Sample records for address complex problems

  1. Addressing Complex Challenges through Adaptive Leadership: A Promising Approach to Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Nelson, Tenneisha; Squires, Vicki

    2017-01-01

    Organizations are faced with solving increasingly complex problems. Addressing these issues requires effective leadership that can facilitate a collaborative problem solving approach where multiple perspectives are leveraged. In this conceptual paper, we critique the effectiveness of earlier leadership models in tackling complex organizational…

  2. Complex Problem Solving: What It Is and What It Is Not

    PubMed Central

    Dörner, Dietrich; Funke, Joachim

    2017-01-01

    Computer-simulated scenarios have been part of psychological research on problem solving for more than 40 years. The shift in emphasis from simple toy problems to complex, more real-life oriented problems has been accompanied by discussions about the best ways to assess the process of solving complex problems. Psychometric issues such as reliable assessments and addressing correlations with other instruments have been in the foreground of these discussions and have left the content validity of complex problem solving in the background. In this paper, we return the focus to content issues and address the important features that define complex problems. PMID:28744242

  3. On Using Meta-Modeling and Multi-Modeling to Address Complex Problems

    ERIC Educational Resources Information Center

    Abu Jbara, Ahmed

    2013-01-01

    Models, created using different modeling techniques, usually serve different purposes and provide unique insights. While each modeling technique might be capable of answering specific questions, complex problems require multiple models interoperating to complement/supplement each other; we call this Multi-Modeling. To address the syntactic and…

  4. An Ethnomethodological Perspective on How Middle School Students Addressed a Water Quality Problem

    ERIC Educational Resources Information Center

    Belland, Brian R.; Gu, Jiangyue; Kim, Nam Ju; Turner, David J.

    2016-01-01

    Science educators increasingly call for students to address authentic scientific problems in science class. One form of authentic science problem--socioscientific issue--requires that students engage in complex reasoning by considering both scientific and social implications of problems. Computer-based scaffolding can support this process by…

  5. The Right Network for the Right Problem

    ERIC Educational Resources Information Center

    Gomez, Louis M.; Russell, Jennifer L.; Bryk, Anthony S.; LeMahieu, Paul G.; Mejia, Eva M.

    2016-01-01

    Educators are realizing that individuals working in isolation can't adequately address the teaching and learning problems that face us today. Collective action networks are needed. Sharing networks use collective energy to support individual action and agency, whereas execution networks typically address complex problems that require sustained…

  6. Ecosystem services and cooperative fisheries research to address a complex fishery problem

    EPA Science Inventory

    The St. Louis River represents a complex fishery management problem. Current fishery management goals have to be developed taking into account bi-state commercial, subsistence and recreational fisheries which are valued for different characteristics by a wide range of anglers, as...

  7. A Wicked Problem: Early Childhood Safety in the Dynamic, Interactive Environment of Home

    PubMed Central

    Simpson, Jean; Fougere, Geoff; McGee, Rob

    2013-01-01

    Young children being injured at home is a perennial problem. When parents of young children and family workers discussed what influenced parents’ perceptions and responses to child injury risk at home, both “upstream” and “downstream” causal factors were identified. Among the former, complex and interactive facets of society and contemporary living emerged as potentially critical features. The “wicked problems” model arose from the need to find resolutions for complex problems in multidimensional environments and it proved a useful analogy for child injury. Designing dynamic strategies to provide resolutions to childhood injury, may address our over-dependence on ‘tame solutions’ that only deal with physical cause-and-effect relationships and which cannot address the complex interactive contexts in which young children are often injured. PMID:23615453

  8. An operationalized post-normal science framework for assisting in the development of complex science policy solutions: the case of nanotechnology governance

    NASA Astrophysics Data System (ADS)

    Bernstein, Michael J.; Foley, Rider W.; Bennett, Ira

    2014-07-01

    Scientists, engineers, and policy analysts commonly suggest governance regimes for technology to maximize societal benefits and minimize negative societal and environmental impacts of innovation processes. Yet innovation is a complex socio-technical process that does not respond predictably to modification. Our human propensity to exclude complexity when attempting to manage systems often results in insufficient, one-dimensional solutions. The tendency to exclude complexity (1) reinforces itself by diminishing experience and capacity in the design of simple solutions to complex problems, and (2) leads to solutions that do not address the identified problem. To address the question of how to avoid a complexity- exclusion trap, this article operationalizes a post-normal science framework to assist in the enhancement or design of science policy proposals. A literature review of technological fixes, policy panaceas, and knowledge-to-action gaps is conducted to survey examples of post-normal science frameworks. Next, an operational framework is used to assess the case of a proposed international nanotechnology advisory board. The framework reveals that the board addresses a slice of the broader, more complex problem of nanotechnology governance. We argue that while the formation of an international advisory board is not problematic in-and-of-itself, it is symptomatic of and plays into a complexity- exclusion trap. We offer researchers, policy analysts, and decision-makers three recommendations that incorporate a more appropriate level of complexity into governance proposals.

  9. Establishing and Sustaining Networked Improvement Communities: Lessons from Michigan and Minnesota. REL 2017-264

    ERIC Educational Resources Information Center

    Proger, Amy R.; Bhatt, Monica P.; Cirks, Victoria; Gurke, Deb

    2017-01-01

    There is growing interest in the ability of improvement science--the systematic study of improvement strategies to identify promising practices for addressing issues in complex systems (Improvement Science Research Network, 2016)--to spur innovation and address complex problems. In education this methodology is often implemented through…

  10. Identification and Addressing Reduction-Related Misconceptions

    ERIC Educational Resources Information Center

    Gal-Ezer, Judith; Trakhtenbrot, Mark

    2016-01-01

    Reduction is one of the key techniques used for problem-solving in computer science. In particular, in the theory of computation and complexity (TCC), mapping and polynomial reductions are used for analysis of decidability and computational complexity of problems, including the core concept of NP-completeness. Reduction is a highly abstract…

  11. Fighting On All Fronts: A Critical Review Of The US Strategy Against ISIL

    DTIC Science & Technology

    2016-05-26

    developing a base sense of the sheer complexity. The Shia led Iraqi government has exacerbated tensions with the Sunnis through its heavy-handedness...only a part. In effect, only the symptom of a problem is being addressed instead of the getting at the core of the problem . Looking at ISIL through ...13 Solving the Right Problem : Framing ISIL Through Complexity Science

  12. Teaching Water: Connecting across Disciplines and into Daily Life to Address Complex Societal Issues

    ERIC Educational Resources Information Center

    Eisen, Arri; Hall, Anne; Lee, Tong Soon; Zupko, Jack

    2009-01-01

    A central problem in higher education is how to best develop in students interdisciplinary thinking and application skills necessary to work and engage effectively in the twenty-first century. Traditional university structures make addressing this problem especially challenging. Using as a model courses with diverse perspectives on water taught by…

  13. Training Social Workers and Human Service Professionals to Address the Complex Financial Needs of Clients

    ERIC Educational Resources Information Center

    Frey, Jodi Jacobson; Hopkins, Karen; Osteen, Philip; Callahan, Christine; Hageman, Sally; Ko, Jungyai

    2017-01-01

    In social work and other community-based human services settings, clients often present with complex financial problems. As a need for more formal training is beginning to be addressed, evaluation of existing training is important, and this study evaluates outcomes from the Financial Stability Pathway (FSP) project. Designed to prepare…

  14. Multidisciplinary approaches to climate change questions

    USGS Publications Warehouse

    Middleton, Beth A.; LePage, Ben A.

    2011-01-01

    Multidisciplinary approaches are required to address the complex environmental problems of our time. Solutions to climate change problems are good examples of situations requiring complex syntheses of ideas from a vast set of disciplines including science, engineering, social science, and the humanities. Unfortunately, most ecologists have narrow training, and are not equipped to bring their environmental skills to the table with interdisciplinary teams to help solve multidisciplinary problems. To address this problem, new graduate training programs and workshops sponsored by various organizations are providing opportunities for scientists and others to learn to work together in multidisciplinary teams. Two examples of training in multidisciplinary thinking include those organized by the Santa Fe Institute and Dahlem Workshops. In addition, many interdisciplinary programs have had successes in providing insight into climate change problems including the International Panel on Climate Change, the Joint North American Carbon Program, the National Academy of Science Research Grand Challenges Initiatives, and the National Academy of Science. These programs and initiatives have had some notable success in outlining some of the problems and solutions to climate change. Scientists who can offer their specialized expertise to interdisciplinary teams will be more successful in helping to solve the complex problems related to climate change.

  15. Next gen perception and cognition: augmenting perception and enhancing cognition through mobile technologies

    NASA Astrophysics Data System (ADS)

    Goma, Sergio R.

    2015-03-01

    In current times, mobile technologies are ubiquitous and the complexity of problems is continuously increasing. In the context of advancement of engineering, we explore in this paper possible reasons that could cause a saturation in technology evolution - namely the ability of problem solving based on previous results and the ability of expressing solutions in a more efficient way, concluding that `thinking outside of brain' - as in solving engineering problems that are expressed in a virtual media due to their complexity - would benefit from mobile technology augmentation. This could be the necessary evolutionary step that would provide the efficiency required to solve new complex problems (addressing the `running out of time' issue) and remove the communication of results barrier (addressing the human `perception/expression imbalance' issue). Some consequences are discussed, as in this context the artificial intelligence becomes an automation tool aid instead of a necessary next evolutionary step. The paper concludes that research in modeling as problem solving aid and data visualization as perception aid augmented with mobile technologies could be the path to an evolutionary step in advancing engineering.

  16. Addressing Complex Problems: Using Authentic Audiences and Challenges to Develop Adaptive Leadership and Socially Responsible Agency in Leadership Learners

    ERIC Educational Resources Information Center

    Andenoro, Anthony C.; Sowcik, Matthew J.; Balser, Teresa C.

    2017-01-01

    Complex and adaptive challenges threaten human well-being and sustainability. However, our leadership graduates often lack the capacity and or commitment to address these challenges in a meaningful way. This paper details a five-year study exploring the impact of an interdisciplinary undergraduate course on the development of global capacities,…

  17. Command and Control in a Complex World

    DTIC Science & Technology

    2012-05-22

    definition of command and control does not adequately address changes introduced through technology trends, our understanding of the global operating...processes. The current joint definition of command and control does not adequately address changes introduced through technology trends, our...the problem is actually solved.  There are no  definitive ,  objective solutions to wicked problems.  For a complete  definition  of wicked problems, see

  18. Identification and addressing reduction-related misconceptions

    NASA Astrophysics Data System (ADS)

    Gal-Ezer, Judith; Trakhtenbrot, Mark

    2016-07-01

    Reduction is one of the key techniques used for problem-solving in computer science. In particular, in the theory of computation and complexity (TCC), mapping and polynomial reductions are used for analysis of decidability and computational complexity of problems, including the core concept of NP-completeness. Reduction is a highly abstract technique that involves revealing close non-trivial connections between problems that often seem to have nothing in common. As a result, proper understanding and application of reduction is a serious challenge for students and a source of numerous misconceptions. The main contribution of this paper is detection of such misconceptions, analysis of their roots, and proposing a way to address them in an undergraduate TCC course. Our observations suggest that the main source of the misconceptions is the false intuitive rule "the bigger is a set/problem, the harder it is to solve". Accordingly, we developed a series of exercises for proactive prevention of these misconceptions.

  19. Using Sequence Diagrams to Detect Communication Problems Between Systems

    NASA Technical Reports Server (NTRS)

    Lindvall, Mikael; Ackermann, Chris; Stratton, William C.; Sibol, Deane E.; Ray, Arnab; Yonkwa, Lyly; Kresser, Jan; Godfrey, Sally H.; Knodel, Jens

    2008-01-01

    Many software systems are evolving complex system of systems (SoS) for which inter-system communication is both mission-critical and error-prone. Such communication problems ideally would be detected before deployment. In a NASA-supported Software Assurance Research Program (SARP) project, we are researching a new approach addressing such problems. In this paper, we show that problems in the communication between two systems can be detected by using sequence diagrams to model the planned communication and by comparing the planned sequence to the actual sequence. We identify different kinds of problems that can be addressed by modeling the planned sequence using different level of abstractions.

  20. Is Principled Pragmatism a Viable Framework for Addressing Complex Problems?

    NASA Astrophysics Data System (ADS)

    Islam, S.

    2017-12-01

    Complex water problems are connected with many competing and often conflicting values, interests, and tools. These problems can't be addressed through simply applying dogmatic principles or a deal-making pragmatic approach. Because these problems are interconnected and interdependent, a final solution can't be pre-specified. Any intervention to a complex problem requires attention to both principles and pragmatism. Strict adherence to principles without pragmatism is often not actionable; pure pragmatism exercised without guiding principles is not sustainable. In a colloquial sense, pragmatism is often taken to suggest practical, opportunistic, and expedient approaches at the expense of principles. This perception appears to be rooted in the dichotomy between "being pragmatic" and "being ideological". The notion of principled pragmatism attempts to get away from this duality by focusing on how to make ideas clear and actionable. In other words, how to connect our thoughts to action given the context, constraints, and capacity. Principled pragmatism - rooted in equity and sustainability as guiding principles for water management - approach attempts to synthesize symbolic aspirations with realistic assessment to chart a trajectory of actionable subset of implementable solutions. Case studies from the Ganges Basin will show the utility of principled pragmatism for water management in a changing world.

  1. Search Complexities for HTN Planning

    DTIC Science & Technology

    2013-01-01

    AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b . ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF...43 3.1 Complexity of plan-existence for propositional delete-free STRIPS and HTN planning with various restrictions ( k ...paper, we are concerned with two HTN decision problems: plan-existence, for whether a problem has any solution, and k -length-plan-existence, for whether a

  2. Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem

    PubMed Central

    Williams, Patricia AH; Woodward, Andrew J

    2015-01-01

    The increased connectivity to existing computer networks has exposed medical devices to cybersecurity vulnerabilities from which they were previously shielded. For the prevention of cybersecurity incidents, it is important to recognize the complexity of the operational environment as well as to catalog the technical vulnerabilities. Cybersecurity protection is not just a technical issue; it is a richer and more intricate problem to solve. A review of the factors that contribute to such a potentially insecure environment, together with the identification of the vulnerabilities, is important for understanding why these vulnerabilities persist and what the solution space should look like. This multifaceted problem must be viewed from a systemic perspective if adequate protection is to be put in place and patient safety concerns addressed. This requires technical controls, governance, resilience measures, consolidated reporting, context expertise, regulation, and standards. It is evident that a coordinated, proactive approach to address this complex challenge is essential. In the interim, patient safety is under threat. PMID:26229513

  3. Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem.

    PubMed

    Williams, Patricia Ah; Woodward, Andrew J

    2015-01-01

    The increased connectivity to existing computer networks has exposed medical devices to cybersecurity vulnerabilities from which they were previously shielded. For the prevention of cybersecurity incidents, it is important to recognize the complexity of the operational environment as well as to catalog the technical vulnerabilities. Cybersecurity protection is not just a technical issue; it is a richer and more intricate problem to solve. A review of the factors that contribute to such a potentially insecure environment, together with the identification of the vulnerabilities, is important for understanding why these vulnerabilities persist and what the solution space should look like. This multifaceted problem must be viewed from a systemic perspective if adequate protection is to be put in place and patient safety concerns addressed. This requires technical controls, governance, resilience measures, consolidated reporting, context expertise, regulation, and standards. It is evident that a coordinated, proactive approach to address this complex challenge is essential. In the interim, patient safety is under threat.

  4. Innovative Use of the Law to Address Complex Global Health Problems Comment on "The Legal Strength of International Health Instruments - What It Brings toGlobal Health Governance?"

    PubMed

    Walls, Helen L; Ooms, Gorik

    2017-05-20

    Addressing the increasingly globalised determinants of many important problems affecting human health is a complex task requiring collective action. We suggest that part of the solution to addressing intractable global health issues indeed lies with the role of new legal instruments in the form of globally binding treaties, as described in the recent article of Nikogosian and Kickbusch. However, in addition to the use of international law to develop new treaties, another part of the solution may lie in innovative use of existing legal instruments. A 2015 court ruling in The Hague, which ordered the Dutch government to cut greenhouse gas emissions by at least 25% within five years, complements this perspective, suggesting a way forward for addressing global health problems that critically involves civil society and innovative use of existing domestic legal instruments. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  5. DUII control system performance measures for Oregon counties 1991-2001

    DOT National Transportation Integrated Search

    2002-06-01

    Driving Under the Influence of Intoxicants (DUII) is a complex social problem that has origins in both internal and external system factors. Due to its complexity, Oregon communities and involved agencies must concentrate on addressing the negative r...

  6. Enabling an Open Data Ecosystem for the Neurosciences.

    PubMed

    Wiener, Martin; Sommer, Friedrich T; Ives, Zachary G; Poldrack, Russell A; Litt, Brian

    2016-11-02

    As the pace and complexity of neuroscience data grow, an open data ecosystem must develop and grow with it to allow neuroscientists the ability to reach for new heights of discovery. However, the problems and complexities of neuroscience data sharing must first be addressed. Among the challenges facing data sharing in neuroscience, the problem of incentives, discoverability, and sustainability may be the most pressing. We here describe these problems and provide potential future solutions to help cultivate an ecosystem for data sharing. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Inverse problems in complex material design: Applications to non-crystalline solids

    NASA Astrophysics Data System (ADS)

    Biswas, Parthapratim; Drabold, David; Elliott, Stephen

    The design of complex amorphous materials is one of the fundamental problems in disordered condensed-matter science. While impressive developments of ab-initio simulation methods during the past several decades have brought tremendous success in understanding materials property from micro- to mesoscopic length scales, a major drawback is that they fail to incorporate existing knowledge of the materials in simulation methodologies. Since an essential feature of materials design is the synergy between experiment and theory, a properly developed approach to design materials should be able to exploit all available knowledge of the materials from measured experimental data. In this talk, we will address the design of complex disordered materials as an inverse problem involving experimental data and available empirical information. We show that the problem can be posed as a multi-objective non-convex optimization program, which can be addressed using a number of recently-developed bio-inspired global optimization techniques. In particular, we will discuss how a population-based stochastic search procedure can be used to determine the structure of non-crystalline solids (e.g. a-SiH, a-SiO2, amorphous graphene, and Fe and Ni clusters). The work is partially supported by NSF under Grant Nos. DMR 1507166 and 1507670.

  8. Bioethicists Can and Should Contribute to Addressing Racism

    PubMed Central

    Danis, Marion; Wilson, Yolonda; White, Amina

    2016-01-01

    The problems of racism and racially-motivated violence in predominantly African American communities in the US are complex, multifactorial and historically rooted. While these problems are also deeply morally troubling, bioethicists have not contributed substantially to addressing them. Concern for justice has been one of the core commitments of bioethics. For this and other reasons, bioethicists should contribute to addressing these problems. We consider how bioethicists can offer meaningful contributions to the public discourse, research, teaching, training, policy development and academic scholarship in response to the alarming and persistent patterns of racism and implicit biases associated with it. To make any useful contribution, bioethicists will require preparation and should expect to play a significant role through collaborative action with others. PMID:26982911

  9. Bioethicists Can and Should Contribute to Addressing Racism.

    PubMed

    Danis, Marion; Wilson, Yolonda; White, Amina

    2016-01-01

    The problems of racism and racially motivated violence in predominantly African American communities in the United States are complex, multifactorial, and historically rooted. While these problems are also deeply morally troubling, bioethicists have not contributed substantially to addressing them. Concern for justice has been one of the core commitments of bioethics. For this and other reasons, bioethicists should contribute to addressing these problems. We consider how bioethicists can offer meaningful contributions to the public discourse, research, teaching, training, policy development, and academic scholarship in response to the alarming and persistent patterns of racism and implicit biases associated with it. To make any useful contribution, bioethicists will require preparation and should expect to play a significant role through collaborative action with others.

  10. Predicting Development of Mathematical Word Problem Solving Across the Intermediate Grades

    PubMed Central

    Tolar, Tammy D.; Fuchs, Lynn; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Fletcher, Jack M.

    2012-01-01

    This study addressed predictors of the development of word problem solving (WPS) across the intermediate grades. At beginning of 3rd grade, 4 cohorts of students (N = 261) were measured on computation, language, nonverbal reasoning skills, and attentive behavior and were assessed 4 times from beginning of 3rd through end of 5th grade on 2 measures of WPS at low and high levels of complexity. Language skills were related to initial performance at both levels of complexity and did not predict growth at either level. Computational skills had an effect on initial performance in low- but not high-complexity problems and did not predict growth at either level of complexity. Attentive behavior did not predict initial performance but did predict growth in low-complexity, whereas it predicted initial performance but not growth for high-complexity problems. Nonverbal reasoning predicted initial performance and growth for low-complexity WPS, but only growth for high-complexity WPS. This evidence suggests that although mathematical structure is fixed, different cognitive resources may act as limiting factors in WPS development when the WPS context is varied. PMID:23325985

  11. GIS-BASED HYDROLOGIC MODELING: THE AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT TOOL

    EPA Science Inventory

    Planning and assessment in land and water resource management are evolving from simple, local scale problems toward complex, spatially explicit regional ones. Such problems have to be
    addressed with distributed models that can compute runoff and erosion at different spatial a...

  12. Graduate Education to Facilitate Interdisciplinary Research Collaboration: Identifying Individual Competencies and Developmental Activities

    ERIC Educational Resources Information Center

    Holt, Valerie Ciocca

    2013-01-01

    Interdisciplinary research collaborations (IDRC) are considered essential for addressing the most complex global community problems concerning science, health, education, energy, the environment, and society. In spite of technological advances, supportive funding, and even researcher proclivity to collaborate, these complex interdisciplinary…

  13. Systems thinking and ethics in public health: a necessary and mutually beneficial partnership.

    PubMed

    Silva, Diego S; Smith, Maxwell J; Norman, Cameron D

    2018-06-13

    Systems thinking has emerged as a means of conceptualizing and addressing complex public health problems, thereby challenging more commonplace understanding of problems and corresponding solutions as straightforward explanations of cause and effect. Systems thinking tries to address the complexity of problems through qualitative and quantitative modeling based on a variety of systems theories, each with their own assumptions and, more importantly, implicit and unexamined values. To date, however, there has been little engagement between systems scientists and those working in bioethics and public health ethics. The goal of this paper is to begin to consider what it might mean to combine systems thinking with public health ethics to solve public health challenges. We argue that there is a role for ethics in systems thinking in public health as a means of elucidating implicit assumptions and facilitating ethics debate and dialogue with key stakeholders.

  14. Simulation modeling for the health care manager.

    PubMed

    Kennedy, Michael H

    2009-01-01

    This article addresses the use of simulation software to solve administrative problems faced by health care managers. Spreadsheet add-ins, process simulation software, and discrete event simulation software are available at a range of costs and complexity. All use the Monte Carlo method to realistically integrate probability distributions into models of the health care environment. Problems typically addressed by health care simulation modeling are facility planning, resource allocation, staffing, patient flow and wait time, routing and transportation, supply chain management, and process improvement.

  15. EPA RESEARCH HIGHLIGHTS -- MODELS-3/CMAQ OFFERS COMPREHENSIVE APPROACH TO AIR QUALITY MODELING

    EPA Science Inventory

    Regional and global coordinated efforts are needed to address air quality problems that are growing in complexity and scope. Models-3 CMAQ contains a community multi-scale air quality modeling system for simulating urban to regional scale pollution problems relating to troposphe...

  16. Discovering Recurring Anomalies in Text Reports Regarding Complex Space Systems

    NASA Technical Reports Server (NTRS)

    Zane-Ulman, Brett; Srivastava, Ashok N.

    2005-01-01

    Many existing complex space systems have a significant amount of historical maintenance and problem data bases that are stored in unstructured text forms. For some platforms, these reports may be encoded as scanned images rather than even searchable text. The problem that we address in this paper is the discovery of recurring anomalies and relationships between different problem reports that may indicate larger systemic problems. We will illustrate our techniques on data from discrepancy reports regarding software anomalies in the Space Shuttle. These free text reports are written by a number of different penp!e, thus the emphasis and wording varies considerably.

  17. On Complex Water Conflicts: Role of Enabling Conditions for Pragmatic Resolution

    NASA Astrophysics Data System (ADS)

    Islam, S.; Choudhury, E.

    2016-12-01

    Many of our current and emerging water problems are interconnected and cross boundaries, domains, scales, and sectors. These boundary crossing water problems are neither static nor linear; but often are interconnected nonlinearly with other problems and feedback. The solution space for these complex problems - involving interdependent variables, processes, actors, and institutions - can't be pre-stated. We need to recognize the disconnect among values, interests, and tools as well as problems, policies, and politics. Scientific and technological solutions are desired for efficiency and reliability, but need to be politically feasible and actionable. Governing and managing complex water problems require difficult tradeoffs in exploring and sharing benefits and burdens through carefully crafted negotiation processes. The crafting of such negotiation process, we argue, constitutes a pragmatic approach to negotiation - one that is based on the identification of enabling conditions - as opposed to mechanistic casual explanations, and rooted in contextual conditions to specify and ensure the principles of equity and sustainability. We will use two case studies to demonstrate the efficacy of the proposed principled pragmatic approcah to address complex water problems.

  18. The evolution of complex life.

    PubMed

    Billingham, J

    1989-01-01

    In considering the probabilities that intelligent life might exist elsewhere in the Universe, it is important to ask questions about the factors governing the emergence of complex living organisms in the context of evolutionary biology, planetary environments and events in space. Two important problems arise. First, what can be learned about the general laws governing the evolution of complex life anywhere in space by studying its history on the Earth? Second, how is the evolution of complex life affected by events in space? To address these problems, a series of Science Workshops on the Evolution of Complex Life was held at the Ames Research Center. Included in this paper are highlights of those workshops, with particular emphasis on the first question, namely the evolution of complex extraterrestrial life.

  19. Skills in Clinical Communication: Are We Correctly Assessing Them at Undergraduate Level?

    ERIC Educational Resources Information Center

    Zamora Cervantes, Alberto; Carrión Ribas, Carme; Cordón Granados, Ferran; Galí Pla, Bibiana; Balló Peña, Elisabet; Quesada Sabate, Miquel; Grau Martin, Armand; Castro Guardiola, Antoni; Torrent Goñi, Silvia; Vargas Vila, Susanna; Vilert Garrofa, Esther; Subirats Bayego, Enric; Coll de Tuero, Gabriel; Muñoz Ortiz, Laura; Cerezo Goyeneche, Carlos; Torán Monserrat, Pere

    2014-01-01

    Traditional learning and assessment systems are overwhelmed when it comes to addressing the complex and multi-dimensional problems of clinical communication and professional practice. This paper shows results of a training program in clinical communication under Problem Based Learning (PBL) methodology and correlation between student…

  20. Addressing Problems Encountered in Case-Based Teaching

    ERIC Educational Resources Information Center

    Turgeon, A. J.

    2007-01-01

    TURF 436 (Case Studies in Turfgrass Management) is the capstone course for turfgrass science majors at the Pennsylvania State University. Students are introduced to problems and complex problematic situations encountered in the management of golf and sports turf and in professional lawn-care operations. Following completion of the orientation case…

  1. Collaboration in an Era of Change: New Forms of Community Problem-Solving

    ERIC Educational Resources Information Center

    Ramaley, Judith A.

    2016-01-01

    Campuses are developing new ways to respond to complex social, cultural, economic and environmental problems by adapting their educational approaches and their scholarship to address a changing world order. At the same time, government agencies, nonprofit organizations and businesses are embracing collaborative approaches to community…

  2. On Evaluating Human Problem Solving of Computationally Hard Problems

    ERIC Educational Resources Information Center

    Carruthers, Sarah; Stege, Ulrike

    2013-01-01

    This article is concerned with how computer science, and more exactly computational complexity theory, can inform cognitive science. In particular, we suggest factors to be taken into account when investigating how people deal with computational hardness. This discussion will address the two upper levels of Marr's Level Theory: the computational…

  3. Intersectoral action for health equity as it relates to climate change in Canada: contributions from critical systems heuristics.

    PubMed

    Buse, Chris

    2013-12-01

    Intersectoral action (ISA) has been at the forefront of public health policy discussions since the 1970s. ISA incorporates a broader perspective of public health issues and coordinates efforts to address the social, political, economic and environmental contexts from which health determinants operate and are created. Despite being forwarded as a useful way to address and treat complex or 'wicked' problems, such policy issues are still often addressed within, rather than across, disciplinary silos and ISA has been documented to fail more often than it succeeds. This paper contributes to an understanding of ISA by outlining and applying critical systems heuristics (CSH) theory and methods. CSH theory and methods are described and discussed before applying them to the example of addressing climate change and health equity through public health practice. CSH thinking provides useful tools to engage stakeholders, question relations of power that may exist between collaborating partners, and move beyond power inequalities that guide ISA initiatives. CSH is a compelling framing that can improve an understanding of the collaborative relationships that are a prerequisite for engaging in ISA to address complex or 'wicked' policy problems such as climate change. © 2013 John Wiley & Sons Ltd.

  4. A Correlational Study Assessing the Relationships among Information Technology Project Complexity, Project Complication, and Project Success

    ERIC Educational Resources Information Center

    Williamson, David J.

    2011-01-01

    The specific problem addressed in this study was the low success rate of information technology (IT) projects in the U.S. Due to the abstract nature and inherent complexity of software development, IT projects are among the most complex projects encountered. Most existing schools of project management theory are based on the rational systems…

  5. Complex Moving Parts: Assessment Systems and Electronic Portfolios

    ERIC Educational Resources Information Center

    Larkin, Martha J.; Robertson, Royce L.

    2013-01-01

    The largest college within an online university of over 50,000 students invested significant resources in translating a complex assessment system focused on continuous improvement and national accreditation into an effective and efficient electronic portfolio (ePortfolio). The team building the system needed a model to address problems met…

  6. Towards Sustainable National Development through Well Managed Early Childhood Education

    ERIC Educational Resources Information Center

    Abraham, Nath M.

    2012-01-01

    This paper discusses issues relating to sustainable development and effective management of early childhood education. The child is the "owner" of the future. The problems that confront the current generation are complex and serious that cannot be addressed in the same way they were created. But they can be addressed. The concept of…

  7. Integrated Science: Providing a More Complete Understanding of Complex Problems

    USGS Publications Warehouse

    ,

    2006-01-01

    Integration among sciences is critical in order to address some of our most pressing problems. Because of the inherent complexity of natural systems, and the increasing complexity of human demands on them, narrowly-focused approaches are no longer sufficient. USGS Workshop on Enhancing Integrated Science, November 1998. The Mid-Continent Geographic Science Center is actively participating in several integrated science studies that include research partners from the other disciplines of the U.S. Geological Survey (USGS), other Federal and State agencies, universities, and private non-government organizations. The following three examples illustrate the diversity of these studies.

  8. Macrocognition in Complex Team Problem Solving

    DTIC Science & Technology

    2007-06-01

    Organization: Office of Naval Research Complete Address: Dr Michael Letsky Office of Naval Research Life Sciences Department Code 341 Rm 1051 875...S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Office of Naval Research ,Code 341 Rm...distribution unlimited 13. SUPPLEMENTARY NOTES Twelfth International Command and Control Research and Technology Symposium (12th ICCRTS), 19-21 June

  9. Challenges of Developing New Classes of NASA Self-Managing Mission

    NASA Technical Reports Server (NTRS)

    Hinchey, M. G.; Rash, J. I.; Truszkowski, W. F.; Rouff, C. A.; Sterritt, R.

    2005-01-01

    NASA is proposing increasingly complex missions that will require a high degree of autonomy and autonomicity. These missions pose hereto unforeseen problems and raise issues that have not been well-addressed by the community. Assuring success of such missions will require new software development techniques and tools. This paper discusses some of the challenges that NASA and the rest of the software development community are facing in developing these ever-increasingly complex systems. We give an overview of a proposed NASA mission as well as techniques and tools that are being developed to address autonomic management and the complexity issues inherent in these missions.

  10. A phenomenographic study of the ability to address complex socio-technical systems via variation theory

    NASA Astrophysics Data System (ADS)

    Mendoza Garcia, John A.

    Sometimes engineers fail when addressing the inherent complexity of socio-technical systems because they lack the ability to address the complexity of socio-technical systems. Teaching undergraduate engineering students how to address complex socio-technical systems, has been an educational endeavor at different levels ranging from kindergarten to post-graduate education. The literature presents different pedagogical strategies and content to reach this goal. However, there are no existing empirically-based assessments guided by a learning theory. This may be because at the same time explanations of how the skill is developed are scarce. My study bridges this gap, and I propose a developmental path for the ability to address the complex socio-technical systems via Variation Theory, and according to the conceptual framework provided by Variation Theory, my research question was "What are the various ways in which engineers address complex socio-technical systems?" I chose the research approach of phenomenography to answer my research question. I also chose to use a blended approach, Marton's approach for finding the dimensions of variation, and the developmental approach (Australian) for finding a hierarchical relationship between the dimensions. Accordingly, I recruited 25 participants with different levels of experience with addressing complex socio-technical systems and asked them all to address the same two tasks: A design of a system for a county, and a case study in a manufacturing firm. My outcome space is a nona-dimensional (nine) developmental path for the ability to address the complexity in socio-technical systems, and I propose 9 different ways of experiencing the complexity of a socio-technical system. The findings of this study suggest that the critical aspects that are needed to address the complexity of socio-technical systems are: being aware of the use of models, the ecosystem around, start recognizing different boundaries, being aware of time as a factor, recognizing the part-whole relationships, make effort in tailoring a solution that responds to stakeholders' needs, find the right problem, giving voice to others, and finally be aware of the need to iterate.

  11. SVEN: Informative Visual Representation of Complex Dynamic Structure

    DTIC Science & Technology

    2014-12-23

    nodes in the diagram can be chosen to minimize crossings, but this is the Traveling Salesman Problem , and even if an optimal solution was found, there...visualization problem inherits the challenges of optimizing the aesthetic properties of the static views of the graphs, it also introduces a new problem of how to...inevitable problem of having an overwhelming number of edge crossings for larger datasets is addressed by reducing the opacity of the lines drawn

  12. The complexity of divisibility.

    PubMed

    Bausch, Johannes; Cubitt, Toby

    2016-09-01

    We address two sets of long-standing open questions in linear algebra and probability theory, from a computational complexity perspective: stochastic matrix divisibility, and divisibility and decomposability of probability distributions. We prove that finite divisibility of stochastic matrices is an NP-complete problem, and extend this result to nonnegative matrices, and completely-positive trace-preserving maps, i.e. the quantum analogue of stochastic matrices. We further prove a complexity hierarchy for the divisibility and decomposability of probability distributions, showing that finite distribution divisibility is in P, but decomposability is NP-hard. For the former, we give an explicit polynomial-time algorithm. All results on distributions extend to weak-membership formulations, proving that the complexity of these problems is robust to perturbations.

  13. Looking beyond first-world problems: an emerging global workplace is encouraging more biomedical engineers to address the health issues of the developing world.

    PubMed

    Tucker, Lindsay

    2014-01-01

    Each year, the developed world is flooded with complex new medical technologies, from robotic prosthetics to remote-controlled aspirin implants. Meanwhile, only about 10% of health research funds are spent addressing the pressing problems of developing nations, although these countries make up 93% of the worldwide burden of disease. In short, while a small fraction of the world pops brand-name pharmaceuticals, the majority suffers from poor sanitation, contaminated drinking water, preventable disease, and child mortality.

  14. Interesting and Difficult Mathematical Problems: Changing Teachers' Views by Employing Multiple-Solution Tasks

    ERIC Educational Resources Information Center

    Guberman, Raisa; Leikin, Roza

    2013-01-01

    The study considers mathematical problem solving to be at the heart of mathematics teaching and learning, while mathematical challenge is a core element of any educational process. The study design addresses the complexity of teachers' knowledge. It is aimed at exploring the development of teachers' mathematical and pedagogical conceptions…

  15. QUALITY ASSURANCE AND QUALITY CONTROL IN THE DEVELOPMENT AND APPLICATION OF THE AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA) TOOL

    EPA Science Inventory

    Planning and assessment in land and water resource management are evolving from simple, local-scale problems toward complex, spatially explicit regional ones. Such problems have to be addressed with distributed models that can compute runoff and erosion at different spatial and t...

  16. Creating School and Community Partnerships for Substance Abuse Prevention Programs.

    ERIC Educational Resources Information Center

    Adelman, Howard S.; Taylor, Linda

    2003-01-01

    The article reviews the scope and scale of the problem, explores a transactional view of etiology, and summarizes the prevailing approaches to prevention, exemplary and promising approaches, and standards for research and practice. The authors stress the importance of addressing the complexity of the problem through creation of comprehensive,…

  17. The Quiet Revolution in Land Use Control.

    ERIC Educational Resources Information Center

    Bosselman, Fred; Callies, David

    The Council on Environmental Quality commissioned this report on the innovative land use laws of several states to learn how some of the most complex land use issues and problems of re-allocating responsibilities between state and local governments are being addressed. Many of the laws analyzed are designed to deal with problems that are treated…

  18. Student Homicidal Violence in Schools: An International Problem

    ERIC Educational Resources Information Center

    Bondu, Rebecca; Cornell, Dewey G.; Scheithauer, Herbert

    2011-01-01

    School homicides have become a worldwide phenomenon. In the decade following the Columbine shooting there have been at least forty similar events in other countries. This article addresses the international scope of this problem and some of the complex conceptual issues that make student homicidal violence difficult to define and study. Meaningful…

  19. Regional Stewardship and the Redefinition of Higher Education

    ERIC Educational Resources Information Center

    Simpson, Timothy Leahy

    2010-01-01

    Inspired by the late John Gardner, in May 2000 the "Alliance for Regional Stewardship" (ARS) was formed as a "peer-to-peer network of regional leaders working across boundaries to solve tough community problems." According to the ARS, regional stewardship is the leadership needed to address the complex problems of one's time.…

  20. Leveraging Cultural Resources through Teacher Pedagogical Reasoning: Elementary Grade Teachers Analyze Second Language Learners' Science Problem Solving

    ERIC Educational Resources Information Center

    Buxton, Cory A.; Salinas, Alejandra; Mahotiere, Margarette; Lee, Okhee; Secada, Walter G.

    2013-01-01

    Grounded in teacher professional development addressing the intersection of student diversity and content area instruction, this study examined school teachers' pedagogical reasoning complexity as they reflected on their second language learners' science problem solving abilities using both home and school contexts. Teachers responded to interview…

  1. Using Scenarios to Design Complex Technology-Enhanced Learning Environments

    ERIC Educational Resources Information Center

    de Jong, Ton; Weinberger, Armin; Girault, Isabelle; Kluge, Anders; Lazonder, Ard W.; Pedaste, Margus; Ludvigsen, Sten; Ney, Muriel; Wasson, Barbara; Wichmann, Astrid; Geraedts, Caspar; Giemza, Adam; Hovardas, Tasos; Julien, Rachel; van Joolingen, Wouter R.; Lejeune, Anne; Manoli, Constantinos C.; Matteman, Yuri; Sarapuu, Tago; Verkade, Alex; Vold, Vibeke; Zacharia, Zacharias C.

    2012-01-01

    Science Created by You (SCY) learning environments are computer-based environments in which students learn about science topics in the context of addressing a socio-scientific problem. Along their way to a solution for this problem students produce many types of intermediate products or learning objects. SCY learning environments center the entire…

  2. Challenges in an Aging Society: Presidential Address to APPAM

    ERIC Educational Resources Information Center

    Swartz, Katherine

    2010-01-01

    The United States is at a critical crossroads in its history right now. The public policy problems that the people are facing are complex and interrelated, and the demographic changes that are about to significantly change their country are not well understood by large numbers of people. In this presidential address to the Association for Public…

  3. School as the Entry Point: Assessing Adherence to the Basic Tenets of the Wraparound Approach

    ERIC Educational Resources Information Center

    Epstein, Michael H.; Nordness, Philip D.; Gallagher, Ken; Nelson, J. Ron; Lewis, Linda; Schrepf, Sheryl

    2005-01-01

    In an effort to address the problem behaviors of children and youth, professionals have advocated for the implementation of three-tiered prevention programs: primary, secondary, and tertiary. The wraparound approach has been advanced as an appropriate tertiary program that can be used to address the complex behaviors and needs of students and…

  4. Addressing the Biggest (Baddest) and Best Ideas Ever: Through the Lens of Humility

    ERIC Educational Resources Information Center

    Sowcik, Matthew J.; Andenoro, Anthony C.; Council, Austin

    2017-01-01

    Now and into the foreseeable future, both effective leadership and creativity are going to be important when addressing complex problems. The connection between effective leadership and creativity will be critical as leaders look to turn big ideas into innovative solutions. However, it seems that there is often a disconnect between the two…

  5. A Bayesian Network Meta-Analysis to Synthesize the Influence of Contexts of Scaffolding Use on Cognitive Outcomes in STEM Education

    ERIC Educational Resources Information Center

    Belland, Brian R.; Walker, Andrew E.; Kim, Nam Ju

    2017-01-01

    Computer-based scaffolding provides temporary support that enables students to participate in and become more proficient at complex skills like problem solving, argumentation, and evaluation. While meta-analyses have addressed between-subject differences on cognitive outcomes resulting from scaffolding, none has addressed within-subject gains.…

  6. Fitting Meta-Analytic Structural Equation Models with Complex Datasets

    ERIC Educational Resources Information Center

    Wilson, Sandra Jo; Polanin, Joshua R.; Lipsey, Mark W.

    2016-01-01

    A modification of the first stage of the standard procedure for two-stage meta-analytic structural equation modeling for use with large complex datasets is presented. This modification addresses two common problems that arise in such meta-analyses: (a) primary studies that provide multiple measures of the same construct and (b) the correlation…

  7. Developing predictive systems models to address complexity and relevance for ecological risk assessment.

    PubMed

    Forbes, Valery E; Calow, Peter

    2013-07-01

    Ecological risk assessments (ERAs) are not used as well as they could be in risk management. Part of the problem is that they often lack ecological relevance; that is, they fail to grasp necessary ecological complexities. Adding realism and complexity can be difficult and costly. We argue that predictive systems models (PSMs) can provide a way of capturing complexity and ecological relevance cost-effectively. However, addressing complexity and ecological relevance is only part of the problem. Ecological risk assessments often fail to meet the needs of risk managers by not providing assessments that relate to protection goals and by expressing risk in ratios that cannot be weighed against the costs of interventions. Once more, PSMs can be designed to provide outputs in terms of value-relevant effects that are modulated against exposure and that can provide a better basis for decision making than arbitrary ratios or threshold values. Recent developments in the modeling and its potential for implementation by risk assessors and risk managers are beginning to demonstrate how PSMs can be practically applied in risk assessment and the advantages that doing so could have. Copyright © 2013 SETAC.

  8. Approximate l-fold cross-validation with Least Squares SVM and Kernel Ridge Regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Richard E; Zhang, Hao; Parker, Lynne Edwards

    2013-01-01

    Kernel methods have difficulties scaling to large modern data sets. The scalability issues are based on computational and memory requirements for working with a large matrix. These requirements have been addressed over the years by using low-rank kernel approximations or by improving the solvers scalability. However, Least Squares Support VectorMachines (LS-SVM), a popular SVM variant, and Kernel Ridge Regression still have several scalability issues. In particular, the O(n^3) computational complexity for solving a single model, and the overall computational complexity associated with tuning hyperparameters are still major problems. We address these problems by introducing an O(n log n) approximate l-foldmore » cross-validation method that uses a multi-level circulant matrix to approximate the kernel. In addition, we prove our algorithm s computational complexity and present empirical runtimes on data sets with approximately 1 million data points. We also validate our approximate method s effectiveness at selecting hyperparameters on real world and standard benchmark data sets. Lastly, we provide experimental results on using a multi-level circulant kernel approximation to solve LS-SVM problems with hyperparameters selected using our method.« less

  9. Soft System Methodology as a Tool to Understand Issues of Governmental Affordable Housing Programme of India: A Case Study Approach

    NASA Astrophysics Data System (ADS)

    Ghosh, Sukanya; Roy, Souvanic; Sanyal, Manas Kumar

    2016-09-01

    With the help of a case study, the article has explored current practices of implementation of governmental affordable housing programme for urban poor in a slum of India. This work shows that the issues associated with the problems of governmental affordable housing programme has to be addressed to with a suitable methodology as complexities are not only dealing with quantitative data but qualitative data also. The Hard System Methodologies (HSM), which is conventionally applied to address the issues, deals with real and known problems which can be directly solved. Since most of the issues of affordable housing programme as found in the case study are subjective and complex in nature, Soft System Methodology (SSM) has been tried for better representation from subjective points of views. The article explored drawing of Rich Picture as an SSM approach for better understanding and analysing complex issues and constraints of affordable housing programme so that further exploration of the issues is possible.

  10. Kaizen practice in healthcare: a qualitative analysis of hospital employees' suggestions for improvement

    PubMed Central

    Mazzocato, Pamela; Stenfors-Hayes, Terese; von Thiele Schwarz, Ulrica; Hasson, Henna

    2016-01-01

    Objectives Kaizen, or continuous improvement, lies at the core of lean. Kaizen is implemented through practices that enable employees to propose ideas for improvement and solve problems. The aim of this study is to describe the types of issues and improvement suggestions that hospital employees feel empowered to address through kaizen practices in order to understand when and how kaizen is used in healthcare. Methods We analysed 186 structured kaizen documents containing improvement suggestions that were produced by 165 employees at a Swedish hospital. Directed content analysis was used to categorise the suggestions into following categories: type of situation (proactive or reactive) triggering an action; type of process addressed (technical/administrative, support and clinical); complexity level (simple or complex); and type of outcomes aimed for (operational or sociotechnical). Compliance to the kaizen template was calculated. Results 72% of the improvement suggestions were reactions to a perceived problem. Support, technical and administrative, and primary clinical processes were involved in 47%, 38% and 16% of the suggestions, respectively. The majority of the kaizen documents addressed simple situations and focused on operational outcomes. The degree of compliance to the kaizen template was high for several items concerning the identification of problems and the proposed solutions, and low for items related to the test and implementation of solutions. Conclusions There is a need to combine kaizen practices with improvement and innovation practices that help staff and managers to address complex issues, such as the improvement of clinical care processes. The limited focus on sociotechnical aspects and the partial compliance to kaizen templates may indicate a limited understanding of the entire kaizen process and of how it relates to the overall organisational goals. This in turn can hamper the sustainability of kaizen practices and results. PMID:27473953

  11. The Problems with "Noise Numbers" for Wind Farm Noise Assessment

    ERIC Educational Resources Information Center

    Thorne, Bob

    2011-01-01

    Human perception responds primarily to sound character rather than sound level. Wind farms are unique sound sources and exhibit special audible and inaudible characteristics that can be described as modulating sound or as a tonal complex. Wind farm compliance measures based on a specified noise number alone will fail to address problems with noise…

  12. Hiding in Plain Sight: Identifying Computational Thinking in the Ontario Elementary School Curriculum

    ERIC Educational Resources Information Center

    Hennessey, Eden J. V.; Mueller, Julie; Beckett, Danielle; Fisher, Peter A.

    2017-01-01

    Given a growing digital economy with complex problems, demands are being made for education to address computational thinking (CT)--an approach to problem solving that draws on the tenets of computer science. We conducted a comprehensive content analysis of the Ontario elementary school curriculum documents for 44 CT-related terms to examine the…

  13. The Representation of Anatomical Structures through Computer Animation for Scientific, Educational and Artistic Applications.

    ERIC Educational Resources Information Center

    Stredney, Donald Larry

    An overview of computer animation and the techniques involved in its creation is provided in the introduction to this masters thesis, which focuses on the problems encountered by students in learning the forms and functions of complex anatomical structures and ways in which computer animation can address these problems. The objectives for,…

  14. Developing Ill-Structured Problem-Solving Skills through Wilderness Education

    ERIC Educational Resources Information Center

    Collins, Rachel H.; Sibthorp, Jim; Gookin, John

    2016-01-01

    In a society that is becoming more dynamic, complex, and diverse, the ability to solve ill-structured problems (ISPs) has become an increasingly critical skill. Students who enter adult roles with the cognitive skills to address ISPs will be better able to assume roles in the emerging economies. Opportunities to develop and practice these skills…

  15. Convergent Evolution in the Interest of Integrative Problem Solving: Connecting the Policy Sciences and Interdisciplinary Studies

    ERIC Educational Resources Information Center

    Wallace, Richard L.; Clark, Susan G.

    2014-01-01

    The contemporary fields of interdisciplinary studies and the policy sciences have evolved over similar intellectual paths and timelines, beginning in the early 20th century. Both have their roots in professional efforts--within and outside the academy--to address numerous, growing, and complex problems that face humanity. The policy sciences'…

  16. Red Sky with Red Mesa

    ScienceCinema

    None

    2018-01-16

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  17. Oversight of human participants research: identifying problems to evaluate reform proposals.

    PubMed

    Emanuel, Ezekiel J; Wood, Anne; Fleischman, Alan; Bowen, Angela; Getz, Kenneth A; Grady, Christine; Levine, Carol; Hammerschmidt, Dale E; Faden, Ruth; Eckenwiler, Lisa; Muse, Carianne Tucker; Sugarman, Jeremy

    2004-08-17

    The oversight of research involving human participants is widely believed to be inadequate. The U.S. Congress, national commissions, the Department of Health and Human Services, the Institute of Medicine, numerous professional societies, and others are proposing remedies based on the assumption that the main problems are researchers' conflict of interest, lack of institutional review board (IRB) resources, and the volume and complexity of clinical research. Developing appropriate reform proposals requires carefully delineating the problems of the current system to know what reforms are needed. To stimulate a more informed and meaningful debate, we delineate 15 current problems into 3 broad categories. First, structural problems encompass 8 specific problems related to the way the research oversight system is organized. Second, procedural problems constitute 5 specific problems related to the operations of IRB review. Finally, performance assessment problems include 2 problems related to absence of systematic assessment of the outcomes of the oversight system. We critically assess proposed reforms, such as accreditation and central IRBs, according to how well they address these 15 problems. None of the reforms addresses all 15 problems. Indeed, most focus on the procedural problems, failing to address either the structure or the performance assessment problems. Finally, on the basis of the delineation of problems, we outline components of a more effective reform proposal, including bringing all research under federal oversight, a permanent advisory committee to address recurrent ethical issues in clinical research, mandatory single-time review for multicenter research protocols, additional financial support for IRB functions, and a standardized system for collecting and disseminating data on both adverse events and the performance assessment of IRBs.

  18. Catalyzing Transdisciplinarity: A Systems Ethnography of Cancer-Obesity Comorbidity and Risk Coincidence.

    PubMed

    Graham, S Scott; Harley, Amy; Kessler, Molly M; Roberts, Laura; DeVasto, Dannielle; Card, Daniel J; Neuner, Joan M; Kim, Sang-Yeon

    2017-05-01

    Effectively addressing wicked health problems, that is, those arising from complex multifactorial biological and socio-economic causes, requires transdisciplinary action. However, a significant body of research points toward substantial difficulties in cultivating transdisciplinary collaboration. Accordingly, this article presents the results of a study that adapts Systems Ethnography and Qualitative Modeling (SEQM) in response to wicked health problems. SEQM protocols were designed to catalyze transdisciplinary responses to national defense concerns. We adapted these protocols to address cancer-obesity comorbidity and risk coincidence. In so doing, we conducted participant-observations and interviews with a diverse range of health care providers, community health educators, and health advocacy professionals who target either cancer or obesity. We then convened a transdisciplinary conference designed to catalyze a coordinated response. The findings offer productive insights into effective ways of catalyzing transdisciplinarity in addressing wicked health problems action and demonstrate the promise of SEQM for continued use in health care contexts.

  19. Advances in the Theory of Complex Networks

    NASA Astrophysics Data System (ADS)

    Peruani, Fernando

    An exhaustive and comprehensive review on the theory of complex networks would imply nowadays a titanic task, and it would result in a lengthy work containing plenty of technical details of arguable relevance. Instead, this chapter addresses very briefly the ABC of complex network theory, visiting only the hallmarks of the theoretical founding, to finally focus on two of the most interesting and promising current research problems: the study of dynamical processes on transportation networks and the identification of communities in complex networks.

  20. The paradox of physicians and administrators in health care organizations.

    PubMed

    Peirce, J C

    2000-01-01

    Rapidly changing times in health care challenge both physicians and health care administrators to manage the paradox of providing orderly, high quality, and efficient care while bringing forth innovations to address present unmet problems and surprises that emerge. Health care has grown throughout the past several centuries through differentiation and integration, becoming a highly complex biological system with the hospital as the central attractive force--or "strange attractor"--during this century. The theoretical model of complex adaptive systems promises more effective strategic direction in addressing these chaotic times where the new strange attractor moves beyond the hospital.

  1. From Dr. Steven Ashby, Director of PNNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashby, Steven

    Powered by the creativity and imagination of more than 4,000 exceptional scientists, engineers and support professionals, at PNNL we advance the frontiers of science and address some of the most challenging problems in energy, the environment and national security. As DOE’s premier chemistry, environmental sciences and data analytics laboratory, we provide national leadership in four areas: deepening our understanding of climate science; inventing the future power grid; preventing nuclear proliferation; and speeding environmental remediation. Other areas where we make important contributions include energy storage, microbial biology and cyber security. PNNL also is home to EMSL (the Environmental Molecular Sciences Laboratory),more » one of DOE’s scientific user facilities. We apply these science strengths to address both national and international problems in complex adaptive systems that are too difficult for one institution to tackle alone. Take earth systems, for instance. The earth is a complex adaptive system because it involves everything from climate and microbial communities in the soil to emissions from cars and coal-powered industrial plants. All of these factors and others ultimately influence not only our environment and overall quality of life, but cause the earth to adapt in ways that must be further addressed. PNNL researchers are playing a vital role in finding solutions across every area of this complex adaptive system.« less

  2. The Social Essentials of Learning: An Experimental Investigation of Collaborative Problem Solving and Knowledge Construction in Mathematics Classrooms in Australia and China

    ERIC Educational Resources Information Center

    Chan, Man Ching Esther; Clarke, David; Cao, Yiming

    2018-01-01

    Interactive problem solving and learning are priorities in contemporary education, but these complex processes have proved difficult to research. This project addresses the question "How do we optimise social interaction for the promotion of learning in a mathematics classroom?" Employing the logic of multi-theoretic research design,…

  3. L.E.A.D.: A Framework for Evidence Gathering and Use for the Prevention of Obesity and Other Complex Public Health Problems

    ERIC Educational Resources Information Center

    Chatterji, Madhabi; Green, Lawrence W.; Kumanyika, Shiriki

    2014-01-01

    This article summarizes a comprehensive, systems-oriented framework designed to improve the use of a wide variety of evidence sources to address population-wide obesity problems. The L.E.A.D. framework (for "Locate" the evidence, "Evaluate" the evidence, "Assemble" the evidence, and inform "Decisions"),…

  4. Solving Real World Problems with Alternate Reality Gaming: Student Experiences in the Global Village Playground Capstone Course Design

    ERIC Educational Resources Information Center

    Dondlinger, Mary Jo; McLeod, Julie K.

    2015-01-01

    The Global Village Playground (GVP) was a capstone learning experience designed to address institutional assessment needs while providing an integrated and authentic learning experience for students aimed at fostering complex problem solving, as well as critical and creative thinking. In the GVP, students work on simulated and real-world problems…

  5. The Sexual Assault Teach In Program: Building Constructive Campus-Wide Discussions to Inspire Change

    ERIC Educational Resources Information Center

    Katz, Jennifer; DuBois, Melinda

    2013-01-01

    To begin to address the problem of campus sexual assault, we conducted a Teach In, an educational forum used to explore complex social problems. All students, faculty, and staff at our small liberal arts college were invited to participate. This paper summarizes our Teach In program, goals, and methods. By engaging in constructive, informed…

  6. A duality framework for stochastic optimal control of complex systems

    DOE PAGES

    Malikopoulos, Andreas A.

    2016-01-01

    In this study, we address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yielding the Pareto optimal solution minimizes the average cost criterion of the system. We provide the conditions of existence and a geometric interpretation of the solution. For practical situations having constraints consistent with those studied here, our results imply that the Pareto control policy may be of value when we seek to derivemore » online the optimal control policy in complex systems.« less

  7. A Multifaceted Mathematical Approach for Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, F.; Anitescu, M.; Bell, J.

    2012-03-07

    Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significantmore » impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.« less

  8. Data based identification and prediction of nonlinear and complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods outlined in this Review are principled on various concepts in complexity science and engineering such as phase transitions, bifurcations, stabilities, and robustness. The methodologies have the potential to significantly improve our ability to understand a variety of complex dynamical systems ranging from gene regulatory systems to social networks toward the ultimate goal of controlling such systems.

  9. Quality improvement--boon or boondoggle?

    PubMed

    Paterson, M A; Wendel, J

    1994-01-01

    Is quality improvement (QI) reducing healthcare costs while improving patient care? Researchers find that QI has improved employee satisfaction and morale, but it was designed to do more. One solution is to use problem-solving techniques to help teams identify the level at which they want to address a problem, whether that be the subinstitutional, institutional, or system level. If QI is to fulfill its promise, skilled managers must create effective teams capable of defining and solving complex problems.

  10. CrossTalk, The Journal of Defense Software Engineering. Volume 27, Number 3. May/June 2014

    DTIC Science & Technology

    2014-06-01

    field of software engineering. by Delores M. Etter, Jennifer Webb, and John Howard The Problem of Prolific Process What is the optimal amount and...Programming Will Never Be Obsolete The creativity of software developers will always be needed to solve problems of the future and to then translate those...utilized to address some of the complex problems associated with biometric database construction. 1. A Next Generation Multispectral Iris Biometric

  11. Addressing the unmet need for visualizing conditional random fields in biological data

    PubMed Central

    2014-01-01

    Background The biological world is replete with phenomena that appear to be ideally modeled and analyzed by one archetypal statistical framework - the Graphical Probabilistic Model (GPM). The structure of GPMs is a uniquely good match for biological problems that range from aligning sequences to modeling the genome-to-phenome relationship. The fundamental questions that GPMs address involve making decisions based on a complex web of interacting factors. Unfortunately, while GPMs ideally fit many questions in biology, they are not an easy solution to apply. Building a GPM is not a simple task for an end user. Moreover, applying GPMs is also impeded by the insidious fact that the “complex web of interacting factors” inherent to a problem might be easy to define and also intractable to compute upon. Discussion We propose that the visualization sciences can contribute to many domains of the bio-sciences, by developing tools to address archetypal representation and user interaction issues in GPMs, and in particular a variety of GPM called a Conditional Random Field(CRF). CRFs bring additional power, and additional complexity, because the CRF dependency network can be conditioned on the query data. Conclusions In this manuscript we examine the shared features of several biological problems that are amenable to modeling with CRFs, highlight the challenges that existing visualization and visual analytics paradigms induce for these data, and document an experimental solution called StickWRLD which, while leaving room for improvement, has been successfully applied in several biological research projects. Software and tutorials are available at http://www.stickwrld.org/ PMID:25000815

  12. Granular support vector machines with association rules mining for protein homology prediction.

    PubMed

    Tang, Yuchun; Jin, Bo; Zhang, Yan-Qing

    2005-01-01

    Protein homology prediction between protein sequences is one of critical problems in computational biology. Such a complex classification problem is common in medical or biological information processing applications. How to build a model with superior generalization capability from training samples is an essential issue for mining knowledge to accurately predict/classify unseen new samples and to effectively support human experts to make correct decisions. A new learning model called granular support vector machines (GSVM) is proposed based on our previous work. GSVM systematically and formally combines the principles from statistical learning theory and granular computing theory and thus provides an interesting new mechanism to address complex classification problems. It works by building a sequence of information granules and then building support vector machines (SVM) in some of these information granules on demand. A good granulation method to find suitable granules is crucial for modeling a GSVM with good performance. In this paper, we also propose an association rules-based granulation method. For the granules induced by association rules with high enough confidence and significant support, we leave them as they are because of their high "purity" and significant effect on simplifying the classification task. For every other granule, a SVM is modeled to discriminate the corresponding data. In this way, a complex classification problem is divided into multiple smaller problems so that the learning task is simplified. The proposed algorithm, here named GSVM-AR, is compared with SVM by KDDCUP04 protein homology prediction data. The experimental results show that finding the splitting hyperplane is not a trivial task (we should be careful to select the association rules to avoid overfitting) and GSVM-AR does show significant improvement compared to building one single SVM in the whole feature space. Another advantage is that the utility of GSVM-AR is very good because it is easy to be implemented. More importantly and more interestingly, GSVM provides a new mechanism to address complex classification problems.

  13. The role of place-based projects as ecosystem service laboratories

    EPA Science Inventory

    Successfully addressing the increasingly complex ecological problems throughout the United States requires an integrative and innovative approach. In this regard, the concept of ecosystem services has emerged as a promising approach for improving environmental decision making. ...

  14. Dismantling institutional racism: theory and action.

    PubMed

    Griffith, Derek M; Mason, Mondi; Yonas, Michael; Eng, Eugenia; Jeffries, Vanessa; Plihcik, Suzanne; Parks, Barton

    2007-06-01

    Despite a strong commitment to promoting social change and liberation, there are few community psychology models for creating systems change to address oppression. Given how embedded racism is in institutions such as healthcare, a significant shift in the system's policies, practices, and procedures is required to address institutional racism and create organizational and institutional change. This paper describes a systemic intervention to address racial inequities in healthcare quality called dismantling racism. The dismantling racism approach assumes healthcare disparities are the result of the intersection of a complex system (healthcare) and a complex problem (racism). Thus, dismantling racism is a systemic and systematic intervention designed to illuminate where and how to intervene in a given healthcare system to address proximal and distal factors associated with healthcare disparities. This paper describes the theory behind dismantling racism, the elements of the intervention strategy, and the strengths and limitations of this systems change approach.

  15. Dynamic simulation modelling of policy responses to reduce alcohol-related harms: rationale and procedure for a participatory approach.

    PubMed

    Atkinson, Jo-An; O'Donnell, Eloise; Wiggers, John; McDonnell, Geoff; Mitchell, Jo; Freebairn, Louise; Indig, Devon; Rychetnik, Lucie

    2017-02-15

    Development of effective policy responses to address complex public health problems can be challenged by a lack of clarity about the interaction of risk factors driving the problem, differing views of stakeholders on the most appropriate and effective intervention approaches, a lack of evidence to support commonly implemented and acceptable intervention approaches, and a lack of acceptance of effective interventions. Consequently, political considerations, community advocacy and industry lobbying can contribute to a hotly contested debate about the most appropriate course of action; this can hinder consensus and give rise to policy resistance. The problem of alcohol misuse and its associated harms in New South Wales (NSW), Australia, provides a relevant example of such challenges. Dynamic simulation modelling is increasingly being valued by the health sector as a robust tool to support decision making to address complex problems. It allows policy makers to ask 'what-if' questions and test the potential impacts of different policy scenarios over time, before solutions are implemented in the real world. Participatory approaches to modelling enable researchers, policy makers, program planners, practitioners and consumer representatives to collaborate with expert modellers to ensure that models are transparent, incorporate diverse evidence and perspectives, are better aligned to the decision-support needs of policy makers, and can facilitate consensus building for action. This paper outlines a procedure for embedding stakeholder engagement and consensus building in the development of dynamic simulation models that can guide the development of effective, coordinated and acceptable policy responses to complex public health problems, such as alcohol-related harms in NSW.

  16. A novel multilayer model for missing link prediction and future link forecasting in dynamic complex networks

    NASA Astrophysics Data System (ADS)

    Yasami, Yasser; Safaei, Farshad

    2018-02-01

    The traditional complex network theory is particularly focused on network models in which all network constituents are dealt with equivalently, while fail to consider the supplementary information related to the dynamic properties of the network interactions. This is a main constraint leading to incorrect descriptions of some real-world phenomena or incomplete capturing the details of certain real-life problems. To cope with the problem, this paper addresses the multilayer aspects of dynamic complex networks by analyzing the properties of intrinsically multilayered co-authorship networks, DBLP and Astro Physics, and presenting a novel multilayer model of dynamic complex networks. The model examines the layers evolution (layers birth/death process and lifetime) throughout the network evolution. Particularly, this paper models the evolution of each node's membership in different layers by an Infinite Factorial Hidden Markov Model considering feature cascade, and thereby formulates the link generation process for intra-layer and inter-layer links. Although adjacency matrixes are useful to describe the traditional single-layer networks, such a representation is not sufficient to describe and analyze the multilayer dynamic networks. This paper also extends a generalized mathematical infrastructure to address the problems issued by multilayer complex networks. The model inference is performed using some Markov Chain Monte Carlo sampling strategies, given synthetic and real complex networks data. Experimental results indicate a tremendous improvement in the performance of the proposed multilayer model in terms of sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, F1-score, Matthews correlation coefficient, and accuracy for two important applications of missing link prediction and future link forecasting. The experimental results also indicate the strong predictivepower of the proposed model for the application of cascade prediction in terms of accuracy.

  17. The theory of interface slicing

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a new tool which was developed to facilitate reuse-based software engineering, by addressing the following problems, needs, and issues: (1) size of systems incorporating reused modules; (2) knowledge requirements for program modification; (3) program understanding for reverse engineering; (4) module granularity and domain management; and (5) time and space complexity of conventional slicing. The definition of a form of static program analysis called interface slicing is addressed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Peter; Dykes, Katherine; Scott, George

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  19. The U.S. Army Functional Concept for Intelligence 2020-2040

    DTIC Science & Technology

    2017-02-01

    Soldiers to mitigate many complex problems of the future OE. Improved or new analytic processes will use very large data sets to address emerging...increasing. Army collection against publically available data sources may offer insights to social interconnectedness, political dynamics and complex... data used to support situational understanding. (5) Uncertainty and rapid change elevate the analytic risk associated with decision making and

  20. An Optimization of Manufacturing Systems using a Feedback Control Scheduling Model

    NASA Astrophysics Data System (ADS)

    Ikome, John M.; Kanakana, Grace M.

    2018-03-01

    In complex production system that involves multiple process, unplanned disruption often turn to make the entire production system vulnerable to a number of problems which leads to customer’s dissatisfaction. However, this problem has been an ongoing problem that requires a research and methods to streamline the entire process or develop a model that will address it, in contrast to this, we have developed a feedback scheduling model that can minimize some of this problem and after a number of experiment, it shows that some of this problems can be eliminated if the correct remedial actions are implemented on time.

  1. Multi-step optimization strategy for fuel-optimal orbital transfer of low-thrust spacecraft

    NASA Astrophysics Data System (ADS)

    Rasotto, M.; Armellin, R.; Di Lizia, P.

    2016-03-01

    An effective method for the design of fuel-optimal transfers in two- and three-body dynamics is presented. The optimal control problem is formulated using calculus of variation and primer vector theory. This leads to a multi-point boundary value problem (MPBVP), characterized by complex inner constraints and a discontinuous thrust profile. The first issue is addressed by embedding the MPBVP in a parametric optimization problem, thus allowing a simplification of the set of transversality constraints. The second problem is solved by representing the discontinuous control function by a smooth function depending on a continuation parameter. The resulting trajectory optimization method can deal with different intermediate conditions, and no a priori knowledge of the control structure is required. Test cases in both the two- and three-body dynamics show the capability of the method in solving complex trajectory design problems.

  2. Developing Visualization Techniques for Semantics-based Information Networks

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Hall, David R.

    2003-01-01

    Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.

  3. Feasibility and Environmental Implications of Using Waste Motor Oil as Alternative Supplemental Fuel in Contingency Prime Power Generation

    DTIC Science & Technology

    2017-03-23

    days of World War II, a problem arose when General George Patton’s 3rd Army exceeded expectations on the march to Germany. Gen. Patton’s jeeps...to address this problem . The military’s complex and arduous logistic requirement to deliver fuel to the combat theater sparked an interest in...the particles it can vaporize. It does not detect particles beyond the five- to eight- micron range” (Mayer, 2006). This is a problem because that

  4. Building University Capacity to Visualize Solutions to Complex Problems in the Arctic

    NASA Astrophysics Data System (ADS)

    Broderson, D.; Veazey, P.; Raymond, V. L.; Kowalski, K.; Prakash, A.; Signor, B.

    2016-12-01

    Rapidly changing environments are creating complex problems across the globe, which are particular magnified in the Arctic. These worldwide challenges can best be addressed through diverse and interdisciplinary research teams. It is incumbent on such teams to promote co-production of knowledge and data-driven decision-making by identifying effective methods to communicate their findings and to engage with the public. Decision Theater North (DTN) is a new semi-immersive visualization system that provides a space for teams to collaborate and develop solutions to complex problems, relying on diverse sets of skills and knowledge. It provides a venue to synthesize the talents of scientists, who gather information (data); modelers, who create models of complex systems; artists, who develop visualizations; communicators, who connect and bridge populations; and policymakers, who can use the visualizations to develop sustainable solutions to pressing problems. The mission of Decision Theater North is to provide a cutting-edge visual environment to facilitate dialogue and decision-making by stakeholders including government, industry, communities and academia. We achieve this mission by adopting a multi-faceted approach reflected in the theater's design, technology, networking capabilities, user support, community relationship building, and strategic partnerships. DTN is a joint project of Alaska's National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) and the University of Alaska Fairbanks (UAF), who have brought the facility up to full operational status and are now expanding its development space to support larger team science efforts. Based in Fairbanks, Alaska, DTN is uniquely poised to address changes taking place in the Arctic and subarctic, and is connected with a larger network of decision theaters that include the Arizona State University Decision Theater Network and the McCain Institute in Washington, DC.

  5. Learning to Predict Combinatorial Structures

    NASA Astrophysics Data System (ADS)

    Vembu, Shankar

    2009-12-01

    The major challenge in designing a discriminative learning algorithm for predicting structured data is to address the computational issues arising from the exponential size of the output space. Existing algorithms make different assumptions to ensure efficient, polynomial time estimation of model parameters. For several combinatorial structures, including cycles, partially ordered sets, permutations and other graph classes, these assumptions do not hold. In this thesis, we address the problem of designing learning algorithms for predicting combinatorial structures by introducing two new assumptions: (i) The first assumption is that a particular counting problem can be solved efficiently. The consequence is a generalisation of the classical ridge regression for structured prediction. (ii) The second assumption is that a particular sampling problem can be solved efficiently. The consequence is a new technique for designing and analysing probabilistic structured prediction models. These results can be applied to solve several complex learning problems including but not limited to multi-label classification, multi-category hierarchical classification, and label ranking.

  6. Addressing health concerns of pregnant African American women using the lens of complexity theory.

    PubMed

    Sims, Traci

    2014-01-01

    Pregnant African American women are at higher risk for multiple complex health issues, including depression, than their European American counterparts (Canady, Bullen, Holzman, Broman, & Tian, 2008; Martin et al, 2011; Mathews & MacDorman, 2007; Orr, Blazer, & James, 2006; Segre, Losch, & O'Hara, 2006). Various strategies must be used to address depression through preventive care and promotion of access to appropriate mental health services. Nurses and other health care providers need to examine the relationships between the multifactorial problems to improve the health and well-being of pregnant African American women and their unborn children. This article presents a case study demonstrating the use of complexity science theory to understand and prevent poor health outcomes for pregnant African American women with depression and their unborn children.

  7. The role of adaptive management as an operational approach for resource management agencies

    USGS Publications Warehouse

    Johnson, B.L.

    1999-01-01

    In making resource management decisions, agencies use a variety of approaches that involve different levels of political concern, historical precedence, data analyses, and evaluation. Traditional decision-making approaches have often failed to achieve objectives for complex problems in large systems, such as the Everglades or the Colorado River. I contend that adaptive management is the best approach available to agencies for addressing this type of complex problem, although its success has been limited thus far. Traditional decision-making approaches have been fairly successful at addressing relatively straightforward problems in small, replicated systems, such as management of trout in small streams or pulp production in forests. However, this success may be jeopardized as more users place increasing demands on these systems. Adaptive management has received little attention from agencies for addressing problems in small-scale systems, but I suggest that it may be a useful approach for creating a holistic view of common problems and developing guidelines that can then be used in simpler, more traditional approaches to management. Although adaptive management may be more expensive to initiate than traditional approaches, it may be less expensive in the long run if it leads to more effective management. The overall goal of adaptive management is not to maintain an optimal condition of the resource, but to develop an optimal management capacity. This is accomplished by maintaining ecological resilience that allows the system to react to inevitable stresses, and generating flexibility in institutions and stakeholders that allows managers to react when conditions change. The result is that, rather than managing for a single, optimal state, we manage within a range of acceptable outcomes while avoiding catastrophes and irreversible negative effects. Copyright ?? 1999 by The Resilience Alliance.

  8. Kaizen practice in healthcare: a qualitative analysis of hospital employees' suggestions for improvement.

    PubMed

    Mazzocato, Pamela; Stenfors-Hayes, Terese; von Thiele Schwarz, Ulrica; Hasson, Henna; Nyström, Monica Elisabeth

    2016-07-29

    Kaizen, or continuous improvement, lies at the core of lean. Kaizen is implemented through practices that enable employees to propose ideas for improvement and solve problems. The aim of this study is to describe the types of issues and improvement suggestions that hospital employees feel empowered to address through kaizen practices in order to understand when and how kaizen is used in healthcare. We analysed 186 structured kaizen documents containing improvement suggestions that were produced by 165 employees at a Swedish hospital. Directed content analysis was used to categorise the suggestions into following categories: type of situation (proactive or reactive) triggering an action; type of process addressed (technical/administrative, support and clinical); complexity level (simple or complex); and type of outcomes aimed for (operational or sociotechnical). Compliance to the kaizen template was calculated. 72% of the improvement suggestions were reactions to a perceived problem. Support, technical and administrative, and primary clinical processes were involved in 47%, 38% and 16% of the suggestions, respectively. The majority of the kaizen documents addressed simple situations and focused on operational outcomes. The degree of compliance to the kaizen template was high for several items concerning the identification of problems and the proposed solutions, and low for items related to the test and implementation of solutions. There is a need to combine kaizen practices with improvement and innovation practices that help staff and managers to address complex issues, such as the improvement of clinical care processes. The limited focus on sociotechnical aspects and the partial compliance to kaizen templates may indicate a limited understanding of the entire kaizen process and of how it relates to the overall organisational goals. This in turn can hamper the sustainability of kaizen practices and results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. A case for the sentence in reading comprehension.

    PubMed

    Scott, Cheryl M

    2009-04-01

    This article addresses sentence comprehension as a requirement of reading comprehension within the framework of the narrow view of reading that was advocated in the prologue to this forum. The focus is on the comprehension requirements of complex sentences, which are characteristic of school texts. Topics included in this discussion are (a) evidence linking sentence comprehension and syntax with reading, (b) syntactic properties of sentences that make them difficult to understand, (c) clinical applications for the assessment of sentence comprehension as it relates to reading, and (d) evidence and methods for addressing sentence complexity in treatment. Sentence complexity can create comprehension problems for struggling readers. The contribution of sentence comprehension to successful reading has been overlooked in models that emphasize domain-general comprehension strategies at the text level. The author calls for the evaluation of sentence comprehension within the context of content domains where complex sentences are found.

  10. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT: A GIS-BASED HYDROLOGIC MODELING TOOL

    EPA Science Inventory

    Planning and assessment in land and water resource management are evolving toward complex, spatially explicit regional assessments. These problems have to be addressed with distributed models that can compute runoff and erosion at different spatial and temporal scales. The extens...

  11. INNOVATIVE SOIL AND GROUNDWATER REMEDIATION: THE SITE PROGRAM EXPERIENCE

    EPA Science Inventory

    The SITE program of the USEPA has been bringing together the private sector, EPA, and other federal and state agencies to succedssfully address complex hazardous waste problems. For more than 15 years, the SITE Program has successfully promoted the development, commercialization ...

  12. Network Access Control List Situation Awareness

    ERIC Educational Resources Information Center

    Reifers, Andrew

    2010-01-01

    Network security is a large and complex problem being addressed by multiple communities. Nevertheless, current theories in networking security appear to overestimate network administrators' ability to understand network access control lists (NACLs), providing few context specific user analyses. Consequently, the current research generally seems to…

  13. Preventing musculoskeletal disorders in clinical dentistry: strategies to address the mechanisms leading to musculoskeletal disorders.

    PubMed

    Valachi, Bethany; Valachi, Keith

    2003-12-01

    The authors reviewed studies to identify methods for dental operators to use to prevent the development of musculoskeletal disorders, or MSDs. The authors reviewed studies that related to the prevention of MSDs among dental operators. Some studies investigated the relationship between the biomechanics of seated working postures and physiological damage or pain. Other studies suggested that repeated unidirectional twisting of the trunk can lead to low back pain, while yet other studies examined the detrimental effects of working in one position for prolonged periods. Additional studies confirmed the roles that operators' flexibility and core strength can play in balanced musculoskeletal health and the need for operators to know how to properly adjust ergonomic equipment. This review indicates that strategies to prevent the multifactorial problem of dental operators' developing MSDs exist. These strategies address deficiencies in operator position, posture, flexibility, strength and ergonomics. Education and additional research are needed to promote an understanding of the complexity of the problem and to address the problem's multifactorial nature. A comprehensive approach to address the problem of MSDs in dentistry represents a paradigm shift in how operators work. New educational models that incorporate a multifactorial approach can be developed to help dental operators manage and prevent MSDs effectively.

  14. Detection of Oil in Water Column, Final Report: Detection Prototype Tests

    DTIC Science & Technology

    2014-07-01

    first phase of the project involved initial development and testing of three technologies to address the detection problem . This second phase...important oceanic phenomena such as density stratification and naturally occurring particulate matter, which will affect the performance of sensors in the ...2 UNCLAS//Public | CG-926 RDC | M. Fitzpatrick, et al.| Public July 2014 spills of submerged oil is far more complex due to the problems

  15. Outcomes-Based Authentic Learning, Portfolio Assessment, and a Systems Approach to "Complex Problem-Solving": Related Pillars for Enhancing the Innovative Role of PBL in Future Higher Education

    ERIC Educational Resources Information Center

    Richards, Cameron

    2015-01-01

    The challenge of better reconciling individual and collective aspects of innovative problem-solving can be productively addressed to enhance the role of PBL as a key focus of the creative process in future higher education. This should involve "active learning" approaches supported by related processes of teaching, assessment and…

  16. Violence, violence prevention, and safety: a research agenda for South Africa.

    PubMed

    Ward, Catherine L; Artz, Lillian; Berg, Julie; Boonzaier, Floretta; Crawford-Browne, Sarah; Dawes, Andrew; Foster, Donald; Matzopoulos, Richard; Nicol, Andrew; Seekings, Jeremy; Van As, Arjan B Sebastian; Van der Spuy, Elrena

    2012-03-07

    Violence is a serious problem in South Africa with many effects on health services; it presents complex research problems and requires interdisciplinary collaboration. Two key meta-questions emerge: (i) violence must be understood better to develop effective interventions; and (ii) intervention research (evaluating interventions, assessing efficacy and effectiveness, how best to scale up interventions in resource-poor settings) is necessary. A research agenda to address violence is proposed.

  17. Applications of systems science in biomedical research regarding obesity and noncommunicable chronic diseases: opportunities, promise, and challenges.

    PubMed

    Wang, Youfa; Xue, Hong; Liu, Shiyong

    2015-01-01

    Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future. © 2015 American Society for Nutrition.

  18. A Different Trolley Problem: The Limits of Environmental Justice and the Promise of Complex Moral Assessments for Transportation Infrastructure.

    PubMed

    Epting, Shane

    2016-12-01

    Transportation infrastructure tremendously affects the quality of life for urban residents, influences public and mental health, and shapes social relations. Historically, the topic is rich with social and political controversy and the resultant transit systems in the United States cause problems for minority residents and issues for the public. Environmental justice frameworks provide a means to identify and address harms that affect marginalized groups, but environmental justice has limits that cannot account for the mainstream population. To account for this condition, I employ a complex moral assessment measure that provides a way to talk about harms that affect the public.

  19. Injury prevention in Australian Indigenous communities.

    PubMed

    Ivers, Rebecca; Clapham, Kathleen; Senserrick, Teresa; Lyford, Marilyn; Stevenson, Mark

    2008-12-01

    Injury prevention in Indigenous communities in Australia is a continuing national challenge, with Indigenous fatality rates due to injury three times higher than the general population. Suicide and transport are the leading causes of injury mortality, and assault, transport and falls the primary causes of injury morbidity. Addressing the complex range of injury problems in disadvantaged Indigenous communities requires considerable work in building or enhancing existing capacity of communities to address local safety issues. Poor data, lack of funding and absence of targeted programs are some of the issues that impede injury prevention activities. Traditional approaches to injury prevention can be used to highlight key areas of need, however adaptations are needed in keeping with Indigenous peoples' holistic approach to health, linked to land and linked to community in order to address the complex spiritual, emotional and social determinants of Indigenous injury.

  20. The bright side of being blue: Depression as an adaptation for analyzing complex problems

    PubMed Central

    Andrews, Paul W.; Thomson, J. Anderson

    2009-01-01

    Depression ranks as the primary emotional problem for which help is sought. Depressed people often have severe, complex problems, and rumination is a common feature. Depressed people often believe that their ruminations give them insight into their problems, but clinicians often view depressive rumination as pathological because it is difficult to disrupt and interferes with the ability to concentrate on other things. Abundant evidence indicates that depressive rumination involves the analysis of episode-related problems. Because analysis is time consuming and requires sustained processing, disruption would interfere with problem-solving. The analytical rumination (AR) hypothesis proposes that depression is an adaptation that evolved as a response to complex problems and whose function is to minimize disruption of rumination and sustain analysis of complex problems. It accomplishes this by giving episode-related problems priority access to limited processing resources, by reducing the desire to engage in distracting activities (anhedonia), and by producing psychomotor changes that reduce exposure to distracting stimuli. Because processing resources are limited, the inability to concentrate on other things is a tradeoff that must be made to sustain analysis of the triggering problem. The AR hypothesis is supported by evidence from many levels, including genes, neurotransmitters and their receptors, neurophysiology, neuroanatomy, neuroenergetics, pharmacology, cognition and behavior, and the efficacy of treatments. In addition, we address and provide explanations for puzzling findings in the cognitive and behavioral genetics literatures on depression. In the process, we challenge the belief that serotonin transmission is low in depression. Finally, we discuss implications of the hypothesis for understanding and treating depression. PMID:19618990

  1. Tackling 'wicked' health promotion problems: a New Zealand case study.

    PubMed

    Signal, Louise N; Walton, Mat D; Ni Mhurchu, Cliona; Maddison, Ralph; Bowers, Sharron G; Carter, Kristie N; Gorton, Delvina; Heta, Craig; Lanumata, Tolotea S; McKerchar, Christina W; O'Dea, Des; Pearce, Jamie

    2013-03-01

    This paper reports on a complex environmental approach to addressing 'wicked' health promotion problems devised to inform policy for enhancing food security and physical activity among Māori, Pacific and low-income people in New Zealand. This multi-phase research utilized literature reviews, focus groups, stakeholder workshops and key informant interviews. Participants included members of affected communities, policy-makers and academics. Results suggest that food security and physical activity 'emerge' from complex systems. Key areas for intervention include availability of money within households; the cost of food; improvements in urban design and culturally specific physical activity programmes. Seventeen prioritized intervention areas were explored in-depth and recommendations for action identified. These include healthy food subsidies, increasing the statutory minimum wage rate and enhancing open space and connectivity in communities. This approach has moved away from seeking individual solutions to complex social problems. In doing so, it has enabled the mapping of the relevant systems and the identification of a range of interventions while taking account of the views of affected communities and the concerns of policy-makers. The complex environmental approach used in this research provides a method to identify how to intervene in complex systems that may be relevant to other 'wicked' health promotion problems.

  2. Wicked problems and a 'wicked' solution.

    PubMed

    Walls, Helen L

    2018-04-13

    'Wicked' is the term used to describe some of the most challenging and complex issues of our time, many of which threaten human health. Climate change, biodiversity loss, persisting poverty, the advancing obesity epidemic, and food insecurity are all examples of such wicked problems. However there is a strong body of evidence describing the solutions for addressing many of these problems. Given that much is known about how many of these problems could be addressed - and given the risks of not acting - what will it take to create the 'tipping point' needed for effective action? A recent (2015) court ruling in The Hague held that the Dutch government's stance on climate change was illegal, ordering them to cut greenhouse gas emissions by at least 25% within 5 years (by 2020), relative to 1990 levels. The case was filed on behalf of 886 Dutch citizens, suing the government for violating human rights and climate changes treaties by failing to take adequate action to prevent the harmful impacts of climate change. This judicial ruling has the potential to provide a way forward, inspiring other civil movements and creating a template from which to address other wicked problems. This judicial strategy to address the need to lower greenhouse gas emissions in the Netherlands is not a magic bullet, and requires a particular legal and institutional setting. However it has the potential to be a game-changer - providing an example of a strategy for achieving domestic regulatory change that is likely to be replicable in some countries elsewhere, and providing an example of a particularly 'wicked' (in the positive, street-slang sense of the word) strategy to address seemingly intractable and wicked problems.

  3. Structuring Effective Student Teams.

    ERIC Educational Resources Information Center

    Dickson, Ellen L.

    1997-01-01

    Experience with student teams working on policy analysis projects indicates the need for faculty supervision of teams in the process of addressing complex issues. The problem-solving approach adopted in one policy analysis course is described, including assignments and tasks, issues and sponsors, team dynamics, conflict management, and the…

  4. The Continuing Arrogation of the Curriculum Field: A Rejoinder to Pinar.

    ERIC Educational Resources Information Center

    Wraga, William G.

    1999-01-01

    Criticizes the response by William Pinar as not addressing points raised in Wraga's essay on reconceptualized curriculum studies. Pinar's vision of hopelessness for reforming the curriculum field continues the insulation of curriculum theorists from the complex problems of school practice. (SLD)

  5. Making science high impact to inform decision-making: Using boundary objects for aquatic research

    EPA Science Inventory

    The St. Louis River represents a complex natural resource management problem. Current ecosystem management decisions must address extensive sediment remediation and habitat restoration goals for the lower river and associated port, as well as recreational users who value differen...

  6. Ethical School Leadership: Problems of an Elusive Role.

    ERIC Educational Resources Information Center

    Campbell, Elizabeth

    1997-01-01

    Educational literature increasingly stresses the importance of ethics in school leadership, the need to recognize professional responsibilities as basic ethical imperatives, and the need for administrator preparation programs to reflect these neglected areas. Within this context, this paper addresses the complexities involved in translating…

  7. The Silver Bullet Syndrome.

    ERIC Educational Resources Information Center

    Dehne, George C.

    1995-01-01

    Many colleges address complex problems with a single "silver bullet" strategy. Because value shifts according to the consumer's situation or goal, private colleges should become more aware of their "situational value" and exploit it. This requires an understanding of how students choose colleges. In contrast, popular silver bullets target…

  8. Protein and gene model inference based on statistical modeling in k-partite graphs.

    PubMed

    Gerster, Sarah; Qeli, Ermir; Ahrens, Christian H; Bühlmann, Peter

    2010-07-06

    One of the major goals of proteomics is the comprehensive and accurate description of a proteome. Shotgun proteomics, the method of choice for the analysis of complex protein mixtures, requires that experimentally observed peptides are mapped back to the proteins they were derived from. This process is also known as protein inference. We present Markovian Inference of Proteins and Gene Models (MIPGEM), a statistical model based on clearly stated assumptions to address the problem of protein and gene model inference for shotgun proteomics data. In particular, we are dealing with dependencies among peptides and proteins using a Markovian assumption on k-partite graphs. We are also addressing the problems of shared peptides and ambiguous proteins by scoring the encoding gene models. Empirical results on two control datasets with synthetic mixtures of proteins and on complex protein samples of Saccharomyces cerevisiae, Drosophila melanogaster, and Arabidopsis thaliana suggest that the results with MIPGEM are competitive with existing tools for protein inference.

  9. Wind Farm Turbine Type and Placement Optimization

    NASA Astrophysics Data System (ADS)

    Graf, Peter; Dykes, Katherine; Scott, George; Fields, Jason; Lunacek, Monte; Quick, Julian; Rethore, Pierre-Elouan

    2016-09-01

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. This document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  10. Wind farm turbine type and placement optimization

    DOE PAGES

    Graf, Peter; Dykes, Katherine; Scott, George; ...

    2016-10-03

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  11. Challenges in building intelligent systems for space mission operations

    NASA Technical Reports Server (NTRS)

    Hartman, Wayne

    1991-01-01

    The purpose here is to provide a top-level look at the stewardship functions performed in space operations, and to identify the major issues and challenges that must be addressed to build intelligent systems that can realistically support operations functions. The focus is on decision support activities involving monitoring, state assessment, goal generation, plan generation, and plan execution. The bottom line is that problem solving in the space operations domain is a very complex process. A variety of knowledge constructs, representations, and reasoning processes are necessary to support effective human problem solving. Emulating these kinds of capabilities in intelligent systems offers major technical challenges that the artificial intelligence community is only beginning to address.

  12. Advancing efforts to address youth violence involvement.

    PubMed

    Weist, M D; Cooley-Quille, M

    2001-06-01

    Discusses the increased public attention on violence-related problems among youth and the concomitant increased diversity in research. Youth violence involvement is a complex construct that includes violence experienced in multiple settings (home, school, neighborhood) and in multiple forms (as victims, witnesses, perpetrators, and through family members, friends, and the media). Potential impacts of such violence involvement are considerable, including increased internalizing and externalizing behaviors among youth and future problems in school adjustment and life-course development. This introductory article reviews key dimensions of youth-related violence, describes an American Psychological Association Task Force (Division 12) developed to advance relevant research, and presents examples of national resources and efforts that attempt to address this critical public health issue.

  13. Exploring New Physics Frontiers Through Numerical Relativity.

    PubMed

    Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Sperhake, Ulrich

    2015-01-01

    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology.

  14. The Navier-Stokes computer

    NASA Technical Reports Server (NTRS)

    Nosenchuck, D. M.; Littman, M. G.

    1986-01-01

    The Navier-Stokes computer (NSC) has been developed for solving problems in fluid mechanics involving complex flow simulations that require more speed and capacity than provided by current and proposed Class VI supercomputers. The machine is a parallel processing supercomputer with several new architectural elements which can be programmed to address a wide range of problems meeting the following criteria: (1) the problem is numerically intensive, and (2) the code makes use of long vectors. A simulation of two-dimensional nonsteady viscous flows is presented to illustrate the architecture, programming, and some of the capabilities of the NSC.

  15. Interdisciplinarity in Adapted Physical Activity

    ERIC Educational Resources Information Center

    Bouffard, Marcel; Spencer-Cavaliere, Nancy

    2016-01-01

    It is commonly accepted that inquiry in adapted physical activity involves the use of different disciplines to address questions. It is often advanced today that complex problems of the kind frequently encountered in adapted physical activity require a combination of disciplines for their solution. At the present time, individual research…

  16. Teacher Competency: A Public Farce!

    ERIC Educational Resources Information Center

    Weitman, Catheryn J.

    The current popularity of teacher testing allows for content, criterion, and construct validity to be assessed, as pertaining to achievement levels on basic knowledge examinations. Teacher competency is a complex issue that is inaccurately confused with or identified as measures derived from academic testing. The problems in addressing the…

  17. Building a Greener Future

    ERIC Educational Resources Information Center

    Baldwin, Blake; Koenig, Kathleen; Van der Bent, Andries

    2016-01-01

    Integrating engineering and science in the classroom can be challenging, and creating authentic experiences that address real-world problems is often even more difficult. "A Framework for K-12 Science Education" (NRC 2012), however, calls for high school graduates to be able to undertake more complex engineering design projects related…

  18. Adaptive simplification of complex multiscale systems.

    PubMed

    Chiavazzo, Eliodoro; Karlin, Ilya

    2011-03-01

    A fully adaptive methodology is developed for reducing the complexity of large dissipative systems. This represents a significant step toward extracting essential physical knowledge from complex systems, by addressing the challenging problem of a minimal number of variables needed to exactly capture the system dynamics. Accurate reduced description is achieved, by construction of a hierarchy of slow invariant manifolds, with an embarrassingly simple implementation in any dimension. The method is validated with the autoignition of the hydrogen-air mixture where a reduction to a cascade of slow invariant manifolds is observed.

  19. Rational Solutions for Challenges of the New Mellennium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gover, J.; Guray, P.G.

    We have reviewed ten major public problems challenging our Nation as it enters the new millennium. These are defense, healthcare costs, education, aging population, energy and environment, crime, low productivity growth services, income distribution, regulations, and infrastructure. These problems share several features. First, each is so large, if it were soIved; it would have major impact on the U.S. economy. Second, each is resident in a socioeconomic system containing non-linear feedback loops and an adaptive human element. Third, each can only be solved by our political system, yet these problems are not responsive to piecemeal problem solving, the approach traditionallymore » used by policy makers. However, unless each problem is addressed in the context of the system in which it resides, the solution maybe worse than the problem. Our political system is immersed in reams of disconnected, unintelligible information skewed by various special interests to suggest policies favoring their particular needs. Help is needed, if rational solutions that serve public interests are to be forged for these ten probIems, The simulation and modeIing tools of physical scientists, engineers, economists, social scientists, public policy experts, and others, bolstered by the recent explosive growth in massively parallel computing power, must be blended together to synthesize models of the complex systems in which these problems are resident. These models must simulate the seemingly chaotic human element inherent in these systems and support policymakers in making informed decKlons about the future. We propose altering the policy development process by incorporating more modeling, simulation and analysis to bring about a revolution in policy making that takes advantage of the revolution in engineering emerging from simulation and modeling. While we recommend major research efforts to address each of these problems, we also observe these to be very complex, highly interdependent, multi-disciplinary problems; it will challenge the U.S. community of individual investigator researchers to make the cultural transformation necessary to address these problems in a team environment. Furthermore, models that simulate future behavior of these complex systems will not be exacq therefore, researchers must be prepared to use the modeling and simulation tools they develop to propose experiments to Congress. We recommend that ten laboratories owned by the American public be selected in an interagency competition to each manage and host a $1 billion/yertr National effort, each focused on one of these ten problems. Much of the supporting research and subsystem modeling work will be conducted at U.S. universities and at private firms with relevant expertise. Success of the Manhattan Project at the middle of the 20th century provides evidence this leadership model works.« less

  20. Group Development and Integration in a Cross-Disciplinary and Intercultural Research Team.

    PubMed

    Kirk-Lawlor, Naomi; Allred, Shorna

    2017-04-01

    Cross-disciplinary research is necessary to solve many complex problems that affect society today, including problems involving linked social and environmental systems. Examples include natural resource management or scarcity problems, problematic effects of climate change, and environmental pollution issues. Intercultural research teams are needed to address many complex environmental matters as they often cross geographic and political boundaries, and involve people of different countries and cultures. It follows that disciplinarily and culturally diverse research teams have been organized to investigate and address environmental issues. This case study investigates a team composed of both monolingual and bilingual Chilean and US university researchers who are geoscientists, engineers and economists. The objective of this research team was to study both the natural and human parts of a hydrologic system in a hyper-arid region in northern Chile. Interviews (n = 8) addressed research questions focusing on the interaction of cross-disciplinary diversity and cultural diversity during group integration and development within the team. The case study revealed that the group struggled more with cross-disciplinary challenges than with intercultural ones. Particularly challenging ones were instances the of disciplinary crosstalk, or hidden misunderstandings, where team members thought they understood their cross-disciplinary colleagues, when in reality they did not. Results showed that translation served as a facilitator to cross-disciplinary integration of the research team. The use of translation in group meetings as a strategy for effective cross-disciplinary integration can be extended to monolingual cross-disciplinary teams as well.

  1. Group Development and Integration in a Cross-Disciplinary and Intercultural Research Team

    NASA Astrophysics Data System (ADS)

    Kirk-Lawlor, Naomi; Allred, Shorna

    2017-04-01

    Cross-disciplinary research is necessary to solve many complex problems that affect society today, including problems involving linked social and environmental systems. Examples include natural resource management or scarcity problems, problematic effects of climate change, and environmental pollution issues. Intercultural research teams are needed to address many complex environmental matters as they often cross geographic and political boundaries, and involve people of different countries and cultures. It follows that disciplinarily and culturally diverse research teams have been organized to investigate and address environmental issues. This case study investigates a team composed of both monolingual and bilingual Chilean and US university researchers who are geoscientists, engineers and economists. The objective of this research team was to study both the natural and human parts of a hydrologic system in a hyper-arid region in northern Chile. Interviews ( n = 8) addressed research questions focusing on the interaction of cross-disciplinary diversity and cultural diversity during group integration and development within the team. The case study revealed that the group struggled more with cross-disciplinary challenges than with intercultural ones. Particularly challenging ones were instances the of disciplinary crosstalk, or hidden misunderstandings, where team members thought they understood their cross-disciplinary colleagues, when in reality they did not. Results showed that translation served as a facilitator to cross-disciplinary integration of the research team. The use of translation in group meetings as a strategy for effective cross-disciplinary integration can be extended to monolingual cross-disciplinary teams as well.

  2. A Series of MATLAB Learning Modules to Enhance Numerical Competency in Applied Marine Sciences

    NASA Astrophysics Data System (ADS)

    Fischer, A. M.; Lucieer, V.; Burke, C.

    2016-12-01

    Enhanced numerical competency to navigate the massive data landscapes are critical skills students need to effectively explore, analyse and visualize complex patterns in high-dimensional data for addressing the complexity of many of the world's problems. This is especially the case for interdisciplinary, undergraduate applied marine science programs, where students are required to demonstrate competency in methods and ideas across multiple disciplines. In response to this challenge, we have developed a series of repository-based data exploration, analysis and visualization modules in MATLAB for integration across various attending and online classes within the University of Tasmania. The primary focus of these modules is to teach students to collect, aggregate and interpret data from large on-line marine scientific data repositories to, 1) gain technical skills in discovering, accessing, managing and visualising large, numerous data sources, 2) interpret, analyse and design approaches to visualise these data, and 3) to address, through numerical approaches, complex, real-world problems, that the traditional scientific methods cannot address. All modules, implemented through a MATLAB live script, include a short recorded lecture to introduce the topic, a handout that gives an overview of the activities, an instructor's manual with a detailed methodology and discussion points, a student assessment (quiz and level-specific challenge task), and a survey. The marine science themes addressed through these modules include biodiversity, habitat mapping, algal blooms and sea surface temperature change and utilize a series of marine science and oceanographic data portals. Through these modules students, with minimal experience in MATLAB or numerical methods are introduced to array indexing, concatenation, sorting, and reshaping, principal component analysis, spectral analysis and unsupervised classification within the context of oceanographic processes, marine geology and marine community ecology.

  3. Mentoring Undergraduate Scholars: A Pathway to Interdisciplinary Research?

    ERIC Educational Resources Information Center

    Davis, Shannon N.; Mahatmya, Duhita; Garner, Pamela W.; Jones, Rebecca M.

    2015-01-01

    Interdisciplinary research is a valuable approach to addressing complex real-world problems. However, undergraduate research mentoring is discussed as an activity that happens in disciplinary silos where the mentor and student scholar share a disciplinary background. By transcending traditional academic divisions, we argue that mentors can train a…

  4. Sustainability: Why the Language and Ethics of Sustainability Matter in the Geoscience Classroom

    ERIC Educational Resources Information Center

    Metzger, Ellen P.; Curren, Randall R.

    2017-01-01

    Because challenges to sustainability arise at the intersection of human and biophysical systems they are inescapably embedded in social contexts and involve multiple stakeholders with diverse and often conflicting needs and value systems. Addressing complex and solution-resistant problems such as climate change, biodiversity loss, and…

  5. Another level of leadership: nurses on boards.

    PubMed

    Bleich, Michael R

    2014-12-01

    The movement to place nurses on boards of directors is growing, enriching boards with individuals possessing knowledge of clinical quality tied to care delivery models, human resource competencies and management, finance, and organizational change. Professional development educators are poised to advance a board's capacity to address complex health care problems.

  6. Clinical Assessment of Dissociative Identity Disorder among College Counseling Clients

    ERIC Educational Resources Information Center

    Levy, Benjamin; Swanson, Janine E.

    2008-01-01

    College counseling professionals address a wide range of complex student mental health concerns. Among these, accurately identifying client presentations of dissociative identity disorder (DID) can be especially challenging because students with DID sometimes present as if they are experiencing another problem, such as a mood, anxiety, or…

  7. Should Principals Know More about Law?

    ERIC Educational Resources Information Center

    Doctor, Tyrus L.

    2013-01-01

    Educational law is a critical piece of the education conundrum. Principals reference law books on a daily basis in order to address the wide range of complex problems in the school system. A principal's knowledge of law issues and legal decision-making are essential to provide effective feedback for a successful school.

  8. Nurses and health information technology: working with and around computers.

    PubMed

    Peace, Jane

    2011-01-01

    Information technology is nearly ubiquitous in health care settings. Nurses need basic computer skills and information literacy to effectively practice nursing. In addition, nurses must be prepared not only to work around complex health information technology, but also to communicate with individuals who can address the underlying problems.

  9. An Empirical Assessment of Interdisciplinarity: Perspectives from Graduate Students and Program Administrators

    ERIC Educational Resources Information Center

    Shandas, Vivek; Brown, Stephan Edward

    2016-01-01

    Interdisciplinarity is heralded as a relatively new educational and research paradigm that can effectively address complex problems at disciplinary boundaries. Yet little is known about the extent to which interdisciplinarity has penetrated higher education, nor about how students and program administrators view its usefulness. Through a case…

  10. Engaging Business Students in Quantitative Skills Development

    ERIC Educational Resources Information Center

    Cronin, Anthony; Carroll, Paula

    2015-01-01

    In this paper the complex problems of developing quantitative and analytical skills in undergraduate first year, first semester business students are addressed. An action research project, detailing how first year business students perceive the relevance of data analysis and inferential statistics in light of the economic downturn and the…

  11. 75 FR 22164 - Urban Non-Urban Homeless Female Veterans and Homeless Veterans With Families' Reintegration Into...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... Non-Urban Homeless Female Veterans and Homeless Veterans With Families' Reintegration Into Employment... addresses complex problems facing Homeless Female Veterans and/or Veterans with Families eligible to... (including job readiness, literacy training, and skills training) to expedite the reintegration of homeless...

  12. Improving Collaborative Learning in Online Software Engineering Education

    ERIC Educational Resources Information Center

    Neill, Colin J.; DeFranco, Joanna F.; Sangwan, Raghvinder S.

    2017-01-01

    Team projects are commonplace in software engineering education. They address a key educational objective, provide students critical experience relevant to their future careers, allow instructors to set problems of greater scale and complexity than could be tackled individually, and are a vehicle for socially constructed learning. While all…

  13. Strategic Teaching: Student Learning through Working the Process

    ERIC Educational Resources Information Center

    Spanbroek, Nancy

    2010-01-01

    The designers of our future built environment must possess intellectual tools which will allow them to be disciplined, flexible and analytical thinkers, able to address and resolve new and complex problems. In response, an experimental and collaborative design studio was designed to inspire and build on students' knowledge and their creative…

  14. Reprint 1987: Research Administration in a Time of Change

    ERIC Educational Resources Information Center

    Brandt, Edward N.

    2017-01-01

    The field of biomedical research has undergone several changes in recent years. These include increased funding, the rapid development in scientific knowledge which speeds up the obsolescence of equipment, facilities and knowledge and the growing complexity of scientific problems. Research administrators can take steps to address these changes…

  15. Megacities and the United States Army: Preparing for a Complex and Uncertain Future

    DTIC Science & Technology

    2014-06-01

    NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Office of the Chief of Staff of the Army,Strategic...problems found in megacities (explosive growth rates, vast and growing income disparity and a security envi- ronment that is increasingly attractive to the ...that growth oc- curring almost entirely in developing world. 5 As re- sources become constrained, illicit networks could po- tentially fill the gap left

  16. Looking through an adolescent literacy lens at the narrow view of reading.

    PubMed

    Ehren, Barbara J

    2009-04-01

    This commentary is a personal reaction to A. G. Kamhi's (2007) article on the "narrow view" of reading and his suggestion that this view be adopted as a way to address the reading problems of children and adolescents. In this article, I consider the narrow view of reading from an adolescent literacy perspective and discuss the practical implications of adopting this view in the schools. Discussion revolves around the complexities of reading comprehension, comprehension as a teachable set of complex processes, and the speech-language pathologist's role in reading comprehension. Although I acknowledge that the narrow view of reading may have merit, I opine that it may create more problems than it solves.

  17. Student homicidal violence in schools: an international problem.

    PubMed

    Bondü, Rebecca; Cornell, Dewey G; Scheithauer, Herbert

    2011-01-01

    School homicides have been become a worldwide phenomenon. In the decade following the Columbine shooting there have been at least forty similar events in other countries. This article addresses the international scope of this problem and some of the complex conceptual issues that make student homicidal violence difficult to define and study. Meaningful research on risk and protective factors that can inform evidence-based preventive models is summarized. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  18. Aerodynamic instability: A case history

    NASA Technical Reports Server (NTRS)

    Eisenmann, R. C.

    1985-01-01

    The identification, diagnosis, and final correction of complex machinery malfunctions typically require the correlation of many parameters such as mechanical construction, process influence, maintenance history, and vibration response characteristics. The progression is reviewed of field testing, diagnosis, and final correction of a specific machinery instability problem. The case history presented addresses a unique low frequency instability problem on a high pressure barrel compressor. The malfunction was eventually diagnosed as a fluidic mechanism that manifested as an aerodynamic disturbance to the rotor assembly.

  19. Abstraction of an Affective-Cognitive Decision Making Model Based on Simulated Behaviour and Perception Chains

    NASA Astrophysics Data System (ADS)

    Sharpanskykh, Alexei; Treur, Jan

    Employing rich internal agent models of actors in large-scale socio-technical systems often results in scalability issues. The problem addressed in this paper is how to improve computational properties of a complex internal agent model, while preserving its behavioral properties. The problem is addressed for the case of an existing affective-cognitive decision making model instantiated for an emergency scenario. For this internal decision model an abstracted behavioral agent model is obtained, which ensures a substantial increase of the computational efficiency at the cost of approximately 1% behavioural error. The abstraction technique used can be applied to a wide range of internal agent models with loops, for example, involving mutual affective-cognitive interactions.

  20. Game theory and extremal optimization for community detection in complex dynamic networks.

    PubMed

    Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca

    2014-01-01

    The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.

  1. Solving a real-world problem using an evolving heuristically driven schedule builder.

    PubMed

    Hart, E; Ross, P; Nelson, J

    1998-01-01

    This work addresses the real-life scheduling problem of a Scottish company that must produce daily schedules for the catching and transportation of large numbers of live chickens. The problem is complex and highly constrained. We show that it can be successfully solved by division into two subproblems and solving each using a separate genetic algorithm (GA). We address the problem of whether this produces locally optimal solutions and how to overcome this. We extend the traditional approach of evolving a "permutation + schedule builder" by concentrating on evolving the schedule builder itself. This results in a unique schedule builder being built for each daily scheduling problem, each individually tailored to deal with the particular features of that problem. This results in a robust, fast, and flexible system that can cope with most of the circumstances imaginable at the factory. We also compare the performance of a GA approach to several other evolutionary methods and show that population-based methods are superior to both hill-climbing and simulated annealing in the quality of solutions produced. Population-based methods also have the distinct advantage of producing multiple, equally fit solutions, which is of particular importance when considering the practical aspects of the problem.

  2. Using Structured e-Forum to Support the Legislation Formation Process

    NASA Astrophysics Data System (ADS)

    Xenakis, Alexandros; Loukis, Euripides

    Many public policy problems are 'wicked', being characterised by high complexity, many heterogeneous views and conflicts among various stakeholders, and also lack of mathematically 'optimal' solutions and predefined algorithms for calculating them. The best approach for addressing such problems is through consultation and argumentation among stakeholders. The e-participation research has investigated and suggested several ICT tools for this purpose, such as e-forum, e-petition and e-community tools. This paper investigates the use of an advanced ICT tool, the structured e-forum, for addressing such wicked problems associated with the legislation formation. For this purpose we designed, implemented and evaluated two pilot e-consultations on legislation under formation in the Parliaments of Austria and Greece using a structured e-forum tool based on the Issue Based Information Systems (IBIS) framework. The conclusions drawn reveal the advantages offered by the structured e-forum, but also its difficulties as well.

  3. Past successes and future challenges: Improving the urban environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gade, M.

    1994-12-31

    The author discusses issues related to the Chicago urban environment from her perspective in the Illinois Environmental Protection Agency. Understanding of the ozone air pollution problem in the Chicago area has undergone significant changes in the past three years, and there is still more to be understood about the complex factors which contribute to ozone pollution over urban areas such as Chicago. Ability to address these problems to present clean air standards is not in hand at present. The author asserts that information, and the ability of governmental agencies to ingest and respond to that information in a timely mannermore » is a key to improvement of the environment in urban areas in reasonable time spans. In addition cost and price information on environmental control and protection needs to be more clearly presented to the people so they can understand the difficult choices which must be made in addressing these environmental problems.« less

  4. Introduction: gendering socio cultural alcohol and drug research.

    PubMed

    Hensing, G; Spak, F

    2009-01-01

    The gender gap in alcohol consumption and alcohol-related harm still is considerable and largely unexplained. This paper introduces four studies performed in Sweden that explore factors influencing gender differences in levels of consumption, adverse consequences and treatment. We summarize and discuss these four studies performed within the same cultural setting, which each analyse interaction with the gender. Two studies focus on the individual level addressing criminal behaviour, alcohol problems and mortality, and gender identity and alcohol problems in women taking psychiatric co-morbidity into account. Two studies focus on the institutional and cultural levels addressing the handling of alcohol-related problems in primary healthcare and the effectiveness of using cultural analysis in identifying gender concerns for women. Future studies need to focus more on these complex associations to secure that treatment settings provide both genders with fair and adequate treatment of high quality and that prevention activities will start to test measures that take gender into consideration.

  5. Care erosion in hospitals: Problems in reflective nursing practice and the role of cognitive dissonance.

    PubMed

    de Vries, Jan; Timmins, Fiona

    2016-03-01

    Care erosion - gradual decline in care level - is an important problem in health care today. Unfortunately, the mechanism whereby it occurs is complex and poorly understood. This paper seeks to address this by emphasising problems in reflective nursing practice. Critical reflection on quality of care which should drive good care instead spawns justifications, denial, and trivialisation of deficient care. This perpetuates increasingly poor care levels. We argue that cognitive dissonance theory provides a highly effective understanding of this process and suggest for this approach to be incorporated in all efforts to address care erosion. The paper includes a detailed discussion of examples and implications for practice, in particular the need to restore critical reflection in nursing, the importance of embracing strong values and standards, and the need for increased awareness of signs of care erosion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. FEAST fundamental framework for electronic structure calculations: Reformulation and solution of the muffin-tin problem

    NASA Astrophysics Data System (ADS)

    Levin, Alan R.; Zhang, Deyin; Polizzi, Eric

    2012-11-01

    In a recent article Polizzi (2009) [15], the FEAST algorithm has been presented as a general purpose eigenvalue solver which is ideally suited for addressing the numerical challenges in electronic structure calculations. Here, FEAST is presented beyond the “black-box” solver as a fundamental modeling framework which can naturally address the original numerical complexity of the electronic structure problem as formulated by Slater in 1937 [3]. The non-linear eigenvalue problem arising from the muffin-tin decomposition of the real-space domain is first derived and then reformulated to be solved exactly within the FEAST framework. This new framework is presented as a fundamental and practical solution for performing both accurate and scalable electronic structure calculations, bypassing the various issues of using traditional approaches such as linearization and pseudopotential techniques. A finite element implementation of this FEAST framework along with simulation results for various molecular systems is also presented and discussed.

  7. Direct heuristic dynamic programming for damping oscillations in a large power system.

    PubMed

    Lu, Chao; Si, Jennie; Xie, Xiaorong

    2008-08-01

    This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.

  8. Biologically-inspired approaches for self-organization, adaptation, and collaboration of heterogeneous autonomous systems

    NASA Astrophysics Data System (ADS)

    Steinberg, Marc

    2011-06-01

    This paper presents a selective survey of theoretical and experimental progress in the development of biologicallyinspired approaches for complex surveillance and reconnaissance problems with multiple, heterogeneous autonomous systems. The focus is on approaches that may address ISR problems that can quickly become mathematically intractable or otherwise impractical to implement using traditional optimization techniques as the size and complexity of the problem is increased. These problems require dealing with complex spatiotemporal objectives and constraints at a variety of levels from motion planning to task allocation. There is also a need to ensure solutions are reliable and robust to uncertainty and communications limitations. First, the paper will provide a short introduction to the current state of relevant biological research as relates to collective animal behavior. Second, the paper will describe research on largely decentralized, reactive, or swarm approaches that have been inspired by biological phenomena such as schools of fish, flocks of birds, ant colonies, and insect swarms. Next, the paper will discuss approaches towards more complex organizational and cooperative mechanisms in team and coalition behaviors in order to provide mission coverage of large, complex areas. Relevant team behavior may be derived from recent advances in understanding of the social and cooperative behaviors used for collaboration by tens of animals with higher-level cognitive abilities such as mammals and birds. Finally, the paper will briefly discuss challenges involved in user interaction with these types of systems.

  9. Page Oriented Holographic Memories And Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Caulfield, H. J.

    1987-08-01

    In the twenty-two years since VanderLugt's introduction of holographic matched filtering, the intensive research carried out throughout the world has led to no applications in complex environment. This leads one to the suspicion that the VanderLugt filter technique is insufficiently complex to handle truly complex problems. Therefore, it is of great interest to increase the complexity of the VanderLugt filtering operation. We introduce here an approach to the real time filter assembly: use of page oriented holographic memories and optically addressed SLMs to achieve intelligent and fast reprogramming of the filters using a 10 4 to 10 6 stored pattern base.

  10. Information needs related to extension service and community outreach.

    PubMed

    Bottcher, Robert W

    2003-06-01

    Air quality affects everyone. Some people are affected by air quality impacts, regulations, and technological developments in several ways. Stakeholders include the medical community, ecologists, government regulators, industries, technology providers, academic professionals, concerned citizens, the news media, and elected officials. Each of these groups may perceive problems and opportunities differently, but all need access to information as it is developed. The diversity and complexity of air quality problems contribute to the challenges faced by extension and outreach professionals who must communicate with stakeholders having diverse backgrounds. Gases, particulates, biological aerosols, pathogens, and odors all require expensive and relatively complex technology to measure and control. Economic constraints affect the ability of regulators and others to measure air quality, and industry and others to control it. To address these challenges, while communicating air quality research results and concepts to stakeholders, three areas of information needs are evident. (1) A basic understanding of the fundamental concepts regarding air pollutants and their measurement and control is needed by all stakeholders; the Extension Specialist, to be effective, must help people move some distance up the learning curve. (2) Each problem or set of problems must be reasonably well defined since comprehensive solution of all problems simultaneously may not be feasible; for instance, the solution of an odor problem associated with animal production may not address atmospheric effects due to ammonia emissions. (3) The integrity of the communication process must be preserved by avoiding prejudice and protectionism; although stakeholders may seek to modify information to enhance their interests, extension and outreach professionals must be willing to present unwelcome information or admit to a lack of information. A solid grounding in fundamental concepts, careful and fair problem definition, and a resolute commitment to integrity and credibility will enable effective communication of air quality information to and among diverse stakeholders.

  11. Contextualising eating problems in individual diet counselling.

    PubMed

    Kristensen, Søren T; Køster, Allan

    2014-05-01

    Health professionals consider diet to be a vital component in managing weight, chronic diseases and the overall promotion of health. This article takes the position that the complexity and contextual nature of individual eating problems needs to be addressed in a more systematic and nuanced way than is usually the case in diet counselling, motivational interviewing and health coaching. We suggest the use of narrative practice as a critical and context-sensitive counselling approach to eating problems. Principles of externalisation and co-researching are combined within a counselling framework that employs logistic, social and discursive eating problems as analytic categories. Using cases from a health clinic situated at the Metropolitan University College in Copenhagen, we show that even if the structural conditions associated with eating problems may not be solvable through individual counselling sessions, exploration of the complex structures of food and eating with the client can provide agency by helping them navigate within the context of the problem. We also exemplify why a reflexive and critical approach to the way health is perceived by clients should be an integrated part of diet counselling.

  12. Small farms, cash crops, agrarian ideals, and international development.

    PubMed

    Effland, Anne

    2010-01-01

    This address is an exploration of a lifetime of disparate and often conflicting observations about how different people view what is right and good for agriculture, food, and farmers around the world. The exploration utilizes the concept of wicked problems to focus on the issue of differing historical interpretations of global agricultural development. Sandra Batie defines wicked problems as "dynamically complex, ill-structured, public problems" for which "there can be radically different views and understanding of the problem by different stakeholders, with no unique 'correct' view." The wicked problem construct is applied to four core ideas in the history of agricultural development -- small farms, cash crops, agrarian ideals, and international development -- to demonstrate the potential for using this concept to approach complex problems of historical interpretation and contribute to solutions to the challenges of global agricultural development. The author suggests historians should acknowledge contradictory interpretations adn work toward reconciliation and synthesis, where it is possible and, where not, toward a clear explication of the basis for remaining differences. The author also encourages historians to seek multidisciplinary research opportunities that will help bring insights about historical context to policy deliberations.

  13. Active subspace: toward scalable low-rank learning.

    PubMed

    Liu, Guangcan; Yan, Shuicheng

    2012-12-01

    We address the scalability issues in low-rank matrix learning problems. Usually these problems resort to solving nuclear norm regularized optimization problems (NNROPs), which often suffer from high computational complexities if based on existing solvers, especially in large-scale settings. Based on the fact that the optimal solution matrix to an NNROP is often low rank, we revisit the classic mechanism of low-rank matrix factorization, based on which we present an active subspace algorithm for efficiently solving NNROPs by transforming large-scale NNROPs into small-scale problems. The transformation is achieved by factorizing the large solution matrix into the product of a small orthonormal matrix (active subspace) and another small matrix. Although such a transformation generally leads to nonconvex problems, we show that a suboptimal solution can be found by the augmented Lagrange alternating direction method. For the robust PCA (RPCA) (Candès, Li, Ma, & Wright, 2009 ) problem, a typical example of NNROPs, theoretical results verify the suboptimality of the solution produced by our algorithm. For the general NNROPs, we empirically show that our algorithm significantly reduces the computational complexity without loss of optimality.

  14. Addressing substance abuse and violence in substance use disorder treatment and batterer intervention programs.

    PubMed

    Timko, Christine; Valenstein, Helen; Lin, Patricia Y; Moos, Rudolf H; Stuart, Gregory L; Cronkite, Ruth C

    2012-09-07

    Substance use disorders and perpetration of intimate partner violence (IPV) are interrelated, major public health problems. We surveyed directors of a sample of substance use disorder treatment programs (SUDPs; N=241) and batterer intervention programs (BIPs; N=235) in California (70% response rate) to examine the extent to which SUDPs address IPV, and BIPs address substance abuse. Generally, SUDPs were not addressing co-occurring IPV perpetration in a formal and comprehensive way. Few had a policy requiring assessment of potential clients, or monitoring of admitted clients, for violence perpetration; almost one-quarter did not admit potential clients who had perpetrated IPV, and only 20% had a component or track to address violence. About one-third suspended or terminated clients engaging in violence. The most common barriers to SUDPs providing IPV services were that violence prevention was not part of the program's mission, staff lacked training in violence, and the lack of reimbursement mechanisms for such services. In contrast, BIPs tended to address substance abuse in a more formal and comprehensive way; e.g., one-half had a policy requiring potential clients to be assessed, two-thirds required monitoring of substance abuse among admitted clients, and almost one-half had a component or track to address substance abuse. SUDPs had clients with fewer resources (marriage, employment, income, housing), and more severe problems (both alcohol and drug use disorders, dual substance use and other mental health disorders, HIV + status). We found little evidence that services are centralized for individuals with both substance abuse and violence problems, even though most SUDP and BIP directors agreed that help for both problems should be obtained simultaneously in separate programs. SUDPs may have difficulty addressing violence because they have a clientele with relatively few resources and more complex psychological and medical needs. However, policy change can modify barriers to treatment integration and service linkage, such as reimbursement restrictions and lack of staff training.

  15. Managing common marital stresses.

    PubMed

    Martin, A C; Starling, B P

    1989-10-01

    Marital conflict and divorce are problems of great magnitude in our society, and nurse practitioners are frequently asked by patients to address marital problems in clinical practice. "Family life cycle theory" provides a framework for understanding the common stresses of marital life and for developing nursing strategies to improve marital satisfaction. If unaddressed, marital difficulties have serious adverse consequences for a couple's health, leading to greater dysfunction and a decline in overall wellness. This article focuses on identifying couples in crisis, assisting them to achieve pre-crisis equilibrium or an even higher level of functioning, and providing appropriate referral if complex relationship problems exist.

  16. Characteristics of an ITS that evolves from tutor to operator's assistant. [intelligent tutoring system

    NASA Technical Reports Server (NTRS)

    Chu, R. W.; Mitchell, C. M.; Govindaraj, T.

    1989-01-01

    This paper discusses the motivation and goals of a research project which addresses the problems and issues of operator training in complex engineering sytems. The research proposes a tutor/aid paradigm for the design of an intelligent tutoring system (ITS) that evolves from a tutor to an operator's assistant for supervisory control of complex dynamic systems. Characteristics of an intelligent tutoring/aiding system are identified with respect to the representation of domain knowledge, the tutor's pedagogical structure, and the student knowledge representation. The research represents a first step in the design of an intelligent complex dynamic systems.

  17. Youth and the Workplace: Second-Chance Programs and the Hard-to-Serve.

    ERIC Educational Resources Information Center

    Smith, Thomas J.; And Others

    The task of addressing the complex and deeply rooted problems faced by the nation's at-risk youth is one that largely falls outside the scope of traditional institutions. Investment in the development and operation of "second-chance" education and employment programs has historically been inadequate, haphazard, and uncertain. The gains…

  18. An Assessment of Six School-Based Clinics: Services, Impact and Potential.

    ERIC Educational Resources Information Center

    Kirby, Douglas; And Others

    For two decades, school-based clinics have been providing basic health care to medically underserved teenagers and addressing the increasingly complex health and social problems facing young people, particularly unintended pregnancy. Today there are 150 school-based clinics operating in most major cities and many rural areas. In 1984, the Center…

  19. Advanced Microcomputer Service Technician. Teacher Edition.

    ERIC Educational Resources Information Center

    Brown, A. O., III; Fulkerson, Dan, Ed.

    This manual is the second of a three-text microcomputer service and repair series. This text addresses the training needs of "chip level" technicians who work with digital troubleshooting instruments to solve the complex microcomputer problems that are sent to them from computer stores that do not have full-service facilities. The manual contains…

  20. Child Welfare Design Teams: An Intervention to Improve Workforce Retention and Facilitate Organizational Development

    ERIC Educational Resources Information Center

    Caringi, James C.; Lawson, Hal A.; Strolin-Goltzman, Jessica; McCarthy, Mary; Briar-Lawson, Katharine; Claiborne, Nancy

    2008-01-01

    Workforce turnover in public child welfare is a national problem. Individual, supervisory, and organizational factors, individually and in combination, account for some of the turnover. Complex, comprehensive interventions are needed to address these several factors and their interactions. A research and development team is field testing one such…

  1. When Cyberbullies Meet Gamers: What Do Young Adults Think?

    ERIC Educational Resources Information Center

    Li, Qing; Pustaka, Arkhadi

    2017-01-01

    Background: Cyberbullying is connected with online gaming in complex ways. Although cyberbullying can occur while people play games, it is also the case that gaming may have the potential to address cyberbullying and bullying problems. Purpose: This study examines young adults' beliefs and experiences related to cyberbullying and gaming. Sample:…

  2. 75 FR 21096 - Bureau of Educational and Cultural Affairs (ECA) Request for Grant Proposals: 2010 Community...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ..., and social challenges are intimately linked to their counterparts on a global scale. So too, are each community's solutions and approaches to these problems. Making progress on today's complex global challenges... economic, environmental, political, and social well-being of their communities. As a global tool to address...

  3. Riding Alone on the Elevator: A Class Experiment in Interdisciplinary Education

    ERIC Educational Resources Information Center

    Frank, Anna M.; Froese, Rebecca; Hof, Barbara C.; Scheffold, Maike I. E.; Schreyer, Felix; Zeller, Mathias; Rödder, Simone

    2017-01-01

    The ability to conduct interdisciplinary research is crucial to address complex real-world problems that require the collaboration of different scientific fields, with global warming being a case in point. To produce integrated climate-related knowledge, climate researchers should be trained early on to work across boundaries and gain an…

  4. GAO’s Views on DOE’s 1991 Budget for Addressing Problems at the Nuclear Weapons Complex

    DTIC Science & Technology

    1990-03-02

    management, and efforts by DOE to make its contractors more accountable. Also, the Defense Nuclear Facilities Safety Board mandated by the Congress became...and safety matters. 6 Finally, the Defense Nuclear Facilities Safety Board was established. Although not a DOE action, its establishment, nevertheless

  5. Differentiation Through Flexible Grouping: Successfully Reaching All Readers

    ERIC Educational Resources Information Center

    Ford, Michael P.

    2005-01-01

    There always has been a problem with grouping practices in reading programs. The complexity of the interaction between readers, texts, and the contexts in which reading takes place often is ignored by educational decisions that suggest that one program, set of materials, instructional technique, or grouping arrangement can address the needs of all…

  6. Uncertainty analysis in ecological studies: an overview

    Treesearch

    Harbin Li; Jianguo Wu

    2006-01-01

    Large-scale simulation models are essential tools for scientific research and environmental decision-making because they can be used to synthesize knowledge, predict consequences of potential scenarios, and develop optimal solutions (Clark et al. 2001, Berk et al. 2002, Katz 2002). Modeling is often the only means of addressing complex environmental problems that occur...

  7. "Too Many, Too Much, Too Young": Red Flags on Medications and Troubled Children

    ERIC Educational Resources Information Center

    Reclaiming Children and Youth, 2012

    2012-01-01

    This year the Administration on Children, Youth, and Families stated "Children and youth in the child welfare system are increasingly being dosed with psychotropic drugs to manage emotional problems and disruptive behavior that might better be addressed by psychosocial treatments to meet their complex needs." Children with histories of…

  8. Enabling next-gen sequencing and analysis at the USDA-ARS U.S. Meat Animal Research Center with MiniLIMS

    USDA-ARS?s Scientific Manuscript database

    There is a growing need to combine DNA sequencing technologies to address complex problems in genome biology. These genomic studies routinely generate voluminous image, sequence, and mapping files that should be associated with quality control information (gels, spectra, etc.), and other important ...

  9. Stone Soup Partnership: A Grassroots Model of Community Service.

    ERIC Educational Resources Information Center

    Kittredge, Robert E.

    1997-01-01

    Stone Soup Partnership is a collaboration between California State University at Fresno and its surrounding community to address serious problems in a high-crime, impoverished apartment complex near the university. The program involves students in service learning for university credit, and has expanded from a single summer youth program to a…

  10. Learning To Love the Swamp: Reshaping Education for Public Service.

    ERIC Educational Resources Information Center

    Schall, Ellen

    1996-01-01

    The world of public service is compared to a swamp in which important, complex, and messy problems are addressed, and it is argued that graduate and professional education must be reshaped to produce leaders who can make sense of current challenges. Education that is more experiential, behavioral, interactive, and collectively oriented is…

  11. Using d15N of Chironomidae to help assess lake condition and possible stressors in EPA?s National Lakes Assessment.

    EPA Science Inventory

    Background/Questions/Methods As interest in continental-scale ecology increases to address large-scale ecological problems, ecologists need indicators of complex processes that can be collected quickly at many sites across large areas. We are exploring the utility of stable isot...

  12. Transformative Sustainability: Learning from Ecological Systems and Indigenous Wisdom

    ERIC Educational Resources Information Center

    Burns, Heather L.

    2015-01-01

    Sustainability is becoming increasingly relevant in higher education, as the need to address complex cultural and ecological problems intensifies. How sustainability is taught has a profound influence on the kind of learning that takes place and the impact it has in the world. Sustainability pedagogy is offered as a tool for creating…

  13. Integrating Six Sigma Concepts in an MBA Quality Management Class

    ERIC Educational Resources Information Center

    Weinstein, Larry B.; Petrick, Joseph; Castellano, Joseph; Vokurka, Robert J.

    2008-01-01

    Instructors face enormous challenges in presenting effective instruction on concepts and tools of quality management. Most textbooks focus on presenting individual concepts or tools and fail to address complex issues confronted in real-world problem-solving situations. The supplementary use of cases does not help students to understand the dynamic…

  14. Citizenship for a Changing Global Climate: Learning from New Zealand and Norway

    ERIC Educational Resources Information Center

    Hayward, Bronwyn; Selboe, Elin; Plew, Elizabeth

    2015-01-01

    Young citizens under the age of 25?years make up just under half of the world's population. Globally, they face new, interrelated problems of dangerous environmental change, including increasing incidence of severe storms associated with a changing climate, and related new threats to human security. Addressing the complex challenge of climate…

  15. A Term Project in Visual Basic: The Downhill Snowboard Shop

    ERIC Educational Resources Information Center

    Simkin, Mark G.

    2007-01-01

    Most commercial programming applications are considerably more complex than the end-of-chapter exercises found in programming textbooks. This case addresses this problem by requiring the students in entry-level Visual Basic programming classes to create an application that helps users order ski equipment from a retailer. For convenience, the forms…

  16. Water and Social Justice in Bangladesh: A Transdisciplinary and Intercultural Approach

    NASA Astrophysics Data System (ADS)

    Gilligan, J. M.; Ackerly, B.; Ahmed, K.; Benneyworth, L.; Goodbred, S. L.; Hall, M.; Jacobi, J. H.; Mondal, D. R.; Pickering, J.; Rogers, K. G.; Roy, K.; Wallace Auerbach, L.

    2013-12-01

    Effectively addressing environmental problems---at local, national, and global scales---requires actively crossing disciplinary boundaries between natural sciences, engineering, social sciences, and policymaking. The best technical solution is useless if it cannot win political support from the people it is intended to help. Enacted policies are too often hindered either by misunderstanding or ignorance of scientific and technical aspects of the problem or by misunderstanding the behavior of the population they address. Environmental problems at the international scale also require understanding of cultural and social differences across national boundaries. To prepare graduate students to be professionally effective at addressing major environmental problems, Vanderbilt University has created a transdisciplinary, intercultural course that brings students from the US and Bangladesh together, both through online connections such as blogs and Skype sessions, and in person in a week-long joint field trip in which students and faculty from universities in both countries, and representing many disciplines work side-by-side to study water as both a natural resource and a natural hazard. Activities included studying sources of drinking water, observing areas affected by flooding from cyclone storm surges, cataloging physical infrastructure, and conducting interviews with residents of vulnerable areas. Few if any students can simultaneously master the social sciences, natural sciences, and engineering skills necessary to comprehensively address major environmental problems, but students can learn to work and communicate effectively with peers in other disciplines, working together to understand the complex interactions between different aspects of their problem. We will report on the structure of the course; our experiences as faculty and student participants; and connections between this class, graduate curricula in environmental sciences, and international transdisciplinary research projects.

  17. Robust multiperson tracking from a mobile platform.

    PubMed

    Ess, Andreas; Leibe, Bastian; Schindler, Konrad; van Gool, Luc

    2009-10-01

    In this paper, we address the problem of multiperson tracking in busy pedestrian zones using a stereo rig mounted on a mobile platform. The complexity of the problem calls for an integrated solution that extracts as much visual information as possible and combines it through cognitive feedback cycles. We propose such an approach, which jointly estimates camera position, stereo depth, object detection, and tracking. The interplay between those components is represented by a graphical model. Since the model has to incorporate object-object interactions and temporal links to past frames, direct inference is intractable. We, therefore, propose a two-stage procedure: for each frame, we first solve a simplified version of the model (disregarding interactions and temporal continuity) to estimate the scene geometry and an overcomplete set of object detections. Conditioned on these results, we then address object interactions, tracking, and prediction in a second step. The approach is experimentally evaluated on several long and difficult video sequences from busy inner-city locations. Our results show that the proposed integration makes it possible to deliver robust tracking performance in scenes of realistic complexity.

  18. Multiple Choice Knapsack Problem: example of planning choice in transportation.

    PubMed

    Zhong, Tao; Young, Rhonda

    2010-05-01

    Transportation programming, a process of selecting projects for funding given budget and other constraints, is becoming more complex as a result of new federal laws, local planning regulations, and increased public involvement. This article describes the use of an integer programming tool, Multiple Choice Knapsack Problem (MCKP), to provide optimal solutions to transportation programming problems in cases where alternative versions of projects are under consideration. In this paper, optimization methods for use in the transportation programming process are compared and then the process of building and solving the optimization problems is discussed. The concepts about the use of MCKP are presented and a real-world transportation programming example at various budget levels is provided. This article illustrates how the use of MCKP addresses the modern complexities and provides timely solutions in transportation programming practice. While the article uses transportation programming as a case study, MCKP can be useful in other fields where a similar decision among a subset of the alternatives is required. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. [The analysis of complex interventions in public health: the case of the prevention of sexually transmitted infections and blood-borne infections in Montreal].

    PubMed

    Bilodeau, Angèle; Beauchemin, Jean; Bourque, Denis; Galarneau, Marilène

    2013-02-11

    Based on a theory of intervention as a complex action system, analyze collaboration among partners in Montréal's sexually transmitted and blood-borne infections (STBBI) prevention program to identify main operations problems and possible scenarios for change to achieve better outcomes. A descriptive study was conducted using three data sources - public policies and programs, system management documents, and interviews with three types of partners. The results were validated with stakeholders. Five main operations problems affecting the capacity of the system to provide expected services were identified, as well as strategies the partners use to address these. Two scenarios for system change to increase its effectiveness in achieving program goals are discussed.

  20. Numerical modeling of Gaussian beam propagation and diffraction in inhomogeneous media based on the complex eikonal equation

    NASA Astrophysics Data System (ADS)

    Huang, Xingguo; Sun, Hui

    2018-05-01

    Gaussian beam is an important complex geometrical optical technology for modeling seismic wave propagation and diffraction in the subsurface with complex geological structure. Current methods for Gaussian beam modeling rely on the dynamic ray tracing and the evanescent wave tracking. However, the dynamic ray tracing method is based on the paraxial ray approximation and the evanescent wave tracking method cannot describe strongly evanescent fields. This leads to inaccuracy of the computed wave fields in the region with a strong inhomogeneous medium. To address this problem, we compute Gaussian beam wave fields using the complex phase by directly solving the complex eikonal equation. In this method, the fast marching method, which is widely used for phase calculation, is combined with Gauss-Newton optimization algorithm to obtain the complex phase at the regular grid points. The main theoretical challenge in combination of this method with Gaussian beam modeling is to address the irregular boundary near the curved central ray. To cope with this challenge, we present the non-uniform finite difference operator and a modified fast marching method. The numerical results confirm the proposed approach.

  1. Machine learning applications in proteomics research: how the past can boost the future.

    PubMed

    Kelchtermans, Pieter; Bittremieux, Wout; De Grave, Kurt; Degroeve, Sven; Ramon, Jan; Laukens, Kris; Valkenborg, Dirk; Barsnes, Harald; Martens, Lennart

    2014-03-01

    Machine learning is a subdiscipline within artificial intelligence that focuses on algorithms that allow computers to learn solving a (complex) problem from existing data. This ability can be used to generate a solution to a particularly intractable problem, given that enough data are available to train and subsequently evaluate an algorithm on. Since MS-based proteomics has no shortage of complex problems, and since publicly available data are becoming available in ever growing amounts, machine learning is fast becoming a very popular tool in the field. We here therefore present an overview of the different applications of machine learning in proteomics that together cover nearly the entire wet- and dry-lab workflow, and that address key bottlenecks in experiment planning and design, as well as in data processing and analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantum vertex model for reversible classical computing.

    PubMed

    Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C

    2017-05-12

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  3. Quantum vertex model for reversible classical computing

    NASA Astrophysics Data System (ADS)

    Chamon, C.; Mucciolo, E. R.; Ruckenstein, A. E.; Yang, Z.-C.

    2017-05-01

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without `learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Thomas W.; Quach, Tu-Thach; Detry, Richard Joseph

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to pervasive interdependencies and attendant vulnerabilities to cascades in associated systems. Phoenix was initiated to address this high-impact problem space as engineers. Our overarching goals are maximizing security, maximizing health, and minimizing risk. We design interventions, or problem solutions, that influence CASoS to achieve specific aspirations. Through application to real-world problems, Phoenix is evolving the principles and discipline ofmore » CASoS Engineering while growing a community of practice and the CASoS engineers to populate it. Both grounded in reality and working to extend our understanding and control of that reality, Phoenix is at the same time a solution within a CASoS and a CASoS itself.« less

  5. The Structure of Cognition: Attentional Episodes in Mind and Brain

    PubMed Central

    Duncan, John

    2013-01-01

    Cognition is organized in a structured series of attentional episodes, allowing complex problems to be addressed through solution of simpler subproblems. A “multiple-demand” (MD) system of frontal and parietal cortex is active in many different kinds of tasks, and using data from neuroimaging, electrophysiology, neuropsychology, and cognitive studies of intelligence, I propose a core role for MD regions in assembly of the attentional episode. Monkey and human data show dynamic neural coding of attended information across multiple MD regions, with rapid communication within and between regions. Neuropsychological and imaging data link MD function to fluid intelligence, explaining some but not all “executive” deficits after frontal lobe lesions. Cognitive studies link fluid intelligence to goal neglect, and the problem of dividing complex task requirements into focused parts. Like the innate releasing mechanism of ethology, I suggest that construction of the attentional episode provides a core organizational principle for complex, adaptive cognition. PMID:24094101

  6. [Mediative behavior therapy in complex behavioral problems. Illustrative cases from a psychogeriatric nursing home].

    PubMed

    Geelen, R; Bleijenberg, G

    1999-04-01

    An application in a psychogeriatric nursing home. This article describes the application of mediative behaviour therapy in a psychogeriatric nursing home. Behavioural interventions carried out by the nursing team addressed a variety of problems: quarreling between an institutionalised woman and her visiting husband, complaining about this staff by the husband to team members of another department, and the patient who let herself drop on the floor about once a week. Special regard is given to the analysis of the problems, the learning of appropriate responses by team members, as well as changing their cognitions and emotions about the problem behaviours. A meaningful reduction of the problem behaviours and of the burden experienced by team members was achieved.

  7. On the complexity of neural network classifiers: a comparison between shallow and deep architectures.

    PubMed

    Bianchini, Monica; Scarselli, Franco

    2014-08-01

    Recently, researchers in the artificial neural network field have focused their attention on connectionist models composed by several hidden layers. In fact, experimental results and heuristic considerations suggest that deep architectures are more suitable than shallow ones for modern applications, facing very complex problems, e.g., vision and human language understanding. However, the actual theoretical results supporting such a claim are still few and incomplete. In this paper, we propose a new approach to study how the depth of feedforward neural networks impacts on their ability in implementing high complexity functions. First, a new measure based on topological concepts is introduced, aimed at evaluating the complexity of the function implemented by a neural network, used for classification purposes. Then, deep and shallow neural architectures with common sigmoidal activation functions are compared, by deriving upper and lower bounds on their complexity, and studying how the complexity depends on the number of hidden units and the used activation function. The obtained results seem to support the idea that deep networks actually implements functions of higher complexity, so that they are able, with the same number of resources, to address more difficult problems.

  8. Interweaving Knowledge Resources to Address Complex Environmental Health Challenges.

    PubMed

    Anderson, Beth Ellen; Naujokas, Marisa F; Suk, William A

    2015-11-01

    Complex problems do not respect academic disciplinary boundaries. Environmental health research is complex and often moves beyond these boundaries, integrating diverse knowledge resources to solve such challenges. Here we describe an evolving paradigm for interweaving approaches that integrates widely diverse resources outside of traditional academic environments in full partnerships of mutual respect and understanding. We demonstrate that scientists, social scientists, and engineers can work with government agencies, industry, and communities to interweave their expertise into metaphorical knowledge fabrics to share understanding, resources, and enthusiasm. Our goal is to acknowledge and validate how interweaving research approaches can contribute to research-driven, solution-oriented problem solving in environmental health, and to inspire more members of the environmental health community to consider this approach. The National Institutes of Health's National Institute of Environmental Health Sciences Superfund Research Program (SRP), as mandated by Congress, has evolved to become a program that reaches across a wide range of knowledge resources. SRP fosters interweaving multiple knowledge resources to develop innovative multidirectional partnerships for research and training. Here we describe examples of how motivation, ideas, knowledge, and expertise from different people, institutions, and agencies can integrate to tackle challenges that can be as complex as the resources they bring to bear on it. By providing structure for interweaving science with its stakeholders, we are better able to leverage resources, increase potential for innovation, and proactively ensure a more fully developed spectrum of beneficial outcomes of research investments. Anderson BE, Naujokas MF, Suk WA. 2015. Interweaving knowledge resources to address complex environmental health challenges. Environ Health Perspect 123:1095-1099; http://dx.doi.org/10.1289/ehp.1409525.

  9. Multi-level systems modeling and optimization for novel aircraft

    NASA Astrophysics Data System (ADS)

    Subramanian, Shreyas Vathul

    This research combines the disciplines of system-of-systems (SoS) modeling, platform-based design, optimization and evolving design spaces to achieve a novel capability for designing solutions to key aeronautical mission challenges. A central innovation in this approach is the confluence of multi-level modeling (from sub-systems to the aircraft system to aeronautical system-of-systems) in a way that coordinates the appropriate problem formulations at each level and enables parametric search in design libraries for solutions that satisfy level-specific objectives. The work here addresses the topic of SoS optimization and discusses problem formulation, solution strategy, the need for new algorithms that address special features of this problem type, and also demonstrates these concepts using two example application problems - a surveillance UAV swarm problem, and the design of noise optimal aircraft and approach procedures. This topic is critical since most new capabilities in aeronautics will be provided not just by a single air vehicle, but by aeronautical Systems of Systems (SoS). At the same time, many new aircraft concepts are pressing the boundaries of cyber-physical complexity through the myriad of dynamic and adaptive sub-systems that are rising up the TRL (Technology Readiness Level) scale. This compositional approach is envisioned to be active at three levels: validated sub-systems are integrated to form conceptual aircraft, which are further connected with others to perform a challenging mission capability at the SoS level. While these multiple levels represent layers of physical abstraction, each discipline is associated with tools of varying fidelity forming strata of 'analysis abstraction'. Further, the design (composition) will be guided by a suitable hierarchical complexity metric formulated for the management of complexity in both the problem (as part of the generative procedure and selection of fidelity level) and the product (i.e., is the mission best achieved via a large collection of interacting simple systems, or a relatively few highly capable, complex air vehicles). The vastly unexplored area of optimization in evolving design spaces will be studied and incorporated into the SoS optimization framework. We envision a framework that resembles a multi-level, mult-fidelity, multi-disciplinary assemblage of optimization problems. The challenge is not simply one of scaling up to a new level (the SoS), but recognizing that the aircraft sub-systems and the integrated vehicle are now intensely cyber-physical, with hardware and software components interacting in complex ways that give rise to new and improved capabilities. The work presented here is a step closer to modeling the information flow that exists in realistic SoS optimization problems between sub-contractors, contractors and the SoS architect.

  10. Planning and Scheduling for Fleets of Earth Observing Satellites

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  11. Adaptivity and smart algorithms for fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley

    1990-01-01

    This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.

  12. Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems?

    NASA Astrophysics Data System (ADS)

    Wiek, Arnim; Foley, Rider W.; Guston, David H.

    2012-09-01

    Nanotechnology is widely associated with the promise of positively contributing to sustainability. However, this view often focuses on end-of-pipe applications, for instance, for water purification or energy efficiency, and relies on a narrow concept of sustainability. Approaching sustainability problems and solution options from a comprehensive and systemic perspective instead may yield quite different conclusions about the contribution of nanotechnology to sustainability. This study conceptualizes sustainability problems as complex constellations with several potential intervention points and amenable to different solution options. The study presents results from interdisciplinary workshops and literature reviews that appraise the contribution of the selected nanotechnologies to mitigate such problems. The study focuses exemplarily on the urban context to make the appraisals tangible and relevant. The solution potential of nanotechnology is explored not only for well-known urban sustainability problems such as water contamination and energy use but also for less obvious ones such as childhood obesity. Results indicate not only potentials but also limitations of nanotechnology's contribution to sustainability and can inform anticipatory governance of nanotechnology in general, and in the urban context in particular.

  13. Applying dynamic simulation modeling methods in health care delivery research-the SIMULATE checklist: report of the ISPOR simulation modeling emerging good practices task force.

    PubMed

    Marshall, Deborah A; Burgos-Liz, Lina; IJzerman, Maarten J; Osgood, Nathaniel D; Padula, William V; Higashi, Mitchell K; Wong, Peter K; Pasupathy, Kalyan S; Crown, William

    2015-01-01

    Health care delivery systems are inherently complex, consisting of multiple tiers of interdependent subsystems and processes that are adaptive to changes in the environment and behave in a nonlinear fashion. Traditional health technology assessment and modeling methods often neglect the wider health system impacts that can be critical for achieving desired health system goals and are often of limited usefulness when applied to complex health systems. Researchers and health care decision makers can either underestimate or fail to consider the interactions among the people, processes, technology, and facility designs. Health care delivery system interventions need to incorporate the dynamics and complexities of the health care system context in which the intervention is delivered. This report provides an overview of common dynamic simulation modeling methods and examples of health care system interventions in which such methods could be useful. Three dynamic simulation modeling methods are presented to evaluate system interventions for health care delivery: system dynamics, discrete event simulation, and agent-based modeling. In contrast to conventional evaluations, a dynamic systems approach incorporates the complexity of the system and anticipates the upstream and downstream consequences of changes in complex health care delivery systems. This report assists researchers and decision makers in deciding whether these simulation methods are appropriate to address specific health system problems through an eight-point checklist referred to as the SIMULATE (System, Interactions, Multilevel, Understanding, Loops, Agents, Time, Emergence) tool. It is a primer for researchers and decision makers working in health care delivery and implementation sciences who face complex challenges in delivering effective and efficient care that can be addressed with system interventions. On reviewing this report, the readers should be able to identify whether these simulation modeling methods are appropriate to answer the problem they are addressing and to recognize the differences of these methods from other modeling approaches used typically in health technology assessment applications. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  14. Rethinking Environmental Protection: Meeting the Challenges of a Changing World.

    PubMed

    Burke, Thomas A; Cascio, Wayne E; Costa, Daniel L; Deener, Kacee; Fontaine, Thomas D; Fulk, Florence A; Jackson, Laura E; Munns, Wayne R; Orme-Zavaleta, Jennifer; Slimak, Michael W; Zartarian, Valerie G

    2017-03-01

    From climate change to hydraulic fracturing, and from drinking water safety to wildfires, environmental challenges are changing. The United States has made substantial environmental protection progress based on media-specific and single pollutant risk-based frameworks. However, today’s environmental problems are increasingly complex and new scientific approaches and tools are needed to achieve sustainable solutions to protect the environment and public health. In this article, we present examples of today’s environmental challenges and offer an integrated systems approach to address them. We provide a strategic framework and recommendations for advancing the application of science for protecting the environment and public health. We posit that addressing 21st century challenges requires transdisciplinary and systems approaches, new data sources, and stakeholder partnerships. To address these challenges, we outline a process driven by problem formulation with the following steps: a ) formulate the problem holistically, b ) gather and synthesize diverse information, c ) develop and assess options, and d ) implement sustainable solutions. This process will require new skills and education in systems science, with an emphasis on science translation. A systems-based approach can transcend media- and receptor-specific bounds, integrate diverse information, and recognize the inextricable link between ecology and human health.

  15. Rethinking Environmental Protection: Meeting the Challenges of a Changing World

    PubMed Central

    Burke, Thomas A.; Cascio, Wayne E.; Costa, Daniel L.; Deener, Kacee; Fontaine, Thomas D.; Fulk, Florence A.; Jackson, Laura E.; Munns, Wayne R.; Orme-Zavaleta, Jennifer; Slimak, Michael W.; Zartarian, Valerie G.

    2017-01-01

    Summary: From climate change to hydraulic fracturing, and from drinking water safety to wildfires, environmental challenges are changing. The United States has made substantial environmental protection progress based on media-specific and single pollutant risk-based frameworks. However, today’s environmental problems are increasingly complex and new scientific approaches and tools are needed to achieve sustainable solutions to protect the environment and public health. In this article, we present examples of today’s environmental challenges and offer an integrated systems approach to address them. We provide a strategic framework and recommendations for advancing the application of science for protecting the environment and public health. We posit that addressing 21st century challenges requires transdisciplinary and systems approaches, new data sources, and stakeholder partnerships. To address these challenges, we outline a process driven by problem formulation with the following steps: a) formulate the problem holistically, b) gather and synthesize diverse information, c) develop and assess options, and d) implement sustainable solutions. This process will require new skills and education in systems science, with an emphasis on science translation. A systems-based approach can transcend media- and receptor-specific bounds, integrate diverse information, and recognize the inextricable link between ecology and human health. PMID:28248180

  16. Multi-disciplinary interoperability challenges (Ian McHarg Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Annoni, Alessandro

    2013-04-01

    Global sustainability research requires multi-disciplinary efforts to address the key research challenges to increase our understanding of the complex relationships between environment and society. For this reason dependence on ICT systems interoperability is rapidly growing but, despite some relevant technological improvement is observed, in practice operational interoperable solutions are still lacking. Among the causes is the absence of a generally accepted definition of "interoperability" in all its broader aspects. In fact the concept of interoperability is just a concept and the more popular definitions are not addressing all challenges to realize operational interoperable solutions. The problem become even more complex when multi-disciplinary interoperability is required because in that case solutions for interoperability of different interoperable solution should be envisaged. In this lecture the following definition will be used: "interoperability is the ability to exchange information and to use it". In the lecture the main challenges for addressing multi-disciplinary interoperability will be presented and a set of proposed approaches/solutions shortly introduced.

  17. Development of a Curriculum for Long-Term Care Nurses to Improve Recognition of Depression in Dementia

    ERIC Educational Resources Information Center

    Williams, Christine L.; Molinari, Victor; Bond, Jennifer; Smith, Michael; Hyer, Kathryn; Malphurs, Julie

    2006-01-01

    There is increasing recognition of the severe consequences of depression in long-term care residents with dementia. Most health care providers are unprepared to recognize and to manage the complexity of depression in dementia. Targeted educational initiatives in nursing homes are needed to address this growing problem. This paper describes the…

  18. "Political Propaganda": An Analysis of the U.S. Supreme Court Decision in Meese v. Keene.

    ERIC Educational Resources Information Center

    Lipschultz, Jeremy Harris

    The United States Supreme Court case, Meese v. Keene, in which the justices narrowly defined the meaning of the term "political propaganda," failed to address adequately the complexities of the issue. In this case it is necessary to bring together divergent views about communications in the analysis of the legal problem, including…

  19. Issues in Community Research: Asian American Perspectives. Occasional Paper No. 5.

    ERIC Educational Resources Information Center

    Murata, Alice K., Ed.; Salvador-Burris, Juanita, Ed.

    This document comprises a collection of workshop papers addressing the issues of doing research on the complex social and human problems faced in any community from an Asian American perspective. The following topics are discussed: (1) the nature of community research; (2) the pros and cons of pure basic and applied research; (3) the nature and…

  20. Imaging in the assessment and management of athletic pubalgia.

    PubMed

    Robinson, Philip; Bhat, Vineet; English, Bryan

    2011-02-01

    This article reviews the clinical, anatomical, and biomechanical basis of pubalgia and relates it to the potential imaging findings and subsequent management. Although the magnetic resonance imaging features typically seen in symptomatic athletes are emphasized, this condition remains a complex clinical problem, and treatment addressing the functional rehabilitation of the entire region is highlighted. © Thieme Medical Publishers.

  1. Time Well Spent: Making Choices and Setting Priorities in Adult Numeracy Instruction

    ERIC Educational Resources Information Center

    Braaten, Melissa

    2017-01-01

    In her Forum piece, "What's an Adult Numeracy Teacher to Teach? Negotiating the Complexity of Adult Numeracy Instruction," Lynda Ginsburg set the stage of the current problem (poor numeracy levels in American adults) and the bevy of standards, legislation, and new exams that have recently been developed to address it. Ginsburg also…

  2. Classroom Literacy Assessment. Making Sense of What Students Know and Do. Solving Problems in the Teaching of Literacy Series

    ERIC Educational Resources Information Center

    Paratore, Jeanne R. Ed.; McCormack, Rachel L. Ed.; Block, Cathy, Collins Ed.

    2007-01-01

    Showcasing assessment practices that can help teachers plan effective instruction, this book addresses the real-world complexities of teaching literacy in grades K-8. Leading contributors present trustworthy approaches that examine learning processes as well as learning products, that yield information on how the learning environment can be…

  3. A Global Environmental Agenda for the United States: Issues for the New U.S. Administration.

    ERIC Educational Resources Information Center

    Kennedy, Donald; Sant, Roger W.

    2000-01-01

    The new presidential administration faces an array of urgent challenges. Complex public policy choices are necessary to address the near-term challenges of climate change and resource degradation which will help the United States deal with the chronic problems of global inequity and human deprivation. Outlines the environmental problems…

  4. Eye Tracking and Early Detection of Confusion in Digital Learning Environments: Proof of Concept

    ERIC Educational Resources Information Center

    Pachman, Mariya; Arguel, Amaël; Lockyer, Lori; Kennedy, Gregor; Lodge, Jason M.

    2016-01-01

    Research on incidence of and changes in confusion during complex learning and problem-solving calls for advanced methods of confusion detection in digital learning environments (DLEs). In this study we attempt to address this issue by investigating the use of multiple measures, including psychophysiological indicators and self-ratings, to detect…

  5. Etiology, Treatment, and Prevention of Obesity in Childhood and Adolescence: A Decade in Review

    ERIC Educational Resources Information Center

    Spruijt-Metz, Donna

    2011-01-01

    Childhood obesity has become an epidemic on a worldwide scale. This article gives an overview of the progress made in childhood and adolescent obesity research in the last decade, with a particular emphasis on the transdisciplinary and complex nature of the problem. The following topics are addressed: (1) current definitions of childhood and…

  6. Shaping Computing and Information Processing as a Vital National Resource. (Keynote Address).

    ERIC Educational Resources Information Center

    Glaser, George

    New technical specialties are emerging within the computer industry at a rate threatening the ability of educational institutions to train those who would understand and apply them. The industry's ability to undertake more ambitious projects and to thereby solve more complex problems is limited by an inadequate force of skilled manpower. Thus, it…

  7. Using Expectancy-Value Theory to Explore Aspects of Motivation and Engagement in Inquiry-Based Learning in Primary Mathematics

    ERIC Educational Resources Information Center

    Fielding-Wells, Jill; O'Brien, Mia; Makar, Katie

    2017-01-01

    Inquiry-based learning (IBL) is a pedagogical approach in which students address complex, ill-structured problems set in authentic contexts. While IBL is gaining ground in Australia as an instructional practice, there has been little research that considers implications for student motivation and engagement. Expectancy-value theory (Eccles and…

  8. People, Places, and Environments: Social Studies and Spanish Cultural Enrichment

    ERIC Educational Resources Information Center

    Helms, Ronald G.; Ankenbauer, Mary

    2009-01-01

    If the young people are to become effective participants in a democratic society, then social studies must be an essential part of the curriculum in the early childhood/elementary years. In a world that demands independent and cooperative problem solving to address complex social, economic, ethical, and personal concerns, the social studies are as…

  9. Web-Based Machine Translation as a Tool for Promoting Electronic Literacy and Language Awareness

    ERIC Educational Resources Information Center

    Williams, Lawrence

    2006-01-01

    This article addresses a pervasive problem of concern to teachers of many foreign languages: the use of Web-Based Machine Translation (WBMT) by students who do not understand the complexities of this relatively new tool. Although networked technologies have greatly increased access to many language and communication tools, WBMT is still…

  10. Working Together Differently: Addressing the Housing Crisis in Oregon

    ERIC Educational Resources Information Center

    Ramaley, Judith A.

    2017-01-01

    Universities are being asked to prepare our students to navigate successfully in a complex and interconnected world and to contribute to the solution of difficult problems at work and in the communities where they live. Our universities must do the same. We must adapt our approaches to education, scholarship and community involvement in order to…

  11. "The Reality of It All": History Students Read the Movies

    ERIC Educational Resources Information Center

    Marcus, Alan S.; Paxton, Richard J.; Meyerson, Peter

    2006-01-01

    What and how do students learn about history from motion pictures? How does this knowledge interact with the history they learn in school? This is a complex problem space that has seen little empirical research. To lay the groundwork for addressing these questions, we describe two exploratory studies. The first study takes a broad view, using…

  12. A national cohesive wildland fire management strategy

    Treesearch

    Forest Service U.S. Department of Agriculture; Office of Wildland Fire Coordination Department of the Interior

    2011-01-01

    Addressing wildfire is not simply a fire management, fire operations, or wildland-urban interface problem - it is a larger, more complex land management and societal issue. The vision for the next century is to: Safely and effectively extinguish fire, when needed; use fire where allowable; manage our natural resources; and as a Nation, live with wildland fire. Three...

  13. The Role of Prevention in Deterring Teachers Bullied by Students

    ERIC Educational Resources Information Center

    Mitchell, Linda Hunt

    2016-01-01

    Few past studies discuss the subject of bullying by students with their teachers as targets. Examining preventative measures to gain a more thorough understanding of the complex, behavioral issue needs to be addressed. As a starting point the purpose of this study is to examine the scope of the problem as well as the various preventative…

  14. Shifting More than the Goal Posts: Developing Classroom Norms of Inquiry-Based Learning in Mathematics

    ERIC Educational Resources Information Center

    Makar, Katie; Fielding-Wells, Jill

    2018-01-01

    The 3-year study described in this paper aims to create new knowledge about inquiry norms in primary mathematics classrooms. Mathematical inquiry addresses complex problems that contain ambiguities, yet classroom environments often do not adopt norms that promote curiosity, risk-taking and negotiation needed to productively engage with complex…

  15. Analysis of Discourse Accent and Discursive Practices I&W

    DTIC Science & Technology

    2010-09-01

    events in a cultural memory. Episodic discourse encompasses general principles, concepts , symbols and rituals used by actors to address problems in...COGNITIVE/INTEGRATIVE COMPLEXITY PROOF-OF- CONCEPT ............................ 51 5.1 Historical Background and Literature...formal training or expertise in critical discourse analysis. In addition, a proof-of- concept was conducted of an existing methodology for tracking

  16. Dynamic programming methods for concurrent design and dynamic allocation of vehicles embedded in a system-of-systems

    NASA Astrophysics Data System (ADS)

    Nusawardhana

    2007-12-01

    Recent developments indicate a changing perspective on how systems or vehicles should be designed. Such transition comes from the way decision makers in defense related agencies address complex problems. Complex problems are now often posed in terms of the capabilities desired, rather than in terms of requirements for a single systems. As a result, the way to provide a set of capabilities is through a collection of several individual, independent systems. This collection of individual independent systems is often referred to as a "System of Systems'' (SoS). Because of the independent nature of the constituent systems in an SoS, approaches to design an SoS, and more specifically, approaches to design a new system as a member of an SoS, will likely be different than the traditional design approaches for complex, monolithic (meaning the constituent parts have no ability for independent operation) systems. Because a system of system evolves over time, this simultaneous system design and resource allocation problem should be investigated in a dynamic context. Such dynamic optimization problems are similar to conventional control problems. However, this research considers problems which not only seek optimizing policies but also seek the proper system or vehicle to operate under these policies. This thesis presents a framework and a set of analytical tools to solve a class of SoS problems that involves the simultaneous design of a new system and allocation of the new system along with existing systems. Such a class of problems belongs to the problems of concurrent design and control of a new systems with solutions consisting of both optimal system design and optimal control strategy. Rigorous mathematical arguments show that the proposed framework solves the concurrent design and control problems. Many results exist for dynamic optimization problems of linear systems. In contrary, results on optimal nonlinear dynamic optimization problems are rare. The proposed framework is equipped with the set of analytical tools to solve several cases of nonlinear optimal control problems: continuous- and discrete-time nonlinear problems with applications on both optimal regulation and tracking. These tools are useful when mathematical descriptions of dynamic systems are available. In the absence of such a mathematical model, it is often necessary to derive a solution based on computer simulation. For this case, a set of parameterized decision may constitute a solution. This thesis presents a method to adjust these parameters based on the principle of stochastic approximation simultaneous perturbation using continuous measurements. The set of tools developed here mostly employs the methods of exact dynamic programming. However, due to the complexity of SoS problems, this research also develops suboptimal solution approaches, collectively recognized as approximate dynamic programming solutions, for large scale problems. The thesis presents, explores, and solves problems from an airline industry, in which a new aircraft is to be designed and allocated along with an existing fleet of aircraft. Because the life cycle of an aircraft is on the order of 10 to 20 years, this problem is to be addressed dynamically so that the new aircraft design is the best design for the fleet over a given time horizon.

  17. Internet computer coaches for introductory physics problem solving

    NASA Astrophysics Data System (ADS)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  18. Distributed parameter system coupled ARMA expansion identification and adaptive parallel IIR filtering - A unified problem statement. [Auto Regressive Moving-Average

    NASA Technical Reports Server (NTRS)

    Johnson, C. R., Jr.; Balas, M. J.

    1980-01-01

    A novel interconnection of distributed parameter system (DPS) identification and adaptive filtering is presented, which culminates in a common statement of coupled autoregressive, moving-average expansion or parallel infinite impulse response configuration adaptive parameterization. The common restricted complexity filter objectives are seen as similar to the reduced-order requirements of the DPS expansion description. The interconnection presents the possibility of an exchange of problem formulations and solution approaches not yet easily addressed in the common finite dimensional lumped-parameter system context. It is concluded that the shared problems raised are nevertheless many and difficult.

  19. Propagating Qualitative Values Through Quantitative Equations

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak

    1992-01-01

    In most practical problems where traditional numeric simulation is not adequate, one need to reason about a system with both qualitative and quantitative equations. In this paper, we address the problem of propagating qualitative values represented as interval values through quantitative equations. Previous research has produced exponential-time algorithms for approximate solution of the problem. These may not meet the stringent requirements of many real time applications. This paper advances the state of art by producing a linear-time algorithm that can propagate a qualitative value through a class of complex quantitative equations exactly and through arbitrary algebraic expressions approximately. The algorithm was found applicable to Space Shuttle Reaction Control System model.

  20. Ergonomics and sustainability: towards an embrace of complexity and emergence.

    PubMed

    Dekker, Sidney W A; Hancock, Peter A; Wilkin, Peter

    2013-01-01

    Technology offers a promising route to a sustainable future, and ergonomics can serve a vital role. The argument of this article is that the lasting success of sustainability initiatives in ergonomics hinges on an examination of ergonomics' own epistemology and ethics. The epistemology of ergonomics is fundamentally empiricist and positivist. This places practical constraints on its ability to address important issues such as sustainability, emergence and complexity. The implicit ethical position of ergonomics is one of neutrality, and its positivist epistemology generally puts value-laden questions outside the parameters of what it sees as scientific practice. We argue, by contrast, that a discipline that deals with both technology and human beings cannot avoid engaging with questions of complexity and emergence and seeking innovative ways of addressing these issues. Ergonomics has largely modelled its research on a reductive science, studying parts and problems to fix. In sustainability efforts, this can lead to mere local adaptations with a negative effect on global sustainability. Ergonomics must consider quality of life globally, appreciating complexity and emergent effects of local relationships.

  1. The more the merrier? Increasing group size may be detrimental to decision-making performance in nominal groups.

    PubMed

    Amir, Ofra; Amir, Dor; Shahar, Yuval; Hart, Yuval; Gal, Kobi

    2018-01-01

    Demonstrability-the extent to which group members can recognize a correct solution to a problem-has a significant effect on group performance. However, the interplay between group size, demonstrability and performance is not well understood. This paper addresses these gaps by studying the joint effect of two factors-the difficulty of solving a problem and the difficulty of verifying the correctness of a solution-on the ability of groups of varying sizes to converge to correct solutions. Our empirical investigations use problem instances from different computational complexity classes, NP-Complete (NPC) and PSPACE-complete (PSC), that exhibit similar solution difficulty but differ in verification difficulty. Our study focuses on nominal groups to isolate the effect of problem complexity on performance. We show that NPC problems have higher demonstrability than PSC problems: participants were significantly more likely to recognize correct and incorrect solutions for NPC problems than for PSC problems. We further show that increasing the group size can actually decrease group performance for some problems of low demonstrability. We analytically derive the boundary that distinguishes these problems from others for which group performance monotonically improves with group size. These findings increase our understanding of the mechanisms that underlie group problem-solving processes, and can inform the design of systems and processes that would better facilitate collective decision-making.

  2. The Applied Mathematics for Power Systems (AMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxesmore » for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.« less

  3. Architectural Framework for Addressing Legacy Waste from the Cold War - 13611

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Gregory A.; Glazner, Christopher G.; Steckley, Sam

    We present an architectural framework for the use of a hybrid simulation model of enterprise-wide operations used to develop system-level insight into the U.S. Department of Energy's (DOE) environmental cleanup of legacy nuclear waste at the Savannah River Site. We use this framework for quickly exploring policy and architectural options, analyzing plans, addressing management challenges and developing mitigation strategies for DOE Office of Environmental Management (EM). The socio-technical complexity of EM's mission compels the use of a qualitative approach to complement a more a quantitative discrete event modeling effort. We use this model-based analysis to pinpoint pressure and leverage pointsmore » and develop a shared conceptual understanding of the problem space and platform for communication among stakeholders across the enterprise in a timely manner. This approach affords the opportunity to discuss problems using a unified conceptual perspective and is also general enough that it applies to a broad range of capital investment/production operations problems. (authors)« less

  4. Networked Community Change: Understanding Community Systems Change through the Lens of Social Network Analysis.

    PubMed

    Lawlor, Jennifer A; Neal, Zachary P

    2016-06-01

    Addressing complex problems in communities has become a key area of focus in recent years (Kania & Kramer, 2013, Stanford Social Innovation Review). Building on existing approaches to understanding and addressing problems, such as action research, several new approaches have emerged that shift the way communities solve problems (e.g., Burns, 2007, Systemic Action Research; Foth, 2006, Action Research, 4, 205; Kania & Kramer, 2011, Stanford Social Innovation Review, 1, 36). Seeking to bring clarity to the emerging literature on community change strategies, this article identifies the common features of the most widespread community change strategies and explores the conditions under which such strategies have the potential to be effective. We identify and describe five common features among the approaches to change. Then, using an agent-based model, we simulate network-building behavior among stakeholders participating in community change efforts using these approaches. We find that the emergent stakeholder networks are efficient when the processes are implemented under ideal conditions. © Society for Community Research and Action 2016.

  5. Identifying Basic Factors for Communal Prosperity - Space Technologies are Bridging this Gap

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2006-01-01

    There are many aspects, which are important for maintaining environmentally clean and safe conditions for a healthy and economically self-sufficient community. This problem was somewhat of a lesser concern in earlier days because many communities were small, isolated and solely dependent upon their owners or landlords. Due to an astronomical growth in human population within the last century, extensive use of combustion technologies, and changing environmental conditions has resulted in scarcity of natural resources. In reality, the societal sustainability issues are becoming much more acute and complex. Therefore, the researchers and social scientists are joining forces to address these topics and find solutions to many contentious areas such as public health and diseases, water resources, agriculture production, survivability during and after the natural disasters, energy needs and many others. Forthrightly speaking, there is no canned solution or a methodology to go about solving these issues since the magnitude and complexity of these issues are multi-dimensional and are further inter-locked with other areas. A common sense tells us that we need data, resources and technologies to begin addressing these problems. This is where space observations have provided us with tremendous information and opportunities, which are of great assets to the science, economist, and social scientists. This paper specifically addresses what are critical areas for a successful societal sustainability and growth; and how can we take advantage of multiple sensors and models already in existence. Increasing our knowledge of the home planet, via amplified set of observations, is certainly a right step in a right direction. Furthermore, this is a pre-requisite in understanding multiple hazard phenomena's. This paper further examines various space sensors and observing architectures that can be useful specifically in addressing some of these complex issues. The ultimate goal is to serve the society by providing such valuable information so the decision makers can take full advantage in making timely societal decisions.

  6. The design of nonlinear observers for wind turbine dynamic state and parameter estimation

    NASA Astrophysics Data System (ADS)

    Ritter, B.; Schild, A.; Feldt, M.; Konigorski, U.

    2016-09-01

    This contribution addresses the dynamic state and parameter estimation problem which arises with more advanced wind turbine controllers. These control devices need precise information about the system's current state to outperform conventional industrial controllers effectively. First, the necessity of a profound scientific treatment on nonlinear observers for wind turbine application is highlighted. Secondly, the full estimation problem is introduced and the variety of nonlinear filters is discussed. Finally, a tailored observer architecture is proposed and estimation results of an illustrative application example from a complex simulation set-up are presented.

  7. Research on the Caretaking of Children of Incarcerated Parents: Findings and Their Service Delivery Implications

    PubMed Central

    Hanlon, Thomas E.; Carswell, Steven B.; Rose, Marc

    2007-01-01

    This paper reviews research findings on caretaking-related problems associated with the absence of parents from the home following incarceration. It focuses on the impact of incarceration on the welfare and adjustment of urban African American children and on the assumption of caretaking responsibilities by other caretakers, principally maternal grandmothers. Noting the complex situational difficulties involved and the potential burdens associated with surrogate parenting in general, and with this population in particular, the service-provider implications of this parenting arrangement are considered in this review. Findings indicate that problems associated with incarceration of parents tend to be intergenerational and vary considerably in complexity and severity. To the extent that they impact the children involved, these issues should be addressed in coordinated service delivery focusing on prevention. PMID:18311320

  8. Predicting the evolution of spreading on complex networks

    PubMed Central

    Chen, Duan-Bing; Xiao, Rui; Zeng, An

    2014-01-01

    Due to the wide applications, spreading processes on complex networks have been intensively studied. However, one of the most fundamental problems has not yet been well addressed: predicting the evolution of spreading based on a given snapshot of the propagation on networks. With this problem solved, one can accelerate or slow down the spreading in advance if the predicted propagation result is narrower or wider than expected. In this paper, we propose an iterative algorithm to estimate the infection probability of the spreading process and then apply it to a mean-field approach to predict the spreading coverage. The validation of the method is performed in both artificial and real networks. The results show that our method is accurate in both infection probability estimation and spreading coverage prediction. PMID:25130862

  9. Big Data Analytics with Datalog Queries on Spark.

    PubMed

    Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo

    2016-01-01

    There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics.

  10. Big Data Analytics with Datalog Queries on Spark

    PubMed Central

    Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo

    2017-01-01

    There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics. PMID:28626296

  11. Application of network methods for understanding evolutionary dynamics in discrete habitats.

    PubMed

    Greenbaum, Gili; Fefferman, Nina H

    2017-06-01

    In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.

  12. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-07-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  13. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  14. Dry mouth: Xerostomia and salivary gland hypofunction.

    PubMed

    Frydrych, Agnieszka M

    2016-07-01

    Mouth dryness may present as salivary gland hypofunction (SGH), xerostomia or both. It is considered one of the most underappreciated, underdiagnosed and undermanaged oral health conditions. Despite its common presentation and adverse impact on life quality, it is also generally poorly understood. Increased awareness of the condition is important in addressing these problems. This article discusses SGH and xerostomia, and the associated intra-oral and extra-oral implications. It also summarises currently available management approaches and the evidence behind them. SGH and xerostomia are complex problems. None of the currently available management approaches are entirely satisfactory. Addressing the causative or contributing factors is therefore paramount. While oral health complaints are generally left up to the dental professional to manage, the nature of mouth dryness necessitates increased dialogue between the dental and 
medical professions to ensure optimal patient care.

  15. Whole-genome alignment.

    PubMed

    Dewey, Colin N

    2012-01-01

    Whole-genome alignment (WGA) is the prediction of evolutionary relationships at the nucleotide level between two or more genomes. It combines aspects of both colinear sequence alignment and gene orthology prediction, and is typically more challenging to address than either of these tasks due to the size and complexity of whole genomes. Despite the difficulty of this problem, numerous methods have been developed for its solution because WGAs are valuable for genome-wide analyses, such as phylogenetic inference, genome annotation, and function prediction. In this chapter, we discuss the meaning and significance of WGA and present an overview of the methods that address it. We also examine the problem of evaluating whole-genome aligners and offer a set of methodological challenges that need to be tackled in order to make the most effective use of our rapidly growing databases of whole genomes.

  16. Brains, brawn and sociality: a hyaena’s tale

    PubMed Central

    Holekamp, Kay E.; Dantzer, Ben; Stricker, Gregory; Shaw Yoshida, Kathryn C.; Benson-Amram, Sarah

    2015-01-01

    Theoretically intelligence should evolve to help animals solve specific types of problems posed by the environment, but it remains unclear how environmental complexity or novelty facilitates the evolutionary enhancement of cognitive abilities, or whether domain-general intelligence can evolve in response to domain-specific selection pressures. The social complexity hypothesis, which posits that intelligence evolved to cope with the labile behaviour of conspecific group-mates, has been strongly supported by work on the sociocognitive abilities of primates and other animals. Here we review the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas, and describe our tests of predictions of the social complexity hypothesis in regard to both cognition and brain size in hyaenas. Behavioural data indicate that there has been remarkable convergence between primates and hyaenas with respect to their abilities in the domain of social cognition. Furthermore, within the family Hyaenidae, our data suggest that social complexity might have contributed to enlargement of the frontal cortex. However, social complexity failed to predict either brain volume or frontal cortex volume in a larger array of mammalian carnivores. To address the question of whether or not social complexity might be able to explain the evolution of domain-general intelligence as well as social cognition in particular, we presented simple puzzle boxes, baited with food and scaled to accommodate body size, to members of 39 carnivore species housed in zoos and found that species with larger brains relative to their body mass were more innovative and more successful at opening the boxes. However, social complexity failed to predict success in solving this problem. Overall our work suggests that, although social complexity enhances social cognition, there are no unambiguous causal links between social complexity and either brain size or performance in problem-solving tasks outside the social domain in mammalian carnivores. PMID:26160980

  17. Requirements Analysis and Modeling with Problem Frames and SysML: A Case Study

    NASA Astrophysics Data System (ADS)

    Colombo, Pietro; Khendek, Ferhat; Lavazza, Luigi

    Requirements analysis based on Problem Frames is getting an increasing attention in the academic community and has the potential to become of relevant interest also for industry. However the approach lacks an adequate notational support and methodological guidelines, and case studies that demonstrate its applicability to problems of realistic complexity are still rare. These weaknesses may hinder its adoption. This paper aims at contributing towards the elimination of these weaknesses. We report on an experience in analyzing and specifying the requirements of a controller for traffic lights of an intersection using Problem Frames in combination with SysML. The analysis was performed by decomposing the problem, addressing the identified sub-problems, and recomposing them while solving the identified interferences. The experience allowed us to identify certain guidelines for decomposition and re-composition patterns.

  18. Negotiating the Relationship Between Addiction, Ethics, and Brain Science

    PubMed Central

    Buchman, Daniel Z.; Skinner, Wayne; Illes, Judy

    2010-01-01

    Advances in neuroscience are changing how mental health issues such as addiction are understood and addressed as a brain disease. Although a brain disease model legitimizes addiction as a medical condition, it promotes neuro-essentialist thinking, categorical ideas of responsibility and free choice, and undermines the complexity involved in its emergence. We propose a ‘biopsychosocial systems’ model where psycho-social factors complement and interact with neurogenetics. A systems approach addresses the complexity of addiction and approaches free choice and moral responsibility within the biological, lived experience and socio-historical context of the individual. We examine heroin-assisted treatment as an applied case example within our framework. We conclude with a discussion of the model and its implications for drug policy, research, addiction health care systems and delivery, and treatment of substance use problems. PMID:20676352

  19. Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis.

    PubMed

    Aboy, Mateo; Hornero, Roberto; Abásolo, Daniel; Alvarez, Daniel

    2006-11-01

    Lempel-Ziv complexity (LZ) and derived LZ algorithms have been extensively used to solve information theoretic problems such as coding and lossless data compression. In recent years, LZ has been widely used in biomedical applications to estimate the complexity of discrete-time signals. Despite its popularity as a complexity measure for biosignal analysis, the question of LZ interpretability and its relationship to other signal parameters and to other metrics has not been previously addressed. We have carried out an investigation aimed at gaining a better understanding of the LZ complexity itself, especially regarding its interpretability as a biomedical signal analysis technique. Our results indicate that LZ is particularly useful as a scalar metric to estimate the bandwidth of random processes and the harmonic variability in quasi-periodic signals.

  20. Engineering education as a complex system

    NASA Astrophysics Data System (ADS)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-12-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating problem-solving orientations that emerge within students' thinking as they progress through an engineering curriculum. It is proposed that the traditional engineering education model, while analytically rigorous, is characterised by properties that, although necessary, are insufficient for preparing students to address complex issues of the twenty-first century. A Synthesis and Design Studio model for engineering education is proposed, which maintains the necessary rigor of analysis within a uniquely complex yet sufficiently structured learning environment.

  1. From Policy to Practice: Supporting Students with Diverse Needs in Thailand: Critical Issues and Implications

    ERIC Educational Resources Information Center

    Opartkiattikul, Watinee; Arthur-Kelly, Michael; Dempsey, Ian

    2014-01-01

    A commitment to maximizing learning outcomes for all students is an axiom of most educational systems around the world. However this goal is sometimes compromised by factors that can be complex and difficult to address. Student behavior problems are one of the major issues challenging educators in many countries including Thailand. Recently, laws…

  2. An Exploration of the Impact of an Open Governance Approach on Strategic Decision Making, Collaboration, Organizational Change, and Sustainability

    ERIC Educational Resources Information Center

    Hensley, Kendra

    2011-01-01

    Total quality management based governance models tend to focus on incremental improvements within the boundaries of a single organization. This may limit the benefits of information technology because they are not complex enough to address business or performance problems that extend beyond the boundaries of a single organization. The research…

  3. High Schoolers' Views on Academic Integrity

    ERIC Educational Resources Information Center

    Bacha, Nahla Nola; Bahous, Rima; Nabhani, Mona

    2012-01-01

    The issue of academic integrity in cheating on exams and plagiarising in writing is not a new one. All schools need to address this problem and some more than others. In the L2 context, the issues become more complex as non-native students need to adhere to the "culture of learning" of a Western model of academic integrity if they are to…

  4. The STEM Teacher Drought: Cracks and Disparities in California's Math and Science Teacher Pipeline

    ERIC Educational Resources Information Center

    Wolf, Leni

    2015-01-01

    In today's fast-moving and interconnected world, high school and college graduates must be able to think critically and generate creative solutions to address complex problems. With the world producing new knowledge at an exponential rate, we cannot anticipate what all these future challenges will be. Without a doubt, they will impact a society…

  5. Incivility in nursing: the connection between academia and clinical settings.

    PubMed

    Luparell, Susan

    2011-04-01

    Incivility and bullying in nursing are complex problems that have garnered much attention in recent years. Emerging evidence suggests that incivility in the workplace has significant implications for nurses, patients, and health care organizations. Because today's students are tomorrow's colleagues, conversations regarding how to address incivility and bullying should include specific aspects of nursing academia and the preparation of new nurses.

  6. Understanding social complexity within the wildland urban interface: A new species of human habitation? Environmental Management

    Treesearch

    Travis B. Paveglio; Pamela J. Jakes; Matthew S. Carroll; Daniel R. Williams

    2009-01-01

    The lack of knowledge regarding social diversity in the Wildland Urban Interface (WUI) or an in-depth understanding of the ways people living there interact to address common problems is concerning, perhaps even dangerous, given that community action is necessary for successful wildland fire preparedness and natural resource management activities. In this article, we...

  7. Cultural Collision and Collusion: Reflections on Hip-Hop Culture, Values, and Schools. Educational Psychology: Critical Pedagogical Perspectives. Volume 14

    ERIC Educational Resources Information Center

    Beachum, Floyd D.; McCray, Carlos R.

    2011-01-01

    "Cultural Collision and Collusion" addresses the complexity of problems that surround youth culture and school culture. By broadening the scholarly dialogue and examining and disseminating relevant research to practitioners, the book seeks to provide insight into youth culture and some manifestations of popular culture (e.g., hip-hop). In…

  8. Addressing Challenges to Public Understanding of Science: Epistemic Cognition, Motivated Reasoning, and Conceptual Change

    ERIC Educational Resources Information Center

    Sinatra, Gale M.; Kienhues, Dorothe; Hofer, Barbara K.

    2014-01-01

    Science is of critical importance to daily life in a knowledge society and has a significant influence on many everyday decisions. As scientific problems increase in their number and complexity, so do the challenges facing the public in understanding these issues. Our objective is to focus on 3 of those challenges: the challenge of reasoning about…

  9. The Effects of Teaching the Universality Thesis on Students' Integrative Complexity of Thought

    ERIC Educational Resources Information Center

    Vartiainen, Tero; Siponen, Mikko; Myyry, Liisa

    2011-01-01

    The explosion in the use of computers has strengthened the need to address ethical issues in information systems (IS) education, and several frameworks have been expounded. However, little empirical research has been undertaken on their effects. This is a key problem: If IS scholars do not study the effect of information systems on IS students, IS…

  10. A Case Study of Middle School Teachers' Preparations for High-Stakes Assessments

    ERIC Educational Resources Information Center

    Yeary, David Lee

    2017-01-01

    Students, educators, and schools across the country have been presented with challenges as a result of rigorous standards and high-complexity tests. The problem addressed in this case study was that teachers in a rural middle school in a southeastern state were preparing students to take a new high-stakes state-mandated assessment in English…

  11. Learning about Acid Rain: A Teacher's Guide for Grades 6 through 8. EPA 430-F-08-002

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2008

    2008-01-01

    Acid rain is a complex environmental problem which affects the United States and many other countries around the world. The United States Environmental Protection Agency (EPA) was established in 1970 to address environmental issues, such as acid rain. Through its programs, EPA works to protect human health and the environment in the United States…

  12. School-Based Health Centers and Childhood Obesity: "An Ideal Location to Address a Complex Issue"

    ERIC Educational Resources Information Center

    National Assembly on School-Based Health Care, 2010

    2010-01-01

    One of today's most pressing public health problems is the rise in childhood overweight and obesity. School-based health centers (SBHCs)--the convergence of public health, primary care, and mental health in schools--represent an important element in the public health toolbox for combating the challenging epidemic. When working side-by-side in a…

  13. Mathematical and Numerical Techniques in Energy and Environmental Modeling

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Ewing, R. E.

    Mathematical models have been widely used to predict, understand, and optimize many complex physical processes, from semiconductor or pharmaceutical design to large-scale applications such as global weather models to astrophysics. In particular, simulation of environmental effects of air pollution is extensive. Here we address the need for using similar models to understand the fate and transport of groundwater contaminants and to design in situ remediation strategies. Three basic problem areas need to be addressed in the modeling and simulation of the flow of groundwater contamination. First, one obtains an effective model to describe the complex fluid/fluid and fluid/rock interactions that control the transport of contaminants in groundwater. This includes the problem of obtaining accurate reservoir descriptions at various length scales and modeling the effects of this heterogeneity in the reservoir simulators. Next, one develops accurate discretization techniques that retain the important physical properties of the continuous models. Finally, one develops efficient numerical solution algorithms that utilize the potential of the emerging computing architectures. We will discuss recent advances and describe the contribution of each of the papers in this book in these three areas. Keywords: reservoir simulation, mathematical models, partial differential equations, numerical algorithms

  14. Interweaving Knowledge Resources to Address Complex Environmental Health Challenges

    PubMed Central

    Anderson, Beth Ellen; Suk, William A.

    2015-01-01

    Background Complex problems do not respect academic disciplinary boundaries. Environmental health research is complex and often moves beyond these boundaries, integrating diverse knowledge resources to solve such challenges. Here we describe an evolving paradigm for interweaving approaches that integrates widely diverse resources outside of traditional academic environments in full partnerships of mutual respect and understanding. We demonstrate that scientists, social scientists, and engineers can work with government agencies, industry, and communities to interweave their expertise into metaphorical knowledge fabrics to share understanding, resources, and enthusiasm. Objective Our goal is to acknowledge and validate how interweaving research approaches can contribute to research-driven, solution-oriented problem solving in environmental health, and to inspire more members of the environmental health community to consider this approach. Discussion The National Institutes of Health’s National Institute of Environmental Health Sciences Superfund Research Program (SRP), as mandated by Congress, has evolved to become a program that reaches across a wide range of knowledge resources. SRP fosters interweaving multiple knowledge resources to develop innovative multidirectional partnerships for research and training. Here we describe examples of how motivation, ideas, knowledge, and expertise from different people, institutions, and agencies can integrate to tackle challenges that can be as complex as the resources they bring to bear on it. Conclusions By providing structure for interweaving science with its stakeholders, we are better able to leverage resources, increase potential for innovation, and proactively ensure a more fully developed spectrum of beneficial outcomes of research investments. Citation Anderson BE, Naujokas MF, Suk WA. 2015. Interweaving knowledge resources to address complex environmental health challenges. Environ Health Perspect 123:1095–1099; http://dx.doi.org/10.1289/ehp.1409525 PMID:25910282

  15. Certification for civil flight decks and the human-computer interface

    NASA Technical Reports Server (NTRS)

    Mcclumpha, Andrew J.; Rudisill, Marianne

    1994-01-01

    This paper will address the issue of human factor aspects of civil flight deck certification, with emphasis on the pilot's interface with automation. In particular, three questions will be asked that relate to this certification process: (1) are the methods, data, and guidelines available from human factors to adequately address the problems of certifying as safe and error tolerant the complex automated systems of modern civil transport aircraft; (2) do aircraft manufacturers effectively apply human factors information during the aircraft flight deck design process; and (3) do regulatory authorities effectively apply human factors information during the aircraft certification process?

  16. [The mind-brain problem (II): about consciousness].

    PubMed

    Tirapu-Ustarroz, J; Goni-Saez, F

    2016-08-16

    Consciousness is the result of a series of neurobiological processes in the brain and is, in turn, a feature of the level of its complexity. In fact, being conscious and being aware place us before what Chalmers called the 'soft problem' and the 'hard problem' of consciousness. The first refers to aspects such as wakefulness, attention or knowledge, while the second is concerned with such complex concepts as self-awareness, 'neural self' or social cognition. In this sense it can be said that the concept of consciousness as a unitary thing poses problems of approaching a highly complex reality. We outline the main models that have addressed the topic of consciousness from a neuroscientific perspective. On the one hand, there are the conscious experience models of Crick, Edelman and Tononi, and Llinas, and, on the other, the models and neuronal bases of self-consciousness by authors such as Damasio (core and extended consciousness), Tulving (autonoetic and noetic consciousness and chronesthesia), the problem of qualia (Dennett, Popper, Ramachandran) and the cognit model (Fuster). All the stimuli we receive from the outside world and from our own internal world are converted and processed by the brain so as to integrate them, and from there they become part of our identity. The perception of a dog and being able to recognise it as such or the understanding of our own consciousness are the result of the functioning of brain, neuronal and synaptic structures. The more complex processes of consciousness, such as self-awareness or empathy, are probably emergent brain processes.

  17. Fast reconstruction of optical properties for complex segmentations in near infrared imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Jingjing; Wolf, Martin; Sánchez Majos, Salvador

    2017-04-01

    The intrinsic ill-posed nature of the inverse problem in near infrared imaging makes the reconstruction of fine details of objects deeply embedded in turbid media challenging even for the large amounts of data provided by time-resolved cameras. In addition, most reconstruction algorithms for this type of measurements are only suitable for highly symmetric geometries and rely on a linear approximation to the diffusion equation since a numerical solution of the fully non-linear problem is computationally too expensive. In this paper, we will show that a problem of practical interest can be successfully addressed making efficient use of the totality of the information supplied by time-resolved cameras. We set aside the goal of achieving high spatial resolution for deep structures and focus on the reconstruction of complex arrangements of large regions. We show numerical results based on a combined approach of wavelength-normalized data and prior geometrical information, defining a fully parallelizable problem in arbitrary geometries for time-resolved measurements. Fast reconstructions are obtained using a diffusion approximation and Monte-Carlo simulations, parallelized in a multicore computer and a GPU respectively.

  18. State analysis requirements database for engineering complex embedded systems

    NASA Technical Reports Server (NTRS)

    Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.

  19. Dynamic pathway modeling of signal transduction networks: a domain-oriented approach.

    PubMed

    Conzelmann, Holger; Gilles, Ernst-Dieter

    2008-01-01

    Mathematical models of biological processes become more and more important in biology. The aim is a holistic understanding of how processes such as cellular communication, cell division, regulation, homeostasis, or adaptation work, how they are regulated, and how they react to perturbations. The great complexity of most of these processes necessitates the generation of mathematical models in order to address these questions. In this chapter we provide an introduction to basic principles of dynamic modeling and highlight both problems and chances of dynamic modeling in biology. The main focus will be on modeling of s transduction pathways, which requires the application of a special modeling approach. A common pattern, especially in eukaryotic signaling systems, is the formation of multi protein signaling complexes. Even for a small number of interacting proteins the number of distinguishable molecular species can be extremely high. This combinatorial complexity is due to the great number of distinct binding domains of many receptors and scaffold proteins involved in signal transduction. However, these problems can be overcome using a new domain-oriented modeling approach, which makes it possible to handle complex and branched signaling pathways.

  20. Results of a Wildlife Toxicology Workshop held by the Smithsonian Institution ? Identification and prioritization of problem statements

    USGS Publications Warehouse

    Grim, K.C.; Fairbrother, A.; Monfort, S.; Tan, S.; Rattner, B.A.; Gerould, S.; Beasley, V.; Aguirre, A.; Rowles, T.

    2007-01-01

    On March 13-15, 2007 nearly 50 scientists and administrators from the US and Canada participated in a Smithsonian-sponsored Wildlife Toxicology Workshop. Invitees were from academic, government, conservation and the private organizations and were selected to represent the diverse disciplines that encompass wildlife toxicology. The workshop addressed scientific and policy issues, strengths and weaknesses of current research strategies, interdisciplinary and science-based approaches in the study of complex contaminant issues, mechanisms for disseminating data to policy-makers, and the development of a partner network to meet the challenges facing wildlife toxicology over the next decade. Prior to the meeting, participants were asked to submit issues they deemed to be of highest concern which shaped four thematic groups for discussion: Wildlife Toxicology in Education, Risk Assessment, Multiple Stressors/Complex Mixtures, and Sub-Lethal to Population-Level Effects. From these discussion groups, 18 problem statements were developed and prioritized outlining what were deemed the most important issues to address now and into the future. Along with each problem statement participants developed potential solutions and action steps geared to move each issue forward. The workshop served as a stepping stone for action in the field of wildlife toxicology. These problem statements and the resulting action items are presented to the inter-disciplinary wildlife toxicology community for adoption, and future work and action items in these areas are encouraged. The workshop outcome looks to generate conversation and collaboration that will lead to the development of innovative research, future mechanisms for funding, workshops, working groups, and listserves within the wildlife toxicology community.

  1. Split gender identity: problem or solution? Proposed parameters for addressing the gender dysphoric patient.

    PubMed

    Osborne, Cynthia; Wise, Thomas N

    2002-01-01

    Working with the gender dysphoric patient is complex because of the various clinical issues that arise. One issue that has not been addressed in the psychiatric literature is whether to address the patient with the biologically congruent pronoun or name or with the patient's preferred-gender pronoun or cross-gender name. This article presents clinical examples that allow a template to be developed for pronoun use in working with such patients. Whether the clinician uses biologically congruent names and pronouns may depend upon the patient's progress in adopting the cross gender role as well whether family or friends either know or accept such changes. In certain situations, such as meetings with family members, the therapist may address the patient with gender congruent names; whereas on other occasions use cross-gender pronouns or names.

  2. Estimating uncertainties in complex joint inverse problems

    NASA Astrophysics Data System (ADS)

    Afonso, Juan Carlos

    2016-04-01

    Sources of uncertainty affecting geophysical inversions can be classified either as reflective (i.e. the practitioner is aware of her/his ignorance) or non-reflective (i.e. the practitioner does not know that she/he does not know!). Although we should be always conscious of the latter, the former are the ones that, in principle, can be estimated either empirically (by making measurements or collecting data) or subjectively (based on the experience of the researchers). For complex parameter estimation problems in geophysics, subjective estimation of uncertainty is the most common type. In this context, probabilistic (aka Bayesian) methods are commonly claimed to offer a natural and realistic platform from which to estimate model uncertainties. This is because in the Bayesian approach, errors (whatever their nature) can be naturally included as part of the global statistical model, the solution of which represents the actual solution to the inverse problem. However, although we agree that probabilistic inversion methods are the most powerful tool for uncertainty estimation, the common claim that they produce "realistic" or "representative" uncertainties is not always justified. Typically, ALL UNCERTAINTY ESTIMATES ARE MODEL DEPENDENT, and therefore, besides a thorough characterization of experimental uncertainties, particular care must be paid to the uncertainty arising from model errors and input uncertainties. We recall here two quotes by G. Box and M. Gunzburger, respectively, of special significance for inversion practitioners and for this session: "…all models are wrong, but some are useful" and "computational results are believed by no one, except the person who wrote the code". In this presentation I will discuss and present examples of some problems associated with the estimation and quantification of uncertainties in complex multi-observable probabilistic inversions, and how to address them. Although the emphasis will be on sources of uncertainty related to the forward and statistical models, I will also address other uncertainties associated with data and uncertainty propagation.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Philip LaRoche

    At the end of his life, Stephen Jay Kline, longtime professor of mechanical engineering at Stanford University, completed a book on how to address complex systems. The title of the book is 'Conceptual Foundations of Multi-Disciplinary Thinking' (1995), but the topic of the book is systems. Kline first establishes certain limits that are characteristic of our conscious minds. Kline then establishes a complexity measure for systems and uses that complexity measure to develop a hierarchy of systems. Kline then argues that our minds, due to their characteristic limitations, are unable to model the complex systems in that hierarchy. Computers aremore » of no help to us here. Our attempts at modeling these complex systems are based on the way we successfully model some simple systems, in particular, 'inert, naturally-occurring' objects and processes, such as what is the focus of physics. But complex systems overwhelm such attempts. As a result, the best we can do in working with these complex systems is to use a heuristic, what Kline calls the 'Guideline for Complex Systems.' Kline documents the problems that have developed due to 'oversimple' system models and from the inappropriate application of a system model from one domain to another. One prominent such problem is the Procrustean attempt to make the disciplines that deal with complex systems be 'physics-like.' Physics deals with simple systems, not complex ones, using Kline's complexity measure. The models that physics has developed are inappropriate for complex systems. Kline documents a number of the wasteful and dangerous fallacies of this type.« less

  4. L.E.A.D.: a framework for evidence gathering and use for the prevention of obesity and other complex public health problems.

    PubMed

    Chatterji, Madhabi; Green, Lawrence W; Kumanyika, Shiriki

    2014-02-01

    This article summarizes a comprehensive, systems-oriented framework designed to improve the use of a wide variety of evidence sources to address population-wide obesity problems. The L.E.A.D. framework (for Locate the evidence, Evaluate the evidence, Assemble the evidence, and inform Decisions), developed by an expert consensus committee convened by the Institute of Medicine, is broadly applicable to complex, community-wide health problems. The article explains how to use the framework, presenting an evidence typology that helps specify relevant research questions and includes examples of how particular research methodologies and sources of evidence relate to questions that stem from decision-maker needs. The utility of a range of quantitative, qualitative, and mixed method designs and data sources for assembling a broad and credible evidence base is discussed, with a call for ongoing "evidence generation" to fill information gaps using the recommended systems perspective.

  5. Efficient Network Coding-Based Loss Recovery for Reliable Multicast in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Chi, Kaikai; Jiang, Xiaohong; Ye, Baoliu; Horiguchi, Susumu

    Recently, network coding has been applied to the loss recovery of reliable multicast in wireless networks [19], where multiple lost packets are XOR-ed together as one packet and forwarded via single retransmission, resulting in a significant reduction of bandwidth consumption. In this paper, we first prove that maximizing the number of lost packets for XOR-ing, which is the key part of the available network coding-based reliable multicast schemes, is actually a complex NP-complete problem. To address this limitation, we then propose an efficient heuristic algorithm for finding an approximately optimal solution of this optimization problem. Furthermore, we show that the packet coding principle of maximizing the number of lost packets for XOR-ing sometimes cannot fully exploit the potential coding opportunities, and we then further propose new heuristic-based schemes with a new coding principle. Simulation results demonstrate that the heuristic-based schemes have very low computational complexity and can achieve almost the same transmission efficiency as the current coding-based high-complexity schemes. Furthermore, the heuristic-based schemes with the new coding principle not only have very low complexity, but also slightly outperform the current high-complexity ones.

  6. Potential uses of Bayesian networks as tools for synthesis of systematic reviews of complex interventions.

    PubMed

    Stewart, G B; Mengersen, K; Meader, N

    2014-03-01

    Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention. Bayesian networks are useful extensions to logic maps when initiating a review or to facilitate synthesis and bridge the gap between evidence acquisition and decision-making. Formal elicitation techniques allow development of BNs on the basis of expert opinion. Such applications are useful alternatives to 'empty' reviews, which identify knowledge gaps but fail to support decision-making. Where review evidence exists, it can inform the development of a BN. We illustrate the construction of a BN using a motivating example that demonstrates how BNs can ensure coherence, transparently structure the problem addressed by a complex intervention and assess sensitivity to context, all of which are critical components of robust reviews of complex interventions. We suggest that BNs should be utilised to routinely synthesise reviews of complex interventions or empty reviews where decisions must be made despite poor evidence. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Using three dimensional silicone ``boots`` to solve complex remedial design problems in curtain walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.J.

    1998-12-31

    Stick system curtain wall leak problems are frequently caused by water entry at the splice joints of the curtain wall frame and failure of the internal metal joinery seals. Remedial solutions involving occupied buildings inevitably face the multiple constraints of existing construction and business operations not present during the original curtain wall construction. In most cases, even partial disassembly of the curtain wall for internal seal repairs is not feasible. Remedial solutions which must be executed from the exterior of the curtain wall often involve wet-applied or preformed sealant tape bridge joints. However, some of the more complex joints cannotmore » be repaired effectively or economically with the conventional bridge joint. Fortunately, custom fabricated three-dimensional preformed sealant boots are becoming available to address these situations. This paper discusses the design considerations and the selective use of three-dimensional preformed boots in sealing complex joint geometry that would not be effective with the conventional two-dimensional bridge joint.« less

  8. Spectral Collocation Time-Domain Modeling of Diffractive Optical Elements

    NASA Astrophysics Data System (ADS)

    Hesthaven, J. S.; Dinesen, P. G.; Lynov, J. P.

    1999-11-01

    A spectral collocation multi-domain scheme is developed for the accurate and efficient time-domain solution of Maxwell's equations within multi-layered diffractive optical elements. Special attention is being paid to the modeling of out-of-plane waveguide couplers. Emphasis is given to the proper construction of high-order schemes with the ability to handle very general problems of considerable geometric and material complexity. Central questions regarding efficient absorbing boundary conditions and time-stepping issues are also addressed. The efficacy of the overall scheme for the time-domain modeling of electrically large, and computationally challenging, problems is illustrated by solving a number of plane as well as non-plane waveguide problems.

  9. Combinatorial algorithms for design of DNA arrays.

    PubMed

    Hannenhalli, Sridhar; Hubell, Earl; Lipshutz, Robert; Pevzner, Pavel A

    2002-01-01

    Optimal design of DNA arrays requires the development of algorithms with two-fold goals: reducing the effects caused by unintended illumination (border length minimization problem) and reducing the complexity of masks (mask decomposition problem). We describe algorithms that reduce the number of rectangles in mask decomposition by 20-30% as compared to a standard array design under the assumption that the arrangement of oligonucleotides on the array is fixed. This algorithm produces provably optimal solution for all studied real instances of array design. We also address the difficult problem of finding an arrangement which minimizes the border length and come up with a new idea of threading that significantly reduces the border length as compared to standard designs.

  10. A centre-free approach for resource allocation with lower bounds

    NASA Astrophysics Data System (ADS)

    Obando, Germán; Quijano, Nicanor; Rakoto-Ravalontsalama, Naly

    2017-09-01

    Since complexity and scale of systems are continuously increasing, there is a growing interest in developing distributed algorithms that are capable to address information constraints, specially for solving optimisation and decision-making problems. In this paper, we propose a novel method to solve distributed resource allocation problems that include lower bound constraints. The optimisation process is carried out by a set of agents that use a communication network to coordinate their decisions. Convergence and optimality of the method are guaranteed under some mild assumptions related to the convexity of the problem and the connectivity of the underlying graph. Finally, we compare our approach with other techniques reported in the literature, and we present some engineering applications.

  11. Diffraction scattering computed tomography: a window into the structures of complex nanomaterials

    PubMed Central

    Birkbak, M. E.; Leemreize, H.; Frølich, S.; Stock, S. R.

    2015-01-01

    Modern functional nanomaterials and devices are increasingly composed of multiple phases arranged in three dimensions over several length scales. Therefore there is a pressing demand for improved methods for structural characterization of such complex materials. An excellent emerging technique that addresses this problem is diffraction/scattering computed tomography (DSCT). DSCT combines the merits of diffraction and/or small angle scattering with computed tomography to allow imaging the interior of materials based on the diffraction or small angle scattering signals. This allows, e.g., one to distinguish the distributions of polymorphs in complex mixtures. Here we review this technique and give examples of how it can shed light on modern nanoscale materials. PMID:26505175

  12. Media coverage of "wise" interventions can reduce concern for the disadvantaged.

    PubMed

    Ikizer, Elif G; Blanton, Hart

    2016-06-01

    Recent articulation of the "wise" approach to psychological intervention has drawn attention to the way small, seemingly trivial social psychological interventions can exert powerful, long-term effects. These interventions have been used to address such wide-ranging social issues as the racial achievement gap, environmental conservation, and the promotion of safer sex. Although there certainly are good reasons to seek easier as opposed to harder solutions to social problems, we examine a potentially undesirable effect that can result from common media portrayals of wise interventions. By emphasizing the ease with which interventions help address complex social problems, media reports might decrease sympathy for the individuals assisted by such efforts. Three studies provide evidence for this, showing that media coverage of wise interventions designed to address academic and health disparities increased endorsement of the view that the disadvantaged can solve their problems on their own, and the tendency to blame such individuals for their circumstances. Effects were strongest for interventions targeted at members of a historically disadvantaged group (African Americans as opposed to college students) and when the coverage was read by conservatives as opposed to liberals. Attempts to undermine this effect by introducing cautious language had mixed success. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Hierarchical auto-configuration addressing in mobile ad hoc networks (HAAM)

    NASA Astrophysics Data System (ADS)

    Ram Srikumar, P.; Sumathy, S.

    2017-11-01

    Addressing plays a vital role in networking to identify devices uniquely. A device must be assigned with a unique address in order to participate in the data communication in any network. Different protocols defining different types of addressing are proposed in literature. Address auto-configuration is a key requirement for self organizing networks. Existing auto-configuration based addressing protocols require broadcasting probes to all the nodes in the network before assigning a proper address to a new node. This needs further broadcasts to reflect the status of the acquired address in the network. Such methods incur high communication overheads due to repetitive flooding. To address this overhead, a new partially stateful address allocation scheme, namely Hierarchical Auto-configuration Addressing (HAAM) scheme is extended and proposed. Hierarchical addressing basically reduces latency and overhead caused during address configuration. Partially stateful addressing algorithm assigns addresses without the need for flooding and global state awareness, which in turn reduces the communication overhead and space complexity respectively. Nodes are assigned addresses hierarchically to maintain the graph of the network as a spanning tree which helps in effectively avoiding the broadcast storm problem. Proposed algorithm for HAAM handles network splits and merges efficiently in large scale mobile ad hoc networks incurring low communication overheads.

  14. The birth of tragedy in pediatrics: a phronetic conception of bioethics.

    PubMed

    Carnevale, Franco A

    2007-09-01

    Accepted standards of parental decisional autonomy and child best interests do not address adequately the complex moral problems involved in the care of critically ill children. A growing body of moral discourse is calling for the recognition of ;tragedy' in selected human problems. A tragic dilemma is an irresolvable dilemma with forced terrible alternatives, where even the virtuous agent inescapably emerges with ;dirty hands'. The shift in moral framework described here recognizes that the form of conduct called for by tragic dilemmas is the practice of phronesis. The phronetic agent has acquired a capacity to discern good agency in tragic circumstances. This discernment is practiced through the artful creation of moral narratives: stories that convey that which is morally meaningful in a particular situation; that is, stories that are ;meaning making'. The phronetic agent addresses tragic dilemmas involving children as a narrator of contextualized temporal embodied human (counter)stories.

  15. One Health in food safety and security education: A curricular framework.

    PubMed

    Angelos, J; Arens, A; Johnson, H; Cadriel, J; Osburn, B

    2016-02-01

    The challenges of producing and distributing the food necessary to feed an anticipated 9 billion people in developed and developing societies by 2050 without destroying Earth's finite soil and water resources present extremely complex problems that lack simple solutions. The ability of modern societies to adequately address these and other food-related problems will require an educated workforce trained not only in traditional food safety, security, and public health, but also in other areas including food production, sustainable practices, and ecosystem health. To help address the need for such an educated workforce, a curricular framework was developed to assist those tasked with designing education and training for future food systems workers. One sentence summary: A curricular framework for education and training in food safety and security was developed that incorporates One Health concepts. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez-Ramirez, J.; Aguilar, R.; Lopez-Isunza, F.

    FCC processes involve complex interactive dynamics which are difficult to operate and control as well as poorly known reaction kinetics. This work concerns the synthesis of temperature controllers for FCC units. The problem is addressed first for the case where perfect knowledge of the reaction kinetics is assumed, leading to an input-output linearizing state feedback. However, in most industrial FCC units, perfect knowledge of reaction kinetics and composition measurements is not available. To address the problem of robustness against uncertainties in the reaction kinetics, an adaptive model-based nonlinear controller with simplified reaction models is presented. The adaptive strategy makes usemore » of estimates of uncertainties derived from calorimetric (energy) balances. The resulting controller is similar in form to standard input-output linearizing controllers and can be tuned analogously. Alternatively, the controller can be tuned using a single gain parameter and is computationally efficient. The performance of the closed-loop system and the controller design procedure are shown with simulations.« less

  17. A Bayesian Network Meta-Analysis to Synthesize the Influence of Contexts of Scaffolding Use on Cognitive Outcomes in STEM Education.

    PubMed

    Belland, Brian R; Walker, Andrew E; Kim, Nam Ju

    2017-12-01

    Computer-based scaffolding provides temporary support that enables students to participate in and become more proficient at complex skills like problem solving, argumentation, and evaluation. While meta-analyses have addressed between-subject differences on cognitive outcomes resulting from scaffolding, none has addressed within-subject gains. This leaves much quantitative scaffolding literature not covered by existing meta-analyses. To address this gap, this study used Bayesian network meta-analysis to synthesize within-subjects (pre-post) differences resulting from scaffolding in 56 studies. We generated the posterior distribution using 20,000 Markov Chain Monte Carlo samples. Scaffolding has a consistently strong effect across student populations, STEM (science, technology, engineering, and mathematics) disciplines, and assessment levels, and a strong effect when used with most problem-centered instructional models (exception: inquiry-based learning and modeling visualization) and educational levels (exception: secondary education). Results also indicate some promising areas for future scaffolding research, including scaffolding among students with learning disabilities, for whom the effect size was particularly large (ḡ = 3.13).

  18. A Bayesian Network Meta-Analysis to Synthesize the Influence of Contexts of Scaffolding Use on Cognitive Outcomes in STEM Education

    PubMed Central

    Belland, Brian R.; Walker, Andrew E.; Kim, Nam Ju

    2017-01-01

    Computer-based scaffolding provides temporary support that enables students to participate in and become more proficient at complex skills like problem solving, argumentation, and evaluation. While meta-analyses have addressed between-subject differences on cognitive outcomes resulting from scaffolding, none has addressed within-subject gains. This leaves much quantitative scaffolding literature not covered by existing meta-analyses. To address this gap, this study used Bayesian network meta-analysis to synthesize within-subjects (pre–post) differences resulting from scaffolding in 56 studies. We generated the posterior distribution using 20,000 Markov Chain Monte Carlo samples. Scaffolding has a consistently strong effect across student populations, STEM (science, technology, engineering, and mathematics) disciplines, and assessment levels, and a strong effect when used with most problem-centered instructional models (exception: inquiry-based learning and modeling visualization) and educational levels (exception: secondary education). Results also indicate some promising areas for future scaffolding research, including scaffolding among students with learning disabilities, for whom the effect size was particularly large (ḡ = 3.13). PMID:29200508

  19. Multimodal Representation Contributes to the Complex Development of Science Literacy in a College Biology Class

    ERIC Educational Resources Information Center

    Bennett, William Drew

    2011-01-01

    This study is an investigation into the science literacy of college genetics students who were given a modified curriculum to address specific teaching and learning problems from a previous class. This study arose out of an interest by the professor and researcher to determine how well students in the class Human Genetics in the 21st Century…

  20. Informatics Tools to Improve Clinical Research

    PubMed Central

    Argraves, S; Brandt, CA; Money, R; Nadkarni, P

    2005-01-01

    During the conduct of complex clinical trials, there are numerous sources and types of data collection and project coordination problems. Methods and approaches to address the conduct of a trial vary in both the cost and time to perform and the potential benefit. Informatics tools can help trial coordinators and investigators ensure the collection of high quality research data during all phases of a clinical trial. PMID:16779170

  1. Combinatorial and Algorithmic Rigidity: Beyond Two Dimensions

    DTIC Science & Technology

    2012-12-01

    problem. Manuscript, 2010. [35] G. Panina and I. Streinu. Flattening single-vertex origami : the non- expansive case. Computational Geometry : Theory and...in 2008, under the DARPA solicitation “Mathemat- ical Challenges, BAA 07-68”. It addressed Mathematical Challenge Ten: Al- gorithmic Origami and...a number of optimal algorithms and provided critical complexity analysis. The topic of algorithmic origami was successfully engaged from the same

  2. Complexities in understanding and addressing the serious public health issues related to the nonmedical use of prescription drugs

    PubMed Central

    Arria, Amelia M.; Compton, Wilson M.

    2016-01-01

    The nonmedical use of prescription drugs (NMUPD) is not only a serious public health problem, but also a complex one. The articles presented in this special issue underscore that complexity by describing multiple classes of prescription drugs (e.g., opioid analgesics, benzodiazepines, stimulants, anxiolytics, and sedatives) and examining multiple aspects of their patterns of use. Collectively, the articles examine epidemiologic use patterns in the United States, risk factors, clinical characteristics of individuals in treatment for dependence, and consequences. The key to addressing NMUPD is to construct a solid understanding of the issues through scientific research, and to translate the scientific evidence into action. The articles in this issue build upon a large body of literature that has accumulated during the last two decades. Dramatic increases in overdoses from prescription opioids and the transition to heroin use among nonmedical users of prescription opioids has captured the attention of community leaders across the nation. Yet, less well known is the co-occurrence of multiple substances among those using prescription drug nonmedically. This represents a common theme across these articles which document that nonmedical users were observed to have a history of using alcohol, marijuana, tobacco, and other psychoactive substances. In addition, the articles dispel certain ideas that appear to have gained traction in the popular discourse that have little scientific evidence behind them. First, the notion that prescription drug problems arise in cases of drug naïve individuals who are first exposed through a physician’s prescription for pain medication is widespread, but is not rooted in scientific evidence. Second, despite the popular notion that nonmedical use of stimulants confers an “academic edge”, nonmedical users have lower grade point averages (GPAs) than non-users. NMUPD was also shown to be associated with sexual aggression victimization and perpetration and regretted sex. In addition, several of the articles in this issue point to innovative targets for prevention of NMUPD. It is only through high-quality research can we gain a clearer understanding of the problem and how to address it. PMID:27639956

  3. Development of Structural Geology and Tectonics Data System with Field and Lab Interface

    NASA Astrophysics Data System (ADS)

    Newman, J.; Tikoff, B.; Walker, J. D.; Good, J.; Michels, Z. D.; Ash, J.; Andrew, J.; Williams, R. T.; Richard, S. M.

    2015-12-01

    We have developed a prototype Data System for Structural Geology and Tectonics (SG&T). The goal of this effort is to enable recording and sharing data within the geoscience community, to encourage interdisciplinary research, and to facilitate the investigation of scientific questions that cannot currently be addressed. The development of the Data System emphasizes community input in order to build a system that encompasses the needs of researchers, in terms of data and usability. SG&T data is complex for a variety of reasons, including the wide range of temporal and spatial scales (many orders of magnitude each), the complex three-dimensional geometry of some geological structures, inherent spatial nature of the data, and the difficulty of making temporal inferences from spatial observations. To successful implement the step of developing a SG&T data system, we must simultaneously solve three problems: 1) How to digitize SG&T data; 2) How to design a software system that is applicable; and 3) How to construct a very flexible user interface. To address the first problem, we introduce the "Spot" concept, which allows tracking of hierarchical and spatial relations between structures at all scales, and will link map scale, mesoscale, and laboratory scale data. A Spot, in this sense, is analogous to the beam size of analytical equipment used for in situ analysis of rocks; it is the size over which a measurement or quantity is applicable. A Spot can be a single measurement, an aggregation of individual measurements, or even establish relationships between numerous other Spots. We address the second problem through the use of a Graph database to better preserve the myriad of potentially complex relationships. In order to construct a flexible user interface that follows a natural workflow, and that serves the needs of the community, we have begun the process of engaging the SG&T community in order to utilize the expertise of a large group of scientists to ensure the quality and usability of this data system. These activities have included Town Halls, subdiscipline-specific workshops to develop community standards, and pilot projects to test the data system in the field during the study of a variety of geologic structures.

  4. Understanding Water-Stress Responses in Soybean Using Hydroponics System—A Systems Biology Perspective

    PubMed Central

    Tripathi, Prateek; Rabara, Roel C.; Shulaev, Vladimir; Shen, Qingxi J.; Rushton, Paul J.

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue. PMID:26734044

  5. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective.

    PubMed

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue.

  6. Addressing dysfunctional relations among healthcare teams: improving team cooperation through applied organizational theories.

    PubMed

    Horwitz, Sujin K; Horwitz, Irwin B; Barshes, Neal R

    2011-01-01

    Previous research has demonstrated that communication failure and interpersonal conflicts are significant impediments among health-care teams to assess complex information and engage in the meaningful collaboration necessary for optimizing patient care. Despite the prolific research on the role of effective teamwork in accomplishing complex tasks, such findings have been traditionally applied to business organizations and not medical contexts. This chapter, therefore, reviews and applies four theories from the fields of organizational behavior (OB) and organization development (OD) as potential means for improving team interaction in health-care contexts. This study is unique in its approach as it addresses the long-standing problems that exist in team communication and cooperation in health-care teams by applying well-established theories from the organizational literature. The utilization and application of the theoretical constructs discussed in this work offer valuable means by which the efficacy of team work can be greatly improved in health-care organizations.

  7. Economic analyses to support decisions about HPV vaccination in low- and middle-income countries: a consensus report and guide for analysts.

    PubMed

    Jit, Mark; Levin, Carol; Brisson, Marc; Levin, Ann; Resch, Stephen; Berkhof, Johannes; Kim, Jane; Hutubessy, Raymond

    2013-01-30

    Low- and middle-income countries need to consider economic issues such as cost-effectiveness, affordability and sustainability before introducing a program for human papillomavirus (HPV) vaccination. However, many such countries lack the technical capacity and data to conduct their own analyses. Analysts informing policy decisions should address the following questions: 1) Is an economic analysis needed? 2) Should analyses address costs, epidemiological outcomes, or both? 3) If costs are considered, what sort of analysis is needed? 4) If outcomes are considered, what sort of model should be used? 5) How complex should the analysis be? 6) How should uncertainty be captured? 7) How should model results be communicated? Selecting the appropriate analysis is essential to ensure that all the important features of the decision problem are correctly represented, but that the analyses are not more complex than necessary. This report describes the consensus of an expert group convened by the World Health Organization, prioritizing key issues to be addressed when considering economic analyses to support HPV vaccine introduction in these countries.

  8. Clinic-friendly screening for cognitive and mental health problems in school-aged youth with epilepsy.

    PubMed

    Asato, Miya R; Doss, Julia L; Plioplys, Sigita

    2015-07-01

    Cognitive, psychiatric, psychosocial, and behavioral difficulties are common in youth with epilepsy. Collectively, these comorbidities can be referred to as mental health problems as they reflect brain and behavioral function. Detection and treatment of mental health problems remain an unmet need in epilepsy care that can impact epilepsy, psychosocial, scholastic, and quality-of-life outcomes. Given limited resources in everyday pediatric epilepsy practice, this targeted review provides a stratified plan and suggested tools for screening school-aged youth with epilepsy for the presence of mental health problems. Comanagement of epilepsy and associated comorbidities is a newer concept that may help address the complex, long-term needs of patients by using a multidisciplinary team approach and by engaging primary care providers. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Topics in geophysical fluid dynamics: Atmospheric dynamics, dynamo theory, and climate dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghil, M.; Childress, S.

    1987-01-01

    This text is the first study to apply systematically the successive bifurcations approach to complex time-dependent processes in large scale atmospheric dynamics, geomagnetism, and theoretical climate dynamics. The presentation of recent results on planetary-scale phenomena in the earth's atmosphere, ocean, cryosphere, mantle and core provides an integral account of mathematical theory and methods together with physical phenomena and processes. The authors address a number of problems in rapidly developing areas of geophysics, bringing into closer contact the modern tools of nonlinear mathematics and the novel problems of global change in the environment.

  10. High-resolution numerical approximation of traffic flow problems with variable lanes and free-flow velocities.

    PubMed

    Zhang, Peng; Liu, Ru-Xun; Wong, S C

    2005-05-01

    This paper develops macroscopic traffic flow models for a highway section with variable lanes and free-flow velocities, that involve spatially varying flux functions. To address this complex physical property, we develop a Riemann solver that derives the exact flux values at the interface of the Riemann problem. Based on this solver, we formulate Godunov-type numerical schemes to solve the traffic flow models. Numerical examples that simulate the traffic flow around a bottleneck that arises from a drop in traffic capacity on the highway section are given to illustrate the efficiency of these schemes.

  11. Information technology challenges of biodiversity and ecosystems informatics

    USGS Publications Warehouse

    Schnase, J.L.; Cushing, J.; Frame, M.; Frondorf, A.; Landis, E.; Maier, D.; Silberschatz, A.

    2003-01-01

    Computer scientists, biologists, and natural resource managers recently met to examine the prospects for advancing computer science and information technology research by focusing on the complex and often-unique challenges found in the biodiversity and ecosystem domain. The workshop and its final report reveal that the biodiversity and ecosystem sciences are fundamentally information sciences and often address problems having distinctive attributes of scale and socio-technical complexity. The paper provides an overview of the emerging field of biodiversity and ecosystem informatics and demonstrates how the demands of biodiversity and ecosystem research can advance our understanding and use of information technologies.

  12. Direct migration motion estimation and mode decision to decoder for a low-complexity decoder Wyner-Ziv video coding

    NASA Astrophysics Data System (ADS)

    Lei, Ted Chih-Wei; Tseng, Fan-Shuo

    2017-07-01

    This paper addresses the problem of high-computational complexity decoding in traditional Wyner-Ziv video coding (WZVC). The key focus is the migration of two traditionally high-computationally complex encoder algorithms, namely motion estimation and mode decision. In order to reduce the computational burden in this process, the proposed architecture adopts the partial boundary matching algorithm and four flexible types of block mode decision at the decoder. This approach does away with the need for motion estimation and mode decision at the encoder. The experimental results show that the proposed padding block-based WZVC not only decreases decoder complexity to approximately one hundredth that of the state-of-the-art DISCOVER decoding but also outperforms DISCOVER codec by up to 3 to 4 dB.

  13. Advanced Techniques for Ultrasonic Imaging in the Presence of Material and Geometrical Complexity

    NASA Astrophysics Data System (ADS)

    Brath, Alexander Joseph

    The complexity of modern engineering systems is increasing in several ways: advances in materials science are leading to the design of materials which are optimized for material strength, conductivity, temperature resistance etc., leading to complex material microstructure; the combination of additive manufacturing and shape optimization algorithms are leading to components with incredibly intricate geometrical complexity; and engineering systems are being designed to operate at larger scales in ever harsher environments. As a result, at the same time that there is an increasing need for reliable and accurate defect detection and monitoring capabilities, many of the currently available non-destructive evaluation techniques are rendered ineffective by this increasing material and geometrical complexity. This thesis addresses the challenges posed by inspection and monitoring problems in complex engineering systems with a three-part approach. In order to address material complexities, a model of wavefront propagation in anisotropic materials is developed, along with efficient numerical techniques to solve for the wavefront propagation in inhomogeneous, anisotropic material. Since material and geometrical complexities significantly affect the ability of ultrasonic energy to penetrate into the specimen, measurement configurations are tailored to specific applications which utilize arrays of either piezoelectric (PZT) or electromagnetic acoustic transducers (EMAT). These measurement configurations include novel array architectures as well as the exploration of ice as an acoustic coupling medium. Imaging algorithms which were previously developed for isotropic materials with simple geometry are adapted to utilize the more powerful wavefront propagation model and novel measurement configurations.

  14. Genetics problem solving and worldview

    NASA Astrophysics Data System (ADS)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  15. Modeling the Normal and Neoplastic Cell Cycle with 'Realistic Boolean Genetic Networks': Their Application for Understanding Carcinogenesis and Assessing Therapeutic Strategies

    NASA Technical Reports Server (NTRS)

    Szallasi, Zoltan; Liang, Shoudan

    2000-01-01

    In this paper we show how Boolean genetic networks could be used to address complex problems in cancer biology. First, we describe a general strategy to generate Boolean genetic networks that incorporate all relevant biochemical and physiological parameters and cover all of their regulatory interactions in a deterministic manner. Second, we introduce 'realistic Boolean genetic networks' that produce time series measurements very similar to those detected in actual biological systems. Third, we outline a series of essential questions related to cancer biology and cancer therapy that could be addressed by the use of 'realistic Boolean genetic network' modeling.

  16. MIMO: an efficient tool for molecular interaction maps overlap

    PubMed Central

    2013-01-01

    Background Molecular pathways represent an ensemble of interactions occurring among molecules within the cell and between cells. The identification of similarities between molecular pathways across organisms and functions has a critical role in understanding complex biological processes. For the inference of such novel information, the comparison of molecular pathways requires to account for imperfect matches (flexibility) and to efficiently handle complex network topologies. To date, these characteristics are only partially available in tools designed to compare molecular interaction maps. Results Our approach MIMO (Molecular Interaction Maps Overlap) addresses the first problem by allowing the introduction of gaps and mismatches between query and template pathways and permits -when necessary- supervised queries incorporating a priori biological information. It then addresses the second issue by relying directly on the rich graph topology described in the Systems Biology Markup Language (SBML) standard, and uses multidigraphs to efficiently handle multiple queries on biological graph databases. The algorithm has been here successfully used to highlight the contact point between various human pathways in the Reactome database. Conclusions MIMO offers a flexible and efficient graph-matching tool for comparing complex biological pathways. PMID:23672344

  17. Resource allocation in shared spectrum access communications for operators with diverse service requirements

    NASA Astrophysics Data System (ADS)

    Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki

    2016-12-01

    In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.

  18. The Difference between Uncertainty and Information, and Why This Matters

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.

    2016-12-01

    Earth science investigation and arbitration (for decision making) is very often organized around a concept of uncertainty. It seems relatively straightforward that the purpose of our science is to reduce uncertainty about how environmental systems will react and evolve under different conditions. I propose here that approaching a science of complex systems as a process of quantifying and reducing uncertainty is a mistake, and specifically a mistake that is rooted in certain rather hisoric logical errors. Instead I propose that we should be asking questions about information. I argue here that an information-based perspective facilitates almost trivial answers to environmental science questions that are either difficult or theoretically impossible to answer when posed as questions about uncertainty. In particular, I propose that an information-centric perspective leads to: Coherent and non-subjective hypothesis tests for complex system models. Process-level diagnostics for complex systems models. Methods for building complex systems models that allow for inductive inference without the need for a priori specification of likelihood functions or ad hoc error metrics. Asymptotically correct quantification of epistemic uncertainty. To put this in slightly more basic terms, I propose that an information-theoretic philosophy of science has the potential to resolve certain important aspects of the Demarcation Problem and the Duhem-Quine Problem, and that Hydrology and other Earth Systems Sciences can immediately capitalize on this to address some of our most difficult and persistent problems.

  19. Development of a Composite Tailoring Procedure for Airplane Wings

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    2000-01-01

    The quest for finding optimum solutions to engineering problems has existed for a long time. In modern times, the development of optimization as a branch of applied mathematics is regarded to have originated in the works of Newton, Bernoulli and Euler. Venkayya has presented a historical perspective on optimization in [1]. The term 'optimization' is defined by Ashley [2] as a procedure "...which attempts to choose the variables in a design process so as formally to achieve the best value of some performance index while not violating any of the associated conditions or constraints". Ashley presented an extensive review of practical applications of optimization in the aeronautical field till about 1980 [2]. It was noted that there existed an enormous amount of published literature in the field of optimization, but its practical applications in industry were very limited. Over the past 15 years, though, optimization has been widely applied to address practical problems in aerospace design [3-5]. The design of high performance aerospace systems is a complex task. It involves the integration of several disciplines such as aerodynamics, structural analysis, dynamics, and aeroelasticity. The problem involves multiple objectives and constraints pertaining to the design criteria associated with each of these disciplines. Many important trade-offs exist between the parameters involved which are used to define the different disciplines. Therefore, the development of multidisciplinary design optimization (MDO) techniques, in which different disciplines and design parameters are coupled into a closed loop numerical procedure, seems appropriate to address such a complex problem. The importance of MDO in successful design of aerospace systems has been long recognized. Recent developments in this field have been surveyed by Sobieszczanski-Sobieski and Haftka [6].

  20. Improving the Quality of Home Health Care for Children With Medical Complexity.

    PubMed

    Nageswaran, Savithri; Golden, Shannon L

    2017-08-01

    The objectives of this study are to describe the quality of home health care services for children with medical complexity, identify barriers to delivering optimal home health care, and discuss potential solutions to improve home health care delivery. In this qualitative study, we conducted 20 semistructured in-depth interviews with primary caregivers of children with medical complexity, and 4 focus groups with 18 home health nurses. During an iterative analysis process, we identified themes related to quality of home health care. There is substantial variability between home health nurses in the delivery of home health care to children. Lack of skills in nurses is common and has serious negative health consequences for children with medical complexity, including hospitalizations, emergency room visits, and need for medical procedures. Inadequate home health care also contributes to caregiver burden. A major barrier to delivering optimal home health care is the lack of training of home health nurses in pediatric care and technology use. Potential solutions for improving care include home health agencies training nurses in the care of children with medical complexity, support for nurses in clinical problem solving, and reimbursement for training nurses in pediatric home care. Caregiver-level interventions includes preparation of caregivers about: providing medical care for their children at home and addressing problems with home health care services. There are problems in the quality of home health care delivered to children with medical complexity. Training nurses in the care of children with medical complexity and preparing caregivers about home care could improve home health care quality. Copyright © 2017 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  1. Mass Media and Health: Opportunities for Improving the Nation's Health. A Report to the Office of Disease Prevention and Health Promotion and Office for Substance Abuse Prevention. Monograph Series.

    ERIC Educational Resources Information Center

    Public Health Service (DHHS), Rockville, MD. Office of Disease Prevention and Health Promotion.

    Several interested organizations and agencies completed an exploration of the complexities and challenges affecting the communication of health information through the mass media. The goal of this effort was to create a shared agenda for increasing cooperation between mass media and public health professionals in addressing the issues, problems,…

  2. Learning to Predict Social Influence in Complex Networks

    DTIC Science & Technology

    2012-03-29

    03/2010 – 17/03/2012 Abstract: First, we addressed the problem of analyzing information diffusion process in a social network using two kinds...algorithm which avoids the inner loop optimization during the search. We tested the performance using the structures of four real world networks, and...result of information diffusion that starts from the node. 2 We use “infected” and “activated” interchangeably. Efficient Discovery of Influential

  3. Molecular Mechanics and Dynamics Characterization of an "in silico" Mutated Protein: A Stand-Alone Lab Module or Support Activity for "in vivo" and "in vitro" Analyses of Targeted Proteins

    ERIC Educational Resources Information Center

    Chiang, Harry; Robinson, Lucy C.; Brame, Cynthia J.; Messina, Troy C.

    2013-01-01

    Over the past 20 years, the biological sciences have increasingly incorporated chemistry, physics, computer science, and mathematics to aid in the development and use of mathematical models. Such combined approaches have been used to address problems from protein structure-function relationships to the workings of complex biological systems.…

  4. Examining the Fundamental Obstructs of Adopting Cloud Computing for 9-1-1 Dispatch Centers in the USA

    ERIC Educational Resources Information Center

    Osman, Abdulaziz

    2016-01-01

    The purpose of this research study was to examine the unknown fears of embracing cloud computing which stretches across measurements like fear of change from leaders and the complexity of the technology in 9-1-1 dispatch centers in USA. The problem that was addressed in the study was that many 9-1-1 dispatch centers in USA are still using old…

  5. Crashworthiness simulations with DYNA3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schauer, D.A.; Hoover, C.G.; Kay, G.J.

    1996-04-01

    Current progress in parallel algorithm research and applications in vehicle crash simulation is described for the explicit, finite element algorithms in DYNA3D. Problem partitioning methods and parallel algorithms for contact at material interfaces are the two challenging algorithm research problems that are addressed. Two prototype parallel contact algorithms have been developed for treating the cases of local and arbitrary contact. Demonstration problems for local contact are crashworthiness simulations with 222 locally defined contact surfaces and a vehicle/barrier collision modeled with arbitrary contact. A simulation of crash tests conducted for a vehicle impacting a U-channel small sign post embedded in soilmore » has been run on both the serial and parallel versions of DYNA3D. A significant reduction in computational time has been observed when running these problems on the parallel version. However, to achieve maximum efficiency, complex problems must be appropriately partitioned, especially when contact dominates the computation.« less

  6. Towards safer, better healthcare: harnessing the natural properties of complex sociotechnical systems.

    PubMed

    Braithwaite, J; Runciman, W B; Merry, A F

    2009-02-01

    To sustain an argument that harnessing the natural properties of sociotechnical systems is necessary to promote safer, better healthcare. Triangulated analyses of discrete literature sources, particularly drawing on those from mathematics, sociology, marketing science and psychology. Progress involves the use of natural networks and exploiting features such as their scale-free and small world nature, as well as characteristics of group dynamics like natural appeal (stickiness) and propagation (tipping points). The agenda for change should be set by prioritising problems in natural categories, addressed by groups who self select on the basis of their natural interest in the areas in question, and who set clinical standards and develop tools, the use of which should be monitored by peers. This approach will facilitate the evidence-based practice that most agree is now overdue, but which has not yet been realised by the application of conventional methods. A key to health system transformation may lie under-recognised under our noses, and involves exploiting the naturally-occurring characteristics of complex systems. Current strategies to address healthcare problems are insufficient. Clinicians work best when their expertise is mobilised, and they flourish in groupings of their own interests and preference. Being invited, empowered and nurtured rather than directed, micro-managed and controlled through a hierarchy is preferable.

  7. Towards safer, better healthcare: harnessing the natural properties of complex sociotechnical systems

    PubMed Central

    Braithwaite, J; Runciman, W B; Merry, A F

    2009-01-01

    Objectives: To sustain an argument that harnessing the natural properties of sociotechnical systems is necessary to promote safer, better healthcare. Methods: Triangulated analyses of discrete literature sources, particularly drawing on those from mathematics, sociology, marketing science and psychology. Results: Progress involves the use of natural networks and exploiting features such as their scale-free and small world nature, as well as characteristics of group dynamics like natural appeal (stickiness) and propagation (tipping points). The agenda for change should be set by prioritising problems in natural categories, addressed by groups who self select on the basis of their natural interest in the areas in question, and who set clinical standards and develop tools, the use of which should be monitored by peers. This approach will facilitate the evidence-based practice that most agree is now overdue, but which has not yet been realised by the application of conventional methods. Conclusion: A key to health system transformation may lie under-recognised under our noses, and involves exploiting the naturally-occurring characteristics of complex systems. Current strategies to address healthcare problems are insufficient. Clinicians work best when their expertise is mobilised, and they flourish in groupings of their own interests and preference. Being invited, empowered and nurtured rather than directed, micro-managed and controlled through a hierarchy is preferable. PMID:19204130

  8. Proposing a health promotion framework to address gambling problems in Australian Indigenous communities.

    PubMed

    Fogarty, Marisa; Coalter, Nicola; Gordon, Ashley; Breen, Helen

    2018-02-01

    Gambling impacts affect Australian Indigenous families and communities in diverse and complex ways. Indigenous people throughout Australia engage in a broad range of regulated and unregulated gambling activities. Challenges in this area include the complexities that come with delivering services and programmes between the most remote regions, to highly populated towns and cities of Australia. There is little knowledge transfer between states and territories in Australia and no conceptual understanding or analysis of what constitutes 'best practice' in gambling service delivery for Indigenous people, families and communities. This article reviews health promotion approaches used in Australia, with a particular focus on Indigenous and gambling-based initiatives. Contributing to this review is an examination of health promotion strategies used in Indigenous gambling service delivery in the Northern Territory, New South Wales and Western Australia, demonstrating diversity and innovation in approaches. The article concludes by emphasizing the potential value of adopting health promotion strategies to underpin programme and service delivery for addressing gambling problems in Australian Indigenous communities. However, success is contingent on robust, evidence-based programme design, implementation and evaluation that adhere to health promotion principles. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer programming formulation, the solution of which generates feasible and near-optimal routes for individual flights. The algorithm, termed the Lagrangian Generation Algorithm, is used to solve practical problems in the southwestern portion of United States in which the solutions are within 1% of the corresponding lower bounds.

  10. Mathematical modeling of the aging processes and the mechanisms of mortality: paramount role of heterogeneity.

    PubMed

    Rossolini, G; Piantanelli, L

    2001-08-01

    Main problems of modeling the link between aging processes and mechanisms of mortality are addressed. Various applications of Gompertz's law, which allowed to formulate some fruitful hypotheses on the field, are reviewed. Some pitfalls occurring in its applications are also discussed using a model built on purpose to overcome these difficulties. The role played by heterogeneity emerges as the common cause of some relevant failure in using Gompertz's law and the necessary key ingredient of any model aimed to interpret the link between aging and mortality correctly. Though a number of problems are related to inter-individual variability, the search for their solution can lead to an intriguing approach to the study of aging and mortality. Living beings can be considered as complex systems and their age-related changes can be described at the light of complex system theory.

  11. Strategic optimisation of microgrid by evolving a unitised regenerative fuel cell system operational criterion

    NASA Astrophysics Data System (ADS)

    Bhansali, Gaurav; Singh, Bhanu Pratap; Kumar, Rajesh

    2016-09-01

    In this paper, the problem of microgrid optimisation with storage has been addressed in an unaccounted way rather than confining it to loss minimisation. Unitised regenerative fuel cell (URFC) systems have been studied and employed in microgrids to store energy and feed it back into the system when required. A value function-dependent on line losses, URFC system operational cost and stored energy at the end of the day are defined here. The function is highly complex, nonlinear and multi dimensional in nature. Therefore, heuristic optimisation techniques in combination with load flow analysis are used here to resolve the network and time domain complexity related with the problem. Particle swarm optimisation with the forward/backward sweep algorithm ensures optimal operation of microgrid thereby minimising the operational cost of the microgrid. Results are shown and are found to be consistently improving with evolution of the solution strategy.

  12. Distributed Cognition and Process Management Enabling Individualized Translational Research: The NIH Undiagnosed Diseases Program Experience

    PubMed Central

    Links, Amanda E.; Draper, David; Lee, Elizabeth; Guzman, Jessica; Valivullah, Zaheer; Maduro, Valerie; Lebedev, Vlad; Didenko, Maxim; Tomlin, Garrick; Brudno, Michael; Girdea, Marta; Dumitriu, Sergiu; Haendel, Melissa A.; Mungall, Christopher J.; Smedley, Damian; Hochheiser, Harry; Arnold, Andrew M.; Coessens, Bert; Verhoeven, Steven; Bone, William; Adams, David; Boerkoel, Cornelius F.; Gahl, William A.; Sincan, Murat

    2016-01-01

    The National Institutes of Health Undiagnosed Diseases Program (NIH UDP) applies translational research systematically to diagnose patients with undiagnosed diseases. The challenge is to implement an information system enabling scalable translational research. The authors hypothesized that similar complex problems are resolvable through process management and the distributed cognition of communities. The team, therefore, built the NIH UDP integrated collaboration system (UDPICS) to form virtual collaborative multidisciplinary research networks or communities. UDPICS supports these communities through integrated process management, ontology-based phenotyping, biospecimen management, cloud-based genomic analysis, and an electronic laboratory notebook. UDPICS provided a mechanism for efficient, transparent, and scalable translational research and thereby addressed many of the complex and diverse research and logistical problems of the NIH UDP. Full definition of the strengths and deficiencies of UDPICS will require formal qualitative and quantitative usability and process improvement measurement. PMID:27785453

  13. Technical Assessment of the National Full Scale Aerodynamic Complex Fan Blades Repair

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Dixon, Peter G.; St.Clair, Terry L.; Johns, William E.

    1998-01-01

    This report describes the principal activities of a technical review team formed to address National Full Scale Aerodynamic Complex (NFAC) blade repair problems. In particular, the problem of lack of good adhesive bonding of the composite overwrap to the Hyduliginum wood blade material was studied extensively. Description of action plans and technical elements of the plans are provided. Results of experiments designed to optimize the bonding process and bonding strengths obtained on a full scale blade using a two-step cure process with adhesive primers are presented. Consensus recommendations developed by the review team in conjunction with the NASA Ames Fan Blade Repair Project Team are provided along with lessons learned on this program. Implementation of recommendations resulted in achieving good adhesive bonds between the composite materials and wooden blades, thereby providing assurance that the repaired fan blades will meet or exceed operational life requirements.

  14. Recurring Vivid Dreams in an Older Hmong Man With Complex Trauma Experience and Cognitive Impairment.

    PubMed

    Askar, Wajih; Khan, Ariba; Borson, Soo; Malone, Michael L

    2017-08-01

    Health care workers need to consider the culture and ethnic preferences prevalent in the Hmong community in order to provide optimal care. We describe an older Hmong man to illustrate the challenges faced and competencies needed by primary care. An 80-year-old non-English speaking Hmong man with diabetes, nerve sheath tumor, and hypertension presented to the outpatient clinic with his grandson complaining of sleep problems. He had had 2 vivid recurring dreams during the previous few months. Memory assessment was significant for dementia. This case addresses the complexity in taking care of a non-English speaking Hmong older man who has memory loss, trauma in adulthood, multiple caregivers, and sleep problems. A careful history from patient and family to get to know their cultural preferences and attitudes was helpful. Identification of the primary caregiver was critical in providing care.

  15. Brain Dynamics: Methodological Issues and Applications in Psychiatric and Neurologic Diseases

    NASA Astrophysics Data System (ADS)

    Pezard, Laurent

    The human brain is a complex dynamical system generating the EEG signal. Numerical methods developed to study complex physical dynamics have been used to characterize EEG since the mid-eighties. This endeavor raised several issues related to the specificity of EEG. Firstly, theoretical and methodological studies should address the major differences between the dynamics of the human brain and physical systems. Secondly, this approach of EEG signal should prove to be relevant for dealing with physiological or clinical problems. A set of studies performed in our group is presented here within the context of these two problematic aspects. After the discussion of methodological drawbacks, we review numerical simulations related to the high dimension and spatial extension of brain dynamics. Experimental studies in neurologic and psychiatric disease are then presented. We conclude that if it is now clear that brain dynamics changes in relation with clinical situations, methodological problems remain largely unsolved.

  16. Fuzzy Adaptive Output Feedback Control of Uncertain Nonlinear Systems With Prescribed Performance.

    PubMed

    Zhang, Jin-Xi; Yang, Guang-Hong

    2018-05-01

    This paper investigates the tracking control problem for a family of strict-feedback systems in the presence of unknown nonlinearities and immeasurable system states. A low-complexity adaptive fuzzy output feedback control scheme is proposed, based on a backstepping method. In the control design, a fuzzy adaptive state observer is first employed to estimate the unmeasured states. Then, a novel error transformation approach together with a new modification mechanism is introduced to guarantee the finite-time convergence of the output error to a predefined region and ensure the closed-loop stability. Compared with the existing methods, the main advantages of our approach are that: 1) without using extra command filters or auxiliary dynamic surface control techniques, the problem of explosion of complexity can still be addressed and 2) the design procedures are independent of the initial conditions. Finally, two practical examples are performed to further illustrate the above theoretic findings.

  17. Clarification process: Resolution of decision-problem conditions

    NASA Technical Reports Server (NTRS)

    Dieterly, D. L.

    1980-01-01

    A model of a general process which occurs in both decisionmaking and problem-solving tasks is presented. It is called the clarification model and is highly dependent on information flow. The model addresses the possible constraints of individual indifferences and experience in achieving success in resolving decision-problem conditions. As indicated, the application of the clarification process model is only necessary for certain classes of the basic decision-problem condition. With less complex decision problem conditions, certain phases of the model may be omitted. The model may be applied across a wide range of decision problem conditions. The model consists of two major components: (1) the five-phase prescriptive sequence (based on previous approaches to both concepts) and (2) the information manipulation function (which draws upon current ideas in the areas of information processing, computer programming, memory, and thinking). The two components are linked together to provide a structure that assists in understanding the process of resolving problems and making decisions.

  18. Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions

    PubMed Central

    2017-01-01

    Multi-robot task allocation is one of the main problems to address in order to design a multi-robot system, very especially when robots form coalitions that must carry out tasks before a deadline. A lot of factors affect the performance of these systems and among them, this paper is focused on the physical interference effect, produced when two or more robots want to access the same point simultaneously. To our best knowledge, this paper presents the first formal description of multi-robot task allocation that includes a model of interference. Thanks to this description, the complexity of the allocation problem is analyzed. Moreover, the main contribution of this paper is to provide the conditions under which the optimal solution of the aforementioned allocation problem can be obtained solving an integer linear problem. The optimal results are compared to previous allocation algorithms already proposed by the first two authors of this paper and with a new method proposed in this paper. The results obtained show how the new task allocation algorithms reach up more than an 80% of the median of the optimal solution, outperforming previous auction algorithms with a huge reduction of the execution time. PMID:28118384

  19. Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions.

    PubMed

    Guerrero, Jose; Oliver, Gabriel; Valero, Oscar

    2017-01-01

    Multi-robot task allocation is one of the main problems to address in order to design a multi-robot system, very especially when robots form coalitions that must carry out tasks before a deadline. A lot of factors affect the performance of these systems and among them, this paper is focused on the physical interference effect, produced when two or more robots want to access the same point simultaneously. To our best knowledge, this paper presents the first formal description of multi-robot task allocation that includes a model of interference. Thanks to this description, the complexity of the allocation problem is analyzed. Moreover, the main contribution of this paper is to provide the conditions under which the optimal solution of the aforementioned allocation problem can be obtained solving an integer linear problem. The optimal results are compared to previous allocation algorithms already proposed by the first two authors of this paper and with a new method proposed in this paper. The results obtained show how the new task allocation algorithms reach up more than an 80% of the median of the optimal solution, outperforming previous auction algorithms with a huge reduction of the execution time.

  20. SCOUT: simultaneous time segmentation and community detection in dynamic networks

    PubMed Central

    Hulovatyy, Yuriy; Milenković, Tijana

    2016-01-01

    Many evolving complex real-world systems can be modeled via dynamic networks. An important problem in dynamic network research is community detection, which finds groups of topologically related nodes. Typically, this problem is approached by assuming either that each time point has a distinct community organization or that all time points share a single community organization. The reality likely lies between these two extremes. To find the compromise, we consider community detection in the context of the problem of segment detection, which identifies contiguous time periods with consistent network structure. Consequently, we formulate a combined problem of segment community detection (SCD), which simultaneously partitions the network into contiguous time segments with consistent community organization and finds this community organization for each segment. To solve SCD, we introduce SCOUT, an optimization framework that explicitly considers both segmentation quality and partition quality. SCOUT addresses limitations of existing methods that can be adapted to solve SCD, which consider only one of segmentation quality or partition quality. In a thorough evaluation, SCOUT outperforms the existing methods in terms of both accuracy and computational complexity. We apply SCOUT to biological network data to study human aging. PMID:27881879

  1. Engineering Complex Embedded Systems with State Analysis and the Mission Data System

    NASA Technical Reports Server (NTRS)

    Ingham, Michel D.; Rasmussen, Robert D.; Bennett, Matthew B.; Moncada, Alex C.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer s intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using State Analysis and how these requirements inform the design of the system software, using representative spacecraft examples.

  2. Designing the future of healthcare.

    PubMed

    Fidsa, Gianfranco Zaccai

    2009-01-01

    This paper describes the application of a holistic design process to a variety of problems plaguing current healthcare systems. A design process for addressing complex, multifaceted problems is contrasted with the piecemeal application of technological solutions to specific medical or administrative problems. The goal of this design process is the ideal customer experience, specifically the ideal experience for patients, healthcare providers, and caregivers within a healthcare system. Holistic design is shown to be less expensive and wasteful in the long run because it avoids solving one problem within a complex system at the cost of creating other problems within that system. The article applies this approach to the maintenance of good health throughout life; to the creation of an ideal experience when a person does need medical care; to the maintenance of personal independence as one ages; and to the enjoyment of a comfortable and dignified death. Virginia Mason Medical Center is discussed as an example of a healthcare institution attempting to create ideal patient and caregiver experiences, in this case by applying the principles of the Toyota Production System ("lean manufacturing") to healthcare. The article concludes that healthcare is inherently dedicated to an ideal, that science and technology have brought it closer to that ideal, and that design can bring it closer still.

  3. A comparison of approaches for finding minimum identifying codes on graphs

    NASA Astrophysics Data System (ADS)

    Horan, Victoria; Adachi, Steve; Bak, Stanley

    2016-05-01

    In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However, many combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a typical computer. One sample problem explored is that of finding a minimum identifying code. To work around the computational issues, a variety of methods are explored and consist of a parallel computing approach using MATLAB, an adiabatic quantum optimization approach using a D-Wave quantum annealing processor, and lastly using satisfiability modulo theory (SMT) and corresponding SMT solvers. Each of these methods requires the problem to be formulated in a unique manner. In this paper, we address the challenges of computing solutions to this NP-hard problem with respect to each of these methods.

  4. A case-based, problem-based learning approach to prepare master of public health candidates for the complexities of global health.

    PubMed

    Leon, Juan S; Winskell, Kate; McFarland, Deborah A; del Rio, Carlos

    2015-03-01

    Global health is a dynamic, emerging, and interdisciplinary field. To address current and emerging global health challenges, we need a public health workforce with adaptable and collaborative problem-solving skills. In the 2013-2014 academic year, the Hubert Department of Global Health at the Rollins School of Public Health-Emory University launched an innovative required core course for its first-year Master of Public Health students in the global health track. The course uses a case-based, problem-based learning approach to develop global health competencies. Small teams of students propose solutions to these problems by identifying learning issues and critically analyzing and synthesizing new information. We describe the course structure and logistics used to apply this approach in the context of a large class and share lessons learned.

  5. A Novel Algorithm for Detecting Protein Complexes with the Breadth First Search

    PubMed Central

    Tang, Xiwei; Wang, Jianxin; Li, Min; He, Yiming; Pan, Yi

    2014-01-01

    Most biological processes are carried out by protein complexes. A substantial number of false positives of the protein-protein interaction (PPI) data can compromise the utility of the datasets for complexes reconstruction. In order to reduce the impact of such discrepancies, a number of data integration and affinity scoring schemes have been devised. The methods encode the reliabilities (confidence) of physical interactions between pairs of proteins. The challenge now is to identify novel and meaningful protein complexes from the weighted PPI network. To address this problem, a novel protein complex mining algorithm ClusterBFS (Cluster with Breadth-First Search) is proposed. Based on the weighted density, ClusterBFS detects protein complexes of the weighted network by the breadth first search algorithm, which originates from a given seed protein used as starting-point. The experimental results show that ClusterBFS performs significantly better than the other computational approaches in terms of the identification of protein complexes. PMID:24818139

  6. Social and ethical dimension of the natural sciences, complex problems of the age, interdisciplinarity, and the contribution of education

    NASA Astrophysics Data System (ADS)

    Develaki, Maria

    2008-09-01

    In view of the complex problems of this age, the question of the socio-ethical dimension of science acquires particular importance. We approach this matter from a philosophical and sociological standpoint, looking at such focal concerns as the motivation, purposes and methods of scientific activity, the ambivalence of scientific research and the concomitant risks, and the conflict between research freedom and external socio-political intervention. We then point out the impediments to the effectiveness of cross-disciplinary or broader meetings for addressing these complex problems and managing the associated risks, given the difficulty in communication between experts in different fields and non-experts, difficulties that education is challenged to help resolve. We find that the social necessity of informed decision-making on the basis of cross-disciplinary collaboration is reflected in the newer curricula, such as that of Greece, in aims like the acquisition of cross-subject knowledge and skills, and the ability to make decisions on controversial issues involving value conflicts. The interest and the reflections of the science education community in these matters increase its—traditionally limited—contribution to the theoretical debate on education and, by extension, the value of science education in the education system.

  7. The Greenhouse Effect and the Destruction of the Ozone Shield: Implications for Rhetoric and Criticism.

    NASA Astrophysics Data System (ADS)

    Stoller, Martin Reid

    Rhetoric, in the Aristotelian sense of "the available means of persuasion," is a crucial, often determining component of the process of making public policy generally, and environmental policy specifically. Environmental crises which have been addressed by the governmental, industrial, and social policy -making establishments have tended to be treated in a manner similar to that in which social, political, economic, military, and other problems have been commonly treated, utilizing a traditional rhetoric, including long-proven persuasive language and arguments. Such problems as air pollution and water pollution have been, to some degree, successfully addressed in this manner. A new and fundamentally different cluster of environmental problems has recently been recognized by elements of the policy making establishment as a legitimate candidate for consideration and policy formation. These environmental problems differ from the more familiar type in a variety of ways, each of which, to a greater or lesser degree, make problematic for those activists concerned with these crises the production of an effective crisis-oriented rhetoric. This study addresses two such closely related phenomena, the Greenhouse Effect and ozone depletion, and identifies those characteristics which contribute to their rhetorical complexity. Using traditional techniques of rhetorical examination, primarily neo-Aristotelian analysis, this study demonstrates the inadequacy of current crisis-oriented rhetoric, and identifies the causes of this rhetorical ineffectiveness. The study concludes that the mediation of such crises as the Greenhouse Effect and ozone depletion cannot be significantly facilitated by traditional environmental-oriented rhetoric, and may in fact be hindered by the use of rhetoric associated with fundamentally different (i.e., easier to solve) environmental problems.

  8. Chemistry, manufacturing and controls in passive transdermal drug delivery systems.

    PubMed

    Goswami, Tarun; Audett, Jay

    2015-01-01

    Transdermal drug delivery systems (TDDS) are used for the delivery of the drugs through the skin into the systemic circulation by applying them to the intact skin. The development of TDDS is a complex and multidisciplinary affair which involves identification of suitable drug, excipients and various other components. There have been numerous problems reported with respect to TDDS quality and performance. These problems can be reduced by appropriately addressing chemistry, manufacturing and controls requirements, which would thereby result in development of robust TDDS product and processes. This article provides recommendations on the chemistry, manufacturing and controls focusing on the unique technical aspects of TDDS.

  9. The design of multiplayer online video game systems

    NASA Astrophysics Data System (ADS)

    Hsu, Chia-chun A.; Ling, Jim; Li, Qing; Kuo, C.-C. J.

    2003-11-01

    The distributed Multiplayer Online Game (MOG) system is complex since it involves technologies in computer graphics, multimedia, artificial intelligence, computer networking, embedded systems, etc. Due to the large scope of this problem, the design of MOG systems has not yet been widely addressed in the literatures. In this paper, we review and analyze the current MOG system architecture followed by evaluation. Furthermore, we propose a clustered-server architecture to provide a scalable solution together with the region oriented allocation strategy. Two key issues, i.e. interesting management and synchronization, are discussed in depth. Some preliminary ideas to deal with the identified problems are described.

  10. Schedule Risks Due to Delays in Advanced Technology Development

    NASA Technical Reports Server (NTRS)

    Reeves, John D. Jr.; Kayat, Kamal A.; Lim, Evan

    2008-01-01

    This paper discusses a methodology and modeling capability that probabilistically evaluates the likelihood and impacts of delays in advanced technology development prior to the start of design, development, test, and evaluation (DDT&E) of complex space systems. The challenges of understanding and modeling advanced technology development considerations are first outlined, followed by a discussion of the problem in the context of lunar surface architecture analysis. The current and planned methodologies to address the problem are then presented along with sample analyses and results. The methodology discussed herein provides decision-makers a thorough understanding of the schedule impacts resulting from the inclusion of various enabling advanced technology assumptions within system design.

  11. A design thinking framework for healthcare management and innovation.

    PubMed

    Roberts, Jess P; Fisher, Thomas R; Trowbridge, Matthew J; Bent, Christine

    2016-03-01

    The business community has learned the value of design thinking as a way to innovate in addressing people's needs--and health systems could benefit enormously from doing the same. This paper lays out how design thinking applies to healthcare challenges and how systems might utilize this proven and accessible problem-solving process. We show how design thinking can foster new approaches to complex and persistent healthcare problems through human-centered research, collective and diverse teamwork and rapid prototyping. We introduce the core elements of design thinking for a healthcare audience and show how it can supplement current healthcare management, innovation and practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Combustion and fires in low gravity

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1994-01-01

    Fire safety always receives priority attention in NASA mission designs and operations, with emphasis on fire prevention and material acceptance standards. Recently, interest in spacecraft fire-safety research and development has increased because improved understanding of the significant differences between low-gravity and normal-gravity combustion suggests that present fire-safety techniques may be inadequate or, at best, non-optimal; and the complex and permanent orbital operations in Space Station Freedom demand a higher level of safety standards and practices. This presentation outlines current practices and problems in fire prevention and detection for spacecraft, specifically the Space Station Freedom's fire protection. Also addressed are current practices and problems in fire extinguishment for spacecraft.

  13. Investigation of Multi-Criteria Decision Consistency: A Triplex Approach to Optimal Oilfield Portfolio Investment Decisions

    NASA Astrophysics Data System (ADS)

    Qaradaghi, Mohammed

    Complexity of the capital intensive oil and gas portfolio investments is continuously growing. It is manifested in the constant increase in the type, number and degree of risks and uncertainties, which consequently lead to more challenging decision making problems. A typical complex decision making problem in petroleum exploration and production (E&P) is the selection and prioritization of oilfields/projects in a portfolio investment. Prioritizing oilfields maybe required for different purposes, including the achievement of a targeted production and allocation of limited available development resources. These resources cannot be distributed evenly nor can they be allocated based on the oilfield size or production capacity alone since various other factors need to be considered simultaneously. These factors may include subsurface complexity, size of reservoir, plateau production and needed infrastructure in addition to other issues of strategic concern, such as socio-economic, environmental and fiscal policies, particularly when the decision making involves governments or national oil companies. Therefore, it would be imperative to employ decision aiding tools that not only address these factors, but also incorporate the decision makers' preferences clearly and accurately. However, the tools commonly used in project portfolio selection and optimization, including intuitive approaches, vary in their focus and strength in addressing the different criteria involved in such decision problems. They are also disadvantaged by a number of drawbacks, which may include lacking the capacity to address multiple and interrelated criteria, uncertainty and risk, project relationship with regard to value contribution and optimum resource utilization, non-monetary attributes, decision maker's knowledge and expertise, in addition to varying levels of ease of use and other practical and theoretical drawbacks. These drawbacks have motivated researchers to investigate other tools and techniques that can provide more flexibility and inclusiveness in the decision making process, such as Multi-Criteria Decision Making (MCDM) methods. However, it can be observed that the MCDM literature: 1) is primarily focused on suggesting certain MCDM techniques to specific problems without providing sufficient evidence for their selection, 2) is inadequate in addressing MCDM in E&P portfolio selection and prioritization compared with other fields, and 3) does not address prioritizing brownfields (i.e., developed oilfields). This research study aims at addressing the above drawbacks through combining three MCDM methods (i.e., AHP, PROMETHEE and TOPSIS) into a single decision making tool that can support optimal oilfield portfolio investment decisions by helping determine the share of each oilfield of the total development resources allocated. Selecting these methods is reinforced by a pre-deployment and post-deployment validation framework. In addition, this study proposes a two-dimensional consistency test to verify the output coherence or prioritization stability of the MCDM methods in comparison with an intuitive approach. Nine scenarios representing all possible outcomes of the internal and external consistency tests are further proposed to reach a conclusion. The methodology is applied to a case study of six major oilfields in Iraq to generate percentage shares of each oilfield of a total production target that is in line with Iraq's aspiration to increase oil production. However, the methodology is intended to be applicable to other E&P portfolio investment prioritization scenarios by taking the specific contextual characteristics into consideration.

  14. Interdisciplinary Matchmaking: Choosing Collaborators by Skill, Acquaintance and Trust

    NASA Astrophysics Data System (ADS)

    Hupa, Albert; Rzadca, Krzysztof; Wierzbicki, Adam; Datta, Anwitaman

    Social networks are commonly used to enhance recommender systems. Most of such systems recommend a single resource or a person. However, complex problems or projects usually require a team of experts that must work together on a solution. Team recommendation is much more challenging, mostly because of the complex interpersonal relations between members. This chapter presents fundamental concepts on how to score a team based on members' social context and their suitability for a particular project. We represent the social context of an individual as a three-dimensional social network (3DSN) composed of a knowledge dimension expressing skills, a trust dimension and an acquaintance dimension. Dimensions of a 3DSN are used to mathematically formalize the criteria for prediction of the team's performance. We use these criteria to formulate the team recommendation problem as a multi-criteria optimization problem. We demonstrate our approach on empirical data crawled from two web2.0 sites: onephoto.net and a social networking site. We construct 3DSNs and analyze properties of team's performance criteria.

  15. Using machine-learning methods to analyze economic loss function of quality management processes

    NASA Astrophysics Data System (ADS)

    Dzedik, V. A.; Lontsikh, P. A.

    2018-05-01

    During analysis of quality management systems, their economic component is often analyzed insufficiently. To overcome this issue, it is necessary to withdraw the concept of economic loss functions from tolerance thinking and address it. Input data about economic losses in processes have a complex form, thus, using standard tools to solve this problem is complicated. Use of machine learning techniques allows one to obtain precise models of the economic loss function based on even the most complex input data. Results of such analysis contain data about the true efficiency of a process and can be used to make investment decisions.

  16. Brief introductory guide to agent-based modeling and an illustration from urban health research.

    PubMed

    Auchincloss, Amy H; Garcia, Leandro Martin Totaro

    2015-11-01

    There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation.

  17. Brief introductory guide to agent-based modeling and an illustration from urban health research

    PubMed Central

    Auchincloss, Amy H.; Garcia, Leandro Martin Totaro

    2017-01-01

    There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation. PMID:26648364

  18. Taser and Conducted Energy Weapons.

    PubMed

    LeClair, Thomas G; Meriano, Tony

    2015-01-01

    It is clear that CEWs are an increasingly prevalent law enforcement tool, adopted to address a complex and challenging problem. The potential for serious injury from a single deployment of a CEW is extremely low. The debate regarding the link between these electrical weapons and sudden in-custody death is likely to continue because their use is often in complex and volatile situations. Any consideration of injuries has to be put into that context. One must also consider what injuries to a subject would result if an alternative force method was used. Furthermore, the potential benefits of CEWs, including reduction in injuries to the public and law-enforcement officers, need to be considered.

  19. Disentangling the stochastic behavior of complex time series

    NASA Astrophysics Data System (ADS)

    Anvari, Mehrnaz; Tabar, M. Reza Rahimi; Peinke, Joachim; Lehnertz, Klaus

    2016-10-01

    Complex systems involving a large number of degrees of freedom, generally exhibit non-stationary dynamics, which can result in either continuous or discontinuous sample paths of the corresponding time series. The latter sample paths may be caused by discontinuous events - or jumps - with some distributed amplitudes, and disentangling effects caused by such jumps from effects caused by normal diffusion processes is a main problem for a detailed understanding of stochastic dynamics of complex systems. Here we introduce a non-parametric method to address this general problem. By means of a stochastic dynamical jump-diffusion modelling, we separate deterministic drift terms from different stochastic behaviors, namely diffusive and jumpy ones, and show that all of the unknown functions and coefficients of this modelling can be derived directly from measured time series. We demonstrate appli- cability of our method to empirical observations by a data-driven inference of the deterministic drift term and of the diffusive and jumpy behavior in brain dynamics from ten epilepsy patients. Particularly these different stochastic behaviors provide extra information that can be regarded valuable for diagnostic purposes.

  20. Submarine harbor navigation using image data

    NASA Astrophysics Data System (ADS)

    Stubberud, Stephen C.; Kramer, Kathleen A.

    2017-01-01

    The process of ingress and egress of a United States Navy submarine is a human-intensive process that takes numerous individuals to monitor locations and for hazards. Sailors pass vocal information to bridge where it is processed manually. There is interest in using video imaging of the periscope view to more automatically provide navigation within harbors and other points of ingress and egress. In this paper, video-based navigation is examined as a target-tracking problem. While some image-processing methods claim to provide range information, the moving platform problem and weather concerns, such as fog, reduce the effectiveness of these range estimates. The video-navigation problem then becomes an angle-only tracking problem. Angle-only tracking is known to be fraught with difficulties, due to the fact that the unobservable space is not the null space. When using a Kalman filter estimator to perform the tracking, significant errors arise which could endanger the submarine. This work analyzes the performance of the Kalman filter when angle-only measurements are used to provide the target tracks. This paper addresses estimation unobservability and the minimal set of requirements that are needed to address it in this complex but real-world problem. Three major issues are addressed: the knowledge of navigation beacons/landmarks' locations, the minimal number of these beacons needed to maintain the course, and update rates of the angles of the landmarks as the periscope rotates and landmarks become obscured due to blockage and weather. The goal is to address the problem of navigation to and from the docks, while maintaining the traversing of the harbor channel based on maritime rules relying solely on the image-based data. The minimal number of beacons will be considered. For this effort, the image correlation from frame to frame is assumed to be achieved perfectly. Variation in the update rates and the dropping of data due to rotation and obscuration is considered. The analysis will be based on a simple straight-line channel harbor entry to the dock, similar to a submarine entering the submarine port in San Diego.

  1. Criteria for assessing problem solving and decision making in complex environments

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith

    1993-01-01

    Training crews to cope with unanticipated problems in high-risk, high-stress environments requires models of effective problem solving and decision making. Existing decision theories use the criteria of logical consistency and mathematical optimality to evaluate decision quality. While these approaches are useful under some circumstances, the assumptions underlying these models frequently are not met in dynamic time-pressured operational environments. Also, applying formal decision models is both labor and time intensive, a luxury often lacking in operational environments. Alternate approaches and criteria are needed. Given that operational problem solving and decision making are embedded in ongoing tasks, evaluation criteria must address the relation between those activities and satisfaction of broader task goals. Effectiveness and efficiency become relevant for judging reasoning performance in operational environments. New questions must be addressed: What is the relation between the quality of decisions and overall performance by crews engaged in critical high risk tasks? Are different strategies most effective for different types of decisions? How can various decision types be characterized? A preliminary model of decision types found in air transport environments will be described along with a preliminary performance model based on an analysis of 30 flight crews. The performance analysis examined behaviors that distinguish more and less effective crews (based on performance errors). Implications for training and system design will be discussed.

  2. Addressing Social Determinants Of Health Through Medical-Legal Partnerships.

    PubMed

    Regenstein, Marsha; Trott, Jennifer; Williamson, Alanna; Theiss, Joanna

    2018-03-01

    The US health care system needs effective tools to address complex social and environmental issues that perpetuate health inequities, such as food insecurity, education and employment barriers, and substandard housing conditions. The medical-legal partnership is a collaborative intervention that embeds civil legal aid professionals in health care settings to address seemingly intractable social problems that contribute to poor health outcomes and health disparities. More than three hundred health care organizations are home to medical-legal partnerships. This article draws upon national survey data and field research to identify three models of the medical-legal partnership that health care organizations have adopted and the core elements of infrastructure that they share. Financing and commitment from health care organizations are key considerations for sustaining and scaling up the medical-legal partnership as a health equity intervention.

  3. Damage and strength of composite materials: Trends, predictions, and challenges

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin

    1994-01-01

    Research on damage mechanisms and ultimate strength of composite materials relevant to scaling issues will be addressed in this viewgraph presentation. The use of fracture mechanics and Weibull statistics to predict scaling effects for the onset of isolated damage mechanisms will be highlighted. The ability of simple fracture mechanics models to predict trends that are useful in parametric or preliminary designs studies will be reviewed. The limitations of these simple models for complex loading conditions will also be noted. The difficulty in developing generic criteria for the growth of these mechanisms needed in progressive damage models to predict strength will be addressed. A specific example for a problem where failure is a direct consequence of progressive delamination will be explored. A damage threshold/fail-safety concept for addressing composite damage tolerance will be discussed.

  4. Aviation and the delivery of medical care in remote regions: the Lesotho HIV experience.

    PubMed

    Furin, Jennifer; Shutts, Mike; Keshavjee, Salmaan

    2008-02-01

    In many regions of the world plagued by high burdens of disease, there is difficulty in accessing basic medical care. This is often due to logistical constraints and a lack of infrastructure such as roads. Medical aviation can play a major role in addressing some of these crucial issues as it allows for the rapid transport of patients, personnel, and medications to remote-and sometimes otherwise inaccessible-areas. Lesotho is a mountainous nation of 2 million people that provides a good example of medical aviation as a cornerstone in the delivery of health care. The population has a reported HIV seroprevalence of 25%, and many patients live in rural areas that are inaccessible by road. Mission Aviation Fellowship has joined forces with a medical team from the nongovernmental organization Partners In Health in an effort to launch a comprehensive program to address HIV and related problems in rural Lesotho. This medical aviation partnership has allowed for the provision of HIV prevention and treatment services to thousands of people living in the mountains. This commentary describes how medical aviation has been crucial in developing models to address complex, serious health problems in remote settings.

  5. Classification of brain MRI with big data and deep 3D convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Wegmayr, Viktor; Aitharaju, Sai; Buhmann, Joachim

    2018-02-01

    Our ever-aging society faces the growing problem of neurodegenerative diseases, in particular dementia. Magnetic Resonance Imaging provides a unique tool for non-invasive investigation of these brain diseases. However, it is extremely difficult for neurologists to identify complex disease patterns from large amounts of three-dimensional images. In contrast, machine learning excels at automatic pattern recognition from large amounts of data. In particular, deep learning has achieved impressive results in image classification. Unfortunately, its application to medical image classification remains difficult. We consider two reasons for this difficulty: First, volumetric medical image data is considerably scarcer than natural images. Second, the complexity of 3D medical images is much higher compared to common 2D images. To address the problem of small data set size, we assemble the largest dataset ever used for training a deep 3D convolutional neural network to classify brain images as healthy (HC), mild cognitive impairment (MCI) or Alzheimers disease (AD). We use more than 20.000 images from subjects of these three classes, which is almost 9x the size of the previously largest data set. The problem of high dimensionality is addressed by using a deep 3D convolutional neural network, which is state-of-the-art in large-scale image classification. We exploit its ability to process the images directly, only with standard preprocessing, but without the need for elaborate feature engineering. Compared to other work, our workflow is considerably simpler, which increases clinical applicability. Accuracy is measured on the ADNI+AIBL data sets, and the independent CADDementia benchmark.

  6. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part addresses modeling of the arc process for fullerene and carbon nanotube production using O-D, 1-D and 2-D fluid flow models. The third part addresses simulations of the pulsed laser ablation process using time-dependent techniques in 2-D, and a steady state 2-D simulation of a continuous laser ablation process. The fourth part addresses steady state modeling in O-D and 2-D of the HiPco process. In each of the simulations, there is a variety of simplifications that are made that enable one to concentrate on one aspect or another of the process. There are simplifications that can be made to the chemical reaction models , e.g. reduction in number of species by lumping some of them together in a representative species. Other simulations are carried out by eliminating the chemistry altogether in order to concentrate on the fluid dynamics. When solving problems with a large number of species in more than one spatial dimension, it is almost imperative that the problem be decoupled by solving for the fluid dynamics to find the fluid motion and temperature history of "particles" of fluid moving through a reactor. Then one can solve the chemical rate equations with complex chemistry following the temperature and pressure history. One difficulty is that often mixing with an ambient gas is involved. Therefore, one needs to take dilution and mixing into account. This changes the ratio of carbon species to background gas. Commercially available codes may have no provision for including dilution as part of the input. One must the write special solvers for including dilution in decoupled problems. The article addresses both ful1erene production and single-walled carbon nanotube (SWNT) production. There are at least two schemes or concepts of SWNT growth. This article will only address growth in the gas phase by carbon and catalyst cluster growth and SW T formation by the addition of carbon. There are other models that conceive of SWNT growth as a phase separation process from clusters me up carbon and metal catalyst, with the carbon precipitating from the cluster as it cools. We will not deal with that concept in this article. Further research is needed to determine the rates at which these composite clusters form, evaporate, and segregate.

  7. Implementing Health Policy: Lessons from the Scottish Well Men's Policy Initiative.

    PubMed

    Douglas, Flora; van Teijlingen, Edwin; Smith, Cairns; Moffat, Mandy

    2015-01-01

    Little is known about how health professionals translate national government health policy directives into action. This paper examines that process using the so-called Well Men's Services (WMS) policy initiative as a 'real world' case study. The WMS were launched by the Scottish Government to address men's health inequalities. Our analysis aimed to develop a deeper understanding of policy implementation as it naturally occurred, used an analytical framework that was developed to reflect the 'rational planning' principles health professionals are commonly encouraged to use for implementation purposes. A mixed-methods qualitative enquiry using a data archive generated during the WMS policy evaluation was used to critically analyze (post hoc) the perspectives of national policy makers, and local health and social care professionals about the: (a) 'policy problem', (b) interventions intended to address the problem, and (c) anticipated policy outcomes. This analysis revealed four key themes: (1) ambiguity regarding the policy problem and means of intervention; (2) behavioral framing of the policy problem and intervention; (3) uncertainty about the policy evidence base and outcomes, and; (4) a focus on intervention as outcome . This study found that mechanistic planning heuristics (as a means of supporting implementation) fails to grapple with the indeterminate nature of population health problems. A new approach to planning and implementing public health interventions is required that recognises the complex and political nature of health problems; the inevitability of imperfect and contested evidence regarding intervention, and, future associated uncertainties.

  8. Incorporating Auditory Models in Speech/Audio Applications

    NASA Astrophysics Data System (ADS)

    Krishnamoorthi, Harish

    2011-12-01

    Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding an auditory model in the objective function formulation and proposes possible solutions to overcome high complexity issues for use in real-time speech/audio algorithms. Specific problems addressed in this dissertation include: 1) the development of approximate but computationally efficient auditory model implementations that are consistent with the principles of psychoacoustics, 2) the development of a mapping scheme that allows synthesizing a time/frequency domain representation from its equivalent auditory model output. The first problem is aimed at addressing the high computational complexity involved in solving perceptual objective functions that require repeated application of auditory model for evaluation of different candidate solutions. In this dissertation, a frequency pruning and a detector pruning algorithm is developed that efficiently implements the various auditory model stages. The performance of the pruned model is compared to that of the original auditory model for different types of test signals in the SQAM database. Experimental results indicate only a 4-7% relative error in loudness while attaining up to 80-90 % reduction in computational complexity. Similarly, a hybrid algorithm is developed specifically for use with sinusoidal signals and employs the proposed auditory pattern combining technique together with a look-up table to store representative auditory patterns. The second problem obtains an estimate of the auditory representation that minimizes a perceptual objective function and transforms the auditory pattern back to its equivalent time/frequency representation. This avoids the repeated application of auditory model stages to test different candidate time/frequency vectors in minimizing perceptual objective functions. In this dissertation, a constrained mapping scheme is developed by linearizing certain auditory model stages that ensures obtaining a time/frequency mapping corresponding to the estimated auditory representation. This paradigm was successfully incorporated in a perceptual speech enhancement algorithm and a sinusoidal component selection task.

  9. Coupling reconstruction and motion estimation for dynamic MRI through optical flow constraint

    NASA Astrophysics Data System (ADS)

    Zhao, Ningning; O'Connor, Daniel; Gu, Wenbo; Ruan, Dan; Basarab, Adrian; Sheng, Ke

    2018-03-01

    This paper addresses the problem of dynamic magnetic resonance image (DMRI) reconstruction and motion estimation jointly. Because of the inherent anatomical movements in DMRI acquisition, reconstruction of DMRI using motion estimation/compensation (ME/MC) has been explored under the compressed sensing (CS) scheme. In this paper, by embedding the intensity based optical flow (OF) constraint into the traditional CS scheme, we are able to couple the DMRI reconstruction and motion vector estimation. Moreover, the OF constraint is employed in a specific coarse resolution scale in order to reduce the computational complexity. The resulting optimization problem is then solved using a primal-dual algorithm due to its efficiency when dealing with nondifferentiable problems. Experiments on highly accelerated dynamic cardiac MRI with multiple receiver coils validate the performance of the proposed algorithm.

  10. Hybrid genetic algorithm with an adaptive penalty function for fitting multimodal experimental data: application to exchange-coupled non-Kramers binuclear iron active sites.

    PubMed

    Beaser, Eric; Schwartz, Jennifer K; Bell, Caleb B; Solomon, Edward I

    2011-09-26

    A Genetic Algorithm (GA) is a stochastic optimization technique based on the mechanisms of biological evolution. These algorithms have been successfully applied in many fields to solve a variety of complex nonlinear problems. While they have been used with some success in chemical problems such as fitting spectroscopic and kinetic data, many have avoided their use due to the unconstrained nature of the fitting process. In engineering, this problem is now being addressed through incorporation of adaptive penalty functions, but their transfer to other fields has been slow. This study updates the Nanakorrn Adaptive Penalty function theory, expanding its validity beyond maximization problems to minimization as well. The expanded theory, using a hybrid genetic algorithm with an adaptive penalty function, was applied to analyze variable temperature variable field magnetic circular dichroism (VTVH MCD) spectroscopic data collected on exchange coupled Fe(II)Fe(II) enzyme active sites. The data obtained are described by a complex nonlinear multimodal solution space with at least 6 to 13 interdependent variables and are costly to search efficiently. The use of the hybrid GA is shown to improve the probability of detecting the global optimum. It also provides large gains in computational and user efficiency. This method allows a full search of a multimodal solution space, greatly improving the quality and confidence in the final solution obtained, and can be applied to other complex systems such as fitting of other spectroscopic or kinetics data.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lodhia, P.; Antonious, A.; Esat, I.

    There has been much recent interest in the application of artificial intelligence systems to real world problems. Substantial interest has been shown in their application to investment markets. Artificial Neural Networks are the most common technique here. This paper is concerned with the use of ANNs in forecasting exchange rates. Much research has been carried out in currency markets. However, many of the studies use end of day or average quotes for currencies as a basis for prediction. A growing school of thought propose that markets are non-random in the short-term and can be shown to follow patterns. This short-termmore » time span can be described as being a period when the markets are inefficient at price adjustments. The use of intraday data is an ideal testing ground for ANNs based research. This paper aims to study the intraday forecasting of the US Dollar/German Deutschmark and to address the question of whether ANNs can make acceptable predictions. The problems of forecasting in such a complex environment will be addressed.« less

  12. Medical Management of Parkinson's Disease after Initiation of Deep Brain Stimulation.

    PubMed

    Fasano, Alfonso; Appel-Cresswell, Silke; Jog, Mandar; Zurowkski, Mateusz; Duff-Canning, Sarah; Cohn, Melanie; Picillo, Marina; Honey, Christopher R; Panisset, Michel; Munhoz, Renato Puppi

    2016-09-01

    In this review, we have gathered all the available evidence to guide medication management after deep brain stimulation (DBS) in Parkinson's disease (PD). Surprisingly, we found that almost no study addressed drug-based management in the postoperative period. Dopaminergic medications are usually reduced, but whether the levodopa or dopamine agonist is to be reduced is left to the personal preference of the treating physician. We have summarized the pros and cons of both approaches. No study on the management of cognitive problems after DBS has been done, and only a few studies have explored the pharmacological management of such DBS-resistant symptoms as voice (amantadine), balance (donepezil) or gait disorders (amantadine, methylphenidate). As for the psychiatric problems so frequently reported in PD patients, researchers have directed their attention to the complex interplay between stimulation and reduction of dopaminergic drugs only recently. In conclusion, studies addressing medical management following DBS are still needed and will certainly contribute to the ultimate success of DBS procedures.

  13. Economic modeling of surgical disease: a measure of public health interventions.

    PubMed

    Corlew, D Scott

    2013-07-01

    The measurement of the burden of disease and the interventions that address that burden can be done in various units. Reducing these measures to the common denominator of economic units (i.e., currency) enables comparison with other health entities, interventions, and even other fields. Economic assessment is complex, however, because of the multifactorial components of what constitutes health and what constitutes health interventions, as well as the coupling of those data to economic means. To perform economic modeling in a meaningful manner, it is necessary to: (1) define the health problem to be addressed; (2) define the intervention to be assessed; (3) define a measure of the effect of the health entity with and without the intervention (which includes defining the counterfactual); and (4) determine the appropriate method of converting the health effect to economics. This paper discusses technical aspects of how economic modeling can be done both of disease entities and of interventions. Two examples of economic modeling applied to surgical problems are then given.

  14. Iraq and Afghanistan Veterans: National Findings from VA Residential Treatment Programs

    PubMed Central

    Cook, Joan M.; Dinnen, Stephanie; O’Donnell, Casey; Bernardy, Nancy; Rosenheck, Robert; Desai, Rani

    2013-01-01

    A quality improvement effort was undertaken in Department of Veterans Affairs’ (VA) residential treatment programs for Posttraumatic Stress Disorder (PTSD) across the United States. Qualitative interviews were conducted with over 250 directors, providers, and staff during site visits of 38 programs. The aims of this report are to describe clinical issues and distinctive challenges in working with veterans from Iraq and Afghanistan and approaches to addressing their needs. Providers indicated that the most commonly reported problems were: acute PTSD symptomotology; other complex mental health symptom presentations; broad readjustment problems; and difficulty with time demands of and readiness for intensive treatment. Additional concerns included working with active duty personnel and mixing different eras in therapy. Programmatic solutions address structure (e.g., blended versus era-specific therapy), content (e.g., physical activity), and adaptations (e.g., inclusion of family; shortened length of stay). Clinical implications for VA managers and policy makers as well as non-VA health care systems and individual health care providers are noted. PMID:23458113

  15. Dependency visualization for complex system understanding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smart, J. Allison Cory

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impairedmore » as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.« less

  16. The complexity of patient safety reporting systems in UK dentistry.

    PubMed

    Renton, T; Master, S

    2016-10-21

    Since the 'Francis Report', UK regulation focusing on patient safety has significantly changed. Healthcare workers are increasingly involved in NHS England patient safety initiatives aimed at improving reporting and learning from patient safety incidents (PSIs). Unfortunately, dentistry remains 'isolated' from these main events and continues to have a poor record for reporting and learning from PSIs and other events, thus limiting improvement of patient safety in dentistry. The reasons for this situation are complex.This paper provides a review of the complexities of the existing systems and procedures in relation to patient safety in dentistry. It highlights the conflicting advice which is available and which further complicates an overly burdensome process. Recommendations are made to address these problems with systems and procedures supporting patient safety development in dentistry.

  17. Challenges, solutions, and recommendations for Alzheimer's disease combination therapy.

    PubMed

    Hendrix, James A; Bateman, Randall J; Brashear, H Robert; Duggan, Cynthia; Carrillo, Maria C; Bain, Lisa J; DeMattos, Ronald; Katz, Russell G; Ostrowitzki, Susanne; Siemers, Eric; Sperling, Reisa; Vitolo, Ottavio V

    2016-05-01

    Given the complex neuropathology Alzheimer's disease (AD), combination therapy may be necessary for effective treatment. However, scientific, pragmatic, regulatory, and business challenges need to be addressed before combination therapy for AD can become a reality. Leaders from academia and industry, along with a former member of the Food and Drug Administration and the Alzheimer's Association, have explored these challenges and here propose a strategy to facilitate proof-of-concept combination therapy trials in the near future. First, a more integrated understanding of the complex pathophysiology and progression of AD is needed to identify the appropriate pathways and the disease stage to target. Once drug candidates are identified, novel clinical trial designs and selection of appropriate outcome assessments will be needed to enable definition and evaluation of the appropriate dose and dosing regimen and determination of efficacy. Success in addressing this urgent problem will only be achieved through collaboration among multiple stakeholders. Copyright © 2016 Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  18. A Case-Based, Problem-Based Learning Approach to Prepare Master of Public Health Candidates for the Complexities of Global Health

    PubMed Central

    Winskell, Kate; McFarland, Deborah A.; del Rio, Carlos

    2015-01-01

    Global health is a dynamic, emerging, and interdisciplinary field. To address current and emerging global health challenges, we need a public health workforce with adaptable and collaborative problem-solving skills. In the 2013–2014 academic year, the Hubert Department of Global Health at the Rollins School of Public Health–Emory University launched an innovative required core course for its first-year Master of Public Health students in the global health track. The course uses a case-based, problem-based learning approach to develop global health competencies. Small teams of students propose solutions to these problems by identifying learning issues and critically analyzing and synthesizing new information. We describe the course structure and logistics used to apply this approach in the context of a large class and share lessons learned. PMID:25706029

  19. Global Optimization Ensemble Model for Classification Methods

    PubMed Central

    Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab

    2014-01-01

    Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382

  20. An ultra-weak sector, the strong CP problem and the pseudo-Goldstone dilaton

    DOE PAGES

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    2014-12-29

    In the context of a Coleman–Weinberg mechanism for the Higgs boson mass, we address the strong CP problem. We show that a DFSZ-like invisible axion model with a gauge-singlet complex scalar field S, whose couplings to the Standard Model are naturally ultra-weak, can solve the strong CP problem and simultaneously generate acceptable electroweak symmetry breaking. The ultra-weak couplings of the singlet S are associated with underlying approximate shift symmetries that act as custodial symmetries and maintain technical naturalness. The model also contains a very light pseudo-Goldstone dilaton that is consistent with cosmological Polonyi bounds, and the axion can be themore » dark matter of the universe. As a result, we further outline how a SUSY version of this model, which may be required in the context of Grand Unification, can avoid introducing a hierarchy problem.« less

  1. An ultra-weak sector, the strong CP problem and the pseudo-Goldstone dilaton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    In the context of a Coleman–Weinberg mechanism for the Higgs boson mass, we address the strong CP problem. We show that a DFSZ-like invisible axion model with a gauge-singlet complex scalar field S, whose couplings to the Standard Model are naturally ultra-weak, can solve the strong CP problem and simultaneously generate acceptable electroweak symmetry breaking. The ultra-weak couplings of the singlet S are associated with underlying approximate shift symmetries that act as custodial symmetries and maintain technical naturalness. The model also contains a very light pseudo-Goldstone dilaton that is consistent with cosmological Polonyi bounds, and the axion can be themore » dark matter of the universe. As a result, we further outline how a SUSY version of this model, which may be required in the context of Grand Unification, can avoid introducing a hierarchy problem.« less

  2. ELSI: A unified software interface for Kohn–Sham electronic structure solvers

    DOE PAGES

    Yu, Victor Wen-zhe; Corsetti, Fabiano; Garcia, Alberto; ...

    2017-09-15

    Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aimsmore » to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. As a result, comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.« less

  3. ELSI: A unified software interface for Kohn-Sham electronic structure solvers

    NASA Astrophysics Data System (ADS)

    Yu, Victor Wen-zhe; Corsetti, Fabiano; García, Alberto; Huhn, William P.; Jacquelin, Mathias; Jia, Weile; Lange, Björn; Lin, Lin; Lu, Jianfeng; Mi, Wenhui; Seifitokaldani, Ali; Vázquez-Mayagoitia, Álvaro; Yang, Chao; Yang, Haizhao; Blum, Volker

    2018-01-01

    Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.

  4. ELSI: A unified software interface for Kohn–Sham electronic structure solvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Victor Wen-zhe; Corsetti, Fabiano; Garcia, Alberto

    Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aimsmore » to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. As a result, comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.« less

  5. Data System for Structural Geology and Tectonics

    NASA Astrophysics Data System (ADS)

    Newman, Julie; Walker, J. Douglas; Tikoff, Basil; Good, Jessica; Michels, Zachary; Ash, Jason; Andrew, Joseph; Williams, Randolph

    2016-04-01

    We are prototyping a Data System for Structural Geology and Tectonics (SG&T) data that is platform independent (from mobile device to desktop) to enable collection and sharing of data from field to laboratory settings. The goals of this effort, funded by US National Science Foundation, are to enable recording and sharing data within the geoscience community, to encourage interdisciplinary research, and to facilitate the investigation of scientific questions that cannot currently be addressed. The development of the Data System emphasizes community input in order to build a system that encompasses the needs of researchers, in terms of data and usability. SG&T data is complex for a variety of reasons, including the wide range of temporal and spatial scales (many orders of magnitude each), the complex three-dimensional geometry of some geological structures, inherent spatial nature of the data, and the difficulty of making temporal inferences from spatial observations. To successfully implement the development of a SG&T data system, we must simultaneously solve three problems: 1) How to digitize SG&T data; 2) How to design a software system that is applicable; and 3) How to construct a very flexible user interface. To address the first problem, we introduce the "Spot" concept, which allows tracking of hierarchical and spatial relations between structures at all scales, and will link map scale, mesoscale, and laboratory scale data. A Spot is an observation or relationship with an area of significance. A Spot can be a single measurement, an aggregate of individual measurements, or even relationships between numerous other Spots. We address the second problem of software design through the use of a graph database to better preserve the myriad of potentially complex relationships. In order to construct a flexible user interface that follows a natural workflow and that serves the needs of the community, we are engaging the SG&T community in order to utilize the expertise of a large group of scientists to ensure the quality and usability of this data system. These activities have included Town Halls at GSA and AGU, subdiscipline-specific workshops to develop community standards, and pilot projects to test the data system in the field during the study of a variety of geologic structures.

  6. Projected Impact of Compositional Verification on Current and Future Aviation Safety Risk

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Withrow, Colleen A.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    The projected impact of compositional verification research conducted by the National Aeronautic and Space Administration System-Wide Safety and Assurance Technologies on aviation safety risk was assessed. Software and compositional verification was described. Traditional verification techniques have two major problems: testing at the prototype stage where error discovery can be quite costly and the inability to test for all potential interactions leaving some errors undetected until used by the end user. Increasingly complex and nondeterministic aviation systems are becoming too large for these tools to check and verify. Compositional verification is a "divide and conquer" solution to addressing increasingly larger and more complex systems. A review of compositional verification research being conducted by academia, industry, and Government agencies is provided. Forty-four aviation safety risks in the Biennial NextGen Safety Issues Survey were identified that could be impacted by compositional verification and grouped into five categories: automation design; system complexity; software, flight control, or equipment failure or malfunction; new technology or operations; and verification and validation. One capability, 1 research action, 5 operational improvements, and 13 enablers within the Federal Aviation Administration Joint Planning and Development Office Integrated Work Plan that could be addressed by compositional verification were identified.

  7. Optimal reservoir operation policies using novel nested algorithms

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri

    2015-04-01

    Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested optimization algorithm into the state transition that lowers the starting problem dimension and alleviates the curse of dimensionality. The algorithms can solve multi-objective optimization problems, without significantly increasing the complexity and the computational expenses. The algorithms can handle dense and irregular variable discretization, and are coded in Java as prototype applications. The three algorithms were tested at the multipurpose reservoir Knezevo of the Zletovica hydro-system located in the Republic of Macedonia, with eight objectives, including urban water supply, agriculture, ensuring ecological flow, and generation of hydropower. Because the Zletovica hydro-system is relatively complex, the novel algorithms were pushed to their limits, demonstrating their capabilities and limitations. The nSDP and nRL derived/learned the optimal reservoir policy using 45 (1951-1995) years historical data. The nSDP and nRL optimal reservoir policy was tested on 10 (1995-2005) years historical data, and compared with nDP optimal reservoir operation in the same period. The nested algorithms and optimal reservoir operation results are analysed and explained.

  8. What Would Pascal Think About Space Safety?

    NASA Astrophysics Data System (ADS)

    Pfitzer, Tom

    2013-09-01

    Blaise Pascal was a true Renaissance man being well versed in science, physics, religion, philosophy, and especially mathematics. He had a knack for simplifying complex problems into mathematical formulae. He had well-formed opinions about the scientific issues of his day, in particular about risk. There is little doubt that were he alive today, he would have opinions useful to this society. This paper addresses what he thought then as a foundation for what he would have thought now.

  9. Contract W911NF-09-1-0384 (Purdue University)

    DTIC Science & Technology

    2012-10-27

    spin system, Physical Review A , (02 2010): 22324. doi: 10.1103/PhysRevA.81.022324 08/31/2011 8.00 Sabre Kais, Anmer Daskin . Group leaders... a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a ...billions ) and developed new quantum algorithms to solve complex chemistry problems such as global optimization and excited states of molecules. ( a ) Papers

  10. Finite Dimensional Approximations for Continuum Multiscale Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlyand, Leonid

    2017-01-24

    The completed research project concerns the development of novel computational techniques for modeling nonlinear multiscale physical and biological phenomena. Specifically, it addresses the theoretical development and applications of the homogenization theory (coarse graining) approach to calculation of the effective properties of highly heterogenous biological and bio-inspired materials with many spatial scales and nonlinear behavior. This theory studies properties of strongly heterogeneous media in problems arising in materials science, geoscience, biology, etc. Modeling of such media raises fundamental mathematical questions, primarily in partial differential equations (PDEs) and calculus of variations, the subject of the PI’s research. The focus of completed researchmore » was on mathematical models of biological and bio-inspired materials with the common theme of multiscale analysis and coarse grain computational techniques. Biological and bio-inspired materials offer the unique ability to create environmentally clean functional materials used for energy conversion and storage. These materials are intrinsically complex, with hierarchical organization occurring on many nested length and time scales. The potential to rationally design and tailor the properties of these materials for broad energy applications has been hampered by the lack of computational techniques, which are able to bridge from the molecular to the macroscopic scale. The project addressed the challenge of computational treatments of such complex materials by the development of a synergistic approach that combines innovative multiscale modeling/analysis techniques with high performance computing.« less

  11. Soft systems thinking and social learning for adaptive management.

    PubMed

    Cundill, G; Cumming, G S; Biggs, D; Fabricius, C

    2012-02-01

    The success of adaptive management in conservation has been questioned and the objective-based management paradigm on which it is based has been heavily criticized. Soft systems thinking and social-learning theory expose errors in the assumption that complex systems can be dispassionately managed by objective observers and highlight the fact that conservation is a social process in which objectives are contested and learning is context dependent. We used these insights to rethink adaptive management in a way that focuses on the social processes involved in management and decision making. Our approach to adaptive management is based on the following assumptions: action toward a common goal is an emergent property of complex social relationships; the introduction of new knowledge, alternative values, and new ways of understanding the world can become a stimulating force for learning, creativity, and change; learning is contextual and is fundamentally about practice; and defining the goal to be addressed is continuous and in principle never ends. We believe five key activities are crucial to defining the goal that is to be addressed in an adaptive-management context and to determining the objectives that are desirable and feasible to the participants: situate the problem in its social and ecological context; raise awareness about alternative views of a problem and encourage enquiry and deconstruction of frames of reference; undertake collaborative actions; and reflect on learning. ©2011 Society for Conservation Biology.

  12. Decision support methods for the environmental assessment of contamination at mining sites.

    PubMed

    Jordan, Gyozo; Abdaal, Ahmed

    2013-09-01

    Polluting mine accidents and widespread environmental contamination associated with historic mining in Europe and elsewhere has triggered the improvement of related environmental legislation and of the environmental assessment and management methods for the mining industry. Mining has some unique features such as natural background pollution associated with natural mineral deposits, industrial activities and contamination located in the three-dimensional sub-surface space, the problem of long-term remediation after mine closure, problem of secondary contaminated areas around mine sites and abandoned mines in historic regions like Europe. These mining-specific problems require special tools to address the complexity of the environmental problems of mining-related contamination. The objective of this paper is to review and evaluate some of the decision support methods that have been developed and applied to mining contamination. In this paper, only those methods that are both efficient decision support tools and provide a 'holistic' approach to the complex problem as well are considered. These tools are (1) landscape ecology, (2) industrial ecology, (3) landscape geochemistry, (4) geo-environmental models, (5) environmental impact assessment, (6) environmental risk assessment, (7) material flow analysis and (8) life cycle assessment. This unique inter-disciplinary study should enable both the researcher and the practitioner to obtain broad view on the state-of-the-art of decision support methods for the environmental assessment of contamination at mine sites. Documented examples and abundant references are also provided.

  13. Multiple grid problems on concurrent-processing computers

    NASA Technical Reports Server (NTRS)

    Eberhardt, D. S.; Baganoff, D.

    1986-01-01

    Three computer codes were studied which make use of concurrent processing computer architectures in computational fluid dynamics (CFD). The three parallel codes were tested on a two processor multiple-instruction/multiple-data (MIMD) facility at NASA Ames Research Center, and are suggested for efficient parallel computations. The first code is a well-known program which makes use of the Beam and Warming, implicit, approximate factored algorithm. This study demonstrates the parallelism found in a well-known scheme and it achieved speedups exceeding 1.9 on the two processor MIMD test facility. The second code studied made use of an embedded grid scheme which is used to solve problems having complex geometries. The particular application for this study considered an airfoil/flap geometry in an incompressible flow. The scheme eliminates some of the inherent difficulties found in adapting approximate factorization techniques onto MIMD machines and allows the use of chaotic relaxation and asynchronous iteration techniques. The third code studied is an application of overset grids to a supersonic blunt body problem. The code addresses the difficulties encountered when using embedded grids on a compressible, and therefore nonlinear, problem. The complex numerical boundary system associated with overset grids is discussed and several boundary schemes are suggested. A boundary scheme based on the method of characteristics achieved the best results.

  14. Analysis and Reduction of Complex Networks Under Uncertainty.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanem, Roger G

    2014-07-31

    This effort was a collaboration with Youssef Marzouk of MIT, Omar Knio of Duke University (at the time at Johns Hopkins University) and Habib Najm of Sandia National Laboratories. The objective of this effort was to develop the mathematical and algorithmic capacity to analyze complex networks under uncertainty. Of interest were chemical reaction networks and smart grid networks. The statements of work for USC focused on the development of stochastic reduced models for uncertain networks. The USC team was led by Professor Roger Ghanem and consisted of one graduate student and a postdoc. The contributions completed by the USC teammore » consisted of 1) methodology and algorithms to address the eigenvalue problem, a problem of significance in the stability of networks under stochastic perturbations, 2) methodology and algorithms to characterize probability measures on graph structures with random flows. This is an important problem in characterizing random demand (encountered in smart grid) and random degradation (encountered in infrastructure systems), as well as modeling errors in Markov Chains (with ubiquitous relevance !). 3) methodology and algorithms for treating inequalities in uncertain systems. This is an important problem in the context of models for material failure and network flows under uncertainty where conditions of failure or flow are described in the form of inequalities between the state variables.« less

  15. The problem of motivating teaching staff in a complex amalgamation.

    PubMed

    Kenrick, M A

    1993-09-01

    This paper addresses some of the problems brought about by the merger of a number of schools of nursing into a new complex amalgamation. A very real concern in the new colleges of nursing and midwifery in the United Kingdom is the effect of amalgamation on management systems and staff morale. The main focus of this paper is the motivation of staff during this time of change. There is currently a lack of security amongst staff and in many instances the personal job satisfaction of nurse teachers and managers of nurse education has been reduced, which has made the task of motivating staff difficult. Hence, two major theories of motivation and the implications of these theories for managers of nurse education are discussed. The criteria used for the selection of managers within the new colleges, leadership styles and organizational structures are reviewed. The amalgamations have brought about affiliation with higher-education institutions. Some problems associated with these mergers and the effects on the motivation of staff both within the higher-education institutions and the nursing colleges are outlined. Strategies for overcoming some of the problems are proposed including job enlargement, job enrichment, potential achievement rewards and the use of individual performance reviews which may be useful for assessing the ability of all staff, including managers, in the new amalgamations.

  16. Social cognition in borderline personality disorder: evidence for dichotomous thinking but no evidence for less complex attributions.

    PubMed

    Arntz, Arnoud; ten Haaf, José

    2012-11-01

    This experiment investigated social cognition in borderline personality disorder (BPD). We tested whether BPD-patients' evaluations of others were characterized by splitting, dichotomous thinking, or negativity; and whether they showed less complex understanding of others. Participants discussed a problem with three alleged mental health worker trainees, performing three interpersonal roles (rejecting, accepting and neutral). Participants evaluated trainees in a structured response format and in a semi-structured interview. BPD-patients (n = 18) were compared to Cluster-C personality disorder patients (n = 18) and nonpatients (n = 18). From visual analog scales with opposite trait descriptions (structured response format) negativity, dichotomous thinking, and splitting scores were derived. The interviews were scored by an independent rater on affect tone, differentiation, and complexity of attributions. BPD-patients showed, in all conditions, and in both response formats, more dichotomous thinking than control groups. Evidence for splitting as specific BPD-characteristic was not convincing, and more negativity in BPD was only found with the rejecting role and structured responses. The interview-based evaluations by BPD-patients could not be discriminated from nonpatients in cognitive complexity. Results indicate that dichotomous thinking, and not so much splitting, negativity, or less complexity, is central in the interpretation of others by BPD-patients. Treatment might address dichotomous thinking to reduce BPD-patients' interpersonal problems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Care Coordination for the Chronically Ill: Understanding the Patient's Perspective

    PubMed Central

    Maeng, Daniel D; Martsolf, Grant R; Scanlon, Dennis P; Christianson, Jon B

    2012-01-01

    Objective To identify factors associated with perception of care coordination problems among chronically ill patients. Methods Patient-level data were obtained from a random-digit dial telephone survey of adults with chronic conditions. The survey measured respondents' self-report of care coordination problems and level of patient activation, using the Patient Activation Measure (PAM-13). Logistic regression was used to assess association between respondents' self-report of care coordination problems and a set of patient characteristics. Results Respondents in the highest activation stage had roughly 30–40 percent lower odds of reporting care coordination problems compared to those in the lowest stage (p < .01). Respondents with multiple chronic conditions were significantly more likely to report coordination problems than those with hypertension only. Respondents' race/ethnicity, employment, insurance status, income, and length of illness were not significantly associated with self-reported care coordination problems. Conclusion We conclude that patient activation and complexity of chronic illness are strongly associated with patients' self-report of care coordination problems. Developing targeted strategies to improve care coordination around these patient characteristics may be an effective way to address the issue. PMID:22985032

  18. Cycle life machine for AX-5 space suit

    NASA Technical Reports Server (NTRS)

    Schenberger, Deborah S.

    1990-01-01

    In order to accurately test the AX-5 space suit, a complex series of motions needed to be performed which provided a unique opportunity for mechanism design. The cycle life machine design showed how 3-D computer images can enhance mechanical design as well as help in visualizing mechanisms before manufacturing them. In the early stages of the design, potential problems in the motion of the joint and in the four bar linkage system were resolved using CAD. Since these problems would have been very difficult and tedious to solve on a drawing board, they would probably not have been addressed prior to fabrication, thus limiting the final design or requiring design modification after fabrication.

  19. Information Power Grid Posters

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2003-01-01

    This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.

  20. Study designs appropriate for the workplace.

    PubMed

    Hogue, C J

    1986-01-01

    Carlo and Hearn have called for "refinement of old [epidemiologic] methods and an ongoing evaluation of where methods fit in the overall scheme as we address the multiple complexities of reproductive hazard assessment." This review is an attempt to bring together the current state-of-the-art methods for problem definition and hypothesis testing available to the occupational epidemiologist. For problem definition, meta analysis can be utilized to narrow the field of potential causal hypotheses. Passive active surveillance may further refine issues for analytic research. Within analytic epidemiology, several methods may be appropriate for the workplace setting. Those discussed here may be used to estimate the risk ratio in either a fixed or dynamic population.

  1. Job shop scheduling problem with late work criterion

    NASA Astrophysics Data System (ADS)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    Scheduling is considered as a key task in many industries, such as project based scheduling, crew scheduling, flight scheduling, machine scheduling, etc. In the machine scheduling area, the job shop scheduling problems are considered to be important and highly complex, in which they are characterized as NP-hard. The job shop scheduling problems with late work criterion and non-preemptive jobs are addressed in this paper. Late work criterion is a fairly new objective function. It is a qualitative measure and concerns with late parts of the jobs, unlike classical objective functions that are quantitative measures. In this work, simulated annealing was presented to solve the scheduling problem. In addition, operation based representation was used to encode the solution, and a neighbourhood search structure was employed to search for the new solutions. The case studies are Lawrence instances that were taken from the Operations Research Library. Computational results of this probabilistic meta-heuristic algorithm were compared with a conventional genetic algorithm, and a conclusion was made based on the algorithm and problem.

  2. Interpersonal violence as social construction: the potentially undermining role of claims making and advocacy statistics.

    PubMed

    Perrin, Robin D; Miller-Perrin, Cindy L

    2011-10-01

    The relationship between empirical research inquiry and advocacy efforts is complex and seldom addressed in the interpersonal violence literature. In this article, we first examine how social conditions come to be seen as social problems, using a social constructionist perspective. Next, we focus specifically on the problem of interpersonal violence as viewed through a social constructionist lens, highlighting the many ways in which advocacy has influenced public perceptions of interpersonal violence as a social problem. Finally, this article considers some of the consequences that may result from exaggerated or misleading claims, especially when they are made by social scientists who are presumably engaged in an objective discussion of a problem. These consequences include generating skepticism toward the social sciences, feeding a backlash movement, and diverting attention away from the most severe forms of interpersonal violence. Contrary to the goals of many advocates, some of these consequences may be detrimental to the very social problems they hope to alleviate.

  3. A proposed reductionist solution to address the methodological challenges of inconsistent reflexology maps and poor experimental controls in reflexology research: a discussion paper.

    PubMed

    Jones, Jenny; Thomson, Patricia; Lauder, William; Leslie, Stephen J

    2013-03-01

    Reflexology is a complex massage intervention, based on the concept that specific areas of the feet (reflex points) correspond to individual internal organs within the body. Reflexologists trained in the popular Ingham reflexology method claim that massage to these points, using massage techniques unique to reflexology, stimulates an increase in blood supply to the corresponding organ. Reflexology researchers face two key methodological challenges that need to be addressed if a specific treatment-related hemodynamic effect is to be scientifically demonstrated. The first is the problem of inconsistent reflexology foot maps; the second is the issue of poor experimental controls. This article proposes a potential experimental solution that we believe can address both methodological challenges and in doing so, allow any specific hemodynamic treatment effect unique to reflexology to experimentally reveal itself.

  4. Virtual Control Policy for Binary Ordered Resources Petri Net Class.

    PubMed

    Rovetto, Carlos A; Concepción, Tomás J; Cano, Elia Esther

    2016-08-18

    Prevention and avoidance of deadlocks in sensor networks that use the wormhole routing algorithm is an active research domain. There are diverse control policies that will address this problem being our approach a new method. In this paper we present a virtual control policy for the new specialized Petri net subclass called Binary Ordered Resources Petri Net (BORPN). Essentially, it is an ordinary class constructed from various state machines that share unitary resources in a complex form, which allows branching and joining of processes. The reduced structure of this new class gives advantages that allow analysis of the entire system's behavior, which is a prohibitive task for large systems because of the complexity and routing algorithms.

  5. Influence of the boundary conditions on heat and mass transfer in spacer-filled channels

    NASA Astrophysics Data System (ADS)

    Ciofalo, M.; La Cerva, M. F.; Di Liberto, M.; Tamburini, A.

    2017-11-01

    The purpose of this study is to discuss some problems which arise in heat or mass transfer in complex channels, with special reference to the spacer-filled channels adopted in membrane processes. Among the issues addressed are the consistent definition of local and mean heat or mass transfer coefficients; the influence of the wall boundary conditions; the influence of one-side versus two-side heat/mass transfer. Most of the results discussed were obtained by finite volume CFD simulations concerning heat transfer in Membrane Distillation or mass transfer in Electrodialysis and Reverse Electrodialysis, but many of the conclusions apply also to different processes involving geometrically complex channels

  6. Use of Multiscale Entropy to Facilitate Artifact Detection in Electroencephalographic Signals

    PubMed Central

    Mariani, Sara; Borges, Ana F. T.; Henriques, Teresa; Goldberger, Ary L.; Costa, Madalena D.

    2016-01-01

    Electroencephalographic (EEG) signals present a myriad of challenges to analysis, beginning with the detection of artifacts. Prior approaches to noise detection have utilized multiple techniques, including visual methods, independent component analysis and wavelets. However, no single method is broadly accepted, inviting alternative ways to address this problem. Here, we introduce a novel approach based on a statistical physics method, multiscale entropy (MSE) analysis, which quantifies the complexity of a signal. We postulate that noise corrupted EEG signals have lower information content, and, therefore, reduced complexity compared with their noise free counterparts. We test the new method on an open-access database of EEG signals with and without added artifacts due to electrode motion. PMID:26738116

  7. A model for integrating clinical care and basic science research, and pitfalls of performing complex research projects for addressing a clinical challenge.

    PubMed

    Steck, R; Epari, D R; Schuetz, M A

    2010-07-01

    The collaboration of clinicians with basic science researchers is crucial for addressing clinically relevant research questions. In order to initiate such mutually beneficial relationships, we propose a model where early career clinicians spend a designated time embedded in established basic science research groups, in order to pursue a postgraduate qualification. During this time, clinicians become integral members of the research team, fostering long term relationships and opening up opportunities for continuing collaboration. However, for these collaborations to be successful there are pitfalls to be avoided. Limited time and funding can lead to attempts to answer clinical challenges with highly complex research projects characterised by a large number of "clinical" factors being introduced in the hope that the research outcomes will be more clinically relevant. As a result, the complexity of such studies and variability of its outcomes may lead to difficulties in drawing scientifically justified and clinically useful conclusions. Consequently, we stress that it is the basic science researcher and the clinician's obligation to be mindful of the limitations and challenges of such multi-factorial research projects. A systematic step-by-step approach to address clinical research questions with limited, but highly targeted and well defined research projects provides the solid foundation which may lead to the development of a longer term research program for addressing more challenging clinical problems. Ultimately, we believe that it is such models, encouraging the vital collaboration between clinicians and researchers for the work on targeted, well defined research projects, which will result in answers to the important clinical challenges of today. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Interacting complex systems: Theory and application to real-world situations

    NASA Astrophysics Data System (ADS)

    Piccinini, Nicola

    The interest in complex systems has increased exponentially during the past years because it was found helpful in addressing many of today's challenges. The study of the brain, biology, earthquakes, markets and social sciences are only a few examples of the fields that have benefited from the investigation of complex systems. Internet, the increased mobility of people and the raising energy demand are among the factors that brought in contact complex systems that were isolated till a few years ago. A theory for the interaction between complex systems is becoming more and more urgent to help mankind in this transition. The present work builds upon the most recent results in this field by solving a theoretical problem that prevented previous work to be applied to important complex systems, like the brain. It also shows preliminary laboratory results of perturbation of in vitro neural networks that were done to test the theory. Finally, it gives a preview of the studies that are being done to create a theory that is even closer to the interaction between real complex systems.

  9. Perceptual learning modules in mathematics: enhancing students' pattern recognition, structure extraction, and fluency.

    PubMed

    Kellman, Philip J; Massey, Christine M; Son, Ji Y

    2010-04-01

    Learning in educational settings emphasizes declarative and procedural knowledge. Studies of expertise, however, point to other crucial components of learning, especially improvements produced by experience in the extraction of information: perceptual learning (PL). We suggest that such improvements characterize both simple sensory and complex cognitive, even symbolic, tasks through common processes of discovery and selection. We apply these ideas in the form of perceptual learning modules (PLMs) to mathematics learning. We tested three PLMs, each emphasizing different aspects of complex task performance, in middle and high school mathematics. In the MultiRep PLM, practice in matching function information across multiple representations improved students' abilities to generate correct graphs and equations from word problems. In the Algebraic Transformations PLM, practice in seeing equation structure across transformations (but not solving equations) led to dramatic improvements in the speed of equation solving. In the Linear Measurement PLM, interactive trials involving extraction of information about units and lengths produced successful transfer to novel measurement problems and fraction problem solving. Taken together, these results suggest (a) that PL techniques have the potential to address crucial, neglected dimensions of learning, including discovery and fluent processing of relations; (b) PL effects apply even to complex tasks that involve symbolic processing; and (c) appropriately designed PL technology can produce rapid and enduring advances in learning. Copyright © 2009 Cognitive Science Society, Inc.

  10. A Benchmarking Initiative for Reactive Transport Modeling Applied to Subsurface Environmental Applications

    NASA Astrophysics Data System (ADS)

    Steefel, C. I.

    2015-12-01

    Over the last 20 years, we have seen the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface environmental applications it is being used to address. Reactive transport modeling is being asked to provide accurate assessments of engineering performance and risk for important issues with far-reaching consequences. As a result, the complexity and detail of subsurface processes, properties, and conditions that can be simulated have significantly expanded. Closed form solutions are necessary and useful, but limited to situations that are far simpler than typical applications that combine many physical and chemical processes, in many cases in coupled form. In the absence of closed form and yet realistic solutions for complex applications, numerical benchmark problems with an accepted set of results will be indispensable to qualifying codes for various environmental applications. The intent of this benchmarking exercise, now underway for more than five years, is to develop and publish a set of well-described benchmark problems that can be used to demonstrate simulator conformance with norms established by the subsurface science and engineering community. The objective is not to verify this or that specific code--the reactive transport codes play a supporting role in this regard—but rather to use the codes to verify that a common solution of the problem can be achieved. Thus, the objective of each of the manuscripts is to present an environmentally-relevant benchmark problem that tests the conceptual model capabilities, numerical implementation, process coupling, and accuracy. The benchmark problems developed to date include 1) microbially-mediated reactions, 2) isotopes, 3) multi-component diffusion, 4) uranium fate and transport, 5) metal mobility in mining affected systems, and 6) waste repositories and related aspects.

  11. MRI Segmentation of the Human Brain: Challenges, Methods, and Applications

    PubMed Central

    Despotović, Ivana

    2015-01-01

    Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation. PMID:25945121

  12. Rigged or rigorous? Partnerships for research and evaluation of complex social problems: Lessons from the field of violence against women and girls.

    PubMed

    Zimmerman, Cathy; Michau, Lori; Hossain, Mazeda; Kiss, Ligia; Borland, Rosilyne; Watts, Charlotte

    2016-09-01

    There is growing demand for robust evidence to address complex social phenomena such as violence against women and girls (VAWG). Research partnerships between scientists and non-governmental or international organizations (NGO/IO) are increasingly popular, but can pose challenges, including concerns about potential conflicts of interest. Drawing on our experience collaborating on VAWG research, we describe challenges and contributions that NGO/IO and academic partners can make at different stages of the research process and the effects that collaborations can have on scientific inquiry. Partners may struggle with differing priorities and misunderstandings about roles, limitations, and intentions. Benefits of partnerships include a shared vision of study goals, differing and complementary expertise, mutual respect, and a history of constructive collaboration. Our experience suggests that when investigating multi-faceted social problems, instead of 'rigging' study results, research collaborations can strengthen scientific rigor and offer the greatest potential for impact in the communities we seek to serve.

  13. Building information modelling review with potential applications in tunnel engineering of China.

    PubMed

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-08-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  14. Etiology, Treatment and Prevention of Obesity in Childhood and Adolescence: A Decade in Review

    PubMed Central

    Spruijt-Metz, Donna

    2010-01-01

    Childhood obesity has become an epidemic on a worldwide scale. This article gives an overview of the progress made in childhood and adolescent obesity research in the last decade, with a particular emphasis on the transdisciplinary and complex nature of the problem. The following topics are addressed: 1) current definitions of childhood and adolescent overweight and obesity; 2) demography of childhood and adolescent obesity both in the US and globally; 3) current topics in the physiology of fat and obesity; 4) psychosocial correlates of childhood and adolescent overweight and obesity; 5) the three major obesity-related behaviors, i.e. dietary intake, physical activity and sleep; 6) genes components of childhood and adolescent obesity; 7) environment and childhood and adolescent obesity; and 8) progress in interventions to prevent and treat childhood obesity. The article concludes with recommendations for future research, including the need for large-scale, high dose and long-term interventions that take into account the complex nature of the problem. PMID:21625328

  15. Building information modelling review with potential applications in tunnel engineering of China

    PubMed Central

    Zhou, Weihong; Qin, Haiyang; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-01-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance. PMID:28878970

  16. Building information modelling review with potential applications in tunnel engineering of China

    NASA Astrophysics Data System (ADS)

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-08-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  17. Reframing and addressing horizontal violence as a workplace quality improvement concern.

    PubMed

    Taylor, Rosemary A; Taylor, Steven S

    2018-06-27

    To reframe horizontal violence as a quality improvement concern. Although the number of studies exploring horizontal violence has increased, evidence supporting the effectiveness of current interventions is weak and the problem persists. Often framed as an individual or interpersonal issue, horizontal violence has been recognized as a complex phenomenon that can only be understood through an examination of social, individual and organizational factors. As such, interventions to address horizontal violence must be applied systemically and address contributions from all sources. This is a discussion paper. This discussion is based on results of a study of nurses' perceptions of horizontal violence and review of the literature. Context is recognized as a contributing factor in human behavior, yet often overlooked in interventions to address horizontal violence. Moving the focus away from the individual and investigating systems contributions to horizontal violence using existing quality improvement frameworks is suggested. To date, efforts to address horizontal violence have not been proven effective. There is a call for a wider application and investigation of interventions. This reframing provides the system level application suggested and would address a broader range of factors contributing to the perpetuation of the phenomenon. © 2018 Wiley Periodicals, Inc.

  18. The PBL projects: where we've been and where we are going

    NASA Astrophysics Data System (ADS)

    Donnelly, Judith F.; Massa, Nicholas M.

    2015-10-01

    Problem-based learning (PBL) is an instructional approach in which students learn course content by using a structured approach to collaboratively solving complex real-world problems. PBL addresses widespread industry concern that graduates of technician and engineering programs often have difficulty applying their technical knowledge to novel situations and working effectively in teams. Over the past 9 years, the PBL Projects of the New England Board of Higher Education (Boston, MA) have developed instructional strategies and materials that research shows address industry concerns by improving student learning, retention, critical thinking and problem-solving skills as well as the transfer of knowledge to new situations. In this paper we present a retrospective of the PBL Projects, three National Science Foundation Advanced Technology Education (NSF-ATE) projects that developed twenty interdisciplinary multi-media PBL case studies called "Challenges" in the topic areas of optics/photonics, sustainable technology and advanced manufacturing, provided faculty professional development in the use of PBL in the classroom to teachers across the U.S. and abroad, and conducted research on the efficacy of the PBL method. We will describe the resources built into the Challenges to scaffold the development of students' problem solving and critical thinking skills and the support provided to instructors who wish to create a student-centered classroom by incorporating PBL. Finally, we will discuss plans for next steps and examine strategies for taking PBL to the next level through actual industry-based problem solving experiences.

  19. The University-Public Health Partnership for Public Health Research Training in Quebec, Canada.

    PubMed

    Paradis, Gilles; Hamelin, Anne-Marie; Malowany, Maureen; Levy, Joseph; Rossignol, Michel; Bergeron, Pierre; Kishchuk, Natalie

    2017-01-01

    Enhancing effective preventive interventions to address contemporary public health problems requires improved capacity for applied public health research. A particular need has been recognized for capacity development in population health intervention research to address the complex multidisciplinary challenges of developing, implementing, and evaluating public health practices, intervention programs, and policies. Research training programs need to adapt to these new realities. We have presented an example of a 2003 to 2015 training program in transdisciplinary research on public health interventions that embedded doctoral and postdoctoral trainees in public health organizations in Quebec, Canada. This university-public health partnership for research training is an example of how to link science and practice to meet emerging needs in public health.

  20. A framework for discrete stochastic simulation on 3D moving boundary domains

    DOE PAGES

    Drawert, Brian; Hellander, Stefan; Trogdon, Michael; ...

    2016-11-14

    We have developed a method for modeling spatial stochastic biochemical reactions in complex, three-dimensional, and time-dependent domains using the reaction-diffusion master equation formalism. In particular, we look to address the fully coupled problems that arise in systems biology where the shape and mechanical properties of a cell are determined by the state of the biochemistry and vice versa. To validate our method and characterize the error involved, we compare our results for a carefully constructed test problem to those of a microscale implementation. Finally, we demonstrate the effectiveness of our method by simulating a model of polarization and shmoo formationmore » during the mating of yeast. The method is generally applicable to problems in systems biology where biochemistry and mechanics are coupled, and spatial stochastic effects are critical.« less

  1. Sediment measurement in estuarine and coastal areas

    NASA Technical Reports Server (NTRS)

    Shelley, P. E.

    1976-01-01

    A survey of uses of estuarine and coastal areas is given. Problems associated with these uses are discussed, and data needs for intelligent management of these valuable areas are outlined. Suspended sediment measurements are seen to be one of the greatest needs. To help understand the complexity of the problem, a brief discussion of sediment mechanics is given, including sediment sources, characteristics, and transport. The impact of sediment mechanics on its direct measurement (sampling and analysis) is indicated, along with recommendations for directly obtaining representative data. Indirect measurement of suspended sediment by remote sensors is discussed both theoretically and in the light of some recent experiences. The need for an integrated, multidisciplinary program to solve the problem of quantitatively measuring suspended sediment with remote sensors is stressed, and several important considerations of such a program and benefits to be derived therefrom are briefly addressed.

  2. [Integral obstetrics impeded by history? Midwives and gynaecologists through the ages].

    PubMed

    van der Lee, N; Scheele, F

    2016-01-01

    There is a long and complicated history concerning the interprofessional collaboration between midwives and gynaecologists, which is still evident in current practice. Yet, in the analysis of collaborative problems, history and its lessons are often overlooked. Consequently, less effective solutions to problems may be found, because the root cause of a problem is not addressed. In this historical perspective we show how policies of the respective professions have often focused on self-preservation and competition, rather than on effective collaboration. We also highlight how the independent midwives lost and regained authorisation, status and income. Finally, using a theoretical model for interprofessional collaboration, we reflect on where history impedes the development of integral obstetrics. The focus must be averted away from professional self-interest and power struggles, but this proves to be a complex exercise.

  3. Computational 3D structures of drug-targeting proteins in the 2009-H1N1 influenza A virus

    NASA Astrophysics Data System (ADS)

    Du, Qi-Shi; Wang, Shu-Qing; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-01-01

    The neuraminidase (NA) and M2 proton channel of influenza virus are the drug-targeting proteins, based on which several drugs were developed. However these once powerful drugs encountered drug-resistant problem to the H5N1 and H1N1 flu. To address this problem, the computational 3D structures of NA and M2 proteins of 2009-H1N1 influenza virus were built using the molecular modeling technique and computational chemistry method. Based on the models the structure features of NA and M2 proteins were analyzed, the docking structures of drug-protein complexes were computed, and the residue mutations were annotated. The results may help to solve the drug-resistant problem and stimulate designing more effective drugs against 2009-H1N1 influenza pandemic.

  4. A problem-solving approach to effective insulin injection for patients at either end of the body mass index.

    PubMed

    Juip, Micki; Fitzner, Karen

    2012-06-01

    People with diabetes require skills and knowledge to adhere to medication regimens and self-manage this complex disease. Effective self-management is contingent upon effective problem solving and decision making. Gaps existed regarding useful approaches to problem solving by individuals with very low and very high body mass index (BMI) who self-administer insulin injections. This article addresses those gaps by presenting findings from a patient survey, a symposium on the topic of problem solving, and recent interviews with diabetes educators to facilitate problem-solving approaches for people with diabetes with high and low BMI who inject insulin and/or other medications. In practice, problem solving involves problem identification, definition, and specification; goal and barrier identification are a prelude to generating a set of potential strategies for problem resolution and applying these strategies to implement a solution. Teaching techniques, such as site rotation and ensuring that people with diabetes use the appropriate equipment, increase confidence with medication adherence. Medication taking is more effective when people with diabetes are equipped with the knowledge, skills, and problem-solving behaviors to effectively self-manage their injections.

  5. Clinical decision making-a functional medicine perspective.

    PubMed

    Pizzorno, Joseph E

    2012-09-01

    As 21st century health care moves from a disease-based approach to a more patient-centric system that can address biochemical individuality to improve health and function, clinical decision making becomes more complex. Accentuating the problem is the lack of a clear standard for this more complex functional medicine approach. While there is relatively broad agreement in Western medicine for what constitutes competent assessment of disease and identification of related treatment approaches, the complex functional medicine model posits multiple and individualized diagnostic and therapeutic approaches, most or many of which have reasonable underlying science and principles, but which have not been rigorously tested in a research or clinical setting. This has led to non-rigorous thinking and sometimes to uncritical acceptance of both poorly documented diagnostic procedures and ineffective therapies, resulting in less than optimal clinical care.

  6. Clinical Decision Making—A Functional Medicine Perspective

    PubMed Central

    2012-01-01

    As 21st century health care moves from a disease-based approach to a more patient-centric system that can address biochemical individuality to improve health and function, clinical decision making becomes more complex. Accentuating the problem is the lack of a clear standard for this more complex functional medicine approach. While there is relatively broad agreement in Western medicine for what constitutes competent assessment of disease and identification of related treatment approaches, the complex functional medicine model posits multiple and individualized diagnostic and therapeutic approaches, most or many of which have reasonable underlying science and principles, but which have not been rigorously tested in a research or clinical setting. This has led to non-rigorous thinking and sometimes to uncritical acceptance of both poorly documented diagnostic procedures and ineffective therapies, resulting in less than optimal clinical care. PMID:24278827

  7. Public nutrition in complex emergencies.

    PubMed

    Young, Helen; Borrel, Annalies; Holland, Diane; Salama, Peter

    Public nutrition is a broad-based, problem-solving approach to addressing malnutrition in complex emergencies that combines analysis of nutritional risk and vulnerability with action-oriented strategies, including policies, programmes, and capacity development. This paper focuses on six broad areas: nutritional assessment, distribution of a general food ration, prevention and treatment of moderate malnutrition, treatment of severe malnutrition in children and adults, prevention and treatment of micronutrient deficiency diseases, and nutritional support for at-risk groups, including infants, pregnant and lactating women, elderly people, and people living with HIV. Learning and documenting good practice from previous emergencies, the promotion of good practice in current emergencies, and adherence to international standards and guidelines have contributed to establishing the field of public nutrition. However, many practical challenges reduce the effectiveness of nutritional interventions in complex emergencies, and important research and programmatic questions remain.

  8. Managing bioengineering complexity with AI techniques.

    PubMed

    Beal, Jacob; Adler, Aaron; Yaman, Fusun

    2016-10-01

    Our capabilities for systematic design and engineering of biological systems are rapidly increasing. Effectively engineering such systems, however, requires the synthesis of a rapidly expanding and changing complex body of knowledge, protocols, and methodologies. Many of the problems in managing this complexity, however, appear susceptible to being addressed by artificial intelligence (AI) techniques, i.e., methods enabling computers to represent, acquire, and employ knowledge. Such methods can be employed to automate physical and informational "routine" work and thus better allow humans to focus their attention on the deeper scientific and engineering issues. This paper examines the potential impact of AI on the engineering of biological organisms through the lens of a typical organism engineering workflow. We identify a number of key opportunities for significant impact, as well as challenges that must be overcome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Study of Nanocomposites of Amino Acids and Organic Polyethers by Means of Mass Spectrometry and Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Zobnina, V. G.; Kosevich, M. V.; Chagovets, V. V.; Boryak, O. A.

    A problem of elucidation of structure of nanomaterials based on combination of proteins and polyether polymers is addressed on the monomeric level of single amino acids and oligomers of PEG-400 and OEG-5 polyethers. Efficiency of application of combined approach involving experimental electrospray mass spectrometry and computer modeling by molecular dynamics simulation is demonstrated. It is shown that oligomers of polyethers form stable complexes with amino acids valine, proline, histidine, glutamic, and aspartic acids. Molecular dynamics simulation has shown that stabilization of amino acid-polyether complexes is achieved due to winding of the polymeric chain around charged groups of amino acids. Structural motives revealed for complexes of single amino acids with polyethers can be realized in structures of protein-polyether nanoparticles currently designed for drug delivery.

  10. A systematic review comparing antiretroviral adherence descriptive and intervention studies conducted in the USA.

    PubMed

    Sandelowski, Margarete; Voils, Corrine I; Chang, Yunkyung; Lee, Eun-Jeong

    2009-08-01

    We examined the extent to which studies aimed at testing interventions to improve antiretroviral adherence have targeted the facilitators of and barriers known to affect adherence. Of the 88 reports reviewed, 41 were reports of descriptive studies conducted with US HIV-positive women and 47 were reports of intervention studies conducted with US HIV-positive persons. We extracted from the descriptive studies all findings addressing any factor linked to antiretroviral adherence and from the intervention studies, information on the nature of the intervention, the adherence problem targeted, the persons targeted for the intervention, and the intervention outcomes desired. We discerned congruence between the prominence of substance abuse as a factor identified in the descriptive studies as a barrier to adherence and its prominence as the problem most addressed in those reports of intervention studies that specified the problems targeted for intervention. We also discerned congruence between the prominence of family and provider support as factors identified in the descriptive studies as facilitators of adherence and the presence of social support as an intervention component and outcome variable. Less discernible in the reports of intervention studies was specific attention to other factors prominent in the descriptive studies, which may be due to the complex nature of the problem, individualistic and rationalist slant of interventions, or simply the ways interventions were presented. Our review raises issues about niche standardization and intervention tailoring, targeting, and fidelity.

  11. Communicating Climate Change: the Problem of Knowing and Doing.

    NASA Astrophysics Data System (ADS)

    Wildcat, D.

    2008-12-01

    The challenge of global warming and climate change may illustrate better than any recent phenomenon that quite independent of the science associated with our assessment, modeling, mitigation strategies and adaptation to the multiple complex processes that characterize this phenomenon, our greatest challenge resides in creating systems where knowledge can be usefully communicated to the general public. Knowledge transfer will pose significant challenges when addressing a topic that often leaves the ill-informed and non-scientist overwhelmed with pieces of information and paralyzed with a sense that there is nothing to be done to address this global problem. This communication problem is very acute in North American indigenous communities where a first-hand, on-the-ground, experience of climate change is indisputable, but where the charts, graphs and sophisticated models presented by scientists are treated with suspicion and often not explained very well. This presentation will discuss the efforts of the American Indian and Alaska Native Climate Change Working Group to prepare future generations of AI/AN geoscience professionals, educators, and a geoscience literate AI/AN workforce, while insuring that our Indigenous tribal knowledges of land- and sea-scapes, and climates are valued, used and incorporated into our tribal exercise of geoscience education and research. The Working Group's efforts are already suggesting the communication problem for Indigenous communities will best be solved by 'growing' our own culturally competent Indigenous geoscience professionals.

  12. Combining complex networks and data mining: Why and how

    NASA Astrophysics Data System (ADS)

    Zanin, M.; Papo, D.; Sousa, P. A.; Menasalvas, E.; Nicchi, A.; Kubik, E.; Boccaletti, S.

    2016-05-01

    The increasing power of computer technology does not dispense with the need to extract meaningful information out of data sets of ever growing size, and indeed typically exacerbates the complexity of this task. To tackle this general problem, two methods have emerged, at chronologically different times, that are now commonly used in the scientific community: data mining and complex network theory. Not only do complex network analysis and data mining share the same general goal, that of extracting information from complex systems to ultimately create a new compact quantifiable representation, but they also often address similar problems too. In the face of that, a surprisingly low number of researchers turn out to resort to both methodologies. One may then be tempted to conclude that these two fields are either largely redundant or totally antithetic. The starting point of this review is that this state of affairs should be put down to contingent rather than conceptual differences, and that these two fields can in fact advantageously be used in a synergistic manner. An overview of both fields is first provided, some fundamental concepts of which are illustrated. A variety of contexts in which complex network theory and data mining have been used in a synergistic manner are then presented. Contexts in which the appropriate integration of complex network metrics can lead to improved classification rates with respect to classical data mining algorithms and, conversely, contexts in which data mining can be used to tackle important issues in complex network theory applications are illustrated. Finally, ways to achieve a tighter integration between complex networks and data mining, and open lines of research are discussed.

  13. Addressing problems of employee performance.

    PubMed

    McConnell, Charles R

    2011-01-01

    Employee performance problems are essentially of 2 kinds: those that are motivational in origin and those resulting from skill deficiencies. Both kinds of problems are the province of the department manager. Performance problems differ from problems of conduct in that traditional disciplinary processes ordinarily do not apply. Rather, performance problems are addressed through educational and remedial processes. The manager has a basic responsibility in ensuring that everything reasonable is done to help each employee succeed. There are a number of steps the manager can take to address employee performance problems.

  14. Health IT success and failure: recommendations from literature and an AMIA workshop.

    PubMed

    Kaplan, Bonnie; Harris-Salamone, Kimberly D

    2009-01-01

    With the United States joining other countries in national efforts to reap the many benefits that use of health information technology can bring for health care quality and savings, sobering reports recall the complexity and difficulties of implementing even smaller-scale systems. Despite best practice research that identified success factors for health information technology projects, a majority, in some sense, still fail. Similar problems plague a variety of different kinds of applications, and have done so for many years. Ten AMIA working groups sponsored a workshop at the AMIA Fall 2006 Symposium. It was entitled "Avoiding The F-Word: IT Project Morbidity, Mortality, and Immortality" and focused on this under-addressed problem. PARTICIPANTS discussed communication, workflow, and quality; the complexity of information technology undertakings; the need to integrate all aspects of projects, work environments, and regulatory and policy requirements; and the difficulty of getting all the parts and participants in harmony. While recognizing that there still are technical issues related to functionality and interoperability, discussion affirmed the emerging consensus that problems are due to sociological, cultural, and financial issues, and hence are more managerial than technical. Participants drew on lessons from experience and research in identifying important issues, action items, and recommendations to address the following: what "success" and "failure" mean, what contributes to making successful or unsuccessful systems, how to use failure as an enhanced learning opportunity for continued improvement, how system successes or failures should be studied, and what AMIA should do to enhance opportunities for successes. The workshop laid out a research agenda and recommended action items, reflecting the conviction that AMIA members and AMIA as an organization can take a leadership role to make projects more practical and likely to succeed in health care settings.

  15. Computational and Statistical Models: A Comparison for Policy Modeling of Childhood Obesity

    NASA Astrophysics Data System (ADS)

    Mabry, Patricia L.; Hammond, Ross; Ip, Edward Hak-Sing; Huang, Terry T.-K.

    As systems science methodologies have begun to emerge as a set of innovative approaches to address complex problems in behavioral, social science, and public health research, some apparent conflicts with traditional statistical methodologies for public health have arisen. Computational modeling is an approach set in context that integrates diverse sources of data to test the plausibility of working hypotheses and to elicit novel ones. Statistical models are reductionist approaches geared towards proving the null hypothesis. While these two approaches may seem contrary to each other, we propose that they are in fact complementary and can be used jointly to advance solutions to complex problems. Outputs from statistical models can be fed into computational models, and outputs from computational models can lead to further empirical data collection and statistical models. Together, this presents an iterative process that refines the models and contributes to a greater understanding of the problem and its potential solutions. The purpose of this panel is to foster communication and understanding between statistical and computational modelers. Our goal is to shed light on the differences between the approaches and convey what kinds of research inquiries each one is best for addressing and how they can serve complementary (and synergistic) roles in the research process, to mutual benefit. For each approach the panel will cover the relevant "assumptions" and how the differences in what is assumed can foster misunderstandings. The interpretations of the results from each approach will be compared and contrasted and the limitations for each approach will be delineated. We will use illustrative examples from CompMod, the Comparative Modeling Network for Childhood Obesity Policy. The panel will also incorporate interactive discussions with the audience on the issues raised here.

  16. Nonlinear dynamics of contact interaction of a size-dependent plate supported by a size-dependent beam

    NASA Astrophysics Data System (ADS)

    Awrejcewicz, J.; Krysko, V. A.; Yakovleva, T. V.; Pavlov, S. P.; Krysko, V. A.

    2018-05-01

    A mathematical model of complex vibrations exhibited by contact dynamics of size-dependent beam-plate constructions was derived by taking the account of constraints between these structural members. The governing equations were yielded by variational principles based on the moment theory of elasticity. The centre of the investigated plate was supported by a beam. The plate and the beam satisfied the Kirchhoff/Euler-Bernoulli hypotheses. The derived partial differential equations (PDEs) were reduced to the Cauchy problems by the Faedo-Galerkin method in higher approximations, whereas the Cauchy problem was solved using a few Runge-Kutta methods. Reliability of results was validated by comparing the solutions obtained by qualitatively different methods. Complex vibrations were investigated with the help of methods of nonlinear dynamics such as vibration signals, phase portraits, Fourier power spectra, wavelet analysis, and estimation of the largest Lyapunov exponents based on the Rosenstein, Kantz, and Wolf methods. The effect of size-dependent parameters of the beam and plate on their contact interaction was investigated. It was detected and illustrated that the first contact between the size-dependent structural members implies chaotic vibrations. In addition, problems of chaotic synchronization between a nanoplate and a nanobeam were addressed.

  17. An Algorithm for Integrated Subsystem Embodiment and System Synthesis

    NASA Technical Reports Server (NTRS)

    Lewis, Kemper

    1997-01-01

    Consider the statement,'A system has two coupled subsystems, one of which dominates the design process. Each subsystem consists of discrete and continuous variables, and is solved using sequential analysis and solution.' To address this type of statement in the design of complex systems, three steps are required, namely, the embodiment of the statement in terms of entities on a computer, the mathematical formulation of subsystem models, and the resulting solution and system synthesis. In complex system decomposition, the subsystems are not isolated, self-supporting entities. Information such as constraints, goals, and design variables may be shared between entities. But many times in engineering problems, full communication and cooperation does not exist, information is incomplete, or one subsystem may dominate the design. Additionally, these engineering problems give rise to mathematical models involving nonlinear functions of both discrete and continuous design variables. In this dissertation an algorithm is developed to handle these types of scenarios for the domain-independent integration of subsystem embodiment, coordination, and system synthesis using constructs from Decision-Based Design, Game Theory, and Multidisciplinary Design Optimization. Implementation of the concept in this dissertation involves testing of the hypotheses using example problems and a motivating case study involving the design of a subsonic passenger aircraft.

  18. PWHATSHAP: efficient haplotyping for future generation sequencing.

    PubMed

    Bracciali, Andrea; Aldinucci, Marco; Patterson, Murray; Marschall, Tobias; Pisanti, Nadia; Merelli, Ivan; Torquati, Massimo

    2016-09-22

    Haplotype phasing is an important problem in the analysis of genomics information. Given a set of DNA fragments of an individual, it consists of determining which one of the possible alleles (alternative forms of a gene) each fragment comes from. Haplotype information is relevant to gene regulation, epigenetics, genome-wide association studies, evolutionary and population studies, and the study of mutations. Haplotyping is currently addressed as an optimisation problem aiming at solutions that minimise, for instance, error correction costs, where costs are a measure of the confidence in the accuracy of the information acquired from DNA sequencing. Solutions have typically an exponential computational complexity. WHATSHAP is a recent optimal approach which moves computational complexity from DNA fragment length to fragment overlap, i.e., coverage, and is hence of particular interest when considering sequencing technology's current trends that are producing longer fragments. Given the potential relevance of efficient haplotyping in several analysis pipelines, we have designed and engineered PWHATSHAP, a parallel, high-performance version of WHATSHAP. PWHATSHAP is embedded in a toolkit developed in Python and supports genomics datasets in standard file formats. Building on WHATSHAP, PWHATSHAP exhibits the same complexity exploring a number of possible solutions which is exponential in the coverage of the dataset. The parallel implementation on multi-core architectures allows for a relevant reduction of the execution time for haplotyping, while the provided results enjoy the same high accuracy as that provided by WHATSHAP, which increases with coverage. Due to its structure and management of the large datasets, the parallelisation of WHATSHAP posed demanding technical challenges, which have been addressed exploiting a high-level parallel programming framework. The result, PWHATSHAP, is a freely available toolkit that improves the efficiency of the analysis of genomics information.

  19. New technologies for supporting real-time on-board software development

    NASA Astrophysics Data System (ADS)

    Kerridge, D.

    1995-03-01

    The next generation of on-board data management systems will be significantly more complex than current designs, and will be required to perform more complex and demanding tasks in software. Improved hardware technology, in the form of the MA31750 radiation hard processor, is one key component in addressing the needs of future embedded systems. However, to complement these hardware advances, improved support for the design and implementation of real-time data management software is now needed. This will help to control the cost and risk assoicated with developing data management software development as it becomes an increasingly significant element within embedded systems. One particular problem with developing embedded software is managing the non-functional requirements in a systematic way. This paper identifies how Logica has exploited recent developments in hard real-time theory to address this problem through the use of new hard real-time analysis and design methods which can be supported by specialized tools. The first stage in transferring this technology from the research domain to industrial application has already been completed. The MA37150 Hard Real-Time Embedded Software Support Environment (HESSE) is a loosely integrated set of hardware and software tools which directly support the process of hard real-time analysis for software targeting the MA31750 processor. With further development, this HESSE promises to provide embedded system developers with software tools which can reduce the risks associated with developing complex hard real-time software. Supported in this way by more sophisticated software methods and tools, it is foreseen that MA31750 based embedded systems can meet the processing needs for the next generation of on-board data management systems.

  20. Using VCL as an Aspect-Oriented Approach to Requirements Modelling

    NASA Astrophysics Data System (ADS)

    Amálio, Nuno; Kelsen, Pierre; Ma, Qin; Glodt, Christian

    Software systems are becoming larger and more complex. By tackling the modularisation of crosscutting concerns, aspect orientation draws attention to modularity as a means to address the problems of scalability, complexity and evolution in software systems development. Aspect-oriented modelling (AOM) applies aspect-orientation to the construction of models. Most existing AOM approaches are designed without a formal semantics, and use multi-view partial descriptions of behaviour. This paper presents an AOM approach based on the Visual Contract Language (VCL): a visual language for abstract and precise modelling, designed with a formal semantics, and comprising a novel approach to visual behavioural modelling based on design by contract where behavioural descriptions are total. By applying VCL to a large case study of a car-crash crisis management system, the paper demonstrates how modularity of VCL's constructs, at different levels of granularity, help to tackle complexity. In particular, it shows how VCL's package construct and its associated composition mechanisms are key in supporting separation of concerns, coarse-grained problem decomposition and aspect-orientation. The case study's modelling solution has a clear and well-defined modular structure; the backbone of this structure is a collection of packages encapsulating local solutions to concerns.

  1. Finance issue brief: health care claims payment: prompt payment: year end report-2003.

    PubMed

    MacEachern, Lillian

    2003-12-31

    Since the mid 1990's state legislators and regulators have worked to resolve the complex issue of timely payment of health care claims. They have been challenged with bridging the communication gap between provider and payor and forced to address such base problems as what determines a correctly billed service. As time has progressed it is ever apparent that the completion of payment for services is dependent on many variables, not just simply timely processing of a claim.

  2. A study on ?-dissipative synchronisation of coupled reaction-diffusion neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Ali, M. Syed; Zhu, Quanxin; Pavithra, S.; Gunasekaran, N.

    2018-03-01

    This study examines the problem of dissipative synchronisation of coupled reaction-diffusion neural networks with time-varying delays. This paper proposes a complex dynamical network consisting of N linearly and diffusively coupled identical reaction-diffusion neural networks. By constructing a suitable Lyapunov-Krasovskii functional (LKF), utilisation of Jensen's inequality and reciprocally convex combination (RCC) approach, strictly ?-dissipative conditions of the addressed systems are derived. Finally, a numerical example is given to show the effectiveness of the theoretical results.

  3. An XML-Based Protocol for Distributed Event Services

    NASA Technical Reports Server (NTRS)

    Smith, Warren; Gunter, Dan; Quesnel, Darcy; Biegel, Bryan (Technical Monitor)

    2001-01-01

    A recent trend in distributed computing is the construction of high-performance distributed systems called computational grids. One difficulty we have encountered is that there is no standard format for the representation of performance information and no standard protocol for transmitting this information. This limits the types of performance analysis that can be undertaken in complex distributed systems. To address this problem, we present an XML-based protocol for transmitting performance events in distributed systems and evaluate the performance of this protocol.

  4. Parallel Architectures and Parallel Algorithms for Integrated Vision Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi

    1989-01-01

    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems.

  5. Fluid Leadership: Inviting Diverse Inputs to Address Complex Problems

    DTIC Science & Technology

    2016-03-01

    with any audience, and served as my compass for staying true to my values. I miss her physical presence in my life, but I feel her nudging me to...Lepowsky found that several cultures value the contributions of men and women equally and a certain “ sexual symmetry” exists.17 There was no evidence of...specific societies.19 Simply stated, if an essential job task requires an employee to perform a physical skill, the group of individuals who are

  6. High reflectance coatings for space applications in the EUV

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A. M.; Gum, Jeffrey S.; Osantowski, John F.; Fleetwood, Charles M.

    1993-01-01

    Advances in optical coating and materials technology have made possible the development of instruments with substantially improved efficiency and made possible to consider more complex optical designs in the EUV. The importance of recent developments in chemical vapor deposited silicon carbide (CVD-SiC), SiC films and multilayer coatings is discussed in the context of EUV instrumentation design. The EUV performance of these coatings as well as some strengths and problem areas for their use in space will be addressed.

  7. Evolution of an Intelligent Information Fusion System

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Cromp, Robert F.

    1990-01-01

    Consideration is given to the hardware and software needed to manage the enormous amount and complexity of data that the next generation of space-borne sensors will provide. An anthology is presented illustrating the evolution of artificial intelligence, science data processing, and management from the 1960s to the near future. Problems and limitations of technologies, data structures, data standards, and conceptual thinking are addressed. The development of an end-to-end Intelligent Information Fusion System that embodies knowledge of the user's domain-specific goals is proposed.

  8. [Complex program for the recovery of the vertebral column motor function].

    PubMed

    Kukareko, V P; Furmanov, A G

    2011-01-01

    This paper addresses the problems pertinent to the improvement of the efficacy of restoration of the vertebral column motor function based on the implementation of a comprehensive therapeutic program including massage, thermal procedures, and physical exercises. The program was realized in three phases, viz. preparatory, basic, and consolidating. The results of integral estimation of the whole body and vertebral column condition were taken into consideration. The experiment lasted 6 months and confirmed high efficiency of the comprehensive program.

  9. Deep pockets or blueprint for change: traumatic brain injury (TBI) proactive strategy.

    PubMed

    Wood, D W; Pohl, S; Lawler, S; Okamoto, G

    1998-09-01

    The Pacific Conference scheduled for October 1-3, 1988, is a critical event in the development of an integrated community-based plan for a comprehensive continuum of services to address the "silent epidemic," Traumatic Brain Injured (TBI). This paper provides insights of the complex nature and the special problems faced by the TBI survivors; their families, natural supports and caregivers, as well as the health, social and educational care providers in Hawaii. Process for the development of the community plan is presented.

  10. Homology geoinformation modeling of the threat of avian influenza occuring in a region

    NASA Astrophysics Data System (ADS)

    Myasnikova, S. I.

    2008-03-01

    This paper addresses the problem of modeling the likely foci of Avian Influenza emergence and spread. The factors contributing to the emergence and spread of the virus are identified. The connection of the factors with invariant structure (landscape map) is determined, and the complex (homotopic) coefficient is calculated, which takes into account the geographical inhomogeneity of the factors, and of the model conditions. The computer-aided mapping and geoinformation modeling procedures are used to assess the situation.

  11. Fleet/TYCOM Level Survey of Armament Handling Problems - Task One of the Naval Aviation Armament Support Equipment Program Management Study

    DTIC Science & Technology

    1977-06-21

    7. AUTHOR(#) 6. CONTRACT OR GRANT NUMBER(#) PILA /UDERIAN 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK...mechanically complex (i.e. contains an internal combustion engine) and/or comes in direct support of the aircraft is managed and maintained by the AIMD. The...an internal combustion engine. Accordingly, only the Aero 33D/E Trailer, Aero 51B Trailer, 21A/C Bomb Skid, and Aero 47A Weapons Loader are maintained

  12. Quality and Utility: The 1994 Trial State Assessment in Reading. The Fourth Report of the National Academy of Education Panel on the Evaluation of the NAEP Trial State Assessment: 1994 Trial State Assessment in Reading.

    ERIC Educational Resources Information Center

    National Academy of Education, Stanford, CA.

    This report evaluates the conduct, validity, and uses of the National Assessment of Educational Progress (NAEP) Trial State Assessment (TSA). The report addresses such pressing problems as how participation in NAEP can be maintained and appropriate samples can be achieved; how errors can be minimized in the complex process of scaling and analyzing…

  13. Perspectives on the neuroscience of cognition and consciousness.

    PubMed

    Werner, Gerhard

    2007-01-01

    The origin and current use of the concepts of computation, representation and information in Neuroscience are examined and conceptual flaws are identified which vitiate their usefulness for addressing the problem of the neural basis of Cognition and Consciousness. In contrast, a convergence of views is presented to support the characterization of the Nervous System as a complex dynamical system operating in a metastable regime, and capable of evolving to configurations and transitions in phase space with potential relevance for Cognition and Consciousness.

  14. Incremental Sampling Methodology (ISM). Part 1, Section 2: Principles

    DTIC Science & Technology

    2012-03-01

    Many contaminants adhere to the surfaces of certain minerals  Organic carbon is composed of complex molecules that can act as molecular sponges...hydroxide particles “the iron in a cubic yard of soil [1-1.5 tons] is capable of adsorbing 0.5 to 5 lbs of soluble metals …or organics” (Vance...determine decision outcome!  ISM addresses the problems of both micro- and short-scale heterogeneity Set of co-located samples for uranium (mg/kg) As

  15. Design of Gages for Direct Skin Friction Measurements in Complex Turbulent Flows with Shock Impingement Compensation

    DTIC Science & Technology

    2007-06-07

    100 kW/m2 for 0.1 s. Along with the material change, an oil leak problem required a geometric change. Initially, we considered TIG welding or...shear and moment, is addressed through the design, development, and testing of the CF1 and CF2 gages. Chapter 3 presents the evolutionary process ...a shock. Chapter 4 examines the performance of each gage to the nominal load conditions. Through this process , objective 2 is met. The best

  16. Information-theoretic metamodel of organizational evolution

    NASA Astrophysics Data System (ADS)

    Sepulveda, Alfredo

    2011-12-01

    Social organizations are abstractly modeled by holarchies---self-similar connected networks---and intelligent complex adaptive multiagent systems---large networks of autonomous reasoning agents interacting via scaled processes. However, little is known of how information shapes evolution in such organizations, a gap that can lead to misleading analytics. The research problem addressed in this study was the ineffective manner in which classical model-predict-control methods used in business analytics attempt to define organization evolution. The purpose of the study was to construct an effective metamodel for organization evolution based on a proposed complex adaptive structure---the info-holarchy. Theoretical foundations of this study were holarchies, complex adaptive systems, evolutionary theory, and quantum mechanics, among other recently developed physical and information theories. Research questions addressed how information evolution patterns gleamed from the study's inductive metamodel more aptly explained volatility in organization. In this study, a hybrid grounded theory based on abstract inductive extensions of information theories was utilized as the research methodology. An overarching heuristic metamodel was framed from the theoretical analysis of the properties of these extension theories and applied to business, neural, and computational entities. This metamodel resulted in the synthesis of a metaphor for, and generalization of organization evolution, serving as the recommended and appropriate analytical tool to view business dynamics for future applications. This study may manifest positive social change through a fundamental understanding of complexity in business from general information theories, resulting in more effective management.

  17. A qualitative study of health care providers' perceptions and experiences of working together to care for children with medical complexity (CMC).

    PubMed

    Altman, Lisa; Zurynski, Yvonne; Breen, Christie; Hoffmann, Tim; Woolfenden, Susan

    2018-01-31

    Children with medical complexity (CMC) have a wide range of long term health problems and disabilities that have an adverse impact on their quality of life. They have high levels of family identified health care needs and health care utilisation. There is no Australian literature on the experiences of health care providers working in the Australian tertiary, secondary and primary health care system, whilst managing CMC. This information is essential to inform the design of integrated health care systems for these children. We address this knowledge gap by exploring the perceptions and experiences of health care providers on the provision of health care for CMC aged 0 to 18 years. A qualitative research study was undertaken. Stakeholder forums, group and individual in depth interviews were undertaken using a semi-structured interview guide. The stakeholder forums were audio recorded and transcribed verbatim. Field notes of the stakeholder forums, group and individual interviews were taken. Inductive thematic analysis was undertaken to identify key themes. One hundred and three providers took part in the stakeholder forums and interviews across 3 local health districts, a tertiary paediatric hospital network, and primary health care organisations. Providers expressed concern regarding family capacity to negotiate the system, which was impacted by the medical complexity of the children and psychosocial complexity of their families. Lack of health care provider capacity in terms of their skills, time and availability to manage CMC was also a key problem. These issues occurred within a health system that had impaired capacity in terms of fragmentation of care and limited communication among health care providers. When designing integrated care models for CMC, it is essential to understand and address the challenges experienced by their health care providers. This requires adequate training of providers, additional resources and time for coordination of care, improved systems of communication among services, with timely access to key information for parents and providers.

  18. The information filter: how dentists use diet diary information to give patients clear and simple advice.

    PubMed

    Arheiam, Arheiam; Brown, Stephen L; Higham, Susan M; Albadri, Sondos; Harris, Rebecca V

    2016-12-01

    Diet diaries are recommended for dentists to monitor children's sugar consumption. Diaries provide multifaceted dietary information, but patients respond better to simpler advice. We explore how dentists integrate information from diet diaries to deliver useable advice to patients. As part of a questionnaire study of general dental practitioners (GDPs) in Northwest England, we asked dentists to specify the advice they would give a hypothetical patient based upon a diet diary case vignette. A sequential mixed method approach was used for data analysis: an initial inductive content analysis (ICA) to develop coding system to capture the complexity of dietary assessment and delivered advice. Using these codes, a quantitative analysis was conducted to examine correspondences between identified dietary problems and advice given. From these correspondences, we inferred how dentists reduced problems to give simple advice. A total of 229 dentists' responses were analysed. ICA on 40 questionnaires identified two distinctive approaches of developing diet advice: a summative (summary of issues into an all-encompassing message) and a selective approach (selection of a main message approach). In the quantitative analysis of all responses, raw frequencies indicated that dentists saw more problems than they advised on and provided highly specific advice on a restricted number of problems (e.g. not eating sugars before bedtime 50.7% or harmful items 42.4%, rather than simply reducing the amount of sugar 9.2%). Binary logistic regression models indicate that dentists provided specific advice that was tailored to the key problems that they identified. Dentists provided specific recommendations to address what they felt were key problems, whilst not intervening to address other problems that they may have felt less pressing. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Adjoint Sensitivity Computations for an Embedded-Boundary Cartesian Mesh Method and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis,Michael J.

    2006-01-01

    Cartesian-mesh methods are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric Computer-Aided Design (CAD) tools. Our goal is to combine the automation capabilities of Cartesian methods with an eficient computation of design sensitivities. We address this issue using the adjoint method, where the computational cost of the design sensitivities, or objective function gradients, is esseutially indepeudent of the number of design variables. In previous work, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm included the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The objective of the present work is to extend our adjoint formulation to problems involving general shape changes. Central to this development is the computation of volume-mesh sensitivities to obtain a reliable approximation of the objective finction gradient. Motivated by the success of mesh-perturbation schemes commonly used in body-fitted unstructured formulations, we propose an approach based on a local linearization of a mesh-perturbation scheme similar to the spring analogy. This approach circumvents most of the difficulties that arise due to non-smooth changes in the cut-cell layer as the boundary shape evolves and provides a consistent approximation tot he exact gradient of the discretized abjective function. A detailed gradient accurace study is presented to verify our approach. Thereafter, we focus on a shape optimization problem for an Apollo-like reentry capsule. The optimization seeks to enhance the lift-to-drag ratio of the capsule by modifyjing the shape of its heat-shield in conjunction with a center-of-gravity (c.g.) offset. This multipoint and multi-objective optimization problem is used to demonstrate the overall effectiveness of the Cartesian adjoint method for addressing the issues of complex aerodynamic design. This abstract presents only a brief outline of the numerical method and results; full details will be given in the final paper.

  20. Bilayer Protograph Codes for Half-Duplex Relay Channels

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; VanNguyen, Thuy; Nosratinia, Aria

    2013-01-01

    Direct to Earth return links are limited by the size and power of lander devices. A standard alternative is provided by a two-hops return link: a proximity link (from lander to orbiter relay) and a deep-space link (from orbiter relay to Earth). Although direct to Earth return links are limited by the size and power of lander devices, using an additional link and a proposed coding for relay channels, one can obtain a more reliable signal. Although significant progress has been made in the relay coding problem, existing codes must be painstakingly optimized to match to a single set of channel conditions, many of them do not offer easy encoding, and most of them do not have structured design. A high-performing LDPC (low-density parity-check) code for the relay channel addresses simultaneously two important issues: a code structure that allows low encoding complexity, and a flexible rate-compatible code that allows matching to various channel conditions. Most of the previous high-performance LDPC codes for the relay channel are tightly optimized for a given channel quality, and are not easily adapted without extensive re-optimization for various channel conditions. This code for the relay channel combines structured design and easy encoding with rate compatibility to allow adaptation to the three links involved in the relay channel, and furthermore offers very good performance. The proposed code is constructed by synthesizing a bilayer structure with a pro to graph. In addition to the contribution to relay encoding, an improved family of protograph codes was produced for the point-to-point AWGN (additive white Gaussian noise) channel whose high-rate members enjoy thresholds that are within 0.07 dB of capacity. These LDPC relay codes address three important issues in an integrative manner: low encoding complexity, modular structure allowing for easy design, and rate compatibility so that the code can be easily matched to a variety of channel conditions without extensive re-optimization. The main problem of half-duplex relay coding can be reduced to the simultaneous design of two codes at two rates and two SNRs (signal-to-noise ratios), such that one is a subset of the other. This problem can be addressed by forceful optimization, but a clever method of addressing this problem is via the bilayer lengthened (BL) LDPC structure. This method uses a bilayer Tanner graph to make the two codes while using a concept of "parity forwarding" with subsequent successive decoding that removes the need to directly address the issue of uneven SNRs among the symbols of a given codeword. This method is attractive in that it addresses some of the main issues in the design of relay codes, but it does not by itself give rise to highly structured codes with simple encoding, nor does it give rate-compatible codes. The main contribution of this work is to construct a class of codes that simultaneously possess a bilayer parity- forwarding mechanism, while also benefiting from the properties of protograph codes having an easy encoding, a modular design, and being a rate-compatible code.

  1. Maintaining Sexual Health throughout Gynecologic Cancer Survivorship: A Comprehensive Review and Clinical Guide

    PubMed Central

    Huffman, Laura B.; Hartenbach, Ellen M.; Carter, Jeanne; Rash, Joanne K.; Kushner, David M.

    2016-01-01

    Objective The diagnosis and treatment of gynecologic cancer can cause short- and long-term negative effects on sexual health and quality of life (QoL). The aim of this article is to present a comprehensive overview of the sexual health concerns of gynecologic cancer survivors and discuss evidence-based treatment options for commonly encountered sexual health issues. Methods A comprehensive literature search of English language studies on sexual health in gynecologic cancer survivors and the treatment of sexual dysfunction was conducted in MEDLINE databases. Relevant data are presented in this review. Additionally, personal and institutional practices are incorporated where relevant. Results Sexual dysfunction is prevalent among gynecologic cancer survivors as a result of surgery, radiation, and chemotherapy--negatively impacting QoL. Many patients expect their healthcare providers to address sexual health concerns, but most have never discussed sex-related issues with their physician. Lubricants, moisturizers, and dilators are effective, simple, non-hormonal interventions that can alleviate the morbidity of vaginal atrophy, stenosis, and pain. Pelvic floor physical therapy can be an additional tool to address dyspareunia. Cognitive behavioral therapy has been shown to be beneficial to patients reporting problems with sexual interest, arousal, and orgasm. Conclusion Oncology providers can make a significant impact on the QoL of gynecologic cancer survivors by addressing sexual health concerns. Simple strategies can be implemented into clinical practice to discuss and treat many sexual issues. Referral to specialized sexual health providers may be needed to address more complex problems. PMID:26556768

  2. Chronic Pain in the Emergency Department: A Pilot Mixed-Methods Cross-Sectional Study Examining Patient Characteristics and Reasons for Presentations.

    PubMed

    Poulin, Patricia A; Nelli, Jennifer; Tremblay, Steven; Small, Rebecca; Caluyong, Myka B; Freeman, Jeffrey; Romanow, Heather; Stokes, Yehudis; Carpino, Tia; Carson, Amanda; Shergill, Yaadwinder; Stiell, Ian G; Taljaard, Monica; Nathan, Howard; Smyth, Catherine E

    2016-01-01

    Background . Chronic pain (CP) accounts for 10-16% of emergency department (ED) visits, contributing to ED overcrowding and leading to adverse events. Objectives . To describe patients with CP attending the ED and identify factors contributing to their visit. Methods . We used a mixed-method design combining interviews and questionnaires addressing pain, psychological distress, signs of opioid misuse, and disability. Participants were adults who attended the EDs of a large academic tertiary care center for their CP problem. Results . Fifty-eight patients (66% women; mean age 46.5, SD = 16.9) completed the study. The most frequently cited reason (60%) for ED visits was inability to cope with pain. Mental health problems were common, including depression (61%) and anxiety (45%). Participants had questions about the etiology of their pain, concerns about severe pain-related impairment, and problems with medication renewals or efficacy and sometimes felt invalidated in the ED. Although most participants had a primary care physician, the ED was seen as the only or best option when pain became unmanageable. Conclusions . Patients with CP visiting the ED often present with complex difficulties that cannot be addressed in the ED. Better access to interdisciplinary pain treatment is needed to reduce the burden of CP on the ED.

  3. Continuous Timescale Long-Short Term Memory Neural Network for Human Intent Understanding

    PubMed Central

    Yu, Zhibin; Moirangthem, Dennis S.; Lee, Minho

    2017-01-01

    Understanding of human intention by observing a series of human actions has been a challenging task. In order to do so, we need to analyze longer sequences of human actions related with intentions and extract the context from the dynamic features. The multiple timescales recurrent neural network (MTRNN) model, which is believed to be a kind of solution, is a useful tool for recording and regenerating a continuous signal for dynamic tasks. However, the conventional MTRNN suffers from the vanishing gradient problem which renders it impossible to be used for longer sequence understanding. To address this problem, we propose a new model named Continuous Timescale Long-Short Term Memory (CTLSTM) in which we inherit the multiple timescales concept into the Long-Short Term Memory (LSTM) recurrent neural network (RNN) that addresses the vanishing gradient problem. We design an additional recurrent connection in the LSTM cell outputs to produce a time-delay in order to capture the slow context. Our experiments show that the proposed model exhibits better context modeling ability and captures the dynamic features on multiple large dataset classification tasks. The results illustrate that the multiple timescales concept enhances the ability of our model to handle longer sequences related with human intentions and hence proving to be more suitable for complex tasks, such as intention recognition. PMID:28878646

  4. A modular approach to large-scale design optimization of aerospace systems

    NASA Astrophysics Data System (ADS)

    Hwang, John T.

    Gradient-based optimization and the adjoint method form a synergistic combination that enables the efficient solution of large-scale optimization problems. Though the gradient-based approach struggles with non-smooth or multi-modal problems, the capability to efficiently optimize up to tens of thousands of design variables provides a valuable design tool for exploring complex tradeoffs and finding unintuitive designs. However, the widespread adoption of gradient-based optimization is limited by the implementation challenges for computing derivatives efficiently and accurately, particularly in multidisciplinary and shape design problems. This thesis addresses these difficulties in two ways. First, to deal with the heterogeneity and integration challenges of multidisciplinary problems, this thesis presents a computational modeling framework that solves multidisciplinary systems and computes their derivatives in a semi-automated fashion. This framework is built upon a new mathematical formulation developed in this thesis that expresses any computational model as a system of algebraic equations and unifies all methods for computing derivatives using a single equation. The framework is applied to two engineering problems: the optimization of a nanosatellite with 7 disciplines and over 25,000 design variables; and simultaneous allocation and mission optimization for commercial aircraft involving 330 design variables, 12 of which are integer variables handled using the branch-and-bound method. In both cases, the framework makes large-scale optimization possible by reducing the implementation effort and code complexity. The second half of this thesis presents a differentiable parametrization of aircraft geometries and structures for high-fidelity shape optimization. Existing geometry parametrizations are not differentiable, or they are limited in the types of shape changes they allow. This is addressed by a novel parametrization that smoothly interpolates aircraft components, providing differentiability. An unstructured quadrilateral mesh generation algorithm is also developed to automate the creation of detailed meshes for aircraft structures, and a mesh convergence study is performed to verify that the quality of the mesh is maintained as it is refined. As a demonstration, high-fidelity aerostructural analysis is performed for two unconventional configurations with detailed structures included, and aerodynamic shape optimization is applied to the truss-braced wing, which finds and eliminates a shock in the region bounded by the struts and the wing.

  5. Families of FPGA-Based Accelerators for Approximate String Matching1

    PubMed Central

    Van Court, Tom; Herbordt, Martin C.

    2011-01-01

    Dynamic programming for approximate string matching is a large family of different algorithms, which vary significantly in purpose, complexity, and hardware utilization. Many implementations have reported impressive speed-ups, but have typically been point solutions – highly specialized and addressing only one or a few of the many possible options. The problem to be solved is creating a hardware description that implements a broad range of behavioral options without losing efficiency due to feature bloat. We report a set of three component types that address different parts of the approximate string matching problem. This allows each application to choose the feature set required, then make maximum use of the FPGA fabric according to that application’s specific resource requirements. Multiple, interchangeable implementations are available for each component type. We show that these methods allow the efficient generation of a large, if not complete, family of accelerators for this application. This flexibility was obtained while retaining high performance: We have evaluated a sample against serial reference codes and found speed-ups of from 150× to 400× over a high-end PC. PMID:21603598

  6. Statistical tools for analysis and modeling of cosmic populations and astronomical time series: CUDAHM and TSE

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas; Budavari, Tamas; Scargle, Jeffrey D.

    2018-01-01

    This presentation provides an overview of open-source software packages addressing two challenging classes of astrostatistics problems. (1) CUDAHM is a C++ framework for hierarchical Bayesian modeling of cosmic populations, leveraging graphics processing units (GPUs) to enable applying this computationally challenging paradigm to large datasets. CUDAHM is motivated by measurement error problems in astronomy, where density estimation and linear and nonlinear regression must be addressed for populations of thousands to millions of objects whose features are measured with possibly complex uncertainties, potentially including selection effects. An example calculation demonstrates accurate GPU-accelerated luminosity function estimation for simulated populations of $10^6$ objects in about two hours using a single NVIDIA Tesla K40c GPU. (2) Time Series Explorer (TSE) is a collection of software in Python and MATLAB for exploratory analysis and statistical modeling of astronomical time series. It comprises a library of stand-alone functions and classes, as well as an application environment for interactive exploration of times series data. The presentation will summarize key capabilities of this emerging project, including new algorithms for analysis of irregularly-sampled time series.

  7. Laser ablation of iron-rich black films from exposed granite surfaces

    NASA Astrophysics Data System (ADS)

    Delgado Rodrigues, J.; Costa, D.; Mascalchi, M.; Osticioli, I.; Siano, S.

    2014-10-01

    Here, we investigated the potential of laser removal of iron-rich dark films from weathered granite substrates, which represents a very difficult conservation problem because of the polymineralic nature of the stone and of its complex deterioration mechanisms. As often occurs, biotite was the most critical component because of its high optical absorption, low melting temperature, and pronounced cleavage, which required a careful control of the photothermal and photomechanical effects to optimize the selective ablation of the mentioned unwanted dark film. Different pulse durations and wavelengths Nd:YAG lasers were tested and optimal irradiation conditions were determined through thorough analytical characterisations. Besides addressing a specific conservation problem, the present work provides information of general valence in laser uncovering of encrusted granite.

  8. Using concepts from biology to improve problem-solving methods

    NASA Astrophysics Data System (ADS)

    Goodman, Erik D.; Rothwell, Edward J.; Averill, Ronald C.

    2011-06-01

    Observing nature has been a cornerstone of engineering design. Today, engineers look not only at finished products, but imitate the evolutionary process by which highly optimized artifacts have appeared in nature. Evolutionary computation began by capturing only the simplest ideas of evolution, but today, researchers study natural evolution and incorporate an increasing number of concepts in order to evolve solutions to complex engineering problems. At the new BEACON Center for the Study of Evolution in Action, studies in the lab and field and in silico are laying the groundwork for new tools for evolutionary engineering design. This paper, which accompanies a keynote address, describes various steps in development and application of evolutionary computation, particularly as regards sensor design, and sets the stage for future advances.

  9. Users Guide on Scaled CMOS Reliability: NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    White, Mark; Cooper, Mark; Johnston, Allan

    2011-01-01

    Reliability of advanced CMOS technology is a complex problem that is usually addressed from the standpoint of specific failure mechanisms rather than overall reliability of a finished microcircuit. A detailed treatment of CMOS reliability in scaled devices can be found in Ref. 1; it should be consulted for a more thorough discussion. The present document provides a more concise treatment of the scaled CMOS reliability problem, emphasizing differences in the recommended approach for these advanced devices compared to that of less aggressively scaled devices. It includes specific recommendations that can be used by flight projects that use advanced CMOS. The primary emphasis is on conventional memories, microprocessors, and related devices.

  10. Team approach to treatment of the posttraumatic stiff hand. A case report.

    PubMed

    Morey, K R; Watson, A H

    1986-02-01

    Posttraumatic hand stiffness is a common but complex problem treated in many general clinics and in hand treatment centers. Although much information is available regarding various treatment procedures, the use of a team approach to evaluate and treat hand stiffness has not been examined thoroughly in the Journal. The problems of the patient with a stiff hand include both physical and psychological components that must be addressed in a structured manner. The clinical picture of posttraumatic hand stiffness involves edema, immobility, pain, and the inability to incorporate the affected extremity into daily activities. In this case report, we review the purpose and philosophy of the team approach to hand therapy and the clarification of responsibilities for physical therapy and occupational therapy intervention.

  11. A Formal Algorithm for Routing Traces on a Printed Circuit Board

    NASA Technical Reports Server (NTRS)

    Hedgley, David R., Jr.

    1996-01-01

    This paper addresses the classical problem of printed circuit board routing: that is, the problem of automatic routing by a computer other than by brute force that causes the execution time to grow exponentially as a function of the complexity. Most of the present solutions are either inexpensive but not efficient and fast, or efficient and fast but very costly. Many solutions are proprietary, so not much is written or known about the actual algorithms upon which these solutions are based. This paper presents a formal algorithm for routing traces on a print- ed circuit board. The solution presented is very fast and efficient and for the first time speaks to the question eloquently by way of symbolic statements.

  12. Drosophila as an In Vivo Model for Human Neurodegenerative Disease

    PubMed Central

    McGurk, Leeanne; Berson, Amit; Bonini, Nancy M.

    2015-01-01

    With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. PMID:26447127

  13. Drosophila as an In Vivo Model for Human Neurodegenerative Disease.

    PubMed

    McGurk, Leeanne; Berson, Amit; Bonini, Nancy M

    2015-10-01

    With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. Copyright © 2015 by the Genetics Society of America.

  14. Games as Tools to Address Conservation Conflicts.

    PubMed

    Redpath, Steve M; Keane, Aidan; Andrén, Henrik; Baynham-Herd, Zachary; Bunnefeld, Nils; Duthie, A Bradley; Frank, Jens; Garcia, Claude A; Månsson, Johan; Nilsson, Lovisa; Pollard, Chris R J; Rakotonarivo, O Sarobidy; Salk, Carl F; Travers, Henry

    2018-06-01

    Conservation conflicts represent complex multilayered problems that are challenging to study. We explore the utility of theoretical, experimental, and constructivist approaches to games to help to understand and manage these challenges. We show how these approaches can help to develop theory, understand patterns in conflict, and highlight potentially effective management solutions. The choice of approach should be guided by the research question and by whether the focus is on testing hypotheses, predicting behaviour, or engaging stakeholders. Games provide an exciting opportunity to help to unravel the complexity in conflicts, while researchers need an awareness of the limitations and ethical constraints involved. Given the opportunities, this field will benefit from greater investment and development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Virtual Control Policy for Binary Ordered Resources Petri Net Class

    PubMed Central

    Rovetto, Carlos A.; Concepción, Tomás J.; Cano, Elia Esther

    2016-01-01

    Prevention and avoidance of deadlocks in sensor networks that use the wormhole routing algorithm is an active research domain. There are diverse control policies that will address this problem being our approach a new method. In this paper we present a virtual control policy for the new specialized Petri net subclass called Binary Ordered Resources Petri Net (BORPN). Essentially, it is an ordinary class constructed from various state machines that share unitary resources in a complex form, which allows branching and joining of processes. The reduced structure of this new class gives advantages that allow analysis of the entire system’s behavior, which is a prohibitive task for large systems because of the complexity and routing algorithms. PMID:27548170

  16. Coordinating space telescope operations in an integrated planning and scheduling architecture

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Stephen F.; Cesta, Amedeo; D'Aloisi, Daniela

    1992-01-01

    The Heuristic Scheduling Testbed System (HSTS), a software architecture for integrated planning and scheduling, is discussed. The architecture has been applied to the problem of generating observation schedules for the Hubble Space Telescope. This problem is representative of the class of problems that can be addressed: their complexity lies in the interaction of resource allocation and auxiliary task expansion. The architecture deals with this interaction by viewing planning and scheduling as two complementary aspects of the more general process of constructing behaviors of a dynamical system. The principal components of the software architecture are described, indicating how to model the structure and dynamics of a system, how to represent schedules at multiple levels of abstraction in the temporal database, and how the problem solving machinery operates. A scheduler for the detailed management of Hubble Space Telescope operations that has been developed within HSTS is described. Experimental performance results are given that indicate the utility and practicality of the approach.

  17. A hybrid binary particle swarm optimization for large capacitated multi item multi level lot sizing (CMIMLLS) problem

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Sahithi, V. V. D.; Rao, C. S. P.

    2016-09-01

    The lot sizing problem deals with finding optimal order quantities which minimizes the ordering and holding cost of product mix. when multiple items at multiple levels with all capacity restrictions are considered, the lot sizing problem become NP hard. Many heuristics were developed in the past have inevitably failed due to size, computational complexity and time. However the authors were successful in the development of PSO based technique namely iterative improvement binary particles swarm technique to address very large capacitated multi-item multi level lot sizing (CMIMLLS) problem. First binary particle Swarm Optimization algorithm is used to find a solution in a reasonable time and iterative improvement local search mechanism is employed to improvise the solution obtained by BPSO algorithm. This hybrid mechanism of using local search on the global solution is found to improve the quality of solutions with respect to time thus IIBPSO method is found best and show excellent results.

  18. Solving Identity Management and Interoperability Problems at Pan-European Level

    NASA Astrophysics Data System (ADS)

    Sánchez García, Sergio; Gómez Oliva, Ana

    In a globalized digital world, it is essential for persons and entities to have a recognized and unambiguous electronic identity that allows them to communicate with one another. The management of this identity by public administrations is an important challenge that becomes even more crucial when interoperability among public administrations of different countries becomes necessary, as persons and entities have different credentials depending on their own national legal frameworks. More specifically, different credentials and legal frameworks cause interoperability problems that prevent reliable access to public services in a cross-border scenarios like today's European Union. Work in this doctoral thesis try to analyze the problem in a carefully detailed manner by studying existing proposals (basically in Europe), proposing improvements in defined architectures and performing practical work to test the viability of solutions. Moreover, this thesis will also address the long-standing security problem of identity delegation, which is especially important in complex and heterogeneous service delivery environments like those mentioned above. This is a position paper.

  19. Analyzing and Detecting Problems in Systems of Systems

    NASA Technical Reports Server (NTRS)

    Lindvall, Mikael; Ackermann, Christopher; Stratton, William C.; Sibol, Deane E.; Godfrey, Sally

    2008-01-01

    Many software systems are evolving complex system of systems (SoS) for which inter-system communication is mission-critical. Evidence indicates that transmission failures and performance issues are not uncommon occurrences. In a NASA-supported Software Assurance Research Program (SARP) project, we are researching a new approach addressing such problems. In this paper, we are presenting an approach for analyzing inter-system communications with the goal to uncover both transmission errors and performance problems. Our approach consists of a visualization and an evaluation component. While the visualization of the observed communication aims to facilitate understanding, the evaluation component automatically checks the conformance of an observed communication (actual) to a desired one (planned). The actual and the planned are represented as sequence diagrams. The evaluation algorithm checks the conformance of the actual to the planned diagram. We have applied our approach to the communication of aerospace systems and were successful in detecting and resolving even subtle and long existing transmission problems.

  20. Structuring policy problems for plastics, the environment and human health: reflections from the UK

    PubMed Central

    Shaxson, Louise

    2009-01-01

    How can we strengthen the science–policy interface for plastics, the environment and human health? In a complex policy area with multiple stakeholders, it is important to clarify the nature of the particular plastics-related issue before trying to understand how to reconcile the supply and demand for evidence in policy. This article proposes a simple problem typology to assess the fundamental characteristics of a policy issue and thus identify appropriate processes for science–policy interactions. This is illustrated with two case studies from one UK Government Department, showing how policy and science meet over the environmental problems of plastics waste in the marine environment and on land. A problem-structuring methodology helps us understand why some policy issues can be addressed through relatively linear flows of science from experts to policymakers but why others demand a more reflexive approach to brokering the knowledge between science and policy. Suggestions are given at the end of the article for practical actions that can be taken on both sides. PMID:19528061

  1. Structuring policy problems for plastics, the environment and human health: reflections from the UK.

    PubMed

    Shaxson, Louise

    2009-07-27

    How can we strengthen the science-policy interface for plastics, the environment and human health? In a complex policy area with multiple stakeholders, it is important to clarify the nature of the particular plastics-related issue before trying to understand how to reconcile the supply and demand for evidence in policy. This article proposes a simple problem typology to assess the fundamental characteristics of a policy issue and thus identify appropriate processes for science-policy interactions. This is illustrated with two case studies from one UK Government Department, showing how policy and science meet over the environmental problems of plastics waste in the marine environment and on land. A problem-structuring methodology helps us understand why some policy issues can be addressed through relatively linear flows of science from experts to policymakers but why others demand a more reflexive approach to brokering the knowledge between science and policy. Suggestions are given at the end of the article for practical actions that can be taken on both sides.

  2. An overview of the genetic dissection of complex traits.

    PubMed

    Rao, D C

    2008-01-01

    Thanks to the recent revolutionary genomic advances such as the International HapMap consortium, resolution of the genetic architecture of common complex traits is beginning to look hopeful. While demonstrating the feasibility of genome-wide association (GWA) studies, the pathbreaking Wellcome Trust Case Control Consortium (WTCCC) study also serves to underscore the critical importance of very large sample sizes and draws attention to potential problems, which need to be addressed as part of the study design. Even the large WTCCC study had vastly inadequate power for several of the associations reported (and confirmed) and, therefore, most of the regions harboring relevant associations may not be identified anytime soon. This chapter provides an overview of some of the key developments in the methodological approaches to genetic dissection of common complex traits. Constrained Bayesian networks are suggested as especially useful for analysis of pathway-based SNPs. Likewise, composite likelihood is suggested as a promising method for modeling complex systems. It discusses the key steps in a study design, with an emphasis on GWA studies. Potential limitations highlighted by the WTCCC GWA study are discussed, including problems associated with massive genotype imputation, analysis of pooled national samples, shared controls, and the critical role of interactions. GWA studies clearly need massive sample sizes that are only possible through genuine collaborations. After all, for common complex traits, the question is not whether we can find some pieces of the puzzle, but how large and what kind of a sample we need to (nearly) solve the genetic puzzle.

  3. Radiation dosimetry and biophysical models of space radiation effects

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Shavers, Mark R.; George, Kerry

    2003-01-01

    Estimating the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons, and the absence of epidemiology data for these radiation types. Developing useful biophysical parameters or models that relate energy deposition by space particles to the probabilities of biological outcomes is a complex problem. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra. In contrast to conventional dosimetric methods, models of radiation track structure provide descriptions of energy deposition events in biomolecules, cells, or tissues, which can be used to develop biophysical models of radiation risks. In this paper, we address the biophysical description of heavy particle tracks in the context of the interpretation of both space radiation dosimetry and radiobiology data, which may provide insights into new approaches to these problems.

  4. Studying PubMed usages in the field for complex problem solving: Implications for tool design

    PubMed Central

    Song, Jean; Tonks, Jennifer Steiner; Meng, Fan; Xuan, Weijian; Ameziane, Rafiqa

    2012-01-01

    Many recent studies on MEDLINE-based information seeking have shed light on scientists’ behaviors and associated tool innovations that may improve efficiency and effectiveness. Few if any studies, however, examine scientists’ problem-solving uses of PubMed in actual contexts of work and corresponding needs for better tool support. Addressing this gap, we conducted a field study of novice scientists (14 upper level undergraduate majors in molecular biology) as they engaged in a problem solving activity with PubMed in a laboratory setting. Findings reveal many common stages and patterns of information seeking across users as well as variations, especially variations in cognitive search styles. Based on findings, we suggest tool improvements that both confirm and qualify many results found in other recent studies. Our findings highlight the need to use results from context-rich studies to inform decisions in tool design about when to offer improved features to users. PMID:24376375

  5. A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty

    DOE PAGES

    Zamar, David S.; Gopaluni, Bhushan; Sokhansanj, Shahab; ...

    2016-11-21

    Supply chain optimization for biomass-based power plants is an important research area due to greater emphasis on renewable power energy sources. Biomass supply chain design and operational planning models are often formulated and studied using deterministic mathematical models. While these models are beneficial for making decisions, their applicability to real world problems may be limited because they do not capture all the complexities in the supply chain, including uncertainties in the parameters. This study develops a statistically robust quantile-based approach for stochastic optimization under uncertainty, which builds upon scenario analysis. We apply and evaluate the performance of our approach tomore » address the problem of analyzing competing biomass supply chains subject to stochastic demand and supply. Finally, the proposed approach was found to outperform alternative methods in terms of computational efficiency and ability to meet the stochastic problem requirements.« less

  6. A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamar, David S.; Gopaluni, Bhushan; Sokhansanj, Shahab

    Supply chain optimization for biomass-based power plants is an important research area due to greater emphasis on renewable power energy sources. Biomass supply chain design and operational planning models are often formulated and studied using deterministic mathematical models. While these models are beneficial for making decisions, their applicability to real world problems may be limited because they do not capture all the complexities in the supply chain, including uncertainties in the parameters. This study develops a statistically robust quantile-based approach for stochastic optimization under uncertainty, which builds upon scenario analysis. We apply and evaluate the performance of our approach tomore » address the problem of analyzing competing biomass supply chains subject to stochastic demand and supply. Finally, the proposed approach was found to outperform alternative methods in terms of computational efficiency and ability to meet the stochastic problem requirements.« less

  7. The overconstraint of response time models: rethinking the scaling problem.

    PubMed

    Donkin, Chris; Brown, Scott D; Heathcote, Andrew

    2009-12-01

    Theories of choice response time (RT) provide insight into the psychological underpinnings of simple decisions. Evidence accumulation (or sequential sampling) models are the most successful theories of choice RT. These models all have the same "scaling" property--that a subset of their parameters can be multiplied by the same amount without changing their predictions. This property means that a single parameter must be fixed to allow the estimation of the remaining parameters. In the present article, we show that the traditional solution to this problem has overconstrained these models, unnecessarily restricting their ability to account for data and making implicit--and therefore unexamined--psychological assumptions. We show that versions of these models that address the scaling problem in a minimal way can provide a better description of data than can their overconstrained counterparts, even when increased model complexity is taken into account.

  8. Some single-machine scheduling problems with learning effects and two competing agents.

    PubMed

    Li, Hongjie; Li, Zeyuan; Yin, Yunqiang

    2014-01-01

    This study considers a scheduling environment in which there are two agents and a set of jobs, each of which belongs to one of the two agents and its actual processing time is defined as a decreasing linear function of its starting time. Each of the two agents competes to process its respective jobs on a single machine and has its own scheduling objective to optimize. The objective is to assign the jobs so that the resulting schedule performs well with respect to the objectives of both agents. The objective functions addressed in this study include the maximum cost, the total weighted completion time, and the discounted total weighted completion time. We investigate three problems arising from different combinations of the objectives of the two agents. The computational complexity of the problems is discussed and solution algorithms where possible are presented.

  9. Avoiding potential problems when selling accounts receivable.

    PubMed

    Ayers, D H; Kincaid, T J

    1996-05-01

    Accounts receivable financing is a potential tool for managing a provider organization's working capital needs. But before entering into a financing agreement, organizations need to consider and take steps to avoid serious problems that can arise from participation in an accounts receivable financing program. For example, the purchaser may cease purchasing the receivables, leaving the organization without funding needed for operations. Or, the financing program may be inordinately complex and unnecessarily costly to the organization. Sometimes the organization itself may fail to comply with the terms of the agreement under which the accounts receivable were sold, thus necessitating that restitution be made to the purchaser or provoking charges of fraud. These potential problems should be addressed as early as possible--before an organization enters into an accounts receivable financing program--in order to minimize time, effort, and expanse and maximize the benefits of the financing agreement.

  10. A Bayesian Approach to Real-Time Earthquake Phase Association

    NASA Astrophysics Data System (ADS)

    Benz, H.; Johnson, C. E.; Earle, P. S.; Patton, J. M.

    2014-12-01

    Real-time location of seismic events requires a robust and extremely efficient means of associating and identifying seismic phases with hypothetical sources. An association algorithm converts a series of phase arrival times into a catalog of earthquake hypocenters. The classical approach based on time-space stacking of the locus of possible hypocenters for each phase arrival using the principal of acoustic reciprocity has been in use now for many years. One of the most significant problems that has emerged over time with this approach is related to the extreme variations in seismic station density throughout the global seismic network. To address this problem we have developed a novel, Bayesian association algorithm, which looks at the association problem as a dynamically evolving complex system of "many to many relationships". While the end result must be an array of one to many relations (one earthquake, many phases), during the association process the situation is quite different. Both the evolving possible hypocenters and the relationships between phases and all nascent hypocenters is many to many (many earthquakes, many phases). The computational framework we are using to address this is a responsive, NoSQL graph database where the earthquake-phase associations are represented as intersecting Bayesian Learning Networks. The approach directly addresses the network inhomogeneity issue while at the same time allowing the inclusion of other kinds of data (e.g., seismic beams, station noise characteristics, priors on estimated location of the seismic source) by representing the locus of intersecting hypothetical loci for a given datum as joint probability density functions.

  11. Post-prior equivalence for transfer reactions with complex potentials

    NASA Astrophysics Data System (ADS)

    Lei, Jin; Moro, Antonio M.

    2018-01-01

    In this paper, we address the problem of the post-prior equivalence in the calculation of inclusive breakup and transfer cross sections. For that, we employ the model proposed by Ichimura et al. [Phys. Rev. C 32, 431 (1985), 10.1103/PhysRevC.32.431], conveniently generalized to include the part of the cross section corresponding the transfer to bound states. We pay particular attention to the case in which the unobserved particle is left in a bound state of the residual nucleus, in which case the theory prescribes the use of a complex potential, responsible for the spreading width of the populated single-particle states. We see that the introduction of this complex potential gives rise to an additional term in the prior cross-section formula, not present in the usual case of real binding potentials. The equivalence is numerically tested for the 58Ni(d ,p X ) reaction.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Scott; Salmon, Loïc; Koldewey, Philipp

    We present that challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding. Obtaining structural ensembles of chaperone–substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a new structural biology approach based on X-ray crystallography, termed residual electron and anomalous density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the Escherichia coli chaperonemore » Spy, and to capture a series of snapshots depicting the various folding states of Im7 bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded to native-like states and reveals how a substrate can explore its folding landscape while being bound to a chaperone.« less

  13. Decoding the Heart through Next Generation Sequencing Approaches.

    PubMed

    Pawlak, Michal; Niescierowicz, Katarzyna; Winata, Cecilia Lanny

    2018-06-07

    : Vertebrate organs develop through a complex process which involves interaction between multiple signaling pathways at the molecular, cell, and tissue levels. Heart development is an example of such complex process which, when disrupted, results in congenital heart disease (CHD). This complexity necessitates a holistic approach which allows the visualization of genome-wide interaction networks, as opposed to assessment of limited subsets of factors. Genomics offers a powerful solution to address the problem of biological complexity by enabling the observation of molecular processes at a genome-wide scale. The emergence of next generation sequencing (NGS) technology has facilitated the expansion of genomics, increasing its output capacity and applicability in various biological disciplines. The application of NGS in various aspects of heart biology has resulted in new discoveries, generating novel insights into this field of study. Here we review the contributions of NGS technology into the understanding of heart development and its disruption reflected in CHD and discuss how emerging NGS based methodologies can contribute to the further understanding of heart repair.

  14. Simplified process model discovery based on role-oriented genetic mining.

    PubMed

    Zhao, Weidong; Liu, Xi; Dai, Weihui

    2014-01-01

    Process mining is automated acquisition of process models from event logs. Although many process mining techniques have been developed, most of them are based on control flow. Meanwhile, the existing role-oriented process mining methods focus on correctness and integrity of roles while ignoring role complexity of the process model, which directly impacts understandability and quality of the model. To address these problems, we propose a genetic programming approach to mine the simplified process model. Using a new metric of process complexity in terms of roles as the fitness function, we can find simpler process models. The new role complexity metric of process models is designed from role cohesion and coupling, and applied to discover roles in process models. Moreover, the higher fitness derived from role complexity metric also provides a guideline for redesigning process models. Finally, we conduct case study and experiments to show that the proposed method is more effective for streamlining the process by comparing with related studies.

  15. Complex biomarker discovery in neuroimaging data: Finding a needle in a haystack☆

    PubMed Central

    Atluri, Gowtham; Padmanabhan, Kanchana; Fang, Gang; Steinbach, Michael; Petrella, Jeffrey R.; Lim, Kelvin; MacDonald, Angus; Samatova, Nagiza F.; Doraiswamy, P. Murali; Kumar, Vipin

    2013-01-01

    Neuropsychiatric disorders such as schizophrenia, bipolar disorder and Alzheimer's disease are major public health problems. However, despite decades of research, we currently have no validated prognostic or diagnostic tests that can be applied at an individual patient level. Many neuropsychiatric diseases are due to a combination of alterations that occur in a human brain rather than the result of localized lesions. While there is hope that newer imaging technologies such as functional and anatomic connectivity MRI or molecular imaging may offer breakthroughs, the single biomarkers that are discovered using these datasets are limited by their inability to capture the heterogeneity and complexity of most multifactorial brain disorders. Recently, complex biomarkers have been explored to address this limitation using neuroimaging data. In this manuscript we consider the nature of complex biomarkers being investigated in the recent literature and present techniques to find such biomarkers that have been developed in related areas of data mining, statistics, machine learning and bioinformatics. PMID:24179856

  16. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

    PubMed

    Sulis, William H

    2017-10-01

    Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

  17. Addressing the conundrum of multimorbidity in heart failure: Do we need a more strategic approach to improve health outcomes?

    PubMed

    Stewart, Simon; Riegel, Barbara; Thompson, David R

    2016-02-01

    There is clear evidence across the globe that the clinical complexity of patients presenting to hospital with the syndrome of heart failure is increasing - not only in terms of the presence of concurrent disease states, but with additional socio-demographic risk factors that complicate treatment. Management strategies that treat heart failure as the main determinant of health outcomes ignores the multiple and complex issues that will inevitably erode the efficacy and efficiency of current heart failure management programmes. This complex problem (or conundrum) requires a different way of thinking around the complex interactions that underpin poor outcomes in heart failure. In this context, we present the COordinated NUrse-led inteNsified Disease management for continuity of caRe for mUltiMorbidity in Heart Failure (CONUNDRUM-HF) matrix that may well inform future research and models of care to achieve better health outcomes in this rapidly increasing patient population. © The European Society of Cardiology 2015.

  18. Current Grid Generation Strategies and Future Requirements in Hypersonic Vehicle Design, Analysis and Testing

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Periklis; Venkatapathy, Ethiraj; Prabhu, Dinesh; Loomis, Mark P.; Olynick, Dave; Arnold, James O. (Technical Monitor)

    1998-01-01

    Recent advances in computational power enable computational fluid dynamic modeling of increasingly complex configurations. A review of grid generation methodologies implemented in support of the computational work performed for the X-38 and X-33 are presented. In strategizing topological constructs and blocking structures factors considered are the geometric configuration, optimal grid size, numerical algorithms, accuracy requirements, physics of the problem at hand, computational expense, and the available computer hardware. Also addressed are grid refinement strategies, the effects of wall spacing, and convergence. The significance of grid is demonstrated through a comparison of computational and experimental results of the aeroheating environment experienced by the X-38 vehicle. Special topics on grid generation strategies are also addressed to model control surface deflections, and material mapping.

  19. The Aerial Regional-scale Environmental Survey (ARES) Mission to Mars

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    2005-01-01

    ARES is an exploration mission concept for an Aerial Regional-scale Environmental Survey of Mars designed to fly an instrumented platform over the surface of Mars at very low altitudes (1-3 km) for distances of hundreds to thousands of kilometers to obtain scientific data to address fundamental problems in Mars science. ARES helps to fill a gap in the scale and perspective of the Mars Exploration Program and addresses many key COMPLEX/MEPAG questions (e.g., nature and origin of crustal magnetic anomalies) not readily pursued in other parts of the exploration program. ARES supports the human exploration program through key environmental measurements and high-resolution contiguous data essential to reference mission design. Here we describe the major types of scientific goals, candidate instruments, and reference mission profiles.

  20. Engineering scalable biological systems

    PubMed Central

    2010-01-01

    Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast and mammalian systems. However, significant challenges in the construction, probing, modulation and debugging of synthetic biological systems must be addressed in order to achieve scalable higher-complexity biological circuits. Furthermore, concomitant efforts to evaluate the safety and biocontainment of engineered organisms and address public and regulatory concerns will be necessary to ensure that technological advances are translated into real-world solutions. PMID:21468204

Top