religion issue of our day, in particular in the USA, we next summarize the origins and strategies of anti-evolution movements via the rise and persistence of Christian Fundamentalism. We then summarize survey and qualitative sociological research indicating disparities between academic scientists and the general public with regard to religious beliefs to help us further understand our students' worldviews and the challenges they often face in campus-to-classroom transitions. We conclude the essay by providing resources and practical suggestions, including legal considerations, to assist science teacher educators with their curriculum and outreach.

  7. The relationship between immediate relevant basic science knowledge and clinical knowledge: physiology knowledge and transthoracic echocardiography image interpretation.

    PubMed

    Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit

    2012-10-01

    Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent research has implied that a more complex relationship between the two knowledge bases exists. In this study, we explore the relationship between immediate relevant basic science (physiology) and clinical knowledge within a specific domain of medicine (echocardiography). Twenty eight medical students in their 3rd year and 45 physicians (15 interns, 15 cardiology residents and 15 cardiology consultants) took a multiple-choice test of physiology knowledge. The physicians also viewed images of a transthoracic echocardiography (TTE) examination and completed a checklist of possible pathologies found. A total score for each participant was calculated for the physiology test, and for all physicians also for the TTE checklist. Consultants scored significantly higher on the physiology test than did medical students and interns. A significant correlation between physiology test scores and TTE checklist scores was found for the cardiology residents only. Basic science knowledge of immediate relevance for daily clinical work expands with increased work experience within a specific domain. Consultants showed no relationship between physiology knowledge and TTE interpretation indicating that experts do not use basic science knowledge in routine daily practice, but knowledge of immediate relevance remains ready for use.

  8. Mi-STAR: Designing Integrated Science Curriculum to Address the Next Generation Science Standards and Their Foundations

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Huntoon, J. E.

    2015-12-01

    Mi-STAR (Michigan Science Teaching and Assessment Reform, http://mi-star.mtu.edu/) was funded by the Herbert H. and Grace A. Dow Foundation to reform K-12 science education to present science as an integrated body of knowledge that is applied to address societal issues. To achieve this goal, Mi-STAR is developing an integrated science curriculum for the middle grades that will be aligned with the Next Generation Science Standards (NGSS). Similar to the geosciences, the curriculum requires the integration of science, engineering and math content to explore 21st-century issues and demonstrates how these concepts can be used in service of society. The curriculum is based on the Mi-STAR Unit Specification Chart which pairs interdisciplinary themes with bundled NGSS Performance Expectations. Each unit is developed by a collaborative team of K-12 teachers, university STEM content experts and science education experts. Prior to developing a unit, each member on the team attends the on-line Mi-STAR Academy, completing 18+ hours of professional development (PD). This on-line PD program familiarizes teachers and experts with necessary pedagogical and content background knowledge, including NGSS and three-dimensional learning. With this background, teams use a staged, backwards design process to craft a multi-week unit based on a series of performance based tasks, or 'challenges' that engage students in actively doing science and engineering. Each unit includes Disciplinary Core Ideas from multiple disciplines, which focus on local and familiar examples that demonstrate the relevance of science in student's lives. Performance-based assessments are interwoven throughout the unit. Mi-STAR units will go through extensive pilot testing in several school districts across the state of Michigan. Additionally, the Mi-STAR program will develop teacher professional development programs to support implementation of the curriculum and design a pre-service teacher program in integrated

  9. A review of second law techniques applicable to basic thermal science research

    NASA Astrophysics Data System (ADS)

    Drost, M. Kevin; Zamorski, Joseph R.

    1988-11-01

    This paper reports the results of a review of second law analysis techniques which can contribute to basic research in the thermal sciences. The review demonstrated that second law analysis has a role in basic thermal science research. Unlike traditional techniques, second law analysis accurately identifies the sources and location of thermodynamic losses. This allows the development of innovative solutions to thermal science problems by directing research to the key technical issues. Two classes of second law techniques were identified as being particularly useful. First, system and component investigations can provide information of the source and nature of irreversibilities on a macroscopic scale. This information will help to identify new research topics and will support the evaluation of current research efforts. Second, the differential approach can provide information on the causes and spatial and temporal distribution of local irreversibilities. This information enhances the understanding of fluid mechanics, thermodynamics, and heat and mass transfer, and may suggest innovative methods for reducing irreversibilities.

  10. Pima College Students' Knowledge of Selected Basic Physical Science Concepts.

    ERIC Educational Resources Information Center

    Iadevaia, David G.

    In 1989 a study was conducted at Pima Community College (PCC) to assess students' knowledge of basic physical science concepts. A three-part survey instrument was administered to students in a second semester sociology class, a first semester astronomy class, a second semester Spanish class, and a first semester physics class. The survey…

  11. The Sequencing of Basic Chemistry Topics by Physical Science Teachers

    ERIC Educational Resources Information Center

    Sibanda, Doras; Hobden, Paul

    2016-01-01

    The purpose of this study was to find out teachers' preferred teaching sequence for basic chemistry topics in Physical Science in South Africa, to obtain their reasons underpinning their preferred sequence, and to compare these sequences with the prescribed sequences in the current curriculum. The study was located within a pragmatic paradigm and…

  12. Improved knowledge gain and retention for third-year medical students during surgical journal club using basic science review: A pilot study.

    PubMed

    Williams, Austin D; Mann, Barry D

    2017-02-01

    As they enter the clinical years, medical students face large adjustments in the acquisition of medical knowledge. We hypothesized that basic science review related to the topic of journal club papers would increase the educational benefit for third-year medical students. Students were randomized either to participation in a review session about basic science related to the journal club paper, or to no review. After one day, and after three months, students were given a 10-question quiz encompassing the basic science and the clinical implications of the paper. Twenty-six of 50 students were randomized to basic science review. These students scored better on both sections of the quiz one day after journal club, but only on basic science questions after three months. Students who participated in basic science review had better knowledge gain and retention. Educational activities building upon foundational knowledge improves learning on clinical rotations. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Development and Validation of a Project Package for Junior Secondary School Basic Science

    ERIC Educational Resources Information Center

    Udofia, Nsikak-Abasi

    2014-01-01

    This was a Research and Developmental study designed to develop and validate projects for Junior Secondary School Basic Science instruction and evaluation. The projects were developed using the project blueprint and sent for validation by experts in science education and measurement and evaluation; using a project validation scale. They were to…

  14. Integrating Basic Science and Clinical Teaching for Third-Year Medical Students.

    ERIC Educational Resources Information Center

    Croen, Lila G.; And Others

    1986-01-01

    A 2-month program for third-year students at Yeshiva's Albert Einstein College of Medicine that provides a model for integrating basic sciences and clinical training is described. It demonstrates the importance of lifelong learning in a field that constantly changes. (Author/MLW)

  15. Utilization and acceptance of virtual patients in veterinary basic sciences - the vetVIP-project.

    PubMed

    Kleinsorgen, Christin; Kankofer, Marta; Gradzki, Zbigniew; Mandoki, Mira; Bartha, Tibor; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Beyerbach, Martin; Tipold, Andrea; Ehlers, Jan P

    2017-01-01

    Context: In medical and veterinary medical education the use of problem-based and cased-based learning has steadily increased over time. At veterinary faculties, this development has mainly been evident in the clinical phase of the veterinary education. Therefore, a consortium of teachers of biochemistry and physiology together with technical and didactical experts launched the EU-funded project "vetVIP", to create and implement veterinary virtual patients and problems for basic science instruction. In this study the implementation and utilization of virtual patients occurred at the veterinary faculties in Budapest, Hannover and Lublin. Methods: This report describes the investigation of the utilization and acceptance of students studying veterinary basic sciences using optional online learning material concurrently to regular biochemistry and physiology didactic instruction. The reaction of students towards this offer of clinical case-based learning in basic sciences was analysed using quantitative and qualitative data. Quantitative data were collected automatically within the chosen software-system CASUS as user-log-files. Responses regarding the quality of the virtual patients were obtained using an online questionnaire. Furthermore, subjective evaluation by authors was performed using a focus group discussion and an online questionnaire. Results: Implementation as well as usage and acceptance varied between the three participating locations. High approval was documented in Hannover and Lublin based upon the high proportion of voluntary students (>70%) using optional virtual patients. However, in Budapest the participation rate was below 1%. Due to utilization, students seem to prefer virtual patients and problems created in their native language and developed at their own university. In addition, the statement that assessment drives learning was supported by the observation that peak utilization was just prior to summative examinations. Conclusion: Veterinary

  16. USGS Science: Addressing Our Nation's Challenges

    USGS Publications Warehouse

    Larson, Tania M.

    2009-01-01

    With 6.6 billion people already living on Earth, and that number increasing every day, human influence on our planet is ever more apparent. Changes to the natural world combined with increasing human demands threaten our health and safety, our national security, our economy, and our quality of life. As a planet and a Nation, we face unprecedented challenges: loss of critical and unique ecosystems, the effects of climate change, increasing demand for limited energy and mineral resources, increasing vulnerability to natural hazards, the effects of emerging diseases on wildlife and human health, and growing needs for clean water. The time to respond to these challenges is now, but policymakers and decisionmakers face difficult choices. With competing priorities to balance, and potentially serious - perhaps irreversible - consequences at stake, our leaders need reliable scientific information to guide their decisions. As the Nation's earth and natural science agency, the USGS monitors and conducts scientific research on natural hazards and resources and how these elements and human activities influence our environment. Because the challenges we face are complex, the science needed to better understand and deal with these challenges must reflect the complex interplay among natural and human systems. With world-class expertise in biology, geology, geography, hydrology, geospatial information, and remote sensing, the USGS is uniquely capable of conducting the comprehensive scientific research needed to better understand the interdependent interactions of Earth's systems. Every day, the USGS helps decisionmakers to minimize loss of life and property, manage our natural resources, and protect and enhance our quality of life. This brochure provides examples of the challenges we face and how USGS science helps decisionmakers to address these challenges.

  17. Vertical integration of basic science in final year of medical education.

    PubMed

    Rajan, Sudha Jasmine; Jacob, Tripti Meriel; Sathyendra, Sowmya

    2016-01-01

    Development of health professionals with ability to integrate, synthesize, and apply knowledge gained through medical college is greatly hampered by the system of delivery that is compartmentalized and piecemeal. There is a need to integrate basic sciences with clinical teaching to enable application in clinical care. To study the benefit and acceptance of vertical integration of basic science in final year MBBS undergraduate curriculum. After Institutional Ethics Clearance, neuroanatomy refresher classes with clinical application to neurological diseases were held as part of the final year posting in two medical units. Feedback was collected. Pre- and post-tests which tested application and synthesis were conducted. Summative assessment was compared with the control group of students who had standard teaching in other two medical units. In-depth interview was conducted on 2 willing participants and 2 teachers who did neurology bedside teaching. Majority (>80%) found the classes useful and interesting. There was statistically significant improvement in the post-test scores. There was a statistically significant difference between the intervention and control groups' scores during summative assessment (76.2 vs. 61.8 P < 0.01). Students felt that it reinforced, motivated self-directed learning, enabled correlations, improved understanding, put things in perspective, gave confidence, aided application, and enabled them to follow discussions during clinical teaching. Vertical integration of basic science in final year was beneficial and resulted in knowledge gain and improved summative scores. The classes were found to be useful, interesting and thought to help in clinical care and application by majority of students.

  18. Vertical integration of basic science in final year of medical education

    PubMed Central

    Rajan, Sudha Jasmine; Jacob, Tripti Meriel; Sathyendra, Sowmya

    2016-01-01

    Background: Development of health professionals with ability to integrate, synthesize, and apply knowledge gained through medical college is greatly hampered by the system of delivery that is compartmentalized and piecemeal. There is a need to integrate basic sciences with clinical teaching to enable application in clinical care. Aim: To study the benefit and acceptance of vertical integration of basic science in final year MBBS undergraduate curriculum. Materials and Methods: After Institutional Ethics Clearance, neuroanatomy refresher classes with clinical application to neurological diseases were held as part of the final year posting in two medical units. Feedback was collected. Pre- and post-tests which tested application and synthesis were conducted. Summative assessment was compared with the control group of students who had standard teaching in other two medical units. In-depth interview was conducted on 2 willing participants and 2 teachers who did neurology bedside teaching. Results: Majority (>80%) found the classes useful and interesting. There was statistically significant improvement in the post-test scores. There was a statistically significant difference between the intervention and control groups' scores during summative assessment (76.2 vs. 61.8 P < 0.01). Students felt that it reinforced, motivated self-directed learning, enabled correlations, improved understanding, put things in perspective, gave confidence, aided application, and enabled them to follow discussions during clinical teaching. Conclusion: Vertical integration of basic science in final year was beneficial and resulted in knowledge gain and improved summative scores. The classes were found to be useful, interesting and thought to help in clinical care and application by majority of students. PMID:27563584

  19. Evaluation of Some Approved Basic Science and Technology Textbooks in Use in Junior Secondary Schools in Nigeria

    ERIC Educational Resources Information Center

    Nwafor, C. E.; Umoke, C. C.

    2016-01-01

    This study was designed to evaluate the content adequacy and readability of approved basic science and technology textbooks in use in junior secondary schools in Nigeria. Eight research questions guided the study. The sample of the study consisted of six (6) approved basic science and technology textbooks, 30 Junior Secondary Schools randomly…

  20. Long-Term Retention of Basic Science Knowledge: A Review Study

    ERIC Educational Resources Information Center

    Custers, Eugene J. F. M.

    2010-01-01

    In this paper, a review of long-term retention of basic science knowledge is presented. First, it is argued that retention of this knowledge has been a long-standing problem in medical education. Next, three types of studies are described that are employed in the literature to investigate long-term retention of knowledge in general. Subsequently,…

  1. Brown Superfund Basic research Program: a multistakeholder partnership addresses real-world problems in contaminated communities.

    PubMed

    Senier, Laura; Hudson, Benjamin; Fort, Sarah; Hoover, Elizabeth; Tillson, Rebecca; Brown, Phil

    2008-07-01

    The NIEHS funds several basic and applied research programs, many of which also require research translation or outreach. This paper reports on a project by the Brown University Superfund Basic Research Program (SBRP), in which outreach and research translation teams collaborated with state regulatory agency personnel and community activists on a legislative initiative to mitigate the financial impacts of living in a contaminated community. The Environmentally Compromised Home Ownership (ECHO) program makes home equity loans of up to $25,000 available to qualified applicants. This collaboration provides a case study in community engagement and demonstrates how research translation and outreach activities that are clearly differentiated yet well-integrated can improve a suite of basic and applied research. Although engaging diverse constituencies can be difficult community-engaged translation and outreach have the potential to make research findings more useful to communities, address some of the social impacts of contamination, and empower stakeholders to pursue their individual and collectively held goals for remediation. The NIEHS has recently renewed its commitment to community-engaged research and advocacy, making this an optimal time to reflect on how basic research programs that engage stakeholders through research translation and outreach can add value to the overall research enterprise.

  2. A Case Study on Science Teacher Leadership to Address Diversity and Equity Through Professional Development

    NASA Astrophysics Data System (ADS)

    Doraiswamy, Nithya

    This qualitative case study focused on the multifaceted issue of exploring science teacher leaders understanding and addressing of issues of diversity and equity with peers through professional development. The purpose of the study was to highlight the opportunities and barriers to the addressing of issues of diversity and equity through the work of a community of teachers leaders in science professional development. To frame this study, the researcher drew from the interdisciplinary field of multicultural education, transformative learning, and teacher leadership. In drawing out the connections from these vast bodies of literature, the study speaks to the need of both, creating teacher leaders in science education who are capable of meeting the twin demands of excellence and equity, and also attending to the challenges in the professional learning continuums of teachers leaders and their peers towards addressing issues of diversity and equity in science education.

  3. Reducing Inequities by Linking Basic Research and Political Action

    ERIC Educational Resources Information Center

    Mehan, Hugh

    2012-01-01

    In this comment, on Terri McCarty's Presidential Address, I focus on her dynamic approach to investigation that contributes to a vibrant and constructively critical exploration of the place of basic research, critical policy analysis, and activism in the anthropology of education and the social sciences more broadly.

  4. The Challenge of the Humanities and Social Science Education Through the Basic Seminar (Science of Snow Sports)

    NASA Astrophysics Data System (ADS)

    Taniai, Tetsuyuki; Sugimoto, Taku; Sato, Ken-Ichi; Ikota, Masaru

    The Education Center of Chiba Institute of Technology is taking a new approach to the introduction of liberal arts subjects commonly included in the curriculum of all departments through a newly established basic seminar, the Science of Snow Sports. Each faculty member has been working on setting up classes that cross the conventional boundaries of fields and disciplines and which are targeted at students of all faculties and departments. This paper describes the potential for teaching liberal arts and social science subjects to engineering students through the medium of sports science, based on actual experience gained via this new approach.

  5. Basic Science.

    ERIC Educational Resources Information Center

    Mercer County Community Coll., Trenton, NJ.

    Instructional materials are provided for a course that covers basic concepts of physics and chemistry. Designed for use in a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, the course describes applications of these concepts to real-life situations, with an emphasis on applications of…

  6. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    ERIC Educational Resources Information Center

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  7. Pair Comparison Study of the Relevance of Nine Basic Science Courses

    ERIC Educational Resources Information Center

    Spilman, Edra L.; Spilman, Helen W.

    1975-01-01

    Reports a survey study in which basic science courses were rated according to relevance. Notes approaches for making the anatomy disciplines more relevant because results showed them of lowest relevancy compared with physiology, pathology, and pharmacology which were rated of highest relevance and with biochemistry and microbiology which fell…

  8. Learning Science, Learning about Science, Doing Science: Different goals demand different learning methods

    NASA Astrophysics Data System (ADS)

    Hodson, Derek

    2014-10-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that recognize key differences in learning goals and criticizes the common assertion that 'current wisdom advocates that students best learn science through an inquiry-oriented teaching approach' on the grounds that conflating the distinction between learning by inquiry and engaging in scientific inquiry is unhelpful in selecting appropriate teaching/learning approaches.

  9. The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis.

    PubMed

    Johnson, Brian; Flores Mosri, Daniela

    2016-01-01

    Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or "phantoms." Results of adopting the "dual aspect monism" approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status.

  10. Basic Energy Sciences Program Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, andmore » operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.« less

  11. Improving College Faculty Instruction in the Basic and Allied Health Sciences.

    ERIC Educational Resources Information Center

    Washton, Nathan S.

    A project to improve college instruction in the basic and allied health sciences at New York Chiropractic College and the New York Institute of Technology is described. Attention was directed to: the kinds of resources colleges and professional schools provide to improve instruction; motivation of faculty to explore innovative or strategic…

  12. Medical Student Use of Objectives in Basic Science and Clinical Instruction.

    ERIC Educational Resources Information Center

    And Others; Mast, Terrill A.

    1980-01-01

    A study that investigated the long-term use of instructional objectives by medical students taking basic science and clinical courses is reported. Focus is on the extent and manner in which the objectives were used and factors that influenced their use. Students reported heavier usage earlier in the curriculum. (Author/JMD)

  13. Basic Science Evidence for the Link Between Erectile Dysfunction and Cardiometabolic Dysfunction

    PubMed Central

    Musicki, Biljana; Bella, Anthony J.; Bivalacqua, Trinity J.; Davies, Kelvin P.; DiSanto, Michael E.; Gonzalez-Cadavid, Nestor F.; Hannan, Johanna L.; Kim, Noel N.; Podlasek, Carol A.; Wingard, Christopher J.; Burnett, Arthur L.

    2016-01-01

    Introduction Although clinical evidence supports an association between cardiovascular/metabolic diseases (CVMD) and erectile dysfunction (ED), scientific evidence for this link is incompletely elucidated. Aim This study aims to provide scientific evidence for the link between CVMD and ED. Methods In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current literature on basic scientific support for a mechanistic link between ED and CVMD, and deficiencies in this regard with a critical assessment of current preclinical models of disease. Results A link exists between ED and CVMD on several grounds: the endothelium (endothelium-derived nitric oxide and oxidative stress imbalance); smooth muscle (SM) (SM abundance and altered molecular regulation of SM contractility); autonomic innervation (autonomic neuropathy and decreased neuronal-derived nitric oxide); hormones (impaired testosterone release and actions); and metabolics (hyperlipidemia, advanced glycation end product formation). Conclusion Basic science evidence supports the link between ED and CVMD. The Committee also highlighted gaps in knowledge and provided recommendations for guiding further scientific study defining this risk relationship. This endeavor serves to develop novel strategic directions for therapeutic interventions. PMID:26646025

  14. The Basic Science Curriculum in the 21st Century: What Needs to Be Changed?

    ERIC Educational Resources Information Center

    Garant, Philias R.

    1986-01-01

    The basic science curriculum in dental education could be improved by adopting a curriculum containing only two integrated required science courses about (1) the structure and function of the human body and (2) disease and reaction to disease in the human body. Elective graduate-level predoctoral courses would allow specialization. (MSE)

  15. Basic Research in the Mission Agencies: Agency Perspectives on the Conduct and Support of Basic Research. Report of the National Science Board, 1978.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    A survey was conducted by the National Science Board of the basic research supported by executive branch agencies of the federal government. Most of the data came from information solicited by the Board from federal agencies involved in science. Fourteen mission agencies and two agencies not so classified and 20 subunits of these responded.…

  16. Customizing NASA's Earth Science Research Products for addressing MENA Water Challenges

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2012-01-01

    As projected by IPCC 2007 report, by the end of this century the Middle East North Mrica (MENA) region is projected to experience an increase of 3 C to 5 C rise in mean temperatures and a 20% decline in precipitation. This poses a serious problem for this geographic zone especially when majority of the hydrological consumption is for the agriculture sector and the remaining amount is for domestic consumption. In late 2011, the World Bank, USAID and NASA have joined hands to establishing integrated, modem, up to date NASA developed capabilities for various countries in the MENA region for addressing water resource issues and adapting to climate change impacts for improved decision making for societal benefits. The main focus of this undertaking is to address the most pressing societal issues which can be modeled and solved by utilizing NASA Earth Science remote sensing data products and hydrological models. The remote sensing data from space is one of the best ways to study such complex issues and further feed into the decision support systems. NASA's fleet of Earth Observing satellites offer a great vantage point from space to look at the globe and provide vital signs necessary to maintain healthy and sustainable ecosystem. NASA has over fifteen satellites and thirty instruments operating on these space borne platforms and generating over 2000 different science products on a daily basis. Some of these products are soil moisture, global precipitation, aerosols, cloud cover, normalized difference vegetation index, land cover/use, ocean altimetry, ocean salinity, sea surface winds, sea surface temperature, ozone and atmospheric gasses, ice and snow measurements, and many more. All of the data products, models and research results are distributed via the Internet freely through out the world. This project will utilize several NASA models such as global Land Data Assimilation System (LDAS) to generate hydrological states and fluxes in near real time. These LDAS products

  17. A roadmap for bridging basic and applied research in forensic entomology.

    PubMed

    Tomberlin, J K; Mohr, R; Benbow, M E; Tarone, A M; VanLaerhoven, S

    2011-01-01

    The National Research Council issued a report in 2009 that heavily criticized the forensic sciences. The report made several recommendations that if addressed would allow the forensic sciences to develop a stronger scientific foundation. We suggest a roadmap for decomposition ecology and forensic entomology hinging on a framework built on basic research concepts in ecology, evolution, and genetics. Unifying both basic and applied research fields under a common umbrella of terminology and structure would facilitate communication in the field and the production of scientific results. It would also help to identify novel research areas leading to a better understanding of principal underpinnings governing ecosystem structure, function, and evolution while increasing the accuracy of and ability to interpret entomological evidence collected from crime scenes. By following the proposed roadmap, a bridge can be built between basic and applied decomposition ecology research, culminating in science that could withstand the rigors of emerging legal and cultural expectations.

  18. A case-based, small-group cooperative learning course in preclinical veterinary science aimed at bridging basic science and clinical literacy.

    PubMed

    Schoeman, J P; van Schoor, M; van der Merwe, L L; Meintjes, R A

    2009-03-01

    In 1999 a dedicated problem-based learning course was introduced into the lecture-based preclinical veterinary curriculum of the University of Pretoria. The Introduction to Clinical Studies Course combines traditional lectures, practical sessions, student self-learning and guided tutorials. The self-directed component of the course utilises case-based, small-group cooperative learning as an educational vehicle to link basic science with clinical medicine. The aim of this article is to describe the objectives and structure of the course and to report the results of the assessment of the students' perceptions on some aspects of the course. Students reacted very positively to the ability of the course to equip them with problem-solving skills. Students indicated positive perceptions about the workload of the course. There were, however, significantly lower scores for the clarity of the course objectives. Although the study guide for the course is very comprehensive, the practice regarding the objectives is still uncertain. It is imperative to set clear objectives in non-traditional, student-centred courses. The objectives have to be explained at the outset and reiterated throughout the course. Tutors should also communicate the rationale behind problem-based learning as a pedagogical method to the students. Further research is needed to verify the effectiveness of this course in bridging the gap between basic science and clinical literacy in veterinary science. Ongoing feedback and assessment of the management and content are important to refine this model for integrating basic science with clinical literacy.

  19. Thinking science with thinking machines: The multiple realities of basic and applied knowledge in a research border zone.

    PubMed

    Hoffman, Steve G

    2015-04-01

    Some scholars dismiss the distinction between basic and applied science as passé, yet substantive assumptions about this boundary remain obdurate in research policy, popular rhetoric, the sociology and philosophy of science, and, indeed, at the level of bench practice. In this article, I draw on a multiple ontology framework to provide a more stable affirmation of a constructivist position in science and technology studies that cannot be reduced to a matter of competing perspectives on a single reality. The analysis is grounded in ethnographic research in the border zone of Artificial Intelligence science. I translate in-situ moments in which members of neighboring but differently situated labs engage in three distinct repertoires that render the reality of basic and applied science: partitioning, flipping, and collapsing. While the essences of scientific objects are nowhere to be found, the boundary between basic and applied is neither illusion nor mere propaganda. Instead, distinctions among scientific knowledge are made real as a matter of course.

  20. Application of basic science to clinical problems: traditional vs. hybrid problem-based learning.

    PubMed

    Callis, Amber N; McCann, Ann L; Schneiderman, Emet D; Babler, William J; Lacy, Ernestine S; Hale, David Sidney

    2010-10-01

    It is widely acknowledged that clinical problem-solving is a key skill for dental practitioners. The aim of this study was to determine if students in a hybrid problem-based learning curriculum (h-PBL) were better at integrating basic science knowledge with clinical cases than students in a traditional, lecture-based curriculum (TC). The performance of TC students (n=40) was compared to that of h-PBL students (n=31). Participants read two clinical scenarios and answered a series of questions regarding each. To control for differences in ability, Dental Admission Test (DAT) Academic Average scores and predental grade point averages (GPAs) were compared, and an ANCOVA was used to adjust for the significant differences in DAT (t-test, p=0.002). Results showed that h-PBL students were better at applying basic science knowledge to a clinical case (ANCOVA, p=0.022) based on overall scores on one case. TC students' overall scores were better than h-PBL students on a separate case; however, it was not statistically significant (p=0.107). The h-PBL students also demonstrated greater skills in the areas of hypothesis generation (Mann-Whitney U, p=0.016) and communication (p=0.006). Basic science comprehension (p=0.01) and neurology (p<0.001) were two areas in which the TC students did score significantly higher than h-PBL students.

  1. Obama Emphasizes Science and Innovation in State of the Union Address

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-02-01

    U.S. president Barack Obama emphasized innovation and competitiveness in his State of the Union address on 25 January. He also raised science and technology early in the hour-long speech, noting that nations like China and India are focusing on math and science education and investing in research and technology. To be competitive with those countries, “we need to out-innovate, out-educate, and out-build the rest of the world,” Obama said. “The first step in winning the future is encouraging American innovation.”

  2. The science of consciousness - Basics, models, and visions.

    PubMed

    Hinterberger, Thilo

    2015-12-01

    This article presents a few models and aspects of the phenomenon consciousness that are emerging from modern neuroscience and might serve as a basis for scientific discourse in the field of Applied Consciousness Sciences. A first model describes the dynamics of information processing in the brain. The evoked electric brain potentials represent a hierarchical sequence of functions playing an important role in conscious perception. These range from primary processing, attention, pattern recognition, categorization, associations to judgments, and complex thoughts. Most functions seem to be implemented in the brain's neural network operating as a neurobiological computer. Another model treats conscious perception as a process of internalisation leading to the "self" as conscious observer. As a consequence, every conscious perception can be seen as a reduced and already interpreted observation of an inner representation of an outer or imagined "world." Subjective experience thus offers properties which can only be experienced from the inside and cannot be made objective. Basic values of humanity such as responsibility, love, compassion, freedom, and dignity can be derived from these subjective qualities. Therefore, in contrast to the Natural Sciences, the Science of Consciousness additionally is challenged to deal with those subjective qualities, emphasizing the resulting influence on health, social interactions, and the whole society. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Conducting correlation seminars in basic sciences at KIST Medical College, Nepal

    PubMed Central

    2011-01-01

    KIST Medical College is a new medical school in Lalitpur, Nepal. In Nepal, six basic science subjects are taught together in an integrated organ system-based manner with early clinical exposure and community medicine. Correlation seminars are conducted at the end of covering each organ system. The topics are decided by the core academic group (consisting of members from each basic science department, the Department of Community Medicine, the academic director, and the clinical and program coordinators) considering the public health importance of the condition and its ability to include learning objectives from a maximum number of subjects. The learning objectives are decided by individual departments and finalized after the meeting of the core group. There are two student coordinators for each seminar and an evaluation group evaluates each seminar and presenter. Correlation seminars help students revise the organ system covered and understand its clinical importance, promote teamwork and organization, and supports active learning. Correlation seminars should be considered as a learning modality by other medical schools. PMID:22066033

  4. The Brown Superfund Basic Research Program: A Multistakeholder Partnership Addresses Real-World Problems in Contaminated Communities

    PubMed Central

    Senier, Laura; Hudson, Benjamin; Fort, Sarah; Hoover, Elizabeth; Tillson, Rebecca; Brown, Phil

    2008-01-01

    The NIEHS funds several basic and applied research programs, many of which also require research translation or outreach. This paper reports on a project by the Brown University Superfund Basic Research Program (SBRP), in which outreach and research translation teams collaborated with state regulatory agency personnel and community activists on a legislative initiative to mitigate the financial impacts of living in a contaminated community. The Environmentally Compromised Home Ownership (ECHO) program makes home equity loans of up to $25,000 available to qualified applicants. This collaboration provides a case study in community engagement and demonstrates how research translation and outreach activities that are clearly differentiated yet well integrated can improve a suite of basic and applied research. Although engaging diverse constituencies can be difficult, community-engaged translation and outreach have the potential to make research findings more useful to communities, address some of the social impacts of contamination, and empower stakeholders to pursue their individual and collectively-held goals for remediation. The NIEHS has recently renewed its commitment to community-engaged research and advocacy, making this an optimal time to reflect on how basic research programs that engage stakeholders through research translation and outreach can add value to the overall research enterprise. PMID:18677987

  5. The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis

    PubMed Central

    Johnson, Brian; Flores Mosri, Daniela

    2016-01-01

    Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or “phantoms.” Results of adopting the “dual aspect monism” approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status. PMID:27790160

  6. The United Nations Basic Space Science Initiative (UNBSSI): A Historical Introduction

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    2006-11-01

    Pursuant to recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contributed to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) con-current design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of non-extensive statistical mechanics. Beginning in 2005, the workshops are focusing on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world- wide instrument arrays as led by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops: Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  7. Aligning library instruction with the needs of basic sciences graduate students: a case study.

    PubMed

    O'Malley, Donna; Delwiche, Frances A

    2012-10-01

    How can an existing library instruction program be reconfigured to reach basic sciences graduate students and other patrons missed by curriculum-based instruction? The setting is an academic health sciences library that serves both the university and its affiliated teaching hospital. The existing program was redesigned to incorporate a series of seven workshops that encompassed the range of information literacy skills that graduate students in the basic sciences need. In developing the new model, the teaching librarians made changes in pedagogy, technology, marketing, and assessment strategies. Total attendance at the sessions increased substantially in the first 2 years of the new model, increasing from an average of 20 per semester to an average of 124. Survey results provided insight about what patrons wanted to learn and how best to teach it. Modifying the program's content and structure resulted in a program that appealed to the target audience.

  8. Basic science curriculums in nuclear cardiology and cardiovascular imaging: evolving and emerging concepts.

    PubMed

    Van Decker, William A; Villafana, Theodore

    2008-01-01

    The teaching of basic science with regard to physics, instrumentation, and radiation safety has been part of nuclear cardiology training since its inception. Although there are clear educational and quality rationale for such, regulations associated with the Nuclear Regulatory Commission Subpart J of old 10 CFR section 35 (Title 10, Code of Federal Regulations, Part 35) from the 1960s mandated such prescriptive instruction. Cardiovascular fellowship training programs now have a new opportunity to rethink their basic science imaging curriculums with the era of "revised 10 CFR section 35" and the growing implementation of multimodality imaging training and expertise. This review focuses on the history and the why, what, and how of such a curriculum arising in one city and suggests examples of future implementation in other locations.

  9. Mesenchymal Stem Cells in Lipogems, a Reverse Story: from Clinical Practice to Basic Science.

    PubMed

    Tremolada, Carlo; Ricordi, Camillo; Caplan, Arnold I; Ventura, Carlo

    2016-01-01

    The idea that basic science should be the starting point for modern clinical approaches has been consolidated over the years, and emerged as the cornerstone of Molecular Medicine. Nevertheless, there is increasing concern over the low efficiency and inherent costs related to the translation of achievements from the bench to the bedside. These burdens are also perceived with respect to the effectiveness of translating basic discoveries in stem cell biology to the newly developing field of advanced cell therapy or Regenerative Medicine. As an alternative paradigm, past and recent history in Medical Science provides remarkable reverse stories in which clinical observations at the patient's bedside have fed major advances in basic research which, in turn, led to consistent progression in clinical practice. Within this context, we discuss our recently developed method and device, which forms the core of a system (Lipogems) for processing of human adipose tissue solely with the aid of mild mechanical forces to yield a microfractured tissue product.

  10. Science Indicators: The 1985 Report.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    This report provides basic information on patterns and trends of research and development (R&D) performance in the United States itself and in relation to other countries, as well as data on public attitudes toward science and technology. Major areas addressed in the report's eight chapters include (1) the international science and technology…

  11. Key steps for integrating a basic science throughout a medical school curriculum using an e-learning approach.

    PubMed

    Dubois, Eline Agnès; Franson, Kari Lanette

    2009-09-01

    Basic sciences can be integrated into the medical school curriculum via e-learning. The process of integrating a basic science in this manner resembles a curricular change. The change usually begins with an idea for using e-learning to teach a basic science and establishing the need for the innovation. In the planning phase, learning outcomes are formulated and a prototype of the program is developed based on the desired requirements. A realistic concept is formed after considering the limitations of the current institute. Next, a project team is assembled to develop the program and plan its integration. Incorporation of the e-learning program is facilitated by a well-developed and communicated integration plan. Various course coordinators are contacted to determine content of the e-learning program as well as establish assessment. Linking the e-learning program to existing course activities and thereby applying the basic science into the clinical context enhances the degree of integration. The success of the integration is demonstrated by a positive assessment of the program including favourable cost-benefit analysis and improved student performance. Lastly, when the program becomes institutionalised, continuously updating content and technology (when appropriate), and evaluating the integration contribute to the prolonged survival of the e-learning program.

  12. What does the American Board of Surgery In-Training/Surgical Basic Science Examination tell us about graduate surgical education?

    PubMed

    DaRosa, D A; Shuck, J M; Biester, T W; Folse, R

    1993-01-01

    This research sought to identify the strengths and weakness in residents' basic science knowledge and, second, to determine whether they progressively improve in their abilities to recall basic science information and clinical management facts, to analyze cause-effect relationships, and to solve clinical problems. Basic science knowledge was assessed by means of the results of the January 1990 American Board of Surgery's In-Training/Surgical Basic Science Exam (IT/SBSE). Postgraduate year (PGY) 1 residents' scores were compared with those of PGY5 residents. Content related to a question was considered "known" if 67% or more of the residents in each of the two groups answered it correctly. Findings showed 44% of the content tested by the basic science questions were unknown by new and graduating residents. The second research question required the 250 IT/SBSE questions to be classified into one of three levels of thinking abilities: recall, analysis, and inferential thinking. Profile analysis (split-plot analysis of variance) for each pair of resident levels indicated significant (P < 0.001) differences in performance on questions requiring factual recall, analysis, and inference between all levels except for PGY3s and PGY4s. The results of this research enable program directors to evaluate strengths and weaknesses in residency training curricula and the cognitive development of residents.

  13. Aligning library instruction with the needs of basic sciences graduate students: a case study

    PubMed Central

    O'Malley, Donna; Delwiche, Frances A.

    2012-01-01

    Question: How can an existing library instruction program be reconfigured to reach basic sciences graduate students and other patrons missed by curriculum-based instruction? Setting: The setting is an academic health sciences library that serves both the university and its affiliated teaching hospital. Methods: The existing program was redesigned to incorporate a series of seven workshops that encompassed the range of information literacy skills that graduate students in the basic sciences need. In developing the new model, the teaching librarians made changes in pedagogy, technology, marketing, and assessment strategies. Results: Total attendance at the sessions increased substantially in the first 2 years of the new model, increasing from an average of 20 per semester to an average of 124. Survey results provided insight about what patrons wanted to learn and how best to teach it. Conclusion: Modifying the program's content and structure resulted in a program that appealed to the target audience. PMID:23133328

  14. Looking forward in geriatric anxiety and depression: implications of basic science for the future.

    PubMed

    Gershenfeld, Howard K; Philibert, Robert A; Boehm, Gary W

    2005-12-01

    Major depression and anxiety are common psychiatric illnesses whose etiology remains incompletely understood. This review highlights progress in understanding the etiology of these illnesses through genetic strategies and looks forward to their impact on geriatric psychiatry. We briefly address three broad domains of progress, namely 1) genetic approaches to etiology, including linkage and association studies, pharmacogenetics ("personalized medicine"), and gene x environment interactions; 2) mechanisms of thyroid and testosterone action via nuclear receptors, given these hormones' status as possible augmenters of antidepressants; and 3) the role of the neuroimmune system as a contributor to the stress response. Genetic strategies offer one path for converting correlational findings into causal pathways while complementing studies of a gene's function at the molecular, cellular, network, and whole-organismal levels. Neuroendocrine supplementation (thyroid and testosterone) has a long history and tradition. A molecular understanding of nuclear receptor pathways and their coactivators, the mediator complex proteins, provides a rationale for improved targeting of hormonal action in a tissue-selective manner, yielding drugs with improved safety and efficacy. Neural-immune interactions in psychiatric illness remain tantalizing topics. Research suggests that cytokine pathways may contribute to the maintenance or susceptibility to stress, anxiety, and depressive disorders. The reciprocal and recursive interactions among basic science, drug discovery, and clinical science will continue to provide hopeful themes for improving the lives of patients with treatment-refractive psychiatric illness.

  15. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 newmore » nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  16. NGSS and the Next Generation of Science Teachers

    NASA Astrophysics Data System (ADS)

    Bybee, Rodger W.

    2014-03-01

    This article centers on the Next Generation Science Standards (NGSS) and their implications for teacher development, particularly at the undergraduate level. After an introduction to NGSS and the influence of standards in the educational system, the article addresses specific educational shifts—interconnecting science and engineering practices, disciplinary core ideas, crosscutting concepts; recognizing learning progressions; including engineering; addressing the nature of science, coordinating with Common Core State Standards. The article continues with a general discussion of reforming teacher education programs and a concluding discussion of basic competencies and personal qualities of effective science teachers.

  17. An international basic science and clinical research summer program for medical students.

    PubMed

    Ramjiawan, Bram; Pierce, Grant N; Anindo, Mohammad Iffat Kabir; Alkukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K

    2012-03-01

    An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to understand and grasp translational research as an important concept today. In addition, since medical training is often an international affair whereby a medical student/resident/fellow will likely train in many different countries during his/her early training years, it is important to provide a learning environment whereby a young medical student experiences the unique challenges and value of an international educational experience. This article describes a program that bridges the gap between the basic and clinical research concepts in a unique international educational experience. After completing two semester curricula at Alfaisal University in Riyadh, Kingdom of Saudi Arabia, six medical students undertook a summer program at St. Boniface Hospital Research Centre, in Winnipeg, MB, Canada. The program lasted for 2 mo and addressed advanced training in basic science research topics in medicine such as cell isolation, functional assessment, and molecular techniques of analysis and manipulation as well as sessions on the conduct of clinical research trials, ethics, and intellectual property management. Programs such as these are essential to provide a base from which medical students can decide if research is an attractive career choice for them during their clinical practice in subsequent years. An innovative international summer research course for medical students is necessary to cater to the needs of the medical students in the 21st century.

  18. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    PubMed

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  19. Effects of Concept Mapping Instruction Approach on Students' Achievement in Basic Science

    ERIC Educational Resources Information Center

    Ogonnaya, Ukpai Patricia; Okafor, Gabriel; Abonyi, Okechukwu S.; Ugama, J. O.

    2016-01-01

    The study investigated the effects of concept mapping on students' achievement in basic science. The study was carried out in Ebonyi State of Nigeria. The study employed a quasi-experimental design. Specifically the pretest posttest non-equivalent control group research design was used. The sample was 122 students selected from two secondary…

  20. Pharmaceutical applications of cyclodextrins: basic science and product development.

    PubMed

    Loftsson, Thorsteinn; Brewster, Marcus E

    2010-11-01

    Drug pipelines are becoming increasingly difficult to formulate. This is punctuated by both retrospective and prospective analyses that show that while 40% of currently marketed drugs are poorly soluble based on the definition of the biopharmaceutical classification system (BCS), about 90% of drugs in development can be characterized as poorly soluble. Although a number of techniques have been suggested for increasing oral bioavailability and for enabling parenteral formulations, cyclodextrins have emerged as a productive approach. This short review is intended to provide both some basic science information as well as data on the ability to develop drugs in cyclodextrin-containing formulations. There are currently a number of marketed products that make use of these functional solubilizing excipients and new product introduction continues to demonstrate their high added value. The ability to predict whether cyclodextrins will be of benefit in creating a dosage form for a particular drug candidate requires a good working knowledge of the properties of cyclodextrins, their mechanism of solubilization and factors that contribute to, or detract from, the biopharmaceutical characteristics of the formed complexes. We provide basic science information as well as data on the development of drugs in cyclodextrin-containing formulations. Cyclodextrins have emerged as an important tool in the formulator's armamentarium to improve apparent solubility and dissolution rate for poorly water-soluble drug candidates. The continued interest and productivity of these materials bode well for future application and their currency as excipients in research, development and drug product marketing. © 2010 The Authors. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.

  1. Addressing basic resource needs to improve primary care quality: a community collaboration programme.

    PubMed

    Berkowitz, Seth A; Hulberg, A Catherine; Hong, Clemens; Stowell, Brian J; Tirozzi, Karen J; Traore, Carine Y; Atlas, Steven J

    2016-03-01

    Unmet basic resource needs, such as difficulty affording healthcare, medications, food and housing, may contribute to worse healthcare quality indicators, but interventions are hampered by lack of specific knowledge regarding the distribution of unmet basic resource needs and their association with priority clinical conditions and health service use patterns. Cross-sectional study of primary care patients in two urban academic practices from 1 October 2013 to 30 April 2014. Patients were screened for unmet needs and enrolled in a programme to link them with community resources. Key measures included patient report of unmet basic resource needs, clinical conditions prioritised by quality improvement programmes (hypertension, diabetes and depression), and health service use patterns such as frequent emergency department (ED) visits (>2 in the preceding year) and frequent clinic 'no-shows' (>1 in the preceding year). 416 patients with unmet needs were included, and compared with 2750 patients who did not report needs. The most common types of needs reported were: difficulties affording healthcare (46.5%), food (40.1%) and utilities (36.3%). Patients who reported unmet needs were more likely to have depression (17.8% vs 9.5%, p<0.0001), diabetes (32.7% vs 20.4%, p<0.0001), hypertension (54.3% vs 46.3%, p=0.002), be frequent ED users (11.3% vs 5.4%, p<0.0001), and have frequent 'no-shows' to clinic (21.6% vs 11.9%, p<0.0001). Difficulty affording healthcare and food are particularly common needs among patients with priority conditions. Strategies to identify and address unmet needs as part of routine care may be an important way to improve healthcare quality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care

    Cancer.gov

    Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care, a 2010 workshop sponsored by the Epidemiology and Genomics Research Program.

  3. The Divergent Thinking of Basic Skills of Sciences Process Skills of Life Aspects on Natural Sciences Subject in Indonesian Elementary School Students

    ERIC Educational Resources Information Center

    Subali, Bambang; Paidi; Mariyam, Siti

    2016-01-01

    This research aims at measuring the divergent thinking of basic skills of science process skills (SPS) of life aspects in Natural Sciences subjects on Elementary School. The test instruments used in this research have been standardized through the development of instruments. In this case, the tests were tried out to 3070 students. The results of…

  4. Integration of Basic and Clinical Science Courses in US PharmD Programs.

    PubMed

    Islam, Mohammed A; Talukder, Rahmat M; Taheri, Reza; Blanchard, Nicholas

    2016-12-25

    Objective. To determine the current status of and faculty perceptions regarding integration of basic and clinical science courses in US pharmacy programs. Methods. A 25-item survey instrument was developed and distributed to 132 doctor of pharmacy (PharmD) programs. Survey data were analyzed using Mann-Whitney U test or Kruskal-Wallis test. Thematic analysis of text-based comments was performed using the constant comparison method. Results. One hundred twelve programs responded for a response rate of 85%. Seventy-eight (70%) offered integrated basic and clinical science courses. The types of integration included: full integration with merging disciplinary contents (n=25), coordinated delivery of disciplinary contents (n=50), and standalone courses with integrated laboratory (n=3). Faculty perceptions of course integration were positive. Themes that emerged from text-based comments included positive learning experiences as well as the challenges, opportunities, and skepticism associated with course integration. Conclusion. The results suggest wide variations in the design and implementation of integrated courses among US pharmacy programs. Faculty training and buy-in play a significant role in successful implementation of curricular integration.

  5. Integration of Basic and Clinical Science Courses in US PharmD Programs

    PubMed Central

    Talukder, Rahmat M.; Taheri, Reza; Blanchard, Nicholas

    2016-01-01

    Objective. To determine the current status of and faculty perceptions regarding integration of basic and clinical science courses in US pharmacy programs. Methods. A 25-item survey instrument was developed and distributed to 132 doctor of pharmacy (PharmD) programs. Survey data were analyzed using Mann-Whitney U test or Kruskal-Wallis test. Thematic analysis of text-based comments was performed using the constant comparison method. Results. One hundred twelve programs responded for a response rate of 85%. Seventy-eight (70%) offered integrated basic and clinical science courses. The types of integration included: full integration with merging disciplinary contents (n=25), coordinated delivery of disciplinary contents (n=50), and standalone courses with integrated laboratory (n=3). Faculty perceptions of course integration were positive. Themes that emerged from text-based comments included positive learning experiences as well as the challenges, opportunities, and skepticism associated with course integration. Conclusion. The results suggest wide variations in the design and implementation of integrated courses among US pharmacy programs. Faculty training and buy-in play a significant role in successful implementation of curricular integration. PMID:28179715

  6. Contextualizing the relevance of basic sciences: small-group simulation with debrief for first- and second-year medical students in an integrated curriculum.

    PubMed

    Ginzburg, Samara B; Brenner, Judith; Cassara, Michael; Kwiatkowski, Thomas; Willey, Joanne M

    2017-01-01

    There has been a call for increased integration of basic and clinical sciences during preclinical years of undergraduate medical education. Despite the recognition that clinical simulation is an effective pedagogical tool, little has been reported on its use to demonstrate the relevance of basic science principles to the practice of clinical medicine. We hypothesized that simulation with an integrated science and clinical debrief used with early learners would illustrate the importance of basic science principles in clinical diagnosis and management of patients. Small groups of first- and second-year medical students were engaged in a high-fidelity simulation followed by a comprehensive debrief facilitated by a basic scientist and clinician. Surveys including anchored and open-ended questions were distributed at the conclusion of each experience. The majority of the students agreed that simulation followed by an integrated debrief illustrated the clinical relevance of basic sciences (mean ± standard deviation: 93.8% ± 2.9% of first-year medical students; 96.7% ± 3.5% of second-year medical students) and its importance in patient care (92.8% of first-year medical students; 90.4% of second-year medical students). In a thematic analysis of open-ended responses, students felt that these experiences provided opportunities for direct application of scientific knowledge to diagnosis and treatment, improving student knowledge, simulating real-world experience, and developing clinical reasoning, all of which specifically helped them understand the clinical relevance of basic sciences. Small-group simulation followed by a debrief that integrates basic and clinical sciences is an effective means of demonstrating the relationship between scientific fundamentals and patient care for early learners. As more medical schools embrace integrated curricula and seek opportunities for integration, our model is a novel approach that can be utilized.

  7. Report of the Office of Science and Technology Policy Working Group on Basic Research in the Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-06-01

    The OSTP Working Group was commissioned to advise on the scope and quality of basic research conducted by and on behalf of DOE. The Group formed Subgroups in these areas: large-scale solar, fossil, fusion, small technology, and geothermal, environment and life sciences, social sciences, transportation, and fission. Work of the Subgroups forms the basis of much of this report, which has five sections. Following the introduction, preface, and executive summary (Section II), there is discussion of broad problem areas as they pertain to research (Section III). Section IV consists of general recommendations regarding policies for, as well as management andmore » scope of, research within the DOE: this section has four parts: Part A pertains to research in programmatic areas under the aegis of the Assistant Secretaries; Part B deals with the role and structure of the Office of Energy Research; Part C is concerned with broad research issues; and Part D addresses DOE Laboratories and Energy Research Centers. In Section V, research needs and opportunities for selected programs are discussed.« less

  8. Integrating the dimensions of sex and gender into basic life sciences research: methodologic and ethical issues.

    PubMed

    Holdcroft, Anita

    2007-01-01

    The research process -- from study design and selecting a species and its husbandry, through the experiment, analysis, peer review, and publication -- is rarely subject to questions about sex or gender differences in mainstream life sciences research. However, the impact of sex and gender on these processes is important in explaining biological variations and presentation of symptoms and diseases. This review aims to challenge assumptions and to develop opportunities to mainstream sex and gender in basic scientific research. Questions about the mechanisms of sex and gender effects were reviewed in relation to biological, environmental, social, and psychological interactions. Gender variations, in respect to aging, socializing, and reproduction, that are present in human populations but are rarely featured in laboratory research were considered to more effectively translate animal research into clinical health care. Methodologic approaches to address the present lack of a gender dimension in research include actively reducing variations through attention to physical factors, biological rhythms, and experimental design. In addition, through genomic and acute nongenomic activity, hormones may compound effects through multiple small sex differences that occur during the course of an acute pathologic event. Furthermore, the many exogenous sex steroid hormones and their congeners used in medicine (eg, in contraception and cancer therapies) may add to these effects. The studies reviewed provide evidence that sex and gender are determinants of many outcomes in life science research. To embed the gender dimension into basic scientific research, a broad approach -- gender mainstreaming -- is warranted. One example is the use of review boards (eg, animal ethical review boards and journal peer-review boards) in which gender-related standardized questions can be asked about study design and analysis. A more fundamental approach is to question the relevance of present

  9. Teaching Basic Science Content via Real-World Applications: A College-Level Summer Course in Veterinary Anatomy and Physiology

    ERIC Educational Resources Information Center

    Maza, Paul; Miller, Allison; Carson, Brian; Hermanson, John

    2018-01-01

    Learning and retaining science content may be increased by applying the basic science material to real-world situations. Discussing cases with students during lectures and having them participate in laboratory exercises where they apply the science content to practical situations increases students' interest and enthusiasm. A summer course in…

  10. The Evolution of Psychology as a Basic Bio-behavioral Science in Healthcare Education.

    PubMed

    Carr, John E

    2017-12-01

    For over a century, researchers and educators have called for the integration of psychological science into medical school curricula, but such efforts have been impeded by barriers within medicine and psychology. In addressing these barriers, Psychology has re-examined its relationship to Medicine, incorporated psychological practices into health care, and redefined its parameters as a science. In response to interdisciplinary research into the mechanisms of bio-behavioral interaction, Psychology evolved from an ancillary social science to a bio-behavioral science that is fundamental to medicine and health care. However, in recent medical school curriculum innovations, psychological science is being reduced to a set of "clinical skills," and once again viewed as an ancillary social science. These developments warrant concern and consideration of new approaches to integrating psychological science in medical education.

  11. A Case Study on Science Teacher Leadership to Address Diversity and Equity through Professional Development

    ERIC Educational Resources Information Center

    Doraiswamy, Nithya

    2015-01-01

    This qualitative case study focused on the multifaceted issue of exploring science teacher leaders understanding and addressing of issues of diversity and equity with peers through professional development. The purpose of the study was to highlight the opportunities and barriers to the addressing of issues of diversity and equity through the work…

  12. Basics of Lasers: History, Physics, and Clinical Applications.

    PubMed

    Franck, Philipp; Henderson, Peter W; Rothaus, Kenneth O

    2016-07-01

    Lasers are increasingly used by plastic surgeons to address issues such as wrinkles and textural changes, skin laxity, hyperpigmentation, vascularity, and excess fat accumulation. A fundamental understanding of the underlying science and physics of laser technology is important for the safe and efficacious use of laser in medical settings. The purpose of this article was to give clinicians with limited exposure to lasers a basic understanding of the underlying science. In that manner, they can confidently make appropriate decisions as to the best device to use on a patient (or the best device to purchase for a practice). Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Kids Can Make a Difference! Environmental Science Activities.

    ERIC Educational Resources Information Center

    Dashefsky, H. Steven

    This book of more than 160 environmental science activities is designed to help students understand environmental issues, ask questions, and find solutions to the problems. Introductory sections address: (1) the nature of major global problems and a history of environmental concern; (2) basic environmental science terminology and scientific study…

  14. Integration of medicine and basic science in dentistry: the role of oral and maxillofacial surgery in the pre-doctoral dental curriculum.

    PubMed

    Dennis, Matthew J

    2010-05-01

    It is the premise of this paper that the need for medical and basic science instruction in dentistry will increase over time. However, student and faculty appreciation of the relevance and significance of medicine and basic science to clinical dentistry has been elusive, largely due to difficulties linking biomedical science instruction and clinical dental instruction. The scope of traditional procedure based oral surgery instruction can be expanded in an attempt to bridge the medical science-clinical gap. Topics such as health status evaluation, medical risk assessment, and a variety of other biomedical issues can be presented to students in a way which imparts specific dental meaning to basic medical science in real-life clinical situations. Using didactic and chair side instruction in an oral surgery clinical environment, students are confronted with the need to understand these issues and how they relate to the patients they encounter who present for dental care.

  15. Invitations to Evolving. Teacher-Friendly Science Activities with Reproducible Handouts in English and Spanish. Grades 3-5. Living Things Science Series.

    ERIC Educational Resources Information Center

    Camp, Carole Ann, Ed.

    This booklet, one of six in the Living Things Science series, presents activities about evolution which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish), materials,…

  16. Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, Peter E.; Simonson, J. Michael

    2011-10-24

    This report is based on the Department of Energy (DOE) Workshop on “Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery” that was held at the Bethesda Marriott in Maryland on October 24-25, 2011. The workshop brought together leading researchers from the Basic Energy Sciences (BES) facilities and Advanced Scientific Computing Research (ASCR). The workshop was co-sponsored by these two Offices to identify opportunities and needs for data analysis, ownership, storage, mining, provenance and data transfer at light sources, neutron sources, microscopy centers and other facilities. Their charge was to identify current and anticipated issues inmore » the acquisition, analysis, communication and storage of experimental data that could impact the progress of scientific discovery, ascertain what knowledge, methods and tools are needed to mitigate present and projected shortcomings and to create the foundation for information exchanges and collaboration between ASCR and BES supported researchers and facilities. The workshop was organized in the context of the impending data tsunami that will be produced by DOE’s BES facilities. Current facilities, like SLAC National Accelerator Laboratory’s Linac Coherent Light Source, can produce up to 18 terabytes (TB) per day, while upgraded detectors at Lawrence Berkeley National Laboratory’s Advanced Light Source will generate ~10TB per hour. The expectation is that these rates will increase by over an order of magnitude in the coming decade. The urgency to develop new strategies and methods in order to stay ahead of this deluge and extract the most science from these facilities was recognized by all. The four focus areas addressed in this workshop were: Workflow Management - Experiment to Science: Identifying and managing the data path from experiment to publication. Theory and Algorithms: Recognizing the need for new tools for computation at scale, supporting large data sets and

  17. Using the Planetary Science Institute’s Meteorite Mini-Kits to Address the Nature of Science

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; Cañizo, Thea L.; Buxner, Sanlyn

    2014-11-01

    Hands-on learning allows students to understand science concepts by directly observing and experiencing the topics they are studying. The Planetary Science Institute (PSI) has created instructional rock kits that have been introduced to elementary and middle school teachers in Tucson, in our professional development workshops. PSI provides teachers with supporting material and training so that they can use the kits as tools for students’ hands-on learning. Use of these kits provides an important experience with natural materials that is essential to instruction in Earth and Space Science. With a stronger knowledge of science content and of how science is actually conducted, the workshops and kits have instilled greater confidence in teachers’ ability to teach science content. The Next Generation Science Standards (NGSS) Performance Expectations includes: “What makes up our solar system?” NGSS emphasizes the Crosscutting Concepts—Patterns Scale, Portion, and Quantity; and Systems and System Models. NGSS also states that the Nature of Science (NOS) should be an “essential part” of science education. NOS topics include understanding that scientific investigations use a variety of methods, that scientific knowledge is based on empirical evidence, that scientific explanations are open to revision in light of new evidence, and an understanding of the nature of scientific models.Addressing a need expressed by teachers for borrowing kits less expensive than our $2000 option, we created a Meteorite Mini-Kit. Each Mini-Kit contains eight rocks: an iron-bearing chondrite, a sliced chondrite (showing iron and chondrules), a tektite, a common Tucson rock, a river-polished rock, pumice, a small iron, and a rounded obsidian rock (false tektite). Also included in the Mini-Kits are magnets and a magnifier. The kits cost $40 to $50, depending on the sizes of the chondrites. A teacher can check out a classroom set of these which contains either 10 or 20 Mini-Kits. Each

  18. National Institutes of Health addresses the science of diversity.

    PubMed

    Valantine, Hannah A; Collins, Francis S

    2015-10-06

    The US biomedical research workforce does not currently mirror the nation's population demographically, despite numerous attempts to increase diversity. This imbalance is limiting the promise of our biomedical enterprise for building knowledge and improving the nation's health. Beyond ensuring fairness in scientific workforce representation, recruiting and retaining a diverse set of minds and approaches is vital to harnessing the complete intellectual capital of the nation. The complexity inherent in diversifying the research workforce underscores the need for a rigorous scientific approach, consistent with the ways we address the challenges of science discovery and translation to human health. Herein, we identify four cross-cutting diversity challenges ripe for scientific exploration and opportunity: research evidence for diversity's impact on the quality and outputs of science; evidence-based approaches to recruitment and training; individual and institutional barriers to workforce diversity; and a national strategy for eliminating barriers to career transition, with scientifically based approaches for scaling and dissemination. Evidence-based data for each of these challenges should provide an integrated, stepwise approach to programs that enhance diversity rapidly within the biomedical research workforce.

  19. Using "Basic Principles" to Understand Complex Science: Nicotine Smoke Chemistry and Literature Analogies

    ERIC Educational Resources Information Center

    Seeman, Jeffrey I.

    2005-01-01

    The chemical and physical properties of nicotine and its carboxylic acid salts found in tobacco provided as an interesting example to understand basic principles of complex science. The result showed that the experimental data used were inconsistent to the conclusion made, and the transfer of nicotine smoke from tobacco to smoke cannot be…

  20. Engaging Oral Health Students in Learning Basic Science Through Assessment That Weaves in Personal Experience.

    PubMed

    Leadbeatter, Delyse; Gao, Jinlong

    2018-04-01

    Learning basic science forms an essential foundation for oral health therapy and dentistry, but frequently students perceive it as difficult, dry, and disconnected from clinical practice. This perception is encouraged by assessment methods that reward fact memorization, such as objective examinations. This study evaluated use of a learner-centered assessment portfolio designed to increase student engagement with basic science in an oral health therapy program at the University of Sydney, Australia. The aim of this qualitative study based on focus groups was to investigate students' engagement with basic science courses following introduction of the portfolio. Three assessments were conducted in three subsequent semesters: one based on students' interest in everyday phenomena (one student, for example, explored why she had red hair); the second focussed on scientific evidence and understanding of systemic diseases; and the third explored relations between oral and general health. Students were encouraged to begin with issues from their personal experience or patient care, to focus on what they were curious about, and to ask questions they really cared about. Each student prepared a written report and gave an oral presentation to the entire cohort. After the portfolios were completed, the authors held focus groups with two cohorts of students (N=21) in 2016 and analyzed the results using Zepke's framework for student engagement research. The results showed that the students successfully interweaved personal experience into their studies and that it provided significant motivation for learning. The students described their learning in terms of connection to themselves, their peer community, and their profession. Many additional benefits were identified, from increased student engagement in all courses to appreciation of the relevance of basic science. The findings should encourage dental and allied dental educators to reconsider the effects of assessments and seek

  1. Educating for the 21st-Century Health Care System: An Interdependent Framework of Basic, Clinical, and Systems Sciences.

    PubMed

    Gonzalo, Jed D; Haidet, Paul; Papp, Klara K; Wolpaw, Daniel R; Moser, Eileen; Wittenstein, Robin D; Wolpaw, Terry

    2017-01-01

    In the face of a fragmented and poorly performing health care delivery system, medical education in the United States is poised for disruption. Despite broad-based recommendations to better align physician training with societal needs, adaptive change has been slow. Traditionally, medical education has focused on the basic and clinical sciences, largely removed from the newer systems sciences such as population health, policy, financing, health care delivery, and teamwork. In this article, authors examine the current state of medical education with respect to systems sciences and propose a new framework for educating physicians in adapting to and practicing in systems-based environments. Specifically, the authors propose an educational shift from a two-pillar framework to a three-pillar framework where basic, clinical, and systems sciences are interdependent. In this new three-pillar framework, students not only learn the interconnectivity in the basic, clinical, and systems sciences but also uncover relevance and meaning in their education through authentic, value-added, and patient-centered roles as navigators within the health care system. Authors describe the Systems Navigation Curriculum, currently implemented for all students at the Penn State College of Medicine, as an example of this three-pillar educational model. Simple adjustments, such as including occasional systems topics in medical curriculum, will not foster graduates prepared to practice in the 21st-century health care system. Adequate preparation requires an explicit focus on the systems sciences as a vital and equal component of physician education.

  2. Invitations to Life's Diversity. Teacher-Friendly Science Activities with Reproducible Handouts in English and Spanish. Grades 3-5. Living Things Science Series.

    ERIC Educational Resources Information Center

    Camp, Carole Ann, Ed.

    This booklet, one of six in the Living Things Science series, presents activities about diversity and classification of living things which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in…

  3. Science, Practitioners and Faith Communities: using TEK and Faith Knowledge to address climate issues.

    NASA Astrophysics Data System (ADS)

    Peterson, K.

    2017-12-01

    Worldview, Lifeway and Science - Communities that are tied to the land or water for their livelihood, and for whom subsistence guides their cultural lifeway, have knowledges that inform their interactions with the environment. These frameworks, sometimes called Traditional Ecological Knowledges (TEK), are based on generations of observations made and shared within lived life-environmental systems, and are tied to practitioners' broader worldviews. Subsistence communities, including Native American tribes, are well aware of the crises caused by climate change impacts. These communities are working on ways to integrate knowledge from their ancient ways with current observations and methods from Western science to implement appropriate adaptation and resilience measures. In the delta region of south Louisiana, the communities hold worldviews that blend TEK, climate science and faith-derived concepts. It is not incongruent for the communities to intertwine conversations from complex and diverse sources, including the academy, to inform their adaptation measures and their imagined solutions. Drawing on over twenty years of work with local communities, science organizations and faith institutions of the lower bayou region of Louisiana, the presenter will address the complexity of traditional communities' work with diverse sources of knowledge to guide local decision-making and to assist outside partners to more effectively address challenges associated with climate change.

  4. NSFC spurs significant basic research progress of respiratory medicine in China.

    PubMed

    Sun, Ruijuan; Xu, Feng; Wang, Chen; Dong, Erdan

    2017-05-01

    Over the years, research in respiratory medicine has progressed rapidly in China. This commentary narrates the role of the National Natural Science Foundation of China (NSFC) in supporting the basic research of respiratory medicine, summarizes the major progress of respiratory medicine in China, and addresses the main future research directions sponsored by the NSFC. © 2015 John Wiley & Sons Ltd.

  5. A multi-instructor, team-based, active-learning exercise to integrate basic and clinical sciences content.

    PubMed

    Kolluru, Srikanth; Roesch, Darren M; Akhtar de la Fuente, Ayesha

    2012-03-12

    To introduce a multiple-instructor, team-based, active-learning exercise to promote the integration of basic sciences (pathophysiology, pharmacology, and medicinal chemistry) and clinical sciences in a doctor of pharmacy curriculum. A team-based learning activity that involved pre-class reading assignments, individual-and team-answered multiple-choice questions, and evaluation and discussion of a clinical case, was designed, implemented, and moderated by 3 faculty members from the pharmaceutical sciences and pharmacy practice departments. Student performance was assessed using a multiple-choice examination, an individual readiness assurance test (IRAT), a team readiness assurance test (TRAT), and a subjective, objective, assessment, and plan (SOAP) note. Student attitudes were assessed using a pre- and post-exercise survey instrument. Students' understanding of possible correct treatment strategies for depression improved. Students were appreciative of this true integration of basic sciences knowledge in a pharmacotherapy course and to have faculty members from both disciplines present to answer questions. Mean student score on the on depression module for the examination was 80.4%, indicating mastery of the content. An exercise led by multiple instructors improved student perceptions of the importance of team-based teaching. Integrated teaching and learning may be achieved when instructors from multiple disciplines work together in the classroom using proven team-based, active-learning exercises.

  6. Student Attitudes, Student Anxieties, and How to Address Them; A handbook for science teachers

    NASA Astrophysics Data System (ADS)

    Kastrup, Helge

    2016-02-01

    This book is based on a commitment to teaching science to everybody. What may work for training professional scientists does not work for general science education. Students bring to the classrooms preconceived attitudes, as well as the emotional baggage called 'science anxiety'. Students may regard science as cold, unfriendly, and even inherently hostile and biased against women. This book has been designed to deal with each of these issues and results from research in both Denmark and the USA. The first chapter discusses student attitudes towards science and the second discusses science anxiety. The connection between the two is discussed before the introduction of constructivism as a pedagogy that can aid science learning if it also addresses attitudes and anxieties. Much of the book elucidates what the authors have learned as science teachers and science education researchers. They studied various groups including university students majoring in the sciences, mathematics, humanities, social sciences, business, nursing, and education; high-school students; teachers' seminary students; science teachers at all levels from middle school through college; and science administrators. The insights of these groups constitute the most important feature of the book, and by sharing them, the authors hope to help their fellow science teachers to understand student attitudes about science, to recognize the connections between these and science anxiety, and to see how a pedagogy that takes these into account can improve science learning.

  7. Earth-Science Research for Addressing the Water-Energy Nexus

    NASA Astrophysics Data System (ADS)

    Healy, R. W.; Alley, W. M.; Engle, M.; McMahon, P. B.; Bales, J. D.

    2013-12-01

    In the coming decades, the United States will face two significant and sometimes competing challenges: preserving sustainable supplies of fresh water for humans and ecosystems, and ensuring available sources of energy. This presentation provides an overview of the earth-science data collection and research needed to address these challenges. Uncertainty limits our understanding of many aspects of the water-energy nexus. These aspects include availability of water, water requirements for energy development, energy requirements for treating and delivering fresh water, effects of emerging energy development technologies on water quality and quantity, and effects of future climates and land use on water and energy needs. Uncertainties can be reduced with an integrated approach that includes assessments of water availability and energy resources; monitoring of surface water and groundwater quantity and quality, water use, and energy use; research on impacts of energy waste streams, hydraulic fracturing, and other fuel-extraction processes on water quality; and research on the viability and environmental footprint of new technologies such as carbon capture and sequestration and conversion of cellulosic material to ethanol. Planning for water and energy development requires consideration of factors such as economics, population trends, human health, and societal values; however, sound resource management must be grounded on a clear understanding of the earth-science aspects of the water-energy nexus. Information gained from an earth-science data-collection and research program can improve our understanding of water and energy issues and lay the ground work for informed resource management.

  8. National Institutes of Health addresses the science of diversity

    PubMed Central

    Valantine, Hannah A.; Collins, Francis S.

    2015-01-01

    The US biomedical research workforce does not currently mirror the nation’s population demographically, despite numerous attempts to increase diversity. This imbalance is limiting the promise of our biomedical enterprise for building knowledge and improving the nation’s health. Beyond ensuring fairness in scientific workforce representation, recruiting and retaining a diverse set of minds and approaches is vital to harnessing the complete intellectual capital of the nation. The complexity inherent in diversifying the research workforce underscores the need for a rigorous scientific approach, consistent with the ways we address the challenges of science discovery and translation to human health. Herein, we identify four cross-cutting diversity challenges ripe for scientific exploration and opportunity: research evidence for diversity’s impact on the quality and outputs of science; evidence-based approaches to recruitment and training; individual and institutional barriers to workforce diversity; and a national strategy for eliminating barriers to career transition, with scientifically based approaches for scaling and dissemination. Evidence-based data for each of these challenges should provide an integrated, stepwise approach to programs that enhance diversity rapidly within the biomedical research workforce. PMID:26392553

  9. Basic science breaks through: New therapeutic advances in Parkinson's disease.

    PubMed

    Brundin, Patrik; Atkin, Graham; Lamberts, Jennifer T

    2015-09-15

    Parkinson's disease (PD) is the second most common neurodegenerative disease and is typically associated with progressive motor dysfunction, although PD patients also exhibit a variety of non-motor symptoms. The neuropathological hallmark of PD is intraneuronal inclusions containing primarily α-Synuclein (α-Syn), and several lines of evidence point to α-Syn as a key contributor to disease progression. Thus, basic research in the field of PD is largely focused on understanding the pathogenic properties of α-Syn. Over the past 2 y, these studies helped to identify several novel therapeutic strategies that have the potential to slow PD progression; such strategies include sequestration of extracellular α-Syn through immunotherapy, reduction of α-Syn multimerization or intracellular toxicity, and attenuation of the neuroinflammatory response. This review describes these and other putative therapeutic strategies, together with the basic science research that led to their identification. The current breadth of novel targets for the treatment of PD warrants cautious optimism in the fight against this devastating disease. © 2015 International Parkinson and Movement Disorder Society.

  10. Developing a complex systems perspective for medical education to facilitate the integration of basic science and clinical medicine.

    PubMed

    Aron, David C

    2017-04-01

    The purpose of medical education is to produce competent and capable professional practitioners who can combine the art and science of medicine. Moreover, this process must prepare individuals to practise in a field in which knowledge is increasing and the contexts in which that knowledge is applied are changing in unpredictable ways. The 'basic sciences' are important in the training of a physician. The goal of basic science training is to learn it in a way that the material can be applied in practice. Much effort has been expended to integrate basic science and clinical training, while adding many other topics to the medical curriculum. This effort has been challenging. The aims of the paper are (1) to propose a unifying conceptual framework that facilitates knowledge integration among all levels of living systems from cell to society and (2) illustrate the organizing principles with two examples of the framework in action - cybernetic systems (with feedback) and distributed robustness. Literature related to hierarchical and holarchical frameworks was reviewed. An organizing framework derived from living systems theory and spanning the range from molecular biology to health systems management was developed. The application of cybernetic systems to three levels (regulation of pancreatic beta cell production of insulin, physician adjustment of medication for glycaemic control and development and action of performance measures for diabetes care) was illustrated. Similarly distributed robustness was illustrated by the DNA damage response system and principles underlying patient safety. Each of the illustrated organizing principles offers a means to facilitate the weaving of basic science and clinical medicine throughout the course of study. The use of such an approach may promote systems thinking, which is a core competency for effective and capable medical practice. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  11. Invitations to Cells: Life's Building Blocks. Teacher-Friendly Science Activities with Reproducible Handouts in English and Spanish. Grades 3-5. Living Things Science Series.

    ERIC Educational Resources Information Center

    Camp, Carole Ann, Ed.

    This booklet, one of six in the Living Things Science series, presents activities about cells which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish), materials, procedures,…

  12. Invitations to Heredity: Generation to Generation. Teacher-Friendly Science Activities with Reproducible Handouts in English and Spanish. Grades 3-5. Living Things Science Series.

    ERIC Educational Resources Information Center

    Camp, Carole Ann, Ed.

    This booklet, one of six in the Living Things Science series, presents activities about heredity and genetics which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish),…

  13. Addressing Earth Science Data Access Challenges through User Experience Research

    NASA Astrophysics Data System (ADS)

    Hemmings, S. N.; Banks, B.; Kendall, J.; Lee, C. M.; Irwin, D.; Toll, D. L.; Searby, N. D.

    2013-12-01

    The NASA Capacity Building Program (Earth Science Division, Applied Sciences Program) works to enhance end-user capabilities to employ Earth observation and Earth science (EO/ES) data in decision-making. Open data access and user-tailored data delivery strategies are critical elements towards this end. User Experience (UX) and User Interface (UI) research methods can offer important contributions towards addressing data access challenges, particularly at the interface of science application/product development and product transition to end-users. This presentation focuses on developing nation contexts and describes methods, results, and lessons learned from two recent UX/UI efforts conducted in collaboration with NASA: the SERVIRglobal.net redesign project and the U.S. Water Partnership (USWP) Portal development effort. SERVIR, a collaborative venture among NASA, USAID, and global partners, seeks to improve environmental management and climate change response by helping governments and other stakeholders integrate EO and geospatial technologies into decision-making. The USWP, a collaboration among U.S. public and private sectors, harnesses U.S.-based resources and expertise to address water challenges in developing nations. SERVIR's study, conducted from 2010-2012, assessed and tested user needs, preferences, and online experiences to generate a more user-friendly online data portal at SERVIRglobal.net. The portal provides a central access interface to data and products from SERVIR's network of hubs in East Africa, the Hindu Kush Himalayas, and Mesoamerica. The second study, conducted by the USWP Secretariat and funded by the U.S. Department of State, seeks to match U.S.-based water information resources with developing nation stakeholder needs. The USWP study utilizes a multi-pronged approach to identify key design requirements and to understand the existing water data portal landscape. Adopting UX methods allows data distributors to design customized UIs that

  14. Peer-assisted learning: filling the gaps in basic science education for preclinical medical students.

    PubMed

    Sammaraiee, Yezen; Mistry, Ravi D; Lim, Julian; Wittner, Liora; Deepak, Shantal; Lim, Gareth

    2016-09-01

    In contrast to peer-assisted learning (PAL) in clinical training, there is scant literature on the efficacy of PAL during basic medical sciences teaching for preclinical students. A group of senior medical students aimed to design and deliver clinically oriented small-group tutorials after every module in the preclinical curriculum at a United Kingdom medical school. Twenty tutorials were delivered by senior students throughout the year to first- and second-year students. A baseline questionnaire was delivered to inform the development of the program followed by an end-point questionnaire the next year (n = 122). Quizzes were administered before and after five separate tutorials to assess changes in mean student scores. Additionally, each tutorial was evaluated via a questionnaire for participants (n = 949). All five posttutorial quizzes showed a significant improvement in mean student score (P < 0.05). Questionnaires showed students found the program to be relevant and useful for revision purposes and appreciated how tutorials contextualized basic science to clinical medicine. Students appreciated the interactive nature of the sessions and found receiving personalized feedback about their learning and consolidating information with someone familiar with the material to be useful. With the inclusion of the program, students felt there were now an adequate number of tutorials during the year. In conclusion, this study shows that senior medical students can design and deliver a program that adds value to the mostly lecture-based formal preclinical curriculum. We hope that our study can prompt further work to explore the effect of PAL on the teaching of basic sciences during preclinical studies. Copyright © 2016 The American Physiological Society.

  15. Honors Workshop for Middle School Science Teachers. Final Report.

    ERIC Educational Resources Information Center

    Meisner, Gerald W.; Lee, Ernest W.

    The Honors Workshop for Middle School Science Teachers was designed to address teachers' conceptual understanding of basic scientific principles, student misconceptions and how to deal with them, and observation and measurement techniques. For 4 weeks in summer and on 6 Saturdays during 2 academic years, 30 leaders among science teachers from the…

  16. [Discussion on several basic issues of acupuncture-moxibustion science].

    PubMed

    Wang, Guangjun

    2016-10-12

    Nine basic issues on acupuncture-moxibustion science are discussed in this paper. The author believes those include the universal property of acupoints,the placebo effect of acupuncture and moxibustion,the continuous transmission of acupuncture information,the factors of the effects such as growth as well as acquired shape and properties,the classification evidence of acupoint function,the compatibility of acupoints,the change of functional state of acupoint and deqi . The universal property of acupoints means whether there is identical position of acupoint among different ethnic groups. The continuous transmission of acupuncture information is seen as whether the delivery which mainly shows as diffusion maintains active in special region and situation. The classification evidence of acupoint function refers to if there exists universal biological basis.

  17. Dilemmas with Dilemmas...Exploring the Suitability of Dilemma Stories as a Way of Addressing Ethical Issues in Science Education.

    ERIC Educational Resources Information Center

    Settelmaier, Elisabeth

    Traditionally, many science educators have taught science without addressing ethical questions. However, the inclusion of moral discourse in science teaching may help educators to bring to the fore problematic issues in relation to science, and it may offer an opportunity for students to practice their future engagement in the public discourse…

  18. Retention of knowledge and perceived relevance of basic sciences in an integrated case-based learning (CBL) curriculum

    PubMed Central

    2013-01-01

    Background Knowledge and understanding of basic biomedical sciences remain essential to medical practice, particularly when faced with the continual advancement of diagnostic and therapeutic modalities. Evidence suggests, however, that retention tends to atrophy across the span of an average medical course and into the early postgraduate years, as preoccupation with clinical medicine predominates. We postulated that perceived relevance demonstrated through applicability to clinical situations may assist in retention of basic science knowledge. Methods To test this hypothesis in our own medical student cohort, we administered a paper-based 50 MCQ assessment to a sample of students from Years 2 through 5. Covariates pertaining to demographics, prior educational experience, and the perceived clinical relevance of each question were also collected. Results A total of 232 students (Years 2–5, response rate 50%) undertook the assessment task. This sample had comparable demographic and performance characteristics to the whole medical school cohort. In general, discipline-specific and overall scores were better for students in the latter years of the course compared to those in Year 2; male students and domestic students tended to perform better than their respective counterparts in certain disciplines. In the clinical years, perceived clinical relevance was significantly and positively correlated with item performance. Conclusions This study suggests that perceived clinical relevance is a contributing factor to the retention of basic science knowledge and behoves curriculum planners to make clinical relevance a more explicit component of applied science teaching throughout the medical course. PMID:24099045

  19. Invitations to Interdependence: Caught in the Web. Teacher-Friendly Science Activities with Reproducible Handouts in English and Spanish. Grades 3-5. Living Things Science Series.

    ERIC Educational Resources Information Center

    Camp, Carole Ann, Ed.

    This booklet, one of six in the Living Things Science series, presents activities about ecosystems which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish), materials,…

  20. Invitations to the Matter-Energy Cycle. Teacher-Friendly Science Activities with Reproducible Handouts in English and Spanish. Grades 3-5. Living Things Science Series.

    ERIC Educational Resources Information Center

    Camp, Carole Ann, Ed.

    This booklet, one of six in the Living Things Science series, presents activities about matter and energy which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish), materials,…

  1. Computer Science and Engineering Students Addressing Critical Issues Regarding Gender Differences in Computing: A Case Study

    ERIC Educational Resources Information Center

    Tsagala, Evrikleia; Kordaki, Maria

    2008-01-01

    This study focuses on how Computer Science and Engineering Students (CSESs) of both genders address certain critical issues for gender differences in the field of Computer Science and Engineering (CSE). This case study is based on research conducted on a sample of 99 Greek CSESs, 43 of which were women. More specifically, these students were asked…

  2. Secondary Education Systemic Issues: Addressing Possible Contributors to a Leak in the Science Education Pipeline and Potential Solutions

    ERIC Educational Resources Information Center

    Young, Hollie

    2005-01-01

    To maintain the legacy of cutting edge scientific innovation in the United States our country must address the many pressing issues facing science education today. One of the most important issues relating to science education is the under-representation of African Americans and Hispanics in the science, technology, and engineering workforce.…

  3. Peer-Assisted Learning: Filling the Gaps in Basic Science Education for Preclinical Medical Students

    ERIC Educational Resources Information Center

    Sammaraiee, Yezen; Mistry, Ravi D.; Lim, Julian; Wittner, Liora; Deepak, Shantal; Lim, Gareth

    2016-01-01

    In contrast to peer-assisted learning (PAL) in clinical training, there is scant literature on the efficacy of PAL during basic medical sciences teaching for preclinical students. A group of senior medical students aimed to design and deliver clinically oriented small-group tutorials after every module in the preclinical curriculum at a United…

  4. Addressing Student Diversity and Equity: The "Next Generation Science Standards" Are Leading a New Wave of Reform

    ERIC Educational Resources Information Center

    Januszyk, Rita; Miller, Emily C.; Lee, Okhee

    2016-01-01

    While student demographics continue to change nationwide, science achievement gaps persist, as measured by the National Assessment of Educational Progress (NCES 2012). As traditional racial and ethnic minority students have become the numeric majority (NCES 2013), teaching science for all increasingly means addressing diverse student populations.…

  5. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component.

  6. An elective course on the basic and clinical sciences aspects of vitamins and minerals.

    PubMed

    Islam, Mohammed A

    2013-02-12

    Objective. To develop and implement an elective course on vitamins and minerals and their usefulness as dietary supplements. Design. A 2-credit-hour elective course designed to provide students with the most up-to-date basic and clinical science information on vitamins and minerals was developed and implemented in the doctor of pharmacy (PharmD) curriculum. In addition to classroom lectures, an active-learning component was incorporated in the course in the form of group discussion. Assessment. Student learning was demonstrated by examination scores. Performance on pre- and post-course surveys administered in 2011 demonstrated a significant increase in students' knowledge of the basic and clinical science aspects of vitamins and minerals, with average scores increasing from 61% to 86%. At the end of the semester, students completed a standard course evaluation. Conclusion. An elective course on vitamin and mineral supplements was well received by pharmacy students and helped them to acquire knowledge and competence in patient counseling regarding safe, appropriate, effective, and economical use of these products.

  7. An Elective Course on the Basic and Clinical Sciences Aspects of Vitamins and Minerals

    PubMed Central

    2013-01-01

    Objective. To develop and implement an elective course on vitamins and minerals and their usefulness as dietary supplements. Design. A 2-credit-hour elective course designed to provide students with the most up-to-date basic and clinical science information on vitamins and minerals was developed and implemented in the doctor of pharmacy (PharmD) curriculum. In addition to classroom lectures, an active-learning component was incorporated in the course in the form of group discussion. Assessment. Student learning was demonstrated by examination scores. Performance on pre- and post-course surveys administered in 2011 demonstrated a significant increase in students’ knowledge of the basic and clinical science aspects of vitamins and minerals, with average scores increasing from 61% to 86%. At the end of the semester, students completed a standard course evaluation. Conclusion. An elective course on vitamin and mineral supplements was well received by pharmacy students and helped them to acquire knowledge and competence in patient counseling regarding safe, appropriate, effective, and economical use of these products. PMID:23463149

  8. International cooperation in basic space science, Western Asian countries and the world

    NASA Astrophysics Data System (ADS)

    de Morais Mendonca Teles, Antonio

    The world will never better develop and attain a global peace state, if it does not exist a world-wide cooperation, union of interests among all countries on planet Earth, respecting and understanding each other culture differences. So, if the countries interested in space science want to create or better develop this field, they need to firstly construct peace states and social cooperation, while scientific and technological cooperation will develop -among them. Here in this paper, under the principles in the United Nations (UN)' Agenda 21 (UN UNCED, 1992), I propose four points that can lead to a practical and solid international cooperation in basic aerospace science and technology, based on ground studies, with sustainable space programs in countries with social necessities, and to the construction of an avenue of peace states in those areas and in the world, 1) The creation of LINKS among the "developing" countries, among the "developed" ones and between them -with scientists, engineers, educators and administrative personnel. This can catalyze a self-sustainable scientific and technological production in the "developing" countries. Financial matters could be done through the World Bank in coopera-tion with UNESCO. 2) The administration of this difficult enterprise of international coopera-tion. With the increasing complexity of relationships among the aerospace-interested countries, it will be necessary the creation of a center capable to serve as an INTERNATIONAL CO-ORDINATOR CENTER FOR AEROSPACE ACTIVITIES. 3) CULTURE: in Western Asian countries there is a cultural habit that when somebody gives something valuable to a person, this person should give something back. Thus, the Western Asian countries receiving infor-mation on basic aerospace science and technology from the "developed" ones, those countries would probably feel they should give something in return. Western Asian countries could trans-mit their costumes, thinking ways, habits, persons' worries

  9. Keynote Address: Science Since the Medicean Stars and the Beagle

    NASA Astrophysics Data System (ADS)

    Partridge, B.; Hillenbrand, L. A.; Grinspoon, D.

    2010-08-01

    In 2009, the world celebrates both the International Year of Astronomy (IYA), commemorating the 400th anniversary of Galileo's first observations of the heavens with his telescope, and the 200th anniversary of the birth of Charles Darwin and the 150th anniversary of the publication of his Origin of Species, a key impetus for the 2009 Year of Science. In this keynote address, the three presenters (distinguished scientists themselves) will reflect on how these recent centuries of astronomical and scientific discovery have changed our perspectives about the universe, the natural world, and ourselves—and underpin our education and public outreach efforts to help ensure continued scientific advance in the future.

  10. Third Generation (3G) Site Characterization: Cryogenic Core Collection and High Throughput Core Analysis - An Addendum to Basic Research Addressing Contaminants in Low Permeability Zones - A State of the Science Review

    DTIC Science & Technology

    2016-07-29

    Research Addressing Contaminants in Low Permeability Zones - A State of the Science Review SERDP Project ER-1740 JULY 2016 Tom Sale Saeed...process, or service by trade name, trademark, manufacturer , or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or...managing releases of chlorinated solvents and other persistent contaminants in groundwater in unconsolidated sediments. N/A U U U UU 126 Dr. Tom Sale 970

  11. Basic science faculty in surgical departments: advantages, disadvantages and opportunities.

    PubMed

    Chinoy, Mala R; Moskowitz, Jay; Wilmore, Douglas W; Souba, Wiley W

    2005-01-01

    The number of Ph.D. faculty in clinical departments now exceeds the number of Ph.D. faculty in basic science departments. Given the escalating pressures on academic surgeons to produce in the clinical arena, the recruitment and retention of high-quality Ph.D.s will become critical to the success of an academic surgical department. This success will be as dependent on the surgical faculty understanding the importance of the partnership as the success of the Ph.D. investigator. Tighter alignment among the various clinical and research programs and between surgeons and basic scientists will facilitate the generation of new knowledge that can be translated into useful products and services (thus improving care). To capitalize on what Ph.D.s bring to the table, surgery departments may need to establish a more formal research infrastructure that encourages the ongoing exchange of ideas and resources. Physically removing barriers between the research groups, encouraging the open exchange of techniques and observations and sharing core laboratories is characteristic of successful research teams. These strategies can meaningfully contribute to developing successful training program grants, program projects and bringing greater research recognition to the department of surgery.

  12. Integration of basic science and clinical medicine: the innovative approach of the cadaver biopsy project at the Boston University School of Medicine.

    PubMed

    Eisenstein, Anna; Vaisman, Lev; Johnston-Cox, Hillary; Gallan, Alexander; Shaffer, Kitt; Vaughan, Deborah; O'Hara, Carl; Joseph, Lija

    2014-01-01

    Curricular integration has emerged as a consistent theme in medical education reform. Vertical integration of topics such as pathology offers the potential to bring basic science content into the clinical arena, but faculty/student acceptance and curricular design pose challenges for such integration. The authors describe the Cadaver Biopsy Project (CBP) at Boston University School of Medicine as a sustainable model of vertical integration. Faculty and select senior medical students obtained biopsies of cadavers during the first-year gross anatomy course (fall 2009) and used these to develop clinical cases for courses in histology (spring 2010), pathology (fall 2010-spring 2011), and radiology (fall 2011 or spring 2012), thereby linking students' first experiences in basic sciences with other basic science courses and later clinical courses. Project goals included engaging medical stu dents in applying basic science princi ples in all aspects of patient care as they acquire skills. The educational intervention used a patient (cadaver)-centered approach and small-group, collaborative, case-based learning. Through this project, the authors involved clinical and basic science faculty-plus senior medical students-in a collaborative project to design and implement an integrated curriculum through which students revisited, at several different points, the microscopic structure and pathophysiology of common diseases. Developing appropriate, measurable out comes for medical education initiatives, including the CBP, is challenging. Accumu lation of qualitative feedback from surveys will guide continuous improvement of the CBP. Documenting longer-term impact of the curricular innovation on test scores and other competency-based outcomes is an ultimate goal.

  13. Professional fulfillment and parenting work-life balance in female physicians in Basic Sciences and medical research: a nationwide cross-sectional survey of all 80 medical schools in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Marui, Eiji

    2017-09-15

    In Japan, the field of Basic Sciences encompasses clinical, academic, and translational research, as well as the teaching of medical sciences, with both an MD and PhD typically required. In this study, it was hypothesized that the characteristics of a Basic Sciences career path could offer the professional advancement and personal fulfillment that many female medical doctors would find advantageous. Moreover, encouraging interest in Basic Sciences could help stem shortages that Japan is experiencing in medical fields, as noted in the three principal contributing factors: premature resignation of female clinicians, an imbalance of female physicians engaged in research, and a shortage of medical doctors in the Basic Sciences. This study examines the professional and personal fulfillment expressed by Japanese female medical doctors who hold positions in Basic Sciences. Topics include career advancement, interest in medical research, and greater flexibility for parenting. A cross-sectional questionnaire survey was distributed at all 80 medical schools in Japan, directed to 228 female medical doctors whose academic rank was assistant professor or higher in departments of Basic Sciences in 2012. Chi-square tests and the binary logistic regression model were used to investigate the impact of parenthood on career satisfaction, academic rank, salary, etc. The survey response rate of female physicians in Basic Sciences was 54.0%. Regardless of parental status, one in three respondents cited research interest as their rationale for entering Basic Sciences, well over twice other motivations. A majority had clinical experience, with clinical duties maintained part-time by about half of respondents and particularly parents. Only one third expressed afterthoughts about relinquishing full-time clinical practice, with physicians who were parents expressing stronger regrets. Parental status had little effect on academic rank and income within the Basic Sciences, CONCLUSION

  14. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice, Executive Summary and Final Report, October 1, 1978 - March 15, 1980.

    ERIC Educational Resources Information Center

    Kabat, Hugh F.; And Others

    The areas of basic science pharmacy instruction and clinical pharmacy practice and their interrelationships were identified in order to help develop didactic and clinical experience alternatives. A 10-member advisory committee ranked basic pharmaceutical science topical areas in terms of their applicability to clinical practice utilizing a Delphi…

  15. Website for the Space Science Division

    NASA Technical Reports Server (NTRS)

    Schilling, James; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  16. The HelCat basic plasma science device

    NASA Astrophysics Data System (ADS)

    Gilmore, M.; Lynn, A. G.; Desjardins, T. R.; Zhang, Y.; Watts, C.; Hsu, S. C.; Betts, S.; Kelly, R.; Schamiloglu, E.

    2015-01-01

    The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber - an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B >= 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.

  17. Nutrition and the science of disease prevention: a systems approach to support metabolic health

    PubMed Central

    Bennett, Brian J.; Hall, Kevin D.; Hu, Frank B.; McCartney, Anne L.; Roberto, Christina

    2017-01-01

    Progress in nutritional science, genetics, computer science, and behavioral economics can be leveraged to address the challenge of noncommunicable disease. This report highlights the connection between nutrition and the complex science of preventing disease and discusses the promotion of optimal metabolic health, building on input from several complementary disciplines. The discussion focuses on (1) the basic science of optimal metabolic health, including data from gene–diet interactions, microbiome, and epidemiological research in nutrition, with the goal of defining better targets and interventions, and (2) how nutrition, from pharma to lifestyle, can build on systems science to address complex issues. PMID:26415028

  18. Restructuring a basic science course for core competencies: an example from anatomy teaching.

    PubMed

    Gregory, Jeremy K; Lachman, Nirusha; Camp, Christopher L; Chen, Laura P; Pawlina, Wojciech

    2009-09-01

    Medical schools revise their curricula in order to develop physicians best skilled to serve the public's needs. To ensure a smooth transition to residency programs, undergraduate medical education is often driven by the six core competencies endorsed by the Accreditation Council for Graduate Medical Education (ACGME): patient care, medical knowledge, practice-based learning, interpersonal skills, professionalism, and systems-based practice. Recent curricular redesign at Mayo Medical School provided an opportunity to restructure anatomy education and integrate radiology with first-year gross and developmental anatomy. The resulting 6-week (120-contact-hour) human structure block provides students with opportunities to learn gross anatomy through dissection, radiologic imaging, and embryologic correlation. We report more than 20 educational interventions from the human structure block that may serve as a model for incorporating the ACGME core competencies into basic science and early medical education. The block emphasizes clinically-oriented anatomy, invites self- and peer-evaluation, provides daily formative feedback through an audience response system, and employs team-based learning. The course includes didactic briefing sessions and roles for students as teachers, leaders, and collaborators. Third-year medical students serve as teaching assistants. With its clinical focus and competency-based design, the human structure block connects basic science with best-practice clinical medicine.

  19. Translating Basic Behavioral and Social Science Research to Clinical Application: The EVOLVE Mixed Methods Approach

    ERIC Educational Resources Information Center

    Peterson, Janey C.; Czajkowski, Susan; Charlson, Mary E.; Link, Alissa R.; Wells, Martin T.; Isen, Alice M.; Mancuso, Carol A.; Allegrante, John P.; Boutin-Foster, Carla; Ogedegbe, Gbenga; Jobe, Jared B.

    2013-01-01

    Objective: To describe a mixed-methods approach to develop and test a basic behavioral science-informed intervention to motivate behavior change in 3 high-risk clinical populations. Our theoretically derived intervention comprised a combination of positive affect and self-affirmation (PA/SA), which we applied to 3 clinical chronic disease…

  20. Projects for the implementation of science technology society approach in basic concept of natural science course as application of optical and electrical instruments’ material

    NASA Astrophysics Data System (ADS)

    Satria, E.

    2018-03-01

    Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.

  1. 2017 Hans O. Mauksch Address: Using the Science of Learning to Improve Student Learning in Sociology Classes

    ERIC Educational Resources Information Center

    Messineo, Melinda

    2018-01-01

    The 2017 Mauksch Address invites readers to consider how the field of sociology might benefit from greater inclusion of the science of learning into its pedagogy. Results from a survey of 92 teaching and learning experts in sociology reveal the degree to which the discipline's understanding of teaching and learning is informed by the science of…

  2. Science for What Public? Addressing Equity in American Science Museums and Science Centers

    ERIC Educational Resources Information Center

    Feinstein, Noah Weeth; Meshoulam, David

    2014-01-01

    Science museums and science centers exist (in large part) to bring science to the public. But what public do they serve? The challenge of equity is embodied by the gulf that separates a museum's actual public and the more diverse publics that comprise our society. Yet despite growing scholarly interest in museums and science centers, few…

  3. Doing Science that Matters to Address India's Water Crisis.

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.

    2017-12-01

    Addressing water security in developing regions involves predicting water availability under unprecedented rates of population and economic growth. India is one of the most water stressed countries in the world. Despite appreciable increases in funding for water research, high quality science that is usable by stakeholders remains elusive. The absence of usable research, has been driven by notions of what is publishable in the developed world. This can be attributed to the absence of problem driven research on questions that actually matter to stakeholders, unwillingness to transcend disciplinary boundaries and the demise of a field-work research culture in favour of computer simulation. Yet the combination of rapid change, inadequate data and human modifications to watersheds poses a challenge, as researchers face a poorly constrained water resources modelling problem. Instead, what India and indeed all developing regions need is to approach the problem from first principles, identifying the most critical knowledge gaps, then prioritizing data collection using novel sensing and modelling approaches to address them. This might also necessitate consideration of underlying social and governance drivers of hydrologic change. Using examples from research in the Cauvery Basin, a highly contentious inter-state river basin, I offer some insights into framing "use-inspired" research agenda and show how the research generates not just new scientific insights but may be translated into practice.

  4. Enabling a new Paradigm to Address Big Data and Open Science Challenges

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Mohan; Fisher, Ward

    2017-04-01

    Data are not only the lifeblood of the geosciences but they have become the currency of the modern world in science and society. Rapid advances in computing, communi¬cations, and observational technologies — along with concomitant advances in high-resolution modeling, ensemble and coupled-systems predictions of the Earth system — are revolutionizing nearly every aspect of our field. Modern data volumes from high-resolution ensemble prediction/projection/simulation systems and next-generation remote-sensing systems like hyper-spectral satellite sensors and phased-array radars are staggering. For example, CMIP efforts alone will generate many petabytes of climate projection data for use in assessments of climate change. And NOAA's National Climatic Data Center projects that it will archive over 350 petabytes by 2030. For researchers and educators, this deluge and the increasing complexity of data brings challenges along with the opportunities for discovery and scientific breakthroughs. The potential for big data to transform the geosciences is enormous, but realizing the next frontier depends on effectively managing, analyzing, and exploiting these heterogeneous data sources, extracting knowledge and useful information from heterogeneous data sources in ways that were previously impossible, to enable discoveries and gain new insights. At the same time, there is a growing focus on the area of "Reproducibility or Replicability in Science" that has implications for Open Science. The advent of cloud computing has opened new avenues for not only addressing both big data and Open Science challenges to accelerate scientific discoveries. However, to successfully leverage the enormous potential of cloud technologies, it will require the data providers and the scientific communities to develop new paradigms to enable next-generation workflows and transform the conduct of science. Making data readily available is a necessary but not a sufficient condition. Data providers

  5. Effect of Self Regulated Learning Approach on Junior Secondary School Students' Achievement in Basic Science

    ERIC Educational Resources Information Center

    Nwafor, Chika E.; Obodo, Abigail Chikaodinaka; Okafor, Gabriel

    2015-01-01

    This study explored the effect of self-regulated learning approach on junior secondary school students' achievement in basic science. Quasi-experimental design was used for the study.Two co-educational schools were drawn for the study through simple random sampling technique. One school was assigned to the treatment group while the other was…

  6. Cystic fibrosis research topics featured at the 14th ECFS Basic Science Conference: Chairman's summary.

    PubMed

    Mall, Marcus A; Hwang, Tzyh-Chang; Braakman, Ineke

    2018-03-01

    In recent years, tremendous progress has been made in the development of novel drugs targeting the basic defect in patients with cystic fibrosis (CF). This breakthrough is based on a solid foundation of knowledge on CFTR's function in health and how mutations in CFTR cause CF multi-organ disease. This knowledge has been collected and continuously expanded by an active and persistent CF research community and has paved the way for precision medicine for CF. Since 2004, the European Cystic Fibrosis Society (ECFS) has held an annual Basic Science Conference that has evolved as an international forum for interdisciplinary discussion of hot topics and unsolved questions related to CF research. This Special Issue reviews CF research topics featured at the 14th ECFS Basic Science Conference and provides an up-to-date overview of recent progress in our understanding of CFTR structure and function, disease mechanisms implicated in airway mucus plugging, inflammation and abnormal host-pathogen interactions, and advancements with enhanced cell and animal model systems and breakthrough therapies directed at mutant CFTR or alternative targets. In addition, this Special Issue also identifies a number of fundamental questions and hurdles that still have to be overcome to realize the full potential of precision medicine and develop transformative therapies for all patients with CF. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  7. Teaching Basic Science Environmentally, Concept: Water that Comes Down as Rain Is Used Over and Over Again.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    1985-01-01

    Provides directions for basic science experiments which demonstrate the rain cycle, fundamentals of cloud formation, and testing for the presence of acidity in local rainwater. Describes materials required, step-by-step instructions, and discussion topics. (NEC)

  8. On the Teaching of Science, Technology and International Affairs.

    PubMed

    Weiss, Charles

    2012-03-01

    Despite the ubiquity and critical importance of science and technology in international affairs, their role receives insufficient attention in traditional international relations curricula. There is little literature on how the relations between science, technology, economics, politics, law and culture should be taught in an international context. Since it is impossible even for scientists to master all the branches of natural science and engineering that affect public policy, the learning goals of students whose primary training is in the social sciences should be to get some grounding in the natural sciences or engineering, to master basic policy skills, to understand the basic concepts that link science and technology to their broader context, and to gain a respect for the scientific and technological dimensions of the broader issues they are addressing. They also need to cultivate a fearless determination to master what they need to know in order to address policy issues, an open-minded but skeptical attitude towards the views of dueling experts, regardless of whether they agree with their politics, and (for American students) a world-view that goes beyond a strictly U.S. perspective on international events. The Georgetown University program in Science, Technology and International Affairs (STIA) is a unique, multi-disciplinary undergraduate liberal arts program that embodies this approach and could be an example that other institutions of higher learning might adapt to their own requirements.

  9. Addressing Unmet Basic Resource Needs as Part of Chronic Cardiometabolic Disease Management.

    PubMed

    Berkowitz, Seth A; Hulberg, Amy Catherine; Standish, Sara; Reznor, Gally; Atlas, Steven J

    2017-02-01

    (differential change, -3.7; 95% CI -6.7 to -0.6). For 774 individuals with diabetes, the Health Leads group did not show HbA1c level improvement (differential change, -0.04%; 95% CI, -0.17% to 0.10%). Results adjusted for baseline demographic and clinical differences were not qualitatively different. Among those who enrolled in Health Leads program, there were greater BP and LDL-C level improvements than for those who declined (SBP differential change -2.6; 95% CI,-3.5 to -1.7; SBP differential change, -1.4; 95% CI, -1.9 to -0.9; LDL-C level differential change, -6.3; 95% CI, -9.7 to -2.8). Screening for and attempting to address unmet basic resource needs in primary care was associated with modest improvements in blood pressure and lipid, but not blood glucose, levels.

  10. Strengthening capacity building in space science research: A developing country perspective on IHY activities

    NASA Astrophysics Data System (ADS)

    Munyeme, G.

    The economic and social impact of science based technologies has become increasingly dominant in modern world The benefits are a result of combined leading-edge science and technology skills which offers opportunities for new innovations Knowledge in basic sciences has become the cornerstone of sustainable economic growth and national prosperity Unfortunately in many developing countries research and education in basic sciences are inadequate to enable science play its full role in national development For this reason most developing countries have not fully benefited from the opportunities provided by modern technologies The lack of human and financial resources is the main reason for slow transfer of scientific knowledge and technologies to developing countries Developing countries therefore need to develop viable research capabilities and knowledge in basic sciences The advert of the International Heliophysical Year IHY may provide opportunities for strengthening capacity in basic science research in developing countries Among the science goals of the IHY is the fostering of international scientific cooperation in the study of heliophysical phenomena This paper will address and provide an in depth discussion on how basic science research can be enhanced in a developing country using the framework of science goals and objectives of IHY It will further highlight the hurdles and experiences of creating in-country training capacity and research capabilities in space science It will be shown that some of these hurdles can be

  11. The Presidential Address 2013: Promoting Enthusiasm, Imparting Knowledge! Science for the General Population and Science for Future Researchers Must All Start in the School Curriculum

    ERIC Educational Resources Information Center

    Rees, Martin

    2013-01-01

    This article provides a transcript of the Presidential Address delivered by Martin Rees, Lord Rees of Ludlow, to the Association for Science Education (ASE) Annual Conference at the University of Reading, January 2013. The address is divided into five sections under the following headings: (1) Three Reasons Why the ASE's Mission Is So Important;…

  12. SKyTeach: Addressing the need for Science and Math Teachers in Kentucky

    NASA Astrophysics Data System (ADS)

    Bonham, Scott

    2008-10-01

    The shortage of good science and math teachers is a chronic problem that threatens to undermine the future of our profession and economy. While our world is becoming increasingly dependent on technology, many high schools do not even offer physics, in part due to of the unavailability of a qualified teacher. The entire state of Kentucky typically produces 0-2 new physics teachers per year, compared to 200+ elementary teachers per year from WKU alone. The picture is not much better in math and other sciences. SKyTeach is a new program at WKU to address this great need and is part of a national effort to replicate the successful UTeach program. The University of Texas UTeach program graduates 70-90 new math and science teachers a year, in the process providing them with a strong preparation based on current research on how people learn science and math, experience teaching in real classrooms from the start, and strong mentoring and support. UTeach graduates stay in the classroom at rates above the national average, and some fairly quickly move into leadership positions within their schools. A key element is good collaboration between the college of science, that of education, local P-12 schools, and others. Last year thirteen universities across the nation were selected as part of an effort to replicate the UTeach program nation-wide. This effort is supported by the National Science and Math Initiative in a partnership with the UTeach Institute. Our first cohort of students has started this fall, and we have had many successes and challenges as we move forward.

  13. Basic Physics Questions Addressed by Astrophysics

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2009-01-01

    Dark matter, dark energy, the Big Bang, testing relativity -- all are physics questions accessible to astrophysicists -- but all require new equipment. As Harwit's "Cosmic Discovery" pointed out, almost all great surprises in astronomy came from new equipment or new uses of equipment designed for other purposes, and many of those had military applications. I will outline prospects for new equipment and discuss how that equipment can be developed and built. Bigger and lighter mirrors, wavefront sensing and control, new detector technology, cryogenics -- each has its own social network, its own special possibilities, and its own funding sources outside science. I will discuss some examples drawn from real-life experience with the James Webb Space Telescope, a telescope that was said to have a "giggle factor" when it was proposed in 1995. Now each of the 10 major technologies has been brought to maturity, flight hardware is being built, and launch is planned for 2014. As an instrument builder all my life, I will speculate a little on what may be within our reach over the next few decades.

  14. The Views of Science Pre-Service Teachers about the Usage of Basic Information Technologies (BIT) in Education and Instruction

    ERIC Educational Resources Information Center

    Çetin, Oguz

    2016-01-01

    In this study aiming to present a description based on science pre-service teachers' views related to use of Basic Information Technologies (BIT) in education and training, an interview is carried out with 21 pre-service science teachers who study in different classes in Faculty of Education, Nigde University. For this aim, improved interview form…

  15. What is Basic Research? Insights from Historical Semantics.

    PubMed

    Schauz, Désirée

    2014-01-01

    For some years now, the concept of basic research has been under attack. Yet although the significance of the concept is in doubt, basic research continues to be used as an analytical category in science studies. But what exactly is basic research? What is the difference between basic and applied research? This article seeks to answer these questions by applying historical semantics. I argue that the concept of basic research did not arise out of the tradition of pure science. On the contrary, this new concept emerged in the late 19th and early 20th centuries, a time when scientists were being confronted with rising expectations regarding the societal utility of science. Scientists used the concept in order to try to bridge the gap between the promise of utility and the uncertainty of scientific endeavour. Only after 1945, when United States science policy shaped the notion of basic research, did the concept revert to the older ideals of pure science. This revival of the purity discourse was caused by the specific historical situation in the US at that time: the need to reform federal research policy after the Second World War, the new dimension of ethical dilemmas in science and technology during the atomic era, and the tense political climate during the Cold War.

  16. Environmental health discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in environmental health. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; animal and human subjects; and research and development. This document summarizes the history and current status of the program elements, outlines available knowledge, establishes goals and objectives, identifies scientific priorities, and defines critical questions in the three disciplines: (1) Barophysiology, (2) Toxicology, and (3) Microbiology. This document contains a general plan that will be used by both NASA Headquarters Program Officers and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area. The document is divided into sections addressing these three disciplines.

  17. A Challenge for International Cooperation in Astronomy and Basic Space Science

    NASA Astrophysics Data System (ADS)

    Haubold, Hans

    In 1990, the United Nations in cooperation with the European Space Agency initiated the organization of a series of annual Workshops on Basic Space Science for the benefit of astronomers and space scientists in (i) Asia and the Pacific, (ii) Latin America and the Caribbean, (iii) Africa, (iv) Western Asia, and (v) Europe. This article provides an update on accomplishments of three cycles of these workshops and their follow-up projects held for the five regions in (i) India (1991), Sri Lanka (1995), (ii) Costa Rica and Colombia (1992), Honduras (1997), (iii) Nigeria (1993), (iv) Egypt (1994), Jordan (1999), and (v) Germany (1996), France (2000). The workshop series is being considered unique and a model for the world-wide development of astronomy and space science. It has been organized based on the notion that astronomy has deep roots in virtually every human culture, that it helps to understand humanity's place in the vast scale of the Universe, and that it increases the knowledge of humanity about its origins and evolution.

  18. A Mental Model of the Learner: Teaching the Basic Science of Educational Psychology to Future Teachers

    ERIC Educational Resources Information Center

    Willingham, Daniel T.

    2017-01-01

    Although most teacher education programs include instruction in the basic science of psychology, practicing teachers report that this preparation has low utility. Researchers have considered what sort of information from psychology about children's thinking, emotion, and motivation would be useful for teachers' practice. Here, I take a different…

  19. Examining the Effect of Self-Explanation on Cognitive Integration of Basic and Clinical Sciences in Novices

    ERIC Educational Resources Information Center

    Lisk, Kristina; Agur, Anne M. R.; Woods, Nicole N.

    2017-01-01

    Several studies have shown that cognitive integration of basic and clinical sciences supports diagnostic reasoning in novices; however, there has been limited exploration of the ways in which educators can translate this model of mental activity into sound instructional strategies. The use of "self-explanation" during learning has the…

  20. Report of the joint ESOT and TTS basic science meeting 2013: current concepts and discoveries in translational transplantation.

    PubMed

    Ebner, Susanne; Fabritius, Cornelia; Ritschl, Paul; Oberhuber, Rupert; Günther, Julia; Kotsch, Katja

    2014-10-01

    A joint meeting organized by the European (ESOT) and The Transplantation (TTS) Societies for basic science research was organized in Paris, France, on November 7-9, 2013. Focused on new ideas and concepts in translational transplantation, the meeting served as a venue for state-of-the-art developments in basic transplantation immunology, such as the potential for tolerance induction through regulation of T-cell signaling. This meeting report summarizes important insights which were presented in Paris. It not only offers an overview of established aspects, such as the role of Tregs in transplantation, presented by Nobel laureate Rolf Zinkernagel, but also highlights novel facets in the field of transplantation, that is cell-therapy-based immunosuppression or composite tissue transplantation as presented by the emotional story given by Vasyly Rohovyy, who received two hand transplants. The ESOT/TTS joint meeting was an overall productive and enjoyable platform for basic science research in translational transplantation and fulfilled all expectations by giving a promising outlook for the future of research in the field of immunological transplantation research. © 2014 Steunstichting ESOT.

  1. Obstacles of Implementing the Science Curricula of the Basic Stage as Perceived by the Teachers in a Jordanian Town

    ERIC Educational Resources Information Center

    Ayasra, Ahmad

    2015-01-01

    This study aimed to investigate obstacles that prevent implementation of science curriculum which was developed within the Education Reform for the Knowledge Economy project (ErfKE). To achieve this, a purposeful sample consisted of four teachers of science for the basic stage in the town located in the north of Jordan in the first semester of the…

  2. Employers' Perceptions of Basic Technology Skills Needed for Workplace Preparation in Adult Basic Education

    ERIC Educational Resources Information Center

    Yow, Alma V.

    2010-01-01

    Research has documented that many new entrants to the workforce from adult basic education (ABE) programs are critically lacking in the preparation and technology skills needed for workplace success. To address this problem, this basic interpretive qualitative study was implemented to examine and identify the basic technology skills perceived by…

  3. Applying Metacognition Through Patient Encounters and Illness Scripts to Create a Conceptual Framework for Basic Science Integration, Storage, and Retrieval.

    PubMed

    Hennrikus, Eileen F; Skolka, Michael P; Hennrikus, Nicholas

    2018-01-01

    Medical school curriculum continues to search for methods to develop a conceptual educational framework that promotes the storage, retrieval, transfer, and application of basic science to the human experience. To achieve this goal, we propose a metacognitive approach that integrates basic science with the humanistic and health system aspects of medical education. During the week, via problem-based learning and lectures, first-year medical students were taught the basic science underlying a disease. Each Friday, a patient with the disease spoke to the class. Students then wrote illness scripts, which required them to metacognitively reflect not only on disease pathophysiology, complications, and treatments but also on the humanistic and health system issues revealed during the patient encounter. Evaluation of the intervention was conducted by measuring results on course exams and national board exams and analyzing free responses on the illness scripts and student course feedback. The course exams and National Board of Medical Examiners questions were divided into 3 categories: content covered in lecture, problem-based learning, or patient + illness script. Comparisons were made using Student t -test. Free responses were inductively analyzed using grounded theory methodology. This curricular intervention was implemented during the first 13-week basic science course of medical school. The main objective of the course, Scientific Principles of Medicine, is to lay the scientific foundation for subsequent organ system courses. A total of 150 students were enrolled each year. We evaluated this intervention over 2 years, totaling 300 students. Students scored significantly higher on illness script content compared to lecture content on the course exams (mean difference = 11.1, P  = .006) and national board exams given in December (mean difference = 21.8, P  = .0002) and June (mean difference = 12.7, P  = .016). Themes extracted from students' free

  4. How desertification research is addressed in Spain? Land versus Soil approaches

    NASA Astrophysics Data System (ADS)

    Barbero Sierra, Celia; Marques, María Jose; Ruiz, Manuel; Escadafal, Richard; Exbrayat, Williams; Akthar-Schuster, Mariam; El Haddadi, Anass

    2013-04-01

    This study intend to understand how desertification research is organised in a south Mediterranean country, as is Spain. It is part of a larger work addressing soil and land research and its relationships with stakeholders. This wider work aims to explain the weakness of the United Nation Convention to Combat Desertification (UNCCD), which devoid of a scientific advisory panel. Within this framework, we assume that a fitting coordination between scientific knowledge and a better flow of information between researchers and policy makers is needed in order to slow down and reverse the impacts of land degradation on drylands. With this purpose we conducted an in-depth study at national level in Spain. The initial work focused on a small sample of published references in scientific journals indexed in the Web of Science. It allowed us to identify the most common thematic approaches and working issues, as well as the corresponding institutions and research teams and the relationships between them. The preliminary results of this study pointed out that two prevalent approaches at this national level could be identified. The first one is related to applied science being sensitive to socio-economic issues, and the second one is related to basic science studying the soil in depth, but it is often disconnected from socio-economic factors. We also noticed that the Spanish research teams acknowledge the other Spanish teams in this subject, as frequent co-citations are found in their papers, nevertheless, they do not collaborate. We also realised that the Web of Science database does not collect the wide spectrum of sociology, economics and the human implications of land degradation which use to be included in books or reports related to desertification. A new wider database was built compiling references of Web of Science related to "desertification", "land", "soil", "development" and "Spain" adding references from other socioeconomic databases. In a second stage we used

  5. President Barack Obama addresses the 146th Annual Meeting of the National Academy of Sciences

    PubMed Central

    2009-01-01

    On April 27, 2009, President Barack Obama addressed members of the National Academy of Sciences (NAS) gathered at its 146th annual meeting in Washington, D.C. In his speech, the president shared his plans to give science and technology a central role in the nation's future and an immediate place in America's economic renewal. He outlined steps he is taking to increase research spending, achieve energy independence, and improve science education. Included was what Mr. Obama cited as the largest commitment to scientific research in American history—devoting more than 3% of our gross domestic product to research and development. “Next, we are restoring science to its rightful place,” Mr. Obama told a packed NAS auditorium audience. “Under my administration, the days of science taking a backseat to ideology are over.” He appealed to scientists' sense of personal responsibility to reach and educate young Americans: “I want to challenge you to use your love and knowledge of science to spark a sense of wonder and excitement in a new generation.” President Obama was welcomed to the National Academy of Sciences by President Ralph J. Cicerone and John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science and Technology Policy. The following is a transcript of that speech.* PMID:19502426

  6. President Barack Obama addresses the 146th annual meeting of the National Academy of Sciences.

    PubMed

    2009-06-16

    On April 27, 2009, President Barack Obama addressed members of the National Academy of Sciences (NAS) gathered at its 146th annual meeting in Washington, D.C. In his speech, the president shared his plans to give science and technology a central role in the nation's future and an immediate place in America's economic renewal. He outlined steps he is taking to increase research spending, achieve energy independence, and improve science education. Included was what Mr. Obama cited as the largest commitment to scientific research in American history-devoting more than 3% of our gross domestic product to research and development. "Next, we are restoring science to its rightful place," Mr. Obama told a packed NAS auditorium audience. "Under my administration, the days of science taking a backseat to ideology are over." He appealed to scientists' sense of personal responsibility to reach and educate young Americans: "I want to challenge you to use your love and knowledge of science to spark a sense of wonder and excitement in a new generation." President Obama was welcomed to the National Academy of Sciences by President Ralph J. Cicerone and John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science and Technology Policy. The following is a transcript of that speech.

  7. Basic Process Skills and Attitude toward Science: Inputs to an Enhanced Students' Cognitive Performance

    ERIC Educational Resources Information Center

    Maranan, Veronique M.

    2017-01-01

    This study focused on the correlation of mastery in basic process skills and attitude toward Science to grade 7 students' performance. From the 200 respondents 74% or most of the students are normally in the age bracket for Grade 7 students which is 11 to 12. One hundred one (101) respondents or 50.5 % of the total respondents are male while 99…

  8. Student opinion in England about science and technology

    NASA Astrophysics Data System (ADS)

    Jenkins, Edgar W.

    2006-05-01

    An earlier paper in this Journal (Jenkins & Nelson, 2005) drew upon the findings of the Relevance of Science Education Project (ROSE) to report the attitudes of students in England towards their secondary school science education. The present paper draws upon the same project to explore what the same students, almost all in their penultimate year of compulsory schooling, think about science and technology. It suggests that several basic research questions need to be addressed and answered if the present widespread decline in the industrialised world in the popularity of the physical sciences as subjects of advanced study is to be halted.

  9. Role of basic biological sciences in clinical orthodontics: a case series.

    PubMed

    Davidovitch, Ze'ev; Krishnan, Vinod

    2009-02-01

    Orthodontic therapy is based on interaction between mechanics and biology. Basic biologic research aims at developing a better understanding of the mechanism of transformation of mechanical energy into biologic reactions, and exposing the reasons for iatrogenic tissue damage in orthodontics. Previous research has shown that inflammation is a major part of the biologic response to orthodontic forces. In inflammation, signal molecules that originate in remote diseased organs can reach strained paradental tissues and exacerbate the inflammatory process, leading to tissue damage. Our case series includes 3 patients, each having had systemic diseases and malocclusion. One had diabetes mellitus, Hashimoto's thyroiditis, and depression. Concern about the possible effect of these conditions on the well-being of the teeth and their surrounding tissues compelled the orthodontist to choose not to treat this patient. The other 2 patients had allergies, and 1 also had bronchial asthma and bruises. Although these conditions are thought to be risk factors for root resorption, these patients received orthodontic treatment for 2 and 3.5 years, respectively. At the end of treatment, both had excessive root resorption of many teeth. In 1 patient, this damage led to the loss of most maxillary teeth. Basic research should continue to address questions related to the biologic mechanisms of tooth movement on tissue, cellular, and molecular levels. Moreover, this research should continue to identify risk factors that might jeopardize the longevity of treated teeth. Such basic research should promote the development of new tissue-friendly and patient-friendly therapeutic methods.

  10. What Type of Faculty and Training Are Required for a Successful Basic Sciences Program?

    ERIC Educational Resources Information Center

    Adams, Anthony

    1992-01-01

    Science education for optometry must go beyond therapeutic patient management to more preparation for biologically based care. Optometry faculty should be involved in research driven by specific patient problems and should prepare professionals to address patient quality-of-life and daily living needs. Interdisciplinary collaboration is needed.…

  11. A Bayesian Mixed-Methods Analysis of Basic Psychological Needs Satisfaction through Outdoor Learning and Its Influence on Motivational Behavior in Science Class.

    PubMed

    Dettweiler, Ulrich; Lauterbach, Gabriele; Becker, Christoph; Simon, Perikles

    2017-01-01

    Research has shown that outdoor educational interventions can lead to students' increased self-regulated motivational behavior. In this study, we searched into the satisfaction of basic psychological needs (BPN), i.e., autonomy support, the learners' experience of competence, and relatedness, both within the peer group and with their teachers, through outdoor learning. From 2014 to 2016, n = 281 students attended "research weeks" at a Student Science Lab in the Alpine National Park Berchtesgaden (Germany). The program is a curriculum-based one-week residential course, centered on a 2-day research expedition. Both before and after the course, students completed a composite questionnaire addressing BPN-satisfaction and overall motivational behavior in relation to the Self-Determination Index (SDI). At the latter time-point, students also reported on their experiences during the intervention. Questionnaire data was analyzed using a set of Bayesian General Linear Models with random effects. Those quantitative measures have been complemented by and contextualized with a set of qualitative survey methods. The results showed that the basic psychological needs influence the motivational behavior in both contexts equally, however on different scale levels. The basic needs satisfaction in the outdoor context is decisively higher than indoors. Moreover, the increment of competence-experience from the school context to the hands-on outdoor program appears to have the biggest impact to students' increased intrinsic motivation during the intervention. Increased autonomy support, student-teacher relations, and student-student relations have much less or no influence on the overall difference of motivational behavior. Gender does not influence the results. The contextualization partly supports those results and provide further explanation for the students' increased self-regulation in the outdoors. They add some explanatory thrust to the argument that outdoor teaching, be it

  12. A Bayesian Mixed-Methods Analysis of Basic Psychological Needs Satisfaction through Outdoor Learning and Its Influence on Motivational Behavior in Science Class

    PubMed Central

    Dettweiler, Ulrich; Lauterbach, Gabriele; Becker, Christoph; Simon, Perikles

    2017-01-01

    Research has shown that outdoor educational interventions can lead to students' increased self-regulated motivational behavior. In this study, we searched into the satisfaction of basic psychological needs (BPN), i.e., autonomy support, the learners' experience of competence, and relatedness, both within the peer group and with their teachers, through outdoor learning. From 2014 to 2016, n = 281 students attended “research weeks” at a Student Science Lab in the Alpine National Park Berchtesgaden (Germany). The program is a curriculum-based one-week residential course, centered on a 2-day research expedition. Both before and after the course, students completed a composite questionnaire addressing BPN-satisfaction and overall motivational behavior in relation to the Self-Determination Index (SDI). At the latter time-point, students also reported on their experiences during the intervention. Questionnaire data was analyzed using a set of Bayesian General Linear Models with random effects. Those quantitative measures have been complemented by and contextualized with a set of qualitative survey methods. The results showed that the basic psychological needs influence the motivational behavior in both contexts equally, however on different scale levels. The basic needs satisfaction in the outdoor context is decisively higher than indoors. Moreover, the increment of competence-experience from the school context to the hands-on outdoor program appears to have the biggest impact to students' increased intrinsic motivation during the intervention. Increased autonomy support, student-teacher relations, and student-student relations have much less or no influence on the overall difference of motivational behavior. Gender does not influence the results. The contextualization partly supports those results and provide further explanation for the students' increased self-regulation in the outdoors. They add some explanatory thrust to the argument that outdoor teaching, be it

  13. Linking Introductory Astronomy Students' Basic Science Knowledge, Beliefs, Attitudes, Sources of Information, and Information Literacy

    ERIC Educational Resources Information Center

    Buxner, Sanlyn R.; Impey, Chris D.; Romine, James; Nieberding, Megan

    2018-01-01

    [This paper is part of the Focused Collection on Astronomy Education Research.] We report on a study of almost 13 000 undergraduate students enrolled in introductory astronomy courses at the University of Arizona. From 1989 to 2016, students completed a basic science knowledge, beliefs, and attitudes survey. From 2014 to 2016, a subset of the…

  14. A study of the academic performance of medical students in the comprehensive examination of the basic sciences according to the indices of emotional intelligence and educational status.

    PubMed

    Moslehi, Mohsen; Samouei, Rahele; Tayebani, Tayebeh; Kolahduz, Sima

    2015-01-01

    Considering the increasing importance of emotional intelligence (EI) in different aspects of life, such as academic achievement, the present survey is aimed to predict academic performance of medical students in the comprehensive examination of the basic sciences, according to the indices of emotional intelligence and educational status. The present survey is a descriptive, analytical, and cross-sectional study performed on the medical students of Isfahan, Tehran, and Mashhad Universities of Medical Sciences. Sampling the universities was performed randomly after which selecting the students was done, taking into consideration the limitation in their numbers. Based on the inclusion criteria, all the medical students, entrance of 2005, who had attended the comprehensive basic sciences examination in 2008, entered the study. The data collection tools included an Emotional Intelligence Questionnaire (standardized in Isfahan), the average score of the first to fifth semesters, total average of each of the five semesters, and the grade of the comprehensive basic sciences examination. The data were analyzed through stepwise regression coefficient by SPSS software version 15. The results indicated that the indicators of independence from an emotional intelligence test and average scores of the first and third academic semesters were significant in predicting the students' academic performance in the comprehensive basic sciences examination. According to the obtained results, the average scores of students, especially in the earlier semesters, as well as the indicators of independence and the self-esteem rate of students can influence their success in the comprehensive basic sciences examination.

  15. Group Learning Assessments as a Vital Consideration in the Implementation of New Peer Learning Pedagogies in the Basic Science Curriculum of Health Profession Programs

    PubMed Central

    Briggs, Charlotte L.; Doubleday, Alison F.

    2016-01-01

    Inspired by reports of successful outcomes in health profession education literature, peer learning has progressively grown to become a fundamental characteristic of health profession curricula. Many studies, however, are anecdotal or philosophical in nature, particularly when addressing the effectiveness of assessments in the context of peer learning. This commentary provides an overview of the rationale for using group assessments in the basic sciences curriculum of health profession programs and highlights the challenges associated with implementing group assessments in this context. The dearth of appropriate means for measuring group process suggests that professional collaboration competencies need to be more clearly defined. Peer learning educators are advised to enhance their understanding of social psychological research in order to implement best practices in the development of appropriate group assessments for peer learning. PMID:29349309

  16. Group Learning Assessments as a Vital Consideration in the Implementation of New Peer Learning Pedagogies in the Basic Science Curriculum of Health Profession Programs.

    PubMed

    Briggs, Charlotte L; Doubleday, Alison F

    2016-01-01

    Inspired by reports of successful outcomes in health profession education literature, peer learning has progressively grown to become a fundamental characteristic of health profession curricula. Many studies, however, are anecdotal or philosophical in nature, particularly when addressing the effectiveness of assessments in the context of peer learning. This commentary provides an overview of the rationale for using group assessments in the basic sciences curriculum of health profession programs and highlights the challenges associated with implementing group assessments in this context. The dearth of appropriate means for measuring group process suggests that professional collaboration competencies need to be more clearly defined. Peer learning educators are advised to enhance their understanding of social psychological research in order to implement best practices in the development of appropriate group assessments for peer learning.

  17. Changes in Study Strategies of Medical Students between Basic Science Courses and Clerkships Are Associated with Performance

    ERIC Educational Resources Information Center

    Ensminger, David C.; Hoyt, Amy E.; Chandrasekhar, Arcot J.; McNulty, John A.

    2013-01-01

    We tested the hypothesis that medical students change their study strategies when transitioning from basic science courses to clerkships, and that their study practices are associated with performance scores. Factor scores for three approaches to studying (construction, rote, and review) generated from student (n = 150) responses to a…

  18. Basic Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences, November 3-5, 2015, Rockville, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windus, Theresa; Banda, Michael; Devereaux, Thomas

    Computers have revolutionized every aspect of our lives. Yet in science, the most tantalizing applications of computing lie just beyond our reach. The current quest to build an exascale computer with one thousand times the capability of today’s fastest machines (and more than a million times that of a laptop) will take researchers over the next horizon. The field of materials, chemical reactions, and compounds is inherently complex. Imagine millions of new materials with new functionalities waiting to be discovered — while researchers also seek to extend those materials that are known to a dizzying number of new forms. Wemore » could translate massive amounts of data from high precision experiments into new understanding through data mining and analysis. We could have at our disposal the ability to predict the properties of these materials, to follow their transformations during reactions on an atom-by-atom basis, and to discover completely new chemical pathways or physical states of matter. Extending these predictions from the nanoscale to the mesoscale, from the ultrafast world of reactions to long-time simulations to predict the lifetime performance of materials, and to the discovery of new materials and processes will have a profound impact on energy technology. In addition, discovery of new materials is vital to move computing beyond Moore’s law. To realize this vision, more than hardware is needed. New algorithms to take advantage of the increase in computing power, new programming paradigms, and new ways of mining massive data sets are needed as well. This report summarizes the opportunities and the requisite computing ecosystem needed to realize the potential before us. In addition to pursuing new and more complete physical models and theoretical frameworks, this review found that the following broadly grouped areas relevant to the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) would directly affect the Basic

  19. Identifying and Addressing Student Difficulties and Misconceptions: Examples from Physics and from Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca

    2012-01-01

    Here I present my work identifying and addressing student difficulties with several materials science and physics topics. In the first part of this thesis, I present my work identifying student difficulties and misconceptions about the directional relationships between net force, velocity, and acceleration in one dimension. This is accomplished…

  20. What's hot, what's new in basic science: report from the American Transplant Congress 2015.

    PubMed

    Heeger, P S

    2015-11-01

    Research reports presented at the American Transplant Congress 2015 provided an array of basic science findings of relevance to the transplant community. Among key themes is the concept that ischemia-reperfusion injury and early posttransplantation inflammation is linked to adaptive alloimmunity and transplant injury. Molecular and cellular mechanisms contributing to these interactions were highlighted. The relevance of understanding how blocking costimulation, including CD40/CD154 interactions, affects various aspects of the alloimmune response was enhanced by the description of preclinical studies demonstrating efficacy of a unique, blocking anti-CD40 monoclonal antibody that could potentially be used in humans. The identification of mechanisms underlying interactions among T cell subsets and B cells, including follicular helper T cells, regulatory T cells, effector B cells, and regulatory B cells, provides multiple previously unrecognized targets for future therapeutic interventions. Additional reports of interest include novel insights into effects of the gut microbiome on graft survival and the ability to differentiate insulin-secreting, islet-like cells from induced pluripotent stem cells. Overall, the reported basic science findings from American Transplant Congress 2015 add to the fundamental understanding of innate and adaptive alloimmunity and provide novel and testable hypotheses that have the potential to be translated into improved clinical care of transplant patients. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  1. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  2. Program evaluation of an Integrated Basic Science Medical Curriculum in Shiraz Medical School, Using CIPP Evaluation Model

    PubMed Central

    ROOHOLAMINI, AZADEH; AMINI, MITRA; BAZRAFKAN, LEILA; DEHGHANI, MOHAMMAD REZA; ESMAEILZADEH, ZOHREH; NABEIEI, PARISA; REZAEE, RITA; KOJURI, JAVAD

    2017-01-01

    Introduction: In recent years curriculum reform and integration was done in many medical schools. The integrated curriculum is a popular concept all over the world. In Shiraz medical school, the reform was initiated by stablishing the horizontal basic science integration model and Early Clinical Exposure (ECE) for undergraduate medical education. The purpose of this study was to provide the required data for the program evaluation of this curriculum for undergraduate medical students, using CIPP program evaluation model. Methods: This study is an analytic descriptive and triangulation mixed method study which was carried out in Shiraz Medical School in 2012, based on the views of professors of basic sciences courses and first and second year medical students. The study evaluated the quality of the relationship between basic sciences and clinical courses and the method of presenting such courses based on the Context, Input, Process and Product (CIPP) model. The tools for collecting data, both quantitatively and qualitatively, were some questionnaires, content analysis of portfolios, semi- structured interview and brain storming sessions. For quantitative data analysis, SPSS software, version 14, was used. Results: In the context evaluation by modified DREEM questionnaire, 77.75%of the students believed that this educational system encourages them to actively participate in classes. Course schedule and atmosphere of class were reported suitable by 87.81% and 83.86% of students. In input domain that was measured by a researcher made questionnaire, the facilities for education were acceptable except for shortage of cadavers. In process evaluation, the quality of integrated modules presentation and Early Clinical Exposure (ECE) was good from the students’ viewpoint. In product evaluation, students’ brain storming, students’ portfolio and semi-structured interview with faculties were done, showing some positive aspects of integration and some areas that need

  3. Thin Skin, Deep Damage: Addressing the Wounded Writer in the Basic Writing Course

    ERIC Educational Resources Information Center

    Boone, Stephanie D.

    2010-01-01

    How do institutions and their writing faculties see basic writers? What assumptions about these writers drive writing curricula, pedagogies and assessments? How do writing programs enable or frustrate these writers? How might course design facilitate the outcomes we envision? This article argues that, in order to teach basic writers to enter…

  4. Clinical caring science as a scientific discipline.

    PubMed

    Rehnsfeldt, Arne; Arman, Maria; Lindström, Unni Å

    2017-09-01

    Clinical caring science will be described from a theory of science perspective. The aim of this theoretical article to give a comprehensive overview of clinical caring science as a human science-based discipline grounded in a theory of science argumentation. Clinical caring science seeks idiographic or specific variations of the ontology, concepts and theories, formulated by caring science. The rationale is the insight that the research questions do not change when they are addressed in different contexts. The academic subject contains a concept order with ethos concepts, core and basic concepts and practice concepts that unites systematic caring science with clinical caring science. In accordance with a hermeneutic tradition, the idea of the caring act is based on the degree to which the theory base is hermeneutically appropriated by the caregiver. The better the ethos, essential concepts and theories are understood, the better the caring act can be understood. In order to understand the concept order related to clinical caring science, an example is given from an ongoing project in a disaster context. The concept order is an appropriate way of making sense of the essence of clinical caring science. The idea of the concept order is that concepts on all levels need to be united with each other. A research project in clinical caring science can start anywhere on the concept order, either in ethos, core concepts, basic concepts, practice concepts or in concrete clinical phenomena, as long as no parts are locked out of the concept order as an entity. If, for example, research on patient participation as a phenomenon is not related to core and basic concepts, there is a risqué that the research becomes meaningless. © 2016 Nordic College of Caring Science.

  5. A study of the academic performance of medical students in the comprehensive examination of the basic sciences according to the indices of emotional intelligence and educational status

    PubMed Central

    Moslehi, Mohsen; Samouei, Rahele; Tayebani, Tayebeh; Kolahduz, Sima

    2015-01-01

    Background: Considering the increasing importance of emotional intelligence (EI) in different aspects of life, such as academic achievement, the present survey is aimed to predict academic performance of medical students in the comprehensive examination of the basic sciences, according to the indices of emotional intelligence and educational status. Materials and Methods: The present survey is a descriptive, analytical, and cross-sectional study performed on the medical students of Isfahan, Tehran, and Mashhad Universities of Medical Sciences. Sampling the universities was performed randomly after which selecting the students was done, taking into consideration the limitation in their numbers. Based on the inclusion criteria, all the medical students, entrance of 2005, who had attended the comprehensive basic sciences examination in 2008, entered the study. The data collection tools included an Emotional Intelligence Questionnaire (standardized in Isfahan), the average score of the first to fifth semesters, total average of each of the five semesters, and the grade of the comprehensive basic sciences examination. The data were analyzed through stepwise regression coefficient by SPSS software version 15. Results: The results indicated that the indicators of independence from an emotional intelligence test and average scores of the first and third academic semesters were significant in predicting the students’ academic performance in the comprehensive basic sciences examination. Conclusion: According to the obtained results, the average scores of students, especially in the earlier semesters, as well as the indicators of independence and the self-esteem rate of students can influence their success in the comprehensive basic sciences examination. PMID:26430693

  6. Addressing controversies in science education: a pragmatic approach to evolution education

    NASA Astrophysics Data System (ADS)

    Hildebrand, David; Bilica, Kimberly; Capps, John

    2008-09-01

    Science education controversies typically prove more intractable than those in scientific research because they involve a wider range of considerations (e.g., epistemic, social, ethical, political, and religious). How can educators acknowledge central issues in a controversy (such as evolution)? How can such problems be addressed in a way that is ethically sensitive and intellectually responsible? Drawing in part on pragmatic philosopher John Dewey, our solution is politically proactive, philosophically pragmatic, and grounded in research. Central to our proposal is (1) steps toward creating a philosophical “total attitude” that is democratic, imaginative, and hypothetical; (2) a deeper understanding of how scientific theories can be pragmatically true; and (3) an assessment of differing pedagogical approaches for teaching evolution in the classroom.

  7. Basic Research in the United States.

    ERIC Educational Resources Information Center

    Handler, Philip

    1979-01-01

    Presents a discussion of the development of basic research in the U.S. since World War II. Topics include the creation of the federal agencies, physics and astronomy, chemistry, earth science, life science, the environment, and social science. (BB)

  8. Vitamin D: Moving Forward to Address Emerging Science

    PubMed Central

    Sempos, Christopher T.; Davis, Cindy D.; Brannon, Patsy M.

    2017-01-01

    The science surrounding vitamin D presents both challenges and opportunities. Although many uncertainties are associated with the understandings concerning vitamin D, including its physiological function, the effects of excessive intake, and its role in health, it is at the same time a major interest in the research and health communities. The approach to evaluating and interpreting the available evidence about vitamin D should be founded on the quality of the data and on the conclusions that take into account the totality of the evidence. In addition, these activities can be used to identify critical data gaps and to help structure future research. The Office of Dietary Supplements (ODS) at the National Institutes of Health has as part of its mission the goal of supporting research and dialogues for topics with uncertain data, including vitamin D. This review considers vitamin D in the context of systematically addressing the uncertainty and in identifying research needs through the filter of the work of ODS. The focus includes the role of systematic reviews, activities that encompass considerations of the totality of the evidence, and collaborative activities to clarify unknowns or to fix methodological problems, as well as a case study using the relationship between cancer and vitamin D. PMID:29194368

  9. How much basic science content do second-year medical students remember from their first year?

    PubMed

    Schneid, Stephen D; Pashler, Hal; Armour, Chris

    2018-01-23

    While most medical students generally perform well on examinations and pass their courses during the first year, we do not know how much basic science content they retain at the start of their second year and how that relates to minimal competency set by the faculty. In the fall of 2014, before starting their second-year courses, 27 medical students volunteered to participate in a study of long-term retention of the basic sciences by taking a "retention exam" after a delay of 5-11 months. The overall mean performance when the students initially answered the 60 multiple choice questions (MCQs) was 82.8% [standard deviation (SD) = 7.4%], which fell to 50.1% (SD = 12.1%) on the retention exam. This gave a mean retention of 60.4% (SD = 12.8%) with the retention for individual students ranging from 37 to 81%. The majority of students (23/27; 85%) fell below the minimal level of competency to start their second year. Medical educators should be more aware of the significant amount of forgetting that occurs during training and make better use of instructional strategies that promote long-term learning such as retrieval practice, interleaving, and spacing.

  10. Exploration of an E-Learning Model to Foster Critical Thinking on Basic Science Concepts during Work Placements

    ERIC Educational Resources Information Center

    de Leng, Bas A.; Dolmans, Diana H. J. M.; Jobsis, Rijn; Muijtjens, Arno M. M.; van der Vleuten, Cees P. M.

    2009-01-01

    We designed an e-learning model to promote critical thinking about basic science topics in online communities of students during work placements in higher education. To determine the effectiveness and efficiency of the model we explored the online discussions in two case studies. We evaluated the quantity of the interactions by looking at…

  11. Tapping into Basic 7-9 Science and Technology Teachers' Conceptions of Indigenous Knowledge in Imo State, Nigeria

    ERIC Educational Resources Information Center

    Singh-Pillay, Asheena; Alant, Busisiwe P.; Nwokocha, Godson

    2017-01-01

    The discussion on how to integrate African indigenous knowledge (IK) into mainstream Science and Technology schooling prevails. Nigeria's colonised school curriculum is antithetical to its rich IK heritage. Guided by postcolonial theory, and the need for a culturally relevant and decolonised curriculum, this paper sought to explore seven basic 7-9…

  12. Big Science and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Giudice, Gian Francesco

    2012-03-01

    The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. I then compare the methodologies of Small and Big Science, emphasizing their mutual linkage. Finally, after examining the cost of Big Science projects, I highlight several general aspects of their beneficial implications for society.

  13. Landscape of Innovation for Cardiovascular Pharmaceuticals: From Basic Science to New Molecular Entities.

    PubMed

    Beierlein, Jennifer M; McNamee, Laura M; Walsh, Michael J; Kaitin, Kenneth I; DiMasi, Joseph A; Ledley, Fred D

    2017-07-01

    This study examines the complete timelines of translational science for new cardiovascular therapeutics from the initiation of basic research leading to identification of new drug targets through clinical development and US Food and Drug Administration (FDA) approval of new molecular entities (NMEs) based on this research. This work extends previous studies by examining the association between the growth of research on drug targets and approval of NMEs associated with these targets. Drawing on research on innovation in other technology sectors, where technological maturity is an important determinant in the success or failure of new product development, an analytical model was used to characterize the growth of research related to the known targets for all 168 approved cardiovascular therapeutics. Categorizing and mapping the technological maturity of cardiovascular therapeutics reveal that (1) there has been a distinct transition from phenotypic to targeted methods for drug discovery, (2) the durations of clinical and regulatory processes were significantly influenced by changes in FDA practice, and (3) the longest phase of the translational process was the time required for technology to advance from initiation of research to a statistically defined established point of technology maturation (mean, 30.8 years). This work reveals a normative association between metrics of research maturation and approval of new cardiovascular therapeutics and suggests strategies for advancing translational science by accelerating basic and applied research and improving the synchrony between the maturation of this research and drug development initiatives. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  14. A Case Based-Shared Teaching Approach in Undergraduate Medical Curriculum: A Way for Integration in Basic and Clinical Sciences.

    PubMed

    Peiman, Soheil; Mirzazadeh, Azim; Alizadeh, Maryam; Mortaz Hejri, Sara; Najafi, Mohammad-Taghi; Tafakhori, Abbas; Larti, Farnoosh; Rahimi, Besharat; Geraiely, Babak; Pasbakhsh, Parichehr; Hassanzadeh, Gholamreza; Nabavizadeh Rafsanjani, Fatemeh; Ansari, Mohammad; Allameh, Seyed Farshad

    2017-04-01

    To present a multiple-instructor, active-learning strategy in the undergraduate medical curriculum. This educational research is a descriptive one. Shared teaching sessions, were designed for undergraduate medical students in six organ-system based courses. Sessions that involved in-class discussions of integrated clinical cases were designed implemented and moderated by at least 3 faculties (clinicians and basic scientists). The participants in this study include the basic sciences medical students of The Tehran University of Medical Sciences. Students' reactions were assessed using an immediate post-session evaluation form on a 5-point Likert scale. Six two-hour sessions for 2 cohorts of students, 2013 and 2014 medical students during their two first years of study were implemented from April 2014 to March 2015. 17 faculty members participated in the program, 21 cases were designed, and participation average was 60 % at 6 sessions. Students were highly appreciative of this strategy. The majority of students in each course strongly agreed that this learning practice positively contributed to their learning (78%) and provided better understanding and application of the material learned in an integrated classroom course (74%). They believed that the sessions affected their view about medicine (73%), and should be continued in future courses (80%). The percentage demonstrates the average of all courses. The program helped the students learn how to apply basic sciences concepts to clinical medicine. Evaluation of the program indicated that students found the sessions beneficial to their learning.

  15. Trends of Students of the College of Basic Science towards Teaching the Course of Athletics and Health by Using Computer Technology in the World Islamic Sciences and Education University (WISE)

    ERIC Educational Resources Information Center

    Salameh, Ibrahim Abdul Ghani; Khawaldeh, Mohammad Falah Ali

    2014-01-01

    The Study aimed at identifying the trends of the students of basic sciences College in the World Islamic Sciences and Education University towards teaching health and sport course by using computer technology as a teaching method, and to identify also the impact of the variables of academic level and the gender on the students' trends. The study…

  16. On the problem of making science attractive for women and minorities: An annotated bibliography

    NASA Astrophysics Data System (ADS)

    Yarrison-Rice, Jan M.

    1995-03-01

    How can educators assess and address the lack of interest exhibited by underrepresented youth in science? What strategies can be employed to recruit and retain these young people? Along with a bibliography, the author provides the reader with a brief summary of 20 notable works in the field of recruitment and retention of underrepresented students in math and science. Although highlighted retention and intervention programs reported herein are targeted at young women in particular, many of the suggested strategies are applicable to all students regardless of race, gender, or socio-economic background. It provides scientists who have an interest in science education with basic literature addressing this topic.

  17. E-Basics: Online Basic Training in Program Evaluation

    ERIC Educational Resources Information Center

    Silliman, Ben

    2016-01-01

    E-Basics is an online training in program evaluation concepts and skills designed for youth development professionals, especially those working in nonformal science education. Ten hours of online training in seven modules is designed to prepare participants for mentoring and applied practice, mastery, and/or team leadership in program evaluation.…

  18. A review of strategies to address the shortage of science and mathematics educators in grades 10-12

    NASA Astrophysics Data System (ADS)

    Magano, Florence Lesedi

    For an education system to function effectively it is important that its planning functions are executed effectively and efficiently. Among others this implies that the system must know what the teacher supply and demand is and how it will change in time. If the teacher supply and demand is known it could result in sound intervention strategies being developed and implemented. Education planners will be able to plan for the number of bursaries to be awarded and in which subject fields; it will be known how many foreign teachers to employ and for which subjects. This is the basic rationale that underpins this study. This study explored the problem of teacher demand and supply in the Further Education and Training (FET) phase (Grades 10 to 12) in South Africa and offers a critical analysis of strategies adopted by Provincial Education Departments in an endeavour to diminish the demand for teachers, specifically for Mathematics and Science, in rural and poor schools. Initially the study involved a secondary data analysis to extrapolate the demand and supply of teachers in Mathematics and Science over the next ten years. The first key finding of the study was that the data needed for such an analysis does not exist in any reliable form that would facilitate the development of such a projection. What the study had to rely on was anecdotal evidence that suggests that a shortage of Mathematics and Science teachers does exist and that posts are often filled by unqualified and under-qualified staff. In the second phase of the research in which the study explored the effectiveness of strategies developed to address the shortage of Mathematics and Science teachers, a qualitative research approach was adopted within a descriptive interpretive design. The views and opinions of human resource managers responsible for post provisioning in schools were explored through in-depth interviews to understand the types of strategy adopted by the provinces, their potential to alleviate

  19. Improving Medical Students' Application of Knowledge and Clinical Decision-Making Through a Porcine-Based Integrated Cardiac Basic Science Program.

    PubMed

    Stott, Martyn Charles; Gooseman, Michael Richard; Briffa, Norman Paul

    2016-01-01

    Despite the concerted effort of modern undergraduate curriculum designers, the ability to integrate basic sciences in clinical rotations is an ongoing problem in medical education. Students and newly qualified doctors themselves report worry about the effect this has on their clinical performance. There are examples in the literature to support development of attempts at integrating such aspects, but this "vertical integration" has proven to be difficult. We designed an expert-led integrated program using dissection of porcine hearts to improve the use of cardiac basic sciences in clinical medical students' decision-making processes. To our knowledge, this is the first time in the United Kingdom that an animal model has been used to teach undergraduate clinical anatomy to medical students to direct wider application of knowledge. Action research methodology was used to evaluate the local curriculum and assess learners needs, and the agreed teaching outcomes, methods, and delivery outline were established. A total of 18 students in the clinical years of their degree program attended, completing precourse and postcourse multichoice questions examinations and questionnaires to assess learners' development. Student's knowledge scores improved by 17.5% (p = 0.01; students t-test). Students also felt more confident at applying underlying knowledge to decision-making and diagnosis in clinical medicine. An expert teacher (consultant surgeon) was seen as beneficial to students' understanding and appreciation. This study outlines how the development of a teaching intervention using porcine-based methods successfully improved both student's knowledge and application of cardiac basic sciences. We recommend that clinicians fully engage with integrating previously learnt underlying sciences to aid students in developing decision-making and diagnostic skills as well as a deeper approach to learning. Copyright © 2016 Association of Program Directors in Surgery. Published by

  20. Pharmacy students' use and perceptions of Apple mobile devices incorporated into a basic health science laboratory.

    PubMed

    Bryant, Jennifer E; Richard, Craig A H

    To describe pharmacy students' use of mobile devices in a basic health science laboratory and to report the students' perceptions on how solving cases with their mobile devices influenced their attitudes, abilities, and view on the use of mobile devices as tools for pharmacists. First-year pharmacy students utilized mobile devices to solve clinical case studies in a basic health sciences laboratory. A pre-survey and two post-surveys were administered to assess the students' comfort, awareness, use, and perceptions on the use of their mobile devices and apps. The pre-survey and first post-survey each had a response rate of 99%, and the second post-survey had a response rate of 100%. In comparing the pre-survey and first post-survey data, there was a statistically significant increase in the number of students that agreed or strongly agreed that they were more comfortable utilizing their mobile device (p = 0.025), they were more aware of apps for pharmacists (p < 0.005), and they have used more apps that can be useful for pharmacists (p < 0.005). The second post-survey demonstrated that over 78% of students agreed or strongly agreed that completing the case studies influenced them to be more comfortable with their mobile devices, to be more aware of apps that can be useful for pharmacists, and to be more agreeable with mobile device utilization by pharmacists in improving patient care. In addition, the second post-survey also demonstrated that 84% of students responded that using their mobile devices to solve the cases influenced them to either use their mobile device in a clinical setting for a clinical and/or pharmacy-related purpose for the first time or to use it more frequently for this purpose. The use of mobile devices to solve clinical cases in a first-year basic health science laboratory course was perceived as beneficial by students and influenced them to utilize their mobile device even more in a pharmacy practice setting. Copyright © 2016 Elsevier Inc

  1. Making Basic Science Studies in Glaucoma More Clinically Relevant: The Need for a Consensus.

    PubMed

    Toris, Carol B; Gelfman, Claire; Whitlock, Andy; Sponsel, William E; Rowe-Rendleman, Cheryl L

    2017-09-01

    Glaucoma is a chronic, progressive, and debilitating optic neuropathy that causes retinal damage and visual defects. The pathophysiologic mechanisms of glaucoma remain ill-defined, and there is an indisputable need for contributions from basic science researchers in defining pathways for translational research. However, glaucoma researchers today face significant challenges due to the lack of a map of integrated pathways from bench to bedside and the lack of consensus statements to guide in choosing the right research questions, techniques, and model systems. Here, we present the case for the development of such maps and consensus statements, which are critical for faster development of the most efficacious glaucoma therapy. We underscore that interrogating the preclinical path of both successful and unsuccessful clinical programs is essential to defining future research. One aspect of this is evaluation of available preclinical research tools. To begin this process, we highlight the utility of currently available animal models for glaucoma and emphasize that there is a particular need for models of glaucoma with normal intraocular pressure. In addition, we outline a series of discoveries from cell-based, animal, and translational research that begin to reveal a map of glaucoma from cell biology to physiology to disease pathology. Completion of these maps requires input and consensus from the global glaucoma research community. This article sets the stage by outlining various approaches to such a consensus. Together, these efforts will help accelerate basic science research, leading to discoveries with significant clinical impact for people with glaucoma.

  2. The Impact of Emotion on Learners' Application of Basic Science Principles to Novel Problems.

    PubMed

    McConnell, Meghan M; Monteiro, Sandra; Pottruff, Molly M; Neville, Alan; Norman, Geoff R; Eva, Kevin W; Kulasegaram, Kulamakan

    2016-11-01

    Training to become a physician is an emotionally laden experience. Research in cognitive psychology indicates that emotions can influence learning and performance, but the materials used in such research (e.g., word lists) rarely reflect the complexity of material presented in medical school. The present study examined whether emotions influence learning of basic science principles. Fifty-five undergraduate psychology students were randomly assigned to write about positive, negative, or neutral life events for nine minutes. Participants were then taught three physiological concepts, each in the context of a single organ system. Testing consisted of 13 clinical cases, 7 presented with the same concept/organ system pairing used during training ("near transfer") and 6 with novel pairings ("far transfer"). Testing was repeated after one week with 13 additional cases. Forty-nine students provided complete data. Higher test scores were found when the concept/organ system pairing was held constant (near transfer = 51% correct vs. far = 33%; P < .001). Emotion condition influenced participants' overall performance, with individuals in the neutral condition (50.1%) performing better than those in the positive (38.2%, P < .05) and negative (37.7%, P < .001) emotion conditions. These data suggest that regardless of whether the emotion is positive or negative, mild affective states can impair learning of basic science concepts by novices. Demands on working memory and subsequent cognitive load provide a potential explanation. Future work will examine the extent to which these findings generalize to medical trainees.

  3. The role of a science story, activities, and dialogue modeled on Philosophy for Children in teaching basic science process skills to fifth graders

    NASA Astrophysics Data System (ADS)

    Ferreira, Louise Brandes Moura

    This study was an application of Philosophy for Children pedagogy to science education. It was designed to answer the question, What roles do a science story (Harry Discovers Science), multi-sensorial activities designed to accompany the story, and classroom dialogue associated with the story---all modeled on the Philosophy for Children curriculum---play in the learning processes of a class of fifth graders with regard to the basic science process skills of classification, observation, and inference? To answer the question, I collected qualitative data as I carried out a participatory study in which I taught science to fifth graders at an international, bilingual private religious school in Brasilia, Brazil for a period of one semester. Twenty-one (n = 21) children participated in the study, 10 females and 11 males, who came from a predominantly middle and upper class social background. Data were collected through student interviews, student class reflection sheets, written learning assessments, audiotapes of all class sessions, including whole-class and small-class group discussions, and a videotape of one class session. Some of the key findings were that the story, activities and dialogue facilitated the children's learning in a number of ways. The story modeled the performance of classification, observation and inference skills for the children as well as reflection on the meaning of inference. The majority of the students identified with the fictional characters, particularly regarding traits such as cleverness and inquisitiveness, and with the learning context of the story. The multi-sensorial activities helped children learn observation and inference skills as well as dialogue. Dialogue also helped children self-correct and build upon each other's ideas. Some students developed theories about how ideal dialogue should work. In spite of the inherent limitations of qualitative and teacher research studies, as well as the limitations of this particular study

  4. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

    ERIC Educational Resources Information Center

    Kurki-Suonio, T.; Hakola, A.

    2007-01-01

    In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in…

  5. Discrimination, developmental science, and the law: addressing dramatic shifts in civil rights jurisprudence.

    PubMed

    Levesque, Roger J R

    2014-01-01

    The civil rights movement fostered dramatic shifts in legal responses to discrimination based on race, gender, and a host of other group characteristics. The legal system now evinces yet another dramatic shift, as it moves from considering difference to focusing on neutrality, from efforts that seek to counter subjugation to those that adopt a "color-blind" approach. The shifting approach already has reached laws regulating responses to the group that spurred massive civil rights reform: minority youth. The shift requires a different body of empirical evidence to address it and a new look at equality jurisprudence. This article notes the need to turn to the current understanding of prejudice and discrimination for guidance, and uses, as illustration, developmental science to shed light on the development, manifestation, and alleviation of invidious discrimination. Using that understanding, the analysis details how the legal system can benefit from that research and better address discrimination in light of dramatic changes in law. The article articulates the need to address discrimination by recognizing and enlisting the law's inculcative powers through multiple sites of inculcation, ranging from families, schools, health and justice systems to religious and community groups. The discussion concludes with brief suggestions for reform benefiting from understandings of prejudice and its expression. (c) 2014 APA, all rights reserved.

  6. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School

    PubMed Central

    Olopade, Funmilayo Eniola; Adaramoye, Oluwatosin Adekunle; Raji, Yinusa; Fasola, Abiodun Olubayo; Olapade-Olaopa, Emiola Oluwabunmi

    2016-01-01

    The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the “old” curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula successfully. The modifications to the teaching and assessment of the core basic medical science subjects have resulted in improved learning and performance at the final examinations. PMID:27486351

  7. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School.

    PubMed

    Olopade, Funmilayo Eniola; Adaramoye, Oluwatosin Adekunle; Raji, Yinusa; Fasola, Abiodun Olubayo; Olapade-Olaopa, Emiola Oluwabunmi

    2016-01-01

    The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the "old" curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula successfully. The modifications to the teaching and assessment of the core basic medical science subjects have resulted in improved learning and performance at the final examinations.

  8. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan - Final.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, Douglas; Solom, Matthew

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  9. Environments. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    Presented is a teacher's guide to an elementary science unit designed for use with fourth grade, or higher, students in the Trust Territory of Micronesia. Although there is a degree of similarity to curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaption or edition of…

  10. Populations. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    This teacher's guide is for an elementary school science unit designed for use with third grade (or older) children in the Trust Territory of Micronesia. Although there is a degree of similarity to curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaptation or edition of…

  11. Representing the "Other": Basic Writers and the Teaching of Basic Writing. Refiguring English Studies.

    ERIC Educational Resources Information Center

    Horner, Bruce; Lu, Min-Zhan

    Intended for teachers of basic writing, this book contains a collection of new and updated essays addressing issues surrounding underprepared writers. It maps errors and expectations for basic writing and develops teaching approaches that will be effective in a social and political world. The book considers concepts such as the possibility of…

  12. Adult Basic Education and Self-Esteem: Practical Strategies for Addressing Self-Esteem Problems among Basic Skills Students.

    ERIC Educational Resources Information Center

    Kirstein, Kurt D.

    The strategies used by practicing adult basic education (ABE) teachers to retain students with poor self-esteem were examined through an Internet survey that was sent to 115 ABE instructors at community colleges in Washington. The survey, which contained questions about the prevalence of poor self-esteem among ABE dropouts, specific behaviors…

  13. Children and Their Basic Needs.

    ERIC Educational Resources Information Center

    Prince, Debra Lindsey; Howard, Esther M.

    2002-01-01

    Describes obstacles presented by poverty in the fulfillment of the basic needs of children. Individually addresses Maslow's five basic needs with regard to children reared in poverty: (1) physiological needs; (2) safety needs; (3) belonging and love needs; (4) self-esteem needs; and (5) self-actualization needs. (Author/SD)

  14. The Articulation of Integration of Clinical and Basic Sciences in Concept Maps: Differences between Experienced and Resident Groups

    ERIC Educational Resources Information Center

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-01-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic…

  15. Basic Operating Mode | Materials Science | NREL

    Science.gov Websites

    indium diselenide thin film, showing elemental maps of copper (left) and indium (right). CuInSe2 thin film. Cu and In elemental maps obtained by EDS. In its basic operating mode, scanning electron

  16. The future of restorative neurosciences in stroke: driving the translational research pipeline from basic science to rehabilitation of people after stroke.

    PubMed

    Cheeran, Binith; Cohen, Leonardo; Dobkin, Bruce; Ford, Gary; Greenwood, Richard; Howard, David; Husain, Masud; Macleod, Malcolm; Nudo, Randolph; Rothwell, John; Rudd, Anthony; Teo, James; Ward, Nicholas; Wolf, Steven

    2009-02-01

    Major advances during the past 50 years highlight the immense potential for restoration of function after neural injury, even in the damaged adult human brain. Yet, the translation of these advances into clinically useful treatments is painstakingly slow. Here, we consider why the traditional model of a "translational research pipeline" that transforms basic science into novel clinical practice has failed to improve rehabilitation practice for people after stroke. We find that (1) most treatments trialed in vitro and in animal models have not yet resulted in obviously useful functional gains in patients; (2) most clinical trials of restorative treatments after stroke have been limited to small-scale studies; (3) patient recruitment for larger clinical trials is difficult; (4) the determinants of patient outcomes and what patients want remain complex and ill-defined, so that basic scientists have no clear view of the clinical importance of the problems that they are addressing; (5) research in academic neuroscience centers is poorly integrated with practice in front-line hospitals and the community, where the majority of patients are treated; and (6) partnership with both industry stakeholders and patient pressure groups is poorly developed, at least in the United Kingdom where research in the translational restorative neurosciences in stroke depends on public sector research funds and private charities. We argue that interaction between patients, front-line clinicians, and clinical and basic scientists is essential so that they can explore their different priorities, skills, and concerns. These interactions can be facilitated by funding research consortia that include basic and clinical scientists, clinicians and patient/carer representatives with funds targeted at those impairments that are major determinants of patient and carer outcomes. Consortia would be instrumental in developing a lexicon of common methods, standardized outcome measures, data sharing and

  17. The Future of Restorative Neurosciences in Stroke: Driving the Translational Research Pipeline From Basic Science to Rehabilitation of People After Stroke

    PubMed Central

    Cheeran, Binith; Cohen, Leonardo; Dobkin, Bruce; Ford, Gary; Greenwood, Richard; Howard, David; Husain, Masud; Macleod, Malcolm; Nudo, Randolph; Rothwell, John; Rudd, Anthony; Teo, James; Ward, Nicholas; Wolf, Steven

    2011-01-01

    Background Major advances during the past 50 years highlight the immense potential for restoration of function after neural injury, even in the damaged adult human brain. Yet, the translation of these advances into clinically useful treatments is painstakingly slow. Objective Here, we consider why the traditional model of a “translational research pipeline” that transforms basic science into novel clinical practice has failed to improve rehabilitation practice for people after stroke. Results We find that (1) most treatments trialed in vitro and in animal models have not yet resulted in obviously useful functional gains in patients; (2) most clinical trials of restorative treatments after stroke have been limited to small-scale studies; (3) patient recruitment for larger clinical trials is difficult; (4) the determinants of patient outcomes and what patients want remain complex and ill-defined, so that basic scientists have no clear view of the clinical importance of the problems that they are addressing; (5) research in academic neuroscience centers is poorly integrated with practice in front-line hospitals and the community, where the majority of patients are treated; and (6) partnership with both industry stakeholders and patient pressure groups is poorly developed, at least in the United Kingdom where research in the translational restorative neurosciences in stroke depends on public sector research funds and private charities. Conclusions We argue that interaction between patients, front-line clinicians, and clinical and basic scientists is essential so that they can explore their different priorities, skills, and concerns. These interactions can be facilitated by funding research consortia that include basic and clinical scientists, clinicians and patient/carer representatives with funds targeted at those impairments that are major determinants of patient and carer outcomes. Consortia would be instrumental in developing a lexicon of common methods

  18. The California Basic Skills Initiative

    ERIC Educational Resources Information Center

    Illowsky, Barbara

    2008-01-01

    This article describes the evolution and implementation of the California Basic Skills Initiative (CA BSI), a statewide effort to address ongoing basic skills and ESL needs of community college students and of all campus faculty, administrators, and staff who support these students. CA BSI strategies include assisting every college in assessing…

  19. Pharmacology education in North American dental schools: the basic science survey series.

    PubMed

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2013-08-01

    As part of the Basic Science Survey Series (BSSS) for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed course directors of basic pharmacology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-nine of sixty-seven (73.1 percent) U.S. and Canadian dental schools. The findings suggest the following: 1) substantial variation exists in instructional hours, faculty affiliation, placement within curriculum, class size, and interdisciplinary nature of pharmacology courses; 2) pharmacology course content emphasis is similar among schools; 3) the number of contact hours in pharmacology has remained stable over the past three decades; 4) recent curricular changes were often directed towards enhancing the integrative and clinically relevant aspects of pharmacology instruction; and 5) a trend toward innovative content delivery, such as use of computer-assisted instruction applications, is evident. Data, derived from this study, may be useful to pharmacology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  20. Cutaneous Scarring: Basic Science, Current Treatments, and Future Directions.

    PubMed

    Marshall, Clement D; Hu, Michael S; Leavitt, Tripp; Barnes, Leandra A; Lorenz, H Peter; Longaker, Michael T

    2018-02-01

    Significance: Scarring of the skin from burns, surgery, and injury constitutes a major burden on the healthcare system. Patients affected by major scars, particularly children, suffer from long-term functional and psychological problems. Recent Advances: Scarring in humans is the end result of the wound healing process, which has evolved to rapidly repair injuries. Wound healing and scar formation are well described on the cellular and molecular levels, but truly effective molecular or cell-based antiscarring treatments still do not exist. Recent discoveries have clarified the role of skin stem cells and fibroblasts in the regeneration of injuries and formation of scar. Critical Issues: It will be important to show that new advances in the stem cell and fibroblast biology of scarring can be translated into therapies that prevent and reduce scarring in humans without major side effects. Future Directions: Novel therapies involving the use of purified human cells as well as agents that target specific cells and modulate the immune response to injury are currently undergoing testing. In the basic science realm, researchers continue to refine our understanding of the role that particular cell types play in the development of scar.

  1. [Current recommendations for basic/advanced life support : Addressing unanswered questions and future prospects].

    PubMed

    Fink, K; Schmid, B; Busch, H-J

    2016-11-01

    The revised guidelines for cardiopulmonary resuscitation were implemented by the European Resuscitation Council (ERC) in October 2015. There were few changes concerning basic and advanced life support; however, some issues were clarified compared to the ERC recommendations from 2010. The present paper summarizes the procedures of basic and advanced life support according to the current guidelines and highlights the updates of 2015. Furthermore, the article depicts future prospects of cardiopulmonary resuscitation that may improve outcome of patients after cardiac arrest in the future.

  2. The Translational Science Training Program at NIH: Introducing Early Career Researchers to the Science and Operation of Translation of Basic Research to Medical Interventions

    PubMed Central

    Gilliland, C. Taylor; Sittampalam, G. Sitta; Wang, Philip Y.; Ryan, Philip E.

    2016-01-01

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with sufficient education to take advantage of this growing employment sector. To help better prepare the trainees at the National Institutes of Health for possible careers in translation, we have created the Translational Science Training Program (TSTP)1. The TSTP is an intensive 2–3 day training program that introduces NIH postdoctoral trainees and graduate students to the science and operation of turning basic research discoveries into a medical therapeutic, device or diagnostic, and also exposes them to the variety of career options in translational science. Through a combination of classroom teaching from practicing experts in the various disciplines of translation and small group interactions with pre-clinical development teams, participants in the TSTP gain knowledge that will aid them in obtaining a career in translational science and building a network to make the transition to the field. PMID:27231204

  3. Assessment of knowledge and perceptions toward generic medicines among basic science undergraduate medical students at Aruba.

    PubMed

    Shankar, P Ravi; Herz, Burton L; Dubey, Arun K; Hassali, Mohamed A

    2016-10-01

    Use of generic medicines is important to reduce rising health-care costs. Proper knowledge and perception of medical students and doctors toward generic medicines are important. Xavier University School of Medicine in Aruba admits students from the United States, Canada, and other countries to the undergraduate medical (MD) program. The present study was conducted to study the knowledge and perception about generic medicines among basic science MD students. The cross-sectional study was conducted among first to fifth semester students during February 2015. A previously developed instrument was used. Basic demographic information was collected. Respondent's agreement with a set of statements was noted using a Likert-type scale. The calculated total score was compared among subgroups of respondents. One sample Kolmogorov-Smirnov test was used to study the normality of distribution, Independent samples t -test to compare the total score for dichotomous variables, and analysis of variance for others were used for statistical analysis. Fifty-six of the 85 students (65.8%) participated. Around 55% of respondents were between 20 and 25 years of age and of American nationality. Only three respondents (5.3%) provided the correct value of the regulatory bioequivalence limits. The mean total score was 43.41 (maximum 60). There was no significant difference in scores among subgroups. There was a significant knowledge gap with regard to the regulatory bioequivalence limits for generic medicines. Respondents' level of knowledge about other aspects of generic medicines was good but could be improved. Studies among clinical students in the institution and in other Caribbean medical schools are required. Deficiencies were noted and we have strengthened learning about generic medicines during the basic science years.

  4. Teaching lesbian, gay, bisexual and transgender health in a South African health sciences faculty: addressing the gap.

    PubMed

    Müller, Alexandra

    2013-12-27

    People who identity as lesbian, gay, bisexual and transgender (LGBT) have specific health needs. Sexual orientation and gender identity are social determinants of health, as homophobia and heteronormativity persist as prejudices in society. LGBT patients often experience discrimination and prejudice in health care settings. While recent South African policies recognise the need for providing LGBT specific health care, no curricula for teaching about LGBT health related issues exist in South African health sciences faculties. This study aimed to determine the extent to which LGBT health related content is taught in the University of Cape Town's medical curriculum. A curriculum mapping exercise was conducted through an online survey of all academic staff at the UCT health sciences faculty, determining LGBT health related content, pedagogical methodology and assessment. 127 academics, across 31 divisions and research units in the Faculty of Health Sciences, responded to the survey, of which 93 completed the questionnaire. Ten taught some content related to LGBT health in the MBChB curriculum. No LGBT health related content was taught in the allied health sciences curricula. The MBChB curriculum provided no opportunity for students to challenge their own attitudes towards LGBT patients, and key LGBT health topics such as safer sex, mental health, substance abuse and adolescent health were not addressed. At present, UCTs health sciences curricula do not adequately address LGBT specific health issues. Where LGBT health related content is taught in the MBChB curriculum, it is largely discretionary, unsystematic and not incorporated into the overarching structure. Coordinated initiatives to integrate LGBT health related content into all health sciences curricula should be supported, and follow an approach that challenges students to develop professional attitudes and behaviour concerning care for patients from LGBT backgrounds, as well as providing them with specific LGBT

  5. Teaching lesbian, gay, bisexual and transgender health in a South African health sciences faculty: addressing the gap

    PubMed Central

    2013-01-01

    Background People who identity as lesbian, gay, bisexual and transgender (LGBT) have specific health needs. Sexual orientation and gender identity are social determinants of health, as homophobia and heteronormativity persist as prejudices in society. LGBT patients often experience discrimination and prejudice in health care settings. While recent South African policies recognise the need for providing LGBT specific health care, no curricula for teaching about LGBT health related issues exist in South African health sciences faculties. This study aimed to determine the extent to which LGBT health related content is taught in the University of Cape Town’s medical curriculum. Methods A curriculum mapping exercise was conducted through an online survey of all academic staff at the UCT health sciences faculty, determining LGBT health related content, pedagogical methodology and assessment. Results 127 academics, across 31 divisions and research units in the Faculty of Health Sciences, responded to the survey, of which 93 completed the questionnaire. Ten taught some content related to LGBT health in the MBChB curriculum. No LGBT health related content was taught in the allied health sciences curricula. The MBChB curriculum provided no opportunity for students to challenge their own attitudes towards LGBT patients, and key LGBT health topics such as safer sex, mental health, substance abuse and adolescent health were not addressed. Conclusion At present, UCTs health sciences curricula do not adequately address LGBT specific health issues. Where LGBT health related content is taught in the MBChB curriculum, it is largely discretionary, unsystematic and not incorporated into the overarching structure. Coordinated initiatives to integrate LGBT health related content into all health sciences curricula should be supported, and follow an approach that challenges students to develop professional attitudes and behaviour concerning care for patients from LGBT backgrounds, as

  6. Investigation of Pre-Service Teachers' Opinions about Science in Terms of the Basic Elements of the Education Program

    ERIC Educational Resources Information Center

    Sengul, Ozge Aydin

    2016-01-01

    The purpose of the current study is to investigate the pre-service teachers' opinions about science within the context of the basic elements of the education program, such as objectives, content, learning-teaching process and evaluation. The study was designed as a case study, one of the qualitative research methods. The participants of the study…

  7. Online Learning Tools as Supplements for Basic and Clinical Science Education.

    PubMed

    Ellman, Matthew S; Schwartz, Michael L

    2016-01-01

    Undergraduate medical educators are increasingly incorporating online learning tools into basic and clinical science curricula. In this paper, we explore the diversity of online learning tools and consider the range of applications for these tools in classroom and bedside learning. Particular advantages of these tools are highlighted, such as delivering foundational knowledge as part of the "flipped classroom" pedagogy and for depicting unusual physical examination findings and advanced clinical communication skills. With accelerated use of online learning, educators and administrators need to consider pedagogic and practical challenges posed by integrating online learning into individual learning activities, courses, and curricula as a whole. We discuss strategies for faculty development and the role of school-wide resources for supporting and using online learning. Finally, we consider the role of online learning in interprofessional, integrated, and competency-based applications among other contemporary trends in medical education are considered.

  8. Online Learning Tools as Supplements for Basic and Clinical Science Education

    PubMed Central

    Ellman, Matthew S.; Schwartz, Michael L.

    2016-01-01

    Undergraduate medical educators are increasingly incorporating online learning tools into basic and clinical science curricula. In this paper, we explore the diversity of online learning tools and consider the range of applications for these tools in classroom and bedside learning. Particular advantages of these tools are highlighted, such as delivering foundational knowledge as part of the “flipped classroom” pedagogy and for depicting unusual physical examination findings and advanced clinical communication skills. With accelerated use of online learning, educators and administrators need to consider pedagogic and practical challenges posed by integrating online learning into individual learning activities, courses, and curricula as a whole. We discuss strategies for faculty development and the role of school-wide resources for supporting and using online learning. Finally, we consider the role of online learning in interprofessional, integrated, and competency-based applications among other contemporary trends in medical education are considered. PMID:29349323

  9. Addressing Student Diversity and Equity

    ERIC Educational Resources Information Center

    Januszyk, Rita; Miller, Emily C.; Lee, Okhee

    2016-01-01

    While student demographics continue to change nationwide, science achievement gaps persist, as measured by the National Assessment of Educational Progress (NCES 2012). As traditional racial and ethnic minority students have become the numeric majority (NCES 2013), teaching science for all increasingly means addressing diverse student populations.…

  10. [MD PhD programs: Providing basic science education for ophthalmologists].

    PubMed

    Spaniol, K; Geerling, G

    2015-06-01

    Enrollment in MD PhD programs offers the opportunity of a basic science education for medical students and doctors. These programs originated in the USA where structured programs have been offered for many years, but now German universities also run MD PhD programs. The MD PhD programs provided by German universities were investigated regarding entrance requirements, structure and financing modalities. An internet and telephone-based search was carried out. Out of 34 German universities 22 offered MD PhD programs. At 15 of the 22 universities a successfully completed course of studies in medicine was required for enrollment, 7 programs admitted medical students in training and 7 programs required a medical doctoral thesis, which had to be completed with at least a grade of magna cum laude in 3 cases. Financing required scholarships in many cases. Several German universities currently offer MD PhD programs; however, these differ considerably regarding entrance requirements, structure and financing. A detailed analysis investigating the success rates of these programs (e.g. successful completion and career paths of graduates) would be of benefit.

  11. BASIC STEPS IN DESIGNING SCIENCE LABORATORIES.

    ERIC Educational Resources Information Center

    WHITNEY, FRANK L.

    PLANNERS OF CURRENT UNIVERSITY LABORATORIES OFTEN MAKE THE SAME MISTAKES MADE BY INDUSTRIAL LABORATORIES 20 YEARS AGO. THIS CAN BE REMEDIED BY INCREASED COMMUNICATION BETWEEN SCIENTISTS AND DESIGNERS IN SEMINARS DEFINING THE BASIC NEEDS OF A PARTICULAR LABORATORY SITUATION. ELECTRONIC AND MECHANICAL EQUIPMENT ACCOUNT FOR OVER 50 PER CENT OF TOTAL…

  12. Basic science and clinical management of painful and non-painful chemotherapy-related neuropathy

    PubMed Central

    Kim, Joyce H.; Dougherty, Patrick M.; Abdi, Salahadin

    2017-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting toxicity of several chemotherapeutics used in the treatment of all the most common malignancies. There are several defined mechanisms of nerve damage that take place along different areas of the peripheral and the central nervous system. Treatment is based on symptom management and there are several classes of medications found to be efficacious in the treatment of neuropathic pain. Neuropathic pain that persists despite appropriate pharmacotherapy may respond to interventional procedures that span a range of invasiveness. The purpose of this review article is to examine the basic science of neuropathy and currently available treatment options in the context of chemotherapy induced peripheral neuropathy. PMID:25584767

  13. Neurosurgical education: the "other" competencies. The 2003 presidential address.

    PubMed

    Heros, Roberto C

    2003-10-01

    In his 2003 Presidential Address to the American Association of Neurological Surgeons, Dr. Heros discusses his personal additions to the six basic competencies for which all neurosurgical residents must be tested. The basic competencies are as follows: 1) patient care; 2) medical knowledge; 3) practice-based learning and improvement; 4) interpersonal and communication skills; 5) professionalism; and 6) system-based practice. To these, Dr. Heros proposes to add six supplemental competencies: 1) intellectual honesty, which involves frank discussions about patient complications and admissions of the physician's frailties; 2) scholarship--the art and science of medicine, which recognizes the value of evidence-based medicine but does not discount knowledge derived from experience; 3) practicing in a hyperlegalistic society, which involves tailoring informed consent to fit individual patients' circumstances; 4) time- and cost-efficient practices, in which the physician strives to conserve time and resources by forgoing testing that is not strictly necessary, doing only what is needed to return patients to wellness; 5) approach to patients, which entails acknowledging and respecting the dignity of all patients; and 6) pride in being a neurosurgeon, which carries a sense of elitism without arrogance.

  14. Basic Emotions, Natural Kinds, Emotion Schemas, and a New Paradigm.

    PubMed

    Izard, Carroll E

    2007-09-01

    Research on emotion flourishes in many disciplines and specialties, yet experts cannot agree on its definition. Theorists and researchers use the term emotion in ways that imply different processes and meanings. Debate continues about the nature of emotions, their functions, their relations to broad affective dimensions, the processes that activate them, and their role in our daily activities and pursuits. I will address these issues here, specifically in terms of basic emotions as natural kinds, the nature of emotion schemas, the development of emotion-cognition relations that lead to emotion schemas, and discrete emotions in relation to affective dimensions. Finally, I propose a new paradigm that assumes continual emotion as a factor in organizing consciousness and as an influence on mind and behavior. The evidence reviewed suggests that a theory that builds on concepts of both basic emotions and emotion schemas provides a viable research tool and is compatible with more holistic or dimensional approaches. © 2007 Association for Psychological Science.

  15. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan-Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solom, Matthew; Ross, Kyle; Cardoni, Jeffrey N.

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  16. Embryology and histology education in North American dental schools: the Basic Science Survey Series.

    PubMed

    Burk, Dorothy T; Lee, Lisa M J; Lambert, H Wayne

    2013-06-01

    As part of the Basic Science Survey Series (BSSS) for Dentistry, members of the American Dental Education Association (ADEA) Anatomical Sciences Section surveyed faculty members teaching embryology and histology courses at North American dental schools. The survey was designed to assess, among other things, curriculum content, utilization of laboratories, use of computer-assisted instruction (CAI), and recent curricular changes. Responses were received from fifty-nine (88.1 percent) of the sixty-seven U.S. and Canadian dental schools. Findings suggest the following: 1) a trend toward combining courses is evident, though the integration was predominantly discipline-based; 2) embryology is rarely taught as a stand-alone course, as content is often covered in gross anatomy, oral histology, and/or in an integrated curriculum; 3) the number of contact hours in histology is decreasing; 4) a trend toward reduction in formal laboratory sessions, particularly in embryology, is ongoing; and 5) use of CAI tools, including virtual microscopy, in both embryology and histology has increased. Additionally, embryology and histology content topic emphasis is identified within this study. Data, derived from this study, may be useful to new instructors, curriculum and test construction committees, and colleagues in the anatomical sciences, especially when determining a foundational knowledge base.

  17. Beyond Evolution: Addressing Broad Interactions between Science and Religion in Science Teacher Education

    ERIC Educational Resources Information Center

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-01-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion…

  18. Basic Skills Applications in Occupational Investigation.

    ERIC Educational Resources Information Center

    Hendrix, Mary

    This guide contains 50 lesson plans for learning activities that incorporate basic skills into content areas of career education, mathematics, science, social studies, communications, and productive work habits. Each lesson consists of a purpose, basic skills applications, approximate time required, materials needed, things for the teacher to do…

  19. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfacesmore » for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.« less

  20. DOI Climate Science Centers--Regional science to address management priorities

    USGS Publications Warehouse

    O'Malley, Robin

    2012-01-01

    Our Nation's lands, waters, and ecosystems and the living and cultural resources they contain face myriad challenges from invasive species, the effects of changing land and water use, habitat fragmentation and degradation, and other influences. These challenges are compounded by increasing influences from a changing climate—higher temperatures, increasing droughts, floods, and wildfires, and overall increasing variability in weather and climate. The Department of the Interior (DOI) has established eight regional Climate Science Centers (CSC) (fig. 1) that will provide scientific information and tools to natural and cultural resource managers as they plan for conserving these resources in a changing world. The U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) is managing the CSCs on behalf of the DOI.

  1. The translational science training program at NIH: Introducing early career researchers to the science and operation of translation of basic research to medical interventions.

    PubMed

    Gilliland, C Taylor; Sittampalam, G Sitta; Wang, Philip Y; Ryan, Philip E

    2017-01-02

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with sufficient education to take advantage of this growing employment sector. To help better prepare the trainees at the National Institutes of Health for possible careers in translation, we have created the Translational Science Training Program (TSTP). The TSTP is an intensive 2- to 3-day training program that introduces NIH postdoctoral trainees and graduate students to the science and operation of turning basic research discoveries into a medical therapeutic, device or diagnostic, and also exposes them to the variety of career options in translational science. Through a combination of classroom teaching from practicing experts in the various disciplines of translation and small group interactions with pre-clinical development teams, participants in the TSTP gain knowledge that will aid them in obtaining a career in translational science and building a network to make the transition to the field. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):13-24, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  2. A pilot study designed to acquaint medical educators with basic pedagogic principles.

    PubMed

    McLeod, P J; Brawer, J; Steinert, Y; Chalk, C; McLeod, A

    2008-02-01

    Faculty development activities in medical schools regularly target teaching behaviours but rarely address basic pedagogic principles underlying those behaviours. Although many teachers have an intuitive or tacit knowledge of basic pedagogic principles, overt knowledge of fundamental educational principles is rare. We conducted a short-term pilot study designed to transform teachers' tacit knowledge into explicit knowledge of pedagogic principles. We hypothesized that conscious awareness of these principles will positively influence their teaching effectiveness. The intervention included a workshop, provision of a workbook on pedagogic principles and free access to educational consultants. For the intervention, we chose a purposive sample of experienced teachers at our medical school. Evaluation of the impact of the intervention using questionnaires and semi-structured interviews revealed three notable findings; 1. Participants were surprised to discover the existence of an extensive body of pedagogic science underlying teaching and learning. 2. They were enthusiastic about the intervention and expressed interest in learning more about basic pedagogic principles. 3. The knowledge acquired had an immediate impact on their teaching.

  3. Perceptions of D.M.D. student readiness for basic science courses in the United States: can online review modules help?

    PubMed

    Miller, C J; Aiken, S A; Metz, M J

    2015-02-01

    There can be a disconnect between the level of content covered in undergraduate coursework and the expectations of professional-level faculty of their incoming students. Some basic science faculty members may assume that students have a good knowledge base in the material and neglect to appropriately review, whilst others may spend too much class time reviewing basic material. It was hypothesised that the replacement of introductory didactic physiology lectures with interactive online modules could improve student preparedness prior to lectures. These modules would also allow faculty members to analyse incoming student abilities and save valuable face-to-face class time for alternative teaching strategies. Results indicated that the performance levels of incoming U.S. students were poor (57% average on a pre-test), and students often under-predicted their abilities (by 13% on average). Faculty expectations varied greatly between the different content areas and did not appear to correlate with the actual student performance. Three review modules were created which produced a statistically significant increase in post-test scores (46% increase, P < 0.0001, n = 114-115). The positive results of this study suggest a need to incorporate online review units in the basic science dental school courses and revise introductory material tailored to students' strengths and needs.

  4. How neuroscience is taught to North American dental students: results of the Basic Science Survey Series.

    PubMed

    Gould, Douglas J; Clarkson, Mackenzie J; Hutchins, Bob; Lambert, H Wayne

    2014-03-01

    The purpose of this study was to determine how North American dental students are taught neuroscience during their preclinical dental education. This survey represents one part of a larger research project, the Basic Science Survey Series for Dentistry, which covers all of the biomedical science coursework required of preclinical students in North American dental schools. Members of the Section on Anatomical Sciences of the American Dental Education Association assembled, distributed, and analyzed the neuroscience survey, which had a 98.5 percent response from course directors of the sixty-seven North American dental schools. The eighteen-item instrument collected demographic data on the course directors, information on the content in each course, and information on how neuroscience content is presented. Findings indicate that 1) most neuroscience instruction is conducted by non-dental school faculty members; 2) large content variability exists between programs; and 3) an increase in didactic instruction, integrated curricula, and use of computer-aided instruction is occurring. It is anticipated that the information derived from the survey will help guide neuroscience curricula in dental schools and aid in identifying appropriate content.

  5. Regenerative dentistry: translating advancements in basic science research to the dental practice.

    PubMed

    Garcia-Godoy, Franklin; Murray, Peter

    2010-01-01

    Scientific advances in the creation of restorative biomaterials, in vitro cell culture technology, tissue engineering, molecular biology and the human genome project provide the basis for the introduction of new technologies into dentistry. This review provides an assessment of how tissue engineering, stem cell, genetic transfer, biomaterial and growth factor therapies can be integrated into clinical dental therapies to restore and regenerate oral tissues. In parallel to the creation of a new field in general medicine called "regenerative medicine," we call this field "regenerative dentistry." While the problems of introducing regenerative therapies are substantial, the potential benefits to patients and the profession are equally ground-breaking. In this review, we outline a few areas of interest for the future of oral and dental medicine in which advancements in basic science have already been adapted to fit the goals of 21st century dentistry.

  6. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    PubMed Central

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  7. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.

    PubMed

    Nakajima, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.

  8. Accelerating the pace of discovery in orthopaedic research: A vision toward team science.

    PubMed

    Bahney, Chelsea S; Bruder, Scott P; Cain, Jarrett D; Keyak, Joyce H; Killian, Megan L; Shapiro, Irving M; Jones, Lynne C

    2016-10-01

    The landscape of basic science in the United States and around the world is changing, and the field of orthopaedic research is positioned to lead by embracing a culture of collaborative, team science that reflects our field's interdisciplinary nature. In this article we hope to address some of the cultural challenges and programmatic barriers that impede a team science approach in the US and suggest opportunities for change. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1673-1679, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Basic Research in Information Science in France.

    ERIC Educational Resources Information Center

    Chambaud, S.; Le Coadic, Y. F.

    1987-01-01

    Discusses the goals of French academic research policy in the field of information science, emphasizing the interdisciplinary nature of the field. Areas of research highlighted include communication, telecommunications, co-word analysis in scientific and technical documents, media, and statistical methods for the study of social sciences. (LRW)

  10. Summary of research in applied mathematics, numerical analysis, and computer sciences

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  11. Integrating Antarctic Science Into Geospace System Science

    NASA Astrophysics Data System (ADS)

    Kelly, J. D.

    2010-12-01

    Addressing the scientific, technical, and sociological challenges of the future requires both detailed basic research and system based approaches to the entire geospace system from the Earth’s core, through solid Earth, ice, oceans, atmosphere, ionosphere, and magnetosphere to the Sun’s outer atmosphere and even beyond. Fully integrating Antarctic science, and fully exploiting the scientific research possibilities of the Antarctic continent through effective and efficient support infrastructure, will be a very important contribution to future success. Amongst many new facilities and programs which can and are being proposed, the Moveable Antarctic Incoherent Scatter Radar (MAISR) at McMurdo illustrates the potential for innovative future science. This poster uses some of the proposed science programs to show how the scientific community can use the data products of this facility, and how they can contribute to the development of the tools and mechanisms for proposing, executing, and utilizing such new research capabilities. In particular, incoherent scatter radars played a big role in data collection during the recent International Polar Year and plans for future extended operations, including those in Antarctica, will be discussed in the light of lessons learnt in applying observations to global modeling developments.

  12. Basic Questions About the Solar System: The Need for Probes

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2005-01-01

    Probes are an essential element in the scientific study of planets with atmospheres. In-situ measurements provide the most accurate determination of composition, winds, temperatures, clouds, and radiative fluxes. They address fundamental NASA objectives concerning volatile compounds, climate, and the origin of life. Probes also deliver landers and aerobots that help in the study of planetary surfaces. This talk focuses on Venus, Titan, and the giant planets. I review the basic science questions and discuss the recommended missions. I stress the need for a balanced program that includes an array of missions that increase in size by factors of two. Gaps in this array lead to failures and cancellations that are harmful to the program and to scientific exploration.

  13. Can Clinical Scenario Videos Improve Dental Students' Perceptions of the Basic Sciences and Ability to Apply Content Knowledge?

    PubMed

    Miller, Cynthia Jayne; Metz, Michael James

    2015-12-01

    Dental students often have difficulty understanding the importance of basic science classes, such as physiology, for their future careers. To help alleviate this problem, the aim of this study was to create and evaluate a series of video modules using simulated patients and custom-designed animations that showcase medical emergencies in the dental practice. First-year students in a dental physiology course formatively assessed their knowledge using embedded questions in each of the three videos; 108 to 114 of the total 120 first-year students answered the questions, for a 90-95% response rate. These responses indicated that while the students could initially recognize the cause of the medical emergency, they had difficulty in applying their knowledge of physiology to the scenario. In two of the three videos, students drastically improved their ability to answer high-level clinical questions at the conclusion of the video. Additionally, when compared to the previous year of the course, there was a significant improvement in unit exam scores on clinically related questions (6.2% increase). Surveys were administered to the first-year students who participated in the video modules and fourth-year students who had completed the course prior to implementation of any clinical material. The response rate for the first-year students was 96% (115/120) and for the fourth-year students was 57% (68/120). The first-year students indicated a more positive perception of the physiology course and its importance for success on board examinations and their dental career than the fourth-year students. The students perceived that the most positive aspects of the modules were the clear applications of physiology to real-life dental situations, the interactive nature of the videos, and the improved student comprehension of course concepts. These results suggest that online modules may be used successfully to improve students' perceptions of the basic sciences and enhance their ability to

  14. Beginning to Teach Chemistry: How personal and academic characteristics of pre-service science teachers compare with their understandings of basic chemical ideas

    NASA Astrophysics Data System (ADS)

    Kind, Vanessa; Morten Kind, Per

    2011-10-01

    Around 150 pre-service science teachers (PSTs) participated in a study comparing academic and personal characteristics with their misconceptions about basic chemical ideas taught to 11-16-year-olds, such as particle theory, change of state, conservation of mass, chemical bonding, mole calculations, and combustion reactions. Data, collected by questionnaire, indicate that despite all PSTs being regarded technically as 'academically well-qualified' for science teaching, biology and physics specialists have more extensive misconceptions than chemists. Two personal characteristics, PSTs' preferences for teaching as a subject 'specialist' or as a 'generalist' teaching all sciences and their self-confidence for working in these two domains, were assessed by responses to Likert-scale statements. Proportionately more biologists tend to be 'super-confident' generalists, while more physicists were specialists anxious about outside specialism teaching. No statistically significant relationships between personal characteristics and misconceptions were found, suggesting that chemistry may be being taught by confident PSTs with poor understandings of basic ideas. Furthermore, these data suggest that attending to PSTs' personal characteristics alongside other components of a teacher's professional knowledge base may contribute to creating more effective science teachers. The paper presents a novel way of considering PSTs' qualities for teaching that offers potential for further research and initial teacher training course development.

  15. Highway Maintenance Equipment Operator: Basic Core. Training Materials.

    ERIC Educational Resources Information Center

    Perky, Sandra Dutreau; And Others

    This basic core curriculum is part of a three-part series of instructional guides designed for use in teaching a course in highway maintenance equipment operation. Addressed in the individual units of the curriculum, after an orientation unit, are safety; basic math; basic hand tools; procedures for loading. lashing, and unloading equipment;…

  16. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2015-12-01

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥ 6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼ 20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2015-05-15

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2016-01-01

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Material Objects. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    Presented is a teacher's guide for an elementary science unit designed for use with first grade students in the Trust Territory of Micronesia. Although there is a degree of similarity to the curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaptation or edition of the SCIS…

  20. The Museum of Science and Industry Basic List of Children's Science Books 1973-1984.

    ERIC Educational Resources Information Center

    Richter, Bernice; Wenzel, Duane

    Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; encyclopedias and reference books; environment and conservation; fiction; general science; life sciences; marine life; mathematics and computer science; medical and health sciences; physics and chemistry; plant…

  1. Components of Environmental Literacy in Elementary Science Education Curriculum in Bulgaria and Turkey

    ERIC Educational Resources Information Center

    Erdogan, Mehmet; Kostova, Zdravka; Marcinkowski, Thomas

    2009-01-01

    The purpose of this study was to analyze the extent to which science education objectives in elementary schools addressed to the six basic components of environmental literacy (EL), and how this attention differed from Bulgaria to Turkey. The main method in the study involved comparative content analysis of these objectives. The courses sampled…

  2. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, speaks at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  3. JIM GREEN ADDRESSES THE MARSHALL ASSOCIATION

    NASA Image and Video Library

    2016-06-28

    JIM GREEN, DIRECTOR OF PLANETARY SCIENCE AT NASA HEADQUARTERS, ADDRESSES MARSHALL TEAM MEMBERS DURING A JUNE 28 LUNCHEON HOSTED BY THE MARSHALL ASSOCIATION. OVER THE COURSE OF HIS 35-YEAR CAREER AT NASA, HE HAS SUPPORTED A DIVERSE ARRAY OF PLANETARY SCIENCE MISSIONS, AND RECENTLY SERVED AS SCIENCE ADVISOR FOR THE FILM ADAPTATION OF "THE MARTIAN." GREEN'S PRESENTATION WAS TITLED "THE MARTIAN: SCIENCE FICTION VS. SCIENCE FACT," IN WHICH HE DISCUSSED THE MOVIE AND THE NATION'S JOURNEY TO MARS. THE MARSHALL ASSOCIATION IS THE CENTER'S PROFESSIONAL, EMPLOYEE SERVICE ORGANIZATION.

  4. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploitmore » this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.« less

  5. Researchers warn of neglect to basic science

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2010-03-01

    Russia is losing its standing as a scientific powerhouse and its science is in a state of decline, according to a new report by the information-services provider Thomson Reuters. Entitled "The New Geography of Science: Research and Collaboration in Russia", the report warns that the country's research base "has a problem, and it shows little sign of a solution".

  6. The science of medical librarianship: investing in the future.

    PubMed Central

    Love, E

    1987-01-01

    Information science is changing from an applied service-oriented activity to a basic research discipline. The library profession must earn a central place in this endeavor, and must address a number of important issues. These include ownership and intellectual property rights, a stronger research component for the profession, development of quality assurance systems for health information services, and a conceptual framework for training and career development of health sciences library technicians. The future of medical librarianship as a profession depends on a lasting commitment to research, a clear vision of the profession's fundamental mission and of the library's place in society. PMID:3450341

  7. Can Basic Research on Children and Families Be Useful for the Policy Process?

    ERIC Educational Resources Information Center

    Moore, Kristin A.

    Based on the assumption that basic science is the crucial building block for technological and biomedical progress, this paper examines the relevance for public policy of basic demographic and behavioral sciences research on children and families. The characteristics of basic research as they apply to policy making are explored. First, basic…

  8. Addressing problems of employee performance.

    PubMed

    McConnell, Charles R

    2011-01-01

    Employee performance problems are essentially of 2 kinds: those that are motivational in origin and those resulting from skill deficiencies. Both kinds of problems are the province of the department manager. Performance problems differ from problems of conduct in that traditional disciplinary processes ordinarily do not apply. Rather, performance problems are addressed through educational and remedial processes. The manager has a basic responsibility in ensuring that everything reasonable is done to help each employee succeed. There are a number of steps the manager can take to address employee performance problems.

  9. EDITORIAL: Dialog on Science and Policy to Address the Climate Crisis to conclude the International Association of Research Universities Climate Congress, Copenhagen, Denmark Dialog on Science and Policy to Address the Climate Crisis to conclude the International Association of Research Universities Climate Congress, Copenhagen, Denmark

    NASA Astrophysics Data System (ADS)

    Baer, Paul; Kammen, Daniel M.

    2009-06-01

    This is not the usual Editor-in-Chief letter, namely one that focuses on the accomplishments of the journal—and for ERL they have been numerous this year—but a recognition of the critical time that we are now in when it comes to addressing not only global climate change, but also the dialog between science and politics. In recognition of the many 'tipping points' that we now confront—ideally some of them positive social moments—as well as the clear scientific conclusion that environmental tipping points are points of long-lasting disruption, this paper takes a different form than I might have otherwise written. While the scientific body of knowledge around global environmental change mounts, so too, do the hopeful signs that change can happen. The election of Barack Obama is unquestionably one such sign, witnessed by the exceptional interest that his story has brought not only to US politics, but also to global views of the potential of the United States, as well as to the potential role of science and investigation in addressing pressing issues. In light of these inter-related issues, reproduced here—largely due to the efforts of Paul Baer to transcribe a remarkable conversation—is a dialog not only on the science of global warming and the potential set of means to address this issue, but also on the interaction between research, science and the political process. The dialog itself is sufficiently important that I will dispense with the usual discussion of the exciting recognition that ERL has received with an ISI rating (a factor rapidly increasing), the high levels of downloads of our papers (for some articles over 5000 and counting), and the many news and scientific publications picking up ERL articles (in recent days alone Science, Environmental Science and Technology, and The Economist). This conversation was the concluding plenary session of the 10-12 March International Association of Research Universities (IARU) Conference on Climate Change

  10. Bush Pledges Increased Science Research and Education Funding

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2006-02-01

    In his 31 January State of the Union address, U.S. President George W. Bush announced two new initiatives aimed at galvanizing scientific research and education. For the American Competitiveness Initiative, Bush proposes to ``double the federal commitment to the most critical basic research programs in the physical sciences in the next 10 years. . .[and to] make permanent the research and development tax credit to encourage bolder private-sector initiative in technology.''

  11. Back to the Basics: Kansas City, Missouri

    ERIC Educational Resources Information Center

    Handley, Lawrence R.; Lockwood, Catherine M.; Handley, Nathan

    2004-01-01

    "Back to the Basics" is an innovation of the WETMAAP Program (Wetland Education Through Maps and Aerial Photography) which offers a series of workshops that provide training in basics ecological concepts, technological skills, and methods of interpretation necessary for assessing geography and earth science topics. The precept of the…

  12. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, listens to a question during the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  13. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, talks with NASA's 2013 astronaut candidates at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  14. Development of a Systems Science Curriculum to Engage Rural African American Teens in Understanding and Addressing Childhood Obesity Prevention

    ERIC Educational Resources Information Center

    Frerichs, Leah; Lich, Kristen Hassmiller; Young, Tiffany L.; Dave, Gaurav; Stith, Doris; Corbie-Smith, Giselle

    2018-01-01

    Engaging youth from racial and ethnic minority communities as leaders for change is a potential strategy to mobilize support for addressing childhood obesity, but there are limited curricula designed to help youth understand the complex influences on obesity. Our aim was to develop and pilot test a systems science curriculum to elicit rural…

  15. Translating basic behavioral and social science research to clinical application: the EVOLVE mixed methods approach.

    PubMed

    Peterson, Janey C; Czajkowski, Susan; Charlson, Mary E; Link, Alissa R; Wells, Martin T; Isen, Alice M; Mancuso, Carol A; Allegrante, John P; Boutin-Foster, Carla; Ogedegbe, Gbenga; Jobe, Jared B

    2013-04-01

    To describe a mixed-methods approach to develop and test a basic behavioral science-informed intervention to motivate behavior change in 3 high-risk clinical populations. Our theoretically derived intervention comprised a combination of positive affect and self-affirmation (PA/SA), which we applied to 3 clinical chronic disease populations. We employed a sequential mixed methods model (EVOLVE) to design and test the PA/SA intervention in order to increase physical activity in people with coronary artery disease (post-percutaneous coronary intervention [PCI]) or asthma (ASM) and to improve medication adherence in African Americans with hypertension (HTN). In an initial qualitative phase, we explored participant values and beliefs. We next pilot tested and refined the intervention and then conducted 3 randomized controlled trials with parallel study design. Participants were randomized to combined PA/SA versus an informational control and were followed bimonthly for 12 months, assessing for health behaviors and interval medical events. Over 4.5 years, we enrolled 1,056 participants. Changes were sequentially made to the intervention during the qualitative and pilot phases. The 3 randomized controlled trials enrolled 242 participants who had undergone PCI, 258 with ASM, and 256 with HTN (n = 756). Overall, 45.1% of PA/SA participants versus 33.6% of informational control participants achieved successful behavior change (p = .001). In multivariate analysis, PA/SA intervention remained a significant predictor of achieving behavior change (p < .002, odds ratio = 1.66), 95% CI [1.22, 2.27], controlling for baseline negative affect, comorbidity, gender, race/ethnicity, medical events, smoking, and age. The EVOLVE method is a means by which basic behavioral science research can be translated into efficacious interventions for chronic disease populations.

  16. Translating Basic Behavioral and Social Science Research to Clinical Application: The EVOLVE Mixed Methods Approach

    PubMed Central

    Peterson, Janey C.; Czajkowski, Susan; Charlson, Mary E.; Link, Alissa R.; Wells, Martin T.; Isen, Alice M.; Mancuso, Carol A.; Allegrante, John P.; Boutin-Foster, Carla; Ogedegbe, Gbenga; Jobe, Jared B.

    2012-01-01

    Objective To describe a mixed-methods approach to develop and test a basic behavioral science-informed intervention to motivate behavior change in three high-risk clinical populations. Our theoretically-derived intervention comprised a combination of positive affect and self-affirmation (PA/SA) which we applied to three clinical chronic disease populations. Methods We employed a sequential mixed methods model (EVOLVE) to design and test the PA/SA intervention in order to increase physical activity in people with coronary artery disease (post-percutaneous coronary intervention [PCI]) or asthma (ASM), and to improve medication adherence in African Americans with hypertension (HTN). In an initial qualitative phase, we explored participant values and beliefs. We next pilot tested and refined the intervention, and then conducted three randomized controlled trials (RCTs) with parallel study design. Participants were randomized to combined PA/SA vs. an informational control (IC) and followed bimonthly for 12 months, assessing for health behaviors and interval medical events. Results Over 4.5 years, we enrolled 1,056 participants. Changes were sequentially made to the intervention during the qualitative and pilot phases. The three RCTs enrolled 242 PCI, 258 ASM and 256 HTN participants (n=756). Overall, 45.1% of PA/SA participants versus 33.6% of IC participants achieved successful behavior change (p=0.001). In multivariate analysis PA/SA intervention remained a significant predictor of achieving behavior change (p<0.002, OR=1.66, 95% CI 1.22–2.27), controlling for baseline negative affect, comorbidity, gender, race/ethnicity, medical events, smoking and age. Conclusions The EVOLVE method is a means by which basic behavioral science research can be translated into efficacious interventions for chronic disease populations. PMID:22963594

  17. Communicating science-based recommendations with memorable and actionable guidelines.

    PubMed

    Ratner, Rebecca K; Riis, Jason

    2014-09-16

    For many domains of basic and applied science, a key set of scientific facts is well established and there is a need for public action in light of those facts. However, individual citizens do not consistently follow science-based recommendations, even when they accept the veracity of the advice. To address this challenge, science communicators need to develop a guideline that individuals can commit to memory easily and act on straightforwardly at moments of decision. We draw on research from psychology to discuss several characteristics that will enhance a guideline's memorability and actionability and illustrate using a case study from the US Department of Agriculture's communications based on nutrition science. We conclude by discussing the importance of careful research to test whether any given guideline is memorable and actionable by the intended target audience.

  18. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, left, smiles along with 16-year-old Joey Hudy, a former White House Science Fair participant and self-described “Maker” at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  19. Basic Soils. Revision.

    ERIC Educational Resources Information Center

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…

  20. Moving beyond "Those Kids": Addressing Teacher Beliefs Regarding the Role of Culture within Effective Science Pedagogy for Diverse Learners

    ERIC Educational Resources Information Center

    Johnson, Carla C.; Bolshakova, Virginia L. J.

    2015-01-01

    This study focused on intensive work within a large, urban, low-performing middle school in the southwest to address and transform teacher beliefs regarding the role of culture within their science pedagogy. Given the recent, rapid growth of numbers of students from Hispanic/Latino(a) backgrounds in the United States, it is critical that a…

  1. Geology for a changing world; a science strategy for the Geologic Division of the U.S. Geological Survey, 2000-2010

    USGS Publications Warehouse

    Bohlen, Steven R.; Halley, Robert B.; Hickman, Stephen H.; Johnson, Samuel Y.; Lowenstern, Jacob B.; Muhs, Daniel R.; Plumlee, Geoffrey S.; Thompson, George A.; Trauger, David L.; Zoback, Mary Lou

    1998-01-01

    This report describes seven science goals conceived to address pressing issues facing the Nation in the next decade. These goals focus on understanding human interaction with the natural environment and build upon long-term USGS investments in basic research.

  2. New and improved proteomics technologies for understanding complex biological systems: Addressing a grand challenge in the life sciences

    PubMed Central

    Hood, Leroy E.; Omenn, Gilbert S.; Moritz, Robert L.; Aebersold, Ruedi; Yamamoto, Keith R.; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2014-01-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14–15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development. PMID:22807061

  3. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy is interviewed by TIME for Kids reporter Kristen Rigsby, ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  4. Basic Skills Support in Business and Industry.

    ERIC Educational Resources Information Center

    Byatt, Janet; Davies, Karen

    This guide is designed as a tool for English and Welsh businesses wanting to provide basic skills training for their employees. It provides practical solutions to the problems of identifying employees' basic skills needs and selecting the best model of training delivery to address identified training needs. The introductory section discusses basic…

  5. Experience of the creative Space-Astrophysics Education in Israeli Science-Educational Center "Blossoms of Science" - creative activity from mini-projects in basic school to ASTROTOP-projects for graduates

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, L.; Pundak, D.

    We present 12 year experience of educational project in Space Astrophysics Environment field realized on the base of National Science-Educational Center Blossoms of Science of the Jordan Valley College Our approach is based on the natural curiosity of children as driver of their self-development from the first minutes of their life and even in adult state This approach shift center of the weight in educational process from direct lectures sermons explanation from teacher to children on own attempts of children to investigate problem what is interesting for them by themselves individually or in group Our approach includes four levels of the projects nano-projects for children garden and basic school up to 10-12 years micro-projects for intermediate school 12-16 years mini-projects for high school 16-18 years and macro-projects for the best graduates high schools and students of colleges 17-22 years These levels and projects are interconnected one with another and sometimes participants started on the micro-projects level in intermediate school continue their activity up to macro-projects of the graduate s diploma level For each level we organize courses for preparation of the teachers and instructors interested in the using of our receipts and published books and brochures for them The content of our activity for different levels a Level of kinder gardens-basic schools -- special software with interactive movie - - nano-projects b Level of intermediate school Days of Science in tens schools of Israel--

  6. Use of the NBME Comprehensive Basic Science Examination as a Progress Test in the Preclerkship Curriculum of a New Medical School

    ERIC Educational Resources Information Center

    Johnson, Teresa R.; Khalil, Mohammed K.; Peppler, Richard D.; Davey, Diane D.; Kibble, Jonathan D.

    2014-01-01

    In the present study, we describe the innovative use of the National Board of Medical Examiners (NBME) Comprehensive Basic Science Examination (CBSE) as a progress test during the preclerkship medical curriculum. The main aim of this study was to provide external validation of internally developed multiple-choice assessments in a new medical…

  7. Physics Education: Effect of Micro-Teaching Method Supported by Educational Technologies on Pre-Service Science Teachers' Misconceptions on Basic Astronomy Subjects

    ERIC Educational Resources Information Center

    Gurbuz, Fatih

    2016-01-01

    The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…

  8. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, right, is interviewed by National Geographic Kids reporter Trevor Jehl ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  9. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, left, is interviewed by TIME for Kids reporter Grace Clark ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  10. Basic Research Needs for Countering Terrorism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, W.; Michalske, T.; Trewhella, J.

    2002-03-01

    To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism.

  11. Communicating science-based recommendations with memorable and actionable guidelines

    PubMed Central

    Ratner, Rebecca K.; Riis, Jason

    2014-01-01

    For many domains of basic and applied science, a key set of scientific facts is well established and there is a need for public action in light of those facts. However, individual citizens do not consistently follow science-based recommendations, even when they accept the veracity of the advice. To address this challenge, science communicators need to develop a guideline that individuals can commit to memory easily and act on straightforwardly at moments of decision. We draw on research from psychology to discuss several characteristics that will enhance a guideline’s memorability and actionability and illustrate using a case study from the US Department of Agriculture’s communications based on nutrition science. We conclude by discussing the importance of careful research to test whether any given guideline is memorable and actionable by the intended target audience. PMID:25225363

  12. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    NASA Astrophysics Data System (ADS)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-06-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to evaluate the (HIC) system, which incorporates augmented reality, virtual reality and cloud-classroom to teach basic materials science courses. The study followed a pretest-posttest quasi-experimental research design. A total of 92 students (aged 19-20 years), in a second-year undergraduate program, participated in this 18-week-long experiment. The students were divided into an experimental group and a control group. The experimental group (36 males and 10 females) was instructed utilizing the HIC system, while the control group (34 males and 12 females) was led through traditional teaching methods. Pretest, posttest, and delayed posttest scores were evaluated by multivariate analysis of covariance. The results indicated that participants in the experimental group who used the HIC system outperformed the control group, in the both posttest and delayed posttest, across three learning dimensions. Based on these results, the HIC system is recommended to be incorporated in formal materials science learning settings.

  13. Beginning to Teach Chemistry: How Personal and Academic Characteristics of Pre-Service Science Teachers Compare with Their Understandings of Basic Chemical Ideas

    ERIC Educational Resources Information Center

    Kind, Vanessa; Kind, Per Morten

    2011-01-01

    Around 150 pre-service science teachers (PSTs) participated in a study comparing academic and personal characteristics with their misconceptions about basic chemical ideas taught to 11-16-year-olds, such as particle theory, change of state, conservation of mass, chemical bonding, mole calculations, and combustion reactions. Data, collected by…

  14. New and improved proteomics technologies for understanding complex biological systems: addressing a grand challenge in the life sciences.

    PubMed

    Hood, Leroy E; Omenn, Gilbert S; Moritz, Robert L; Aebersold, Ruedi; Yamamoto, Keith R; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2012-09-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14-15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pros and cons of vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum: examples and experiences from Linköping, Sweden.

    PubMed

    Dahle, L O; Brynhildsen, J; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Problem-based learning (PBL), combined with early patient contact, multiprofessional education and emphasis on development of communications skills, has become the basis for the medical curriculum at the Faculty of Health Sciences in Linköping (FHS), Sweden, which was started in 1986. Important elements in the curriculum are vertical integration, i.e. integration between the clinical and basic science parts of the curriculum and horizontal integration between different subject areas. This article discusses the importance of vertical integration in an undergraduate medical curriculum, according to experiences from the Faculty of Health Sciences in Linköping, and also give examples on how it has been implemented during the latest 15 years. Results and views put forward in published articles concerning vertical integration within undergraduate medical education are discussed in relation to the experiences in Linköping. Vertical integration between basic sciences and clinical medicine in a PBL setting has been found to stimulate profound rather than superficial learning, and thereby stimulates better understanding of important biomedical principles. Integration probably leads to better retention of knowledge and the ability to apply basic science principles in the appropriate clinical context. Integration throughout the whole curriculum entails a lot of time and work in respect of planning, organization and execution. The teachers have to be deeply involved and enthusiastic and have to cooperate over departmental borders, which may produce positive spin-off effects in teaching and research but also conflicts that have to be resolved. The authors believe vertical integration supports PBL and stimulates deep and lifelong learning.

  16. Examination of the relationship between preservice science teachers' scientific reasoning and problem solving skills on basic mechanics

    NASA Astrophysics Data System (ADS)

    Yuksel, Ibrahim; Ates, Salih

    2018-02-01

    The purpose of this study is to determine relationship between scientific reasoning and mechanics problem solving skills of students in science education program. Scientific Reasoning Skills Test (SRST) and Basic Mechanics Knowledge Test (BMKT) were applied to 90 second, third and fourth grade students who took Scientific Reasoning Skills course at science teaching program of Gazi Faculty of Education for three successive fall semesters of 2014, 2015 and 2016 academic years. It was found a statistically significant positive (p = 0.038 <0.05) but a low correlation (r = 0.219) between SRST and BMKT. There were no significant relationship among Conservation Laws, Proportional Thinking, Combinational Thinking, Correlational Thinking, Probabilistic Thinking subskills of reasoning and BMKT. There were significant and positive correlation among Hypothetical Thinking and Identifying and Controlling Variables subskills of reasoning and BMKT. The findings of the study were compared with other studies in the field and discussed.

  17. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, left, is interviewed by TIME for Kids reporter Kristen Rigsby, as Moira Vahey, Deputy Assistant Director for Strategic Communications at the White House Office of Science & Technology Policy, right, takes notes ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  18. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    multi-platform drilling of the Nankai seismogenic zone. Scientific initiatives are flourishing to drive IODP towards the study of submarine geohazards. In the last three years international workshops, were held to address the topic: ESF-ECORD sponsored a Magellan Workshop focussed on submarine landslides (Barcelona, Spain, 2006); IODP sponsored a world-wide Geohazard Workshop (Portland, Oregon, 2007); ESF-ECORD sponsored another Magellan Workshop focussed on Mediterranean submarine geohazards (Luleå, Sweden, 2008). In addition, following the ECORD-Net Conference on the Deep Sea Frontier (Naples, Italy, 2006), the history, monitoring and prediction of geohazards was identified as one of the 6 major areas for a European science plan to integrate Ocean Drilling, Ocean Margin, and Seabed research. More than 200 scientists and private companies representatives have been mobilized world-wide to attend these meetings, from where it emerged that Ocean Drilling will play a key role in the future to answer the following basic open questions on submarine geohazards: - What is the frequency, magnitude, and distribution of geohazard events? - Do precursory phenomena exist and can they be recognized? - What are the physical and mechanical properties of materials prone to failure? - What are the roles of preconditioning vs. triggering in rapid seafloor deformation? - Can the tsunamigenic potential of past and future events be assessed? Within the global-ocean geohazards, worth of note is the attention given in this preparatory phase to submarine geohazards in the Mediterranean basin, a miniature ocean often called a "natural laboratory" because of the diversity of geological environments it contains. The coastline is very densely-populated, totalling 160 million inhabitants sharing 46,000 km of coastline. The Mediterranean is the World's leading holiday destination, receiving an average of 135 million visitors annually. Submarine landslides, volcanic flank collapses, volcanic island

  19. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Joey Hudy, Anthem, AZ, 16-year-old self-described “Maker” answers a question from the audience at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Joey sat with the First Lady at the President’s 2014 State of the Union Address after his first shot to fame in 2012 when he attended the White House Science Fair where the President took a turn using his “extreme marshmallow cannon” to launch a marshmallow across the East Room of the White House. Photo Credit: (NASA/Bill Ingalls)

  20. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    National Geographic Kids reporter Trevor Jehl, right, interviews Joey Hudy, Anthem, AZ, 16-year-old self-described “Maker” at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Joey sat with the First Lady at the President’s 2014 State of the Union Address after his first shot to fame in 2012 when he attended the White House Science Fair where the President took a turn using his “extreme marshmallow cannon” to launch a marshmallow across the East Room of the White House. Photo Credit: (NASA/Bill Ingalls)

  1. Opportunities to Learn in School and at Home: How can they predict students' understanding of basic science concepts and principles?

    NASA Astrophysics Data System (ADS)

    Wang, Su; Liu, Xiufeng; Zhao, Yandong

    2012-09-01

    As the breadth and depth of economic reforms increase in China, growing attention is being paid to equalities in opportunities to learn science by students of various backgrounds. In early 2009, the Chinese Ministry of Education and Ministry of Science and Technology jointly sponsored a national survey of urban eighth-grade students' science literacy along with their family and school backgrounds. The present study focused on students' understanding of basic science concepts and principles (BSCP), a subset of science literacy. The sample analyzed included 3,031 students from 109 randomly selected classes/schools. Correlation analysis, one-way analysis of variance, and two-level linear regression were conducted. The results showed that having a refrigerator, internet, more books, parents purchasing books and magazines related to school work, higher father's education level, and parents' higher expectation of the education level of their child significantly predicted higher BSCP scores; having siblings at home, owning an apartment, and frequently contacting teachers about the child significantly predicted lower BSCP scores. At the school level, the results showed that being in the first-tier or key schools, having school libraries, science popularization galleries, computer labs, adequate equipment for teaching, special budget for teacher training, special budget for science equipment, and mutual trust between teachers and students significantly predicated higher BSCP scores; and having science and technology rooms, offering science and technology interest clubs, special budget for science curriculum development, and special budget for science social practice activities significantly predicted lower BSCP scores. The implications of the above findings are discussed.

  2. Professional Development in Adult Basic Education.

    ERIC Educational Resources Information Center

    Marceau, Georges

    2003-01-01

    Addresses the professional development needs of adult basic education instructors. Describes federal and state resources for professional development. Recommends field-based research, reflective practice, and learner-centered instruction. (Contains 15 references.) (SK)

  3. Basic Aerodynamics of Combustion Chambers,

    DTIC Science & Technology

    1981-05-20

    engineering circles, the trend in the design of new tyres of combustion chambers is to combine the use of aerodynamics , ;he science of heat transfer and...7. FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AF8 ON F/6 21/2 BASIC AERODYNAMICS OF COMBUSTION CHAMBERS,(U) MAY 81 N HUANG UNCLASSIFIED FTD-ID(RS)T...160󈨔 NL so EEEEEE 0hEEEEEEmollllmmlllll mEImmmmmEEE mEEEEEmmEEmmmE IilillilillEEE FTD-1D(RS)T-1684-80 FOREIGN TECHNOLOGY DIVISION BASIC AERODYNAMICS CF

  4. Growth in Turkish Positive Basic Sciences, 1933-1966.

    ERIC Educational Resources Information Center

    Ozinonu, A. Kemal

    This study collected data on the measurable qualities of Turkish science in terms of high level scientific manpower, scientific productivity, and scientific fertility from 1933 to 1966 and analyzed the data collected with the goal of providing a deeper understanding of the nature of Turkish science. Scientific personnel, including Turkish…

  5. Design and Implementation of High Performance Content-Addressable Memories.

    DTIC Science & Technology

    1985-12-01

    content addressability and two basic implementations of content addressing. The need and application of hardware CAM is presented to motivate the " topic...3r Pass 4th Ps4 Pass Figure 2.15 Maximum SearchUsing All-Parallel CAM - left-most position (the most significant bit) and the other IF bits are zeros

  6. The South Carolina Amazing Coast Program: Using Ocean Sciences to Address Next Generation Science Standards in Grades 3-5

    NASA Astrophysics Data System (ADS)

    Bell, E. V.; Thomas, C.; Weiss, B.; Bliss, A.; Spence, L.

    2013-12-01

    The Next Generation Science Standards (NGSS) are more inclusive of ocean sciences than the National Science Standards and respective state science standards. In response, the Center for Ocean Sciences Education Excellence-SouthEast (COSEE SE) is piloting the South Carolina's Amazing Coast (SCAC) program: a three-year initiative that incorporates ocean science concepts in grades 3-5 with the goals of addressing NGSS, STEM (science-technology-engineering-math) disciplines, and inquiry skills. The SCAC program targeted two Charleston County, South Carolina elementary schools that were demographically similar: Title 1 status (75% free or reduced lunch), > 90% African American student population, grade level size <55, and proximity to tidal salt marsh or barrier islands (< 2 miles). Fourteen teachers and approximately 240 students participated in the SCAC program between 2010 and 2013. The SCAC framework uses a scaffolding and multi-pronged approach for teacher professional development and student engagement. The scaffolding approach to curriculum implementation focuses on one grade level per year (Year 1 = 3rd; Year 2 = 4th, and Year 3 = 5th), thus building student and teacher literacy in ocean sciences. The coach-mentor model of teacher professional development was also used for the implementation of the program which differs from the traditional 'train the trainer' method in allowing for more frequent and consistent interaction by COSEE SE staff with the students and teachers during the school year. The coach mentor model enabled the creation of a community of practice where teachers served as both learners and practitioners of student learning. Methods for student engagement aligned with the NGSS and included hands-on classroom activities, use of 'hook' species such as loggerhead sea turtles (Caretta caretta), diamondback terrapins (Malaclemys terrapin) and smooth cord grass (Spartina alterniflora), field experiences to explore local ecosystems, interactions with

  7. Systems and Variables. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    This teacher's guide is for an elementary school science unit designed for use with third grade (or older) children in the schools of the Trust Territory of Micronesia. Although there is a degree of similarity to curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaptation…

  8. Open Science: a first step towards Science Communication

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivo; Tuddenham, Peter

    2015-04-01

    As Earth Science communicators gear up to adopt the new tools and captivating approaches to engage citizen scientists, budding entrepreneurs, policy makers and the public in general, researchers have the responsibility, and opportunity, to fully adopt Open Science principles and capitalize on its full societal impact and engagement. Open Science is about removing all barriers to basic research, whatever its formats, so that it can be freely used, re-used and re-hashed, thus fueling discourse and accelerating generation of innovative ideas. The concept is central to EU's Responsible Research and Innovation philosophy, and removing barriers to basic research measurably contributes to engaging citizen scientists into the research process, it sets the scene for co-creation of solutions to societal challenges, and raises the general science literacy level of the public. Despite this potential, only 50% of today's basic research is freely available. Open Science can be the first passive step of communicating marine research outside academia. Full and unrestricted access to our knowledge including data, software code and scientific publications is not just an ethical obligation, but also gives solid credibility to a more sophisticated communication strategy on engaging society. The presentation will demonstrate how Open Science perfectly compliments a coherent communication strategy for placing Marine Research in societal context, and how it underpin an effective integration of Ocean & Earth Literacy principles in standard educational, as well mobilizing citizen marine scientists, thus making marine science Open Science.

  9. Parsesciencing: A Basic Science Mode of Inquiry.

    PubMed

    Parse, Rosemarie Rizzo

    2016-10-01

    The purpose of this article is to introduce the language for the mode of inquiry, now known as Parsesciencing. The language for the Humanbecoming Hermeneutic Sciencing was introduced in an earlier volume of Nursing Science Quarterly. Language both reflects and cocreates meaning. The language of sciencing is everchanging; it is an evolutionary emergent, shifting as new ideas cocreate horizons beyond. The language set forth here is to articulate more explicitly meanings of the modes of inquiry consistent with the humanbecoming paradigm and distinct from modes of inquiry in other disciplines. In dwelling with the findings of published and unpublished studies that were guided by humanbecoming, new insights arose, and with creative conceptualizing these new insights gave birth to new meanings, thus different language. The language introduced here includes the following: Parsesciencing as coming to know the meanings of universal humanuniverse living experiences, horizon of inquiry, foreknowings, inquiry stance, mode of inquiry, historians, dialoging-engaging, scholar, distilling-fusing, discerning extant moment, transmogrifying, transsubstantiating, and newknowings. Note: an example of the new language with a Parsesciencing inquiry on the universal humanuniverse living experience of feeling unsure by Sandra Bunkers appears later in this issue. © The Author(s) 2016.

  10. Climate Science - getting the world to understand, and to care

    NASA Astrophysics Data System (ADS)

    Jasmin, T.; Ackerman, S. A.; Whittaker, T. M.

    2012-12-01

    Effectively teaching and conveying climate science has become one of Earth Science's greatest challenges. Existing barriers are many and varied, from political, ideological, and religious, to purely economic. Additionally, studies show the general public at present has a surprising number of basic misconceptions regarding the Earth system, and Earth-Sun relationships. Addressing these misconceptions is the first hurdle to overcome for properly teaching climate science. This talk will discuss ways to address the various barriers. Strategies are being employed to arm teachers with new tools leveraging the move to online, interactive learning. Content can be tailored particular audiences. For any individual, learning will be most effective if there is an understood significance, the information is presented clearly and at an appropriate education level, and when possible some personal relevance can be inferred. People need a reason to care. Examples and approaches for several common education scenarios will be given. A simple "Climate Change 101" outline will be given, a blueprint that could be used to educate most of the general public. Freely available online resources to address Earth System misconceptions will be referenced. Finally, a case will be made that a dramatic improvement in climate literacy worldwide may be the only viable means to successfully tackling global warming.

  11. Basic Engineer Equipment Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by basic engineer equipment mechanics. Addressed in the four individual units of the course are the following topics: mechanics and their tools (mechanics, hand tools, and power…

  12. Behavioural science at work for Canada: National Research Council laboratories.

    PubMed

    Veitch, Jennifer A

    2007-03-01

    The National Research Council is Canada's principal research and development agency. Its 20 institutes are structured to address interdisciplinary problems for industrial sectors, and to provide the necessary scientific infrastructure, such as the national science library. Behavioural scientists are active in five institutes: Biological Sciences, Biodiagnostics, Aerospace, Information Technology, and Construction. Research topics include basic cellular neuroscience, brain function, human factors in the cockpit, human-computer interaction, emergency evacuation, and indoor environment effects on occupants. Working in collaboration with NRC colleagues and with researchers from universities and industry, NRC behavioural scientists develop knowledge, designs, and applications that put technology to work for people, designed with people in mind.

  13. Professional Development in Climate Science Education as a Model for Navigating the Next Generations Science Standards - A High School Science Teacher's Perspective

    NASA Astrophysics Data System (ADS)

    Manning, C.; Buhr, S. M.

    2012-12-01

    The Next Generation Science Standards attempt to move the American K12 education system into the 21st century by focusing on science and engineering practice, crosscutting concepts, and the core ideas of the different disciplines. Putting these standards into practice will challenge a deeply entrenched system and science educators will need significant financial support from state and local governments, professional development from colleges and universities, and the creation of collegial academic networks that will help solve the many problems that will arise. While all of this sounds overwhelming, there are proven strategies and mechanisms already in place. Educators who tackle challenging topics like global climate change are turning to scientists and other like-minded teachers. Many of these teachers have never taken a class in atmospheric science but are expected to know the basics of climate and understand the emerging science as well. Teachers need scientists to continue to reach out and provide rigorous and in-depth professional development opportunities that enable them to answer difficult student questions and deal with community misconceptions about climate science. Examples of such programs include Earthworks, ICEE (Inspiring Climate Education Excellence) and ESSEA (Earth System Science Education Alliance). Projects like CLEAN (Climate Literacy and Energy Awareness Network) provide excellent resources that teachers can integrate into their lessons. All of these benefit from the umbrella of documents like Climate Literacy: The Essential Principles of Climate Science. Support from the aforementioned networks has encouraged the development of effective approaches for teaching climate science. From the perspective of a Geoscience master teacher and instructional coach, this presentation will demonstrate how scientists, researchers, and science education professionals have created models for professional development that create long-term networks supporting

  14. Quantum Social Science

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  15. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, left, is interviewed by Montgomery Blair High School Student Newspaper “Silver Chips” Online Editor-in-Chief Aanchal Johri, center, and Photo Editor Emma Howells, from Silver Spring, MD. ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  16. Vannevar Bush 2: Science for the 21st Century. Why Should Federal Dollars be Spent to Support Scientific Research?

    NASA Technical Reports Server (NTRS)

    Miller, Kate (Editor)

    1995-01-01

    On July 5, 1945, Dr. Vannevar Bush delivered a report to President Truman known as 'Science: The Endless Frontier'. In the report, Dr. Bush stated that 'scientific progress is one essential key to our security as a nation, to our better health, to more jobs, to a higher standard of living, and to our cultural progress'. Bush addressed job creation, the independence of basic research, the ties between research and application, and the nations's need for new talent. In 1995, there are strong similarities between the issues addressed in the Congress, Administration, and the public and those following World War 2. Federal funds and research funding are under severe pressure, including that from fiscal constraints in the federal budget due to the large and growing deficit and the escalating cost of health care. Defense conversion is addressed in the Congress and in industry, where many jobs are at stake. Conversion of the national laboratories, particularly nuclear weapons laboratories, has been a subject of a governmental commission and is the subject of draft legislation. Health care costs and the appropriate role of the federal government in funding basic and applied research has become a major topic of debate. Discussion on education in science has grown from the issue of how to produce more Ph.D.'s to how to improve the understanding of technology and science among the general public.

  17. Student Failures on First-Year Medical Basic Science Courses and the USMLE Step 1: A Retrospective Study over a 20-Year Period

    ERIC Educational Resources Information Center

    Burns, E. Robert; Garrett, Judy

    2015-01-01

    Correlates of achievement in the basic science years in medical school and on the Step 1 of the United States Medical Licensing Examination® (USMLE®), (Step 1) in relation to preadmission variables have been the subject of considerable study. Preadmissions variables such as the undergraduate grade point average (uGPA) and Medical College Admission…

  18. Assessment of Department of Defense Basic Research

    DTIC Science & Technology

    2005-01-01

    Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF...with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information... downloaded from: http://www.nap.edu/catalog/11177.html Assessment of Department of Defense Basic Research Committee on Department of Defense Basic

  19. Convocation address.

    PubMed

    Swaminathan, M S

    1998-07-01

    This address delivered to the 40th convocation of the International Institute for Population Sciences in India in 1998 opens by noting that a shortage of jobs for youth is India's most urgent problem but that the problems that attend the increasing numbers of elderly also require serious attention. The address then notes that the Earth's population is growing at an unsustainable rate while economic inequities among countries are increasing, so that, while intellectual property is becoming the most important asset in developed countries, nutritional anemia among pregnant women causes their offspring to be unable to achieve their full intellectual potential from birth. Next, the address uses a discussion of the 18th-century work on population of the Marquis de Condorcet and of Thomas Malthus to lead into a consideration of estimated increased needs of countries like India and China to import food grains in the near future. Next, the progress of demographic transition in Indian states is covered and applied to Mahbub ul Haq's measure of human deprivation developed for and applied to the region of the South Asian Association for Regional Cooperation (India, Pakistan, Bangladesh, Nepal, Sri Lanka, Bhutan, and the Maldives). The address continues by reiterating some of the major recommendations forwarded by a government of India committee charged in 1995 with drafting a national population policy. Finally, the address suggests specific actions that could be important components of the Hunger-Free India Programme and concludes that all success rests on the successful implementation of appropriate population policies.

  20. Exploring the value and role of integrated supportive science courses in the reformed medical curriculum iMED: a mixed methods study.

    PubMed

    Eisenbarth, Sophie; Tilling, Thomas; Lueerss, Eva; Meyer, Jelka; Sehner, Susanne; Guse, Andreas H; Guse Nee Kurré, Jennifer

    2016-04-29

    Heterogeneous basic science knowledge of medical students is an important challenge for medical education. In this study, the authors aimed at exploring the value and role of integrated supportive science (ISS) courses as a novel approach to address this challenge and to promote learning basic science concepts in medical education. ISS courses were embedded in a reformed medical curriculum. The authors used a mixed methods approach including four focus groups involving ISS course lecturers and students (two each), and five surveys of one student cohort covering the results of regular student evaluations including the ISS courses across one study year. They conducted their study at the University Medical Center Hamburg-Eppendorf between December 2013 and July 2014. Fourteen first-year medical students and thirteen ISS course lecturers participated in the focus groups. The authors identified several themes focused on the temporal integration of ISS courses into the medical curriculum, the integration of ISS course contents into core curriculum contents, the value and role of ISS courses, and the courses' setting and atmosphere. The integrated course concept was positively accepted by both groups, with participants suggesting that it promotes retention of basic science knowledge. Values and roles identified by focus group participants included promotion of basic understanding of science concepts, integration of foundational and applied learning, and maximization of students' engagement and motivation. Building close links between ISS course contents and the core curriculum appeared to be crucial. Survey results confirmed qualitative findings regarding students' satisfaction, with some courses still requiring optimization. Integration of supportive basic science courses, traditionally rather part of premedical education, into the medical curriculum appears to be a feasible strategy to improve medical students' understanding of basic science concepts and to increase

  1. Web portal on environmental sciences "ATMOS''

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Lykosov, V. N.; Fazliev, A. Z.

    2006-06-01

    The developed under INTAS grant web portal ATMOS (http://atmos.iao.ru and http://atmos.scert.ru) makes available to the international research community, environmental managers, and the interested public, a bilingual information source for the domain of Atmospheric Physics and Chemistry, and the related application domain of air quality assessment and management. It offers access to integrated thematic information, experimental data, analytical tools and models, case studies, and related information and educational resources compiled, structured, and edited by the partners into a coherent and consistent thematic information resource. While offering the usual components of a thematic site such as link collections, user group registration, discussion forum, news section etc., the site is distinguished by its scientific information services and tools: on-line models and analytical tools, and data collections and case studies together with tutorial material. The portal is organized as a set of interrelated scientific sites, which addressed basic branches of Atmospheric Sciences and Climate Modeling as well as the applied domains of Air Quality Assessment and Management, Modeling, and Environmental Impact Assessment. Each scientific site is open for external access information-computational system realized by means of Internet technologies. The main basic science topics are devoted to Atmospheric Chemistry, Atmospheric Spectroscopy and Radiation, Atmospheric Aerosols, Atmospheric Dynamics and Atmospheric Models, including climate models. The portal ATMOS reflects current tendency of Environmental Sciences transformation into exact (quantitative) sciences and is quite effective example of modern Information Technologies and Environmental Sciences integration. It makes the portal both an auxiliary instrument to support interdisciplinary projects of regional environment and extensive educational resource in this important domain.

  2. Science.gov: gateway to government science information.

    PubMed

    Fitzpatrick, Roberta Bronson

    2010-01-01

    Science.gov is a portal to more than 40 scientific databases and 200 million pages of science information via a single query. It connects users to science information and research results from the U.S. government. This column will provide readers with an overview of the resource, as well as basic search hints.

  3. Fungal genome sequencing: basic biology to biotechnology.

    PubMed

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  4. Human Amniotic Membrane-Derived Products in Sports Medicine: Basic Science, Early Results, and Potential Clinical Applications.

    PubMed

    Riboh, Jonathan C; Saltzman, Bryan M; Yanke, Adam B; Cole, Brian J

    2016-09-01

    Amniotic membrane (AM)-derived products have been successfully used in ophthalmology, plastic surgery, and wound care, but little is known about their potential applications in orthopaedic sports medicine. To provide an updated review of the basic science and preclinical and clinical data supporting the use of AM-derived products and to review their current applications in sports medicine. Systematic review. A systematic search of the literature was conducted using the Medline, EMBASE, and Cochrane databases. The search term amniotic membrane was used alone and in conjunction with stem cell, orthopaedic, tissue engineering, scaffold, and sports medicine. The search identified 6870 articles, 80 of which, after screening of the titles and abstracts, were considered relevant to this study. Fifty-five articles described the anatomy, basic science, and nonorthopaedic applications of AM-derived products. Twenty-five articles described preclinical and clinical trials of AM-derived products for orthopaedic sports medicine. Because the level of evidence obtained from this search was not adequate for systematic review or meta-analysis, a current concepts review on the anatomy, physiology, and clinical uses of AM-derived products is presented. Amniotic membranes have many promising applications in sports medicine. They are a source of pluripotent cells, highly organized collagen, antifibrotic and anti-inflammatory cytokines, immunomodulators, and matrix proteins. These properties may make it beneficial when applied as tissue engineering scaffolds, improving tissue organization in healing, and treatment of the arthritic joint. The current body of evidence in sports medicine is heavily biased toward in vitro and animal studies, with little to no human clinical data. Nonetheless, 14 companies or distributors offer commercial AM products. The preparation and formulation of these products alter their biological and mechanical properties, and a thorough understanding of these

  5. The Basic/Essential Skills Taxonomy. Second Edition--Revised.

    ERIC Educational Resources Information Center

    Snyder, Lester M., Jr.

    This revision of the "Basic/Essential Skills Taxonomy" exhibits changes based on use of the original taxonomy in the field. It features more precise definitions of the levels of key words and phrases, the deletion of some science items that ranged above basic skills, the combination of the language arts sections from the original two parts, and…

  6. Back to Basics: Preventing Surgical Fires.

    PubMed

    Spruce, Lisa

    2016-09-01

    When fires occur in the OR, they are devastating and potentially fatal to both patients and health care workers. Fires can be prevented by understanding the fire triangle and methods of reducing fire risk, conducting fire risk assessments, and knowing how to respond if a fire occurs. This Back to Basics article addresses the basics of fire prevention and the steps that can be taken to prevent fires from occurring. Copyright © 2016 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  7. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Panels participants, from left, Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, former White House Science Fair participant Joey Hudy, Environmentalist and third-year law student at Elon University School of Law Tyrone Davis, White House innovation expert Cristin Dorgelo, and Defense Advanced Research Projects Agency (DARPA) Gill Pratt, take a question from the audience during the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  8. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  9. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  10. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  11. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  12. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  13. The Global Challenge in Basic Education: Why Continued Investment in Basic Education Is Important

    ERIC Educational Resources Information Center

    Mertaugh, Michael T.; Jimenez, Emmanuel Y.; Patrinos, Harry A.

    2009-01-01

    This paper documents the importance of continued investment in basic education and argues that investments need to be carefully targeted to address the constraints that limit the coverage and quality of education if they are to provide expected benefits. Part I begins with a discussion of the returns to investment in education. Part II then…

  14. Physiology education in North American dental schools: the basic science survey series.

    PubMed

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2014-06-01

    As part of the Basic Science Survey Series for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed directors of physiology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-four of sixty-seven (65.7 percent) U.S. and Canadian dental schools. The findings suggest the following: substantial variation exists in instructional hours, faculty affiliation, class size, and interdisciplinary nature of physiology courses; physiology course content emphasis is similar between schools; student contact hours in physiology, which have remained relatively stable in the past fifteen years, are starting to be reduced; recent curricular changes have often been directed towards enhancing the integrative and clinically relevant aspects of physiology instruction; and a trend toward innovative content delivery, such as use of computer-assisted instruction, is evident. Data from this study may be useful to physiology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  15. Crossing borders: High school science teachers learning to teach the specialized language of science

    NASA Astrophysics Data System (ADS)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  16. An integrated course in pain management and palliative care bridging the basic sciences and pharmacy practice.

    PubMed

    Kullgren, Justin; Radhakrishnan, Rajan; Unni, Elizabeth; Hanson, Eric

    2013-08-12

    To describe the development of an integrated pain and palliative care course and to investigate the long-term effectiveness of the course during doctor of pharmacy (PharmD) students' advanced pharmacy practice experiences (APPEs) and in their practice after graduation. Roseman University College of Pharmacy faculty developed a 3-week elective course in pain and palliative care by integrating relevant clinical and pharmaceutical sciences. Instructional strategies included lectures, team and individual activities, case studies, and student presentations. Students who participated in the course in 2010 and 2011 were surveyed anonymously to gain their perception about the class as well as the utility of the course during their APPEs and in their everyday practice. Traditional and nontraditional assessment of students confirmed that the learning outcomes objectives were achieved. Students taking the integrated course on pain management and palliative care achieved mastery of the learning outcome objectives. Surveys of students and practicing pharmacists who completed the course showed that the learning experience as well as retention was improved with the integrated mode of teaching. Integrating basic and clinical sciences in therapeutic courses is an effective learning strategy.

  17. An Integrated Course in Pain Management and Palliative Care Bridging the Basic Sciences and Pharmacy Practice

    PubMed Central

    Kullgren, Justin; Unni, Elizabeth; Hanson, Eric

    2013-01-01

    Objective. To describe the development of an integrated pain and palliative care course and to investigate the long-term effectiveness of the course during doctor of pharmacy (PharmD) students’ advanced pharmacy practice experiences (APPEs) and in their practice after graduation. Design. Roseman University College of Pharmacy faculty developed a 3-week elective course in pain and palliative care by integrating relevant clinical and pharmaceutical sciences. Instructional strategies included lectures, team and individual activities, case studies, and student presentations. Assessment. Students who participated in the course in 2010 and 2011 were surveyed anonymously to gain their perception about the class as well as the utility of the course during their APPEs and in their everyday practice. Traditional and nontraditional assessment of students confirmed that the learning outcomes objectives were achieved. Conclusions. Students taking the integrated course on pain management and palliative care achieved mastery of the learning outcome objectives. Surveys of students and practicing pharmacists who completed the course showed that the learning experience as well as retention was improved with the integrated mode of teaching. Integrating basic and clinical sciences in therapeutic courses is an effective learning strategy. PMID:23966724

  18. a Discussion about Effective Ways of Basic Resident Register on GIS

    NASA Astrophysics Data System (ADS)

    Oku, Naoya; Nonaka, Yasuaki; Ito, Yutaka

    2016-06-01

    In Japan, each municipality keeps a database of every resident's name, address, gender and date of birth called the Basic Resident Register. If the address information in the register is converted into coordinates by geocoding, it can be plotted as point data on a map. This would enable prompt evacuation from disaster, analysis of distribution of residents, integrating statistics and so on. Further, it can be used for not only analysis of the current situation but also future planning. However, the geographic information system (GIS) incorporating the Basic Resident Register is not widely used in Japan because of the following problems: - Geocoding In order to plot address point data, it is necessary to match the Basic Resident Register and the address dictionary by using the address as a key. The information in the Basic Resident Register does not always match the actual addresses. As the register is based on applications made by residents, the information is prone to errors, such as incorrect Kanji characters. - Security policy on personal information In the register, the address of a resident is linked with his/her name and date of birth. If the information in the Basic Resident Register were to be leaked, it could be used for malicious purposes. This paper proposes solutions to the above problems. The suitable solutions for the problems depend on the purpose of use, thus it is important that the purpose should be defined and a suitable way of the application for each purpose should be chosen. In this paper, we mainly focus on the specific purpose of use: to analyse the distribution of the residents. We provide two solutions to improve the matching rate in geocoding. First, regarding errors in Kanji characters, a correction list of possible errors should be compiled in advance. Second, some sort of analyses such as distribution of residents may not require exactly correct position for the address point. Therefore we set the matching level in order: prefecture

  19. Unions: Bread, Butter & Basic Skills.

    ERIC Educational Resources Information Center

    BCEL Newsletter for the Business Community, 1987

    1987-01-01

    Unions are natural providers of basic skills instruction. They are in daily workplace contact with their membership, are trusted to work on members' behalf, and speak the language of the worker. Unions are trying to address the needs of illiterate workers through collective bargaining arrangements in which employers contribute a percentage of…

  20. Predictors of student success in entry-level science courses

    NASA Astrophysics Data System (ADS)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses

  1. A global regulatory science agenda for vaccines.

    PubMed

    Elmgren, Lindsay; Li, Xuguang; Wilson, Carolyn; Ball, Robert; Wang, Junzhi; Cichutek, Klaus; Pfleiderer, Michael; Kato, Atsushi; Cavaleri, Marco; Southern, James; Jivapaisarnpong, Teeranart; Minor, Philip; Griffiths, Elwyn; Sohn, Yeowon; Wood, David

    2013-04-18

    The Decade of Vaccines Collaboration and development of the Global Vaccine Action Plan provides a catalyst and unique opportunity for regulators worldwide to develop and propose a global regulatory science agenda for vaccines. Regulatory oversight is critical to allow access to vaccines that are safe, effective, and of assured quality. Methods used by regulators need to constantly evolve so that scientific and technological advances are applied to address challenges such as new products and technologies, and also to provide an increased understanding of benefits and risks of existing products. Regulatory science builds on high-quality basic research, and encompasses at least two broad categories. First, there is laboratory-based regulatory science. Illustrative examples include development of correlates of immunity; or correlates of safety; or of improved product characterization and potency assays. Included in such science would be tools to standardize assays used for regulatory purposes. Second, there is science to develop regulatory processes. Illustrative examples include adaptive clinical trial designs; or tools to analyze the benefit-risk decision-making process of regulators; or novel pharmacovigilance methodologies. Included in such science would be initiatives to standardize regulatory processes (e.g., definitions of terms for adverse events [AEs] following immunization). The aim of a global regulatory science agenda is to transform current national efforts, mainly by well-resourced regulatory agencies, into a coordinated action plan to support global immunization goals. This article provides examples of how regulatory science has, in the past, contributed to improved access to vaccines, and identifies gaps that could be addressed through a global regulatory science agenda. The article also identifies challenges to implementing a regulatory science agenda and proposes strategies and actions to fill these gaps. A global regulatory science agenda will enable

  2. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Montgomery Blair High School Student Newspaper “Silver Chips” Online Editor-in-Chief Aanchal Johri, right, and Photo Editor Emma Howells, left, from Silver Spring, MD. interview Joey Hudy, Anthem, AZ, 16-year-old self-described “Maker” at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Joey sat with the First Lady at the President’s 2014 State of the Union Address after his first shot to fame in 2012 when he attended the White House Science Fair where the President took a turn using his “extreme marshmallow cannon” to launch a marshmallow across the East Room of the White House. Photo Credit: (NASA/Bill Ingalls)

  3. EPA Leadership on Science, Innovation, and Decision Support Tools for Addressing Current and Future Challenges.

    PubMed

    Hecht, Alan D; Ferster, Aaron; Summers, Kevin

    2017-10-16

    When the U.S. Environmental Protection Agency (EPA) was established nearly 50 years ago, the nation faced serious threats to its air, land, and water, which in turn impacted human health. These threats were effectively addressed by the creation of EPA (in 1970) and many subsequent landmark environmental legislations which in turn significantly reduced threats to the Nation's environment and public health. A key element of historic legislation is research aimed at dealing with current and future problems. Today we face national and global challenges that go beyond classic media-specific (air, land, water) environmental legislation and require an integrated paradigm of action and engagement based on (1) innovation based on science and technology, (2) stakeholder engagement and collaboration, and (3) public education and support. This three-pronged approach recognizes that current environmental problems, include social as well as physical and environmental factors, are best addressed through collaborative problem solving, the application of innovation in science and technology, and multiple stakeholder engagement. To achieve that goal, EPA's Office of Research and Development (ORD) is working directly with states and local communities to develop and apply a suite of accessible decision support tools (DST) that aim to improve environmental conditions, protect human health, enhance economic opportunity, and advance a resilient and sustainability society. This paper showcases joint EPA and state actions to develop tools and approaches that not only meet current environmental and public health challenges, but do so in a way that advances sustainable, healthy, and resilient communities well into the future. EPA's future plans should build on current work but aim to effectively respond to growing external pressures. Growing pressures from megatrends are a major challenge for the new Administration and for cities and states across the country. The recent hurricanes hitting

  4. Myocardial Infarction and Exercise Training: Evidence from Basic Science.

    PubMed

    Moraes-Silva, Ivana C; Rodrigues, Bruno; Coelho-Junior, Hélio J; Feriani, Daniele Jardim; Irigoyen, Maria-Claudia

    2017-01-01

    In 2016, cardiovascular disease remains the first cause of mortality worldwide [1]. Coronary artery disease, which is the most important precursor of myocardial infarction (MI), is the main component of total cardiovascular mortality, being responsible for approximately seven million of deaths [1]. In approximately 20% of infarcted patients, MI is recurrent in the first year after the event [2]. Moreover, among cardiovascular disease, coronary artery disease accounts for the most increased index of life years lost due to morbidity and/or mortality [1]. Sedentarism highly contributes to cardiovascular disease burden, especially for coronary artery disease, and is also one of the MI risk factors [3]. For many years, it was recommended to avoid physical activity after a cardiovascular event; nowadays, it is a consensus that exercise training (ET) should be part of cardiac rehabilitation programs. There is increasing evidence confirming that, when adequately prescribed and supervised, ET after MI can prevent future complications and increase the quality of life and longevity of infarcted patients [4, 5]. ET after MI follows international specialized guidelines; however, there are different protocols adopted by several societies worldwide in cardiac rehabilitation [6], and there is still lack of information on which type and regimen of exercise may be the ideal after MI, as well as how these exercises act to promote beneficial effects to cardiovascular and other organic systems. Thus, experimental studies are important contributors to elicit mechanisms behind clinical results, and to test and compare different ET protocols. Therefore, exercise prescription can be optimized, individualized, and safely practiced by patients. In this chapter, we present a brief review of MI pathophysiology followed by an updated discussion of the most relevant discoveries regarding ET and MI in basic science.

  5. Redesigning a General Education Science Course to Promote Critical Thinking

    PubMed Central

    Rowe, Matthew P.; Gillespie, B. Marcus; Harris, Kevin R.; Koether, Steven D.; Shannon, Li-Jen Y.; Rose, Lori A.

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. PMID:26231561

  6. Addressing Three Common Myths about the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Huff, Kenneth L.

    2016-01-01

    Science education is central to the lives of all Americans. Students face a world where they will frequently be required to make important decisions on issues that range from health care to the environment. Achieving literacy in science will require coherence at all levels and across components of the system including curriculum, assessment, and…

  7. Basic science and surgical treatment options for articular cartilage injuries of the knee.

    PubMed

    Tetteh, Elizabeth S; Bajaj, Sarvottam; Ghodadra, Neil S

    2012-03-01

    The complex structure of articular cartilage allows for diverse knee function throughout range of motion and weight bearing. However, disruption to the structural integrity of the articular surface can cause significant morbidity. Due to an inherently poor regenerative capacity, articular cartilage defects present a treatment challenge for physicians and therapists. For many patients, a trial of nonsurgical treatment options is paramount prior to surgical intervention. In instances of failed conservative treatment, patients can undergo an array of palliative, restorative, or reparative surgical procedures to treat these lesions. Palliative methods include debridement and lavage, while restorative techniques include marrow stimulation. For larger lesions involving subchondral bone, reparative procedures such as osteochondral grafting or autologous chondrocyte implantation are considered. Clinical success not only depends on the surgical techniques but also requires strict adherence to rehabilitation guidelines. The purpose of this article is to review the basic science of articular cartilage and to provide an overview of the procedures currently performed at our institution for patients presenting with symptomatic cartilage lesions.

  8. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  9. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, center, poses for a group photograph with NASA's 2013 astronaut candidates, from left, Josh A. Cassada, Nicole Aunapu Mann, Jessica U. Meir, Tyler N. "Nick" Hague, Holdren, Victor J. Glover, Christina M. Hammock, Andrew R. Morgan, and, Anne C. McClain at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  10. Basic science of pain.

    PubMed

    DeLeo, Joyce A

    2006-04-01

    The origin of the theory that the transmission of pain is through a single channel from the skin to the brain can be traced to the philosopher and scientist René Descartes. This simplified scheme of the reflex was the beginning of the development of the modern doctrine of reflexes. Unfortunately, Descartes' reflex theory directed both the study and treatment of pain for more than 330 years. It is still described in physiology and neuroscience textbooks as fact rather than theory. The gate control theory proposed by Melzack and Wall in 1965 rejuvenated the field of pain study and led to further investigation into the phenomena of spinal sensitization and central nervous system plasticity, which are the potential pathophysiologic correlates of chronic pain. The processing of pain takes place in an integrated matrix throughout the neuroaxis and occurs on at least three levels-at peripheral, spinal, and supraspinal sites. Basic strategies of pain control monopolize on this concept of integration by attenuation or blockade of pain through intervention at the periphery, by activation of inhibitory processes that gate pain at the spinal cord and brain, and by interference with the perception of pain. This article discusses each level of pain modulation and reviews the mechanisms of action of opioids and potential new analgesics. A brief description of animal models frames a discussion about recent advances regarding the role of glial cells and central nervous system neuroimmune activation and innate immunity in the etiology of chronic pain states. Future investigation into the discovery and development of novel, nonopioid drug therapy may provide needed options for the millions of patients who suffer from chronic pain syndromes, including syndromes in which the pain originates from peripheral nerve, nerve root, spinal cord, bone, muscle, and disc.

  11. State of the Union Address Student Guests

    NASA Image and Video Library

    2011-01-25

    White House Office of Science and Technology Policy Associate Director for Science Carl Wieman, left, talks with West Philadelphia High School student Brandon Ford, left, and Montana Central Catholic High School student Mikayla Nelson at the New Executive Office Building, Tuesday, Jan. 25, 2011 in Washington. The students are all young achievers in science and technology and will be amongst other guests seated in the First Lady’s Box in the U.S. Capitol during the President’s State of the Union Address. Photo Credit: (NASA/Bill Ingalls)

  12. Current trends in tendinopathy: consensus of the ESSKA basic science committee. Part I: biology, biomechanics, anatomy and an exercise-based approach.

    PubMed

    Abat, F; Alfredson, H; Cucchiarini, M; Madry, H; Marmotti, A; Mouton, C; Oliveira, J M; Pereira, H; Peretti, G M; Romero-Rodriguez, D; Spang, C; Stephen, J; van Bergen, C J A; de Girolamo, L

    2017-12-01

    Chronic tendinopathies represent a major problem in the clinical practice of sports orthopaedic surgeons, sports doctors and other health professionals involved in the treatment of athletes and patients that perform repetitive actions. The lack of consensus relative to the diagnostic tools and treatment modalities represents a management dilemma for these professionals. With this review, the purpose of the ESSKA Basic Science Committee is to establish guidelines for understanding, diagnosing and treating this complex pathology.

  13. Addressing Common Student Technical Errors in Field Data Collection: An Analysis of a Citizen-Science Monitoring Project.

    PubMed

    Philippoff, Joanna; Baumgartner, Erin

    2016-03-01

    The scientific value of citizen-science programs is limited when the data gathered are inconsistent, erroneous, or otherwise unusable. Long-term monitoring studies, such as Our Project In Hawai'i's Intertidal (OPIHI), have clear and consistent procedures and are thus a good model for evaluating the quality of participant data. The purpose of this study was to examine the kinds of errors made by student researchers during OPIHI data collection and factors that increase or decrease the likelihood of these errors. Twenty-four different types of errors were grouped into four broad error categories: missing data, sloppiness, methodological errors, and misidentification errors. "Sloppiness" was the most prevalent error type. Error rates decreased with field trip experience and student age. We suggest strategies to reduce data collection errors applicable to many types of citizen-science projects including emphasizing neat data collection, explicitly addressing and discussing the problems of falsifying data, emphasizing the importance of using standard scientific vocabulary, and giving participants multiple opportunities to practice to build their data collection techniques and skills.

  14. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, M.D.; Beck, R.N.

    1990-09-01

    This is a report of progress in Year Two (January 1, 1990--December 31, 1990) of Grant FG02-86ER60438, Quantitative Studies in Radiopharmaceutical Science,'' awarded for the three-year period January 1, 1989--December 31, 1991 as a competitive renewal following site visit in the fall of 1988. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further themore » development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 25 refs., 13 figs., 1 tab.« less

  15. Earth System Science Education Interdisciplinary Partnerships

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  16. Big Data Science: Opportunities and Challenges to Address Minority Health and Health Disparities in the 21st Century

    PubMed Central

    Zhang, Xinzhi; Pérez-Stable, Eliseo J.; Bourne, Philip E.; Peprah, Emmanuel; Duru, O. Kenrik; Breen, Nancy; Berrigan, David; Wood, Fred; Jackson, James S.; Wong, David W.S.; Denny, Joshua

    2017-01-01

    Addressing minority health and health disparities has been a missing piece of the puzzle in Big Data science. This article focuses on three priority opportunities that Big Data science may offer to the reduction of health and health care disparities. One opportunity is to incorporate standardized information on demographic and social determinants in electronic health records in order to target ways to improve quality of care for the most disadvantaged populations over time. A second opportunity is to enhance public health surveillance by linking geographical variables and social determinants of health for geographically defined populations to clinical data and health outcomes. Third and most importantly, Big Data science may lead to a better understanding of the etiology of health disparities and understanding of minority health in order to guide intervention development. However, the promise of Big Data needs to be considered in light of significant challenges that threaten to widen health disparities. Care must be taken to incorporate diverse populations to realize the potential benefits. Specific recommendations include investing in data collection on small sample populations, building a diverse workforce pipeline for data science, actively seeking to reduce digital divides, developing novel ways to assure digital data privacy for small populations, and promoting widespread data sharing to benefit under-resourced minority-serving institutions and minority researchers. With deliberate efforts, Big Data presents a dramatic opportunity for reducing health disparities but without active engagement, it risks further widening them. PMID:28439179

  17. Big Data Science: Opportunities and Challenges to Address Minority Health and Health Disparities in the 21st Century.

    PubMed

    Zhang, Xinzhi; Pérez-Stable, Eliseo J; Bourne, Philip E; Peprah, Emmanuel; Duru, O Kenrik; Breen, Nancy; Berrigan, David; Wood, Fred; Jackson, James S; Wong, David W S; Denny, Joshua

    2017-01-01

    Addressing minority health and health disparities has been a missing piece of the puzzle in Big Data science. This article focuses on three priority opportunities that Big Data science may offer to the reduction of health and health care disparities. One opportunity is to incorporate standardized information on demographic and social determinants in electronic health records in order to target ways to improve quality of care for the most disadvantaged populations over time. A second opportunity is to enhance public health surveillance by linking geographical variables and social determinants of health for geographically defined populations to clinical data and health outcomes. Third and most importantly, Big Data science may lead to a better understanding of the etiology of health disparities and understanding of minority health in order to guide intervention development. However, the promise of Big Data needs to be considered in light of significant challenges that threaten to widen health disparities. Care must be taken to incorporate diverse populations to realize the potential benefits. Specific recommendations include investing in data collection on small sample populations, building a diverse workforce pipeline for data science, actively seeking to reduce digital divides, developing novel ways to assure digital data privacy for small populations, and promoting widespread data sharing to benefit under-resourced minority-serving institutions and minority researchers. With deliberate efforts, Big Data presents a dramatic opportunity for reducing health disparities but without active engagement, it risks further widening them.

  18. Basic Skills, Basic Writing, Basic Research.

    ERIC Educational Resources Information Center

    Trimmer, Joseph F.

    1987-01-01

    Overviews basic writing instruction and research by briefly discussing the history of remediation, results of a survey of basic writing programs in U.S. colleges and universities, and interviews with developmental textbook editors at major publishing houses. Finds that basic writing instruction continues to focus on sentence grammar. (MM)

  19. Calls for Canada to support basic research

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2017-08-01

    Canada’s decade-long shift of financial support from fundamental studies towards applied research is dismantling the nation’s funding of basic science, according to a report by the Global Young Academy (GYA) - an international society of young scientists.

  20. Knowledge loss of medical students on first year basic science courses at the university of Saskatchewan

    PubMed Central

    D'Eon, Marcel F

    2006-01-01

    Background Many senior undergraduate students from the University of Saskatchewan indicated informally that they did not remember much from their first year courses and wondered why we were teaching content that did not seem relevant to later clinical work or studies. To determine the extent of the problem a course evaluation study that measured the knowledge loss of medical students on selected first year courses was conducted. This study replicates previous memory decrement studies with three first year medicine basic science courses, something that was not found in the literature. It was expected that some courses would show more and some courses would show less knowledge loss. Methods In the spring of 2004 over 20 students were recruited to retake questions from three first year courses: Immunology, physiology, and neuroanatomy. Student scores on the selected questions at the time of the final examination in May 2003 (the 'test') were compared with their scores on the questions 10 or 11 months later (the 're-test') using paired samples t -tests. A repeated-measures MANOVA was used to compare the test and re-test scores among the three courses. The re-test scores were matched with the overall student ratings of the courses and the student scores on the May 2003 examinations. Results A statistically significant main effect of knowledge loss (F = 297.385; p < .001) and an interaction effect by course (F = 46.081; p < .001) were found. The students' scores in the Immunology course dropped 13.1%, 46.5% in Neuroanatomy, and 16.1% in physiology. Bonferroni post hoc comparisons showed a significant difference between Neuroanatomy and Physiology (mean difference of 10.7, p = .004). Conclusion There was considerable knowledge loss among medical students in the three basic science courses tested and this loss was not uniform across courses. Knowledge loss does not seem to be related to the marks on the final examination or the assessment of course quality by the students

  1. Is the use of sentient animals in basic research justifiable?

    PubMed Central

    2010-01-01

    Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities. PMID:20825676

  2. Is the use of sentient animals in basic research justifiable?

    PubMed

    Greek, Ray; Greek, Jean

    2010-09-08

    Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities.

  3. Basic Interpretation of EKG's. N203.

    ERIC Educational Resources Information Center

    Hall, Laura T.

    A description is provided of an associate degree in nursing science course, "Rapid Interpretation of Electrocardiograms (EKG's)," designed to emphasize the nurse's role in the interpretation of the basic EKG and the medical interventions necessary to treat arrythmias. The first section of the course description provides information on…

  4. Frequency and Type of Conflicts of Interest in the Peer Review of Basic Biomedical Research Funding Applications: Self-Reporting Versus Manual Detection.

    PubMed

    Gallo, Stephen A; Lemaster, Michael; Glisson, Scott R

    2016-02-01

    Despite the presumed frequency of conflicts of interest in scientific peer review, there is a paucity of data in the literature reporting on the frequency and type of conflicts that occur, particularly with regard to the peer review of basic science applications. To address this gap, the American Institute of Biological Sciences (AIBS) conducted a retrospective analysis of conflict of interest data from the peer review of 282 biomedical research applications via several onsite review panels. The overall conflicted-ness of these panels was significantly lower than that reported for regulatory review. In addition, the majority of identified conflicts were institutional or collaborative in nature. No direct financial conflicts were identified, although this is likely due to the relatively basic science nature of the research. It was also found that 65 % of identified conflicts were manually detected by AIBS staff searching reviewer CVs and application documents, with the remaining 35 % resulting from self-reporting. The lack of self-reporting may be in part attributed to a lack of perceived risk of the conflict. This result indicates that many potential conflicts go unreported in peer review, underscoring the importance of improving detection methods and standardizing the reporting of reviewer and applicant conflict of interest information.

  5. [Evolution of the number of authors in clinical and basic science journals in the Spanish language].

    PubMed

    Soteras, F; Blanco, J R; García Pineda, A F; Rupérez, H; Córdova, A; Escanero, J F

    1990-01-01

    The number of signing authors in Revista Clínica Española. Revista Española de Fisiología and Revista Española de Oncología have been analyzed from their first to the last received issue. The results obtained show an increasing number of authors in all journals specially during the 70s. The results also point out a relative decrease in the number of authors in basic sciences in relation to clinical publications. The increase in the number of authors in The Revista Española de Oncología has started somewhat later than the others. The environmental and professional stress as well as the interrelations between different hospital members have been suggested, amongst others, as the possible cause of these events.

  6. The importance and pitfalls of correlational science in palliative care research.

    PubMed

    Klepstad, Pål; Kaasa, Stein

    2012-12-01

    Correlational science discovers associations between patient characteristics, symptoms and biomarkers. Correlational science using data from cross-sectional studies is the most frequently applied study design in palliative care research. The purpose of this review is to address the importance and potential pitfalls in correlational science. Associations observed in correlational science studies can be the basis for generating hypotheses that can be tested in experimental studies and are the basic data needed to develop classification systems that can predict patient outcomes. Major pitfalls in correlational science are that associations do not equate with causality and that statistical significance does not necessarily equal a correlation that is of clinical interest. Researchers should be aware of the end-points that are clinically relevant, that end-points should be defined before the start of the analyses, and that studies with several end-points should account for multiplicity. Correlational science in palliative care research can identify related clinical factors and biomarkers. Interpretation of identified associations should be done with careful consideration of the limitations underlying correlational analyses.

  7. Train the Trainer. Facilitator Guide Sample. Basic Blueprint Reading (Chapter One).

    ERIC Educational Resources Information Center

    Saint Louis Community Coll., MO.

    This publication consists of three sections: facilitator's guide--train the trainer, facilitator's guide sample--Basic Blueprint Reading (Chapter 1), and participant's guide sample--basic blueprint reading (chapter 1). Section I addresses why the trainer should learn new classroom techniques; lecturing versus facilitating; learning styles…

  8. Science in the regulatory setting: a challenging but incompatible mix?

    PubMed

    Yetley, Elizabeth A

    2007-01-01

    Regulatory decisions informed by sound science have an important role in many regulatory applications involving drugs and foods, including applications related to dietary supplements. However, science is only one of many factors that must be taken into account in the regulatory decision-making process. In many cases, the scientific input to a regulatory decision must compete with other factors (e.g. economics, legal requirements, stakeholder interests) for impact on the resultant policy decision. Therefore, timely and effective articulation of the available science to support a regulatory decision can significantly affect the relative weight given to science. However, the incorporation of science into the regulatory process for dietary supplements is often fraught with challenges. The available scientific evidence has rarely been designed for the purpose of addressing regulatory questions and is often preliminary and of widely varying scientific quality. To add to the confusion, the same scientific evidence may result in what appears to be different regulatory decisions because the context in which the science is used differs. The underlying assumption is that scientists who have a basic understanding of the interface between science and policy decisions can more effectively provide scientific input into these decisions.

  9. Department of Defense Basic Research Program.

    DTIC Science & Technology

    1983-01-01

    25 Environmental Sciences oceanography ........................................................................... 27...budget category and increased emphasis on high- risk , high-payoff, and named Basic Research, most of the effort funded under long-term research was...proximity fue, °.tchooie-o examplsi, radar, theus prxiit fuzenan asrsk purchasing power because of inflation and was risking nuclear weapons, homing

  10. Electrical Trades. Suggested Basic Course Outline.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This course outline is intended to assist vocational instructors in developing and teaching a course in the electrical trades. Addressed in the individual sections of the outline are the following topics: orientation (a course overview, job orientation, safety, first aid, and Vocational Industrial Clubs of America); basic skills (mathematics,…

  11. Beyond the data - Topics that resonate with students when communicating basic climate science in a Geoscience course

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.

    2013-12-01

    Instructors will undoubtedly want to cover basic climate change science in undergraduate geosciences courses. When instructors have limited time in a course, they would like to know what topics will not only provide factual climate data, but also resonate with students. Instructors want to bring a variety of information to the classroom, but even if time allows, this can sometimes become too overwhelming and lead to diminishing returns. This study is based on a series of surveys conducted in an upper-division Air Pollution/Atmospheric Chemistry course at Loyola Marymount University to assess students' opinions on climate change, how these opinions change throughout the semester, and what teaching resources/topics were most effective in catalyzing those changes. Data will be presented to show that not only opinions, but also the level of student confidence in this politically-sensitive topic, shifted by the end of the semester. At the end of the semester, students evaluated their level of agreement with how much each specific topic presented significantly contributed to their understanding that 1) the climate is indeed changing, and 2) humans have a large role in climate change. In general, students find the timeline of the link between greenhouse gases and temperature particularly compelling. Lastly, even in this physical science course students clearly gained an appreciation for the role of science in politics and social justice. Not only is this a tenant of liberal arts education, but it seems as if students find this interdisciplinary connection empowering.

  12. Beyond the data - Topics that resonate with students when communicating basic climate science in a Geoscience course

    NASA Astrophysics Data System (ADS)

    Byrne, J. M.; McDaniel, S.; Graham, J.; Hoggan, J. C.

    2011-12-01

    Instructors will undoubtedly want to cover basic climate change science in undergraduate geosciences courses. When instructors have limited time in a course, they would like to know what topics will not only provide factual climate data, but also resonate with students. Instructors want to bring a variety of information to the classroom, but even if time allows, this can sometimes become too overwhelming and lead to diminishing returns. This study is based on a series of surveys conducted in an upper-division Air Pollution/Atmospheric Chemistry course at Loyola Marymount University to assess students' opinions on climate change, how these opinions change throughout the semester, and what teaching resources/topics were most effective in catalyzing those changes. Data will be presented to show that not only opinions, but also the level of student confidence in this politically-sensitive topic, shifted by the end of the semester. At the end of the semester, students evaluated their level of agreement with how much each specific topic presented significantly contributed to their understanding that 1) the climate is indeed changing, and 2) humans have a large role in climate change. In general, students find the timeline of the link between greenhouse gases and temperature particularly compelling. Lastly, even in this physical science course students clearly gained an appreciation for the role of science in politics and social justice. Not only is this a tenant of liberal arts education, but it seems as if students find this interdisciplinary connection empowering.

  13. Basic nursing care: The most provided, the least evidence based - A discussion paper.

    PubMed

    Zwakhalen, Sandra M G; Hamers, Jan P H; Metzelthin, Silke F; Ettema, Roelof; Heinen, Maud; de Man-Van Ginkel, Janneke M; Vermeulen, Hester; Huisman-de Waal, Getty; Schuurmans, Marieke J

    2018-06-01

    To describe and discuss the "Basic Care Revisited" (BCR) research programme, a collaborative initiative that contributes to evidence-based basic nursing care and raises awareness about the importance of basic nursing care activities. While basic nursing care serves nearly all people at some point in their lifetime, it is poorly informed by evidence. There is a need to prioritise and evaluate basic nursing care activities to improve patient outcomes and improve the quality of care. Discussion paper METHOD: The discussion presented in this paper is based on nursing literature and theory and supported by the authors' clinical and research experiences. We present the developmental process and content of a research programme called "Basic Care Revisited" (BCR) as a solution to move forward and improve basic nursing care. To prioritise basic nursing care, we propose a research programme entitled "Basic Care Revisited" that aims to create awareness and expand knowledge on evidence-based basic nursing care by addressing four basic nursing care themes (bathing and dressing, communication, mobility, and nutrition) in different settings. The paper discusses a pathway to create a sustainable and productive research collaborative on basic nursing care and addresses issues to build research capacity. Revaluation of these important nursing activities will not only positively influence patient outcomes, but also have an impact on staff outcomes and organisational outcomes. © 2018 John Wiley & Sons Ltd.

  14. A comparison of basic and state-of-the-arts skills sets of biomedical science technical staff in Lagos public universities.

    PubMed

    John, T A

    2011-12-01

    Biomedical science has advanced drastically in developed countries in the last two decades with many health and economic benefits. In Nigeria, biomedical science has not thrived and the contribution from Nigerian universities, indeed African universities, to publications in global high impact journals is low. The present work was based on the hypothesis that there is a lack of state-of-the-arts experimentation in Nigerian biomedical science experiments. An investigation was carried out on the professional skills of biomedical science technical staff of the two (federal and state) public universities in Lagos, Nigeria using a closed-ended questionnaire survey. The 17 respondents were asked about their training, the frequency of utilization of 99 skills, and their expertise. The respondents were "untrained" more in state-of-the-arts skills (34% for electrophoresis, 28% for genomics, 22% for immunochemistry, and 34% for proteomics skills) than in general professional skills (5%), basic technical equipment skills (16%), or general biomedical science knowledge and skills (16%). Frequencies of responses were higher for general skills than for state-of-the-arts skills in the responses "utilizing frequently" (9.96%-31-61% versus 0.36%-4.2%), and "I'm expert" (9.55%-19.88% versus 5.88%-8.48%). It was projected that with continued investment in modern equipment and infrastructure, there will be increased drive for training and usage of modern bioscience research skills and multidisciplinary approaches and production of high-tech scientific publications.

  15. Mathematics, thermodynamics, and modeling to address ten common misconceptions about protein structure, folding, and stability.

    PubMed

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative phenomena in undergraduate classes. In the process of learning about these topics, students often form incorrect ideas. For example, by learning about protein folding in the context of protein synthesis, students may come to an incorrect conclusion that once synthesized on the ribosome, a protein spends its entire cellular life time in its fully folded native confirmation. This is clearly not true; proteins are dynamic structures that undergo both local fluctuations and global unfolding events. To prevent and address such misconceptions, basic concepts of protein science can be introduced in the context of simple mathematical models and hands-on explorations of publicly available data sets. Ten common misconceptions about proteins are presented, along with suggestions for using equations, models, sequence, structure, and thermodynamic data to help students gain a deeper understanding of basic concepts relating to protein structure, folding, and stability.

  16. Important role of translational science in rare disease innovation, discovery, and drug development.

    PubMed

    Pariser, Anne R; Gahl, William A

    2014-08-01

    Rare diseases play a leading role in innovation and the advancement of medical and pharmaceutical science. Most rare diseases are genetic disorders or atypical manifestations of infectious, immunologic, or oncologic diseases; they all provide opportunities to study extremes of human pathology and provide insight into both normal and aberrant physiology. Recently, drug development has become increasingly focused on classifying diseases largely on genetic grounds; this has allowed the identification of molecularly defined targets and the development of targeted therapies. Clinical trials are now focusing on progressively smaller subgroups within both common and rare disease populations, often based on genetic tests or biomarkers. Drug developers, researchers, and regulatory agencies face a variety of challenges throughout the life cycle of drug research and development for rare diseases. These include the small numbers of patients available for study, lack of knowledge of the disease's natural history, incomplete understanding of the basic mechanisms causing the disorder, and variability in disease severity, expression, and course. Traditional approaches to rare disease clinical research have not kept pace with advances in basic science, and increased attention to translational science is needed to address these challenges, especially diagnostic testing, registries, and novel trial designs.

  17. How Singapore Junior College Science Teachers Address Curriculum Reforms: A Theory

    ERIC Educational Resources Information Center

    Lim, Patrick; Pyvis, David

    2012-01-01

    Using grounded theory research methodology, a theory was developed to explain how Singapore junior college science teachers implement educational reforms underpinning the key initiatives of the "Thinking Schools, Learning Nation" policy. The theory suggests Singapore junior college science teachers "deal with" implementing…

  18. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    White House innovation expert Cristin Dorgelo speaks at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  19. Teaching Basic Algebra Courses at the College Level

    ERIC Educational Resources Information Center

    Mallenby, Michel L.; Mallenby, Douglas W.

    2004-01-01

    Three dysfunctional behaviors of basic algebra students are described: Silence as Camouflage, Wing and a Prayer, and Ignorance is OK. These behavior patterns are explained, and beneficial teaching methods that address the weaknesses are presented.

  20. Improving basic life support training for medical students.

    PubMed

    Lami, Mariam; Nair, Pooja; Gadhvi, Karishma

    2016-01-01

    Questions have been raised about basic life support (BLS) training in medical education. This article addresses the research evidence behind why BLS training is inadequate and suggests recommendations for improving BLS training for medical students.